51
|
Feng F, Li Q, Sun X, Yao L, Wang X. Tumor Microenvironment-Responsive Magnetotactic Bacteria-Based Multi-Drug Delivery Platform for MRI-Visualized Tumor Photothermal Chemodynamic Therapy. BIOLOGY 2024; 13:658. [PMID: 39336086 PMCID: PMC11428741 DOI: 10.3390/biology13090658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024]
Abstract
Cancer cells display elevated reactive oxygen species (ROS) and altered redox status. Herein, based on these characteristics, we present a multi-drug delivery platform, AMB@PDAP-Fe (APPF), from the magnetotactic bacterium AMB-1 and realize MRI-visualized tumor-microenvironment-responsive photothermal-chemodynamic therapy. The Fe3+ in PDAP-Fe is reduced by the GSH at the tumor site and is released in the form of highly active Fe2+, which catalyzes the generation of ROS through the Fenton reaction and inhibits tumor growth. At the same time, the significant absorption of the mineralized magnetosomes in AMB-1 cells in the NIR region enables them to efficiently convert near-infrared light into heat energy for photothermal therapy (PTT), to which PDAP also contributes. The heat generated in the PTT process accelerates the process of Fe2+ release, thereby achieving an enhanced Fenton reaction in the tumor microenvironment. In addition, the magnetosomes in AMB-1 are used as an MRI contrast agent, and the curing process is visualized. This tumor microenvironment-responsive MTB-based multi-drug delivery platform displays the potency to combat tumors and demonstrates the utility and practicality of understanding the cooperative molecular mechanism when designing multi-drug combination therapies.
Collapse
Affiliation(s)
- Feng Feng
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qilong Li
- Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Xuefei Sun
- Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Li Yao
- Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Xiuyu Wang
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
52
|
Yuan W, Han J, Chen C, Qiu Y, Xu Y, Huang Y, Chen Z, Xu A, Sun M. UBR1 is a prognostic biomarker and therapeutic target associated with immune cell infiltration in gastric cancer. Aging (Albany NY) 2024; 16:12029-12049. [PMID: 39181686 PMCID: PMC11386912 DOI: 10.18632/aging.206079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/15/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Ubiquitination is a targeted protein modification process mediated by intracellular molecules. UBR1 encodes a protein that binds to unstable N-terminal residues of substrate proteins and contributes to the formation of substrate-linked polyubiquitin chains. However, the function and cellular pathways of UBR1 in tumors have received inadequate attention. This study aimed to investigate the potential of UBR1 as a prognostic biomarker and immunotherapy target for stomach adenocarcinoma (STAD) as well as its biological function and molecular mechanism in relation to the disease. METHODS Differential expression and pan-cancer gene set enrichment analysis (GSEA) were conducted using The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and Genotype-Tissue Expression (GTEx) datasets. The Human Protein Atlas (HPA) database was utilized to identify UBR1-enriched pathways in AGS cells and to compare immunohistochemical differences between cancerous and adjacent non-cancerous tissues in gastric cancer. Quantitative Polymerase Chain Reaction (QPCR) and Western blot (WB) analyses were employed to validate these findings in both cancerous and adjacent non-cancerous tissues of gastric cancer. UBR1 expression in GES-1 and four gastric cancer cell lines was assessed using QPCR and WB. Kaplan-Meier curves, univariate and multivariate Cox regression analyses, and receiver operating characteristic (ROC) curve analyses were performed to evaluate the prognostic and diagnostic roles of UBR1. Additionally, the correlation between UBR1 expression and clinical parameters was analyzed using TCGA and GEO databases. UBR1 mutation data were obtained from the cBioPortal database. The mutation landscape, mutation-associated genes, protein structure, tumor mutation burden (TMB), and microsatellite instability (MSI) correlations were analyzed and illustrated. The biological functions of UBR1 were investigated using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The correlation between UBR1 and immune infiltration was assessed using TIMER and EPIC computational methods. Protein expression levels of UBR1 in gastric cancer cell lines were determined by immunohistochemistry (IHC) and WB analysis. Quantitative real-time PCR (qRT-PCR) was employed to analyze mRNA expression. Immunoprecipitation (IP) assays were conducted to detect protein-protein interactions between UBR1 and PDL1, while cellular immunofluorescence was used to observe the co-localization of these proteins. Cell proliferation was evaluated using CCK8 and colony formation assays. Cell migration was assessed using Transwell and wound healing assays. Finally, apoptosis was analyzed using flow cytometry, and WB was used to detect changes in apoptotic proteins and NF-κB P65 pathway proteins. RESULTS UBR1 was upregulated in 28 cancer types, including STAD, and its overexpression was validated in gastric cancer cell lines and tissues. UBR1 expression was associated with advanced pathological characteristics. High UBR1 expression was linked to poor prognostic outcomes, including overall survival (OS), progression-free interval (PFI), disease-specific survival (DSS), as well as responses to surgery, chemotherapy, and HER2 expression. UBR1 expression showed significant correlations with clinical parameters such as age, gender, TNM stage, pathological stage, tumor resection, and anti-reflux therapy. Amplifications and deletions were the most frequent genetic alterations associated with UBR1. According to KEGG and GSEA analyses, UBR1 was significantly associated with several cancer pathways, oxidative phosphorylation, and the TNF-NFκB pathway. UBR1 also exhibited a significant correlation with immune cell infiltration and immunotherapy, including a direct interaction with PDL1. Knockdown of UBR1 inhibited the proliferation, migration, and invasion of STAD cells and promoted apoptosis. CONCLUSIONS UBR1 is overexpressed in STAD, promoting its progression and positively correlating with immune cell infiltration and immunotherapeutic responses. Therefore, UBR1 could be a promising biomarker for the prognosis and immunotherapy of STAD.
Collapse
Affiliation(s)
- Weiwei Yuan
- Department of Thyroid Surgery, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201999, China
| | - Jianye Han
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Chen Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui Public Health Clinical Center, Hefei 230012, China
| | - Yue Qiu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yuanmin Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yang Huang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui Public Health Clinical Center, Hefei 230012, China
| | - Zhangming Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Aman Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Minzhi Sun
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui Public Health Clinical Center, Hefei 230012, China
| |
Collapse
|
53
|
Paul V J, Sharma P, Shanavas A. Self-Assembled Nanobiomaterials for Combination Immunotherapy. ACS APPLIED BIO MATERIALS 2024; 7:4962-4974. [PMID: 38116786 DOI: 10.1021/acsabm.3c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Nanotechnological interventions for cancer immunotherapy are a rapidly evolving paradigm with immense potential. Self-assembled nanobiomaterials present safer alternatives to their nondegradable counterparts and pose better functionalities in terms of controlled drug delivery and phototherapy to activate immunogenic cell death. In this Review, we discuss several classes of self-assembled nanobiomaterials based on polymers, lipids, peptides, hydrogel, metal organic frameworks, and covalent-organic frameworks with the ability to activate systemic immune response and convert a "cold" immunosuppressive tumor mass to a "hot" antitumor immune cell rich microenvironment. The unique aspects of these materials are underpinned, and their mechanisms of combinatorial immunotherapeutic action are discussed. Future challenges associated with their clinical translation are also highlighted.
Collapse
Affiliation(s)
- Johns Paul V
- Inorganic & Organic Nanomedicine (ION) Lab, Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Priyanka Sharma
- Inorganic & Organic Nanomedicine (ION) Lab, Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Asifkhan Shanavas
- Inorganic & Organic Nanomedicine (ION) Lab, Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| |
Collapse
|
54
|
Winter RC, Amghar M, Wacker AS, Bakos G, Taş H, Roscher M, Kelly JM, Benešová-Schäfer M. Future Treatment Strategies for Cancer Patients Combining Targeted Alpha Therapy with Pillars of Cancer Treatment: External Beam Radiation Therapy, Checkpoint Inhibition Immunotherapy, Cytostatic Chemotherapy, and Brachytherapy. Pharmaceuticals (Basel) 2024; 17:1031. [PMID: 39204136 PMCID: PMC11359268 DOI: 10.3390/ph17081031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
Cancer is one of the most complex and challenging human diseases, with rising incidences and cancer-related deaths despite improved diagnosis and personalized treatment options. Targeted alpha therapy (TαT) offers an exciting strategy emerging for cancer treatment which has proven effective even in patients with advanced metastatic disease that has become resistant to other treatments. Yet, in many cases, more sophisticated strategies are needed to stall disease progression and overcome resistance to TαT. The combination of two or more therapies which have historically been used as stand-alone treatments is an approach that has been pursued in recent years. This review aims to provide an overview on TαT and the four main pillars of therapeutic strategies in cancer management, namely external beam radiation therapy (EBRT), immunotherapy with checkpoint inhibitors (ICI), cytostatic chemotherapy (CCT), and brachytherapy (BT), and to discuss their potential use in combination with TαT. A brief description of each therapy is followed by a review of known biological aspects and state-of-the-art treatment practices. The emphasis, however, is given to the motivation for combination with TαT as well as the pre-clinical and clinical studies conducted to date.
