51
|
Li F, Yuan Q, Di W, Xia X, Liu Z, Mao N, Li L, Li C, He J, Li Y, Guo W, Zhang X, Zhu Y, Aji R, Wang S, Tong X, Ji H, Chi P, Carver B, Wang Y, Chen Y, Gao D. ERG orchestrates chromatin interactions to drive prostate cell fate reprogramming. J Clin Invest 2021; 130:5924-5941. [PMID: 32701507 DOI: 10.1172/jci137967] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022] Open
Abstract
Although cancer is commonly perceived as a disease of dedifferentiation, the hallmark of early-stage prostate cancer is paradoxically the loss of more plastic basal cells and the abnormal proliferation of more differentiated secretory luminal cells. However, the mechanism of prostate cancer proluminal differentiation is largely unknown. Through integrating analysis of the transcription factors (TFs) from 806 human prostate cancers, we found that ERG was highly correlated with prostate cancer luminal subtyping. ERG overexpression in luminal epithelial cells inhibited those cells' normal plasticity to transdifferentiate into a basal lineage, and ERG superseded PTEN loss, which favored basal differentiation. ERG KO disrupted prostate cell luminal differentiation, whereas AR KO had no such effects. Trp63 is a known master regulator of the prostate basal lineage. Through analysis of 3D chromatin architecture, we found that ERG bound and inhibited the enhancer activity and chromatin looping of a Trp63 distal enhancer, thereby silencing its gene expression. Specific deletion of the distal ERG binding site resulted in the loss of ERG-mediated inhibition of basal differentiation. Thus, ERG, in its fundamental role in lineage differentiation in prostate cancer initiation, orchestrated chromatin interactions and regulated prostate cell lineage toward a proluminal program.
Collapse
Affiliation(s)
- Fei Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiuyue Yuan
- Center for Excellence in Mathematical Sciences (CEMS), National Center for Mathematics and Interdisciplinary Sciences (NCMIS), Key Laboratory of Management, Decision and Information Systems (MDIS)., Academy of Mathematics and Systems Science, National Center for Mathematics and Interdisciplinary Sciences, and.,School of Mathematical Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Wei Di
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xinyi Xia
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhuang Liu
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ninghui Mao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Lin Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chunfeng Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Juan He
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yunguang Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wangxin Guo
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyu Zhang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yiqin Zhu
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Rebiguli Aji
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shangqian Wang
- Department of Urology, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xinyuan Tong
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ping Chi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Medicine and.,Department of Cell and Developmental Biology, Weill Cornell Medical College and New York-Presbyterian Hospital, New York, New York, USA
| | - Brett Carver
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Division of Urology, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Yong Wang
- Center for Excellence in Mathematical Sciences (CEMS), National Center for Mathematics and Interdisciplinary Sciences (NCMIS), Key Laboratory of Management, Decision and Information Systems (MDIS)., Academy of Mathematics and Systems Science, National Center for Mathematics and Interdisciplinary Sciences, and.,School of Mathematical Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.,Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Medicine and.,Department of Cell and Developmental Biology, Weill Cornell Medical College and New York-Presbyterian Hospital, New York, New York, USA
| | - Dong Gao
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
52
|
Pandareesh MD, Kameshwar VH, Byrappa K. Prostate Carcinogenesis: Insights in Relation to Epigenetics and Inflammation. Endocr Metab Immune Disord Drug Targets 2021; 21:253-267. [PMID: 32682386 DOI: 10.2174/1871530320666200719020709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/17/2020] [Accepted: 04/29/2020] [Indexed: 12/24/2022]
Abstract
Prostate cancer is a multifactorial disease that mainly occurs due to the accumulation of somatic, genetic, and epigenetic changes, resulting in the inactivation of tumor-suppressor genes and activation of oncogenes. Mutations in genes, specifically those that control cell growth and division or the repair of damaged DNA, make the cells grow and divide uncontrollably to form a tumor. The risk of developing prostate cancer depends upon the gene that has undergone the mutation. Identifying such genetic risk factors for prostate cancer poses a challenge for the researchers. Besides genetic mutations, many epigenetic alterations, including DNA methylation, histone modifications (methylation, acetylation, ubiquitylation, sumoylation, and phosphorylation) nucleosomal remodeling, and chromosomal looping, have significantly contributed to the onset of prostate cancer as well as the prognosis, diagnosis, and treatment of prostate cancer. Chronic inflammation also plays a major role in the onset and progression of human cancer, via modifications in the tumor microenvironment by initiating epithelialmesenchymal transition and remodeling the extracellular matrix. In this article, the authors present a brief history of the mechanisms and potential links between the genetic aberrations, epigenetic changes, inflammation, and inflammasomes that are known to contribute to the prognosis of prostate cancer. Furthermore, the authors examine and discuss the clinical potential of prostate carcinogenesis in relation to epigenetics and inflammation for its diagnosis and treatment..
Collapse
Affiliation(s)
- Mirazkar D Pandareesh
- Center for Research and Innovation, BGSIT Campus, Adichunchanagiri University, B.G. Nagara, Mandya District, Karnataka 571448, India
| | - Vivek H Kameshwar
- Center for Research and Innovation, BGSIT Campus, Adichunchanagiri University, B.G. Nagara, Mandya District, Karnataka 571448, India
| | - Kullaiah Byrappa
- Center for Research and Innovation, BGSIT Campus, Adichunchanagiri University, B.G. Nagara, Mandya District, Karnataka 571448, India
| |
Collapse
|
53
|
Zeng T, Fedeli MA, Tanda F, Wang Y, Yang D, Xue B, Jia L, Palmieri G, Sechi LA, Kelvin DJ. Whole-exome Sequencing of Prostate Cancer in Sardinian Identify Recurrent UDP-glucuronosyltransferase Amplifications. J Cancer 2021; 12:438-450. [PMID: 33391440 PMCID: PMC7738997 DOI: 10.7150/jca.48433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/25/2020] [Indexed: 02/05/2023] Open
Abstract
Globally, prostate cancer is the third most common cancer in the world, and the second most common cancer in men. However, rates for incidence and mortality vary considerably with race, ethnicity, and geography. Over 97 significantly mutated genes that have been identified in prostate cancer; however, a lack of genomic prostate cancer studies focusing on different racial and ethnic groups and racial mixing pose a serious challenge to universalize these findings. The Sardinian population is an isolated Mediterranean population that has a high frequency of centenarians and a much lower incidence of prostate cancer than found in males in mainland Europe. Here, we conducted a genomic prostate cancer study on a Sardinian cohort diagnosed with local prostate cancer. Our data reveals a low rate of ERG fusion in Sardinian prostate cancer. Interestingly, we identified a novel BTBD7-SLC2A5 fusion that occurred in 13% of the patients. We also found that the UGT2B4 on 4q13.2 was amplified in 20% of the Sardinian patients but rarely amplified in patients of other population. These observations underscore the importance of the inter-population molecular heterogeneity of prostate cancer. In addition, we examined the expression of UGT2B4 in 497 prostate cancer patients derived from The Cancer Genome Atlas database. We found that high expression of UGT2B4 was associated with low-grade prostate cancer and upregulation of UGT2B4 in tumors was associated with upregulation of metabolism pathways such as 'de novo' IMP biosynthetic process, glutamine and monocarboxylic acid metabolism. These data provide insight into clinical relevance and functional mechanism of UGT2B4. Further understanding functional mechanism of UGT2B4 amplification and BTBD7-SLC2A5 fusion will aid in developing drugs to benefit the prostate cancer patients.
Collapse
Affiliation(s)
- Tiansheng Zeng
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, Shantou Guangdong, China
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Maria Antonietta Fedeli
- Department of Scienze Mediche Chirurgiche e Sperimentali, first affiliated Hospital of 33445Sassari University
| | - Francesco Tanda
- Department of Scienze Mediche Chirurgiche e Sperimentali, first affiliated Hospital of 33445Sassari University
| | - Yuyong Wang
- Department of Urology, affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, China
| | - Dongsheng Yang
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, Shantou Guangdong, China
| | - Bei Xue
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, Shantou Guangdong, China
| | - Lisha Jia
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, Shantou Guangdong, China
| | - Giuseppe Palmieri
- Institute of Genetic and Biomedical Research (IRGB), Head, National Research Council (CNR), 07100 Sassari, Italy
| | - Leonardo A Sechi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- ✉ Corresponding authors: J. Kelvin, E-mail: ; and Leonardo A. Sechi, E-mail: . Co-corresponding authors equally contributed to this work
| | - David J. Kelvin
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, Shantou Guangdong, China
- Department of Scienze Mediche Chirurgiche e Sperimentali, first affiliated Hospital of 33445Sassari University
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
- Canadian Center for Vaccinology, IWK, Halifax, Nova Scotia, Canada
- ✉ Corresponding authors: J. Kelvin, E-mail: ; and Leonardo A. Sechi, E-mail: . Co-corresponding authors equally contributed to this work
| |
Collapse
|
54
|
Zavala VA, Bracci PM, Carethers JM, Carvajal-Carmona L, Coggins NB, Cruz-Correa MR, Davis M, de Smith AJ, Dutil J, Figueiredo JC, Fox R, Graves KD, Gomez SL, Llera A, Neuhausen SL, Newman L, Nguyen T, Palmer JR, Palmer NR, Pérez-Stable EJ, Piawah S, Rodriquez EJ, Sanabria-Salas MC, Schmit SL, Serrano-Gomez SJ, Stern MC, Weitzel J, Yang JJ, Zabaleta J, Ziv E, Fejerman L. Cancer health disparities in racial/ethnic minorities in the United States. Br J Cancer 2021; 124:315-332. [PMID: 32901135 PMCID: PMC7852513 DOI: 10.1038/s41416-020-01038-6] [Citation(s) in RCA: 559] [Impact Index Per Article: 139.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 07/16/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023] Open
Abstract
There are well-established disparities in cancer incidence and outcomes by race/ethnicity that result from the interplay between structural, socioeconomic, socio-environmental, behavioural and biological factors. However, large research studies designed to investigate factors contributing to cancer aetiology and progression have mainly focused on populations of European origin. The limitations in clinicopathological and genetic data, as well as the reduced availability of biospecimens from diverse populations, contribute to the knowledge gap and have the potential to widen cancer health disparities. In this review, we summarise reported disparities and associated factors in the United States of America (USA) for the most common cancers (breast, prostate, lung and colon), and for a subset of other cancers that highlight the complexity of disparities (gastric, liver, pancreas and leukaemia). We focus on populations commonly identified and referred to as racial/ethnic minorities in the USA-African Americans/Blacks, American Indians and Alaska Natives, Asians, Native Hawaiians/other Pacific Islanders and Hispanics/Latinos. We conclude that even though substantial progress has been made in understanding the factors underlying cancer health disparities, marked inequities persist. Additional efforts are needed to include participants from diverse populations in the research of cancer aetiology, biology and treatment. Furthermore, to eliminate cancer health disparities, it will be necessary to facilitate access to, and utilisation of, health services to all individuals, and to address structural inequities, including racism, that disproportionally affect racial/ethnic minorities in the USA.
Collapse
Affiliation(s)
- Valentina A Zavala
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Paige M Bracci
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - John M Carethers
- Departments of Internal Medicine and Human Genetics, and Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Luis Carvajal-Carmona
- University of California Davis Comprehensive Cancer Center and Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, USA
- Genome Center, University of California Davis, Davis, CA, USA
| | | | - Marcia R Cruz-Correa
- Department of Cancer Biology, University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
| | - Melissa Davis
- Division of Breast Surgery, Department of Surgery, NewYork-Presbyterian/Weill Cornell Medical Center, New York, NY, USA
| | - Adam J de Smith
- Center for Genetic Epidemiology, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Julie Dutil
- Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Jane C Figueiredo
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rena Fox
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Kristi D Graves
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Scarlett Lin Gomez
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Andrea Llera
- Laboratorio de Terapia Molecular y Celular, IIBBA, Fundación Instituto Leloir, CONICET, Buenos Aires, Argentina
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Lisa Newman
- Division of Breast Surgery, Department of Surgery, NewYork-Presbyterian/Weill Cornell Medical Center, New York, NY, USA
- Interdisciplinary Breast Program, New York-Presbyterian/Weill Cornell Medical Center, New York, NY, USA
| | - Tung Nguyen
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Julie R Palmer
- Slone Epidemiology Center at Boston University, Boston, MA, USA
| | - Nynikka R Palmer
- Department of Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, University of California, San Francisco, San Francisco, CA, USA
| | - Eliseo J Pérez-Stable
- Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Office of the Director, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, USA
| | - Sorbarikor Piawah
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Erik J Rodriquez
- Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Stephanie L Schmit
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Silvia J Serrano-Gomez
- Grupo de investigación en biología del cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Mariana C Stern
- Departments of Preventive Medicine and Urology, Keck School of Medicine of USC, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Jeffrey Weitzel
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Jun J Yang
- Department of Pharmaceutical Sciences, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jovanny Zabaleta
- Department of Pediatrics and Stanley S. Scott Cancer Center LSUHSC, New Orleans, LA, USA
| | - Elad Ziv
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Laura Fejerman
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
55
|
Lewis DD, Cropp CD. The Impact of African Ancestry on Prostate Cancer Disparities in the Era of Precision Medicine. Genes (Basel) 2020; 11:E1471. [PMID: 33302594 PMCID: PMC7762993 DOI: 10.3390/genes11121471] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer disproportionately affects men of African ancestry at nearly twice the rate of men of European ancestry despite the advancement of treatment strategies and prevention. In this review, we discuss the underlying causes of these disparities including genetics, environmental/behavioral, and social determinants of health while highlighting the implications and challenges that contribute to the stark underrepresentation of men of African ancestry in clinical trials and genetic research studies. Reducing prostate cancer disparities through the development of personalized medicine approaches based on genetics will require a holistic understanding of the complex interplay of non-genetic factors that disproportionately exacerbate the observed disparity between men of African and European ancestries.
Collapse
Affiliation(s)
- Deyana D. Lewis
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, Baltimore, MD 21224, USA
| | - Cheryl D. Cropp
- Department of Pharmaceutical, Social and Administrative Sciences, Samford University McWhorter School of Pharmacy, Birmingham, AL 35229, USA;
| |
Collapse
|
56
|
Vosoughi A, Zhang T, Shohdy KS, Vlachostergios PJ, Wilkes DC, Bhinder B, Tagawa ST, Nanus DM, Molina AM, Beltran H, Sternberg CN, Motanagh S, Robinson BD, Xiang J, Fan X, Chung WK, Rubin MA, Elemento O, Sboner A, Mosquera JM, Faltas BM. Common germline-somatic variant interactions in advanced urothelial cancer. Nat Commun 2020; 11:6195. [PMID: 33273457 PMCID: PMC7713129 DOI: 10.1038/s41467-020-19971-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 11/10/2020] [Indexed: 12/30/2022] Open
Abstract
The prevalence and biological consequences of deleterious germline variants in urothelial cancer (UC) are not fully characterized. We performed whole-exome sequencing (WES) of germline DNA and 157 primary and metastatic tumors from 80 UC patients. We developed a computational framework for identifying putative deleterious germline variants (pDGVs) from WES data. Here, we show that UC patients harbor a high prevalence of pDGVs that truncate tumor suppressor proteins. Deepening somatic loss of heterozygosity in serial tumor samples is observed, suggesting a critical role for these pDGVs in tumor progression. Significant intra-patient heterogeneity in germline-somatic variant interactions results in divergent biological pathway alterations between primary and metastatic tumors. Our results characterize the spectrum of germline variants in UC and highlight their roles in shaping the natural history of the disease. These findings could have broad clinical implications for cancer patients.
