51
|
Martinez HD, Hsiao JJ, Jasavala RJ, Hinkson IV, Eng JK, Wright ME. Androgen-sensitive microsomal signaling networks coupled to the proliferation and differentiation of human prostate cancer cells. Genes Cancer 2012; 2:956-78. [PMID: 22701762 DOI: 10.1177/1947601912436422] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 12/22/2011] [Accepted: 01/01/2012] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence suggests that the disruption of androgen-mediated cellular processes, such as cell proliferation and cell differentiation, contributes to the development of early-stage androgen-dependent prostate cancers. Large-scale mRNA profiling experiments have paved the way in identifying androgen-regulated gene networks that control the proliferation, survival, and differentiation of prostate cancer cells. Despite these extensive research efforts, it remains to be determined whether all androgen-mediated mRNA changes faithfully translate into changes in protein abundance that influence prostate tumorigenesis. Here, we report on a mass spectrometry-based quantitative proteomics analysis that identified known androgen signaling pathways and also novel, androgen-sensitive microsome-associated proteins and protein networks that had not been discovered by gene network studies in human LNCaP prostate cancer cells. Androgen-sensitive microsome-associated proteins encoded components of the insulin growth factor-1 (IGF-1), phosphoinositide 3-kinase (PI3K)/AKT, and extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) signaling pathways. Further bioinformatic analyses showed most of the androgen-sensitive microsome-associated protein networks play roles in cell proliferation and differentiation. Functional validation experiments showed that the androgen-sensitive microsome-associated proteins Janus kinase 2 (JAK2) and I-kappa B kinase complex-associated protein (IKAP) modulated the expression of prostate epithelial and neuronal markers, attenuated proliferation through an androgen receptor-dependent mechanism, and co-regulated androgen receptor-mediated transcription in LNCaP cells. Further biochemical analyses showed that the increased proliferation in JAK2 knockdown cells was mediated by activation of the mammalian target of rapamycin (mTOR), as determined by increased phosphorylation of several downstream targets (p70 S6 kinase, translational repressor 4E-BP1, and 40S ribosomal S6 protein). We conclude that the expression of microsome-associated proteins that were previously implicated in the tumorigenesis of prostate epithelial cells is strongly influenced by androgens. These findings provide a molecular framework for exploring the mechanisms underlying prostate tumorigenesis and how these protein networks might be attenuated or potentiated in disrupting the growth and survival of human prostate cancers.
Collapse
Affiliation(s)
- Harryl D Martinez
- University of California Davis Genome Center, University of California at Davis, Davis, CA, USA
| | | | | | | | | | | |
Collapse
|
52
|
Kim J, Di Vizio D, Kim TK, Kim J, Kim M, Pelton K, Clinton SK, Hai T, Hwang D, Solomon KR, Freeman MR. The response of the prostate to circulating cholesterol: activating transcription factor 3 (ATF3) as a prominent node in a cholesterol-sensing network. PLoS One 2012; 7:e39448. [PMID: 22768301 PMCID: PMC3388073 DOI: 10.1371/journal.pone.0039448] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 05/21/2012] [Indexed: 12/20/2022] Open
Abstract
Elevated circulating cholesterol is a systemic risk factor for cardiovascular disease and metabolic syndrome, however the manner in which the normal prostate responds to variations in cholesterol levels is poorly understood. In this study we addressed the molecular and cellular effects of elevated and suppressed levels of circulating cholesterol on the normal prostate. Integrated bioinformatic analysis was performed using DNA microarray data from two experimental formats: (1) ventral prostate from male mice with chronically elevated circulating cholesterol and (2) human prostate cells exposed acutely to cholesterol depletion. A cholesterol-sensitive gene expression network was constructed from these data and the transcription factor ATF3 was identified as a prominent node in the network. Validation experiments confirmed that elevated cholesterol reduced ATF3 expression and enhanced proliferation of prostate cells, while cholesterol depletion increased ATF3 levels and inhibited proliferation. Cholesterol reduction in vivo alleviated dense lymphomononuclear infiltrates in the periprostatic adipose tissue, which were closely associated with nerve tracts and blood vessels. These findings open new perspectives on the role of cholesterol in prostate health, and provide a novel role for ATF3, and associated proteins within a large signaling network, as a cholesterol-sensing mechanism.
Collapse
Affiliation(s)
- Jayoung Kim
- Division of Cancer Biology and Therapeutics, Departments of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
High-throughput transcriptomic and RNAi analysis identifies AIM1, ERGIC1, TMED3 and TPX2 as potential drug targets in prostate cancer. PLoS One 2012; 7:e39801. [PMID: 22761906 PMCID: PMC3386189 DOI: 10.1371/journal.pone.0039801] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 05/31/2012] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer is a heterogeneous group of diseases and there is a need for more efficient and targeted methods of treatment. In this study, the potential of gene expression data and RNA interference technique were combined to advance future personalized prostate cancer therapeutics. To distinguish the most promising in vivo prevalidated prostate cancer drug targets, a bioinformatic analysis was carried out using genome-wide gene expression data from 9873 human tissue samples. In total, 295 genes were selected for further functional studies in cultured prostate cancer cells due to their high mRNA expression in prostate, prostate cancer or in metastatic prostate cancer samples. Second, RNAi based cell viability assay was performed in VCaP and LNCaP prostate cancer cells. Based on the siRNA results, gene expression patterns in human tissues and novelty, endoplasmic reticulum function associated targets AIM1, ERGIC1 and TMED3, as well as mitosis regulating TPX2 were selected for further validation. AIM1, ERGIC1, and TPX2 were shown to be highly expressed especially in prostate cancer tissues, and high mRNA expression of ERGIC1 and TMED3 associated with AR and ERG oncogene expression. ERGIC1 silencing specifically regulated the proliferation of ERG oncogene positive prostate cancer cells and inhibited ERG mRNA expression in these cells, indicating that it is a potent drug target in ERG positive subgroup of prostate cancers. TPX2 expression associated with PSA failure and TPX2 silencing reduced PSA expression, indicating that TPX2 regulates androgen receptor mediated signaling. In conclusion, the combinatorial usage of microarray and RNAi techniques yielded in a large number of potential novel biomarkers and therapeutic targets, for future development of targeted and personalized approaches for prostate cancer management.
Collapse
|
54
|
Identification of kinases regulating prostate cancer cell growth using an RNAi phenotypic screen. PLoS One 2012; 7:e38950. [PMID: 22761715 PMCID: PMC3384611 DOI: 10.1371/journal.pone.0038950] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 05/15/2012] [Indexed: 01/10/2023] Open
Abstract
As prostate cancer progresses to castration-resistant disease, there is an increase in signal transduction activity. Most castration-resistant prostate tumors continue to express the androgen receptor (AR) as well as androgen-responsive genes, despite the near absence of circulating androgen in these patients. The AR is regulated not only by its cognate steroid hormone, but also by interactions with a constellation of co-regulatory and signaling molecules. Thus, the elevated signaling activity that occurs during progression to castration resistance can affect prostate cancer cell growth either through the AR or independent of the AR. In order to identify signaling pathways that regulate prostate cancer cell growth, we screened a panel of shRNAs targeting 673 human kinases against LNCaP prostate cancer cells grown in the presence and absence of hormone. The screen identified multiple shRNA clones against known and novel gene targets that regulate prostate cancer cell growth. Based on the magnitude of effect on growth, we selected six kinases for further study: MAP3K11, DGKD, ICK, CIT, GALK2, and PSKH1. Knockdown of these kinases decreased cell growth in both androgen-dependent and castration-resistant prostate cancer cells. However, these kinases had different effects on basal or androgen-induced transcriptional activity of AR target genes. MAP3K11 knockdown most consistently altered transcription of AR target genes, suggesting that MAP3K11 affected its growth inhibitory effect by modulating the AR transcriptional program. Consistent with MAP3K11 acting on the AR, knockdown of MAP3K11 inhibited AR Ser 650 phosphorylation, further supporting stress kinase regulation of AR phosphorylation. This study demonstrates the applicability of lentiviral-based shRNA for conducting phenotypic screens and identifies MAP3K11, DGKD, ICK, CIT, GALK2, and PSKH1 as regulators of prostate cancer cell growth. The thorough evaluation of these kinase targets will pave the way for developing more effective treatments for castration-resistant prostate cancer.
Collapse
|
55
|
Coppola V, Musumeci M, Patrizii M, Cannistraci A, Addario A, Maugeri-Saccà M, Biffoni M, Francescangeli F, Cordenonsi M, Piccolo S, Memeo L, Pagliuca A, Muto G, Zeuner A, De Maria R, Bonci D. BTG2 loss and miR-21 upregulation contribute to prostate cell transformation by inducing luminal markers expression and epithelial-mesenchymal transition. Oncogene 2012; 32:1843-53. [PMID: 22614007 DOI: 10.1038/onc.2012.194] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Prostate cancer is one of the leading causes of cancer-related death in men. Despite significant advances in prostate cancer diagnosis and management, the molecular events involved in the transformation of normal prostate cells into cancer cells have not been fully understood. It is generally accepted that prostate cancer derives from the basal compartment while expressing luminal markers. We investigated whether downregulation of the basal protein B-cell translocation gene 2 (BTG2) is implicated in prostate cancer transformation and progression. Here we show that BTG2 loss can shift normal prostate basal cells towards luminal markers expression, a phenotype also accompanied by the appearance of epithelial-mesenchymal transition (EMT) traits. We also show that the overexpression of microRNA (miR)-21 suppresses BTG2 levels and promotes the acquisition of luminal markers and EMT in prostate cells. Furthermore, by using an innovative lentiviral vector able to compete with endogenous mRNA through the overexpression of the 3'-untranslated region of BTG2, we demonstrate that in prostate tumor cells, the levels of luminal and EMT markers can be reduced by derepression of BTG2 from microRNA-mediated control. Finally, we show that the loss of BTG2 expression confers to non-tumorigenic prostate cells ability to grow in an orthotopic murine model, thus demonstrating the central role of BTG2 downregulaton in prostate cancer biology.
Collapse
Affiliation(s)
- V Coppola
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Lee SO, Tian J, Huang CK, Ma Z, Lai KP, Hsiao H, Jiang M, Yeh S, Chang C. Suppressor role of androgen receptor in proliferation of prostate basal epithelial and progenitor cells. J Endocrinol 2012; 213:173-82. [PMID: 22393245 DOI: 10.1530/joe-11-0474] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Early studies have reported the differential roles of androgen receptor (AR) in different types (luminal, basal intermediate, and stromal) of prostate cancer cells. In vivo mouse model tumor studies using the total prostate epithelial knockout mice (pes-ARKO) also revealed that AR played a suppressive role in proliferation of the CK5(+)/CK8(+) progenitor/intermediate cells but a positive role in the CK5(-)/CK8(+) luminal epithelial cells. Using three different resources (one human basal epithelial cell line, one mouse basal epithelial originated progenitor cell line, and a basal epithelium-specific ARKO mouse model), we here demonstrated that the AR in basal epithelial cells of normal prostate plays a suppressive role in their proliferation but a positive role in differentiation into luminal epithelial cells. These results led us to conclude that ARs may play a negative role to suppress CK5(+) basal epithelial and progenitor cell proliferation, yet play an essential role to drive basal epithelial cells into more differentiated states. These results may explain why differential AR expression in different cell types within normal prostate is needed and suggest that ARs in prostate basal epithelial cells, although expressed at a very low level, are necessary to maintain the balance between progenitor cells and differentiated luminal epithelial cells.