Collapse
Affiliation(s)
- Ruth Christine Winter
- Research Group Molecular Biology of Systemic Radiotherapy/Translational Radiotheranostics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (R.C.W.); (M.A.); (G.B.); (H.T.)
| | - Mariam Amghar
- Research Group Molecular Biology of Systemic Radiotherapy/Translational Radiotheranostics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (R.C.W.); (M.A.); (G.B.); (H.T.)
| | - Anja S. Wacker
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, 413 East 69th Street, New York, NY 10021, USA; (A.S.W.); (J.M.K.)
| | - Gábor Bakos
- Research Group Molecular Biology of Systemic Radiotherapy/Translational Radiotheranostics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (R.C.W.); (M.A.); (G.B.); (H.T.)
| | - Harun Taş
- Research Group Molecular Biology of Systemic Radiotherapy/Translational Radiotheranostics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (R.C.W.); (M.A.); (G.B.); (H.T.)
| | - Mareike Roscher
- Service Unit for Radiopharmaceuticals and Preclinical Studies, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany;
| | - James M. Kelly
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, 413 East 69th Street, New York, NY 10021, USA; (A.S.W.); (J.M.K.)
| | - Martina Benešová-Schäfer
- Research Group Molecular Biology of Systemic Radiotherapy/Translational Radiotheranostics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (R.C.W.); (M.A.); (G.B.); (H.T.)
| |
Collapse
|
55
|
Li Y, Shen X, Ding H, Zhang Y, Pan D, Su L, Wu Y, Fang Z, Zhou J, Gong Q, Luo K. Dendritic nanomedicine enhances chemo-immunotherapy by disturbing metabolism of cancer-associated fibroblasts for deep penetration and activating function of immune cells. Acta Pharm Sin B 2024; 14:3680-3696. [PMID: 39220877 PMCID: PMC11365400 DOI: 10.1016/j.apsb.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 09/04/2024] Open
Abstract
Inefficient drug penetration hurdled by the stroma in the tumor tissue leads to a diminished therapeutic effect for drugs and a reduced infiltration level of immune cells. Herein, we constructed a PEGylated dendritic epirubicin (Epi) prodrug (Epi-P4D) to regulate the metabolism of cancer-associated fibroblasts (CAFs), thus enhancing Epi penetration into both multicellular tumor spheroids (MTSs) and tumor tissues in mouse colon cancer (CT26), mouse breast cancer (4T1) and human breast cancer (MDA-MB-231) models. Enhanced cytotoxicity against CT26 MTSs and remarkable antitumor efficacy of Epi-P4D were ascribed to reduced fibronectin, α-SMA, and collagen secretion. Besides, thinning of the tumor tissue stroma and efficient eradication of tumor cells promoted the immunogenic cell death effect for dendritic cell (DC) maturation and subsequent immune activation, including elevating the CD4+ T cell population, reducing CD4+ and CD8+ T cell hyperactivation and exhaustion, and amplifying the natural killer (NK) cell proportion and effectively activating them. As a result, this dendritic nanomedicine thinned the stroma of tumor tissues to enhance drug penetration and facilitate immune cell infiltration for elevated antitumor efficacy.
Collapse
Affiliation(s)
- Yunkun Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoding Shen
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haitao Ding
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuxin Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dayi Pan
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liping Su
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yahui Wu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zaixiang Fang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Zhou
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen 361021, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| |
Collapse
|
56
|
Yang C, Chen Y, Liu J, Zhang W, He Y, Chen F, Xie X, Tang J, Guan S, Shao D, Wang Z, Wang L. Leveraging Senescent Cancer Cell Membrane to Potentiate Cancer Immunotherapy Through Biomimetic Nanovaccine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400630. [PMID: 38867377 PMCID: PMC11321648 DOI: 10.1002/advs.202400630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/14/2024] [Indexed: 06/14/2024]
Abstract
Senescent cancer cells are endowed with high immunogenic potential that has been leveraged to elicit antitumor immunity and potentially complement anticancer therapies. However, the efficacy of live senescent cancer cell-based vaccination is limited by interference from immunosuppressive senescence-associated secretory phenotype and pro-tumorigenic capacity of senescent cells. Here, a senescent cancer cell-based nanovaccine with strong immunogenicity and favorable potential for immunotherapy is reported. The biomimetic nanovaccine integrating a senescent cancer cell membrane-coated nanoadjuvant outperforms living senescent cancer cells in enhancing dendritic cells (DCs) internalization, improving lymph node targeting, and enhancing immune responses. In contrast to nanovaccines generated from immunogenic cell death-induced tumor cells, senescent nanovaccines facilitate DC maturation, eliciting superior antitumor protection and improving therapeutic outcomes in melanoma-challenged mice with fewer side effects when combined with αPD-1. The study suggests a versatile biomanufacturing approach to maximize immunogenic potential and minimize adverse effects of senescent cancer cell-based vaccination and advances the design of biomimetic nanovaccines for cancer immunotherapy.
Collapse
Affiliation(s)
- Chao Yang
- Department of OrthopedicsGuangdong Provincial Key Laboratory of Bone and Joint Degeneration DiseasesThe Third Affiliated Hospital of Southern Medical UniversityGuangzhou510630China
| | - Yinglu Chen
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouGuangdong510006China
- School of MedicineSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Jie Liu
- Department of OrthopedicsGuangdong Provincial Key Laboratory of Bone and Joint Degeneration DiseasesThe Third Affiliated Hospital of Southern Medical UniversityGuangzhou510630China
| | - Wensheng Zhang
- Department of OrthopedicsGuangdong Provincial Key Laboratory of Bone and Joint Degeneration DiseasesThe Third Affiliated Hospital of Southern Medical UniversityGuangzhou510630China
| | - Yan He
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Fangman Chen
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Xiaochun Xie
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouGuangdong510006China
- School of MedicineSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Jie Tang
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
| | - Shan Guan
- National Engineering Research Center of Immunological ProductsThird Military Medical UniversityChongqing400038China
| | - Dan Shao
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouGuangdong510006China
- School of MedicineSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Zheng Wang
- CAS Key Laboratory of Nano‐Bio InterfaceSuzhou Institute of Nano‐Tech and NanoBionicsChinese Academy of SciencesSuzhou215123China
| | - Liang Wang
- Department of OrthopedicsGuangdong Provincial Key Laboratory of Bone and Joint Degeneration DiseasesThe Third Affiliated Hospital of Southern Medical UniversityGuangzhou510630China
| |
Collapse
|
57
|
Yang J, Xiong X, Zheng W, Xu H, Liao X, Wei Q, Yang L. The roles of tertiary lymphoid structures in genitourinary cancers: molecular mechanisms, therapeutic strategies, and clinical applications. Int J Surg 2024; 110:5007-5021. [PMID: 38978471 PMCID: PMC11325987 DOI: 10.1097/js9.0000000000001939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/30/2024] [Indexed: 07/10/2024]
Abstract
The presence of tertiary lymphoid structures (TLSs) associated with distinct treatment efficacy and clinical prognosis has been identified in various cancer types. However, the mechanistic roles and clinical implications of TLSs in genitourinary (GU) cancers remain incompletely explored. Despite their potential role as predictive markers described in numerous studies, it is essential to comprehensively evaluate the characteristics of TLSs, including drivers of formation, structural foundation, cellular compositions, maturation stages, molecular features, and specific functionality to maximize their positive impacts on tumor-specific immunity. The unique contributions of these structures to cancer progression and biology have fueled interest in these structures as mediators of antitumor immunity. Emerging data are trying to explore the effects of therapeutic interventions targeting TLSs. Therefore, a better understanding of the molecular and phenotypic heterogeneity of TLSs may facilitate the development of TLSs-targeting therapeutic strategies to obtain optimal clinical benefits for GU cancers in the setting of immunotherapy. In this review, the authors focus on the phenotypic and functional heterogeneity of TLSs in cancer progression, current therapeutic interventions targeting TLSs and the clinical implications and therapeutic potential of TLSs in GU cancers.