Collapse
Affiliation(s)
- Aram Vosoughi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Tuo Zhang
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, USA
- Genomic Resources Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Kyrillus S Shohdy
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
- Department of Clinical Oncology, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | - Panagiotis J Vlachostergios
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - David C Wilkes
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, USA
| | - Bhavneet Bhinder
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, NY, USA
| | - Scott T Tagawa
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - David M Nanus
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Ana M Molina
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Himisha Beltran
- Division of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Cora N Sternberg
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Samaneh Motanagh
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Brian D Robinson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jenny Xiang
- Genomic Resources Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Xiao Fan
- Departments of Pediatrics and Medicine, Columbia University, NY, Columbia, NY, USA
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University, NY, Columbia, NY, USA
| | - Mark A Rubin
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, NY, USA
| | - Andrea Sboner
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, NY, USA
| | - Juan Miguel Mosquera
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, USA
| | - Bishoy M Faltas
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, USA.
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
57
|
Bahcivan A, Gamsizkan M, Kantarcioglu Coskun S, Cangur S, Yuksel A, Ceyhan A, Onal B. KRAS, BRAF, PIK3CA mutation frequency of radical prostatectomy samples and review of the literature. Aging Male 2020; 23:1627-1641. [PMID: 33878842 DOI: 10.1080/13685538.2021.1901274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE The molecular basis of prostate cancer is highly heterogeneous. Our study aimed to perform the mutation analysis of KRAS, BRAF, PIK3CA, and immunohistochemical (IHC) evaluation of EGFR, HER2, p16, and PTEN to demonstrate new areas for targeted therapies. METHODS A total of 24 prostatectomy samples diagnosed with adenocarcinoma were analyzed by microarray hybridization. Also, these samples were IHC stained for EGFR, HER2, P16, and PTEN. The cases were divided into two groups based on low and high Gleason scores. All findings were compared with the clinicopathological parameters of the patients. RESULTS While KRAS mutation was in 3/24 (12.5%) of our cases, BRAF and PIK3CA mutations were not detected. There was no significant difference between the groups in terms of KRAS mutation frequency. HER2 was immunohistochemically negative in all samples. There was no correlation between EGFR, P16 immunopositivity, and clinicopathological features. CONCLUSION KRAS mutation frequency is similar to those in Asian populations. BRAF and PIK3CA mutation frequencies have been reported in the literature in the range of 0-15% and 0-10.4%, respectively, consistent with our study findings. HER2 immunoexpression is a controversial issue in the literature. EGFR and p16 expressions may not correlate with the stage.
Collapse
Affiliation(s)
- Atike Bahcivan
- Department of Pathology, Duzce University, Duzce, Turkey
| | | | | | - Sengul Cangur
- Department of Biostatistics and Medical Informatics, Duzce University, Duzce, Turkey
| | | | - Aysegul Ceyhan
- Department of Pathology, Duzce University, Duzce, Turkey
| | - Binnur Onal
- Department of Pathology, Duzce University, Duzce, Turkey
| |
Collapse
|
58
|
Hou C, McCown C, Ivanov DN, Tsodikov OV. Structural Insight into the DNA Binding Function of Transcription Factor ERF. Biochemistry 2020; 59:10.1021/acs.biochem.0c00774. [PMID: 33175491 PMCID: PMC8110599 DOI: 10.1021/acs.biochem.0c00774] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ETS family transcription factors control development of different cell types in humans, whereas deregulation of these proteins leads to severe developmental syndromes and cancers. One of a few members of the ETS family that are known to act solely as repressors, ERF, is required for normal osteogenesis and hematopoiesis. Another important function of ERF is acting as a tumor suppressor by antagonizing oncogenic fusions involving other ETS family factors. The structure of ERF and the DNA binding properties specific to this protein have not been elucidated. In this study, we determined two crystal structures of the complexes of the DNA binding domain of ERF with DNA. In one, ERF is in a distinct dimeric form, with Cys72 in a reduced state. In the other, two dimers of ERF are assembled into a tetramer that is additionally locked by two Cys72-Cys72 disulfide bonds across the dimers. In the tetramer, the ERF molecules are bound to a pseudocontinuous DNA on the same DNA face at two GGAA binding sites on opposite strands. Sedimentation velocity analysis showed that this tetrameric assembly forms on continuous DNA containing such tandem sites spaced by 7 bp. Our bioinformatic analysis of three previously reported sets of ERF binding loci across entire genomes showed that these loci were enriched in such 7 bp spaced tandem sites. Taken together, these results strongly suggest that the observed tetrameric assembly is a functional state of ERF in the human cell.
Collapse
Affiliation(s)
- Caixia Hou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Claudia McCown
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Dmitri N. Ivanov
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Oleg V. Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| |
Collapse
|
59
|
Liu W, Zheng SL, Na R, Wei L, Sun J, Gallagher J, Wei J, Resurreccion WK, Ernst S, Sfanos KS, Isaacs WB, Xu J. Distinct Genomic Alterations in Prostate Tumors Derived from African American Men. Mol Cancer Res 2020; 18:1815-1824. [PMID: 33115829 DOI: 10.1158/1541-7786.mcr-20-0648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/11/2020] [Accepted: 08/26/2020] [Indexed: 11/16/2022]
Abstract
We aim to understand, from acquired genetic alterations in tumors, why African American (AA) men are more likely to develop aggressive prostate cancer. By analyzing somatic mutations in 39 genes using deeper next-generation sequencing with an average depth of 2,522 reads for tumor DNA and genome-wide DNA copy-number alterations (CNA) in prostate cancer in a total of 171 AA/black men and comparing with those in 860 European American (EA)/white men, we here present several novel findings. First, >35% of AA men harbor damaging mutations in APC, ATM, BRCA2, KDM6A, KMT2C, KMT2D, MED12, ZFHX3, and ZMYM3, each with >1% of mutated copies. Second, among genes with >10% of mutated copies in tumor cells, ZMYM3 is the most frequently mutated gene in AA prostate cancer. In a patient's tumor with >96% frameshift mutations of ZMYM3, we find allelic imbalances in 10 chromosomes, including losses of five and gains of another four chromosomes, suggesting its role in maintaining genomic integrity. Third, when compared to prostate cancer in EA/white men, a higher frequency of CNAs of MYC, THADA, NEIL3, LRP1B, BUB1B, MAP3K7, BNIP3L and RB1, and a lower frequency of deletions of RYBP, TP53, and TMPRSS2-ERG are observed in AA/black men. Finally, for the above genes with higher frequency of CNAs in AA than in EA, deletion of MAP3K7, BNIP3L, NEIL3 or RB1, or gain of MYC significantly associates with both higher Gleason grade and advanced pathologic stage in AA/black men. Deletion of THADA associates with advanced pathologic stage only. IMPLICATIONS: A higher frequency of damaging mutation in ZMYM3 causing genomic instability along with higher frequency of altered genomic regions including deletions of MAP3K7, BNIP3L, RB1, and NEIL3, and gain of MYC appear to be distinct somatically acquired genetic alterations that may contribute to more aggressive prostate cancer in AA/black men.
Collapse
Affiliation(s)
- Wennuan Liu
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois.,Departments of Surgery, NorthShore University HealthSystem, Evanston, Illinois
| | - S Lilly Zheng
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois.,Departments of Surgery, NorthShore University HealthSystem, Evanston, Illinois
| | - Rong Na
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
| | - Lin Wei
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
| | - Jishan Sun
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois.,Departments of Surgery, NorthShore University HealthSystem, Evanston, Illinois
| | - Johnie Gallagher
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
| | - Jun Wei
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
| | - W Kyle Resurreccion
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
| | - Sarah Ernst
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Karen S Sfanos
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland.,Department of Urology and Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - William B Isaacs
- Department of Urology and Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Jianfeng Xu
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois. .,Departments of Surgery, NorthShore University HealthSystem, Evanston, Illinois
| |
Collapse
|
60
|
Capicua in Human Cancer. Trends Cancer 2020; 7:77-86. [PMID: 32978089 DOI: 10.1016/j.trecan.2020.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022]
Abstract
Capicua (CIC) is a highly conserved transcriptional repressor that is differentially regulated through mitogen-activated protein kinase (MAPK) signaling or genetic alteration across human cancer. CIC contributes to tumor progression and metastasis through direct transcriptional control of effector target genes. Recent findings indicate that CIC dysregulation is mechanistically linked and restricted to specific cancer subtypes, yet convergence on key downstream transcriptional nodes are critical for CIC-regulated oncogenesis across these cancers. In this review, we focus on how differential regulation of CIC through functional and genetic mechanisms contributes to subtype-specific cancer phenotypes and we propose new therapeutic strategies to effectively target CIC-altered cancers.
Collapse
|
61
|
Pioneer of prostate cancer: past, present and the future of FOXA1. Protein Cell 2020; 12:29-38. [PMID: 32946061 PMCID: PMC7815845 DOI: 10.1007/s13238-020-00786-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/18/2020] [Indexed: 01/27/2023] Open
Abstract
Prostate cancer is the most commonly diagnosed non-cutaneous cancers in North American men. While androgen deprivation has remained as the cornerstone of prostate cancer treatment, resistance ensues leading to lethal disease. Forkhead box A1 (FOXA1) encodes a pioneer factor that induces open chromatin conformation to allow the binding of other transcription factors. Through direct interactions with the Androgen Receptor (AR), FOXA1 helps to shape AR signaling that drives the growth and survival of normal prostate and prostate cancer cells. FOXA1 also possesses an AR-independent role of regulating epithelial-to-mesenchymal transition (EMT). In prostate cancer, mutations converge onto the coding sequence and cis-regulatory elements (CREs) of FOXA1, leading to functional alterations. In addition, FOXA1 activity in prostate cancer can be modulated post-translationally through various mechanisms such as LSD1-mediated protein demethylation. In this review, we describe the latest discoveries related to the function and regulation of FOXA1 in prostate cancer, pointing to their relevance to guide future clinical interventions.
Collapse
|
62
|
Zhang E, Zhang M, Shi C, Sun L, Shan L, Zhang H, Song Y. An overview of advances in multi-omics analysis in prostate cancer. Life Sci 2020; 260:118376. [PMID: 32898525 DOI: 10.1016/j.lfs.2020.118376] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/21/2020] [Accepted: 08/31/2020] [Indexed: 02/09/2023]
Abstract
Prostate cancer (PCa) is a deadly disease for men, and studies of all types of omics data are necessary to promote precision medicine. The maturity of sequencing technology, the improvements of computer processing power, and the progress achieved in omics analysis methods have improved research efficiency and saved research costs. The occurrence and development of PCa is due to multisystem and multilevel pathological changes. Although omics research at a single level is important, this approach often has limitations. In contrast, the combined analysis of multiple types of omics data can better analyze PCa changes as a whole, thus ensuring the validity of research results to the greatest extent. This paper introduces the applications of single omics in PCa and then summarizes research progress in the combined analysis of two or more types of omics data, so as to systematically and comprehensively analyze the necessity of combined analysis of multiple omics data in PCa.
Collapse
Affiliation(s)
- Enchong Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, People's Republic of China
| | - Mo Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, People's Republic of China
| | - Changlong Shi
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, People's Republic of China
| | - Li Sun
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, People's Republic of China
| | - Liping Shan
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, People's Republic of China
| | - Hui Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, People's Republic of China.
| | - Yongsheng Song
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, People's Republic of China.
| |
Collapse
|
63
|
Koga Y, Song H, Chalmers ZR, Newberg J, Kim E, Carrot-Zhang J, Piou D, Polak P, Abdulkadir SA, Ziv E, Meyerson M, Frampton GM, Campbell JD, Huang FW. Genomic Profiling of Prostate Cancers from Men with African and European Ancestry. Clin Cancer Res 2020; 26:4651-4660. [PMID: 32651179 PMCID: PMC7597977 DOI: 10.1158/1078-0432.ccr-19-4112] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/07/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE African American (AFR) men have the highest mortality rate from prostate cancer (PCa) compared with men of other racial/ancestral groups. Differences in the spectrum of somatic genome alterations in tumors between AFR men and other populations have not been well-characterized due to a lack of inclusion of significant numbers in genomic studies. EXPERIMENTAL DESIGN To identify genomic alterations associated with race, we compared the frequencies of somatic alterations in PCa obtained from four publicly available datasets comprising 250 AFR and 611 European American (EUR) men and a targeted sequencing dataset from a commercial platform of 436 AFR and 3018 EUR men. RESULTS Mutations in ZFHX3 as well as focal deletions in ETV3 were more frequent in tumors from AFR men. TP53 mutations were associated with increasing Gleason score. MYC amplifications were more frequent in tumors from AFR men with metastatic PCa, whereas deletions in PTEN and rearrangements in TMPRSS2-ERG were less frequent in tumors from AFR men. KMT2D truncations and CCND1 amplifications were more frequent in primary PCa from AFR men. Genomic features that could impact clinical decision making were not significantly different between the two groups including tumor mutation burden, MSI status, and genomic alterations in select DNA repair genes, CDK12, and in AR. CONCLUSIONS Although we identified some novel differences in AFR men compared with other populations, the frequencies of genomic alterations in current therapeutic targets for PCa were similar between AFR and EUR men, suggesting that existing precision medicine approaches could be equally beneficial if applied equitably.
Collapse
Affiliation(s)
- Yusuke Koga
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Hanbing Song
- Division of Hematology/Oncology, Department of Medicine; Helen Diller Family Comprehensive Cancer Center; Bakar Computational Health Sciences Institute; Institute for Human Genetics; San Francisco Veterans Affairs Medical Center; University of California, San Francisco, San Francisco, California
| | - Zachary R Chalmers
- Department of Urology, Northwestern University Feinberg School of Medicine
| | | | - Eejung Kim
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Jian Carrot-Zhang
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Daphnee Piou
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Paz Polak
- Mount Sinai School of Medicine, New York, New York
| | - Sarki A Abdulkadir
- Department of Urology, Northwestern University Feinberg School of Medicine
| | - Elad Ziv
- Division of General Internal Medicine, University of California, San Francisco, San Francisco, California
| | - Matthew Meyerson
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Joshua D Campbell
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts.
