51
|
Interplay of Immunometabolism and Epithelial-Mesenchymal Transition in the Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22189878. [PMID: 34576042 PMCID: PMC8466075 DOI: 10.3390/ijms22189878] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 02/07/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT) and metabolic reprogramming in cancer cells are the key hallmarks of tumor metastasis. Since the relationship between the two has been well studied, researchers have gained increasing interest in the interplay of cancer cell EMT and immune metabolic changes. Whether the mutual influences between them could provide novel explanations for immune surveillance during metastasis is worth understanding. Here, we review the role of immunometabolism in the regulatory loop between tumor-infiltrating immune cells and EMT. We also discuss the challenges and perspectives of targeting immunometabolism in cancer treatment.
Collapse
|
52
|
Allard D, Allard B, Stagg J. On the mechanism of anti-CD39 immune checkpoint therapy. J Immunother Cancer 2021; 8:jitc-2019-000186. [PMID: 32098829 PMCID: PMC7057429 DOI: 10.1136/jitc-2019-000186] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2019] [Indexed: 12/26/2022] Open
Abstract
With the coming of age of cancer immunotherapy, the search for new therapeutic targets has led to the identification of immunosuppressive adenosine as an important regulator of antitumor immunity. This resulted in the development of selective inhibitors targeting various components of the adenosinergic pathway, including small molecules antagonists targeting the high affinity A2A adenosine receptor and low affinity A2B receptor, therapeutic monoclonal antibodies (mAbs) and small molecules targeting CD73 and therapeutic mAbs targeting CD39. As each regulator of the adenosinergic pathway present non-overlapping biologic functions, a better understanding of the mechanisms of action of each targeted approach should accelerate clinical translation and improve rational design of combination treatments. In this review, we discuss the potential mechanisms-of-action of anti-CD39 cancer therapy and potential toxicities that may emerge from sustained CD39 inhibition. Caution should be taken, however, in extrapolating data from gene-targeted mice to patients treated with blocking anti-CD39 agents. As phase I clinical trials are now underway, further insights into the mechanism of action and potential adverse events associated with anti-CD39 therapy are anticipated in coming years.
Collapse
Affiliation(s)
- David Allard
- Faculty of Pharmacy, Centre Hospitalier de L'Universite de Montreal, Montreal, Quebec, Canada
| | - Bertrand Allard
- Institut du Cancer de Montreal, Centre Hospitalier de L'Universite de Montreal, Montreal, Quebec, Canada
| | - John Stagg
- Faculty of Pharmacy, Centre Hospitalier de L'Universite de Montreal, Montreal, Quebec, Canada .,Institut du Cancer de Montreal, Centre Hospitalier de L'Universite de Montreal, Montreal, Quebec, Canada
| |
Collapse
|
53
|
Targeting tumor-derived NLRP3 reduces melanoma progression by limiting MDSCs expansion. Proc Natl Acad Sci U S A 2021; 118:2000915118. [PMID: 33649199 PMCID: PMC7958415 DOI: 10.1073/pnas.2000915118] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The nucleotide-binding domain, leucine-rich containing family, pyrin domain-containing-3 (NLRP3) inflammasome, an intracellular complex that regulates maturation and release of interleukin (IL)-1β, is active in biopsies of metastatic melanoma. Here, we demonstrate that NLRP3 activation in melanoma cells drives tumor progression in mice. Subsequent to NLRP3 activation in melanoma cells, IL-1β induces melanoma-associated inflammation, resulting in immunosuppression. Oral administration of a single NLRP3 inhibitor (OLT1177) reduces melanoma growth and melanoma-associated myeloid-derived suppressor cell expansion. Inhibition of the NLRP3 signaling in combination with anti–PD-1 revealed augmented efficacy compared to monotherapy. These data propose that NLRP3 is a therapeutic target for human melanoma. Interleukin-1β (IL-1β)–mediated inflammation suppresses antitumor immunity, leading to the generation of a tumor-permissive environment, tumor growth, and progression. Here, we demonstrate that nucleotide-binding domain, leucine-rich containing family, pyrin domain-containing-3 (NLRP3) inflammasome activation in melanoma is linked to IL-1β production, inflammation, and immunosuppression. Analysis of cancer genome datasets (TCGA and GTEx) revealed greater NLRP3 and IL-1β expression in cutaneous melanoma samples (n = 469) compared to normal skin (n = 324), with a highly significant correlation between NLRP3 and IL-1β (P < 0.0001). We show the formation of the NLRP3 inflammasome in biopsies of metastatic melanoma using fluorescent resonance energy transfer analysis for NLRP3 and apoptosis-associated speck-like protein containing a CARD. In vivo, tumor-associated NLRP3/IL-1 signaling induced expansion of myeloid-derived suppressor cells (MDSCs), leading to reduced natural killer and CD8+ T cell activity concomitant with an increased presence of regulatory T (Treg) cells in the primary tumors. Either genetic or pharmacological inhibition of tumor-derived NLRP3 by dapansutrile (OLT1177) was sufficient to reduce MDSCs expansion and to enhance antitumor immunity, resulting in reduced tumor growth. Additionally, we observed that the combination of NLRP3 inhibition and anti–PD-1 treatment significantly increased the antitumor efficacy of the monotherapy by limiting MDSC-mediated T cell suppression and tumor progression. These data show that NLRP3 activation in melanoma cells is a protumor mechanism, which induces MDSCs expansion and immune evasion. We conclude that inhibition of NLRP3 can augment the efficacy of anti–PD-1 therapy.
Collapse
|
54
|
Tonetti CR, de Souza-Araújo CN, Yoshida A, da Silva RF, Alves PCM, Mazzola TN, Derchain S, Fernandes LGR, Guimarães F. Ovarian Cancer-Associated Ascites Have High Proportions of Cytokine-Responsive CD56bright NK Cells. Cells 2021; 10:cells10071702. [PMID: 34359872 PMCID: PMC8306021 DOI: 10.3390/cells10071702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancy, with serous histotype as the most prevalent epithelial ovarian cancer (EOC). Peritoneal ascites is a frequent comorbidity in advanced EOC. EOC-associated ascites provide a reliable sampling source for studying lymphocytes directly from tumor environment. Herein, we carried out flow cytometry-based analysis to readdress issues on NK and T lymphocyte subsets in women with advanced EOC, additionally evaluating phenotypic modulation of their intracellular pathways involved in interleukin (IL)-2 and IL-15 signaling. Results depicted ascites as an inflammatory and immunosuppressive environment, presenting significantly (p < 0.0001) higher amounts of IL-6 and IL-10 than in the patients' blood, as well as significantly (p < 0.05) increased expression of checkpoint inhibitory receptors (programmed death protein-1, PD-1) and ectonucleotidase (CD39) on T lymphocytes. However, NK lymphocytes from EOC-associated ascites showed higher (p < 0.05) pS6 phosphorylation compared with NK from blood. Additionally, in vitro treatment of lymphocytes with IL-2 or IL-15 elicited significantly (p < 0.001) phosphorylation of the STAT5 protein in NK, CD3 and CD8 lymphocytes, both from blood and ascites. EOC-associated ascites had a significantly (p < 0.0001) higher proportion of NK CD56bright lymphocytes than blood, which, in addition, were more responsive (p < 0.05) to stimulation by IL-2 than CD56dim NK. EOC-associated ascites allow studies on lymphocyte phenotype modulation in the tumor environment, where inflammatory profile contrasts with the presence of immunosuppressive elements and development of cellular self-regulating mechanisms.
Collapse
Affiliation(s)
- Cláudia Rodrigues Tonetti
- School of Medicine Sciences, University of Campinas, Rua Tessália Vieira de Camargo-126, Campinas CEP 13083-887, SP, Brazil; (C.R.T.); (C.N.d.S.-A.); (R.F.d.S.); (S.D.); (L.G.R.F.)
| | - Caroline Natânia de Souza-Araújo
- School of Medicine Sciences, University of Campinas, Rua Tessália Vieira de Camargo-126, Campinas CEP 13083-887, SP, Brazil; (C.R.T.); (C.N.d.S.-A.); (R.F.d.S.); (S.D.); (L.G.R.F.)
| | - Adriana Yoshida
- Centro de Atenção Integral à Saúde da Mulher (CAISM), Women’s Hospital José Aristodemo Pinotti, University of Campinas, Rua Alexander Fleming-101, Campinas CEP 13083-881, SP, Brazil;
| | - Rodrigo Fernandes da Silva
- School of Medicine Sciences, University of Campinas, Rua Tessália Vieira de Camargo-126, Campinas CEP 13083-887, SP, Brazil; (C.R.T.); (C.N.d.S.-A.); (R.F.d.S.); (S.D.); (L.G.R.F.)
| | - Paulo César Martins Alves
- Center for Investigation in Pediatrics, University of Campinas, Rua Tessália Vieira de Camargo-126, Campinas CEP 13083-887, SP, Brazil; (P.C.M.A.); (T.N.M.)
| | - Taís Nitsch Mazzola
- Center for Investigation in Pediatrics, University of Campinas, Rua Tessália Vieira de Camargo-126, Campinas CEP 13083-887, SP, Brazil; (P.C.M.A.); (T.N.M.)
| | - Sophie Derchain
- School of Medicine Sciences, University of Campinas, Rua Tessália Vieira de Camargo-126, Campinas CEP 13083-887, SP, Brazil; (C.R.T.); (C.N.d.S.-A.); (R.F.d.S.); (S.D.); (L.G.R.F.)
- Centro de Atenção Integral à Saúde da Mulher (CAISM), Women’s Hospital José Aristodemo Pinotti, University of Campinas, Rua Alexander Fleming-101, Campinas CEP 13083-881, SP, Brazil;
| | - Luís Gustavo Romani Fernandes
- School of Medicine Sciences, University of Campinas, Rua Tessália Vieira de Camargo-126, Campinas CEP 13083-887, SP, Brazil; (C.R.T.); (C.N.d.S.-A.); (R.F.d.S.); (S.D.); (L.G.R.F.)
| | - Fernando Guimarães
- School of Medicine Sciences, University of Campinas, Rua Tessália Vieira de Camargo-126, Campinas CEP 13083-887, SP, Brazil; (C.R.T.); (C.N.d.S.-A.); (R.F.d.S.); (S.D.); (L.G.R.F.)
- Centro de Atenção Integral à Saúde da Mulher (CAISM), Women’s Hospital José Aristodemo Pinotti, University of Campinas, Rua Alexander Fleming-101, Campinas CEP 13083-881, SP, Brazil;
- Correspondence: ; Tel.: +55-(19)-35219462
| |
Collapse
|
55
|
Liu Q, Hua M, Zhang C, Wang R, Liu J, Yang X, Han F, Hou M, Ma D. NLRP3-activated bone marrow dendritic cells play antileukemic roles via IL-1β/Th1/IFN-γ in acute myeloid leukemia. Cancer Lett 2021; 520:109-120. [PMID: 34237408 DOI: 10.1016/j.canlet.2021.06.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/01/2021] [Accepted: 06/15/2021] [Indexed: 01/09/2023]
Abstract
The bone marrow microenvironment of acute myeloid leukemia (AML) characterized by immunosuppressive features fosters leukemia immune escape. Elucidating the immunosuppressive mechanism and developing effective immunotherapeutic strategies are necessary. Here, we found that the Th1% and IFN-γ level were downregulated in bone marrow of AML and NLRP3-activated BMDCs promoted CD4+ T cell differentiation into Th1 cells via IL-1β secretion. However, IFN-γ-producing Th1 cells were not induced by NLRP3-activated BMDCs in the presence of the NLRP3 inflammasome inhibitor MCC950 or anti-IL-1β antibody in vitro unless exogenous IL-1β was replenished. This inhibitory effect on Th1 differentiation was also observed in Nlrp3-/- mice or anti-IL-1β antibody-treated mice. Notably, elevated Th1 cell levels promoted apoptosis and inhibited proliferation in leukemia cells via IFN-γ secretion in vitro and in vivo. Thus, NLRP3-activated BMDCs promote the proliferation of IFN-γ-producing Th1 cells with antileukemic effects and may provide insight into the basis for leukemia immunotherapy in patients with AML.