Collapse
Affiliation(s)
- Jie Yang
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
58
|
Kim J, Maharjan R, Park J. Current Trends and Innovative Approaches in Cancer Immunotherapy. AAPS PharmSciTech 2024; 25:168. [PMID: 39044047 PMCID: PMC11573471 DOI: 10.1208/s12249-024-02883-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024] Open
Abstract
Immunotherapy is one of the most promising therapeutic approaches in the field of cancer treatment. As a tumor progresses, tumor cells employ an array of immune-regulatory mechanisms to suppress immune responses within the tumor microenvironment. Using our understanding of these mechanisms, cancer immunotherapy has been developed to enhance the immune system's effectiveness in treating cancer. Numerous cancer immunotherapies are currently in clinical use, yet many others are either in different stages of development or undergoing clinical studies. In this paper, we briefly discuss the features and current status of cancer immunotherapies. This includes the application of monoclonal antibodies, immune checkpoint inhibitors, adoptive cell therapy, cytokine therapy, cancer vaccines, and gene therapy, all of which have gained significant recognition in clinical practice. Additionally, we discuss limitations that may hinder successful clinical utilization and promising strategies, such as combining immunotherapy with nanotechnology.
Collapse
Affiliation(s)
- Jaechang Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY, 40506, USA
| | - Ruby Maharjan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY, 40506, USA
| | - Jonghyuck Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY, 40506, USA.
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA.
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
59
|
Zhu Z, Jin Y, Zhou J, Chen F, Chen M, Gao Z, Hu L, Xuan J, Li X, Song Z, Guo X. PD1/PD-L1 blockade in clear cell renal cell carcinoma: mechanistic insights, clinical efficacy, and future perspectives. Mol Cancer 2024; 23:146. [PMID: 39014460 PMCID: PMC11251344 DOI: 10.1186/s12943-024-02059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
The advent of PD1/PD-L1 inhibitors has significantly transformed the therapeutic landscape for clear cell renal cell carcinoma (ccRCC). This review provides an in-depth analysis of the biological functions and regulatory mechanisms of PD1 and PD-L1 in ccRCC, emphasizing their role in tumor immune evasion. We comprehensively evaluate the clinical efficacy and safety profiles of PD1/PD-L1 inhibitors, such as Nivolumab and Pembrolizumab, through a critical examination of recent clinical trial data. Furthermore, we discuss the challenges posed by resistance mechanisms to these therapies and potential strategies to overcome them. We also explores the synergistic potential of combination therapies, integrating PD1/PD-L1 inhibitors with other immunotherapies, targeted therapies, and conventional modalities such as chemotherapy and radiotherapy. In addition, we examine emerging predictive biomarkers for response to PD1/PD-L1 blockade and biomarkers indicative of resistance, providing a foundation for personalized therapeutic approaches. Finally, we outline future research directions, highlighting the need for novel therapeutic strategies, deeper mechanistic insights, and the development of individualized treatment regimens. Our work summarizes the latest knowledge and progress in this field, aiming to provide a valuable reference for improving clinical efficacy and guiding future research on the application of PD1/PD-L1 inhibitors in ccRCC.
Collapse
Affiliation(s)
- Zhaoyang Zhu
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang, P.R. China
- Department of Urology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 310000, Zhejiang, P.R. China
| | - Yigang Jin
- Department of Urology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 310000, Zhejiang, P.R. China
| | - Jing Zhou
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, 310000, Zhejiang, P.R. China
| | - Fei Chen
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, 310000, Zhejiang, P.R. China
| | - Minjie Chen
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, 310000, Zhejiang, P.R. China
| | - Zhaofeng Gao
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, 310000, Zhejiang, P.R. China
| | - Lingyu Hu
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, 310000, Zhejiang, P.R. China
| | - Jinyan Xuan
- Department of General Practice, the Second Affiliated Hospital of Jiaxing University, Jiaxing, 310000, Zhejiang, P.R. China
| | - Xiaoping Li
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, 310000, Zhejiang, P.R. China.
| | - Zhengwei Song
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, 310000, Zhejiang, P.R. China.
| | - Xiao Guo
- Department of Urology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 310000, Zhejiang, P.R. China.
| |
Collapse
|
60
|
Xu P, Gu Y, Li C, Shen J, Cheng X, Zhang LW, Wang Y, Wang Y. Radioactive Hydroxyapatite Microspheres Empower Sustainable In Situ Tumor Vaccination. ACS NANO 2024; 18:18425-18443. [PMID: 38975713 DOI: 10.1021/acsnano.4c02972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Tumor in situ vaccination (ISV) strategies have emerged in clinical trials as promising approaches, involving the release of tumor antigens through local radiotherapy and intratumorally adjuvant injections. However, the current fabrication strategy for achieving a sustainable immune response to ISV remains a pressing challenge. In this study, we present an empowered sustainable ISV method for antitumor therapy using 177Lu-labeled manganese-doped mesoporous hydroxyapatite (177Lu/Mn-HAP) microspheres. The ISV enables the sustained utilization of tumor antigens, leading to the activation of dendritic cells and polarization of macrophages toward the M1 subtype. Consequently, it facilitates the generation of potent CD8+ T-cell responses, enhancing the antitumor effects of internal radiation in both primary and distant tumors. Importantly, this approach achieves complete remission in all tumor-bearing mice and stimulates immune memory to prevent tumor recurrence. Our study highlights a universal and safe ISV strategy capable of inducing potent tumor-specific and sustainable immune response.
Collapse
Affiliation(s)
- Pei Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yuan Gu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Chenze Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jiahao Shen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xiaju Cheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Leshuai W Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yangyun Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yong Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou 215004, China
| |
Collapse
|
61
|
Yuan Y, Hou M, Song X, Yao X, Wang X, Chen X, Li S. Designing Mesoporous Prussian Blue@zinc Phosphate Nanoparticles with Hierarchical Pores for Varisized Guest Delivery and Photothermally-Augmented Chemo-Starvation Therapy. Int J Nanomedicine 2024; 19:6829-6843. [PMID: 39005958 PMCID: PMC11244623 DOI: 10.2147/ijn.s464186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
Background With the rapid development of nanotechnology, constructing a multifunctional nanoplatform that can deliver various therapeutic agents in different departments and respond to endogenous/exogenous stimuli for multimodal synergistic cancer therapy remains a major challenge to address the inherent limitations of chemotherapy. Methods Herein, we synthesized hollow mesoporous Prussian Blue@zinc phosphate nanoparticles to load glucose oxidase (GOx) and DOX (designed as HMPB-GOx@ZnP-DOX NPs) in the non-identical pore structures of their HMPB core and ZnP shell, respectively, for photothermally augmented chemo-starvation therapy. Results The ZnP shell coated on the HMPB core, in addition to providing space to load DOX for chemotherapy, could also serve as a gatekeeper to protect GOx from premature leakage and inactivation before reaching the tumor site because of its degradation characteristics under mild acidic conditions. Moreover, the loaded GOx can initiate starvation therapy by catalyzing glucose oxidation while causing an upgradation of acidity and H2O2 levels, which can also be used as forceful endogenous stimuli to trigger smart delivery systems for therapeutic applications. The decrease in pH can improve the pH-sensitivity of drug release, and O2 can be supplied by decomposing H2O2 through the catalase-like activity of HMPBs, which is beneficial for relieving the adverse conditions of anti-tumor activity. In addition, the inner HMPB also acts as a photothermal agent for photothermal therapy and the generated hyperthermia upon laser irradiation can serve as an external stimulus to further promote drug release and enzymatic activities of GOx, thereby enabling a synergetic photothermally enhanced chemo-starvation therapy effect. Importantly, these results indicate that HMPB-GOx@ZnP-DOX NPs can effectively inhibit tumor growth by 80.31% and exhibit no obvious systemic toxicity in mice. Conclusion HMPB-GOx@ZnP-DOX NPs can be employed as potential theranostic agents that incorporate multiple therapeutic modes to efficiently inhibit tumors.
Collapse
Affiliation(s)
- Yuan Yuan
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - Mingyi Hou
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Xiaoning Song
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - Xintao Yao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - Xuerui Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - Xiangjun Chen
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Shengnan Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| |
Collapse
|
62
|
Wu Y, Yu G, Jin K, Qian J. Advancing non-small cell lung cancer treatment: the power of combination immunotherapies. Front Immunol 2024; 15:1349502. [PMID: 39015563 PMCID: PMC11250065 DOI: 10.3389/fimmu.2024.1349502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) remains an unsolved challenge in oncology, signifying a substantial global health burden. While considerable progress has been made in recent years through the emergence of immunotherapy modalities, such as immune checkpoint inhibitors (ICIs), monotherapies often yield limited clinical outcomes. The rationale behind combining various immunotherapeutic or other anticancer agents, the mechanistic underpinnings, and the clinical evidence supporting their utilization is crucial in NSCLC therapy. Regarding the synergistic potential of combination immunotherapies, this study aims to provide insights to help the landscape of NSCLC treatment and improve clinical outcomes. In addition, this review article discusses the challenges and considerations of combination regimens, including toxicity management and patient selection.