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Franklin W Huang
- Division of Hematology/Oncology, Department of Medicine; Helen Diller Family Comprehensive Cancer Center; Bakar Computational Health Sciences Institute; Institute for Human Genetics; San Francisco Veterans Affairs Medical Center; University of California, San Francisco, San Francisco, California.
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| |
Collapse
|
64
|
Liu W, Zhang Y, Wei S, Bae S, Yang WH, Smith GJ, Mohler JL, Fontham ET, Bensen JT, Sonpavde GP, Chen G, Liu R, Wang L. A CD24-p53 axis contributes to African American prostate cancer disparities. Prostate 2020; 80:609-618. [PMID: 32168400 PMCID: PMC7176538 DOI: 10.1002/pros.23973] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 03/03/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Using a functional analysis of prostate cancer cells, we found a CD24-dependent inactivation of mutant p53, but the clinical significance of this observation remained uncertain. Here, we validated these results with samples of human prostate cancer and explored the role of a CD24-p53 axis in racial disparities of prostate cancer. METHODS Samples of formalin-fixed, paraffin-embedded prostate cancer from 141 European Americans (EAs) and 147 African Americans (AAs) in two independent sample cohorts were assessed for protein expression of CD24, mutant p53, mouse double minute 2 human homolog (MDM2), and cyclin dependent kinase inhibitor 2A (ARF) using immunohistochemical analyses. All samples were analyzed for TP53R175H and TP53R273H . RESULTS CD24, mutant p53, MDM2, and ARF proteins were expressed in 55%, 24%, 39%, and 68% of prostate cancer samples, respectively. CD24 and mutant p53 were present more frequently in late-stage and metastatic prostate cancer. The presence of CD24 was associated with a greater than fourfold risk of metastasis, which included lymph node and distant metastases. H score analysis showed positive correlations of CD24 expression with mutant p53 (r = .308, P < .001) and MDM2 (r = .227, P = .004). There was a negative correlation for CD24 with ARF (r = -.280, P < .001). A racial disparity was evident for CD24 (AAs/EAs: 64% vs 47%; P = .004) but not for mutant p53 (AA/EA: 28% vs 21%; P = .152). In 32 CD24+ /mutant p53+ cases, a TP53R273H mutation was found in five cases, but no TP53R175H mutation was found. CONCLUSION The CD24-p53 axis may contribute to aggressive and metastatic prostate cancers, especially those of AAs. This observation enhances understanding of the pathogenesis of prostate cancer and its associated racial disparities.
Collapse
Affiliation(s)
- Wei Liu
- Department of Genetics and O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yue Zhang
- Department of Genetics and O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shi Wei
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sejong Bae
- Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Wei-Hsiung Yang
- Department of Biomedical Sciences, Mercer University, Savannah, Georgia
| | - Gary J. Smith
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - James L. Mohler
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Elizabeth T.H. Fontham
- School of Public Health, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Jeannette T. Bensen
- Lineberger Comprehensive Cancer Center and Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Guoyun Chen
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Runhua Liu
- Department of Genetics and O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lizhong Wang
- Department of Genetics and O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
65
|
Sartor O, Armstrong AJ, Ahaghotu C, McLeod DG, Cooperberg MR, Penson DF, Kantoff PW, Vogelzang NJ, Hussain A, Pieczonka CM, Shore ND, Quinn DI, Small EJ, Heath EI, Tutrone RF, Schellhammer PF, Harmon M, Chang NN, Sheikh NA, Brown B, Freedland SJ, Higano CS. Survival of African-American and Caucasian men after sipuleucel-T immunotherapy: outcomes from the PROCEED registry. Prostate Cancer Prostatic Dis 2020; 23:517-526. [PMID: 32111923 PMCID: PMC7423504 DOI: 10.1038/s41391-020-0213-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/29/2020] [Accepted: 02/11/2020] [Indexed: 12/22/2022]
Abstract
Purpose African Americans experience greater prostate cancer risk and mortality than do Caucasians. An analysis of pooled phase III data suggested differences in overall survival (OS) between African American and Caucasian men receiving sipuleucel-T. We explored this in PROCEED (NCT01306890), an FDA-requested registry in over 1900 patients with metastatic castration-resistant prostate cancer (mCRPC) treated with sipuleucel-T. Patients and methods OS for patients who received ≥1 sipuleucel-T infusion was compared between African American and Caucasian men using an all patient set and a baseline prostate-specific antigen (PSA)-matched set (two Caucasians to every one African American with baseline PSAs within 10% of each other). Univariable and multivariable analyses were conducted. Survival data were examined using Kaplan–Meier and Cox proportional hazard methodologies. Results Median follow-up was 46.6 months. Overall survival differed between African American and Caucasian men with hazard ratios (HR) of 0.81 (95% confidence interval [CI]: 0.68–0.97, P = 0.03) in the all patient set and 0.70 (95% CI: 0.57–0.86, P < 0.001) in the PSA-matched set. Median OS was longer in African Americans than in Caucasian men for both analysis sets, e.g., 35.3 and 25.8 months, respectively, in the PSA-matched set. Similar results were observed in the all patient set. Differences were larger when treatment began at lower baseline PSA; curves were more similar among patients with higher baseline PSA. In patients with baseline PSA below the median, the HR was 0.52 (95% CI: 0.37–0.72, P < 0.001), with median OS of 54.3 versus 33.4 months. Known prognostic factors and African American race (multivariable analyses; HR: 0.60, 95% CI: 0.48–0.74, P < 0.001) were independently associated with OS. Use of post-sipuleucel-T anticancer interventions was balanced between races. Conclusion In this exploratory analysis of a registry including nearly 12% African American men with mCRPC, OS was significantly different between African Americans and Caucasians, indicating further research is warranted.
Collapse
Affiliation(s)
| | - Andrew J Armstrong
- Duke Prostate and Urologic Cancer Center, Duke Cancer Institute, Durham, NC, USA
| | | | - David G McLeod
- Center for Prostate Disease Research at the Uniformed Services University of Health Sciences, Bethesda, MD, USA.,The Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Matthew R Cooperberg
- Departments of Urology and Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - David F Penson
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | - Arif Hussain
- University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Neal D Shore
- Department of Urology, Carolina Urologic Research Center, Myrtle Beach, SC, USA
| | - David I Quinn
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Eric J Small
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Elisabeth I Heath
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | | | - Paul F Schellhammer
- Department of Urology, Eastern Virginia Medical School Urology of Virginia, Virginia, VA, USA
| | | | | | | | - Bruce Brown
- Dendreon Pharmaceuticals LLC, Seattle, WA, USA
| | - Stephen J Freedland
- Center for Integrated Research in Cancer and Lifestyle, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,The Durham Veterans Administration, Durham, NC, USA
| | - Celestia S Higano
- University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
66
|
Yuan J, Kensler KH, Hu Z, Zhang Y, Zhang T, Jiang J, Xu M, Pan Y, Long M, Montone KT, Tanyi JL, Fan Y, Zhang R, Hu X, Rebbeck TR, Zhang L. Integrative comparison of the genomic and transcriptomic landscape between prostate cancer patients of predominantly African or European genetic ancestry. PLoS Genet 2020; 16:e1008641. [PMID: 32059012 PMCID: PMC7046294 DOI: 10.1371/journal.pgen.1008641] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/27/2020] [Accepted: 01/30/2020] [Indexed: 12/22/2022] Open
Abstract
Men of predominantly African Ancestry (AA) have higher prostate cancer (CaP) incidence and worse survival than men of predominantly European Ancestry (EA). While socioeconomic factors drive this disparity, genomic factors may also contribute to differences in the incidence and mortality rates. To compare the prevalence of prostate tumor genomic alterations and transcriptomic profiles by patient genetic ancestry, we evaluated genomic profiles from The Cancer Genome Atlas (TCGA) CaP cohort (n = 498). Patient global and local genetic ancestry were estimated by computational algorithms using genotyping data; 414 (83.1%) were EA, 61 (12.2%) were AA, 11 (2.2%) were East Asian Ancestry (EAA), 10 (2.0%) were Native American (NA), and 2 (0.4%) were other ancestry. Genetic ancestry was highly concordant with self-identified race/ethnicity. Subsequent analyses were limited to 61 AA and 414 EA cases. Significant differences were observed by ancestry in the frequency of SPOP mutations (20.3% AA vs. 10.0% EA; p = 5.6×10-03), TMPRSS2-ERG fusions (29.3% AA vs. 39.6% EA; p = 4.4×10-02), and PTEN deletions/losses (11.5% AA vs. 30.2% EA; p = 3.5×10-03). Differentially expressed genes (DEGs) between AAs and EAs showed significant enrichment for prostate eQTL target genes (p = 8.09×10-48). Enrichment of highly expressed DEGs for immune-related pathways was observed in AAs, and for PTEN/PI3K signaling in EAs. Nearly one-third of DEGs (31.3%) were long non-coding RNAs (DE-lncRNAs). The proportion of DE-lncRNAs with higher expression in AAs greatly exceeded that with lower expression in AAs (p = 1.2×10-125). Both ChIP-seq and RNA-seq data suggested a stronger regulatory role for AR signaling pathways in DE-lncRNAs vs. non-DE-lncRNAs. CaP-related oncogenic lncRNAs, such as PVT1, PCAT1 and PCAT10/CTBP1-AS, were found to be more highly expressed in AAs. We report substantial heterogeneity in the prostate tumor genome and transcriptome between EA and AA. These differences may be biological contributors to racial disparities in CaP incidence and outcomes.
Collapse
Affiliation(s)
- Jiao Yuan
- Center for Research on Reproduction & Women’s Health, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kevin H. Kensler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Zhongyi Hu
- Center for Research on Reproduction & Women’s Health, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Youyou Zhang
- Center for Research on Reproduction & Women’s Health, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Tianli Zhang
- Center for Research on Reproduction & Women’s Health, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Junjie Jiang
- Center for Research on Reproduction & Women’s Health, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mu Xu
- Center for Research on Reproduction & Women’s Health, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yutian Pan
- Center for Research on Reproduction & Women’s Health, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Meixiao Long
- Department of Internal Medicine, Division of Hematology, Ohio State University, Columbus, Ohio, United States of America
| | - Kathleen T. Montone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Janos L. Tanyi
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rugang Zhang
- Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Xiaowen Hu
- Center for Research on Reproduction & Women’s Health, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Timothy R. Rebbeck
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Lin Zhang
- Center for Research on Reproduction & Women’s Health, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
67
|
Gillessen S, Attard G, Beer TM, Beltran H, Bjartell A, Bossi A, Briganti A, Bristow RG, Chi KN, Clarke N, Davis ID, de Bono J, Drake CG, Duran I, Eeles R, Efstathiou E, Evans CP, Fanti S, Feng FY, Fizazi K, Frydenberg M, Gleave M, Halabi S, Heidenreich A, Heinrich D, Higano CTS, Hofman MS, Hussain M, James N, Kanesvaran R, Kantoff P, Khauli RB, Leibowitz R, Logothetis C, Maluf F, Millman R, Morgans AK, Morris MJ, Mottet N, Mrabti H, Murphy DG, Murthy V, Oh WK, Ost P, O'Sullivan JM, Padhani AR, Parker C, Poon DMC, Pritchard CC, Reiter RE, Roach M, Rubin M, Ryan CJ, Saad F, Sade JP, Sartor O, Scher HI, Shore N, Small E, Smith M, Soule H, Sternberg CN, Steuber T, Suzuki H, Sweeney C, Sydes MR, Taplin ME, Tombal B, Türkeri L, van Oort I, Zapatero A, Omlin A. Management of Patients with Advanced Prostate Cancer: Report of the Advanced Prostate Cancer Consensus Conference 2019. Eur Urol 2020; 77:508-547. [PMID: 32001144 DOI: 10.1016/j.eururo.2020.01.012] [Citation(s) in RCA: 272] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/10/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Innovations in treatments, imaging, and molecular characterisation in advanced prostate cancer have improved outcomes, but there are still many aspects of management that lack high-level evidence to inform clinical practice. The Advanced Prostate Cancer Consensus Conference (APCCC) 2019 addressed some of these topics to supplement guidelines that are based on level 1 evidence. OBJECTIVE To present the results from the APCCC 2019. DESIGN, SETTING, AND PARTICIPANTS Similar to prior conferences, experts identified 10 important areas of controversy regarding the management of advanced prostate cancer: locally advanced disease, biochemical recurrence after local therapy, treating the primary tumour in the metastatic setting, metastatic hormone-sensitive/naïve prostate cancer, nonmetastatic castration-resistant prostate cancer, metastatic castration-resistant prostate cancer, bone health and bone metastases, molecular characterisation of tissue and blood, inter- and intrapatient heterogeneity, and adverse effects of hormonal therapy and their management. A panel of 72 international prostate cancer experts developed the programme and the consensus questions. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The panel voted publicly but anonymously on 123 predefined questions, which were developed by both voting and nonvoting panel members prior to the conference following a modified Delphi process. RESULTS AND LIMITATIONS Panellists voted based on their opinions rather than a standard literature review or formal meta-analysis. The answer options for the consensus questions had varying degrees of support by the panel, as reflected in this article and the detailed voting results reported in the Supplementary material. CONCLUSIONS These voting results from a panel of prostate cancer experts can help clinicians and patients navigate controversial areas of advanced prostate management for which high-level evidence is sparse. However, diagnostic and treatment decisions should always be individualised based on patient-specific factors, such as disease extent and location, prior lines of therapy, comorbidities, and treatment preferences, together with current and emerging clinical evidence and logistic and economic constraints. Clinical trial enrolment for men with advanced prostate cancer should be strongly encouraged. Importantly, APCCC 2019 once again identified important questions that merit assessment in specifically designed trials. PATIENT SUMMARY The Advanced Prostate Cancer Consensus Conference provides a forum to discuss and debate current diagnostic and treatment options for patients with advanced prostate cancer. The conference, which has been held three times since 2015, aims to share the knowledge of world experts in prostate cancer management with health care providers worldwide. At the end of the conference, an expert panel discusses and votes on predefined consensus questions that target the most clinically relevant areas of advanced prostate cancer treatment. The results of the voting provide a practical guide to help clinicians discuss therapeutic options with patients as part of shared and multidisciplinary decision making.