Collapse
Affiliation(s)
- Soo Ok Lee
- George Whipple Laboratory for Cancer Research, Department of Pathology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Nacerddine K, Beaudry JB, Ginjala V, Westerman B, Mattiroli F, Song JY, van der Poel H, Ponz OB, Pritchard C, Cornelissen-Steijger P, Zevenhoven J, Tanger E, Sixma TK, Ganesan S, van Lohuizen M. Akt-mediated phosphorylation of Bmi1 modulates its oncogenic potential, E3 ligase activity, and DNA damage repair activity in mouse prostate cancer. J Clin Invest 2012; 122:1920-32. [PMID: 22505453 DOI: 10.1172/jci57477] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 02/29/2012] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer (PCa) is a major lethal malignancy in men, but the molecular events and their interplay underlying prostate carcinogenesis remain poorly understood. Epigenetic events and the upregulation of polycomb group silencing proteins including Bmi1 have been described to occur during PCa progression. Here, we found that conditional overexpression of Bmi1 in mice induced prostatic intraepithelial neoplasia, and elicited invasive adenocarcinoma when combined with PTEN haploinsufficiency. In addition, Bmi1 and the PI3K/Akt pathway were coactivated in a substantial fraction of human high-grade tumors. We found that Akt mediated Bmi1 phosphorylation, enhancing its oncogenic potential in an Ink4a/Arf-independent manner. This process also modulated the DNA damage response and affected genomic stability. Together, our findings demonstrate the etiological role of Bmi1 in PCa, unravel an oncogenic collaboration between Bmi1 and the PI3K/Akt pathway, and provide mechanistic insights into the modulation of Bmi1 function by phosphorylation during prostate carcinogenesis.
Collapse
Affiliation(s)
- Karim Nacerddine
- Division of Molecular Genetics and Center for Biomedical Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Albino D, Longoni N, Curti L, Mello-Grand M, Pinton S, Civenni G, Thalmann G, D'Ambrosio G, Sarti M, Sessa F, Chiorino G, Catapano CV, Carbone GM. ESE3/EHF controls epithelial cell differentiation and its loss leads to prostate tumors with mesenchymal and stem-like features. Cancer Res 2012; 72:2889-900. [PMID: 22505649 DOI: 10.1158/0008-5472.can-12-0212] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cancer stem cells (CSC) play a significant role in tumor progression, disease recurrence, and treatment failure. Here, we show that the endogenously expressed ETS transcription factor ESE3/EHF controls prostate epithelial cell differentiation and stem-like potential. We found that loss of ESE3/EHF induced epithelial-to-mesenchymal transition (EMT), stem-like features, and tumor-initiating and metastatic properties in prostate epithelial cells, and reexpression of ESE3/EHF inhibited the stem-like properties and tumorigenic potential of prostate cancer cells. Mechanistically, ESE3/EHF repressed the expression of key EMT and CSC genes, including TWIST1, ZEB2, BMI1, and POU5F1. Analysis of human tissue microarrays showed that reduced ESE3/EHF expression is an early event in tumorigenesis, frequently occurring independently of other ETS gene alterations. Additional analyses linked loss of ESE3/EHF expression to a distinct group of prostate tumors with distinctive molecular and biologic characteristics, including increased expression of EMT and CSC genes. Low ESE3/EHF expression was also associated with increased biochemical recurrence of prostate cancer and reduced overall survival after prostatectomy. Collectively, our findings define a key role for ESE3/EHF in the development of a subset of prostate tumors and highlight the clinical importance of identifying molecularly defined tumor subgroups.
Collapse
Affiliation(s)
- Domenico Albino
- Institute of Oncology Research and Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Ren G, Baritaki S, Marathe H, Feng J, Park S, Beach S, Bazeley PS, Beshir AB, Fenteany G, Mehra R, Daignault S, Al-Mulla F, Keller E, Bonavida B, de la Serna I, Yeung KC. Polycomb protein EZH2 regulates tumor invasion via the transcriptional repression of the metastasis suppressor RKIP in breast and prostate cancer. Cancer Res 2012; 72:3091-104. [PMID: 22505648 DOI: 10.1158/0008-5472.can-11-3546] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epigenetic modifications such as histone methylation play an important role in human cancer metastasis. Enhancer of zeste homolog 2 (EZH2), which encodes the histone methyltransferase component of the polycomb repressive complex 2 (PRC2), is overexpressed widely in breast and prostate cancers and epigenetically silences tumor suppressor genes. Expression levels of the novel tumor and metastasis suppressor Raf-1 kinase inhibitor protein (RKIP) have been shown to correlate negatively with those of EZH2 in breast and prostate cell lines as well as in clinical cancer tissues. Here, we show that the RKIP/EZH2 ratio significantly decreases with the severity of disease and is negatively associated with relapse-free survival in breast cancer. Using a combination of loss- and gain-of-function approaches, we found that EZH2 negatively regulated RKIP transcription through repression-associated histone modifications. Direct recruitment of EZH2 and suppressor of zeste 12 (Suz12) to the proximal E-boxes of the RKIP promoter was accompanied by H3-K27-me3 and H3-K9-me3 modifications. The repressing activity of EZH2 on RKIP expression was dependent on histone deacetylase promoter recruitment and was negatively regulated upstream by miR-101. Together, our findings indicate that EZH2 accelerates cancer cell invasion, in part, via RKIP inhibition. These data also implicate EZH2 in the regulation of RKIP transcription, suggesting a potential mechanism by which EZH2 promotes tumor progression and metastasis.
Collapse
Affiliation(s)
- Gang Ren
- Department of Biochemistry and Cancer Biology, College of Medicine, Health Science Campus, University of Toledo, Toledo, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Tu SM, Lin SH. Prostate cancer stem cells. Clin Genitourin Cancer 2012; 10:69-76. [PMID: 22421313 DOI: 10.1016/j.clgc.2012.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 12/27/2011] [Accepted: 01/19/2012] [Indexed: 02/07/2023]
Abstract
Stem cells have long been implicated in prostate gland formation. The prostate undergoes regression after androgen deprivation and regeneration after testosterone replacement. Regenerative studies suggest that these cells are found in the proximal ducts and basal layer of the prostate. Many characteristics of prostate cancer indicate that it originates from stem cells. For example, the putative androgen receptor-negative (AR(-)) status of prostate stem cells renders them inherently insensitive to androgen blockade therapy. The androgen-regulated gene fusion TMPRSS2-ERG could be used to clarify both the cells of origin and the evolution of prostate cancer cells. In this review, we show that the hypothesis that distinct subtypes of cancer result from abnormalities within specific cell types-the stem cell theory of cancer-may instigate a major paradigm shift in cancer research and therapy. Ultimately, the stem cell theory of cancers will affect how we practice clinical oncology: our diagnosis, monitoring, and therapy of prostate and other cancers.
Collapse
Affiliation(s)
- Shi-Ming Tu
- Department of Genitourinary Medical Oncology, The University of Texas, MD, Anderson Cancer Center, Houston, TX 77030-3721, USA.
| | | |
Collapse
|
61
|
The SRA protein UHRF1 promotes epigenetic crosstalks and is involved in prostate cancer progression. Oncogene 2012; 31:4878-87. [PMID: 22330138 DOI: 10.1038/onc.2011.641] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Epigenetic silencing of tumour suppressor genes is an important mechanism involved in cell transformation and tumour progression. The Set and RING-finger-associated domain-containing protein UHRF1 might be an important link between different epigenetic pathways. Here, we report that UHRF1 is frequently overexpressed in human prostate tumours and has an important role in prostate cancer pathogenesis and progression. Analysis of human prostate cancer samples by microarrays and immunohistochemistry showed increased expression of UHRF1 in about half of the cases. Moreover, UHRF1 expression was associated with reduced overall survival after prostatectomy in patients with organ-confined prostate tumours (P < 0.0001). UHRF1 expression was negatively correlated with several tumour suppressor genes and positively with the histone methyltransferase (HMT) EZH2 both in prostate tumours and cell lines. UHRF1 knockdown reduced proliferation, clonogenic capability and anchorage-independent growth of prostate cancer cells. Depletion of UHRF1 resulted in reactivation of several tumour suppressor genes. Gene reactivation upon UHRF1 depletion was associated with changes in histone H3K9 methylation, acetylation and DNA methylation, and impaired binding of the H3K9 HMT Suv39H1 to the promoter of silenced genes. Co-immunoprecipitation experiments showed direct interaction between UHRF1 and Suv39H1. Our data support the notion that UHRF1, along with Suv39H1 and DNA methyltransferases, contributes to epigenetic gene silencing in prostate tumours. This could represent a parallel and convergent pathway to the H3K27 methylation catalyzed by EZH2 to synergistically promote inactivation of tumour suppressor genes. Deregulated expression of UHRF1 is involved in the prostate cancer pathogenesis and might represent a useful marker to distinguish indolent cancer from those at high risk of lethal progression.
Collapse
|
62
|
Benassi B, Flavin R, Marchionni L, Zanata S, Pan Y, Chowdhury D, Marani M, Strano S, Muti P, Blandino G, Loda M. MYC is activated by USP2a-mediated modulation of microRNAs in prostate cancer. Cancer Discov 2012; 2:236-47. [PMID: 22585994 DOI: 10.1158/2159-8290.cd-11-0219] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
UNLABELLED Ubiquitin-specific protease 2a (USP2a) is overexpressed in almost half of human prostate cancers and c-Myc is amplified in one third of these tumor types. Transgenic MYC expression drives invasive adenocarcinomas in the murine prostate. We show that overexpression of USP2a downregulates a set of microRNAs that collectively increase MYC levels by MDM2 deubiquitination and subsequent p53 inactivation. By establishing MYC as a target of miR-34b/c, we demonstrate that this cluster functions as a tumor suppressor in prostate cancer cells. We identify a distinct mRNA signature that is enriched for MYC-regulated transcripts and transcription factor binding sites in USP2a overexpressing prostate cancer cells. We demonstrate that these genes are associated with an invasive phenotype in human prostate cancer and that the proliferative and invasive properties of USP2a overexpressing cells are MYC-dependent. These results highlight an unrecognized mechanism of MYC regulation in prostate cancer and suggest alternative therapeutic strategies in targeting MYC. SIGNIFICANCE The deubiquitinating enzyme USP2a has previously been shown to be oncogenic, overexpressed in almost half of human prostate adenocarcinomas, and prolongs the half-life of targets such as fatty acid synthase, MDM2, and cyclin D1. Here, we highlight a new mechanism by which USP2a enhances MYC levels through the modulation of specific subsets of microRNAs in prostate cancer, suggesting alternative therapeutic strategies for targeting MYC.
Collapse
Affiliation(s)
- Barbara Benassi
- Translational Oncogenomics Unit, Regina Elena Cancer Institute, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Sen A, Prizant H, Hammes SR. Understanding extranuclear (nongenomic) androgen signaling: what a frog oocyte can tell us about human biology. Steroids 2011; 76:822-8. [PMID: 21354434 PMCID: PMC4972037 DOI: 10.1016/j.steroids.2011.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 01/13/2011] [Accepted: 02/16/2011] [Indexed: 12/13/2022]
Abstract
Steroids are key factors in a myriad of mammalian biological systems, including the brain, kidney, heart, bones, and gonads. While alternative potential steroid receptors have been described, the majority of biologically relevant steroid responses appear to be mediated by classical steroid receptors that are located in all parts of the cell, from the plasma membrane to the nucleus. Interestingly, these classical steroid receptors modulate different signals depending upon their location. For example, receptors in the plasma membrane interact with membrane signaling molecules, including G proteins and kinases. In contrast, receptors in the nucleus interact with nuclear signaling molecules, including transcriptional co-regulators. These extranuclear and intranuclear signals function together in an integrated fashion to regulate important biological functions. While most studies on extranuclear steroid signaling have focused on estrogens, recent work has demonstrated that nongenomic androgen signaling is equally important and that these two steroids modulate similar signaling pathways. In fact, by taking advantage of a simple model system whereby a physiologically relevant androgen-mediated process is regulated completely independent of transcription (Xenopus laevis oocyte maturation), many novel and conserved concepts in nongenomic steroid signaling have been uncovered and characterized.