Collapse
Affiliation(s)
- Yuanlin Wu
- Department of Thoracic Surgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Guangmao Yu
- Department of Thoracic Surgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Ketao Jin
- Department of Gastrointestinal, Colorectal and Anal Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People’s Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang, China
| |
Collapse
|
63
|
Ries J, Trumet L, Hahn A, Kunater L, Lutz R, Geppert C, Kesting M, Weber M. The Immune Checkpoint BTLA in Oral Cancer: Expression Analysis and Its Correlation to Other Immune Modulators. Int J Mol Sci 2024; 25:6601. [PMID: 38928307 PMCID: PMC11204357 DOI: 10.3390/ijms25126601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
In oral squamous cell carcinoma (OSCC) tissues, an immunotolerant situation triggered by immune checkpoints (ICPs) can be observed. Immune checkpoint inhibitors (ICIs) against the PD1/PD-L axis are used with impressive success. However, the response rate is low and the development of acquired resistance to ICI treatment can be observed. Therefore, new treatment strategies especially involving immunological combination therapies need to be developed. The novel negative immune checkpoint BTLA has been suggested as a potential biomarker and target for antibody-based immunotherapy. Moreover, improved response rates could be displayed for tumor patients when antibodies directed against BTLA were used in combination with anti-PD1/PD-L1 therapies. The aim of the study was to check whether the immune checkpoint BTLA is overexpressed in OSCC tissues compared to healthy oral mucosa (NOM) and could be a potential diagnostic biomarker and immunological target in OSCC. In addition, correlation analyses with the expression of other checkpoints should clarify more precisely whether combination therapies are potentially useful for the treatment of OSCC. A total of 207 tissue samples divided into 2 groups were included in the study. The test group comprised 102 tissue samples of OSCC. Oral mucosal tissue from 105 healthy volunteers (NOM) served as the control group. The expression of two isoforms of BTLA (BTLA-1/2), as well as PD1, PD-L1/2 and CD96 was analyzed by RT-qPCR. Additionally, BTLA and CD96 proteins were detected by IHC. Expression levels were compared between the two groups, the relative differences were calculated, and statistical relevance was determined. Furthermore, the expression rates of the immune checkpoints were correlated to each other. BTLA expression was significantly increased in OSCC compared to NOM (pBTLA_1 = 0.003; pBTLA_2 = 0.0001, pIHC = 0.003). The expression of PD1, its ligands PD-L1 and PD-L2, as well as CD96, were also significantly increased in OSCC (p ≤ 0.001). There was a strong positive correlation between BTLA expression and that of the other checkpoints (p < 0.001; ρ ≥ 0.5). BTLA is overexpressed in OSCC and appears to be a relevant local immune checkpoint in OSCC. Thus, antibodies directed against BTLA could be potential candidates for immunotherapies, especially in combination with ICI against the PD1/PD-L axis and CD96.
Collapse
Affiliation(s)
- Jutta Ries
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.H.); (L.K.); (R.L.); (M.K.); (M.W.)
- Deutsches Zentrum Immuntherapie (DZI) and Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Leah Trumet
- Deutsches Zentrum Immuntherapie (DZI) and Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
- Department of Operative Dentistry and Periodontology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Alina Hahn
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.H.); (L.K.); (R.L.); (M.K.); (M.W.)
| | - Lina Kunater
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.H.); (L.K.); (R.L.); (M.K.); (M.W.)
| | - Rainer Lutz
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.H.); (L.K.); (R.L.); (M.K.); (M.W.)
- Deutsches Zentrum Immuntherapie (DZI) and Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Carol Geppert
- Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Marco Kesting
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.H.); (L.K.); (R.L.); (M.K.); (M.W.)
- Deutsches Zentrum Immuntherapie (DZI) and Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Manuel Weber
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.H.); (L.K.); (R.L.); (M.K.); (M.W.)
- Deutsches Zentrum Immuntherapie (DZI) and Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| |
Collapse
|
64
|
Li Z, Xie Q, Zhao F, Huo X, Ren D, Liu Z, Zhou X, Shen G, Zhao J. Exploring GZMK as a prognostic marker and predictor of immunotherapy response in breast cancer: unveiling novel insights into treatment outcomes. J Cancer Res Clin Oncol 2024; 150:286. [PMID: 38833021 PMCID: PMC11150209 DOI: 10.1007/s00432-024-05791-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/08/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Granzyme K (GZMK) is a crucial mediator released by immune cells to eliminate tumor cells, playing significant roles in inflammation and tumorigenesis. Despite its importance, the specific role of GZMK in breast cancer and its mechanisms are not well understood. METHODS We utilized data from the TCGA and GEO databases and employed a range of analytical methods including GO, KEGG, GSEA, ssGSEA, and PPI to investigate the impact of GZMK on breast cancer. In vitro studies, including RT-qPCR, CCK-8 assay, cell cycle experiments, apoptosis assays, Celigo scratch assays, Transwell assays, and immunohistochemical methods, were conducted to validate the effects of GZMK on breast cancer cells. Additionally, Cox regression analysis integrating TCGA and our clinical data was used to develop an overall survival (OS) prediction model. RESULTS Analysis of clinical pathological features revealed significant correlations between GZMK expression and lymph node staging, differentiation grade, and molecular breast cancer subtypes. High GZMK expression was associated with improved OS, progression-free survival (PFS), and recurrence-free survival (RFS), as confirmed by multifactorial Cox regression analysis. Functional and pathway enrichment analyses of genes positively correlated with GZMK highlighted involvement in lymphocyte differentiation, T cell differentiation, and T cell receptor signaling pathways. A robust association between GZMK expression and T cell presence was noted in the breast cancer tumor microenvironment (TME), with strong correlations with ESTIMATEScore (Cor = 0.743, P < 0.001), ImmuneScore (Cor = 0.802, P < 0.001), and StromalScore (Cor = 0.516, P < 0.001). GZMK also showed significant correlations with immune checkpoint molecules, including CTLA4 (Cor = 0.856, P < 0.001), PD-1 (Cor = 0.82, P < 0.001), PD-L1 (Cor = 0.56, P < 0.001), CD48 (Cor = 0.75, P < 0.001), and CCR7 (Cor = 0.856, P < 0.001). Studies indicated that high GZMK expression enhances patient responsiveness to immunotherapy, with higher levels observed in responsive patients compared to non-responsive ones. In vitro experiments confirmed that GZMK promotes cell proliferation, cell division, apoptosis, cell migration, and invasiveness (P < 0.05). CONCLUSION Our study provides insights into the differential expression of GZMK in breast cancer and its potential mechanisms in breast cancer pathogenesis. Elevated GZMK expression is associated with improved OS and RFS, suggesting its potential as a prognostic marker for breast cancer survival and as a predictor of the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Zitao Li
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, 810000, China
- Breast Disease Diagnosis and Treatment Center of Qinghai University Affiliated Hospital & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Qiqi Xie
- Breast Disease Diagnosis and Treatment Center of Qinghai University Affiliated Hospital & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Fuxing Zhao
- Breast Disease Diagnosis and Treatment Center of Qinghai University Affiliated Hospital & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Xinfa Huo
- Breast Disease Diagnosis and Treatment Center of Qinghai University Affiliated Hospital & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Dengfeng Ren
- Breast Disease Diagnosis and Treatment Center of Qinghai University Affiliated Hospital & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Zhilin Liu
- Breast Disease Diagnosis and Treatment Center of Qinghai University Affiliated Hospital & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Xiaofeng Zhou
- Pathology Department, Affiliated Hospital of Qinghai University, Xining, 810000, China
| | - Guoshuang Shen
- Breast Disease Diagnosis and Treatment Center of Qinghai University Affiliated Hospital & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China.
| | - Jiuda Zhao
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, 810000, China.