Collapse
Affiliation(s)
- Silke Gillessen
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland; Universita della Svizzera Italiana, Lugano, Switzerland; Cantonal Hospital, St. Gallen, Switzerland; University of Bern, Bern, Switzerland; Division of Cancer Science, University of Manchester, Manchester, UK.
| | | | - Tomasz M Beer
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Himisha Beltran
- Dana-Farber Cancer Institute, Boston, MA, USA; Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anders Bjartell
- Department of Urology, Skåne University Hospital, Malmö, Sweden
| | - Alberto Bossi
- Genito Urinary Oncology, Prostate Brachytherapy Unit, Goustave Roussy, Paris, France
| | - Alberto Briganti
- Unit of Urology/Division of Oncology, URI, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, Italy
| | - Rob G Bristow
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Christie NHS Trust, Manchester, UK; CRUK Manchester Institute and Cancer Centre, Manchester, UK
| | - Kim N Chi
- BC Cancer, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Noel Clarke
- The Christie and Salford Royal Hospitals, Manchester, UK
| | - Ian D Davis
- Monash University and Eastern Health, Victoria, Australia
| | - Johann de Bono
- The Institute of Cancer Research/Royal Marsden NHS Foundation Trust, Surrey, UK
| | - Charles G Drake
- Division of Haematology/Oncology, Columbia University Medical Center, New York, NY, USA
| | - Ignacio Duran
- Department of Medical Oncology, Hospital Universitario Marques de Valdecilla, IDIVAL, Santander, Cantabria, Spain
| | - Ros Eeles
- The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | | | | | | | - Felix Y Feng
- University of California San Francisco, San Francisco, CA, USA
| | - Karim Fizazi
- Institut Gustave Roussy, University of Paris Sud, Villejuif, France
| | - Mark Frydenberg
- Department of Surgery, Monash University, Melbourne, Australia; Prostate Cancer Research Program, Monash University, Melbourne, Australia; Department Anatomy & Developmental Biology, Faculty of Nursing, Medicine & Health Sciences, Monash University, Melbourne, Australia
| | - Martin Gleave
- Urological Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Susan Halabi
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Axel Heidenreich
- Department of Urology, Uro-Oncology, Robot-Assisted and Reconstructive Urology, University of Cologne, Cologne, Germany; Department of Urology, Medical University, Vienna, Austria
| | - Daniel Heinrich
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | - Celestia Tia S Higano
- University of Washington, Seattle, WA, USA; Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Michael S Hofman
- Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Maha Hussain
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | | | | | - Philip Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Raja B Khauli
- Department of Urology, American University of Beirut Medical Center, Beirut, Lebanon; Naef K. Basile Cancer Institute (NKBCI), American University of Beirut Medical Center, Beirut, Lebanon
| | - Raya Leibowitz
- Oncology institute, Shamir Medical Center and Faculty of medicine, Tel-Aviv University, Israel
| | - Chris Logothetis
- Department of Genitourinary Medical Oncology, MD Anderson Cancer Centre, Houston, TX, USA; Department of Clinical Therapeutics, David H. Koch Centre, University of Athens Alexandra Hospital, Athens, Greece
| | - Fernando Maluf
- Beneficiência Portuguesa de São Paulo, São Paulo, SP, Brazil; Departamento de Oncologia, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | | | - Alicia K Morgans
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | | | | | - Hind Mrabti
- National Institute of Oncology, University hospital, Rabat, Morocco
| | - Declan G Murphy
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | | | - William K Oh
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, NY, USA
| | - Piet Ost
- Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Joe M O'Sullivan
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, UK; Radiotherapy Department, Cancer Centre, Belfast City Hospital, Belfast, Northern Ireland, UK
| | - Anwar R Padhani
- Mount Vernon Cancer Centre and Institute of Cancer Research, London, UK
| | - Chris Parker
- Royal Marsden Hospital and Institute of Cancer Research, Sutton, UK
| | - Darren M C Poon
- Comprehensive Oncology Centre, Hong Kong Sanatorium & Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Colin C Pritchard
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | | | - Mack Roach
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Mark Rubin
- Bern Center for Precision Medicine, Bern, Switzerland; Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Charles J Ryan
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Fred Saad
- Centre Hospitalier de Université de Montréal, Montreal, Canada
| | | | | | - Howard I Scher
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Neal Shore
- Carolina Urologic Research Center, Myrtle Beach, SC, USA
| | - Eric Small
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Matthew Smith
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Howard Soule
- Prostate Cancer Foundation, Santa Monica, CA, USA
| | - Cora N Sternberg
- Division of Hematology and Oncology, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Thomas Steuber
- Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany; Department of Urology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | - Christopher Sweeney
- Dana-Farber Cancer Institute, Boston, MA, USA; Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew R Sydes
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, University College London, London, UK
| | - Mary-Ellen Taplin
- Dana-Farber Cancer Institute, Boston, MA, USA; Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Levent Türkeri
- Department of Urology, M.A. Aydınlar Acıbadem University, Altunizade Hospital, Istanbul, Turkey
| | - Inge van Oort
- Radboud University Medical Center, Nijmegen, The Netherlands
| | - Almudena Zapatero
- Department of Radiation Oncology, University Hospital La Princesa, Health Research Institute, Madrid, Spain
| | - Aurelius Omlin
- University of Bern, Bern, Switzerland; Department of Medical Oncology and Haematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
68
|
Faisal FA, Murali S, Kaur H, Vidotto T, Guedes LB, Salles DC, Kothari V, Tosoian JJ, Han S, Hovelson DH, Hu K, Spratt DE, Baras AS, Tomlins SA, Schaeffer EM, Lotan TL. CDKN1B Deletions are Associated with Metastasis in African American Men with Clinically Localized, Surgically Treated Prostate Cancer. Clin Cancer Res 2020; 26:2595-2602. [PMID: 31969336 DOI: 10.1158/1078-0432.ccr-19-1669] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/25/2019] [Accepted: 01/17/2020] [Indexed: 01/30/2023]
Abstract
PURPOSE The potential biological determinants of aggressive prostate cancer in African American (AA) men are unknown. Here we characterize prostate cancer genomic alterations in the largest cohort to date of AA men with clinical follow-up for metastasis, with the aim to elucidate the key molecular drivers associated with poor prognosis in this population. EXPERIMENTAL DESIGN Targeted sequencing was retrospectively performed on 205 prostate tumors from AA men treated with radical prostatectomy (RP) to examine somatic genomic alterations and percent of the genome with copy-number alterations (PGA). Cox proportional hazards analyses assessed the association of genomic alterations with risk of metastasis. RESULTS At RP, 71% (145/205) of patients had grade group ≥3 disease, and 49% (99/202) were non-organ confined. The median PGA was 3.7% (IQR = 0.9%-9.4%) and differed by pathologic grade (P < 0.001) and stage (P = 0.02). Median follow-up was 5 years. AA men with the highest quartile of PGA had increased risks of metastasis (multivariable: HR = 13.45; 95% CI, 2.55-70.86; P = 0.002). The most common somatic mutations were SPOP (11.2%), FOXA1 (8.3%), and TP53 (3.9%). The most common loci altered at the copy number level were CDKN1B (6.3%), CHD1 (4.4%), and PTEN (3.4%). TP53 mutations and deep deletions in CDKN1B were associated with increased risks of metastasis on multivariable analyses (TP53: HR = 9.5; 95% CI, 2.2-40.6; P = 0.002; CDKN1B: HR = 6.7; 95% CI, 1.3-35.2; P = 0.026). CONCLUSIONS Overall, PGA, somatic TP53 mutations, and a novel finding of deep deletions in CDKN1B were associated with poor prognosis in AA men. These findings require confirmation in additional AA cohorts.
Collapse
Affiliation(s)
- Farzana A Faisal
- Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sanjana Murali
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Harsimar Kaur
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Thiago Vidotto
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Liana B Guedes
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniela Correia Salles
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Vishal Kothari
- Polsky Urologic Cancer Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jeffrey J Tosoian
- Department of Urology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Sumin Han
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Daniel H Hovelson
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Kevin Hu
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Daniel E Spratt
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Alexander S Baras
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Scott A Tomlins
- Department of Urology, University of Michigan Medical School, Ann Arbor, Michigan. .,Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Edward M Schaeffer
- Polsky Urologic Cancer Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| | - Tamara L Lotan
- Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
69
|
Heaphy CM, Joshu CE, Barber JR, Davis C, Zarinshenas R, De Marzo AM, Lotan TL, Sfanos KS, Meeker AK, Platz EA. Racial Difference in Prostate Cancer Cell Telomere Lengths in Men with Higher Grade Prostate Cancer: A Clue to the Racial Disparity in Prostate Cancer Outcomes. Cancer Epidemiol Biomarkers Prev 2020; 29:676-680. [PMID: 31915143 DOI: 10.1158/1055-9965.epi-19-1462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/11/2019] [Accepted: 12/27/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Black men have worse prostate cancer outcomes following treatment than White men even when accounting for prognostic factors. However, biological explanations for this racial disparity have not been fully identified. We previously showed that more variable telomere lengths among cancer cells and shorter telomere lengths in cancer-associated stromal (CAS) cells individually and together ("telomere biomarker") are associated with prostate cancer-related death in surgically treated men independent of currently used prognostic indicators. Here, we hypothesize that Black-White differences in the telomere biomarker and/or in its components may help explain the racial disparity in prostate cancer outcomes. METHODS Black [higher grade (Gleason ≥4+3) = 34 and lower grade = 93] and White (higher grade = 34 and lower grade = 89) surgically treated men were frequency matched on age, pathologic stage, and grade. We measured telomere lengths in cancer and CAS cells using a robust telomere-specific FISH assay. Tissue microarray and grade-specific distributional cutoff points without regard to race were evaluated. RESULTS Among men with higher grade disease, the proportion of Black men (47.1%) with more variable cancer cell telomere lengths was 2.3-times higher (P = 0.02) than that in White men (20.6%). In contrast, among men with lower grade disease, cancer cell telomere length variability did not differ by race. The proportion of men with shorter CAS cell telomeres did not differ by race for either higher or lower grade disease. CONCLUSIONS A greater proportion of Black men with higher grade disease have an adverse prostate cancer cell telomere phenotype than White men with higher grade disease. IMPACT Our findings suggest a possible explanation for the racial disparity in prostate cancer outcomes.
Collapse
Affiliation(s)
- Christopher M Heaphy
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Corinne E Joshu
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland.,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - John R Barber
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Christine Davis
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Reza Zarinshenas
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland.,Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Karen S Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland.,Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alan K Meeker
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland.,Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth A Platz
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland.,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
70
|
Woods-Burnham L, Stiel L, Martinez SR, Sanchez-Hernandez ES, Ruckle HC, Almaguel FG, Stern MC, Roberts LR, Williams DR, Montgomery S, Casiano CA. Psychosocial Stress, Glucocorticoid Signaling, and Prostate Cancer Health Disparities in African American Men. CANCER HEALTH DISPARITIES 2020; 4:https://companyofscientists.com/index.php/chd/article/view/169/188. [PMID: 35252767 PMCID: PMC8896511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recent advances in our understanding of racial disparities in prostate cancer (PCa) incidence and mortality that disproportionately affect African American (AA) men have provided important insights into the psychosocial, socioeconomic, environmental, and molecular contributors. There is, however, limited mechanistic knowledge of how the interplay between these determinants influences prostate tumor aggressiveness in AA men and other men of African ancestry. Growing evidence indicates that chronic psychosocial stress in AA populations leads to sustained glucocorticoid signaling through the glucocorticoid receptor (GR), with negative physiological and pathological consequences. Compelling evidence indicates that treatment of castration-resistant prostate cancer (CRPC) with anti-androgen therapy activates GR signaling. This enhanced GR signaling bypasses androgen receptor (AR) signaling and transcriptionally activates both AR-target genes and GR-target genes, resulting in increased prostate tumor resistance to anti-androgen therapy, chemotherapy, and radiotherapy. Given its enhanced signaling in AA men, GR-together with specific genetic drivers-may promote CRPC progression and exacerbate tumor aggressiveness in this population, potentially contributing to PCa mortality disparities. Ongoing and future CRPC clinical trials that combine standard of care therapies with GR modulators should assess racial differences in therapy response and clinical outcomes in order to improve PCa health disparities that continue to exist for AA men.
Collapse
Affiliation(s)
- Leanne Woods-Burnham
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Laura Stiel
- Loma Linda University School of Behavioral Health, Loma Linda, CA, USA
| | - Shannalee R. Martinez
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Evelyn S. Sanchez-Hernandez
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Herbert C. Ruckle
- Department of Surgical Urology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Frankis G. Almaguel
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
- Loma Linda University Cancer Center, Loma Linda, CA, USA
| | - Mariana C. Stern
- Departments of Preventive Medicine and Urology, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Lisa R. Roberts
- Loma Linda University School of Nursing, Loma Linda, CA, USA
| | - David R. Williams
- Department of Social and Behavioral Sciences, Harvard University School of Public Health
| | - Susanne Montgomery
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
- Loma Linda University School of Behavioral Health, Loma Linda, CA, USA
| | - Carlos A. Casiano
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
71
|
Ryan MJ, Bose R. Genomic Alteration Burden in Advanced Prostate Cancer and Therapeutic Implications. Front Oncol 2019; 9:1287. [PMID: 31824860 PMCID: PMC6882947 DOI: 10.3389/fonc.2019.01287] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/06/2019] [Indexed: 12/29/2022] Open
Abstract
The increasing number of patients with sequenced prostate cancer genomes enables us to study not only individual oncogenic mutations, but also capture the global burden of genomic alterations. Here we review the extent of tumor genome mutations and chromosomal structural variants in various clinical states of prostate cancer, and the related prognostic information. Next, we discuss the underlying mutational processes that give rise to these various alterations, and their relationship to the various molecular subtypes of prostate cancer. Finally, we examine the relationships between the tumor mutation burden of castration-resistant prostate cancer, DNA repair defects, and response to immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Matthew J. Ryan
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, United States
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, United States
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, United States
| | - Rohit Bose
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, United States
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, United States
- Departments of Medicine and Urology, University of California, San Francisco, San Francisco, CA, United States
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, United States
- UCSF Benioff Initiative for Prostate Cancer Research, San Francisco, CA, United States
| |
Collapse
|
72
|
Lara OD, Wang Y, Asare A, Xu T, Chiu HS, Liu Y, Hu W, Sumazin P, Uppal S, Zhang L, Rauh-Hain JA, Sood AK. Pan-cancer clinical and molecular analysis of racial disparities. Cancer 2019; 126:800-807. [PMID: 31730714 DOI: 10.1002/cncr.32598] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/02/2019] [Accepted: 10/07/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Racial disparities in cancer outcomes are increasingly recognized, but comprehensive analyses, including molecular studies, are limited. The objective of the current study was to perform a pan-cancer clinical and epigenetic molecular analysis of outcomes in African American (AA) and European American (EA) patients. METHODS Cross-platform analyses using cancer databases (the Surveillance, Epidemiology, and End Results program database and the National Cancer Data Base) and a molecular database (The Cancer Genome Ancestry Atlas) were performed to evaluate clinical and epigenetic molecular differences between AA and EA patients based on genetic ancestry. RESULTS In the primary pan-cancer survival analysis using the Surveillance, Epidemiology, and End Results database (2,045,839 patients; 87.5% EA and 12.5% AA), AA patients had higher mortality rates for 28 of 42 cancer types analyzed (hazard ratio, >1.0). AAs continued to have higher mortality in 13 cancer types after adjustment for socioeconomic variables using the National Cancer Database (5,150,023 patients; 11.6% AA and 88.4% EA). Then, molecular features of 5,283 tumors were analyzed in patients who had genetic ancestry data available (87.2% EA and 12.8% AA). Genes were identified with altered DNA methylation along with increased microRNA expression levels unique to AA patients that are associated with cancer drug resistance. Increased miRNAs (miR-15a, miR-17, miR-130-3p, miR-181a) were noted in common among AAs with breast, kidney, thyroid, or prostate carcinomas. CONCLUSIONS The current results identified epigenetic features in AA patients who have cancer that may contribute to higher mortality rates compared with EA patients who have cancer. Therefore, a focus on molecular signatures unique to AAs may identify actionable molecular abnormalities.