Collapse
Affiliation(s)
| | | | - Stephen R Hammes
- Corresponding author: Stephen R Hammes, M.D., Ph.D., Division of Endocrinology and Metabolism, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave. Rochester, NY 14642. Phone: 585-275-2901; Fax: 585-273-1288;
| |
Collapse
|
64
|
Zerbini LF, de Vasconcellos JF, Czibere A, Wang Y, Paccez JD, Gu X, Zhou JR, Libermann TA. JunD-mediated repression of GADD45α and γ regulates escape from cell death in prostate cancer. Cell Cycle 2011; 10:2583-91. [PMID: 21734453 DOI: 10.4161/cc.10.15.16057] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The AP-1 transcription factor complex has been implicated in a variety of biological processes including cell differentiation, proliferation, apoptosis and oncogenic transformation. We previously established that activation of the AP-1 family member JunD contributes to deregulated expression of the anti-apoptotic IL-6 gene in prostate cancer cells. We now show that inhibition of JunD in prostate cancer cells results in GADD45α- and γ-dependent induction of cell death and inhibition of tumor growth that is mediated at least partially via c-Jun N-terminal kinase (JNK) and p38 kinase activation. Apoptosis induction by dominant negative JunD and JNK and p38 kinase activation are impeded upon knock down of GADD45α and γ expression by small interfering RNA, most vividly demonstrating the central role of GADD45α and γ in JunD-mediated escape of prostate cancer cells from programmed cell death.
Collapse
Affiliation(s)
- Luiz Fernando Zerbini
- International Center for Genetic Engineering and Biotechnology (ICGEB), Cancer Genomics Group, Cape Town, South Africa.
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Hildenbrand ZL, Molugu SK, Herrera N, Ramirez C, Xiao C, Bernal RA. Hsp90 can accommodate the simultaneous binding of the FKBP52 and HOP proteins. Oncotarget 2011; 2:43-58. [PMID: 21378414 PMCID: PMC3248148 DOI: 10.18632/oncotarget.225] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The regulation of steroidogenic hormone receptor-mediated activity plays an important role in the development of hormone-dependent cancers. For example, during prostate carcinogenesis, the regulatory function played by the androgen receptor is often converted from a growth suppressor to an oncogene thus promoting prostate cancer cell survival and eventual metastasis. Within the cytoplasm, steroid hormone receptor activity is regulated by the Hsp90 chaperone in conjunction with a series of co-chaperone proteins. Collectively, Hsp90 and its binding associates form a large heteromeric complex that scaffold the fully mature receptor for binding with the respective hormone. To date our understanding of the interactions between Hsp90 with the various TPR domain-containing co-chaperone proteins is limited due to a lack of available structural information. Here we present the stable formation of Hsp902-FKBP521- HOP2 and Hsp902-FKBP521-p232-HOP2 complexes as detected by immunoprecipitation, time course dynamic light scattering and electron microscopy. The simultaneous binding of FKBP52 and HOP to the Hsp90 dimer provide direct evidence of a novel chaperone sub-complex that likely plays a transient role in the regulation of the fully mature steroid hormone receptor.
Collapse
Affiliation(s)
- Zacariah L Hildenbrand
- Department of Chemistry, University of Texas at El Paso, 500 W. University Ave, El Paso, Texas 79968, USA
| | | | | | | | | | | |
Collapse
|
66
|
TMPRSS2/ERG promotes epithelial to mesenchymal transition through the ZEB1/ZEB2 axis in a prostate cancer model. PLoS One 2011; 6:e21650. [PMID: 21747944 PMCID: PMC3128608 DOI: 10.1371/journal.pone.0021650] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 06/04/2011] [Indexed: 11/25/2022] Open
Abstract
Prostate cancer is the most common non-dermatologic malignancy in men in the Western world. Recently, a frequent chromosomal aberration fusing androgen regulated TMPRSS2 promoter and the ERG gene (TMPRSS2/ERG) was discovered in prostate cancer. Several studies demonstrated cooperation between TMPRSS2/ERG and other defective pathways in cancer progression. However, the unveiling of more specific pathways in which TMPRSS2/ERG takes part, requires further investigation. Using immortalized prostate epithelial cells we were able to show that TMPRSS2/ERG over-expressing cells undergo an Epithelial to Mesenchymal Transition (EMT), manifested by acquisition of mesenchymal morphology and markers as well as migration and invasion capabilities. These findings were corroborated in vivo, where the control cells gave rise to discrete nodules while the TMPRSS2/ERG-expressing cells formed malignant tumors, which expressed EMT markers. To further investigate the general transcription scheme induced by TMPRSS2/ERG, cells were subjected to a microarray analysis that revealed a distinct EMT expression program, including up-regulation of the EMT facilitators, ZEB1 and ZEB2, and down-regulation of the epithelial marker CDH1(E-Cadherin). A chromatin immunoprecipitation assay revealed direct binding of TMPRSS2/ERG to the promoter of ZEB1 but not ZEB2. However, TMPRSS2/ERG was able to bind the promoters of the ZEB2 modulators, IL1R2 and SPINT1. This set of experiments further illuminates the mechanism by which the TMPRSS2/ERG fusion affects prostate cancer progression and might assist in targeting TMPRSS2/ERG and its downstream targets in future drug design efforts.
Collapse
|
67
|
Clegg NJ, Couto SS, Wongvipat J, Hieronymus H, Carver BS, Taylor BS, Ellwood-Yen K, Gerald WL, Sander C, Sawyers CL. MYC cooperates with AKT in prostate tumorigenesis and alters sensitivity to mTOR inhibitors. PLoS One 2011; 6:e17449. [PMID: 21394210 PMCID: PMC3048873 DOI: 10.1371/journal.pone.0017449] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 01/24/2011] [Indexed: 12/19/2022] Open
Abstract
MYC and phosphoinositide 3-kinase (PI3K)-pathway deregulation are common in human prostate cancer. Through examination of 194 human prostate tumors, we observed statistically significant co-occurrence of MYC amplification and PI3K-pathway alteration, raising the possibility that these two lesions cooperate in prostate cancer progression. To investigate this, we generated bigenic mice in which both activated human AKT1 and human MYC are expressed in the prostate (MPAKT/Hi-MYC model). In contrast to mice expressing AKT1 alone (MPAKT model) or MYC alone (Hi-MYC model), the bigenic phenotype demonstrates accelerated progression of mouse prostate intraepithelial neoplasia (mPIN) to microinvasive disease with disruption of basement membrane, significant stromal remodeling and infiltration of macrophages, B- and T-lymphocytes, similar to inflammation observed in human prostate tumors. In contrast to the reversibility of mPIN lesions in young MPAKT mice after treatment with mTOR inhibitors, Hi-MYC and bigenic MPAKT/Hi-MYC mice were resistant. Additionally, older MPAKT mice showed reduced sensitivity to mTOR inhibition, suggesting that additional genetic events may dampen mTOR dependence. Since increased MYC expression is an early feature of many human prostate cancers, these data have implications for treatment of human prostate cancers with PI3K-pathway alterations using mTOR inhibitors.
Collapse
Affiliation(s)
- Nicola J. Clegg
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Suzana S. Couto
- Laboratory of Comparative Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - John Wongvipat
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Haley Hieronymus
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Brett S. Carver
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Department of Surgery and Urology Service, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Barry S. Taylor
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Katharine Ellwood-Yen
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - William L. Gerald
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Chris Sander
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Charles L. Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
68
|
Abstract
BACKGROUND Androgens play an essential role in the development and differentiation of the prostate gland; their contribution to pathological conditions, such as benign prostatic hyperplasia and prostate cancer (PC), remains unclear. AIM We reviewed relationships between androgens and the prostate both in physiological and pathological conditions. MATERIAL AND METHODS A systematic search of published evidence was performed using Medline (1969 to September 2010). RESULTS Androgen-dependency of prostate growth is evident only in the hypogonadal condition, but not in the eugonadal state (the "saturation hypothesis"). There is unequivocal evidence that reducing androgen signaling to the hypogonadal range can reduce PC growth and patient symptoms. At physiological testosterone concentration there is no link between androgen levels and PC risk. In addition, different strategies of androgen deprivation (ADT) for advanced PC are only palliative and rarely cure patients. Preliminary evidence indicates that a low androgen milieu is associated with tumor aggressiveness. Transition to androgen-independence is complex and involves both selection and outgrowth of preexisting androgen resistant clones, as well as adaptative upregulation of genes that help the cancer cells to survive and grow after ADT. Because androgens are essential for the regulation of fat distribution, insulin sensitivity, and lipid and bone metabolism, recent publications have highlighted the concept that ADT may also be involved with an increase in overall, as well as cardiovascular, morbidity and mortality. CONCLUSIONS While ADT still represents a cornerstone for the palliative therapy of a small fraction of aggressive PC, a "misuse and/or abuse" of ADT should be avoided.
Collapse
Affiliation(s)
- G Corona
- Sexual Medicine and Andrology Unit, Department of Clinical Physiopathology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | | | | |
Collapse
|
69
|
SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression. Nature 2011; 470:269-73. [PMID: 21289624 DOI: 10.1038/nature09677] [Citation(s) in RCA: 406] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 11/16/2010] [Indexed: 12/16/2022]
Abstract
Effective clinical management of prostate cancer (PCA) has been challenged by significant intratumoural heterogeneity on the genomic and pathological levels and limited understanding of the genetic elements governing disease progression. Here, we exploited the experimental merits of the mouse to test the hypothesis that pathways constraining progression might be activated in indolent Pten-null mouse prostate tumours and that inactivation of such progression barriers in mice would engender a metastasis-prone condition. Comparative transcriptomic and canonical pathway analyses, followed by biochemical confirmation, of normal prostate epithelium versus poorly progressive Pten-null prostate cancers revealed robust activation of the TGFβ/BMP-SMAD4 signalling axis. The functional relevance of SMAD4 was further supported by emergence of invasive, metastatic and lethal prostate cancers with 100% penetrance upon genetic deletion of Smad4 in the Pten-null mouse prostate. Pathological and molecular analysis as well as transcriptomic knowledge-based pathway profiling of emerging tumours identified cell proliferation and invasion as two cardinal tumour biological features in the metastatic Smad4/Pten-null PCA model. Follow-on pathological and functional assessment confirmed cyclin D1 and SPP1 as key mediators of these biological processes, which together with PTEN and SMAD4, form a four-gene signature that is prognostic of prostate-specific antigen (PSA) biochemical recurrence and lethal metastasis in human PCA. This model-informed progression analysis, together with genetic, functional and translational studies, establishes SMAD4 as a key regulator of PCA progression in mice and humans.