- Breast Disease Diagnosis and Treatment Center of Qinghai University Affiliated Hospital & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China.
| |
Collapse
|
65
|
Zheng C, Sun L, Zhao H, Niu M, Zhang D, Liu X, Song Q, Zhong W, Wang B, Zhang Y, Wang L. A biomimetic spore nanoplatform for boosting chemodynamic therapy and bacteria-mediated antitumor immunity for synergistic cancer treatment. Asian J Pharm Sci 2024; 19:100912. [PMID: 38903128 PMCID: PMC11186965 DOI: 10.1016/j.ajps.2024.100912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 06/22/2024] Open
Abstract
Bacterial-based antitumor immunity has become a promising strategy to activate the immune system for fighting cancer. However, the potential application of bacterial therapy is hindered by the presence of instability and susceptibility to infections within bacterial populations. Furthermore, monotherapy is ineffective in completely eliminating complex cancer with multiple contributing factors. In this study, based on our discovery that spore shell (SS) of Bacillus coagulans exhibits excellent tumor-targeting ability and adjuvant activity, we develop a biomimetic spore nanoplatform to boost bacteria-mediated antitumor therapy, chemodynamic therapy and antitumor immunity for synergistic cancer treatment. In detail, SS is separated from probiotic spores and then attached to the surface of liposome (Lipo) that was loaded with hemoglobin (Hb), glucose oxidase (GOx) and JQ1 to construct SS@Lipo/Hb/GOx/JQ1. In tumor tissue, highly toxic hydroxyl radicals (•OH) are generated via sequential catalytic reactions: GOx catalyzing glucose into H2O2 and Fe2+ in Hb decomposing H2O2 into •OH. The combination of •OH and SS adjuvant can improve tumor immunogenicity and activate immune system. Meanwhile, JQ1-mediated down-regulation of PD-L1 and Hb-induced hypoxia alleviation synergistically reshape immunosuppressive tumor microenvironment and potentiate immune response. In this manner, SS@Lipo/Hb/GOx/JQ1 significantly suppresses tumor growth and metastasis. To summarize, the nanoplatform represents an optimum strategy to potentiate bacteria-based cancer immunotherapy.
Collapse
Affiliation(s)
- Cuixia Zheng
- Huaihe Hospital of Henan University, Translational medicine Center, Kaifeng 475000, China
| | - Lingling Sun
- Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200, China
| | - Hongjuan Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Pingyuan Lab, Henan Normal University, Xinxiang 453007, China
| | - Mengya Niu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Dandan Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xinxin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qingling Song
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Weijie Zhong
- Huaihe Hospital of Henan University, Translational medicine Center, Kaifeng 475000, China
| | - Baojin Wang
- Gynecology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yun Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Pingyuan Lab, Henan Normal University, Xinxiang 453007, China
| | - Lei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Pingyuan Lab, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
66
|
Liu X, Zhang J, Zheng S, Li M, Xu W, Shi J, Kamei KI, Tian C. Hybrid adipocyte-derived exosome nano platform for potent chemo-phototherapy in targeted hepatocellular carcinoma. J Control Release 2024; 370:168-181. [PMID: 38643936 DOI: 10.1016/j.jconrel.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/19/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
The high prevalence and severity of hepatocellular carcinoma (HCC) present a significant menace to human health. Despite the significant advancements in nanotechnology-driven antineoplastic agents, there remains a conspicuous gap in the development of targeted chemotherapeutic agents specifically designed for HCC. Consequently, there is an urgent need to explore potent drug delivery systems for effective HCC treatment. Here we have exploited the interplay between HCC and adipocyte to engineer a hybrid adipocyte-derived exosome platform, serving as a versatile vehicle to specifically target HCC and exsert potent antitumor effect. A lipid-like prodrug of docetaxel (DSTG) with a reactive oxygen species (ROS)-cleavable linker, and a lipid-conjugated photosensitizer (PPLA), spontaneously co-assemble into nanoparticles, functioning as the lipid cores of the hybrid exosomes (HEMPs and NEMPs). These nanoparticles are further encapsuled within adipocyte-derived exosome membranes, enhancing their affinity towards HCC cancer cells. As such, cancer cell uptakes of hybrid exosomes are increased up to 5.73-fold compared to lipid core nanoparticles. Our in vitro and in vivo experiments have demonstrated that HEMPs not only enhance the bioactivity of the prodrug and extend its circulation in the bloodstream but also effectively inhibit tumor growth by selectively targeting hepatocellular carcinoma tumor cells. Self-facilitated synergistic drug release subsequently promoting antitumor efficacy, inducing significant inhibition of tumor growth with minimal side effects. Our findings herald a promising direction for the development of targeted HCC therapeutics.
Collapse
Affiliation(s)
- Xinying Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Jiaxin Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Shunzhe Zheng
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Meng Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Wenqian Xu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Jianbin Shi
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Ken-Ichiro Kamei
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, PR China; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan; Program of Biology, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates; Program of Bioengineering, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates; Department of Biomedical Engineering, Tandon School of Engineering, New York University, MetroTech, Brooklyn, NY 11201, United States of America.
| | - Chutong Tian
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, PR China; Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, Hangzhou 310058, PR China.
| |
Collapse
|
67
|
Choi Y, Seok SH, Yoon HY, Ryu JH, Kwon IC. Advancing cancer immunotherapy through siRNA-based gene silencing for immune checkpoint blockade. Adv Drug Deliv Rev 2024; 209:115306. [PMID: 38626859 DOI: 10.1016/j.addr.2024.115306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 05/23/2024]
Abstract
Cancer immunotherapy represents a revolutionary strategy, leveraging the patient's immune system to inhibit tumor growth and alleviate the immunosuppressive effects of the tumor microenvironment (TME). The recent emergence of immune checkpoint blockade (ICB) therapies, particularly following the first approval of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors like ipilimumab, has led to significant growth in cancer immunotherapy. The extensive explorations on diverse immune checkpoint antibodies have broadened the therapeutic scope for various malignancies. However, the clinical response to these antibody-based ICB therapies remains limited, with less than 15% responsiveness and notable adverse effects in some patients. This review introduces the emerging strategies to overcome current limitations of antibody-based ICB therapies, mainly focusing on the development of small interfering ribonucleic acid (siRNA)-based ICB therapies and innovative delivery systems. We firstly highlight the diverse target immune checkpoint genes for siRNA-based ICB therapies, incorporating silencing of multiple genes to boost anti-tumor immune responses. Subsequently, we discuss improvements in siRNA delivery systems, enhanced by various nanocarriers, aimed at overcoming siRNA's clinical challenges such as vulnerability to enzymatic degradation, inadequate pharmacokinetics, and possible unintended target interactions. Additionally, the review presents various combination therapies that integrate chemotherapy, phototherapy, stimulatory checkpoints, ICB antibodies, and cancer vaccines. The important point is that when used in combination with siRNA-based ICB therapy, the synergistic effect of traditional therapies is strengthened, improving host immune surveillance and therapeutic outcomes. Conclusively, we discuss the insights into innovative and effective cancer immunotherapeutic strategies based on RNA interference (RNAi) technology utilizing siRNA and nanocarriers as a novel approach in ICB cancer immunotherapy.
Collapse
Affiliation(s)
- Youngjin Choi
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Su Hyun Seok
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hong Yeol Yoon
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science &Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Ju Hee Ryu
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| | - Ick Chan Kwon
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
68
|
Rao Y, Qiu K, Song Y, Mao M, Feng L, Cheng D, Li J, Zhang Z, Zhang Y, Shao X, Pang W, Wang Y, Chen X, Jiang C, Wu S, Yu S, Liu J, Wang H, Peng X, Yang L, Chen L, Mu X, Zheng Y, Xu W, Liu G, Chen F, Yu H, Zhao Y, Ren J. The diversity of inhibitory receptor co-expression patterns of exhausted CD8 + T cells in oropharyngeal carcinoma. iScience 2024; 27:109668. [PMID: 38655196 PMCID: PMC11035373 DOI: 10.1016/j.isci.2024.109668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/05/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024] Open
Abstract
Exhausted CD8+ T cells (Texs) are characterized by the expression of various inhibitory receptors (IRs), whereas the functional attributes of these co-expressed IRs remain limited. Here, we systematically characterized the diversity of IR co-expression patterns in Texs from both human oropharyngeal squamous cell carcinoma (OPSCC) tissues and syngeneic OPSCC model. Nearly 60% of the Texs population co-expressed two or more IRs, and the number of co-expressed IRs was positively associated with superior exhaustion and cytotoxicity phenotypes. In OPSCC patients, programmed cell death-1 (PD-1) blockade significantly enhanced PDCD1-based co-expression with other IR genes, whereas dual blockades of PD-1 and cytotoxic T lymphocyte-associated protein 4 (CTLA-4) significantly upregulated CTLA4-based co-expression with other IR genes. Collectively, our findings demonstrate that highly diverse IR co-expression is a leading feature of Texs and represents their functional states, which might provide essential clues for the rational selection of immune checkpoint inhibitors in treating OPSCC.