Collapse
Affiliation(s)
- Qinqin Liu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China; Department of Hematology, Taian Central Hospital, Taian, Shandong, 271000, China
| | - Mingqiang Hua
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Chen Zhang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China; Department of Hematology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, China
| | - Ruiqing Wang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Jinting Liu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Xinyu Yang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Fengjiao Han
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China.
| |
Collapse
|
56
|
Inflammasomes as therapeutic targets in human diseases. Signal Transduct Target Ther 2021; 6:247. [PMID: 34210954 PMCID: PMC8249422 DOI: 10.1038/s41392-021-00650-z] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/27/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammasomes are protein complexes of the innate immune system that initiate inflammation in response to either exogenous pathogens or endogenous danger signals. Inflammasome multiprotein complexes are composed of three parts: a sensor protein, an adaptor, and pro-caspase-1. Activation of the inflammasome leads to the activation of caspase-1, which cleaves pro-inflammatory cytokines such as IL-1β and IL-18, leading to pyroptosis. Effectors of the inflammasome not only provide protection against infectious pathogens, but also mediate control over sterile insults. Aberrant inflammasome signaling has been implicated in the development of cardiovascular and metabolic diseases, cancer, and neurodegenerative disorders. Here, we review the role of the inflammasome as a double-edged sword in various diseases, and the outcomes can be either good or bad depending on the disease, as well as the genetic background. We highlight inflammasome memory and the two-shot activation process. We also propose the M- and N-type inflammation model, and discuss how the inflammasome pathway may be targeted for the development of novel therapy.
Collapse
|
57
|
Zhong C, Wang R, Hua M, Zhang C, Han F, Xu M, Yang X, Li G, Hu X, Sun T, Ji C, Ma D. NLRP3 Inflammasome Promotes the Progression of Acute Myeloid Leukemia via IL-1β Pathway. Front Immunol 2021; 12:661939. [PMID: 34211462 PMCID: PMC8239362 DOI: 10.3389/fimmu.2021.661939] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/17/2021] [Indexed: 01/18/2023] Open
Abstract
NLRP3 inflammasome has been reported to be associated with the pathogenesis of multiple solid tumors. However, the role of NLRP3 inflammasome in acute myeloid leukemia (AML) remains unclear. We showed that NLRP3 inflammasome is over-expressed and highly activated in AML bone marrow leukemia cells, which is correlated with poor prognosis. The activation of NLRP3 inflammasome in AML cells promotes leukemia cells proliferation, inhibits apoptosis and increases resistance to chemotherapy, while inactivation of NLRP3 by caspase-1 or NF-κB inhibitor shows leukemia-suppressing effects. Bayesian networks analysis and cell co-culture tests further suggest that NLRP3 inflammasome acts through IL-1β but not IL-18 in AML. Knocking down endogenous IL-1β or anti-IL-1β antibody inhibits leukemia cells whereas IL-1β cytokine enhances leukemia proliferation. In AML murine model, up-regulation of NLRP3 increases the leukemia burden in bone marrow, spleen and liver, and shortens the survival time; furthermore, knocking out NLRP3 inhibits leukemia progression. Collectively, all these evidences demonstrate that NLRP3 inflammasome promotes AML progression in an IL-1β dependent manner, and targeting NLRP3 inflammasome may provide a novel therapeutic option for AML.
Collapse
Affiliation(s)
- Chaoqing Zhong
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China.,Department of Hematology, Shandong Yantai Mountain Hospital, Yantai, China
| | - Ruiqing Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Mingqiang Hua
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China.,Department of Emergency, Qilu Hospital of Shandong University, Jinan, China
| | - Chen Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Fengjiao Han
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Miao Xu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Xinyu Yang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Guosheng Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiang Hu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Tao Sun
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
58
|
Reynaud D, Abi Nahed R, Lemaitre N, Bolze PA, Traboulsi W, Sergent F, Battail C, Filhol O, Sapin V, Boufettal H, Hoffmann P, Aboussaouira T, Murthi P, Slim R, Benharouga M, Alfaidy N. NLRP7 Promotes Choriocarcinoma Growth and Progression through the Establishment of an Immunosuppressive Microenvironment. Cancers (Basel) 2021; 13:2999. [PMID: 34203890 PMCID: PMC8232770 DOI: 10.3390/cancers13122999] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 12/14/2022] Open
Abstract
The inflammatory gene NLRP7 is the major gene responsible for recurrent complete hydatidiform moles (CHM), an abnormal pregnancy that can develop into gestational choriocarcinoma (CC). However, the role of NLRP7 in the development and immune tolerance of CC has not been investigated. Three approaches were employed to define the role of NLRP7 in CC development: (i) a clinical study that analyzed human placenta and sera collected from women with normal pregnancies, CHM or CC; (ii) an in vitro study that investigated the impact of NLRP7 knockdown on tumor growth and organization; and (iii) an in vivo study that used two CC mouse models, including an orthotopic model. NLRP7 and circulating inflammatory cytokines were upregulated in tumor cells and in CHM and CC. In tumor cells, NLRP7 functions in an inflammasome-independent manner and promoted their proliferation and 3D organization. Gravid mice placentas injected with CC cells invalidated for NLRP7, exhibited higher maternal immune response, developed smaller tumors, and displayed less metastases. Our data characterized the critical role of NLRP7 in CC and provided evidence of its contribution to the development of an immunosuppressive maternal microenvironment that not only downregulates the maternal immune response but also fosters the growth and progression of CC.
Collapse
Affiliation(s)
- Deborah Reynaud
- Institut National de la Santé et de la Recherche Médicale, Inserm U1292, Université Grenoble-Alpes, 38000 Grenoble, France; (D.R.); (R.A.N.); (N.L.); (F.S.); (C.B.); (O.F.); (P.H.); (M.B.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, CEDEX 9, 38054 Grenoble, France
| | - Roland Abi Nahed
- Institut National de la Santé et de la Recherche Médicale, Inserm U1292, Université Grenoble-Alpes, 38000 Grenoble, France; (D.R.); (R.A.N.); (N.L.); (F.S.); (C.B.); (O.F.); (P.H.); (M.B.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, CEDEX 9, 38054 Grenoble, France
| | - Nicolas Lemaitre
- Institut National de la Santé et de la Recherche Médicale, Inserm U1292, Université Grenoble-Alpes, 38000 Grenoble, France; (D.R.); (R.A.N.); (N.L.); (F.S.); (C.B.); (O.F.); (P.H.); (M.B.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, CEDEX 9, 38054 Grenoble, France
| | - Pierre-Adrien Bolze
- Department of Gynecological Surgery and Oncology, Obstetrics, French Reference Center for Gestational Trophoblastic Diseases, University Hospital Lyon Sud, University of Lyon 1, 69000 Lyon, France;
| | - Wael Traboulsi
- Laboratory for Immuno-Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 2005, USA;
| | - Frederic Sergent
- Institut National de la Santé et de la Recherche Médicale, Inserm U1292, Université Grenoble-Alpes, 38000 Grenoble, France; (D.R.); (R.A.N.); (N.L.); (F.S.); (C.B.); (O.F.); (P.H.); (M.B.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, CEDEX 9, 38054 Grenoble, France
| | - Christophe Battail
- Institut National de la Santé et de la Recherche Médicale, Inserm U1292, Université Grenoble-Alpes, 38000 Grenoble, France; (D.R.); (R.A.N.); (N.L.); (F.S.); (C.B.); (O.F.); (P.H.); (M.B.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, CEDEX 9, 38054 Grenoble, France
| | - Odile Filhol
- Institut National de la Santé et de la Recherche Médicale, Inserm U1292, Université Grenoble-Alpes, 38000 Grenoble, France; (D.R.); (R.A.N.); (N.L.); (F.S.); (C.B.); (O.F.); (P.H.); (M.B.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, CEDEX 9, 38054 Grenoble, France
| | - Vincent Sapin
- Genetics, Reproduction and Development (GReD) Laboratory, CNRS UMR 6293, Inserm U1103, Translational Approach to Epithelial Injury and Repair Team, Clermont Auvergne University, 63000 Clermont-Ferrand, France;
- Medical Biochemistry and Molecular Biology Department, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Houssine Boufettal
- Obstetrics and Gynecology Department, Ibn Rochd University Hospital, Hassan 2 University, Faculty of Medicine and Pharmacy, 20360 Casablanca, Morocco; (H.B.); (T.A.)
| | - Pascale Hoffmann
- Institut National de la Santé et de la Recherche Médicale, Inserm U1292, Université Grenoble-Alpes, 38000 Grenoble, France; (D.R.); (R.A.N.); (N.L.); (F.S.); (C.B.); (O.F.); (P.H.); (M.B.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, CEDEX 9, 38054 Grenoble, France
- Centre Hospitalo-Universitaire Grenoble Alpes, Service Obstétrique, CS 10217, Université Grenoble Alpes, CEDEX 9, 38043 Grenoble, France
| | - Touria Aboussaouira
- Obstetrics and Gynecology Department, Ibn Rochd University Hospital, Hassan 2 University, Faculty of Medicine and Pharmacy, 20360 Casablanca, Morocco; (H.B.); (T.A.)
| | - Padma Murthi
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash, Clayton, VIC 3168, Australia;
- Department of Obstetrics and Gynecology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Rima Slim
- Departments of Human Genetics and Obstetrics and Gynecology, McGill University Health Centre Research Institute, Montréal, QC H4A 3J1, Canada;
| | - Mohamed Benharouga
- Institut National de la Santé et de la Recherche Médicale, Inserm U1292, Université Grenoble-Alpes, 38000 Grenoble, France; (D.R.); (R.A.N.); (N.L.); (F.S.); (C.B.); (O.F.); (P.H.); (M.B.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, CEDEX 9, 38054 Grenoble, France
| | - Nadia Alfaidy
- Institut National de la Santé et de la Recherche Médicale, Inserm U1292, Université Grenoble-Alpes, 38000 Grenoble, France; (D.R.); (R.A.N.); (N.L.); (F.S.); (C.B.); (O.F.); (P.H.); (M.B.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, CEDEX 9, 38054 Grenoble, France
| |
Collapse
|
59
|
Hedyotis diffusa plus Scutellaria barbata Suppress the Growth of Non-Small-Cell Lung Cancer via NLRP3/NF- κB/MAPK Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6666499. [PMID: 34239588 PMCID: PMC8233093 DOI: 10.1155/2021/6666499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/02/2021] [Indexed: 12/25/2022]
Abstract
Hedyotis diffusa (HD) plus Scutellaria barbata (SB) have been widely used in antitumor clinical prescribes as one of herb pairs in China. We investigated the effect of aqueous extract from Hedyotis diffusa plus Scutellaria barbata at the equal weight ratio (HDSB11) in inhibiting the growth of murine non-small-cell lung cancer cell (NSCLC) line LLC in vivo and in vitro in this study. Compared with other aqueous extracts, HDSB11 showed the lowest IC50 in inhibiting cell proliferation at 0.43 mg/ml. Besides, HDSB11 effectively suppressed colony formation and induced cell apoptosis. The further assessment of HDSB11 on the murine Lewis-lung-carcinoma-bearing mouse model showed it significantly inhibited tumors' bioluminescence at the dose of 30 g crude drug/kg. Mechanistically, HDSB11 attenuated the expressions of NLRP3, procaspase-1, caspase-1, PRAP, Bcl-2, and cyclin D1 and downregulated the phosphorylation levels of NF-κB, ERK, JNK, and p38 MAPK. In conclusion, HDSB11 could alleviate cell proliferation and colony formation and induce apoptosis in vitro and tumor growth in vivo, partly via NF-κB and MAPK signaling pathways to suppress NLRP3 expression.