Collapse
|
70
|
Wei W, Barron PD, Rheinwald JG. Modulation of TGF-β-inducible hypermotility by EGF and other factors in human prostate epithelial cells and keratinocytes. In Vitro Cell Dev Biol Anim 2010; 46:841-55. [PMID: 21042878 PMCID: PMC3568941 DOI: 10.1007/s11626-010-9353-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Accepted: 09/27/2010] [Indexed: 11/28/2022]
Abstract
Keratinocytes migrating from a wound edge or initiating malignant invasion greatly increase their expression of the basement membrane protein Laminin-322 (Lam332). In culture, keratinocytes initiate sustained directional hypermotility when plated onto an incompletely processed form of Lam332 (Lam332') or when treated with transforming growth factor beta (TGF-β), an inducer of Lam332 expression. The development and tissue architecture of stratified squamous and prostate epithelia are very different, yet the basal cells of both express p63, α6β4 integrin, and Lam332. Keratinocytes and prostate epithelial cells grow well in nutritionally optimized culture media with pituitary extract and certain mitogens. We report that prostate epithelial cells display hypermotility responses indistinguishable from those of keratinocytes. Several culture medium variables attenuated TGF-β-induced hypermotility, including Ca(++), serum, and some pituitary extract preparations, without impairing growth, TGF-β growth inhibition, or hypermotility on Lam322'. Distinct from its role as a mitogen, EGF proved to be a required cofactor for TGF-β-induced hypermotility and could not be replaced by HGF or KGF. Prostate epithelial cells have a short replicative lifespan, restricted both by p16(INK4A) and telomere-related mechanisms. We immortalized the normal prostate epithelial cell line HPrE-1 by transduction to express bmi1 and TERT. Prostate epithelial cells lose expression of p63, β4 integrin, and Lam332 when they transform to invasive carcinoma. In contrast, HPrE-1/bmi1/TERT cells retained expression of these proteins and normal TGF-β signaling and hypermotility for >100 doublings. Thus, keratinocytes and prostate epithelial cells possess common hypermotility and senescence mechanisms and immortalized prostate cell lines can be engineered using defined methods to yield cells retaining normal properties.
Collapse
Affiliation(s)
- Wei Wei
- Department of Dermatology and Harvard Skin Disease Research Center, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China, 250012
| | - Patricia D. Barron
- Department of Dermatology and Harvard Skin Disease Research Center, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - James G. Rheinwald
- Department of Dermatology and Harvard Skin Disease Research Center, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
71
|
Analysis of the 10q11 cancer risk locus implicates MSMB and NCOA4 in human prostate tumorigenesis. PLoS Genet 2010; 6:e1001204. [PMID: 21085629 PMCID: PMC2978684 DOI: 10.1371/journal.pgen.1001204] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 10/13/2010] [Indexed: 12/21/2022] Open
Abstract
Genome-wide association studies (GWAS) have established a variant, rs10993994, on chromosome 10q11 as being associated with prostate cancer risk. Since the variant is located outside of a protein-coding region, the target genes driving tumorigenesis are not readily apparent. Two genes nearest to this variant, MSMB and NCOA4, are strong candidates for mediating the effects of rs109939934. In a cohort of 180 individuals, we demonstrate that the rs10993994 risk allele is associated with decreased expression of two MSMB isoforms in histologically normal and malignant prostate tissue. In addition, the risk allele is associated with increased expression of five NCOA4 isoforms in histologically normal prostate tissue only. No consistent association with either gene is observed in breast or colon tissue. In conjunction with these findings, suppression of MSMB expression or NCOA4 overexpression promotes anchorage-independent growth of prostate epithelial cells, but not growth of breast epithelial cells. These data suggest that germline variation at chromosome 10q11 contributes to prostate cancer risk by influencing expression of at least two genes. More broadly, the findings demonstrate that disease risk alleles may influence multiple genes, and associations between genotype and expression may only be observed in the context of specific tissue and disease states.
Collapse
|
72
|
Gordon V, Bhadel S, Wunderlich W, Zhang J, Ficarro SB, Mollah SA, Shabanowitz J, Hunt DF, Xenarios I, Hahn WC, Conaway M, Carey MF, Gioeli D. CDK9 regulates AR promoter selectivity and cell growth through serine 81 phosphorylation. Mol Endocrinol 2010; 24:2267-80. [PMID: 20980437 DOI: 10.1210/me.2010-0238] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Previously we determined that S81 is the highest stoichiometric phosphorylation on the androgen receptor (AR) in response to hormone. To explore the role of this phosphorylation on growth, we stably expressed wild-type and S81A mutant AR in LHS and LAPC4 cells. The cells with increased wild-type AR expression grow faster compared with parental cells and S81A mutant-expressing cells, indicating that loss of S81 phosphorylation limits cell growth. To explore how S81 regulates cell growth, we tested whether S81 phosphorylation regulates AR transcriptional activity. LHS cells stably expressing wild-type and S81A mutant AR showed differences in the regulation of endogenous AR target genes, suggesting that S81 phosphorylation regulates promoter selectivity. We next sought to identify the S81 kinase using ion trap mass spectrometry to analyze AR-associated proteins in immunoprecipitates from cells. We observed cyclin-dependent kinase (CDK)9 association with the AR. CDK9 phosphorylates the AR on S81 in vitro. Phosphorylation is specific to S81 because CDK9 did not phosphorylate the AR on other serine phosphorylation sites. Overexpression of CDK9 with its cognate cyclin, Cyclin T, increased S81 phosphorylation levels in cells. Small interfering RNA knockdown of CDK9 protein levels decreased hormone-induced S81 phosphorylation. Additionally, treatment of LNCaP cells with the CDK9 inhibitors, 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole and Flavopiridol, reduced S81 phosphorylation further, suggesting that CDK9 regulates S81 phosphorylation. Pharmacological inhibition of CDK9 also resulted in decreased AR transcription in LNCaP cells. Collectively these results suggest that CDK9 phosphorylation of AR S81 is an important step in regulating AR transcriptional activity and prostate cancer cell growth.
Collapse
Affiliation(s)
- Vicki Gordon
- University of Virginia, Department of Microbiology, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Cuperlovic-Culf M, Belacel N, Davey M, Ouellette RJ. Multi-gene biomarker panel for reference free prostate cancer diagnosis: determination and independent validation. Biomarkers 2010; 15:693-706. [PMID: 20883156 DOI: 10.3109/1354750x.2010.511268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Identification of biomarkers that can accurately and reliably diagnose prostate cancer is clinically highly desirable. A novel classification method, K-closest resemblance was applied to several high-quality transcriptomic datasets of prostate cancer leading to the discovery of a panel of eight gene biomarkers that can detect prostate cancer with over 96% specificity and sensitivity in leave-one-out cross-validation. Independent validation on clinical samples confirmed the discriminatory power of this gene panel, yielding over 95% accuracy of diagnosis based on receiver-operating characteristic curve analyses. Different levels of validation of the proposed biomarker panel have shown that it allows extremely accurate diagnosis of prostate cancer. Application of this panel can possibly add a fast and objective tool to the pathologist's arsenal following further clinical testing.
Collapse
|
74
|
Marom H, Miller K, Bechor-Bar Y, Tsarfaty G, Satchi-Fainaro R, Gozin M. Toward development of targeted nonsteroidal antiandrogen-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-gadolinium complex for prostate cancer diagnostics. J Med Chem 2010; 53:6316-25. [PMID: 20715870 DOI: 10.1021/jm100289b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Androgen receptors are present in most advanced prostate cancer specimens, having a critical role in development of this type of cancer. For correct prognosis of patient conditions and treatment monitoring, noninvasive imaging techniques have great advantages over surgical procedures. We developed synthetic methodologies for preparation of novel androgen receptor-targeting agents in an attempt to build a versatile platform for prostate cancer imaging and treatment. The structure of these compounds comprises of a lanthanoid metal ion, gadolinium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (Gd-DOTA)-based binding fragment and, connected to it by a flexible linker, bicalutamide-derived nonsteroidal antiandrogen moiety. A representative gadolinium complex 15 was evaluated as a magnetic resonance imaging (MRI) agent in C57/bl6 male mouse bearing orthotopic TRAMP C2 prostate tumor.
Collapse
Affiliation(s)
- Hanit Marom
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
75
|
|
76
|
Constitutively active androgen receptor splice variants expressed in castration-resistant prostate cancer require full-length androgen receptor. Proc Natl Acad Sci U S A 2010; 107:16759-65. [PMID: 20823238 DOI: 10.1073/pnas.1012443107] [Citation(s) in RCA: 501] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Androgen receptor (AR) splice variants lacking the ligand binding domain (ARVs), originally isolated from prostate cancer cell lines derived from a single patient, are detected in normal and malignant human prostate tissue, with the highest levels observed in late stage, castration-resistant prostate cancer. The most studied variant (called AR-V7 or AR3) activates AR reporter genes in the absence of ligand and therefore, could play a role in castration resistance. To explore the range of potential ARVs, we screened additional human and murine prostate cancer models using conventional and next generation sequencing technologies and detected several structurally diverse AR isoforms. Some, like AR-V7/AR3, display gain of function, whereas others have dominant interfering activity. We also find that ARV expression increases acutely in response to androgen withdrawal, is suppressed by testosterone, and in some models, is coupled to full-length AR (AR-FL) mRNA production. As expected, constitutively active, ligand-independent ARVs such as AR-V7/AR3 are sufficient to confer anchorage-independent (in vitro) and castration-resistant (in vivo) growth. Surprisingly, this growth is blocked by ligand binding domain-targeted antiandrogens, such as MDV3100, or by selective siRNA silencing of AR-FL, indicating that the growth-promoting effects of ARVs are mediated through AR-FL. These data indicate that the increase in ARV expression in castrate-resistant prostate cancer is an acute response to castration rather than clonal expansion of castration or antiandrogen-resistant cells expressing gain of function ARVs, and furthermore, they provide a strategy to overcome ARV function in the clinic.
Collapse
|
77
|
Loss of androgen receptor-dependent growth suppression by prostate cancer cells can occur independently from acquiring oncogenic addiction to androgen receptor signaling. PLoS One 2010; 5:e11475. [PMID: 20628607 PMCID: PMC2900211 DOI: 10.1371/journal.pone.0011475] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 06/14/2010] [Indexed: 11/19/2022] Open
Abstract
The conversion of androgen receptor (AR) signaling as a mechanism of growth suppression of normal prostate epithelial cells to that of growth stimulation in prostate cancer cells is often associated with AR mutation, amplification and over-expression. Thus, down-regulation of AR signaling is commonly therapeutic for prostate cancer. The E006AA cell line was established from a hormone naïve, localized prostate cancer. E006AA cells are genetically aneuploid and grow equally well when xenografted into either intact or castrated male NOG but not nude mice. These cells exhibit: 1) X chromosome duplication and AR gene amplification, although paradoxically not coupled with increased AR expression, and 2) somatic, dominant-negative Serine-599-Glycine loss-of-function mutation within the dimerization surface of the DNA binding domain of the AR gene. No effect on the growth of E006AA cells is observed using targeted knockdown of endogenous mutant AR, ectopic expression of wild-type AR, or treatment with androgens or anti-androgens. E006AA cells represent a prototype for a newly identified subtype of prostate cancer cells that exhibit a dominant-negative AR loss-of-function in a hormonally naïve patient. Such loss-of-function eliminates AR-mediated growth suppression normally induced by normal physiological levels of androgens, thus producing a selective growth advantage for these malignant cells in hormonally naïve patients. These data highlight that loss of AR-mediated growth suppression is an independent process, and that, without additional changes, is insufficient for acquiring oncogene addiction to AR signaling. Thus, patients with prostate cancer cells harboring such AR loss-of-function mutations will not benefit from aggressive hormone or anti-AR therapies even though they express AR protein.