Collapse
Affiliation(s)
- Yufang Rao
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ke Qiu
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yao Song
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Minzi Mao
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lan Feng
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Danni Cheng
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junhong Li
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ziyan Zhang
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuyang Zhang
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiuli Shao
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wendu Pang
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Wang
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Xuemei Chen
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Chuanhuan Jiang
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Sisi Wu
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Shuaishuai Yu
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Jun Liu
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiyang Wang
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xingchen Peng
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Yang
- MinSheng Ear-Nose-Throat Hospital, Chengdu, Sichuan, China
| | - Li Chen
- MinSheng Ear-Nose-Throat Hospital, Chengdu, Sichuan, China
| | - Xiaosong Mu
- Langzhong People’s Hospital, Nanchong, Sichuan, China
| | - Yongbo Zheng
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Xu
- Department of Biostatistics, Princess Margaret Cancer Centre and Dalla Lana School of Public Health, Toronto, ON, Canada
| | - Geoffrey Liu
- Medical Oncology and Hematology, Princess Margaret Cancer Centre, and Department of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Medicine, Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Fei Chen
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haopeng Yu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Zhao
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jianjun Ren
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
69
|
Dyikanov D, Zaitsev A, Vasileva T, Wang I, Sokolov AA, Bolshakov ES, Frank A, Turova P, Golubeva O, Gantseva A, Kamysheva A, Shpudeiko P, Krauz I, Abdou M, Chasse M, Conroy T, Merriam NR, Alesse JE, English N, Shpak B, Shchetsova A, Tikhonov E, Filatov I, Radko A, Bolshakova A, Kachalova A, Lugovykh N, Bulahov A, Kilina A, Asanbekov S, Zheleznyak I, Skoptsov P, Alekseeva E, Johnson JM, Curry JM, Linnenbach AJ, South AP, Yang E, Morozov K, Terenteva A, Nigmatullina L, Fastovetz D, Bobe A, Balabanian L, Nomie K, Yong ST, Davitt CJH, Ryabykh A, Kudryashova O, Tazearslan C, Bagaev A, Fowler N, Luginbuhl AJ, Ataullakhanov RI, Goldberg MF. Comprehensive peripheral blood immunoprofiling reveals five immunotypes with immunotherapy response characteristics in patients with cancer. Cancer Cell 2024; 42:759-779.e12. [PMID: 38744245 DOI: 10.1016/j.ccell.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/20/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
The lack of comprehensive diagnostics and consensus analytical models for evaluating the status of a patient's immune system has hindered a wider adoption of immunoprofiling for treatment monitoring and response prediction in cancer patients. To address this unmet need, we developed an immunoprofiling platform that uses multiparameter flow cytometry to characterize immune cell heterogeneity in the peripheral blood of healthy donors and patients with advanced cancers. Using unsupervised clustering, we identified five immunotypes with unique distributions of different cell types and gene expression profiles. An independent analysis of 17,800 open-source transcriptomes with the same approach corroborated these findings. Continuous immunotype-based signature scores were developed to correlate systemic immunity with patient responses to different cancer treatments, including immunotherapy, prognostically and predictively. Our approach and findings illustrate the potential utility of a simple blood test as a flexible tool for stratifying cancer patients into therapy response groups based on systemic immunoprofiling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jennifer M Johnson
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Joseph M Curry
- Department of Otolaryngology Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Alban J Linnenbach
- Department of Otolaryngology Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrew P South
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - EnJun Yang
- The Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Adam J Luginbuhl
- Department of Otolaryngology Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | |
Collapse
|
70
|
Ma Y, Wang T, Zhang X, Wang P, Long F. The role of circular RNAs in regulating resistance to cancer immunotherapy: mechanisms and implications. Cell Death Dis 2024; 15:312. [PMID: 38697964 PMCID: PMC11066075 DOI: 10.1038/s41419-024-06698-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Cancer immunotherapy has rapidly transformed cancer treatment, yet resistance remains a significant hurdle, limiting its efficacy in many patients. Circular RNAs (circRNAs), a novel class of non-coding RNAs, have emerged as pivotal regulators of gene expression and cellular processes. Increasing evidence indicates their involvement in modulating resistance to cancer immunotherapy. Notably, certain circRNAs function as miRNA sponges or interact with proteins, influencing the expression of immune-related genes, including crucial immune checkpoint molecules. This, in turn, shapes the tumor microenvironment and significantly impacts the response to immunotherapy. In this comprehensive review, we explore the evolving role of circRNAs in orchestrating resistance to cancer immunotherapy, with a specific focus on their mechanisms in influencing immune checkpoint gene expression. Additionally, we underscore the potential of circRNAs as promising therapeutic targets to augment the effectiveness of cancer immunotherapy. Understanding the role of circRNAs in cancer immunotherapy resistance could contribute to the development of new therapeutic strategies to overcome resistance and improve patient outcomes.
Collapse
Affiliation(s)
- Yu Ma
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Ting Wang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Xudong Zhang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Pinghan Wang
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610032, China
| | - Fangyi Long
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610032, China.
| |
Collapse
|
71
|
Khosravi G, Mostafavi S, Bastan S, Ebrahimi N, Gharibvand RS, Eskandari N. Immunologic tumor microenvironment modulators for turning cold tumors hot. Cancer Commun (Lond) 2024; 44:521-553. [PMID: 38551889 PMCID: PMC11110955 DOI: 10.1002/cac2.12539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 05/23/2024] Open
Abstract
Tumors can be classified into distinct immunophenotypes based on the presence and arrangement of cytotoxic immune cells within the tumor microenvironment (TME). Hot tumors, characterized by heightened immune activity and responsiveness to immune checkpoint inhibitors (ICIs), stand in stark contrast to cold tumors, which lack immune infiltration and remain resistant to therapy. To overcome immune evasion mechanisms employed by tumor cells, novel immunologic modulators have emerged, particularly ICIs targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1/programmed death-ligand 1(PD-1/PD-L1). These agents disrupt inhibitory signals and reactivate the immune system, transforming cold tumors into hot ones and promoting effective antitumor responses. However, challenges persist, including primary resistance to immunotherapy, autoimmune side effects, and tumor response heterogeneity. Addressing these challenges requires innovative strategies, deeper mechanistic insights, and a combination of immune interventions to enhance the effectiveness of immunotherapies. In the landscape of cancer medicine, where immune cold tumors represent a formidable hurdle, understanding the TME and harnessing its potential to reprogram the immune response is paramount. This review sheds light on current advancements and future directions in the quest for more effective and safer cancer treatment strategies, offering hope for patients with immune-resistant tumors.
Collapse
Affiliation(s)
- Gholam‐Reza Khosravi
- Department of Medical ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Samaneh Mostafavi
- Department of ImmunologyFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Sanaz Bastan
- Department of Medical ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Narges Ebrahimi
- Department of Medical ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Roya Safari Gharibvand
- Department of ImmunologySchool of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Nahid Eskandari
- Department of Medical ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
72
|
Peng Y, Liang S, Meng QF, Liu D, Ma K, Zhou M, Yun K, Rao L, Wang Z. Engineered Bio-Based Hydrogels for Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313188. [PMID: 38362813 DOI: 10.1002/adma.202313188] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/01/2024] [Indexed: 02/17/2024]
Abstract
Immunotherapy represents a revolutionary paradigm in cancer management, showcasing its potential to impede tumor metastasis and recurrence. Nonetheless, challenges including limited therapeutic efficacy and severe immune-related side effects are frequently encountered, especially in solid tumors. Hydrogels, a class of versatile materials featuring well-hydrated structures widely used in biomedicine, offer a promising platform for encapsulating and releasing small molecule drugs, biomacromolecules, and cells in a controlled manner. Immunomodulatory hydrogels present a unique capability for augmenting immune activation and mitigating systemic toxicity through encapsulation of multiple components and localized administration. Notably, hydrogels based on biopolymers have gained significant interest owing to their biocompatibility, environmental friendliness, and ease of production. This review delves into the recent advances in bio-based hydrogels in cancer immunotherapy and synergistic combinatorial approaches, highlighting their diverse applications. It is anticipated that this review will guide the rational design of hydrogels in the field of cancer immunotherapy, fostering clinical translation and ultimately benefiting patients.