Collapse
Affiliation(s)
- Olivia D Lara
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ying Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amma Asare
- Baylor College of Medicine, Houston, Texas
| | - Tao Xu
- Department of Gynecologic Oncology, University of Michigan, Ann Arbor, Michigan
| | | | - Yuexin Liu
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wei Hu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Shitanshu Uppal
- Department of Gynecologic Oncology, University of Michigan, Ann Arbor, Michigan
| | - Lin Zhang
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - J Alejandro Rauh-Hain
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
73
|
Testa U, Castelli G, Pelosi E. Cellular and Molecular Mechanisms Underlying Prostate Cancer Development: Therapeutic Implications. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E82. [PMID: 31366128 PMCID: PMC6789661 DOI: 10.3390/medicines6030082] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022]
Abstract
Prostate cancer is the most frequent nonskin cancer and second most common cause of cancer-related deaths in man. Prostate cancer is a clinically heterogeneous disease with many patients exhibiting an aggressive disease with progression, metastasis, and other patients showing an indolent disease with low tendency to progression. Three stages of development of human prostate tumors have been identified: intraepithelial neoplasia, adenocarcinoma androgen-dependent, and adenocarcinoma androgen-independent or castration-resistant. Advances in molecular technologies have provided a very rapid progress in our understanding of the genomic events responsible for the initial development and progression of prostate cancer. These studies have shown that prostate cancer genome displays a relatively low mutation rate compared with other cancers and few chromosomal loss or gains. The ensemble of these molecular studies has led to suggest the existence of two main molecular groups of prostate cancers: one characterized by the presence of ERG rearrangements (~50% of prostate cancers harbor recurrent gene fusions involving ETS transcription factors, fusing the 5' untranslated region of the androgen-regulated gene TMPRSS2 to nearly the coding sequence of the ETS family transcription factor ERG) and features of chemoplexy (complex gene rearrangements developing from a coordinated and simultaneous molecular event), and a second one characterized by the absence of ERG rearrangements and by the frequent mutations in the E3 ubiquitin ligase adapter SPOP and/or deletion of CDH1, a chromatin remodeling factor, and interchromosomal rearrangements and SPOP mutations are early events during prostate cancer development. During disease progression, genomic and epigenomic abnormalities accrued and converged on prostate cancer pathways, leading to a highly heterogeneous transcriptomic landscape, characterized by a hyperactive androgen receptor signaling axis.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
74
|
Gao S, Chen S, Han D, Barrett D, Han W, Ahmed M, Patalano S, Macoska JA, He HH, Cai C. Forkhead domain mutations in FOXA1 drive prostate cancer progression. Cell Res 2019; 29:770-772. [PMID: 31324883 DOI: 10.1038/s41422-019-0203-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/02/2019] [Indexed: 01/28/2023] Open
Affiliation(s)
- Shuai Gao
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Sujun Chen
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Princess Margaret Cancer Center/University Health Network, Toronto, ON, M5G1L7, Canada
| | - Dong Han
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - David Barrett
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Wanting Han
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Musaddeque Ahmed
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, M5G1L7, Canada
| | - Susan Patalano
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Jill A Macoska
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Housheng Hansen He
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada. .,Princess Margaret Cancer Center/University Health Network, Toronto, ON, M5G1L7, Canada.
| | - Changmeng Cai
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, 02125, USA.
| |
Collapse
|
75
|
Shen MM, Rubin MA. Prostate Cancer Research at the Crossroads. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a036277. [PMID: 30348836 DOI: 10.1101/cshperspect.a036277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Michael M Shen
- Departments of Medicine, Genetics and Development, Urology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032
| | - Mark A Rubin
- Englander Institute for Precision Medicine, Department of Pathology and Laboratory Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021.,Department of BioMedical Research, University of Bern and Inselspital, 3008 Bern, Switzerland
| |
Collapse
|
76
|
Bloom JB, Lebastchi AH, Gold SA, Hale GR, Sanford T, Mehralivand S, Ahdoot M, Rayn KN, Czarniecki M, Smith C, Valera V, Wood BJ, Merino MJ, Choyke PL, Parnes HL, Turkbey B, Pinto PA. Use of multiparametric magnetic resonance imaging and fusion-guided biopsies to properly select and follow African-American men on active surveillance. BJU Int 2019; 124:768-774. [PMID: 31141307 DOI: 10.1111/bju.14835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To determine the rate of Gleason Grade Group (GGG) upgrading in African-American (AA) men with a prior diagnosis of low-grade prostate cancer (GGG 1 or GGG 2) on 12-core systematic biopsy (SB) after multiparametric magnetic resonance imaging (mpMRI) and fusion biopsy (FB); and whether AA men who continued active surveillance (AS) after mpMRI and FB fared differently than a predominantly Caucasian (non-AA) population. PATIENTS AND METHODS A database of men who had undergone mpMRI and FB was queried to determine rates of upgrading by FB amongst men deemed to be AS candidates based on SB prior to referral. After FB, Kaplan-Meier curves were generated for AA men and non-AA men who then elected AS. The time to GGG upgrading and time continuing AS were compared using the log-rank test. RESULTS AA men referred with GGG 1 disease on previous SB were upgraded to GGG ≥3 by FB more often than non-AA men, 22.2% vs 12.7% (P = 0.01). A total of 32 AA men and 258 non-AA men then continued AS, with a median (interquartile range) follow-up of 39.19 (24.24-56.41) months. The median time to progression was 59.7 and 60.5 months, respectively (P = 0.26). The median time continuing AS was 61.9 months and not reached, respectively (P = 0.80). CONCLUSIONS AA men were more likely to be upgraded from GGG 1 on SB to GGG ≥3 on initial FB; however, AA and non-AA men on AS subsequently progressed at similar rates following mpMRI and FB. A greater tendency for SB to underestimate tumour grade in AA men may explain prior studies that have shown AA men to be at higher risk of progression during AS.
Collapse
Affiliation(s)
| | | | - Samuel A Gold
- Urologic Oncology Branch, NCI, NIH, Bethesda, MD, USA
| | - Graham R Hale
- Urologic Oncology Branch, NCI, NIH, Bethesda, MD, USA
| | - Thomas Sanford
- Urologic Oncology Branch, NCI, NIH, Bethesda, MD, USA.,Molecular Imaging Program, NCI, NIH, Bethesda, MD, USA
| | - Sherif Mehralivand
- Urologic Oncology Branch, NCI, NIH, Bethesda, MD, USA.,Molecular Imaging Program, NCI, NIH, Bethesda, MD, USA.,Department of Urology and Pediatric Urology, University Medical Center Mainz, Mainz, Germany
| | | | - Kareem N Rayn
- Urologic Oncology Branch, NCI, NIH, Bethesda, MD, USA
| | | | - Clayton Smith
- Molecular Imaging Program, NCI, NIH, Bethesda, MD, USA
| | | | - Bradford J Wood
- Center for Interventional Oncology, NCI, NIH, Bethesda, MD, USA
| | | | | | | | - Baris Turkbey
- Molecular Imaging Program, NCI, NIH, Bethesda, MD, USA
| | - Peter A Pinto
- Urologic Oncology Branch, NCI, NIH, Bethesda, MD, USA.,Center for Interventional Oncology, NCI, NIH, Bethesda, MD, USA
| |
Collapse
|
77
|
Baohong J, Sedarsky J, Srivastava S, Sesterhenn I, Dobi A, Quanlin L. ERG Tumor Type is Less Frequent in High Grade and High Stage Prostate Cancers of Chinese Men. J Cancer 2019; 10:1991-1996. [PMID: 31205559 PMCID: PMC6548164 DOI: 10.7150/jca.30025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/31/2019] [Indexed: 11/09/2022] Open
Abstract
Background: The incidence of prostatic adenocarcinoma has been rapidly increasing among Chinese men. This alarming trend prompted evaluations of early causal genomic alterations known to drive prostate tumorigenesis. Recurrent activation of the ETS-Related Gene (ERG) by genomic rearrangements is the most recognized early event in prostate cancer. Following the initial detection of ERG rearrangement at gene expression and genomic and levels, development of diagnostic quality antibodies against ERG oncoprotein have streamlined the rapid assessment of ERG frequencies world-wide. Unexpectedly, these studies revealed highest frequencies of ERG among Caucasian descents, lower frequencies among African Americans and even lower prevalence of ERG among Asian men. Objective: To asses in a prospective study ERG frequencies, clinico-pathological and prognostic associations of ERG among prostate cancer patients of the Dalian region of Northeast China, by an established immunohistochemical procedure that have been used in studies world-wide. Methods: Formalin fixed paraffin embedded specimens donated by patients (N=50) diagnosed with prostatic adenocarcinoma who underwent transurethral resection of the prostate (TURP) between 2007 and 2012 were evaluated for ERG by immunohistochemistry. Results: Of the 50 cases, 13/50 (26.0%) tumors were positive for ERG. In all cases, normal prostatic epithelial were ERG negative. ERG was more frequently detected in the lower Gleason score (≤7) and low T-stage. Consistent with reports from Asian countries the results of our study shows lower overall frequencies of ERG positive tumors when compared to reports from Western countries. Conclusion: The intriguing association of even lower ERG frequencies with high Gleason scores and higher T-stages provides impetus for current driver gene discoveries focused on the predominantly ERG negative prostate cancers of Asian men.
Collapse
Affiliation(s)
- Jiang Baohong
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jason Sedarsky
- Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Shiv Srivastava
- Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | | | - Albert Dobi
- Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Li Quanlin
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
78
|
Glass GE, O'Hara J, Canham N, Cilliers D, Dunaway D, Fenwick AL, Jeelani N, Johnson D, Lester T, Lord H, Morton JEV, Nishikawa H, Noons P, Schwiebert K, Shipster C, Taylor‐Beadling A, Twigg SRF, Vasudevan P, Wall SA, Wilkie AOM, Wilson LC. ERF-related craniosynostosis: The phenotypic and developmental profile of a new craniosynostosis syndrome. Am J Med Genet A 2019; 179:615-627. [PMID: 30758909 PMCID: PMC6491982 DOI: 10.1002/ajmg.a.61073] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/20/2018] [Accepted: 12/24/2018] [Indexed: 12/25/2022]
Abstract
Mutations in the ERF gene, coding for ETS2 repressor factor, a member of the ETS family of transcription factors cause a recently recognized syndromic form of craniosynostosis (CRS4) with facial dysmorphism, Chiari-1 malformation, speech and language delay, and learning difficulties and/or behavioral problems. The overall prevalence of ERF mutations in patients with syndromic craniosynostosis is around 2%, and 0.7% in clinically nonsyndromic craniosynostosis. Here, we present findings from 16 unrelated probands with ERF-related craniosynostosis, with additional data from 20 family members sharing the mutations. Most of the probands exhibited multisutural (including pan-) synostosis but a pattern involving the sagittal and lambdoid sutures (Mercedes-Benz pattern) predominated. Importantly the craniosynostosis was often postnatal in onset, insidious and progressive with subtle effects on head morphology resulting in a median age at presentation of 42 months among the probands and, in some instances, permanent visual impairment due to unsuspected raised intracranial pressure (ICP). Facial dysmorphism (exhibited by all of the probands and many of the affected relatives) took the form of orbital hypertelorism, mild exorbitism and malar hypoplasia resembling Crouzon syndrome but, importantly, a Class I occlusal relationship. Speech delay, poor gross and/or fine motor control, hyperactivity and poor concentration were common. Cranial vault surgery for raised ICP and/or Chiari-1 malformation was expected when multisutural synostosis was observed. Variable expressivity and nonpenetrance among genetically affected relatives was encountered. These observations form the most complete phenotypic and developmental profile of this recently identified craniosynostosis syndrome yet described and have important implications for surgical intervention and follow-up.