Collapse
|
78
|
Smith D, Plowman PN. Recovery of hormone sensitivity after salvage brachytherapy for hormone refractory localized prostate cancer. Int Braz J Urol 2010; 36:283-91. [DOI: 10.1590/s1677-55382010000300004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2009] [Indexed: 11/21/2022] Open
Affiliation(s)
- Dan Smith
- St Bartholomew’s Hospital; The Cromwell Hospital
| | | |
Collapse
|
79
|
Kunderfranco P, Mello-Grand M, Cangemi R, Pellini S, Mensah A, Albertini V, Malek A, Chiorino G, Catapano CV, Carbone GM. ETS transcription factors control transcription of EZH2 and epigenetic silencing of the tumor suppressor gene Nkx3.1 in prostate cancer. PLoS One 2010; 5:e10547. [PMID: 20479932 PMCID: PMC2866657 DOI: 10.1371/journal.pone.0010547] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 04/12/2010] [Indexed: 12/18/2022] Open
Abstract
Background ETS transcription factors regulate important signaling pathways involved in cell differentiation and development in many tissues and have emerged as important players in prostate cancer. However, the biological impact of ETS factors in prostate tumorigenesis is still debated. Methodology/Principal Findings We performed an analysis of the ETS gene family using microarray data and real-time PCR in normal and tumor tissues along with functional studies in normal and cancer cell lines to understand the impact in prostate tumorigenesis and identify key targets of these transcription factors. We found frequent dysregulation of ETS genes with oncogenic (i.e., ERG and ESE1) and tumor suppressor (i.e., ESE3) properties in prostate tumors compared to normal prostate. Tumor subgroups (i.e., ERGhigh, ESE1high, ESE3low and NoETS tumors) were identified on the basis of their ETS expression status and showed distinct transcriptional and biological features. ERGhigh and ESE3low tumors had the most robust gene signatures with both distinct and overlapping features. Integrating genomic data with functional studies in multiple cell lines, we demonstrated that ERG and ESE3 controlled in opposite direction transcription of the Polycomb Group protein EZH2, a key gene in development, differentiation, stem cell biology and tumorigenesis. We further demonstrated that the prostate-specific tumor suppressor gene Nkx3.1 was controlled by ERG and ESE3 both directly and through induction of EZH2. Conclusions/Significance These findings provide new insights into the role of the ETS transcriptional network in prostate tumorigenesis and uncover previously unrecognized links between aberrant expression of ETS factors, deregulation of epigenetic effectors and silencing of tumor suppressor genes. The link between aberrant ETS activity and epigenetic gene silencing may be relevant for the clinical management of prostate cancer and design of new therapeutic strategies.
Collapse
Affiliation(s)
- Paolo Kunderfranco
- Laboratory of Experimental Oncology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Jeon YJ, Yoo HM, Chung CH. ISG15 and immune diseases. Biochim Biophys Acta Mol Basis Dis 2010; 1802:485-96. [PMID: 20153823 PMCID: PMC7127291 DOI: 10.1016/j.bbadis.2010.02.006] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 02/08/2010] [Accepted: 02/09/2010] [Indexed: 12/22/2022]
Abstract
ISG15, the product of interferon (IFN)-stimulated gene 15, is the first identified ubiquitin-like protein, consisting of two ubiquitin-like domains. ISG15 is synthesized as a precursor in certain mammals and, therefore, needs to be processed to expose the C-terminal glycine residue before conjugation to target proteins. A set of three-step cascade enzymes, an E1 enzyme (UBE1L), an E2 enzyme (UbcH8), and one of several E3 ligases (e.g., EFP and HERC5), catalyzes ISG15 conjugation (ISGylation) of a specific protein. These enzymes are unique among the cascade enzymes for ubiquitin and other ubiquitin-like proteins in that all of them are induced by type I IFNs or other stimuli, such as exposure to viruses and lipopolysaccharide. Mass spectrometric analysis has led to the identification of several hundreds of candidate proteins that can be conjugated by ISG15. Some of them are type I IFN-induced proteins, such as PKR and RIG-I, and some are the key regulators that are involved in IFN signaling, such as JAK1 and STAT1, implicating the role of ISG15 and its conjugates in type I IFN-mediated innate immune responses. However, relatively little is known about the functional significance of ISG15 induction due to the lack of information on the consequences of its conjugation to target proteins. Here, we describe the recent progress made in exploring the biological function of ISG15 and its reversible modification of target proteins and thus in their implication in immune diseases.
Collapse
Affiliation(s)
| | | | - Chin Ha Chung
- School of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
81
|
Lamb LE, Knudsen BS, Miranti CK. E-cadherin-mediated survival of androgen-receptor-expressing secretory prostate epithelial cells derived from a stratified in vitro differentiation model. J Cell Sci 2010; 123:266-76. [PMID: 20048343 DOI: 10.1242/jcs.054502] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The androgen receptor (AR) is expressed in differentiated secretory prostate epithelial cells in vivo. However, in the human prostate, it is unclear whether androgens directly promote the survival of secretory cells, or whether secretory cells survive through androgen-dependent signals from the prostate stroma. Biochemical and mechanistic studies have been hampered by inadequate cell-culture models. In particular, large-scale differentiation of prostate epithelial cells in culture has been difficult to achieve. Here, we describe the development of a differentiation system that is amenable to functional and biochemical analysis and its application to deciphering the survival pathways in differentiated AR-expressing epithelial cells. Confluent prostate epithelial cell cultures were treated with keratinocyte growth factor (KGF) and dihydrotestosterone. After 2 weeks, a suprabasal cell layer was formed in which cells no longer expressed alpha2, alpha3, alpha6, alphav, beta1 or beta4 integrins or p63, K5, K14, EGFR, FGFR2IIIb or Bcl-2, but instead expressed AR and androgen-induced differentiation markers, including K18, K19, TMPRSS2, Nkx3.1, PMSA, KLK2 and secreted prostate-specific antigen (PSA). Differentiated prostate cell survival depended on E-cadherin and PI3K, but not KGF, androgen, AR or MAPK. Thus survival of differentiated prostate epithelial cells is mediated by cell-cell adhesion, and not through androgen activity or prostate stroma-derived KGF.
Collapse
Affiliation(s)
- Laura E Lamb
- Laboratory of Integrin Signaling and Tumorigenesis, Van Andel Research Institute, Grand Rapids, MI, USA
| | | | | |
Collapse
|
82
|
Min J, Zaslavsky A, Fedele G, McLaughlin SK, Reczek EE, De Raedt T, Guney I, Strochlic DE, Laura E, Beroukhim R, Bronson RT, Ryeom S, Hahn WC, Loda M, Cichowski K. An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-kappaB. Nat Med 2010; 16:286-94. [PMID: 20154697 PMCID: PMC2903662 DOI: 10.1038/nm.2100] [Citation(s) in RCA: 316] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 01/15/2010] [Indexed: 12/17/2022]
Abstract
Metastasis is responsible for the majority of prostate cancer-related deaths; however, little is known about the molecular mechanisms that underlie this process. Here we identify an oncogene-tumor suppressor cascade that promotes prostate cancer growth and metastasis by coordinately activating the small GTPase Ras and nuclear factor-kappaB (NF-kappaB). Specifically, we show that loss of the Ras GTPase-activating protein (RasGAP) gene DAB2IP induces metastatic prostate cancer in an orthotopic mouse tumor model. Notably, DAB2IP functions as a signaling scaffold that coordinately regulates Ras and NF-kappaB through distinct domains to promote tumor growth and metastasis, respectively. DAB2IP is suppressed in human prostate cancer, where its expression inversely correlates with tumor grade and predicts prognosis. Moreover, we report that epigenetic silencing of DAB2IP is a key mechanism by which the polycomb-group protein histone-lysine N-methyltransferase EZH2 activates Ras and NF-kappaB and triggers metastasis. These studies define the mechanism by which two major pathways can be simultaneously activated in metastatic prostate cancer and establish EZH2 as a driver of metastasis.
Collapse
Affiliation(s)
- Junxia Min
- Genetics Division, Department of Medicine, Boston, MA, 02115, USA
- Brigham and Women’s Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Alexander Zaslavsky
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia PA 19104
| | - Giuseppe Fedele
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Sara K. McLaughlin
- Genetics Division, Department of Medicine, Boston, MA, 02115, USA
- Brigham and Women’s Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Elizabeth E. Reczek
- Genetics Division, Department of Medicine, Boston, MA, 02115, USA
- Brigham and Women’s Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Thomas De Raedt
- Genetics Division, Department of Medicine, Boston, MA, 02115, USA
- Brigham and Women’s Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Isil Guney
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - David E. Strochlic
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - E. Laura
- Broad Institute of Harvard and MIT, Cambridge, MA 02142
- Ludwig Center at Dana-Farber/Harvard Cancer Center, Boston, MA 02115
| | - Rameen Beroukhim
- Brigham and Women’s Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
- Ludwig Center at Dana-Farber/Harvard Cancer Center, Boston, MA 02115
| | | | - Sandra Ryeom
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia PA 19104
| | - William C. Hahn
- Brigham and Women’s Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
- Ludwig Center at Dana-Farber/Harvard Cancer Center, Boston, MA 02115
| | - Massimo Loda
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Karen Cichowski
- Genetics Division, Department of Medicine, Boston, MA, 02115, USA
- Brigham and Women’s Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Ludwig Center at Dana-Farber/Harvard Cancer Center, Boston, MA 02115
| |
Collapse
|
83
|
Beildeck ME, Gelmann EP, Byers SW. Cross-regulation of signaling pathways: an example of nuclear hormone receptors and the canonical Wnt pathway. Exp Cell Res 2010; 316:1763-72. [PMID: 20138864 DOI: 10.1016/j.yexcr.2010.02.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Revised: 01/28/2010] [Accepted: 02/01/2010] [Indexed: 12/24/2022]
Abstract
Predicting the potential physiological outcome(s) of any given molecular pathway is complex because of cross-talk with other pathways. This is particularly evident in the case of the nuclear hormone receptor and canonical Wnt pathways, which regulate cell growth and proliferation, differentiation, apoptosis, and metastatic potential in numerous tissues. These pathways are known to intersect at many levels: in the intracellular space, at the membrane, in the cytoplasm, and within the nucleus. The outcomes of these interactions are important in the control of stem cell differentiation and maintenance, feedback loops, and regulating oncogenic potential. The aim of this review is to demonstrate the importance of considering pathway cross-talk when predicting functional outcomes of signaling, using nuclear hormone receptor/canonical Wnt pathway cross-talk as an example.
Collapse
Affiliation(s)
- Marcy E Beildeck
- Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, Washington, DC 20057, USA
| | | | | |
Collapse
|
84
|
Balakumaran BS, Porrello A, Hsu DS, Glover W, Foye A, Leung JY, Sullivan BA, Hahn WC, Loda M, Febbo PG. MYC activity mitigates response to rapamycin in prostate cancer through eukaryotic initiation factor 4E-binding protein 1-mediated inhibition of autophagy. Cancer Res 2009; 69:7803-10. [PMID: 19773438 PMCID: PMC2756305 DOI: 10.1158/0008-5472.can-09-0910] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Loss of PTEN and activation of phosphoinositide 3-kinase are commonly observed in advanced prostate cancer. Inhibition of mammalian target of rapamycin (mTOR), a downstream target of phosphoinositide 3-kinase signaling, results in cell cycle arrest and apoptosis in multiple in vitro and in vivo models of prostate cancer. However, single-agent use of mTOR inhibition has limited clinical success, and the identification of molecular events mitigating tumor response to mTOR inhibition remains a critical question. Here, using genetically engineered human prostate epithelial cells (PrEC), we show that MYC, a frequent target of genetic gain in prostate cancers, abrogates sensitivity to rapamycin by decreasing rapamycin-induced cytostasis and autophagy. Analysis of MYC and the mTOR pathway in human prostate tumors and PrEC showed selective increased expression of eukaryotic initiation factor 4E-binding protein 1 (4EBP1) with gain in MYC copy number or forced MYC expression, respectively. We have also found that MYC binds to regulatory regions of the 4EBP1 gene. Suppression of 4EBP1 expression resulted in resensitization of MYC-expressing PrEC to rapamycin and increased autophagy. Taken together, our findings suggest that MYC expression abrogates sensitivity to rapamycin through increased expression of 4EBP1 and reduced autophagy.