Collapse
|
60
|
Targeting the NLRP3 Inflammasome as a New Therapeutic Option for Overcoming Cancer. Cancers (Basel) 2021; 13:cancers13102297. [PMID: 34064909 PMCID: PMC8151587 DOI: 10.3390/cancers13102297] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammasomes are multiprotein complexes that regulate the maturation and secretion of the proinflammatory cytokines interleukin-1beta (IL-1β and interleukin-18 (IL-18) in response to various intracellular stimuli. As a member of the inflammasomes family, NLRP3 is the most studied and best characterized inflammasome and has been shown to be involved in several pathologies. Recent findings have made it increasingly apparent that the NLRP3 inflammasome may also play a central role in tumorigenesis, and it has attracted attention as a potential anticancer therapy target. In this review, we discuss the role of NLRP3 in the development and progression of cancer, offering a detailed summary of NLRP3 inflammasome activation (and inhibition) in the pathogenesis of various forms of cancer. Moreover, we focus on the therapeutic potential of targeting NLRP3 for cancer therapy, emphasizing how understanding NLRP3 inflammasome-dependent cancer mechanisms might guide the development of new drugs that target the inflammatory response of tumor-associated cells.
Collapse
|
61
|
Han C, Godfrey V, Liu Z, Han Y, Liu L, Peng H, Weichselbaum RR, Zaki H, Fu YX. The AIM2 and NLRP3 inflammasomes trigger IL-1-mediated antitumor effects during radiation. Sci Immunol 2021; 6:eabc6998. [PMID: 33963060 DOI: 10.1126/sciimmunol.abc6998] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 04/06/2021] [Indexed: 12/20/2022]
Abstract
The inflammasome promotes inflammation-associated diseases, including cancer, and contributes to the radiation-induced tissue damage. However, the role of inflammasome in radiation-induced antitumor effects is unclear. We observed that tumors transplanted in Casp1-/- mice were resistant to radiation treatment compared with tumors in wild-type (WT) mice. To map out which molecule in the inflammasome pathway contributed to this resistant, we investigated the antitumor effect of radiation in several inflammasome-deficient mice. Tumors grown in either Aim2-/- or Nlrp3-/- mice remained sensitive to radiation, like WT mice, whereas Aim2-/-Nlrp3-/- mice showed radioresistance. Mechanistically, extracellular vesicles (EVs) and EV-free supernatant derived from irradiated tumors activated both Aim2 and Nlrp3 inflammasomes in macrophages, leading to the production of interleukin-1β (IL-1β). IL-1β treatment helped overcome the radioresistance of tumors growing in Casp1-/- and Aim2-/-Nlrp3-/- mice. IL-1 signaling in dendritic cells (DCs) promoted radiation-induced antitumor immunity by enhancing the cross-priming activity of DCs. Overall, we demonstrated that radiation-induced activation of the AIM2 and NLRP3 inflammasomes coordinate to induce some of the antitumor effects of radiation by triggering IL-1 signaling in DCs, leading to their activation and cross-priming.
Collapse
Affiliation(s)
- Chuanhui Han
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Victoria Godfrey
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Zhida Liu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yanfei Han
- Institute of Biophysics, Chinese Academy of Sciences. Beijing, China
| | - Longchao Liu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Hua Peng
- Institute of Biophysics, Chinese Academy of Sciences. Beijing, China
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Hasan Zaki
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Yang-Xin Fu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
62
|
Kaniowski D, Ebenryter-Olbińska K, Kulik K, Suwara J, Cypryk W, Jakóbik-Kolon A, Leśnikowski Z, Nawrot B. Composites of Nucleic Acids and Boron Clusters (C 2B 10H 12) as Functional Nanoparticles for Downregulation of EGFR Oncogene in Cancer Cells. Int J Mol Sci 2021; 22:ijms22094863. [PMID: 34064412 PMCID: PMC8125477 DOI: 10.3390/ijms22094863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 12/29/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is one of the most promising molecular targets for anticancer therapy. We used boron clusters as a platform for generation of new materials. For this, functional DNA constructs conjugated with boron clusters (B-ASOs) were developed. These B-ASOs, built from 1,2-dicarba-closo-dodecaborane linked with two anti-EGFR antisense oligonucleotides (ASOs), form with their complementary congeners torus-like nanostructures, as previously shown by atomic force microscope (AFM) and transmission electron cryo-microscopy (cryo-TEM) imaging. In the present work, deepened studies were carried out on B-ASO's properties. In solution, B-ASOs formed four dominant complexes as confirmed by non-denaturing polyacrylamide gel electrophoresis (PAGE). These complexes exhibited increased stability in cell lysate comparing to the non-modified ASO. Fluorescently labeled B-ASOs localized mostly in the cytoplasm and decreased EGFR expression by activating RNase H. Moreover, the B-ASO complexes altered the cancer cell phenotype, decreased cell migration rate, and arrested the cells in the S phase of cell cycle. The 1,2-dicarba-closo-dodecaborane-containing nanostructures did not activate NLRP3 inflammasome in human macrophages. In addition, as shown by inductively coupled plasma mass spectrometry (ICP MS), these nanostructures effectively penetrated the human squamous carcinoma cells (A431), showing their potential applicability as anticancer agents.
Collapse
Affiliation(s)
- Damian Kaniowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (D.K.); (K.E.-O.); (K.K.); (J.S.); (W.C.)
| | - Katarzyna Ebenryter-Olbińska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (D.K.); (K.E.-O.); (K.K.); (J.S.); (W.C.)
| | - Katarzyna Kulik
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (D.K.); (K.E.-O.); (K.K.); (J.S.); (W.C.)
| | - Justyna Suwara
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (D.K.); (K.E.-O.); (K.K.); (J.S.); (W.C.)
| | - Wojciech Cypryk
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (D.K.); (K.E.-O.); (K.K.); (J.S.); (W.C.)
| | - Agata Jakóbik-Kolon
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 6, 44-100 Gliwice, Poland;
| | - Zbigniew Leśnikowski
- Laboratory of Medicinal Chemistry, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 92-232 Lodz, Poland;
| | - Barbara Nawrot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (D.K.); (K.E.-O.); (K.K.); (J.S.); (W.C.)
- Correspondence: ; Tel.: +48-42-6803248
| |
Collapse
|
63
|
Hangai S, Kimura Y, Taniguchi T, Yanai H. Signal-transducing innate receptors in tumor immunity. Cancer Sci 2021; 112:2578-2591. [PMID: 33570784 PMCID: PMC8253268 DOI: 10.1111/cas.14848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
The signal‐transducing innate receptors represent classes of pattern recognition receptors (PRRs) that play crucial roles in the first line of the host defense against infections by the recognition of pathogen‐derived molecules. Because of their poorly discriminative nature compared with antigen receptors of the adaptive immune system, they also recognize endogenous molecules and evoke immune responses without infection, resulting in the regulation of tumor immunity. Therefore, PRRs may be promising targets for effective cancer immunotherapy, either by activating or inhibiting them. Here, we summarize our current knowledge of signal‐transducing PRRs in the regulation of tumor immunity.
Collapse
Affiliation(s)
- Sho Hangai
- Department of Inflammology, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Kimura
- Department of Inflammology, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Tadatsugu Taniguchi
- Department of Inflammology, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hideyuki Yanai
- Department of Inflammology, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
64
|
Sharma BR, Kanneganti TD. NLRP3 inflammasome in cancer and metabolic diseases. Nat Immunol 2021; 22:550-559. [PMID: 33707781 PMCID: PMC8132572 DOI: 10.1038/s41590-021-00886-5] [Citation(s) in RCA: 649] [Impact Index Per Article: 162.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/25/2021] [Indexed: 01/31/2023]
Abstract
The NLRP3 inflammasome is a multimeric cytosolic protein complex that assembles in response to cellular perturbations. This assembly leads to the activation of caspase-1, which promotes maturation and release of the inflammatory cytokines interleukin-1β (IL-1β) and IL-18, as well as inflammatory cell death (pyroptosis). The inflammatory cytokines contribute to the development of systemic low-grade inflammation, and aberrant NLRP3 activation can drive a chronic inflammatory state in the body to modulate the pathogenesis of inflammation-associated diseases. Therefore, targeting NLRP3 or other signaling molecules downstream, such as caspase-1, IL-1β or IL-18, has the potential for great therapeutic benefit. However, NLRP3 inflammasome-mediated inflammatory cytokines play dual roles in mediating human disease. While they are detrimental in the pathogenesis of inflammatory and metabolic diseases, they have a beneficial role in numerous infectious diseases and some cancers. Therefore, fine tuning of NLRP3 inflammasome activity is essential for maintaining proper cellular homeostasis and health. In this Review, we will cover the mechanisms of NLRP3 inflammasome activation and its divergent roles in the pathogenesis of inflammation-associated diseases such as cancer, atherosclerosis, diabetes and obesity, highlighting the therapeutic potential of targeting this pathway.
Collapse
Affiliation(s)
- Bhesh Raj Sharma
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Thirumala-Devi Kanneganti
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,Correspondence to: Thirumala-Devi Kanneganti, Department of Immunology, St. Jude Children’s Research Hospital, MS #351, 262 Danny Thomas Place, Memphis TN 38105-3678, Tel: (901) 595-3634; Fax. (901) 595-5766.,
| |
Collapse
|
65
|
Low NLRP3 expression predicts a better prognosis of colorectal cancer. Biosci Rep 2021; 41:228200. [PMID: 33821998 PMCID: PMC8055799 DOI: 10.1042/bsr20210280] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/18/2021] [Accepted: 03/29/2021] [Indexed: 02/05/2023] Open
Abstract
Background: NOD-like receptor pyrin domain-3 (NLRP3) inflammasome activation is a double-edged sword in tumorigenesis. Whether NLRP3 is involved in the progression and prognosis of colorectal cancer (CRC) remains elucidated and is the focus of the present study. Methods: Immunohistochemistry (IHC) was applied on tissue microarray (TMA) to determine the expression of NLRP3 in CRC patients. All 100 patients were divided into the low NLRP3 group and the high NLRP3 group according to their NLRP3 IHC scoring. Additionally, CRC xenografts were established by injecting HCT116 or RKO cells subcutaneously into nude mice. Cell proliferation and apoptosis were determined in HCT116 cells after treatment with NLRP3 inhibitor MCC950. Results: NLRP3 expression was up-regulated in colon adenocarcinoma tissues compared with that in paracancerous tissues in CRC patients, HCT116 xenograft, and RKO xenograft. High NLRP3 level correlated with the advanced TNM classification of malignant tumors, the occurrence of distant metastasis, vascular invasion, and positive lymph nodes. Furthermore, Kaplan–Meier survival analysis revealed that a high NLRP3 level was associated with a low 5-year survival rate and even a low 10-year survival rate. Moreover, the multivariable Cox proportional hazards regression model implied that NLRP3 expression level was an independent risk factor for CRC prognosis. Inhibition of NLRP3 by MCC950 suppressed cell proliferation, induced cell apoptosis, and decreased mRNA levels of interleukin 1β (IL1β) and interleukin 18 (IL18) in HCT116 cells. Conclusions: High level of NLRP3 predicts poor survival in CRC patients. NLRP3 is a putative prognostic biomarker and a potential therapeutic target in CRC treatments.