Collapse
Affiliation(s)
- Graeme E. Glass
- Department of SurgerySidra MedicineDohaQatar
- Division of Clinical SurgeryWeill Cornell Medical CollegeDohaQatar
| | - Justine O'Hara
- Department of Craniofacial SurgeryGreat Ormond Street HospitalLondonUnited Kingdom
| | - Natalie Canham
- North West Thames Regional Genetics Service, Kennedy Galton CentreNorthwick Park and St. Mark's HospitalsHarrowUnited Kingdom
| | - Deirdre Cilliers
- Clinical Genetics Service, Oxford Centre for Genomic MedicineOxford University Hospitals NHS Foundation Trust, Nuffield Orthopedic CentreOxfordUnited Kingdom
| | - David Dunaway
- Department of Craniofacial SurgeryGreat Ormond Street HospitalLondonUnited Kingdom
| | - Aimee L. Fenwick
- Clinical Genetics Group, MRC Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Noor‐Owase Jeelani
- Department of SurgerySidra MedicineDohaQatar
- Department of Craniofacial SurgeryGreat Ormond Street HospitalLondonUnited Kingdom
| | - David Johnson
- Craniofacial Unit, Department of Plastic and Reconstructive SurgeryOxford University Hospitals NHS Trust, John Radcliffe HospitalOxfordUnited Kingdom
| | - Tracy Lester
- Oxford Genetics LaboratoriesOxford University Hospitals NHS Foundation Trust, The Churchill HospitalOxfordUnited Kingdom
| | - Helen Lord
- Oxford Genetics LaboratoriesOxford University Hospitals NHS Foundation Trust, The Churchill HospitalOxfordUnited Kingdom
| | - Jenny E. V. Morton
- Department of Clinical GeneticsWest Midlands Regional Clinical Genetics Service and Birmingham Health PartnersBirminghamUnited Kingdom
- Department of Clinical GeneticsBirmingham Women's and Children's Hospitals, NHS Foundation TrustBirminghamUnited Kingdom
| | - Hiroshi Nishikawa
- Department of Craniofacial SurgeryBirmingham Children's HospitalBirminghamUnited Kingdom
| | - Peter Noons
- Department of Clinical GeneticsWest Midlands Regional Clinical Genetics Service and Birmingham Health PartnersBirminghamUnited Kingdom
- Department of Clinical GeneticsBirmingham Women's and Children's Hospitals, NHS Foundation TrustBirminghamUnited Kingdom
| | - Kemmy Schwiebert
- Department of Clinical & Academic OphthalmologyGreat Ormond Street HospitalLondonUnited Kingdom
| | - Caroleen Shipster
- Department of Craniofacial SurgeryGreat Ormond Street HospitalLondonUnited Kingdom
| | - Alison Taylor‐Beadling
- Molecular Genetics Laboratory, North East Thames Regional Genetics ServiceGreat Ormond Street HospitalLondonUnited Kingdom
| | - Stephen R. F. Twigg
- Clinical Genetics Group, MRC Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Pradeep Vasudevan
- Department of Clinical GeneticsUniversity Hospitals of Leicester, Glenfield HospitalLeicesterUnited Kingdom
| | - Steven A. Wall
- Craniofacial Unit, Department of Plastic and Reconstructive SurgeryOxford University Hospitals NHS Trust, John Radcliffe HospitalOxfordUnited Kingdom
| | - Andrew O. M. Wilkie
- Clinical Genetics Service, Oxford Centre for Genomic MedicineOxford University Hospitals NHS Foundation Trust, Nuffield Orthopedic CentreOxfordUnited Kingdom
- Clinical Genetics Group, MRC Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUnited Kingdom
- Craniofacial Unit, Department of Plastic and Reconstructive SurgeryOxford University Hospitals NHS Trust, John Radcliffe HospitalOxfordUnited Kingdom
| | - Louise C. Wilson
- Clinical Genetics ServiceGreat Ormond Street HospitalLondonUnited Kingdom
| |
Collapse
|
79
|
Bedolla RG, Shah DP, Huang SB, Reddick RL, Ghosh R, Kumar AP. Receptor tyrosine kinase recepteur d'origine nantais as predictive marker for aggressive prostate cancer in African Americans. Mol Carcinog 2019; 58:854-861. [PMID: 30859654 DOI: 10.1002/mc.23002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/14/2019] [Accepted: 02/21/2019] [Indexed: 12/11/2022]
Abstract
Published evidence shows a correlation between several molecular markers and prostate cancer (PCa) progression including in African Americans (AAs) who are disproportionately affected. Our early detection efforts led to the identification of elevated levels of antiapoptotic protein, c-FLIP and its upstream regulatory factors such as androgen receptor (AR), recepteur d'origine nantais (RON), a receptor tyrosine kinase in human prostate tumors. The primary objective of this study was to explore whether these markers play a role in racial disparities using immunohistochemistry in prostatectomy samples from a cohort of AA, Hispanic Whites (HWs), and non-Hispanic Whites (NHWs). Bivariable and multivariable logistic regression analyses were used to identify a statistical association between molecular markers, possible correlation with risk factors including race, obesity, prostate-specific antigen (PSA) and disease aggressiveness. Further, changes in the levels and expression of these molecular markers were also evaluated using human PCa cell lines. We found significantly elevated levels of RON ( P = 0.0082), AR ( P = 0.0001), c-FLIP ( P = 0.0071) in AAs compared with HWs or NHWs. Furthermore, a higher proportion of HW and NHWs had a high Gleason score (>6) but not PSA as compared to AAs ( P = 0.032). In summary, our findings suggest that PSA was important in predicting aggressive disease for the cohort overall; however, high levels of RON may play a role in predisposing AA men to develop aggressive disease. Future research is needed using large datasets to confirm these findings and to explore whether all or any of these markers could aid in race-specific stratification of patients for treatment.
Collapse
Affiliation(s)
- Roble G Bedolla
- Departments of Urology, The University of Texas Health, San Antonio, Texas
| | - Dimpy P Shah
- Departments of Epidemiology and Biostatistics, The University of Texas Health, San Antonio, Texas.,Departments of Molecular Medicine, The University of Texas Health, San Antonio, Texas.,Mays Cancer Center, The University of Texas Health, San Antonio, Texas
| | - Shih-Bo Huang
- Departments of Urology, The University of Texas Health, San Antonio, Texas
| | - Robert L Reddick
- Departments of Pathology, The University of Texas Health, San Antonio, Texas
| | - Rita Ghosh
- Departments of Urology, The University of Texas Health, San Antonio, Texas.,Departments of Molecular Medicine, The University of Texas Health, San Antonio, Texas.,Mays Cancer Center, The University of Texas Health, San Antonio, Texas.,Departments of Pharmacology, The University of Texas Health, San Antonio, Texas
| | - Addanki P Kumar
- Departments of Urology, The University of Texas Health, San Antonio, Texas.,Mays Cancer Center, The University of Texas Health, San Antonio, Texas.,Departments of Pathology, The University of Texas Health, San Antonio, Texas.,Departments of Pharmacology, The University of Texas Health, San Antonio, Texas.,Research Division, South Texas Veterans Health Care System, The University of Texas Health, San Antonio, Texas
| |
Collapse
|
80
|
Faisal FA, Kaur HB, Tosoian JJ, Tomlins SA, Schaeffer EM, Lotan TL. SPINK1 expression is enriched in African American prostate cancer but is not associated with altered immune infiltration or oncologic outcomes post-prostatectomy. Prostate Cancer Prostatic Dis 2019; 22:552-559. [PMID: 30850708 DOI: 10.1038/s41391-019-0139-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/05/2019] [Accepted: 01/07/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND The SPINK1 molecular subtype is more common in African-American (AA) men with prostatic adenocarcinoma (PCa) than European Americans (EA). Studies have suggested that SPINK1 expression is associated with more aggressive disease. However, the size, follow-up, and racial diversity of prior patient cohorts have limited our understanding of SPINK1 expression in AA men. The objective was to determine the associations between SPINK1 subtype, race, and oncologic outcomes after radical prostatectomy (RP). METHODS A total of 186 AA and 206 EA men who underwent RP were matched according to pathologic grade. We examined SPINK1 status by immunohistochemistry on tissue microarrays using a genetically validated assay. Cox proportional hazard analyses assessed the association of SPINK1 status with oncologic outcomes in race-specific multivariate models. A second objective was to determine the correlation between CD3/CD8 T cell densities with SPINK1 status and race, using immunostaining and automated image analysis. RESULTS SPINK1-positive subtype was present in 25% (45/186) of AA and 15% (30/206) of EA men (p = 0.013). There were no differences in pathologic grade, pathologic stage, biochemical recurrence (BCR)-free survival, or metastasis-free survival between SPINK1-positive and SPINK1-negative tumors in the overall cohort or by race. In multivariate analyses, SPINK1 expression was not associated with BCR (AA: HR 0.99, 95% CI 0.56-1.75, p = 0.976; EA: HR 0.88, 95% CI 0.43-1.77, p = 0.720) or metastasis (AA: HR 0.79, 95% CI 0.25-2.49, p = 0.691; EA: HR 1.55, 95% CI 0.58-4.11, p = 0.381) in either AA or EA men. There were no significant differences in surrounding CD3/CD8 lymphocyte densities between SPINK1-positive and SPINK1-negative tumors in either race. CONCLUSIONS SPINK1-positive subtype is more prevalent in AA than EA men with PCa. Contrary to previous studies, we found that SPINK1 protein expression was not associated with worse pathologic or oncologic outcomes after RP in either AA men or EA men.
Collapse
Affiliation(s)
- Farzana A Faisal
- Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Harsimar B Kaur
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Scott A Tomlins
- Department of Urology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Edward M Schaeffer
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tamara L Lotan
- Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
81
|
Kumar R, Bhat TA, Walsh EM, Chaudhary AK, O'Malley J, Rhim JS, Wang J, Morrison CD, Attwood K, Bshara W, Mohler JL, Yadav N, Chandra D. Cytochrome c Deficiency Confers Apoptosome and Mitochondrial Dysfunction in African-American Men with Prostate Cancer. Cancer Res 2019; 79:1353-1368. [PMID: 30765600 DOI: 10.1158/0008-5472.can-18-2383] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/16/2018] [Accepted: 01/31/2019] [Indexed: 01/07/2023]
Abstract
Although African-American (AA) patients with prostate cancer tend to develop greater therapeutic resistance and faster prostate cancer recurrence compared with Caucasian-American (CA) men, the molecular mechanisms of this racial prostate cancer disparity remain undefined. In this study, we provide the first comprehensive evidence that cytochrome c deficiency in AA primary tumors and cancer cells abrogates apoptosome-mediated caspase activation and contributes to mitochondrial dysfunction, thereby promoting therapeutic resistance and prostate cancer aggressiveness in AA men. In AA prostate cancer cells, decreased nuclear accumulation of nuclear respiration factor 1 (Nrf1) and its subsequent loss of binding to the cytochrome c promoter mediated cytochrome c deficiency. The activation of cellular Myc (c-Myc) and NF-κB or inhibition of AKT prevented nuclear translocation of Nrf1. Genetic and pharmacologic inhibition of c-Myc and NF-κB or activation of AKT promoted Nrf1 binding to cytochrome c promoter, cytochrome c expression, caspase activation, and cell death. The lack of p-Drp1S616 in AA prostate cancer cells contributed to defective cytochrome c release and increased resistance to apoptosis, indicating that restoration of cytochrome c alone may be insufficient to induce effective apoptosis. Cytochrome c deficiency promoted the acquisition of glycolytic phenotypes and mitochondrial dysfunction, whereas cytochrome c restoration via inhibition of c-Myc and NF-κB or activation of AKT attenuated glycolysis in AA prostate cancer cells. Inhibition of c-Myc and NF-κB enhanced the efficacy of docetaxel in tumor xenografts. Therefore, restoring cytochrome c may overcome therapeutic resistance and prostate cancer aggressiveness in AA men. Overall, this study provides the first comprehensive experimental, mechanistic, and clinical evidence for apoptosome and mitochondrial dysfunction in prostate cancer racial disparity. SIGNIFICANCE: Mechanistic insights on prostate cancer health disparity among American men provide novel approaches to restore mitochondrial function, which can address therapeutic resistance and aggressiveness in African-American men with prostate cancer.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Tariq A Bhat
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Elise M Walsh
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Ajay K Chaudhary
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Jordan O'Malley
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Johng S Rhim
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of Health Sciences, Bethesda, Maryland
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Carl D Morrison
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Kristopher Attwood
- Department of Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Wiam Bshara
- Pathology Resource Network, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - James L Mohler
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Neelu Yadav
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Dhyan Chandra
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
| |
Collapse
|
82
|
Nicholas TR, Strittmatter BG, Hollenhorst PC. Oncogenic ETS Factors in Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:409-436. [PMID: 31900919 DOI: 10.1007/978-3-030-32656-2_18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prostate cancer is unique among carcinomas in that a fusion gene created by a chromosomal rearrangement is a common driver of the disease. The TMPRSS2/ERG rearrangement drives aberrant expression of the ETS family transcription factor ERG in 50% of prostate tumors. Similar rearrangements promote aberrant expression of the ETS family transcription factors ETV1 and ETV4 in another 10% of cases. Together, these three ETS factors are thought to promote tumorigenesis in the majority of prostate cancers. A goal of precision medicine is to be able to apply targeted therapeutics that are specific to disease subtypes. ETS gene rearrangement positive tumors represent the largest molecular subtype of prostate cancer, but to date there is no treatment specific to this marker. In this chapter we will review the latest findings regarding the molecular mechanisms of ETS factor function in the prostate. These molecular details may provide a path towards new therapeutic targets for this subtype of prostate cancer. Further, we will describe efforts to target the oncogenic functions of ETS family transcription factors directly as well as indirectly.
Collapse
Affiliation(s)
| | - Brady G Strittmatter
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Peter C Hollenhorst
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA.
| |
Collapse
|
83
|
Jaratlerdsiri W, Chan EKF, Gong T, Petersen DC, Kalsbeek AMF, Venter PA, Stricker PD, Bornman MSR, Hayes VM. Whole-Genome Sequencing Reveals Elevated Tumor Mutational Burden and Initiating Driver Mutations in African Men with Treatment-Naïve, High-Risk Prostate Cancer. Cancer Res 2018; 78:6736-6746. [PMID: 30217929 DOI: 10.1158/0008-5472.can-18-0254] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/05/2018] [Accepted: 09/04/2018] [Indexed: 11/16/2022]
Abstract
: African-American men are more likely than any other racial group to die from prostate cancer. The contribution of acquired genomic variation to this racial disparity is largely unknown, as genomic from Africa is lacking. Here, we performed the first tumor-normal paired deep whole-genome sequencing for Africa. A direct study-matched comparison between African- and European-derived, treatment-naïve, high-risk prostate tumors for 15 cases allowed for further comparative analyses of existing data. Excluding a single hypermutated tumor with 55 mutations per megabase, we observed a 1.8-fold increase in small somatic variants in African- versus European-derived tumors (P = 1.02e-04), rising to 4-fold when compared with published tumor-matched data. Furthermore, we observed an increase in oncogenic driver mutations in African tumors (P = 2.92e-03); roughly 30% of impacted genes were novel to prostate cancer, and 79% of recurrent driver mutations appeared early in tumorigenesis. Although complex genomic rearrangements were less frequent in African tumors, we describe a uniquely hyperduplicated tumor affecting 149 transposable elements. Comparable with African Americans, ERG fusions and PIK3CA mutations were absent and PTEN loss less frequent. CCND1 and MYC were frequently gained, with somatic copy-number changes more likely to occur late in tumorigenesis. In addition to traditional prostate cancer gene pathways, genes regulating calcium ion-ATPase signal transduction were disrupted in African tumors. Although preliminary, our results suggest that further validation and investigation into the potential implications for elevated tumor mutational burden and tumor-initiating mutations in clinically unfavorable prostate cancer can improve patient outcomes in Africa. SIGNIFICANCE: The first whole-genome sequencing study for high-risk prostate cancer in African men allows a simultaneous comparison of ethnic differences relative to European populations and of the influences of the environment relative to African-American men. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/78/24/6736/F1.large.jpg.See related commentary by Huang, p. 6726.