Collapse
Affiliation(s)
| | | | - David S. Hsu
- Duke Institute for Genome Sciences & Policy, Duke University, Durham, NC
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Wayne Glover
- Duke Institute for Genome Sciences & Policy, Duke University, Durham, NC
| | - Adam Foye
- Duke Institute for Genome Sciences & Policy, Duke University, Durham, NC
| | - Janet Y. Leung
- Duke Institute for Genome Sciences & Policy, Duke University, Durham, NC
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham NC
| | - Beth A. Sullivan
- Duke Institute for Genome Sciences & Policy, Duke University, Durham, NC
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham NC
| | - William C. Hahn
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| | - Massimo Loda
- Department of Pathology, Dana Farber Cancer Institute, Boston MA
| | - Phillip G. Febbo
- Duke Institute for Genome Sciences & Policy, Duke University, Durham, NC
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham NC
- Duke Comprehensive Cancer Center, Duke University, Durham, NC
| |
Collapse
|
85
|
Schulman CC, Fusco F, Martin Morales A, Tostain J, Vendeira P, Zitzmann M. Testosterone Deficiency: A Common, Unrecognised Syndrome? ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.eursup.2009.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
86
|
Zhao H, Flamand V, Peehl DM. Anti-oncogenic and pro-differentiation effects of clorgyline, a monoamine oxidase A inhibitor, on high grade prostate cancer cells. BMC Med Genomics 2009; 2:55. [PMID: 19691856 PMCID: PMC2736984 DOI: 10.1186/1755-8794-2-55] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 08/20/2009] [Indexed: 12/12/2022] Open
Abstract
Background Monoamine oxidase A (MAO-A), a mitochondrial enzyme that degrades monoamines including neurotransmitters, is highly expressed in basal cells of the normal human prostatic epithelium and in poorly differentiated (Gleason grades 4 and 5), aggressive prostate cancer (PCa). Clorgyline, an MAO-A inhibitor, induces secretory differentiation of normal prostate cells. We examined the effects of clorgyline on the transcriptional program of epithelial cells cultured from high grade PCa (E-CA). Methods We systematically assessed gene expression changes induced by clorgyline in E-CA cells using high-density oligonucleotide microarrays. Genes differentially expressed in treated and control cells were identified by Significance Analysis of Microarrays. Expression of genes of interest was validated by quantitative real-time polymerase chain reaction. Results The expression of 156 genes was significantly increased by clorgyline at all time points over the time course of 6 – 96 hr identified by Significance Analysis of Microarrays (SAM). The list is enriched with genes repressed in 7 of 12 oncogenic pathway signatures compiled from the literature. In addition, genes downregulated ≥ 2-fold by clorgyline were significantly enriched with those upregulated by key oncogenes including beta-catenin and ERBB2, indicating an anti-oncogenic effect of clorgyline. Another striking effect of clorgyline was the induction of androgen receptor (AR) and classic AR target genes such as prostate-specific antigen together with other secretory epithelial cell-specific genes, suggesting that clorgyline promotes differentiation of cancer cells. Moreover, clorgyline downregulated EZH2, a critical component of the Polycomb Group (PcG) complex that represses the expression of differentiation-related genes. Indeed, many genes in the PcG repression signature that predicts PCa outcome were upregulated by clorgyline, suggesting that the differentiation-promoting effect of clorgyline may be mediated by its downregulation of EZH2. Conclusion Our results suggest that inhibitors of MAO-A, already in clinical use to treat depression, may have potential application as therapeutic PCa drugs by inhibiting oncogenic pathway activity and promoting differentiation.
Collapse
Affiliation(s)
- Hongjuan Zhao
- Department of Urology, Stanford University School of Medicine, Stanford, California, USA.
| | | | | |
Collapse
|
87
|
McGillicuddy LT, Fromm JA, Hollstein PE, Kubek S, Beroukhim R, De Raedt T, Johnson BW, Williams SM, Nghiemphu P, Liau L, Cloughesy TF, Mischel PS, Parret A, Seiler J, Moldenhauer G, Scheffzek K, Stemmer-Rachamimov AO, Sawyers CL, Brennan C, Messiaen L, Mellinghoff IK, Cichowski K. Proteasomal and genetic inactivation of the NF1 tumor suppressor in gliomagenesis. Cancer Cell 2009; 16:44-54. [PMID: 19573811 PMCID: PMC2897249 DOI: 10.1016/j.ccr.2009.05.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 04/03/2009] [Accepted: 05/12/2009] [Indexed: 01/07/2023]
Abstract
Loss-of-function mutations in the NF1 tumor suppressor result in deregulated Ras signaling and drive tumorigenesis in the familial cancer syndrome neurofibromatosis type I. However, the extent to which NF1 inactivation promotes sporadic tumorigenesis is unknown. Here we report that NF1 is inactivated in sporadic gliomas via two mechanisms: excessive proteasomal degradation and genetic loss. NF1 protein destabilization is triggered by the hyperactivation of protein kinase C (PKC) and confers sensitivity to PKC inhibitors. However, complete genetic loss, which only occurs when p53 is inactivated, mediates sensitivity to mTOR inhibitors. These studies reveal an expanding role for NF1 inactivation in sporadic gliomagenesis and illustrate how different mechanisms of inactivation are utilized in genetically distinct tumors, which consequently impacts therapeutic sensitivity.
Collapse
Affiliation(s)
- Lauren T. McGillicuddy
- Genetics Division, Boston, Massachusetts 02115
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115
- Harvard Medical School, Boston, Massachusetts 02115
| | - Jody A. Fromm
- Genetics Division, Boston, Massachusetts 02115
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115
- Harvard Medical School, Boston, Massachusetts 02115
| | - Pablo E. Hollstein
- Genetics Division, Boston, Massachusetts 02115
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115
- Harvard Medical School, Boston, Massachusetts 02115
| | - Sara Kubek
- Department of Pharmacology, 1300 York Avenue, New York, NY 10021
- Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021
| | - Rameen Beroukhim
- Genetics Division, Boston, Massachusetts 02115
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115
- Harvard Medical School, Boston, Massachusetts 02115
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Thomas De Raedt
- Genetics Division, Boston, Massachusetts 02115
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115
- Harvard Medical School, Boston, Massachusetts 02115
| | - Bryan W. Johnson
- Genetics Division, Boston, Massachusetts 02115
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115
- Harvard Medical School, Boston, Massachusetts 02115
| | - Sybil M.G. Williams
- Genetics Division, Boston, Massachusetts 02115
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115
- Harvard Medical School, Boston, Massachusetts 02115
| | - Phioanh Nghiemphu
- Department of Neurology, University of California Los Angeles, Los Angeles, California 90095
- Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095
| | - Linda Liau
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, California 90095
- Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095
| | - Tim F. Cloughesy
- Department of Neurology, University of California Los Angeles, Los Angeles, California 90095
- Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095
| | - Paul S. Mischel
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California 90095
- Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095
| | - Annabel Parret
- Structural & Computational Biology and Developmental Biology Units, European Laboratory of Molecular Biology (EMBL), Meyerhofstrasse 1, D-69117, Heidelberg, Germany
| | - Jeanette Seiler
- Structural & Computational Biology and Developmental Biology Units, European Laboratory of Molecular Biology (EMBL), Meyerhofstrasse 1, D-69117, Heidelberg, Germany
| | - Gerd Moldenhauer
- Department of Molecular Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
| | - Klaus Scheffzek
- Structural & Computational Biology and Developmental Biology Units, European Laboratory of Molecular Biology (EMBL), Meyerhofstrasse 1, D-69117, Heidelberg, Germany
| | - Anat O. Stemmer-Rachamimov
- Harvard Medical School, Boston, Massachusetts 02115
- Department of Neuropathology and Molecular Neuro-Oncology Laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Charles L. Sawyers
- Department of Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Cameron Brennan
- Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021
- Department of Neurosurgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; and Department of Neurosurgery, Weill-Cornell Medical College, New York, NY 10065
| | - Ludwine Messiaen
- Department of Genetics, Medical Genomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama 35242
| | - Ingo K. Mellinghoff
- Department of Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Karen Cichowski
- Genetics Division, Boston, Massachusetts 02115
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115
- Harvard Medical School, Boston, Massachusetts 02115
- Correspondence: ; fax (617) 525-4705; phone (617)-525-4722
| |
Collapse
|
88
|
Sabbisetti V, Di Napoli A, Seeley A, Amato AM, O'Regan E, Ghebremichael M, Loda M, Signoretti S. p63 promotes cell survival through fatty acid synthase. PLoS One 2009; 4:e5877. [PMID: 19517019 PMCID: PMC2691576 DOI: 10.1371/journal.pone.0005877] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 05/05/2009] [Indexed: 11/25/2022] Open
Abstract
There is increasing evidence that p63, and specifically ΔNp63, plays a central role in both development and tumorigenesis by promoting epithelial cell survival. However, few studies have addressed the molecular mechanisms through which such important function is exerted. Fatty acid synthase (FASN), a key enzyme that synthesizes long-chain fatty acids and is involved in both embryogenesis and cancer, has been recently proposed as a direct target of p53 family members, including p63 and p73. Here we show that knockdown of either total or ΔN-specific p63 isoforms in squamous cell carcinoma (SCC9) or immortalized prostate epithelial (iPrEC) cells caused a decrease in cell viability by inducing apoptosis without affecting the cell cycle. p63 silencing significantly reduced both the expression and the activity of FASN. Importantly, stable overexpression of either FASN or myristoylated AKT (myr-AKT) was able to partially rescue cells from cell death induced by p63 silencing. FASN induced AKT phosphorylation and a significant reduction in cell viability was observed when FASN-overexpressing SCC9 cells were treated with an AKT inhibitor after p63 knockdown, indicating that AKT plays a major role in FASN-mediated survival. Activated AKT did not cause any alteration in the FASN protein levels but induced its activity, suggesting that the rescue from apoptosis documented in the p63-silenced cells expressing myr-AKT cells may be partially mediated by FASN. Finally, we demonstrated that p63 and FASN expression are positively associated in clinical squamous cell carcinoma samples as well as in the developing prostate. Taken together, our findings demonstrate that FASN is a functionally relevant target of p63 and is required for mediating its pro-survival effects.
Collapse
Affiliation(s)
- Venkata Sabbisetti
- Department of Pathology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Arianna Di Napoli
- Department of Pathology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Apryle Seeley
- Department of Pathology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Angela M. Amato
- Department of Pathology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Musie Ghebremichael
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Massimo Loda
- Department of Pathology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sabina Signoretti
- Department of Pathology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
89
|
Xu C, Zhang YH, Thangavel M, Richardson MM, Liu L, Zhou B, Zheng Y, Ostrom RS, Zhang XA. CD82 endocytosis and cholesterol-dependent reorganization of tetraspanin webs and lipid rafts. FASEB J 2009; 23:3273-88. [PMID: 19497983 DOI: 10.1096/fj.08-123414] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tetraspanin CD82 suppresses cell migration, tumor invasion, and tumor metastasis. To determine the mechanism by which CD82 inhibits motility, most studies have focused on the cell surface CD82, which forms tetraspanin-enriched microdomains (TEMs) with other transmembrane proteins, such as integrins. In this study, we found that CD82 undergoes endocytosis and traffics to endosomes and lysosomes. To determine the endocytic mechanism of CD82, we demonstrated that dynamin and clathrin are not essential for CD82 internalization. Depletion or sequestration of sterol in the plasma membrane markedly inhibited the endocytosis of CD82. Despite the demand on Cdc42 activity, CD82 endocytosis is distinct from macropinocytosis and the documented dynamin-independent pinocytosis. As a TEM component, CD82 reorganizes TEMs and lipid rafts by redistributing cholesterol into these membrane microdomains. CD82-containing TEMs are characterized by the cholesterol-containing microdomains in the extreme light- and intermediate-density fractions. Moreover, the endocytosis of CD82 appears to alleviate CD82-mediated inhibition of cell migration. Taken together, our studies demonstrate that lipid-dependent endocytosis drives CD82 trafficking to late endosomes and lysosomes, and CD82 reorganizes TEMs and lipid rafts through redistribution of cholesterol.