Collapse
Affiliation(s)
- Yuxuan Peng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shuang Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qian-Fang Meng
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Dan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kongshuo Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Mengli Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kaiqing Yun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Zhaohui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
73
|
Liao J, Pan H, Huang G, Gong H, Chen Z, Yin T, Zhang B, Chen T, Zheng M, Cai L. T cell cascade regulation initiates systemic antitumor immunity through living drug factory of anti-PD-1/IL-12 engineered probiotics. Cell Rep 2024; 43:114086. [PMID: 38598335 DOI: 10.1016/j.celrep.2024.114086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/26/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
Immune checkpoint blockade (ICB) has revolutionized cancer therapy but only works in a subset of patients due to the insufficient infiltration, persistent exhaustion, and inactivation of T cells within a tumor. Herein, we develop an engineered probiotic (interleukin [IL]-12 nanoparticle Escherichia coli Nissle 1917 [INP-EcN]) acting as a living drug factory to biosynthesize anti-PD-1 and release IL-12 for initiating systemic antitumor immunity through T cell cascade regulation. Mechanistically, INP-EcN not only continuously biosynthesizes anti-PD-1 for relieving immunosuppression but also effectively cascade promote T cell activation, proliferation, and infiltration via responsive release of IL-12, thus reaching a sufficient activation threshold to ICB. Tumor targeting and colonization of INP-EcNs dramatically increase local drug accumulations, significantly inhibiting tumor growth and metastasis compared to commercial inhibitors. Furthermore, immune profiling reveals that anti-PD-1/IL-12 efficiently cascade promote antitumor effects in a CD8+ T cell-dependent manner, clarifying the immune interaction of ICB and cytokine activation. Ultimately, such engineered probiotics achieve a potential paradigm shift from T cell exhaustion to activation and show considerable promise for antitumor bio-immunotherapy.
Collapse
Affiliation(s)
- Jianhong Liao
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Hong Pan
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
| | - Guojun Huang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Han Gong
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Ze Chen
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Ting Yin
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Baozhen Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China.
| | - Mingbin Zheng
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China; National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518112, China.
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China; Sino-Euro Center of Biomedicine and Health, Luohu Shenzhen 518024, China.
| |
Collapse
|
74
|
Zheng L, Hu F, Huang L, Lu J, Yang X, Xu J, Wang S, Shen Y, Zhong R, Chu T, Zhang W, Li Y, Zheng X, Han B, Zhong H, Nie W, Zhang X. Association of metabolomics with PD-1 inhibitor plus chemotherapy outcomes in patients with advanced non-small-cell lung cancer. J Immunother Cancer 2024; 12:e008190. [PMID: 38641349 PMCID: PMC11029260 DOI: 10.1136/jitc-2023-008190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Combining immune checkpoint inhibitors (ICIs) with chemotherapy has become a standard treatment for patients with non-small cell lung cancer (NSCLC) lacking driver gene mutations. Reliable biomarkers are essential for predicting treatment outcomes. Emerging evidence from various cancers suggests that early assessment of serum metabolites could serve as valuable biomarkers for predicting outcomes. This study aims to identify metabolites linked to treatment outcomes in patients with advanced NSCLC undergoing first-line or second-line therapy with programmed cell death 1 (PD-1) inhibitors plus chemotherapy. METHOD 200 patients with advanced NSCLC receiving either first-line or second-line PD-1 inhibitor plus chemotherapy, and 50 patients undergoing first-line chemotherapy were enrolled in this study. The 200 patients receiving combination therapy were divided into a Discovery set (n=50) and a Validation set (n=150). These sets were further categorized into respond and non-respond groups based on progression-free survival PFS criteria (PFS≥12 and PFS<12 months). Serum samples were collected from all patients before treatment initiation for untargeted metabolomics analysis, with the goal of identifying and validating biomarkers that can predict the efficacy of immunotherapy plus chemotherapy. Additionally, the validated metabolites were grouped into high and low categories based on their medians, and their relationship with PFS was analyzed using Cox regression models in patients receiving combination therapy. RESULTS After the impact of chemotherapy was accounted for, two significant differential metabolites were identified in both the Discovery and Validation sets: N-(3-Indolylacetyl)-L-alanine and methomyl (VIP>1 and p<0.05). Notably, upregulation of both metabolites was observed in the group with a poorer prognosis. In the univariate analysis of PFS, lower levels of N-(3-Indolylacetyl)-L-alanine were associated with longer PFS (HR=0.59, 95% CI, 0.41 to 0.84, p=0.003), and a prolonged PFS was also indicated by lower levels of methomyl (HR=0.67, 95% CI, 0.47 to 0.96, p=0.029). In multivariate analyses of PFS, lower levels of N-(3-Indolylacetyl)-L-alanine were significantly associated with a longer PFS (HR=0.60, 95% CI, 0.37 to 0.98, p=0.041). CONCLUSION Improved outcomes were associated with lower levels of N-(3-Indolylacetyl)-L-alanine in patients with stage IIIB-IV NSCLC lacking driver gene mutations, who underwent first-line or second-line therapy with PD-1 inhibitors combined with chemotherapy. Further exploration of the potential predictive value of pretreatment detection of N-(3-Indolylacetyl)-L-alanine in peripheral blood for the efficacy of combination therapy is warranted. STATEMENT The combination of ICIs and chemotherapy has established itself as the new standard of care for first-line or second-line treatment in patients with advanced NSCLC lacking oncogenic driver alterations. Therefore, identifying biomarkers that can predict the efficacy and prognosis of immunotherapy plus chemotherapy is of paramount importance. Currently, the only validated predictive biomarker is programmed cell death ligand-1 (PD-L1), but its predictive value is not absolute. Our study suggests that the detection of N-(3-Indolylacetyl)-L-alanine in patient serum with untargeted metabolomics prior to combined therapy may predict the efficacy of treatment. Compared with detecting PD-L1 expression, the advantage of our biomarker is that it is more convenient, more dynamic, and seems to work synergistically with PD-L1 expression.
Collapse
Affiliation(s)
- Liang Zheng
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Fang Hu
- Department of Thoracic Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Zhejiang, China
- Hangzhou Institute of Medicine (HlM), Chinese Academy of Sciences, Zhejiang, China
| | - Lin Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School Of Medicine, Shanghai, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Jun Lu
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Xiaohua Yang
- Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Jianlin Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Shuyuan Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Yinchen Shen
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Runbo Zhong
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Tianqing Chu
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Ying Li
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Xiaoxuan Zheng
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Baohui Han
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Hua Zhong
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Wei Nie
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Xueyan Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| |
Collapse
|
75
|
Yan L, Wu M, Wang T, Yuan H, Zhang X, Zhang H, Li T, Pandey V, Han X, Lobie PE, Zhu T. Breast Cancer Stem Cells Secrete MIF to Mediate Tumor Metabolic Reprogramming That Drives Immune Evasion. Cancer Res 2024; 84:1270-1285. [PMID: 38335272 DOI: 10.1158/0008-5472.can-23-2390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/29/2023] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Reprogramming of energy metabolism exerts pivotal functions in cancer progression and immune surveillance. Identification of the mechanisms mediating metabolic changes in cancer may lead to improved strategies to suppress tumor growth and stimulate antitumor immunity. Here, it was observed that the secretomes of hypoxic breast cancer cells and breast cancer stem cells (BCSC) induced reprogramming of metabolic pathways, particularly glycolysis, in normoxic breast cancer cells. Screening of the BCSC secretome identified MIF as a pivotal factor potentiating glycolysis. Mechanistically, MIF increased c-MYC-mediated transcriptional upregulation of the glycolytic enzyme aldolase C by activating WNT/β-catenin signaling. Targeting MIF attenuated glycolysis and impaired xenograft growth and metastasis. MIF depletion in breast cancer cells also augmented intratumoral cytolytic CD8+ T cells and proinflammatory macrophages while decreasing regulatory T cells and tumor-associated neutrophils in the tumor microenvironment. Consequently, targeting MIF improved the therapeutic efficacy of immune checkpoint blockade in triple-negative breast cancer. Collectively, this study proposes MIF as an attractive therapeutic target to circumvent metabolic reprogramming and immunosuppression in breast cancer. SIGNIFICANCE MIF secreted by breast cancer stem cells induces metabolic reprogramming in bulk tumor cells and engenders an immunosuppressive microenvironment, identifying MIF targeting as a strategy to improve immunotherapy efficacy in breast cancer.