Collapse
|
66
|
Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X. Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther 2021; 6:128. [PMID: 33776057 PMCID: PMC8005494 DOI: 10.1038/s41392-021-00507-5] [Citation(s) in RCA: 1268] [Impact Index Per Article: 317.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 02/08/2023] Open
Abstract
Currently, pyroptosis has received more and more attention because of its association with innate immunity and disease. The research scope of pyroptosis has expanded with the discovery of the gasdermin family. A great deal of evidence shows that pyroptosis can affect the development of tumors. The relationship between pyroptosis and tumors is diverse in different tissues and genetic backgrounds. In this review, we provide basic knowledge of pyroptosis, explain the relationship between pyroptosis and tumors, and focus on the significance of pyroptosis in tumor treatment. In addition, we further summarize the possibility of pyroptosis as a potential tumor treatment strategy and describe the side effects of radiotherapy and chemotherapy caused by pyroptosis. In brief, pyroptosis is a double-edged sword for tumors. The rational use of this dual effect will help us further explore the formation and development of tumors, and provide ideas for patients to develop new drugs based on pyroptosis.
Collapse
Affiliation(s)
- Pian Yu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Xu Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Nian Liu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Ling Tang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Cong Peng
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China.
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China.
| |
Collapse
|
67
|
Vong CT, Tseng HHL, Yao P, Yu H, Wang S, Zhong Z, Wang Y. Specific NLRP3 inflammasome inhibitors: promising therapeutic agents for inflammatory diseases. Drug Discov Today 2021; 26:1394-1408. [PMID: 33636340 DOI: 10.1016/j.drudis.2021.02.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/31/2020] [Accepted: 02/19/2021] [Indexed: 02/06/2023]
Abstract
Innate immunity serves as a first line of defence against danger signals, invading pathogens and microbes. The inflammasomes, as pattern recognition receptors, sense these danger signals to initiate pro-inflammatory cascades. The nucleotide-binding domain leucine-rich repeat and pyrin domain containing receptor 3 (NLRP3) inflammasome is the most well characterised inflammasome, and its aberrant activation is implicated in many inflammatory diseases. In the past decade, targeting the NLRP3 inflammasome has become an emerging strategy for inflammatory diseases. To avoid off-target immunosuppressive effects, specific NLRP3 inhibitors have been developed and show promising therapeutic effects. This review discusses the therapeutic effects and clinical perspectives of specific NLRP3 inhibitors, as well as recent progress in the development of these inhibitors for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hisa Hui Ling Tseng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Peifen Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhangfeng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
68
|
Targeting Innate Immunity in Cancer Therapy. Vaccines (Basel) 2021; 9:vaccines9020138. [PMID: 33572196 PMCID: PMC7916062 DOI: 10.3390/vaccines9020138] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/21/2022] Open
Abstract
The majority of current cancer immunotherapy strategies target and potentiate antitumor adaptive immune responses. Unfortunately, the efficacy of these treatments has been limited to a fraction of patients within a subset of tumor types, with an aggregate response rate of approximately 20% to date across all malignancies. The success of therapeutic inhibition of programmed death protein 1 (PD-1), protein death ligand 1 (PD-L1) and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) with immune checkpoint inhibitors (ICI) has been limited to “hot” tumors characterized by preexisting T cell infiltration, whereas “cold” tumors, which lack T cell infiltration, have not achieved durable benefit. There are several mechanisms by which “cold” tumors fail to generate spontaneous immune infiltration, which converge upon the generation of an immunosuppressive tumor microenvironment (TME). The role of the innate immune system in tumor immunosurveillance and generation of antitumor immune responses has been long recognized. In recent years, novel strategies to target innate immunity in cancer therapy have emerged, including therapeutic stimulation of pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs); the DNA sensing cGAS/STING pathway; nucleotide-binding oligomerization domain-like receptors (NLRs), such as NLRP3; and the retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs). In addition, therapeutic modulation of key innate immune cell types, such as macrophages and natural killer cells, has been investigated. Herein, we review therapeutic approaches to activate innate immunity within the TME to enhance antitumor immune responses, with the goal of disease eradication in “cold” tumors. In addition, we discuss rational immune-oncology combination strategies that activate both innate and adaptive immunity, with the potential to enhance the efficacy of current immunotherapeutic approaches.
Collapse
|
69
|
Elgohary S, Elkhodiry AA, Amin NS, Stein U, El Tayebi HM. Thymoquinone: A Tie-Breaker in SARS-CoV2-Infected Cancer Patients? Cells 2021; 10:302. [PMID: 33540625 PMCID: PMC7912962 DOI: 10.3390/cells10020302] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
Since the beginning of the SARS-CoV-2(severe acute respiratory syndrome-coronavirus-2) pandemic, arace to develop a vaccine has been initiated, considering the massive and rather significant economic and healthcare hits that this virus has caused. The pathophysiology occurring following COVID-19(coronavirus disease-2019) infection has givenhints regarding the supportive and symptomatic treatments to establish for patients, as no specific anti-SARS-CoV-2 is available yet. Patient symptoms vary greatly and range from mild symptoms to severe fatal complications. Supportive treatments include antipyretics, antiviral therapies, different combinations of broad-spectrum antibiotics, hydroxychloroquine and plasma transfusion. Unfortunately, cancer patients are at higher risk of viral infection and more likely to develop serious complications due to their immunocompromised state, the fact that they are already administering multiple medications, as well as combined comorbidity compared to the general population. It may seem impossible to find a drug that possesses both potent antiviral and anticancer effects specifically against COVID-19 infection and its complications and the existing malignancy, respectively. Thymoquinone (TQ) is the most pharmacologically active ingredient in Nigella sativa seeds (black seeds); it is reported to have anticancer, anti-inflammatory and antioxidant effects in various settings. In this review, we will discuss the multiple effects of TQ specifically against COVID-19, its beneficial effects against COVID-19 pathophysiology and multiple-organ complications, its use as an adjuvant for supportive COVID-19 therapy and cancer therapy, and finally, its anticancer effects.
Collapse
Affiliation(s)
- Sawsan Elgohary
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt; (S.E.); (A.A.E.); (N.S.A.)
| | - Aya A. Elkhodiry
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt; (S.E.); (A.A.E.); (N.S.A.)
| | - Nada S. Amin
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt; (S.E.); (A.A.E.); (N.S.A.)
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany;
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Hend M. El Tayebi
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt; (S.E.); (A.A.E.); (N.S.A.)
| |
Collapse
|
70
|
Liu J, Yang S, Cao B, Zhou G, Zhang F, Wang Y, Wang R, Zhu L, Meng Y, Hu C, Liang H, Lin X, Zhu K, Chen G, Luo KQ, Di L, Zhao Q. Targeting B7-H3 via chimeric antigen receptor T cells and bispecific killer cell engagers augments antitumor response of cytotoxic lymphocytes. J Hematol Oncol 2021; 14:21. [PMID: 33514401 PMCID: PMC7844995 DOI: 10.1186/s13045-020-01024-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND B7-H3, an immune-checkpoint molecule and a transmembrane protein, is overexpressed in non-small cell lung cancer (NSCLC), making it an attractive therapeutic target. Here, we aimed to systematically evaluate the value of B7-H3 as a target in NSCLC via T cells expressing B7-H3-specific chimeric antigen receptors (CARs) and bispecific killer cell engager (BiKE)-redirected natural killer (NK) cells. METHODS We generated B7-H3 CAR and B7-H3/CD16 BiKE derived from an anti-B7-H3 antibody omburtamab that has been shown to preferentially bind tumor tissues and has been safely used in humans in early-phase clinical trials. Antitumor efficacy and induced-immune response of CAR and BiKE were evaluated in vitro and in vivo. The effects of B7-H3 on aerobic glycolysis in NSCLC cells were further investigated. RESULTS B7-H3 CAR-T cells effectively inhibited NSCLC tumorigenesis in vitro and in vivo. B7-H3 redirection promoted highly specific T-cell infiltration into tumors. Additionally, NK cell activity could be specially triggered by B7-H3/CD16 BiKE through direct CD16 signaling, resulting in significant increase in NK cell activation and target cell death. BiKE improved antitumor efficacy mediated by NK cells in vitro and in vivo, regardless of the cell surface target antigen density on tumor tissues. Furthermore, we found that anti-B7-H3 blockade might alter tumor glucose metabolism via the reactive oxygen species-mediated pathway. CONCLUSIONS Together, our results suggest that B7-H3 may serve as a target for NSCLC therapy and support the further development of two therapeutic agents in the preclinical and clinical studies.
Collapse
MESH Headings
- Animals
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/therapeutic use
- B7-H1 Antigen/immunology
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/therapy
- Cell Line, Tumor
- Female
- Humans
- Immunotherapy, Adoptive/methods
- Killer Cells, Natural/immunology
- Lung Neoplasms/immunology
- Lung Neoplasms/therapy
- Lymphocyte Activation
- Mice, Inbred NOD
- Mice, SCID
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/therapeutic use
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Mice
Collapse
Affiliation(s)
- Jie Liu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
| | - Shuo Yang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
| | - Bihui Cao
- Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guangyu Zhou
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
| | - Fengjuan Zhang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
| | - Yuan Wang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
| | - Rixin Wang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
| | - Lipeng Zhu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
| | - Ya Meng
- Zhuhai People's Hospital Affiliated with Jinan University, Zhuhai, Guangdong, China
| | - Cong Hu
- Zhuhai People's Hospital Affiliated with Jinan University, Zhuhai, Guangdong, China
| | - Hui Liang
- Zhuhai People's Hospital Affiliated with Jinan University, Zhuhai, Guangdong, China
| | - Xu Lin
- Zhuhai People's Hospital Affiliated with Jinan University, Zhuhai, Guangdong, China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guokai Chen
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
| | - Kathy Qian Luo
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
| | - Lijun Di
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
| | - Qi Zhao
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China.
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China.
| |
Collapse
|
71
|
Abstract
Bladder cancer has been successfully treated with immunotherapy, whereas prostate cancer is a cold tumor with inadequate immune-related treatment response. A greater understanding of the tumor microenvironment and methods for harnessing the immune system to address tumor growth will be needed to improve immunotherapies for both prostate and bladder cancer. Here, we provide an overview of prostate and bladder cancer, including fundamental aspects of the disease and treatment, the elaborate cellular makeup of the tumor microenvironment, and methods for exploiting relevant pathways to develop more effective treatments.
Collapse
|
72
|
Prospects for NK Cell Therapy of Sarcoma. Cancers (Basel) 2020; 12:cancers12123719. [PMID: 33322371 PMCID: PMC7763692 DOI: 10.3390/cancers12123719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Sarcomas are a group of aggressive tumors originating from mesenchymal tissues. Patients with advanced disease have poor prognosis due to the ineffectiveness of current treatment protocols. A subset of lymphocytes called natural killer (NK) cells is capable of effective surveillance and clearance of sarcomas, constituting a promising tool for immunotherapeutic treatment. However, sarcomas can cause impairment in NK cell function, associated with enhanced tumor growth and dissemination. In this review, we discuss the molecular mechanisms of sarcoma-mediated suppression of NK cells and their implications for the design of novel NK cell-based immunotherapies against sarcoma. Abstract Natural killer (NK) cells are innate lymphoid cells with potent antitumor activity. One of the most NK cell cytotoxicity-sensitive tumor types is sarcoma, an aggressive mesenchyme-derived neoplasm. While a combination of radical surgery and radio- and chemotherapy can successfully control local disease, patients with advanced sarcomas remain refractory to current treatment regimens, calling for novel therapeutic strategies. There is accumulating evidence for NK cell-mediated immunosurveillance of sarcoma cells during all stages of the disease, highlighting the potential of using NK cells as a therapeutic tool. However, sarcomas display multiple immunoevasion mechanisms that can suppress NK cell function leading to an uncontrolled tumor outgrowth. Here, we review the current evidence for NK cells’ role in immune surveillance of sarcoma during disease initiation, promotion, progression, and metastasis, as well as the molecular mechanisms behind sarcoma-mediated NK cell suppression. Further, we apply this basic understanding of NK–sarcoma crosstalk in order to identify and summarize the most promising candidates for NK cell-based sarcoma immunotherapy.