Collapse
Affiliation(s)
- Congfeng Xu
- Vascular Biology Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Abstract
The androgen receptor (AR) plays a crucial role in the modulation of prostate cell proliferation and is involved in the development and progression of prostate cancer (PCa). An understanding of the complex regulation of AR provides novel treatment options for PCa. Here, we show (i) that the ubiquitin-like modifier, interferon-stimulated gene 15 (ISG15), and most enzymes involved in ISG15 conjugation were upregulated in tumor samples versus in non-malignant tissues of PCa patients and (ii) that the expression of these components significantly differed between tumors in patients treated with and without androgen ablation. Using PCa cell lines as in vitro models, the specific androgen-mediated, AR-dependent regulation of the ISGylation components was confirmed. In addition, the ISGylation system controls AR mRNA and protein expressions, as overexpression of Ube1L as a limiting ISGylation factor in the AR(+) androgen-sensitive PCa cell line, LNCaP, results in significant AR upregulation, accompanied by an increased proliferation even under androgen deprivation. Accordingly, Ube1L knockdown decreased the AR expression. Thus, this study describes for the first time the modulation of AR expression by ISGylation components, which affects the proliferation of PCa cells, thereby providing evidence for a novel function of the ISGylation system in malignant transformation.
Collapse
|
91
|
Mendiratta P, Mostaghel E, Guinney J, Tewari AK, Porrello A, Barry WT, Nelson PS, Febbo PG. Genomic Strategy for Targeting Therapy in Castration-Resistant Prostate Cancer. J Clin Oncol 2009; 27:2022-9. [DOI: 10.1200/jco.2008.17.2882] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Purpose Despite treatments which lower circulating androgens, advanced prostate cancers often maintain androgen receptor (AR) signaling. The variable response to secondary hormonal manipulations in men with castrate-resistant prostate cancer (CRPC) creates a compelling need for strategies to individualize therapy based on the molecular features of each patient's tumor. Methods A transcription-based AR activity signature was developed from an androgen-sensitive prostate cancer cell (LNCaP) and tested on independent data sets of prostate cancer cell lines and human tumors to assess its precision and accuracy in detecting AR activity. The AR signature was applied to multiple sets of prostate specimens to determine how AR activity changes with hormone therapy and progression and oncogenic pathway analysis was used to identify biologic pathways correlating with AR activity. Results A robust AR signature accurately predicts AR activity in multiple prostate cancer cell lines, has minimal variation between replicate samples, and accurately reflects an individual's hormone status and intraprostatic dihydrotestosterone levels. The AR signature finds AR activity to be high in local, untreated prostate tumors and decreased in prostate tissue after neoadjuvant hormone therapy and in CRPC. Heterogeneity of AR activity exists along the spectrum of prostate cancer progression and decreasing predicted AR activity correlates with increasing predicted Src activity and sensitivity to dasatinib (Src-targeting kinase inhibitor). Conclusion A transcription-based AR signature can detect AR activity within individual prostate cancer specimens and has the potential to help individualize and improve care for patients with CRPC.
Collapse
Affiliation(s)
- Prateek Mendiratta
- From the Duke Institute for Genome Sciences & Policy; Division of Medical Oncology, Department of Medicine; Computational Biology and Bioinformatics; Duke Comprehensive Cancer Center, Duke University, Durham, NC; and the Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Elahe Mostaghel
- From the Duke Institute for Genome Sciences & Policy; Division of Medical Oncology, Department of Medicine; Computational Biology and Bioinformatics; Duke Comprehensive Cancer Center, Duke University, Durham, NC; and the Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Justin Guinney
- From the Duke Institute for Genome Sciences & Policy; Division of Medical Oncology, Department of Medicine; Computational Biology and Bioinformatics; Duke Comprehensive Cancer Center, Duke University, Durham, NC; and the Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Alok K. Tewari
- From the Duke Institute for Genome Sciences & Policy; Division of Medical Oncology, Department of Medicine; Computational Biology and Bioinformatics; Duke Comprehensive Cancer Center, Duke University, Durham, NC; and the Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Alessandro Porrello
- From the Duke Institute for Genome Sciences & Policy; Division of Medical Oncology, Department of Medicine; Computational Biology and Bioinformatics; Duke Comprehensive Cancer Center, Duke University, Durham, NC; and the Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - William T. Barry
- From the Duke Institute for Genome Sciences & Policy; Division of Medical Oncology, Department of Medicine; Computational Biology and Bioinformatics; Duke Comprehensive Cancer Center, Duke University, Durham, NC; and the Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Peter S. Nelson
- From the Duke Institute for Genome Sciences & Policy; Division of Medical Oncology, Department of Medicine; Computational Biology and Bioinformatics; Duke Comprehensive Cancer Center, Duke University, Durham, NC; and the Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Phillip G. Febbo
- From the Duke Institute for Genome Sciences & Policy; Division of Medical Oncology, Department of Medicine; Computational Biology and Bioinformatics; Duke Comprehensive Cancer Center, Duke University, Durham, NC; and the Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
92
|
Migita T, Ruiz S, Fornari A, Fiorentino M, Priolo C, Zadra G, Inazuka F, Grisanzio C, Palescandolo E, Shin E, Fiore C, Xie W, Kung AL, Febbo PG, Subramanian A, Mucci L, Ma J, Signoretti S, Stampfer M, Hahn WC, Finn S, Loda M. Fatty acid synthase: a metabolic enzyme and candidate oncogene in prostate cancer. J Natl Cancer Inst 2009; 101:519-32. [PMID: 19318631 DOI: 10.1093/jnci/djp030] [Citation(s) in RCA: 302] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Overexpression of the fatty acid synthase (FASN) gene has been implicated in prostate carcinogenesis. We sought to directly assess the oncogenic potential of FASN. METHODS We used immortalized human prostate epithelial cells (iPrECs), androgen receptor-overexpressing iPrECs (AR-iPrEC), and human prostate adenocarcinoma LNCaP cells that stably overexpressed FASN for cell proliferation assays, soft agar assays, and tests of tumor formation in immunodeficient mice. Transgenic mice expressing FASN in the prostate were generated to assess the effects of FASN on prostate histology. Apoptosis was evaluated by Hoechst 33342 staining and by fluorescence-activated cell sorting in iPrEC-FASN cells treated with stimulators of the intrinsic and extrinsic pathways of apoptosis (ie, camptothecin and anti-Fas antibody, respectively) or with a small interfering RNA (siRNA) targeting FASN. FASN expression was compared with the apoptotic index assessed by the terminal deoxynucleotidyltransferase-mediated UTP end-labeling method in 745 human prostate cancer samples by using the least squares means procedure. All statistical tests were two-sided. RESULTS Forced expression of FASN in iPrECs, AR-iPrECs, and LNCaP cells increased cell proliferation and soft agar growth. iPrECs that expressed both FASN and androgen receptor (AR) formed invasive adenocarcinomas in immunodeficient mice (12 of 14 mice injected formed tumors vs 0 of 14 mice injected with AR-iPrEC expressing empty vector (P < .001, Fisher exact test); however, iPrECs that expressed only FASN did not. Transgenic expression of FASN in mice resulted in prostate intraepithelial neoplasia, the incidence of which increased from 10% in 8- to 16-week-old mice to 44% in mice aged 7 months or more (P = .0028, Fisher exact test), but not in invasive tumors. In LNCaP cells, siRNA-mediated silencing of FASN resulted in apoptosis. FASN overexpression protected iPrECs from apoptosis induced by camptothecin but did not protect iPrECs from Fas receptor-induced apoptosis. In human prostate cancer specimens, FASN expression was inversely associated with the apoptotic rate (mean percentage of apoptotic cells, lowest vs highest quartile of FASN expression: 2.76 vs 1.34, difference = 1.41, 95% confidence interval = 0.45 to 2.39, Ptrend = .0046). CONCLUSIONS These observations suggest that FASN can act as a prostate cancer oncogene in the presence of AR and that FASN exerts its oncogenic effect by inhibiting the intrinsic pathway of apoptosis.
Collapse
Affiliation(s)
- Toshiro Migita
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Fiorentino M, Zadra G, Palescandolo E, Fedele G, Bailey D, Fiore C, Nguyen PL, Migita T, Zamponi R, Di Vizio D, Priolo C, Chandan S, Xie W, Hemler ME, Mucci L, Giovannucci E, Finn S, Loda M. Overexpression of fatty acid synthase is associated with palmitoylation of Wnt1 and cytoplasmic stabilization of beta-catenin in prostate cancer. J Transl Med 2008; 88:1340-8. [PMID: 18838960 PMCID: PMC3223737 DOI: 10.1038/labinvest.2008.97] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Fatty acid synthase (FASN), a key metabolic enzyme for liponeogenesis highly expressed in several human cancers, displays oncogenic properties such as resistance to apoptosis and induction of proliferation when overexpressed. To date, no mechanism has been identified to explain the oncogenicity of FASN in prostate cancer. We generated immortalized prostate epithelial cells (iPrECs) overexpressing FASN, and found that (14)C-acetate incorporation into palmitate synthesized de novo by FASN was significantly elevated in immunoprecipitated Wnt-1 when compared to isogenic cells not overexpressing FASN. Overexpression of FASN caused membranous and cytoplasmic beta-catenin protein accumulation and activation, whereas FASN knockdown by short-hairpin RNA resulted in a reduction in the extent of beta-catenin activation. Orthotopic transplantation of iPrECs overexpressing FASN in nude mice resulted in invasive tumors that overexpressed beta-catenin. A strong significant association between FASN and cytoplasmic (stabilized) beta-catenin immunostaining was found in 862 cases of human prostate cancer after computerized subtraction of the membranous beta-catenin signal (P<0.001, Spearman's rho=0.33). We propose that cytoplasmic stabilization of beta-catenin through palmitoylation of Wnt-1 and subsequent activation of the pathway is a potential mechanism of FASN oncogenicity in prostate cancer.
Collapse
|
94
|
Systemic therapy. Prostate Cancer 2008. [DOI: 10.1017/cbo9780511551994.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
95
|
Yang Q, Titus MA, Fung KM, Lin HK. 5alpha-androstane-3alpha,17beta-diol supports human prostate cancer cell survival and proliferation through androgen receptor-independent signaling pathways: implication of androgen-independent prostate cancer progression. J Cell Biochem 2008; 104:1612-24. [PMID: 18320593 DOI: 10.1002/jcb.21731] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Androgen and androgen receptor (AR) are involved in growth of normal prostate and development of prostatic diseases including prostate cancer. Androgen deprivation therapy is used for treating advanced prostate cancer. This therapeutic approach focuses on suppressing the accumulation of potent androgens, testosterone and 5alpha-dihydrotestosterone (5alpha-DHT), or inactivating the AR. Unfortunately, the majority of patients with prostate cancer eventually advance to androgen-independent states and no longer respond to the therapy. In addition to the potent androgens, 5alpha-androstane-3alpha,17beta-diol (3alpha-diol), reduced from 5alpha-DHT through 3alpha-hydroxysteroid dehydrogenases (3alpha-HSDs), activated signaling may represent a novel pathway responsible for the progression to androgen-independent prostate cancer. Androgen sensitive human prostate cancer LNCaP cells were used to compare 5alpha-DHT and 3alpha-diol activated androgenic effects. In contrast to 5alpha-DHT, 3alpha-diol regulated unique patterns of beta-catenin and Akt expression as well as Akt phosphorylation in parental and in AR-silenced LNCaP cells. More significantly, 3alpha-diol, but not 5alpha-DHT, supported AR-silenced LNCaP cells and AR negative prostate cancer PC-3 cell proliferation. 3alpha-diol-activated androgenic effects in prostate cells cannot be attributed to the accumulation of 5alpha-DHT, since 5alpha-DHT formation was not detected following 3alpha-diol administration. Potential accumulation of 3alpha-diol, as a result of elevated 3alpha-HSD expression in cancerous prostate, may continue to support prostate cancer growth in the presence of androgen deprivation. Future therapeutic strategies for treating advanced prostate cancer might need to target reductive 3alpha-HSD to block intraprostatic 3alpha-diol accumulation.