Collapse
Affiliation(s)
- Weerachai Jaratlerdsiri
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Eva K F Chan
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, University of New South Wales, Randwick, New South Wales, Australia
| | - Tingting Gong
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Central Clinical School, University of Sydney, Camperdown, New South Wales, Australia
| | - Desiree C Petersen
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, University of New South Wales, Randwick, New South Wales, Australia
| | - Anton M F Kalsbeek
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, University of New South Wales, Randwick, New South Wales, Australia
| | - Philip A Venter
- Department of Medical Sciences, University of Limpopo, Turfloop Campus, Limpopo, South Africa
| | - Phillip D Stricker
- Department of Urology, St. Vincent's Hospital Sydney, Darlinghurst, New South Wales, Australia
| | - M S Riana Bornman
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Vanessa M Hayes
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
- St Vincent's Clinical School, University of New South Wales, Randwick, New South Wales, Australia
- Central Clinical School, University of Sydney, Camperdown, New South Wales, Australia
- Department of Medical Sciences, University of Limpopo, Turfloop Campus, Limpopo, South Africa
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
84
|
Althubiti MA. Mutation Frequencies in Endometrial Cancer Patients of Different Ethnicities and Tumor Grades: An Analytical Study. SAUDI JOURNAL OF MEDICINE & MEDICAL SCIENCES 2018; 7:16-21. [PMID: 30787852 PMCID: PMC6381847 DOI: 10.4103/sjmms.sjmms_154_18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Endometrial carcinoma is a predominant health problem for women worldwide. However, there is a lack of data on genetic mutation frequencies in endometrial cancer patients of different ethnicities and tumor grades. Objective: The objective of this study is to provide data regarding mutation frequencies in endometrial cancer patients of different ethnic groups and tumor grades by analyzing large-scale cancer genomic datasets of a database. Materials and Methods: The following databases of cBioPortal were explored for possible mutation frequency variations in endometrial cancer patients: the Uterine Corpus Endometrial Carcinoma (TCGA, PanCancer Atlas) database for ethnicity-based studies; the Uterine Corpus Endometrial Carcinoma (TCGA, Nature 2013) database for tumor grade-based study; and GDC Data Portal database for calculating survival rates using the Kaplan–Meier method. Results: PTEN mutation frequency was almost identical in all ethnic groups studied (White, Black/African American, Asian, Native Hawaiian or other Pacific Islander, and American Indian or Asian Native). PIK3CA and ARID1A mutation frequencies were higher in White and Asian patients compared with other ethnicities; TP53 and FAT1 mutation frequencies were higher in Black/African Americans; and CTNNB1 and RYR2 mutation frequencies were higher Native Hawaiians or Asian Natives. TTN mutation frequency was lower in Asian patients. With regards to mutation frequencies at different tumor stages, in all genes, >50% of the mutations occurred during the first stage, except in TP53 and POLQ. In terms of prognosis in endometrial cancer considering the 10 most frequently mutated genes, PIK3CA and ARID1A mutations were correlated with good prognosis, whereas TP53 and PIK3R1 mutations were correlated with poor prognosis; mutations in all other genes did not show significant differences. Conclusion: This study revealed a new mutation frequency profile for different ethnicities and tumor grades in endometrial cancer patients. However, because this is a retrospective study, future prospective studies should be conducted including large sample sizes and more controlled measurements.
Collapse
Affiliation(s)
- Mohammad A Althubiti
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
85
|
Huang FW. Towards Greater Inclusion in Cancer Genomics Studies. Cancer Res 2018; 78:6726-6727. [DOI: 10.1158/0008-5472.can-18-3382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 12/24/2022]
|
86
|
Tang W, Wallace TA, Yi M, Magi-Galluzzi C, Dorsey TH, Onabajo OO, Obajemu A, Jordan SV, Loffredo CA, Stephens RM, Silverman RH, Stark GR, Klein EA, Prokunina-Olsson L, Ambs S. IFNL4-ΔG Allele Is Associated with an Interferon Signature in Tumors and Survival of African-American Men with Prostate Cancer. Clin Cancer Res 2018; 24:5471-5481. [PMID: 30012562 PMCID: PMC6214748 DOI: 10.1158/1078-0432.ccr-18-1060] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/12/2018] [Accepted: 07/10/2018] [Indexed: 12/27/2022]
Abstract
Purpose: Men of African ancestry experience an excessive prostate cancer mortality that could be related to an aggressive tumor biology. We previously described an immune-inflammation signature in prostate tumors of African-American (AA) patients. Here, we further deconstructed this signature and investigated its relationships with tumor biology, survival, and a common germline variant in the IFNλ4 (IFNL4) gene.Experimental Design: We analyzed gene expression in prostate tissue datasets and performed genotype and survival analyses. We also overexpressed IFNL4 in human prostate cancer cells.Results: We found that a distinct interferon (IFN) signature that is analogous to the previously described "IFN-related DNA damage resistance signature" (IRDS) occurs in prostate tumors. Evaluation of two independent patient cohorts revealed that IRDS is detected about twice as often in prostate tumors of AA than European-American men. Furthermore, analysis in TCGA showed an association of increased IRDS in prostate tumors with decreased disease-free survival. To explain these observations, we assessed whether IRDS is associated with an IFNL4 germline variant (rs368234815-ΔG) that controls production of IFNλ4, a type III IFN, and is most common in individuals of African ancestry. We show that the IFNL4 rs368234815-ΔG allele was significantly associated with IRDS in prostate tumors and overall survival of AA patients. Moreover, IFNL4 overexpression induced IRDS in three human prostate cancer cell lines.Conclusions: Our study links a germline variant that controls production of IFNλ4 to the occurrence of a clinically relevant IFN signature in prostate tumors that may predominantly affect men of African ancestry. Clin Cancer Res; 24(21); 5471-81. ©2018 AACR.
Collapse
Affiliation(s)
- Wei Tang
- Laboratory of Human Carcinogenesis, Center for Cancer Research (CCR), NCI, NIH, Bethesda, Maryland
| | - Tiffany A Wallace
- Laboratory of Human Carcinogenesis, Center for Cancer Research (CCR), NCI, NIH, Bethesda, Maryland
| | - Ming Yi
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | - Tiffany H Dorsey
- Laboratory of Human Carcinogenesis, Center for Cancer Research (CCR), NCI, NIH, Bethesda, Maryland
| | - Olusegun O Onabajo
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Adeola Obajemu
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Symone V Jordan
- Laboratory of Human Carcinogenesis, Center for Cancer Research (CCR), NCI, NIH, Bethesda, Maryland
| | - Christopher A Loffredo
- Cancer Prevention and Control Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Robert M Stephens
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Robert H Silverman
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - George R Stark
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Eric A Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio
| | - Ludmila Prokunina-Olsson
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center for Cancer Research (CCR), NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
87
|
Yuan J, Hu Z, Mahal BA, Zhao SD, Kensler KH, Pi J, Hu X, Zhang Y, Wang Y, Jiang J, Li C, Zhong X, Montone KT, Guan G, Tanyi JL, Fan Y, Xu X, Morgan MA, Long M, Zhang Y, Zhang R, Sood AK, Rebbeck TR, Dang CV, Zhang L. Integrated Analysis of Genetic Ancestry and Genomic Alterations across Cancers. Cancer Cell 2018; 34:549-560.e9. [PMID: 30300578 PMCID: PMC6348897 DOI: 10.1016/j.ccell.2018.08.019] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 06/08/2018] [Accepted: 08/29/2018] [Indexed: 12/22/2022]
Abstract
Disparities in cancer care have been a long-standing challenge. We estimated the genetic ancestry of The Cancer Genome Atlas patients, and performed a pan-cancer analysis on the influence of genetic ancestry on genomic alterations. Compared with European Americans, African Americans (AA) with breast, head and neck, and endometrial cancers exhibit a higher level of chromosomal instability, while a lower level of chromosomal instability was observed in AAs with kidney cancers. The frequencies of TP53 mutations and amplification of CCNE1 were increased in AAs in the cancer types showing higher levels of chromosomal instability. We observed lower frequencies of genomic alterations affecting genes in the PI3K pathway in AA patients across cancers. Our result provides insight into genomic contribution to cancer disparities.
Collapse
Affiliation(s)
- Jiao Yuan
- Center for Research on Reproduction & Women's Health, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhongyi Hu
- Center for Research on Reproduction & Women's Health, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brandon A Mahal
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sihai D Zhao
- Department of Statistics, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA
| | - Kevin H Kensler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Jingjiang Pi
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiaowen Hu
- Center for Research on Reproduction & Women's Health, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Youyou Zhang
- Center for Research on Reproduction & Women's Health, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yueying Wang
- Center for Research on Reproduction & Women's Health, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Junjie Jiang
- Center for Research on Reproduction & Women's Health, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chunsheng Li
- Center for Research on Reproduction & Women's Health, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaomin Zhong
- Center for Stem Cell Biology and Tissue Engineering, Department of Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Kathleen T Montone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guoqiang Guan
- Department of Orthodontics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Janos L Tanyi
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark A Morgan
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Meixiao Long
- Department of Internal Medicine, Division of Hematology, Ohio State University, Columbus, OH 43210, USA
| | - Yuzhen Zhang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | | | - Anil K Sood
- Center for RNA Interference and Non-coding RNA, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77584, USA
| | - Timothy R Rebbeck
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Chi V Dang
- Wistar Institute, Philadelphia, PA 19104, USA; Ludwig Institute for Cancer Research, New York City, NY 10017, USA
| | - Lin Zhang
- Center for Research on Reproduction & Women's Health, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
88
|
Kaur HB, Guedes LB, Lu J, Maldonado L, Reitz L, Barber JR, De Marzo AM, Tosoian JJ, Tomlins SA, Schaeffer EM, Joshu CE, Sfanos KS, Lotan TL. Association of tumor-infiltrating T-cell density with molecular subtype, racial ancestry and clinical outcomes in prostate cancer. Mod Pathol 2018; 31:1539-1552. [PMID: 29849114 PMCID: PMC6168349 DOI: 10.1038/s41379-018-0083-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/01/2018] [Accepted: 05/03/2018] [Indexed: 01/02/2023]
Abstract
The inflammatory microenvironment plays an important role in the pathogenesis and progression of tumors and may be associated with somatic genomic alterations. We examined the association of tumor-infiltrating T-cell density with clinical-pathologic variables, tumor molecular subtype, and oncologic outcomes in surgically treated primary prostate cancer occurring in patients of European-American or African-American ancestry. We evaluated 312 primary prostate tumors, enriched for patients with African-American ancestry and high grade disease. Tissue microarrays were immunostained for CD3, CD8, and FOXP3 and were previously immunostained for ERG and PTEN using genetically validated protocols. Image analysis for quantification of T-cell density in tissue microarray tumor spots was performed. Automated quantification of T-cell densities in tumor-containing regions of tissue microarray spots and standard histologic sections were correlated (r = 0.73, p < 0.00001) and there was good agreement between visual and automated T-cell density counts on tissue microarray spots (r = 0.93, p < 0.00001). There was a significant correlation between CD3+, CD8+, and FOXP3+ T-cell densities (p < 0.00001), but these were not associated with most clinical or pathologic variables. Increased T-cell density was significantly associated with ERG positivity (median 309 vs. 188 CD3+ T cells/mm2; p = 0.0004) and also with PTEN loss (median 317 vs. 192 CD3+ T cells/mm2; p = 0.001) in the combined cohort of matched European-American and African-American ancestry patients. The same association or a similar trend was present in patients of both ancestries when analyzed separately. When the African-American patients from the matched race set were combined with a separate high grade set of African-American cases, there was a weak association of increased FOXP3+ T-cell densities with increased risk of metastasis in multivariable analysis. Though high T-cell density is associated with specific molecular subclasses of prostate cancer, we did not find an association of T-cell density with racial ancestry.
Collapse
Affiliation(s)
- Harsimar B Kaur
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Liana B Guedes
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiayun Lu
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Laneisha Maldonado
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Logan Reitz
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John R Barber
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeffrey J Tosoian
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Scott A Tomlins
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Edward M Schaeffer
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology, Northwestern University, Chicago, IL, USA
| | - Corinne E Joshu
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Karen S Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
89
|
Abstract
Despite the high long-term survival in localized prostate cancer, metastatic prostate cancer remains largely incurable even after intensive multimodal therapy. The lethality of advanced disease is driven by the lack of therapeutic regimens capable of generating durable responses in the setting of extreme tumor heterogeneity on the genetic and cell biological levels. Here, we review available prostate cancer model systems, the prostate cancer genome atlas, cellular and functional heterogeneity in the tumor microenvironment, tumor-intrinsic and tumor-extrinsic mechanisms underlying therapeutic resistance, and technological advances focused on disease detection and management. These advances, along with an improved understanding of the adaptive responses to conventional cancer therapies, anti-androgen therapy, and immunotherapy, are catalyzing development of more effective therapeutic strategies for advanced disease. In particular, knowledge of the heterotypic interactions between and coevolution of cancer and host cells in the tumor microenvironment has illuminated novel therapeutic combinations with a strong potential for more durable therapeutic responses and eventual cures for advanced disease. Improved disease management will also benefit from artificial intelligence-based expert decision support systems for proper standard of care, prognostic determinant biomarkers to minimize overtreatment of localized disease, and new standards of care accelerated by next-generation adaptive clinical trials.