Collapse
|
73
|
Gut mycobiome: A promising target for colorectal cancer. Biochim Biophys Acta Rev Cancer 2020; 1875:188489. [PMID: 33278512 DOI: 10.1016/j.bbcan.2020.188489] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/14/2022]
Abstract
The human gut is mainly habited by a staggering amount and abundance of bacteria as well as fungi. Gut dysbiosis is believed as a pivotal factor in colorectal cancer (CRC) development. Lately increasing evidence from animal or clinical studies suggested that fungal disturbance also contributed to CRC development. This review summarized the current status of fungal dysbiosis in CRC and highlighted the potential tumorigenic mechanisms of fungi. Then the fungal markers and some therapeutic strategies for CRC were discussed. It would provide a better understanding of the correlation of mycobiota and CRC, and modulating fungal community would be a promising target against CRC.
Collapse
|
74
|
Mishra SR, Mahapatra KK, Behera BP, Bhol CS, Praharaj PP, Panigrahi DP, Patra S, Singh A, Patil S, Dhiman R, Patra SK, Bhutia SK. Inflammasomes in cancer: Effect of epigenetic and autophagic modulations. Semin Cancer Biol 2020; 83:399-412. [PMID: 33039557 DOI: 10.1016/j.semcancer.2020.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022]
Abstract
Tumour-promoting inflammation is a critical hallmark in cancer development, and inflammasomes are well-known regulators of inflammatory processes within the tumour microenvironment. Different inflammasome components along with the adaptor, apoptosis-associated speck-like protein containing caspase activation and recruitment domain (ASC), and the effector, caspase-1, have a significant influence on tumorigenesis but in a tissue-specific and stage-dependent manner. The downstream products of inflammasome activation, that is the proinflammatory cytokines such as IL-1β and IL-18, regulate tissue homeostasis and induce antitumour immune responses, but in contrast, they can also favour cancer growth and proliferation by directing various oncogenic signalling pathways in cancer cells. Moreover, different epigenetic mechanisms, including DNA methylation, histone modification and noncoding RNAs, control inflammasomes and their components by regulating gene expression during cancer progression. Furthermore, autophagy, a master controller of cellular homeostasis, targets inflammasome-induced carcinogenesis by maintaining cellular homeostasis and removing potential cancer risk factors that promote inflammasome activation in support of tumorigenesis. Here, in this review, we summarize the effect of inflammasome activation in cancers and discuss the role of epigenetic and autophagic regulatory mechanisms in controlling inflammasomes. A proper understanding of the interactions among these key processes will be useful for developing novel therapeutic regimens for targeting inflammasomes in cancer.
Collapse
Affiliation(s)
- Soumya Ranjan Mishra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Kewal Kumar Mahapatra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Bishnu Prasad Behera
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Chandra Sekhar Bhol
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Prakash Priyadarshi Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Debasna Pritimanjari Panigrahi
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Amruta Singh
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Saudi Arabia
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
75
|
Ng SS, De Labastida Rivera F, Yan J, Corvino D, Das I, Zhang P, Kuns R, Chauhan SB, Hou J, Li XY, Frame TCM, McEnroe BA, Moore E, Na J, Engel JA, Soon MSF, Singh B, Kueh AJ, Herold MJ, Montes de Oca M, Singh SS, Bunn PT, Aguilera AR, Casey M, Braun M, Ghazanfari N, Wani S, Wang Y, Amante FH, Edwards CL, Haque A, Dougall WC, Singh OP, Baxter AG, Teng MWL, Loukas A, Daly NL, Cloonan N, Degli-Esposti MA, Uzonna J, Heath WR, Bald T, Tey SK, Nakamura K, Hill GR, Kumar R, Sundar S, Smyth MJ, Engwerda CR. The NK cell granule protein NKG7 regulates cytotoxic granule exocytosis and inflammation. Nat Immunol 2020; 21:1205-1218. [PMID: 32839608 PMCID: PMC7965849 DOI: 10.1038/s41590-020-0758-6] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 07/08/2020] [Indexed: 12/24/2022]
Abstract
Immune-modulating therapies have revolutionized the treatment of chronic diseases, particularly cancer. However, their success is restricted and there is a need to identify new therapeutic targets. Here, we show that natural killer cell granule protein 7 (NKG7) is a regulator of lymphocyte granule exocytosis and downstream inflammation in a broad range of diseases. NKG7 expressed by CD4+ and CD8+ T cells played key roles in promoting inflammation during visceral leishmaniasis and malaria-two important parasitic diseases. Additionally, NKG7 expressed by natural killer cells was critical for controlling cancer initiation, growth and metastasis. NKG7 function in natural killer and CD8+ T cells was linked with their ability to regulate the translocation of CD107a to the cell surface and kill cellular targets, while NKG7 also had a major impact on CD4+ T cell activation following infection. Thus, we report a novel therapeutic target expressed on a range of immune cells with functions in different immune responses.
Collapse
Affiliation(s)
- Susanna S Ng
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Environment and Science, Griffith University, Nathan, Queensland, Australia
- Institute of Experimental Oncology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | | | - Juming Yan
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Dillon Corvino
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
- Institute of Experimental Oncology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Indrajit Das
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Ping Zhang
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rachel Kuns
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Shashi Bhushan Chauhan
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Jiajie Hou
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Xian-Yang Li
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Teija C M Frame
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Benjamin A McEnroe
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Eilish Moore
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Jinrui Na
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Jessica A Engel
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Megan S F Soon
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Bhawana Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Andrew J Kueh
- Division of Blood Cells and Blood Cancer, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Marco J Herold
- Division of Blood Cells and Blood Cancer, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Siddharth Sankar Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Patrick T Bunn
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Institute of Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Amy Roman Aguilera
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Mika Casey
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Matthias Braun
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Nazanin Ghazanfari
- Department of Microbiology and Immunology, The Peter Doherty Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Shivangi Wani
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Institute of Molecular Biology, University of Queensland, Brisbane, Queensland, Australia
| | - Yulin Wang
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Environment and Science, Griffith University, Nathan, Queensland, Australia
| | - Fiona H Amante
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Chelsea L Edwards
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Ashraful Haque
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - William C Dougall
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Om Prakash Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Alan G Baxter
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Michele W L Teng
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Norelle L Daly
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Nicole Cloonan
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Mariapia A Degli-Esposti
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- The Centre for Experimental Immunology, Lions Eye Institute, Perth, Western Australia, Australia
| | - Jude Uzonna
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - William R Heath
- Department of Microbiology and Immunology, The Peter Doherty Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Tobias Bald
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Siok-Keen Tey
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kyohei Nakamura
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Geoffrey R Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Rajiv Kumar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Mark J Smyth
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | |
Collapse
|
76
|
Guey B, Bodnar-Wachtel M, Drouillard A, Eberhardt A, Pratviel M, Goutagny N, Bendriss-Vermare N, Puisieux I, Caux C, Walzer T, Petrilli V. Inflammasome Deletion Promotes Anti-tumor NK Cell Function in an IL-1/IL-18 Independent Way in Murine Invasive Breast Cancer. Front Oncol 2020; 10:1683. [PMID: 33042810 PMCID: PMC7526436 DOI: 10.3389/fonc.2020.01683] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/29/2020] [Indexed: 12/22/2022] Open
Abstract
Inflammasomes are molecular complexes that trigger an inflammatory response upon detection of pathogens or danger signals. Recent studies suggest that they are also involved in cancer progression. However, their roles during tumorigenesis remain poorly understood and controversial. Here, we investigated whether inflammasome activation supports mammary tumor growth. Using mouse models of invasive breast cancer, our results demonstrate that the absence of a functional inflammasome impairs tumor growth. Importantly, tumors implanted into inflammasome-deficient mice recruited significantly less neutrophils and more natural killer (NK) cells, and these latter cells displayed a more active phenotype. Interestingly, NK cell depletion abolished the anti-tumoral effect observed in inflammasome-deficient mice, although inflammasome-regulated cytokine neutralization had no effect. Thus, our work identifies a novel role for the inflammasome in supporting mammary tumor growth by attenuating NK cell recruitment and activity. These results suggest that inflammasome inhibition could be a putative target for treating invasive breast cancers.
Collapse
Affiliation(s)
- Baptiste Guey
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Lyon, France
| | - Mélanie Bodnar-Wachtel
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Lyon, France
| | - Annabelle Drouillard
- Centre International de Recherche en Infectiologie, INSERM U1111 - CNRS UMR5308, Université de Lyon, ENS de Lyon, Université Lyon 1, Lyon, France
| | - Anaïs Eberhardt
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Lyon, France
| | - Manon Pratviel
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Lyon, France
| | - Nadège Goutagny
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Lyon, France
| | - Nathalie Bendriss-Vermare
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Lyon, France
| | - Isabelle Puisieux
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Lyon, France
| | - Christophe Caux
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Lyon, France
| | - Thierry Walzer
- Centre International de Recherche en Infectiologie, INSERM U1111 - CNRS UMR5308, Université de Lyon, ENS de Lyon, Université Lyon 1, Lyon, France
| | - Virginie Petrilli
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Lyon, France
| |
Collapse
|
77
|
Tian X, Zhang S, Zhang Q, Kang L, Ma C, Feng L, Li S, Li J, Yang L, Liu J, Qi Z, Shen Y. Resveratrol inhibits tumor progression by down-regulation of NLRP3 in renal cell carcinoma. J Nutr Biochem 2020; 85:108489. [PMID: 32827663 DOI: 10.1016/j.jnutbio.2020.108489] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/04/2020] [Accepted: 08/05/2020] [Indexed: 01/16/2023]
Abstract
Renal cell carcinoma (RCC) is one of the most common urologic malignant tumors. Current chemotherapy is not effective in RCC and results in some side effects. Resveratrol (RSV) has been reported to exert antitumor effects in some cancer cells; however the mechanism is not fully understood. Herein, we aimed to determine the anticancer effect of RSV on RCC and further explore the underlying molecular mechanism in this process. We found that RSV inhibited tumor cells proliferation, migration and invasion and increased apoptosis of RCC either in vivo or in vitro. RSV significantly down-regulated expressions of NLRP3 and its downstream genes. Inhibition of NLRP3 by NLRP3 small interfering RNA mimicked the effects of RSV on RCC cells. These results suggested that RSV could exert antitumor effect by depressing activity of NLRP3, and NLRP3 would be a promising clinical therapeutic strategy for RCC.
Collapse
Affiliation(s)
- Xixi Tian
- Department of Microbiology, School of Laboratory Medicine, Tianjin Medical University, Tianjin 300203, China
| | - Shengzheng Zhang
- Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Qiong Zhang
- Department of Microbiology, School of Laboratory Medicine, Tianjin Medical University, Tianjin 300203, China
| | - Licheng Kang
- Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Changzhen Ma
- Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Lifeng Feng
- Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shengyu Li
- Department of Microbiology, School of Laboratory Medicine, Tianjin Medical University, Tianjin 300203, China
| | - Jing Li
- Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Liang Yang
- Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jie Liu
- Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Zhi Qi
- Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin 300071, China; National Clinical Research Center of Kidney Diseases, Beijing, 100853, China.
| | - Yanna Shen
- Department of Microbiology, School of Laboratory Medicine, Tianjin Medical University, Tianjin 300203, China.
| |
Collapse
|
78
|
Hamarsheh S, Zeiser R. NLRP3 Inflammasome Activation in Cancer: A Double-Edged Sword. Front Immunol 2020; 11:1444. [PMID: 32733479 PMCID: PMC7360837 DOI: 10.3389/fimmu.2020.01444] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/03/2020] [Indexed: 12/21/2022] Open
Abstract
Inflammation is involved in tumor development and progression as well as antitumor response to therapy. In the past decade, the crosstalk between inflammation, immunity, and cancer has been investigated extensively, which led to the identification of several underlying mechanisms and cells involved. The formation of inflammasome complexes leads to the activation of caspase-1, production of interleukin (IL)-1β, and IL-18 and pyroptosis. Multiple studies have shown the involvement of NLRP3 inflammasome in tumorigenesis. Conversely, other reports have indicated a protective role in certain cancers. In this review, we summarize these contradictory roles of NLRP3 inflammasome in cancer, shed the light on oncogenic signaling leading to NLRP3 activation and IL-1β production and outline the current knowledge on therapeutic approaches.