Collapse
Affiliation(s)
- Qing Yang
- Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | |
Collapse
|
96
|
Vias M, Ramos-Montoya A, Mills IG. Terminal and progenitor lineage-survival oncogenes as cancer markers. Trends Mol Med 2008; 14:486-94. [PMID: 18929510 DOI: 10.1016/j.molmed.2008.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 09/01/2008] [Accepted: 09/01/2008] [Indexed: 12/31/2022]
Abstract
Tumour classification has traditionally focused on differentiation and cellular morphology, and latterly on the application of genomic approaches. By combining chromatin immunoprecipitation with expression array, it has been possible to identify direct gene targets for transcription factors for nuclear hormone receptors. At the same time, there have been great strides in deriving stem and progenitor cells from tissues. It is therefore timely to propose that pairing the isolation of these cell subpopulations from tissues and tumours with these genomics approaches will reveal conserved gene targets for transcription factors. By focusing on transcription factors (lineage-survival oncogenes) with roles in both organogenesis and tumourigenesis at multiple organ sites, we suggest that this comparative genomics approach will enable developmental biology to be used more fully in relation to understanding tumour progression and will reveal new cancer markers. We focus here on neurogenesis and neuroendocrine differentiation in tumours.
Collapse
Affiliation(s)
- Maria Vias
- Uro-Oncology Research Group, Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | | | | |
Collapse
|
97
|
Lee YS, Lim KH, Guo X, Kawaguchi Y, Gao Y, Barrientos T, Ordentlich P, Wang XF, Counter CM, Yao TP. The cytoplasmic deacetylase HDAC6 is required for efficient oncogenic tumorigenesis. Cancer Res 2008; 68:7561-9. [PMID: 18794144 DOI: 10.1158/0008-5472.can-08-0188] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Histone deacetylase inhibitors (HDACI) are promising antitumor agents. Although transcriptional deregulation is thought to be the main mechanism underlying their therapeutic effects, the exact mechanism and targets by which HDACIs achieve their antitumor effects remain poorly understood. It is not known whether any of the HDAC members support robust tumor growth. In this report, we show that HDAC6, a cytoplasmic-localized and cytoskeleton-associated deacetylase, is required for efficient oncogenic transformation and tumor formation. We found that HDAC6 expression is induced upon oncogenic Ras transformation. Fibroblasts deficient in HDAC6 are more resistant to both oncogenic Ras and ErbB2-dependent transformation, indicating a critical role for HDAC6 in oncogene-induced transformation. Supporting this hypothesis, inactivation of HDAC6 in several cancer cell lines reduces anchorage-independent growth and the ability to form tumors in mice. The loss of anchorage-independent growth is associated with increased anoikis and defects in AKT and extracellular signal-regulated kinase activation upon loss of adhesion. Lastly, HDAC6-null mice are more resistant to chemical carcinogen-induced skin tumors. Our results provide the first experimental evidence that a specific HDAC member is required for efficient oncogenic transformation and indicate that HDAC6 is an important component underlying the antitumor effects of HDACIs.
Collapse
Affiliation(s)
- Yi-Shan Lee
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Klonisch T, Wiechec E, Hombach-Klonisch S, Ande SR, Wesselborg S, Schulze-Osthoff K, Los M. Cancer stem cell markers in common cancers - therapeutic implications. Trends Mol Med 2008; 14:450-60. [PMID: 18775674 DOI: 10.1016/j.molmed.2008.08.003] [Citation(s) in RCA: 288] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 08/01/2008] [Accepted: 08/01/2008] [Indexed: 12/17/2022]
Abstract
Rapid advances in the cancer stem cell (CSC) field have provided cause for optimism for the development of more reliable cancer therapies in the future. Strategies aimed at efficient targeting of CSCs are becoming important for monitoring the progress of cancer therapy and for evaluating new therapeutic approaches. Here, we characterize and compare the specific markers that have been found to be present on stem cells, cancer cells and CSCs in selected tissues (colon, breast, liver, pancreas and prostate). We then discuss future directions of this intriguing new research field in the context of new diagnostic and therapeutic opportunities.
Collapse
Affiliation(s)
- Thomas Klonisch
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, R3E 0W3, MB, Canada
| | | | | | | | | | | | | |
Collapse
|
99
|
Majumder PK, Grisanzio C, O’Connell F, Barry M, Brito JM, Xu Q, Guney I, Berger R, Herman P, Bikoff R, Fedele G, Baek WK, Wang S, Ellwood-Yen K, Wu H, Sawyers CL, Signoretti S, Hahn WC, Loda M, Sellers WR. A prostatic intraepithelial neoplasia-dependent p27 Kip1 checkpoint induces senescence and inhibits cell proliferation and cancer progression. Cancer Cell 2008; 14:146-55. [PMID: 18691549 PMCID: PMC2583442 DOI: 10.1016/j.ccr.2008.06.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 01/03/2008] [Accepted: 06/06/2008] [Indexed: 01/04/2023]
Abstract
Transgenic expression of activated AKT1 in the murine prostate induces prostatic intraepithelial neoplasia (PIN) that does not progress to invasive prostate cancer (CaP). In luminal epithelial cells of Akt-driven PIN, we show the concomitant induction of p27(Kip1) and senescence. Genetic ablation of p27(Kip1) led to downregulation of senescence markers and progression to cancer. In humans, p27(Kip1) and senescence markers were elevated in PIN not associated with CaP but were decreased or absent, respectively, in cancer-associated PIN and in CaP. Importantly, p27(Kip1) upregulation in mouse and human in situ lesions did not depend upon mTOR or Akt activation but was instead specifically associated with alterations in cell polarity, architecture, and adhesion molecules. These data suggest that a p27(Kip1)-driven checkpoint limits progression of PIN to CaP.
Collapse
Affiliation(s)
- Pradip K. Majumder
- Department of Medical Oncology Dana-Farber Cancer Institute, Boston, Massachusetts 02115
- Departments of Medicine and Pathology Harvard Medical School, Boston, Massachusetts 02115
| | - Chiara Grisanzio
- Departments of Medicine, and Pathology, Brigham and Women’s Hospital, Boston, Massachusetts 02115
- Departments of Medicine and Pathology Harvard Medical School, Boston, Massachusetts 02115
| | - Fionnuala O’Connell
- Department of Medical Oncology Dana-Farber Cancer Institute, Boston, Massachusetts 02115
- Departments of Medicine, and Pathology, Brigham and Women’s Hospital, Boston, Massachusetts 02115
- Departments of Medicine and Pathology Harvard Medical School, Boston, Massachusetts 02115
| | - Marc Barry
- Departments of Medicine, and Pathology, Brigham and Women’s Hospital, Boston, Massachusetts 02115
| | - Joseph M. Brito
- Department of Medical Oncology Dana-Farber Cancer Institute, Boston, Massachusetts 02115
- Departments of Medicine, and Pathology, Brigham and Women’s Hospital, Boston, Massachusetts 02115
| | - Qing Xu
- Department of Medical Oncology Dana-Farber Cancer Institute, Boston, Massachusetts 02115
- Departments of Medicine and Pathology Harvard Medical School, Boston, Massachusetts 02115
| | - Isil Guney
- Department of Medical Oncology Dana-Farber Cancer Institute, Boston, Massachusetts 02115
- Departments of Medicine and Pathology Harvard Medical School, Boston, Massachusetts 02115
| | - Raanan Berger
- Department of Medical Oncology Dana-Farber Cancer Institute, Boston, Massachusetts 02115
- Departments of Medicine and Pathology Harvard Medical School, Boston, Massachusetts 02115
| | - Paula Herman
- Department of Medical Oncology Dana-Farber Cancer Institute, Boston, Massachusetts 02115
- Departments of Medicine and Pathology Harvard Medical School, Boston, Massachusetts 02115
| | - Rachel Bikoff
- Department of Medical Oncology Dana-Farber Cancer Institute, Boston, Massachusetts 02115
- Departments of Medicine and Pathology Harvard Medical School, Boston, Massachusetts 02115
| | - Giuseppe Fedele
- Department of Medical Oncology Dana-Farber Cancer Institute, Boston, Massachusetts 02115
- Departments of Medicine, and Pathology, Brigham and Women’s Hospital, Boston, Massachusetts 02115
| | - Won-Ki Baek
- Department of Medical Oncology Dana-Farber Cancer Institute, Boston, Massachusetts 02115
- Departments of Medicine and Pathology Harvard Medical School, Boston, Massachusetts 02115
| | - Shunyou Wang
- Departments Medicine and Medical Pharmacology, University of California Los Angeles School of Medicine, LA
| | - Katharine Ellwood-Yen
- Departments Medicine and Medical Pharmacology, University of California Los Angeles School of Medicine, LA
| | - Hong Wu
- Departments Medicine and Medical Pharmacology, University of California Los Angeles School of Medicine, LA
| | - Charles L. Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York
- Howard Hughes Medical Institute
| | - Sabina Signoretti
- Departments of Medicine, and Pathology, Brigham and Women’s Hospital, Boston, Massachusetts 02115
- Departments of Medicine and Pathology Harvard Medical School, Boston, Massachusetts 02115
| | - William C. Hahn
- Department of Medical Oncology Dana-Farber Cancer Institute, Boston, Massachusetts 02115
- Departments of Medicine, and Pathology, Brigham and Women’s Hospital, Boston, Massachusetts 02115
- Departments of Medicine and Pathology Harvard Medical School, Boston, Massachusetts 02115
- Board Institute of Harvard and MIT
| | - Massimo Loda
- Department of Medical Oncology Dana-Farber Cancer Institute, Boston, Massachusetts 02115
- Departments of Medicine, and Pathology, Brigham and Women’s Hospital, Boston, Massachusetts 02115
- Departments of Medicine and Pathology Harvard Medical School, Boston, Massachusetts 02115
- Board Institute of Harvard and MIT
- Correspondence William R. Sellers, MD, Novartis Institutes For Biomedical Research, 250 Massachusetts Avenue, 4A/245, Cambridge, MA 02139, Phone: 617-871-7069, Fax: 617-871-3452, or Massimo Loda, MD, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA, E-mail:
| | - William R. Sellers
- Department of Medical Oncology Dana-Farber Cancer Institute, Boston, Massachusetts 02115
- Departments of Medicine, and Pathology, Brigham and Women’s Hospital, Boston, Massachusetts 02115
- Departments of Medicine and Pathology Harvard Medical School, Boston, Massachusetts 02115
- Novartis Institutes For BioMedical Research, Cambridge
- Correspondence William R. Sellers, MD, Novartis Institutes For Biomedical Research, 250 Massachusetts Avenue, 4A/245, Cambridge, MA 02139, Phone: 617-871-7069, Fax: 617-871-3452, or Massimo Loda, MD, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA, E-mail:
| |
Collapse
|
100
|
Morgentaler A. Guilt by Association: A Historical Perspective on Huggins, Testosterone Therapy, and Prostate Cancer. J Sex Med 2008; 5:1834-40. [DOI: 10.1111/j.1743-6109.2008.00889.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|