Collapse
Affiliation(s)
- Guocan Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Di Zhao
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Denise J Spring
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
90
|
Frank S, Nelson P, Vasioukhin V. Recent advances in prostate cancer research: large-scale genomic analyses reveal novel driver mutations and DNA repair defects. F1000Res 2018; 7. [PMID: 30135717 PMCID: PMC6073096 DOI: 10.12688/f1000research.14499.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2018] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer (PCa) is a disease of mutated and misregulated genes. However, primary prostate tumors have relatively few mutations, and only three genes (
ERG,
PTEN, and
SPOP) are recurrently mutated in more than 10% of primary tumors. On the other hand, metastatic castration-resistant tumors have more mutations, but, with the exception of the androgen receptor gene (
AR), no single gene is altered in more than half of tumors. Structural genomic rearrangements are common, including
ERG fusions, copy gains involving the
MYC locus, and copy losses containing
PTEN. Overall, instead of being associated with a single dominant driver event, prostate tumors display various combinations of modifications in oncogenes and tumor suppressors. This review takes a broad look at the recent advances in PCa research, including understanding the genetic alterations that drive the disease and how specific mutations can sensitize tumors to potential therapies. We begin with an overview of the genomic landscape of primary and metastatic PCa, enabled by recent large-scale sequencing efforts. Advances in three-dimensional cell culture techniques and mouse models for PCa are also discussed, and particular emphasis is placed on the benefits of patient-derived xenograft models. We also review research into understanding how ETS fusions (in particular,
TMPRSS2-ERG) and
SPOP mutations contribute to tumor initiation. Next, we examine the recent findings on the prevalence of germline DNA repair mutations in about 12% of patients with metastatic disease and their potential benefit from the use of poly(ADP-ribose) polymerase (PARP) inhibitors and immune modulation. Lastly, we discuss the recent increased prevalence of AR-negative tumors (neuroendocrine and double-negative) and the current state of immunotherapy in PCa. AR remains the primary clinical target for PCa therapies; however, it does not act alone, and better understanding of supporting mutations may help guide the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Sander Frank
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Peter Nelson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Departments of Medicine and Urology, University of Washington, Seattle, WA 98195, USA.,Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Valeri Vasioukhin
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
91
|
Teslow EA, Bao B, Dyson G, Legendre C, Mitrea C, Sakr W, Carpten JD, Powell I, Bollig-Fischer A. Exogenous IL-6 induces mRNA splice variant MBD2_v2 to promote stemness in TP53 wild-type, African American PCa cells. Mol Oncol 2018; 12:1138-1152. [PMID: 29741809 PMCID: PMC6026877 DOI: 10.1002/1878-0261.12316] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/07/2018] [Accepted: 04/25/2018] [Indexed: 11/12/2022] Open
Abstract
African American men (AAM) are at higher risk of being diagnosed with prostate cancer (PCa) and are at higher risk of dying from the disease compared to European American men (EAM). We sought to better understand PCa molecular diversity that may be underlying these disparities. We performed RNA‐sequencing analysis on high‐grade PCa to identify genes showing differential tumor versus noncancer adjacent tissue expression patterns unique to AAM or EAM. We observed that interleukin‐6 (IL‐6) was upregulated in the nonmalignant adjacent tissue in AAM, but in EAM IL‐6 expression was higher in PCa tissue. Enrichment analysis identified that genes linked to the function of TP53 were overrepresented and downregulated in PCa tissue from AAM. These RNA‐sequencing results informed our subsequent investigation of a diverse PCa cell line panel. We observed that PCa cell lines that are TP53 wild‐type, which includes cell lines derived from AAM (MDA‐PCa‐2b and RC77T), did not express detectable IL‐6 mRNA. IL‐6 treatment of these cells downregulated wild‐type TP53 protein and induced mRNA and protein expression of the epigenetic reader methyl CpG binding domain protein 2 (MBD2), specifically the alternative mRNA splicing variant MBD2_v2. Further investigation validated that upregulation of this short isoform promotes self‐renewal and expansion of PCa cancer stem‐like cells (CSCs). In conclusion, this report contributes to characterizing gene expression patterns in high‐grade PCa and adjacent noncancer tissues from EAM and AAM. The results we describe here advance what is known about the biology associated with PCa race disparities and the molecular signaling of CSCs.
Collapse
Affiliation(s)
- Emily A Teslow
- Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA.,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bin Bao
- Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA.,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Greg Dyson
- Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA.,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Christophe Legendre
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Cristina Mitrea
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Computer Science, Wayne State University, Detroit, MI, USA
| | - Wael Sakr
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| | - John D Carpten
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Isaac Powell
- Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA.,Department of Urology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Aliccia Bollig-Fischer
- Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA.,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
92
|
Prostate Cancer Genomics: Recent Advances and the Prevailing Underrepresentation from Racial and Ethnic Minorities. Int J Mol Sci 2018; 19:ijms19041255. [PMID: 29690565 PMCID: PMC5979433 DOI: 10.3390/ijms19041255] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/15/2018] [Accepted: 04/15/2018] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (CaP) is the most commonly diagnosed non-cutaneous cancer and the second leading cause of male cancer deaths in the United States. Among African American (AA) men, CaP is the most prevalent malignancy, with disproportionately higher incidence and mortality rates. Even after discounting the influence of socioeconomic factors, the effect of molecular and genetic factors on racial disparity of CaP is evident. Earlier studies on the molecular basis for CaP disparity have focused on the influence of heritable mutations and single-nucleotide polymorphisms (SNPs). Most CaP susceptibility alleles identified based on genome-wide association studies (GWAS) were common, low-penetrance variants. Germline CaP-associated mutations that are highly penetrant, such as those found in HOXB13 and BRCA2, are usually rare. More recently, genomic studies enabled by Next-Gen Sequencing (NGS) technologies have focused on the identification of somatic mutations that contribute to CaP tumorigenesis. These studies confirmed the high prevalence of ERG gene fusions and PTEN deletions among Caucasian Americans and identified novel somatic alterations in SPOP and FOXA1 genes in early stages of CaP. Individuals with African ancestry and other minorities are often underrepresented in these large-scale genomic studies, which are performed primarily using tumors from men of European ancestry. The insufficient number of specimens from AA men and other minority populations, together with the heterogeneity in the molecular etiology of CaP across populations, challenge the generalizability of findings from these projects. Efforts to close this gap by sequencing larger numbers of tumor specimens from more diverse populations, although still at an early stage, have discovered distinct genomic alterations. These research findings can have a direct impact on the diagnosis of CaP, the stratification of patients for treatment, and can help to address the disparity in incidence and mortality of CaP. This review examines the progress of understanding in CaP genetics and genomics and highlight the need to increase the representation from minority populations.
Collapse
|
93
|
Mayor-Ruiz C, Olbrich T, Drosten M, Lecona E, Vega-Sendino M, Ortega S, Dominguez O, Barbacid M, Ruiz S, Fernandez-Capetillo O. ERF deletion rescues RAS deficiency in mouse embryonic stem cells. Genes Dev 2018; 32:568-576. [PMID: 29650524 PMCID: PMC5959239 DOI: 10.1101/gad.310086.117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/12/2018] [Indexed: 11/25/2022]
Abstract
Mayor-Ruiz et al. show that deletion of ERF rescues the proliferative defects of RAS-devoid mESCs and restores their capacity to differentiate. MEK inhibition in combination with a glycogen synthase kinase-3β (GSK3β) inhibitor, referred as the 2i condition, favors pluripotency in embryonic stem cells (ESCs). However, the mechanisms by which the 2i condition limits ESC differentiation and whether RAS proteins are involved in this phenomenon remain poorly understood. Here we show that RAS nullyzygosity reduces the growth of mouse ESCs (mESCs) and prohibits their differentiation. Upon RAS deficiency or MEK inhibition, ERF (E twenty-six 2 [Ets2]-repressive factor), a transcriptional repressor from the ETS domain family, translocates to the nucleus, where it binds to the enhancers of pluripotency factors and key RAS targets. Remarkably, deletion of Erf rescues the proliferative defects of RAS-devoid mESCs and restores their capacity to differentiate. Furthermore, we show that Erf loss enables the development of RAS nullyzygous teratomas. In summary, this work reveals an essential role for RAS proteins in pluripotency and identifies ERF as a key mediator of the response to RAS/MEK/ERK inhibition in mESCs.
Collapse
Affiliation(s)
- Cristina Mayor-Ruiz
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Teresa Olbrich
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Matthias Drosten
- Experimental Oncology Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Emilio Lecona
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Maria Vega-Sendino
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Sagrario Ortega
- Transgenic Unit, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Orlando Dominguez
- Genomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Mariano Barbacid
- Experimental Oncology Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Sergio Ruiz
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Oscar Fernandez-Capetillo
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain.,Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 21 Stockholm, Sweden
| |
Collapse
|
94
|
Jamaspishvili T, Berman DM, Ross AE, Scher HI, De Marzo AM, Squire JA, Lotan TL. Clinical implications of PTEN loss in prostate cancer. Nat Rev Urol 2018; 15:222-234. [PMID: 29460925 DOI: 10.1038/nrurol.2018.9] [Citation(s) in RCA: 404] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Genomic aberrations of the PTEN tumour suppressor gene are among the most common in prostate cancer. Inactivation of PTEN by deletion or mutation is identified in ∼20% of primary prostate tumour samples at radical prostatectomy and in as many as 50% of castration-resistant tumours. Loss of phosphatase and tensin homologue (PTEN) function leads to activation of the PI3K-AKT (phosphoinositide 3-kinase-RAC-alpha serine/threonine-protein kinase) pathway and is strongly associated with adverse oncological outcomes, making PTEN a potentially useful genomic marker to distinguish indolent from aggressive disease in patients with clinically localized tumours. At the other end of the disease spectrum, therapeutic compounds targeting nodes in the PI3K-AKT-mTOR (mechanistic target of rapamycin) signalling pathway are being tested in clinical trials for patients with metastatic castration-resistant prostate cancer. Knowledge of PTEN status might be helpful to identify patients who are more likely to benefit from these therapies. To enable the use of PTEN status as a prognostic and predictive biomarker, analytically validated assays have been developed for reliable and reproducible detection of PTEN loss in tumour tissue and in blood liquid biopsies. The use of clinical-grade assays in tumour tissue has shown a robust correlation between loss of PTEN and its protein as well as a strong association between PTEN loss and adverse pathological features and oncological outcomes. In advanced disease, assessing PTEN status in liquid biopsies shows promise in predicting response to targeted therapy. Finally, studies have shown that PTEN might have additional functions that are independent of the PI3K-AKT pathway, including those affecting tumour growth through modulation of the immune response and tumour microenvironment.
Collapse
Affiliation(s)
- Tamara Jamaspishvili
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario, Canada.,Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - David M Berman
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario, Canada.,Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Ashley E Ross
- Department of Urology, Johns Hopkins University, Baltimore, MD, USA
| | - Howard I Scher
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - Jeremy A Squire
- Department of Pathology and Legal Medicine, University of Sao Paulo, Campus Universitario Monte Alegre, Ribeirão Preto, Brazil
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
95
|
Herroon MK, Rajagurubandara E, Diedrich JD, Heath EI, Podgorski I. Adipocyte-activated oxidative and ER stress pathways promote tumor survival in bone via upregulation of Heme Oxygenase 1 and Survivin. Sci Rep 2018; 8:40. [PMID: 29311669 PMCID: PMC5758829 DOI: 10.1038/s41598-017-17800-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/30/2017] [Indexed: 01/26/2023] Open
Abstract
Metastatic tumor cells engage the local tumor microenvironment and activate specific pro-survival mechanisms to thrive and progress in the harsh bone marrow niche. Here we show that the major contributors to the survival of carcinoma cells that have colonized the bone marrow are the adipocyte-induced oxidative stress and ER stress pathways. We demonstrate that upon exposure to adipocyte-rich environments in vitro or in vivo, bone-trophic prostate and breast tumor cells upregulate the oxidative stress enzyme, HO-1. We also show that HO-1 levels are significantly increased in human metastatic prostate cancer tissues and that stable HO-1 overexpression in tumor cells promotes growth and invasiveness. Co-incident with the adipocyte-induced expression of HO-1, there is an upregulation of ER chaperone BIP and splicing of XBP1, indicating adipocyte-driven unfolded protein response, a process that we show to be sensitive to antioxidant treatment. Importantly, we also demonstrate that triggering of the oxidative stress and ER stress responses, or HO-1 induction by adipocyte exposure result in the activation of pro-survival pathways, involving survivin. Collectively, our findings reveal a new link between HO-1 and survivin expression in tumor cells, and provide a new insight into potentially targetable survival pathways in bone-metastatic disease.
Collapse
Affiliation(s)
- Mackenzie K Herroon
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA
| | | | - Jonathan D Diedrich
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Elisabeth I Heath
- Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Izabela Podgorski
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA.
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
96
|
Sedarsky J, Degon M, Srivastava S, Dobi A. Ethnicity and ERG frequency in prostate cancer. Nat Rev Urol 2017; 15:125-131. [PMID: 28872154 DOI: 10.1038/nrurol.2017.140] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Emerging observations emphasize a distinct biology of prostate cancer among men of different ethnicities and races, as demonstrated by remarkable differences in the frequency of ERG oncogenic activation, one of the most common and widely studied prostate cancer driver genes. Worldwide assessment of ERG alterations frequencies show consistent trends, with men of European ancestry having the highest rates of alteration and men of African or Asian ancestries having considerably lower alteration rates. However, data must be interpreted cautiously, owing to variations in assay platforms and specimen types, as well as ethnic and geographical classifications. Many opportunities and challenges remain in assessing cancer-associated molecular alterations at a global level, and these need to be addressed in order to realize the true potential of precision medicine for all cancer patients.
Collapse
Affiliation(s)
- Jason Sedarsky
- Urology Service, Walter Reed National Military Medical Center, 8901 Rockville Pike, Bethesda, Maryland 20889, USA
| | - Michael Degon
- Urology Service, Walter Reed National Military Medical Center, 8901 Rockville Pike, Bethesda, Maryland 20889, USA
| | - Shiv Srivastava
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 4301 Jones Bridge Rd, Bethesda, Maryland 20814, USA
| | - Albert Dobi
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 4301 Jones Bridge Rd, Bethesda, Maryland 20814, USA
| |
Collapse
|
97
|
Dhingra P, Martinez-Fundichely A, Berger A, Huang FW, Forbes AN, Liu EM, Liu D, Sboner A, Tamayo P, Rickman DS, Rubin MA, Khurana E. Identification of novel prostate cancer drivers using RegNetDriver: a framework for integration of genetic and epigenetic alterations with tissue-specific regulatory network. Genome Biol 2017; 18:141. [PMID: 28750683 PMCID: PMC5530464 DOI: 10.1186/s13059-017-1266-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 06/27/2017] [Indexed: 11/22/2022] Open
Abstract
We report a novel computational method, RegNetDriver, to identify tumorigenic drivers using the combined effects of coding and non-coding single nucleotide variants, structural variants, and DNA methylation changes in the DNase I hypersensitivity based regulatory network. Integration of multi-omics data from 521 prostate tumor samples indicated a stronger regulatory impact of structural variants, as they affect more transcription factor hubs in the tissue-specific network. Moreover, crosstalk between transcription factor hub expression modulated by structural variants and methylation levels likely leads to the differential expression of target genes. We report known prostate tumor regulatory drivers and nominate novel transcription factors (ERF, CREB3L1, and POU2F2), which are supported by functional validation.
Collapse
Affiliation(s)
- Priyanka Dhingra
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, 10065, USA
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York, 10021, USA
| | - Alexander Martinez-Fundichely
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, 10065, USA
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York, 10021, USA
| | - Adeline Berger
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, 10065, USA
| | - Franklin W Huang
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA
- Cancer Program, The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA, 02142, USA
| | - Andre Neil Forbes
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, 10065, USA
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York, 10021, USA
| | - Eric Minwei Liu
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, 10065, USA
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York, 10021, USA
| | - Deli Liu
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, 10065, USA
- Department of Urology, Weill Cornell Medical College, New York, New York, 10065, USA
| | - Andrea Sboner
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York, 10021, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine, New York, NY, 10065, USA
| | - Pablo Tamayo
- Cancer Program, The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA, 02142, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - David S Rickman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, 10065, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine, New York, NY, 10065, USA.
- Meyer Cancer Center, Weill Cornell Medical College, New York, New York, 10065, USA.
| | - Mark A Rubin
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine, New York, NY, 10065, USA
- Meyer Cancer Center, Weill Cornell Medical College, New York, New York, 10065, USA
| | - Ekta Khurana
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, 10065, USA.
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York, 10021, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine, New York, NY, 10065, USA.
- Meyer Cancer Center, Weill Cornell Medical College, New York, New York, 10065, USA.
| |
Collapse
|