Collapse
Affiliation(s)
- Shaima'a Hamarsheh
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), University of Freiburg, Freiburg, Germany.,Center for Biological Signalling Studies (BIOSS) and Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| |
Collapse
|
79
|
Castejón-Vega B, Giampieri F, Alvarez-Suarez JM. Nutraceutical Compounds Targeting Inflammasomes in Human Diseases. Int J Mol Sci 2020; 21:E4829. [PMID: 32650482 PMCID: PMC7402342 DOI: 10.3390/ijms21144829] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/19/2022] Open
Abstract
The macromolecular complex known as "inflammasome" is defined as an intracellular multi-protein complex composed of a sensor receptor (PRR), an adaptor protein and an effector enzyme (caspase-1), which oligomerize when they sense danger, such as how the NLR family, AIM-2 and RIG-1 receptors protect the body against danger via cytokine secretion. Within the NLR members, NLRP3 is the most widely known and studied inflammasome and has been linked to many diseases. Nowadays, people's interest in their lifestyles and nutritional habits is increasing, mainly due to the large number of diseases that seem to be related to both. The term "nutraceutical" has recently emerged as a hybrid term between "nutrition" and "pharmacological" and it refers to a wide range of bioactive compounds contained in food with relevant effects on human health. The relationship between these compounds and diseases based on inflammatory processes has been widely exposed and the compounds stand out as an alternative to the pathological consequences that inflammatory processes may have, beyond their defense and repair action. Against this backdrop, here we review the results of studies using several nutraceutical compounds in common diseases associated with the inflammation and activation of the NLRP3 inflammasomes complex. In general, it was found that there is a wide range of nutraceuticals with effects through different molecular pathways that affect the activation of the inflammasome complex, with positive effects mainly in cardiovascular, neurological diseases, cancer and type 2 diabetes.
Collapse
Affiliation(s)
- Beatriz Castejón-Vega
- Research Laboratory, Oral Medicine Department, University of Sevilla, 41009 Sevilla, Spain;
| | - Francesca Giampieri
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain;
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez, Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy
- College of Food Science and Technology, Northwest University, Xi’an 710069, China
| | - José M. Alvarez-Suarez
- Facultad de Ingeniería y Ciencias Aplicadas (FICA), AgroScience & Food Research Group, Universidad de Las Américas, 170125 Quito, Ecuador
- King Fahd Medical Research Center, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
80
|
Chulpanova DS, Kitaeva KV, Rutland CS, Rizvanov AA, Solovyeva VV. Mouse Tumor Models for Advanced Cancer Immunotherapy. Int J Mol Sci 2020; 21:E4118. [PMID: 32526987 PMCID: PMC7312663 DOI: 10.3390/ijms21114118] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 12/21/2022] Open
Abstract
Recent advances in the development of new methods of cancer immunotherapy require the production of complex cancer animal models that reliably reflect the complexity of the tumor and its microenvironment. Mice are good animals to create tumor models because they are low cost, have a short reproductive cycle, exhibit high tumor growth rates, and can be easily genetically modified. However, the obvious problem of these models is the high failure rate observed in human clinical trials after promising results obtained in mouse models. In order to increase the reliability of the results obtained in mice, the tumor model should reflect the heterogeneity of the tumor, contain components of the tumor microenvironment, in particular immune cells, to which the action of immunotherapeutic drugs are directed. This review discusses the current immunocompetent and immunocompromised mouse models of human tumors that are used to evaluate the effectiveness of immunotherapeutic agents, in particular chimeric antigen receptor (CAR) T-cells and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Daria S. Chulpanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (K.V.K.); (A.A.R.)
| | - Kristina V. Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (K.V.K.); (A.A.R.)
| | - Catrin S. Rutland
- Faculty of Medicine and Health Sciences, University of Medicine, Nottingham NG7 2HA, UK;
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (K.V.K.); (A.A.R.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (K.V.K.); (A.A.R.)
| |
Collapse
|
81
|
Tan YF, Wang M, Chen ZY, Wang L, Liu XH. Inhibition of BRD4 prevents proliferation and epithelial-mesenchymal transition in renal cell carcinoma via NLRP3 inflammasome-induced pyroptosis. Cell Death Dis 2020; 11:239. [PMID: 32303673 PMCID: PMC7165180 DOI: 10.1038/s41419-020-2431-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 01/16/2023]
Abstract
BRD4 has long been implicated in many different pathological processes, in particular, the development of cancer and inflammation. Pyroptosis is a newly recognized type of inflammatory programmed cell death. However, the correlation between BRD4 and pyroptosis in renal cell carcinoma (RCC) remains elusive. The present study demonstrates that BRD4 expression levels are markedly upregulated, while pyroptosis-associated proteins are significantly reduced, in RCC tissues and cells. Inhibition of BRD4, via either genetic knockdown or use of bromodomain inhibitor JQ1, prevented cell proliferation and epithelial-mesenchymal transition (EMT) progression and induced caspase-1-dependent pyroptosis in RCC both in vitro and in vivo. In addition, BRD4 inhibition suppressed proliferation and EMT though pyroptosis in vitro and in vivo. Moreover, NLRP3, which mediates caspase-1-dependent pyroptosis, was increased upon BRD4 inhibition. Furthermore, the transcriptional activity of NLRP3 was enhanced by BRD4 inhibition, and this enhancement was blocked by activation of NF-κB phosphorylation, indicating that NF-κB is an upstream regulator of NLRP3. Collectively, these results show that BRD4 inhibition prevents cell proliferation and EMT, and exerts an antitumor effect in RCC by activating the NF-κB-NLRP3-caspase-1 pyroptosis signaling pathway. Thus, BRD4 is a potential target for RCC treatment, and JQ1 shows promise as a therapeutic agent for this disease.
Collapse
Affiliation(s)
- Yi-Fan Tan
- Department of Urology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
| | - Min Wang
- Department of Urology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China.
| | - Zhi-Yuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China.
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
| | - Xiu-Heng Liu
- Department of Urology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
| |
Collapse
|
82
|
Zheng T, Wang X, Yue P, Han T, Hu Y, Wang B, Zhao B, Zhang X, Yan X. Prognostic Inflammasome-Related Signature Construction in Kidney Renal Clear Cell Carcinoma Based on a Pan-Cancer Landscape. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:3259795. [PMID: 32328125 PMCID: PMC7157792 DOI: 10.1155/2020/3259795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/20/2020] [Accepted: 03/06/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To investigate the expression patterns and prognostic characteristics of inflammasome-related genes (IRGs) across cancer types and develop a robust biomarker for the prognosis of KIRC. METHODS The differentially expressed IRGs and prognostic genes among 10 cancers were analyzed based on The Cancer Genome Atlas (TCGA) dataset. Subsequently, an IRGs risk signature was developed in KIRC. Its prognostic accuracy was evaluated by receiver operating characteristic (ROC) analysis. The independent predictive capacity was identified by stratification survival and multivariate Cox analyses. The gene ontology (GO) analysis and principal component analysis (PCA) were performed to explore biological functions of the IRGs signature in KIRC. RESULTS The expression patterns and prognostic association of IRGs varied from different cancers, while KIRC showed the most abundant survival-related dysregulated IRGs. The IRG signature for KIRC was able to independently predict survival, and the signature genes were mainly involved inimmune-related processes. CONCLUSIONS The pan-cancer analysis provided a comprehensive landscape of IRGs across cancer types and identified a strong association between IRGs and the prognosis of KIRC. Further IRGs signature represented a reliable prognostic predictor for KIRC and verified the prognostic value of inflammasomes in KIRC, contributing to our understanding of therapies targeting inflammasomes for human cancers.
Collapse
Affiliation(s)
- Tianyu Zheng
- The VIP Department, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang 110002, China
| | - Xindong Wang
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang 110001, China
| | - Peipei Yue
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001, China
| | - Tongtong Han
- The VIP Department, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang 110002, China
| | - Yue Hu
- The VIP Department, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang 110002, China
| | - Biyao Wang
- The VIP Department, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang 110002, China
| | - Baohong Zhao
- Center of Implant Dentistry, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang 110002, China
| | - Xinwen Zhang
- Center of Implant Dentistry, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang 110002, China
| | - Xu Yan
- The VIP Department, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang 110002, China
| |
Collapse
|
83
|
Yan J, Li XY, Roman Aguilera A, Xiao C, Jacoberger-Foissac C, Nowlan B, Robson SC, Beers C, Moesta AK, Geetha N, Teng MWL, Smyth MJ. Control of Metastases via Myeloid CD39 and NK Cell Effector Function. Cancer Immunol Res 2020; 8:356-367. [PMID: 31992567 DOI: 10.1158/2326-6066.cir-19-0749] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/04/2019] [Accepted: 01/14/2020] [Indexed: 11/16/2022]
Abstract
Natural killer (NK) cell protection from tumor metastases is a critical feature of the host immune response to cancer, but various immunosuppression mechanisms limit NK cell effector function. The ectoenzyme, CD39, expressed on tumor-infiltrating myeloid cells, granulocytes, and lymphocytes, including NK cells, converts extracellular ATP (eATP) into AMP and, thus, potentially suppresses eATP-mediated proinflammatory responses. A CD39-targeting monoclonal antibody (mAb) that inhibits the mouse ectoenzyme CD39 suppressed experimental and spontaneous metastases in a number of different tumor models and displayed superior antimetastatic activity compared with the CD39 inhibitor POM1 and inhibitors and mAbs that block other members of the adenosinergic family (e.g., A2AR and CD73). The antimetastatic activity of anti-CD39 was NK cell and IFNγ dependent, and anti-CD39 enhanced the percentage and quantity of IFNγ produced and CD107a expression in lung-infiltrating NK cells following tumor challenge and anti-CD39 therapy. Using conditional Cd39 gene-targeted mouse strains and adoptive NK cell transfers, we showed that CD39 expressed on bone marrow-derived myeloid cells was essential for anti-CD39's antimetastatic activity, but NK cell expression of CD39 was not critical. The eATP receptor P2X7 and the NALP3 inflammasome, including downstream IL18, were critical in the mechanism of action of anti-CD39, and the frequency of P2X7 and CD39 coexpressing lung alveolar macrophages was specifically reduced 1 day after anti-CD39 therapy. The data provide a mechanism of action involving NK cells and myeloid cells, and anti-CD39 combined with anti-PD-1, NK cell-activating cytokines IL15 or IL2, or an inhibitor of A2AR to effectively suppress tumor metastases.
Collapse
Affiliation(s)
- Juming Yan
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Xian-Yang Li
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Amelia Roman Aguilera
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Christos Xiao
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Celia Jacoberger-Foissac
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Bianca Nowlan
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Simon C Robson
- Departments of Medicine and Anesthesia, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | | | - Nishamol Geetha
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Michele W L Teng
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.
| |
Collapse
|
84
|
Jinushi M, Baghdadi M. Role of Innate Immunity in Cancers and Antitumor Response. CANCER IMMUNOLOGY 2020:11-28. [DOI: 10.1007/978-3-030-30845-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
85
|
Targeting innate sensing in the tumor microenvironment to improve immunotherapy. Cell Mol Immunol 2019; 17:13-26. [PMID: 31844141 DOI: 10.1038/s41423-019-0341-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/24/2019] [Indexed: 12/14/2022] Open
Abstract
The innate immune sensing pathways play critical roles in the defense against pathogen infection, but their roles in cancer immunosurveillance and cancer therapies are less defined. We propose that defective innate immune sensing inside the tumor microenvironment might limit T-cell responses to immunotherapy. A recent mechanistic understanding of conventional therapies revealed that both innate immune sensing and T-cell responses are essential for optimal antitumor efficacy. T-cell-based immunotherapy, particularly immune checkpoint blockade, has achieved great success in reactivating antitumor immune responses to lead to tumor regression, but only in a small fraction of patients. Therefore, incorporating conventional therapy that can increase innate sensing and immunotherapy should lead to promising strategies for cancer patients. Here, we review the innate sensing pathways related to cancer initiation/progression and therapies, summarize the recent key findings in innate immune sensing related to conventional therapies, evaluate current combination strategies, and highlight the potential issues of combinational therapies in terms of antitumor efficacy and toxicities.
Collapse
|
86
|
Morrow ZT, Powers ZM, Sauer JD. Listeria monocytogenes cancer vaccines: bridging innate and adaptive immunity. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019; 6:213-224. [PMID: 33072493 DOI: 10.1007/s40588-019-00133-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Purpose of the Review Immunotherapy has emerged as a promising cancer treatment, however success in only select clinical indications underscores the need for novel approaches. Recently Listeria monocytogenes-based vaccines have been developed to drive tumor specific T-cell responses. Here, we discuss recent preclinical studies using L. monocytogenes vaccines, innate immune pathways that influence T-cell priming, and new vaccine strategies in clinical trials. Recent Findings Recent studies indicate that in addition to inducing antigen specific T-cell responses, L. monocytogenes vaccines remodel the TME. In addition, several innate immune pathways influence adaptive immune responses to L. monocytogenes and modulating these pathways holds promise to enhance anti-tumor T-cell responses. Summary The interplay between innate and adaptive immune responses to L. monocytogenes is poorly understood. Understanding these interactions will facilitate the design of better anti-cancer vaccines and improved use of combination therapies.
Collapse
Affiliation(s)
- Zachary T Morrow
- University of Wisconsin- Madison, School of Medicine and Public Health, Department of Medical Microbiology and Immunology
| | - Zachary M Powers
- University of Wisconsin- Madison, School of Medicine and Public Health, Department of Medical Microbiology and Immunology
| | - John-Demian Sauer
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Medical Microbiology and Immunology, 1550 Linden Dr. Rm 4203, Madison WI, 53706
| |
Collapse
|
87
|
Cai T, Santi R, Tamanini I, Galli IC, Perletti G, Bjerklund Johansen TE, Nesi G. Current Knowledge of the Potential Links between Inflammation and Prostate Cancer. Int J Mol Sci 2019; 20:3833. [PMID: 31390729 PMCID: PMC6696519 DOI: 10.3390/ijms20153833] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/28/2019] [Accepted: 08/05/2019] [Indexed: 01/08/2023] Open
Abstract
Inflammation is inherent in prostatic diseases and it is now accepted that it may facilitate cellular proliferation in both benign and malignant conditions. The strong relationship between prostatic inflammation and pathogenesis of benign prostatic hyperplasia (BPH) is supported by epidemiologic, histopathologic and molecular evidence. Contrariwise, the role of inflammation in prostate carcinogenesis is still controversial, although current data indicate that the inflammatory microenvironment can regulate prostate cancer (PCa) growth and progression. Knowledge of the complex molecular landscape associated with chronic inflammation in the context of PCa may lead to the introduction and optimization of novel targeted therapies. In this perspective, evaluation of the inflammatory component in prostate specimens could be included in routine pathology reports.
Collapse
Affiliation(s)
- Tommaso Cai
- Department of Urology, Santa Chiara Regional Hospital, 38122 Trento, Italy
| | | | - Irene Tamanini
- Department of Urology, Santa Chiara Regional Hospital, 38122 Trento, Italy
| | | | - Gianpaolo Perletti
- Department of Biotechnology and Life Sciences, Università degli Studi dell'Insubria, 21100 Busto Arsizio, Italy
| | | | - Gabriella Nesi
- Department of Health Sciences, University of Florence, 50139 Florence, Italy.
| |
Collapse
|
88
|
Xu S, Li X, Liu Y, Xia Y, Chang R, Zhang C. Inflammasome inhibitors: promising therapeutic approaches against cancer. J Hematol Oncol 2019; 12:64. [PMID: 31242947 PMCID: PMC6595574 DOI: 10.1186/s13045-019-0755-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/14/2019] [Indexed: 12/21/2022] Open
Abstract
Inflammation has long been accepted as a key component of carcinogenesis. During inflammation, inflammasomes are potent contributors to the activation of inflammatory cytokines that lead to an inflammatory cascade. Considering the contributing role of inflammasomes in cancer progression, inflammasome inhibitors seem to have a promising future in cancer treatment and prevention. Here, we summarize the structures and signaling pathways of inflammasomes and detail some inflammasome inhibitors used to treat various forms of cancer, which we expect to be used in novel anticancer approaches. However, the practical application of inflammasome inhibitors is limited in regard to specific types of cancer, and the associated clinical trials have not yet been completed. Therefore, additional studies are required to explore more innovative and effective medicines for future clinical treatment of cancer.
Collapse
Affiliation(s)
- Shengchao Xu
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Xizhe Li
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Yuanqi Liu
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Yu Xia
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Ruimin Chang
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
89
|
Lee DY, Park CW, Lee SJ, Park HR, Seo DB, Park JY, Park J, Shin KS. Immunostimulating and Antimetastatic Effects of Polysaccharides Purified from Ginseng Berry. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:823-839. [PMID: 31091972 DOI: 10.1142/s0192415x19500435] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ginseng root has been used in traditional oriental medicine for the enhancement of immune system function. The immunostimulatory effects of ginseng berry polysaccharides, however, remain unclear. Effects of polysaccharides from ginseng berry on the activation of natural killer (NK) cells and inhibition of tumors are reported. A crude polysaccharide was isolated from ginseng berry as a ginseng berry polysaccharide portion (GBPP) and was further fractionated using gel filtration chromatography to obtain the three polysaccharide fractions GBPP-I, -II and -III. GBPP-I consisted of mainly galactose (46.9%) and arabinose (27.5%). GBPP-I showed a high dose-dependent anticomplementary activity. Stimulation of murine peritoneal macrophages by GBPP-I showed the greatest enhancement of interleukin (IL)-6 and IL-12 and tumor necrosis factor (TNF)- α production. In addition, an ex vivo assay of natural killer (NK) cell activity showed that oral ( p.o.) administration of GBPP-I significantly increased NK cell cytotoxicity in YAC-1 tumor cells and production of granzyme B. Prophylactic intravenous ( i.v.) and p.o. administration of GBPP-I significantly and dose-dependently inhibited lung metastatic activity in B16BL6 melanoma cells. Depletion of NK cells after injection of rabbit anti-asialo GM1 partially abolished the inhibitory effect of GBPP-I on lung metastasis, indicating that NK cells play an important role in anticancer effects. GBPP-I exerts a strong immune-enhancing activity and can prevent cancer metastasis through activation of NK cells and other immune-related cells.
Collapse
Affiliation(s)
- Dae-Young Lee
- * Department of Food Science and Biotechnology, Kyonggi University, Suwon, Gyeonggi-do 16227, Republic of Korea
| | - Chan Woong Park
- † Vital Beautie Research Institute, R&D Center, AmorePacific Corporation, Yongin, Gyeonggi-do 17074, Republic of Korea.,‡ Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Sue Jung Lee
- * Department of Food Science and Biotechnology, Kyonggi University, Suwon, Gyeonggi-do 16227, Republic of Korea
| | - Hye-Ryung Park
- * Department of Food Science and Biotechnology, Kyonggi University, Suwon, Gyeonggi-do 16227, Republic of Korea
| | - Dae Bang Seo
- † Vital Beautie Research Institute, R&D Center, AmorePacific Corporation, Yongin, Gyeonggi-do 17074, Republic of Korea
| | - Jun Yeon Park
- * Department of Food Science and Biotechnology, Kyonggi University, Suwon, Gyeonggi-do 16227, Republic of Korea
| | - Jiyong Park
- ‡ Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Kwang-Soon Shin
- * Department of Food Science and Biotechnology, Kyonggi University, Suwon, Gyeonggi-do 16227, Republic of Korea
| |
Collapse
|
90
|
Kwak BS, Hwang D, Lee SJ, Choi HJ, Park HY, Shin KS. Rhamnogalacturonan-I-Type Polysaccharide Purified from Broccoli Exerts Anti-Metastatic Activities Via Innate Immune Cell Activation. J Med Food 2019; 22:451-459. [DOI: 10.1089/jmf.2018.4286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Bong-Shin Kwak
- Department of Food Science and Biotechnology, Kyonggi University, Gyeonggi, South Korea
| | - Dahyun Hwang
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Chungnam, South Korea
- The Research Institute for Basic Sciences, Hoseo University, Chungnam, South Korea
| | - Sue Jung Lee
- Department of Food Science and Biotechnology, Kyonggi University, Gyeonggi, South Korea
| | - Hyuk-Jun Choi
- BKbio Co., Ltd., Iljudong-ro, Gujwa-eup, Jeju-si, Jeju-do, South Korea
| | - Ho-Young Park
- Research Division of Food Functionality, Korea Food Research Institute, Jeollabuk-do, South Korea
| | - Kwang-Soon Shin
- Department of Food Science and Biotechnology, Kyonggi University, Gyeonggi, South Korea
| |
Collapse
|
91
|
Abstract
Inflammasomes are molecular platforms that assemble upon sensing various intracellular stimuli. Inflammasome assembly leads to activation of caspase 1, thereby promoting the secretion of bioactive interleukin-1β (IL-1β) and IL-18 and inducing an inflammatory cell death called pyroptosis. Effectors of the inflammasome efficiently drive an immune response, primarily providing protection against microbial infections and mediating control over sterile insults. However, aberrant inflammasome signalling is associated with pathogenesis of inflammatory and metabolic diseases, neurodegeneration and malignancies. Chronic inflammation perpetuated by inflammasome activation plays a central role in all stages of tumorigenesis, including immunosuppression, proliferation, angiogenesis and metastasis. Conversely, inflammasome signalling also contributes to tumour suppression by maintaining intestinal barrier integrity, which portrays the diverse roles of inflammasomes in tumorigenesis. Studies have underscored the importance of environmental factors, such as diet and gut microbiota, in inflammasome signalling, which in turn influences tumorigenesis. In this Review, we deliver an overview of the interplay between inflammasomes and tumorigenesis and discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
92
|
Raut PK, Kim SH, Choi DY, Jeong GS, Park PH. Growth of breast cancer cells by leptin is mediated via activation of the inflammasome: Critical roles of estrogen receptor signaling and reactive oxygen species production. Biochem Pharmacol 2019; 161:73-88. [PMID: 30633869 DOI: 10.1016/j.bcp.2019.01.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/07/2019] [Indexed: 12/12/2022]
|
93
|
Tartey S, Kanneganti TD. Differential role of the NLRP3 inflammasome in infection and tumorigenesis. Immunology 2019; 156:329-338. [PMID: 30666624 DOI: 10.1111/imm.13046] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2019] [Indexed: 12/13/2022] Open
Abstract
Dysregulated inflammation is one of the hallmarks of cancer initiation and progression. Emerging evidence indicates that inflammasomes play a central role in regulating immune cell functions in various infections and cancer. Inflammasomes are multimeric complexes consisting of nucleotide-binding oligomerization domain (NOD) -like receptors (NLRs). Among the NLRs, NOD1, NOD2 and NLRP3 respond to a variety of endogenous (i.e. damage-associated molecular patterns) and exogenous (i.e. pathogen-associated molecular patterns) stimuli. The NLRP3 inflammasome is associated with the onset and progression of autoinflammatory and autoimmune diseases, including metabolic disorders, multiple sclerosis, inflammatory bowel disease, and cryopyrin-associated periodic fever syndrome. NLRP3 is also associated with a wide variety of infections and tumorigenesis that are closely correlated with chemotherapy response and prognosis. In this review, we explore the rapidly expanding body of research on the expression and functions of NLRP3 in infections and cancers and outline novel inhibitors targeting the NLRP3 inflammasome that could be developed as therapeutic alternatives to current anticancer treatment.
Collapse
Affiliation(s)
- Sarang Tartey
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
94
|
Pirozhkov SV, Terebilina NN, Litvitskiy PF. [A role of inflammasomes in the pathogenesis of neurological and mental diseases]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 118:81-91. [PMID: 30698567 DOI: 10.17116/jnevro201811812181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Inflammasomes are macromolecular complexes that contain many copies of receptors recognizing molecular patterns of pathogenic agents (PAMP) and damage-associated structures (DAMP), and also include molecules of adapter protein ASC and procaspase-1. Activation of inflammasomes leads to the formation of active caspase-1 that, in turn, provides the maturation of pro-IL-1β and pro-IL-18 to IL-1β and IL-18. The latter cytokines play an important role in control of neuroinlfammation in the central nervous system contributing to the pathogenesis of a series of neurological, neurodegenerative and mental disorders. The review discusses the involvement of NLRP3 inflammasome and other their types in the development of the traumatic brain injury, ischemic and hemorrhagic stroke, brain tumors, CNS infections, Alzheimer's and Parkinson's diseases, epilepsy, amyotrophic lateral sclerosis, depressiver, and consequences of alcohol abuse. The elucidation of molecular mechanisms and signaling pathways controlled by inflammasomes will allow the development of new therapeutic measures for diseases, in which neuroinflammation plays a leading pathogenetic role.
Collapse
Affiliation(s)
- S V Pirozhkov
- Sechenov First Moscow State Medical University of the MH, Moscow, Russia
| | - N N Terebilina
- Serbsky National Medical Research Centre for Psychiatry and Narcology, Moscow, Russia
| | - P F Litvitskiy
- Sechenov First Moscow State Medical University of the MH, Moscow, Russia
| |
Collapse
|
95
|
Karan D. Inflammasomes: Emerging Central Players in Cancer Immunology and Immunotherapy. Front Immunol 2018; 9:3028. [PMID: 30631327 PMCID: PMC6315184 DOI: 10.3389/fimmu.2018.03028] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/07/2018] [Indexed: 01/04/2023] Open
Abstract
Inflammation has an established role in cancer development and progression and is a key player in regulating the entry and exit of immune cells in the tumor microenvironment, mounting a significant impact on anti-tumor immunity. Recent studies have shed light on the role of inflammasomes in the regulation of inflammation with a focus on the subsequent effects on the immunobiology of tumors. To generate strong anti-tumor immunity, cross-talk between innate, and adaptive immune cells is necessary. Interestingly, inflammasome bridges both arms of the immune system representing a unique opportunity to manipulate the role of inflammation in favor of tumor suppression. In this review, we discuss the impact of inflammasomes on the regulation of the levels of inflammatory cytokines-chemokines and the efficacy of immunotherapy response in cancer treatment.
Collapse
Affiliation(s)
- Dev Karan
- Department of Pathology, MCW Cancer Center and Prostate Cancer Center of Excellence, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
96
|
Karachaliou N, Fernandez-Bruno M, Bracht JWP, Rosell R. Challenges and unanswered questions for the next decade of immune-oncology research in NSCLC. Transl Lung Cancer Res 2018; 7:691-702. [PMID: 30505714 PMCID: PMC6249614 DOI: 10.21037/tlcr.2018.06.08] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022]
Abstract
Over the last 20 years there have been great advances in the treatment of lung cancer. Immune checkpoint blockade together with targeted therapies have provided oncologists with the means to improve survival of non-small cell lung cancer (NSCLC) and patients with a better quality of life and therapies with manageable toxicity. Maybe in a short period of time the possibility of a cure in metastatic NSCLC will be raised. Therefore, continued research into new drugs, biomarkers and especially combination therapies is necessary in order to expand the clinical benefit of the current treatments to a broader population of NSCLC patients. The purpose of our review is to highlight our thoughts about potential mechanisms of resistance to immunotherapy that, if better explored, can provide us with both biomarkers to predict response to these therapies and partners to combine with and prolong the benefit of immune checkpoint blockade. We are presenting our own experience of immunotherapy with a case report from our institution.
Collapse
Affiliation(s)
- Niki Karachaliou
- Institute of Oncology Rosell (IOR), University Hospital Sagrat Cor, QuironSalud Group, Barcelona, Spain
- Pangaea Oncology, Laboratory of Molecular Biology, Quiron-Dexeus University Institute, Barcelona, Spain
| | - Manuel Fernandez-Bruno
- Institute of Oncology Rosell (IOR), University Hospital Sagrat Cor, QuironSalud Group, Barcelona, Spain
| | | | - Rafael Rosell
- Pangaea Oncology, Laboratory of Molecular Biology, Quiron-Dexeus University Institute, Barcelona, Spain
- Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- Institute of Oncology Rosell (IOR), Quiron-Dexeus University Institute, Barcelona, Spain
- Catalan Institute of Oncolgy, Hospital Germans Trias i Pujol, Badalona, Spain
| |
Collapse
|
97
|
Polydatin suppresses proliferation and metastasis of non-small cell lung cancer cells by inhibiting NLRP3 inflammasome activation via NF-κB pathway. Biomed Pharmacother 2018; 108:130-136. [DOI: 10.1016/j.biopha.2018.09.051] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 01/19/2023] Open
|
98
|
Moossavi M, Parsamanesh N, Bahrami A, Atkin SL, Sahebkar A. Role of the NLRP3 inflammasome in cancer. Mol Cancer 2018; 17:158. [PMID: 30447690 PMCID: PMC6240225 DOI: 10.1186/s12943-018-0900-3] [Citation(s) in RCA: 327] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/27/2018] [Indexed: 12/18/2022] Open
Abstract
Inflammasomes are large intracellular multi-protein signalling complexes that are formed in the cytosolic compartment as an inflammatory immune response to endogenous danger signals. The formation of the inflammasome enables activation of an inflammatory protease caspase-1, pyroptosis initiation with the subsequent cleaving of the pro-inflammatory cytokines interleukin (IL)-1β and proIL-18 to produce active forms. The inflammasome complex consists of a Nod-like receptor (NLR), the adapter apoptosis-associated speck-like (ASC) protein, and Caspase-1. Dysregulation of NLRP3 inflammasome activation is involved tumor pathogenesis, although its role in cancer development and progression remains controversial due to the inconsistent findings described. In this review, we summarize the current knowledge on the contribution of the NLRP3 inflammasome on potential cancer promotion and therapy.
Collapse
Affiliation(s)
- Maryam Moossavi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Negin Parsamanesh
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Stephen L Atkin
- Weill Cornell Medicine Qatar, Education City, PO Box 24144, Doha, Qatar.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
99
|
Jin H, Ko YS, Kim HJ. P2Y2R-mediated inflammasome activation is involved in tumor progression in breast cancer cells and in radiotherapy-resistant breast cancer. Int J Oncol 2018; 53:1953-1966. [PMID: 30226596 PMCID: PMC6192788 DOI: 10.3892/ijo.2018.4552] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/23/2018] [Indexed: 12/19/2022] Open
Abstract
In the tumor microenvironment, extracellular nucleotides are released and accumulate, and can activate the P2Y2 receptor (P2Y2R), which regulates various responses in tumor cells, resulting in tumor progression and metastasis. Moreover, the inflammasome has recently been reported to be associated with tumor progression. However, the role of P2Y2R in inflammasome activation in breast cancer cells is not yet well defined. Therefore, in this study, we investigated the role of P2Y2R in inflammasome-mediated tumor progression in breast cancer using breast cancer cells and radiotherapy-resistant (RT‑R) breast cancer cells. We established RT‑R-breast cancer cells (RT‑R‑MDA‑MB‑231, RT‑R‑MCF‑7, and RT‑R-T47D cells) by repeated irradiation (2 Gy each, 25 times) in a previous study. In this study, we found that the RT‑R breast cancer cells exhibited an increased release of adenosine triphosphate (ATP) and P2Y2R activity. In particular, the RT‑R‑MDA‑MB‑231 cells derived from highly metastatic MDA‑MB‑231 cells, exhibited a markedly increased ATP release, which was potentiated by tumor necrosis factor (TNF)-α. The MDA‑MB‑231 cells exhibited inflammasome activation, as measured by caspase‑1 activity and interleukin (IL)-1β secretion following treatment with TNF‑α and ATP; these effects were enhanced in the RT‑R‑MDA‑MB‑231 cells. However, the increased caspase‑1 activities and IL‑1β secretion levels induced in response to treatment with TNF‑α or ATP were significantly reduced by P2Y2R knockdown or the presence of apyrase in both the MDA‑MB‑231 and RT‑R‑MDA‑MB‑231 cells, suggesting the involvement of ATP-activated P2Y2R in inflammasome activation. In addition, TNF‑α and ATP increased the invasive and colony-forming ability of the MDA‑MB‑231 and RT‑R‑MDA‑MB‑231 cells, and these effects were caspase‑1-dependent. Moreover, matrix metalloproteinase (MMP)-9 activity was modulated by caspase-1, in a P2Y2R-dependent manner in the MDA‑MB‑231 and RT‑R‑MDA‑MB‑231 cells. Finally, nude mice injected with the RT‑R‑MDA‑MB‑231-EV cells (transfected with the empty vector) exhibited increased tumor growth, and higher levels of MMP-9 in their tumors and IL‑1β levels in their serum compared with the mice injected with the RT‑R‑MDA‑MB‑231-P2Y2R shRNA cells (transfected with P2Y2R shRNA). On the whole, the findings of this study suggest that extracellular ATP promotes tumor progression in RT‑R-breast cancer cells and breast cancer cells by modulating invasion and associated molecules through the P2Y2R-inflammasome activation pathway.
Collapse
Affiliation(s)
- Hana Jin
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Gyeongsang 52727, Republic of Korea
| | - Young Shin Ko
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Gyeongsang 52727, Republic of Korea
| | - Hye Jung Kim
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Gyeongsang 52727, Republic of Korea
| |
Collapse
|
100
|
Abstract
Danger signals are a hallmark of many common inflammatory diseases, and these stimuli can function to activate the cytosolic innate immune signalling receptor NLRP3 (NOD-, LRR- and pyrin domain-containing 3). Once activated, NLRP3 nucleates the assembly of an inflammasome, leading to caspase 1-mediated proteolytic activation of the interleukin-1β (IL-1β) family of cytokines, and induces an inflammatory, pyroptotic cell death. Pharmacological inhibition of NLRP3 activation results in potent therapeutic effects in a wide variety of rodent models of inflammatory diseases, effects that are mirrored by genetic ablation of NLRP3. Although these findings highlight the potential of NLRP3 as a drug target, an understanding of NLRP3 structure and activation mechanisms is incomplete, which has hampered the discovery and development of novel therapeutics against this target. Here, we review recent advances in our understanding of NLRP3 activation and regulation, highlight the evolving landscape of NLRP3 modulators and discuss opportunities for pharmacologically targeting NLRP3 with novel small molecules.
Collapse
|