Collapse
Affiliation(s)
- Linlin Yan
- Division of Life Sciences and Medicine, Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei, Anhui, China
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, Anhui, China
| | - Mingming Wu
- Division of Life Sciences and Medicine, Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei, Anhui, China
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, Anhui, China
| | - Tianyu Wang
- Division of Life Sciences and Medicine, Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei, Anhui, China
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, Anhui, China
| | - Hui Yuan
- Division of Life Sciences and Medicine, Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei, Anhui, China
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiao Zhang
- Division of Life Sciences and Medicine, Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei, Anhui, China
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, Anhui, China
| | - Huafeng Zhang
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, Anhui, China
| | - Tao Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Vijay Pandey
- Tsinghua-Berkeley Shenzhen Institute and Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, China
| | - Xinghua Han
- Division of Life Sciences and Medicine, Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei, Anhui, China
| | - Peter E Lobie
- Tsinghua-Berkeley Shenzhen Institute and Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Tao Zhu
- Division of Life Sciences and Medicine, Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei, Anhui, China
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, Anhui, China
- Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
76
|
Gou S, Geng W, Zou Y, Chen F, He T, Duan Q, Qin Z, Li L, Xia J, Yu Y, Feng Q, Cai K. Glutathione-Responsive and Hydrogen Sulfide Self-Generating Nanocages Based on Self-Weaving Technology To Optimize Cancer Immunotherapy. ACS NANO 2024; 18:9871-9885. [PMID: 38545939 DOI: 10.1021/acsnano.3c08939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
As an ideal drug carrier, it should possess high drug loading and encapsulation efficiency and precise drug targeting release. Herein, we utilized a template-guided self-weaving technology of phase-separated silk fibroin (SF) in reverse microemulsion (RME) to fabricate a kind of hyaluronic acid (HA) coated SF nanocage (HA-gNCs) for drug delivery of cancer immunotherapy. Due to the hollow structure, HA-gNCs were capable of simultaneous encapsulation of the anti-inflammatory drug betamethasone phosphate (BetP) and the immune checkpoint blockade (ICB) agent PD-L1 antibody (αPD-L1) efficiently. Another point worth noting was that the thiocarbonate cross-linkers used to strengthen the SF shell of HA-gNCs could be quickly broken by overexpressed glutathione (GSH) to reach responsive drug release inside tumor tissues accompanied by hydrogen sulfide (H2S) production in one step. The synergistic effect of released BetP and generated H2S guaranteed chronological modulation of the immunosuppressive tumor microenvironment (ITME) to amplify the therapeutic effect of αPD-L1 for the growth, metastasis, and recurrence of tumors. This study highlighted the exceptional prospect of HA-gNCs as a self-assistance platform for cancer drug delivery.
Collapse
Affiliation(s)
- Shuangquan Gou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 40044, China
| | - Wenbo Geng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 40044, China
| | - Yanan Zou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 40044, China
| | - Fangye Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 40044, China
| | - Tingting He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 40044, China
| | - Qiaojian Duan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 40044, China
| | - Zizhen Qin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 40044, China
| | - Liangsheng Li
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Yongsheng Yu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 40044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 40044, China
| |
Collapse
|
77
|
Li RQ, Yan L, Zhang L, Zhao Y, Lian J. CD74 as a prognostic and M1 macrophage infiltration marker in a comprehensive pan-cancer analysis. Sci Rep 2024; 14:8125. [PMID: 38582956 PMCID: PMC10998849 DOI: 10.1038/s41598-024-58899-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/04/2024] [Indexed: 04/08/2024] Open
Abstract
CD74 is a type-II transmembrane glycoprotein that has been linked to tumorigenesis. However, this association was based only on phenotypic studies, and, to date, no in-depth mechanistic studies have been conducted. In this study, combined with a multi-omics study, CD74 levels were significantly upregulated in most cancers relative to normal tissues and were found to be predictive of prognosis. Elevated CD74 expression was associated with reduced levels of mismatch-repair genes and homologous repair gene signatures in over 10 tumor types. Multiple fluorescence staining and bulk, spatial, single-cell transcriptional analyses indicated its potential as a marker for M1 macrophage infiltration in pan-cancer. In addition, CD74 expression was higher in BRCA patients responsive to conventional chemotherapy and was able to predict the prognosis of these patients. Potential CD74-activating drugs (HNHA and BRD-K55186349) were identified through molecular docking to CD74. The findings indicate activation of CD74 may have potential in tumor immunotherapy.
Collapse
Affiliation(s)
- Ruo Qi Li
- Department of Pathology, Cancer Hospital Affiliated to Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Lei Yan
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, 382 Wuyi Road, Taiyuan, Shanxi, China
| | - Ling Zhang
- Department of Pathology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yanli Zhao
- Department of Pathology, Cancer Hospital Affiliated to Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China.
| | - Jing Lian
- Department of Pathology, Cancer Hospital Affiliated to Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
78
|
Thiruppathi J, Vijayan V, Park IK, Lee SE, Rhee JH. Enhancing cancer immunotherapy with photodynamic therapy and nanoparticle: making tumor microenvironment hotter to make immunotherapeutic work better. Front Immunol 2024; 15:1375767. [PMID: 38646546 PMCID: PMC11026591 DOI: 10.3389/fimmu.2024.1375767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Cancer immunotherapy has made tremendous advancements in treating various malignancies. The biggest hurdle to successful immunotherapy would be the immunosuppressive tumor microenvironment (TME) and low immunogenicity of cancer cells. To make immunotherapy successful, the 'cold' TME must be converted to 'hot' immunostimulatory status to activate residual host immune responses. To this end, the immunosuppressive equilibrium in TME should be broken, and immunogenic cancer cell death ought to be induced to stimulate tumor-killing immune cells appropriately. Photodynamic therapy (PDT) is an efficient way of inducing immunogenic cell death (ICD) of cancer cells and disrupting immune-restrictive tumor tissues. PDT would trigger a chain reaction that would make the TME 'hot' and have ICD-induced tumor antigens presented to immune cells. In principle, the strategic combination of PDT and immunotherapy would synergize to enhance therapeutic outcomes in many intractable tumors. Novel technologies employing nanocarriers were developed to deliver photosensitizers and immunotherapeutic to TME efficiently. New-generation nanomedicines have been developed for PDT immunotherapy in recent years, which will accelerate clinical applications.
Collapse
Affiliation(s)
- Jayalakshmi Thiruppathi
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
- Combinatorial Tumor Immunotherapy Medical Research Center (MRC), Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
| | - Veena Vijayan
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
| | - In-Kyu Park
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- Department of Radiology, Biomolecular Theranostics (BiT) Laboratory, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
| | - Shee Eun Lee
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Joon Haeng Rhee
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
- Combinatorial Tumor Immunotherapy Medical Research Center (MRC), Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
| |
Collapse
|
79
|
Xia Y, Li X, Bie N, Pan W, Miao YR, Yang M, Gao Y, Chen C, Liu H, Gan L, Guo AY. A method for predicting drugs that can boost the efficacy of immune checkpoint blockade. Nat Immunol 2024; 25:659-670. [PMID: 38499799 DOI: 10.1038/s41590-024-01789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
Combination therapy is a promising therapeutic strategy to enhance the efficacy of immune checkpoint blockade (ICB); however, predicting drugs for effective combination is challenging. Here we developed a general data-driven method called CM-Drug for screening compounds that can boost ICB treatment efficacy based on core and minor gene sets identified between responsive and nonresponsive samples in ICB therapy. The CM-Drug method was validated using melanoma and lung cancer mouse models, with combined therapeutic efficacy demonstrated in eight of nine predicted compounds. Among these compounds, taltirelin had the strongest synergistic effect. Mechanistic analysis and experimental verification demonstrated that taltirelin can stimulate CD8+ T cells and is mediated by the induction of thyroid-stimulating hormone. This study provides an effective and general method for predicting and evaluating drugs for combination therapy and identifies candidate compounds for future ICB combination therapy.
Collapse
Affiliation(s)
- Yun Xia
- Department of Thoracic Surgery, West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Nana Bie
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Pan
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Ru Miao
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Yang
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Gao
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hanqing Liu
- Department of Breast and Thyroid Surgery, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - An-Yuan Guo
- Department of Thoracic Surgery, West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China.
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
80
|
Mao Y, Wang W, Yang J, Zhou X, Lu Y, Gao J, Wang X, Wen L, Fu W, Tang F. Drug repurposing screening and mechanism analysis based on human colorectal cancer organoids. Protein Cell 2024; 15:285-304. [PMID: 37345888 PMCID: PMC10984622 DOI: 10.1093/procel/pwad038] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/22/2023] [Indexed: 06/23/2023] Open
Abstract
Colorectal cancer (CRC) is a highly heterogeneous cancer and exploring novel therapeutic options is a pressing issue that needs to be addressed. Here, we established human CRC tumor-derived organoids that well represent both morphological and molecular heterogeneities of original tumors. To efficiently identify repurposed drugs for CRC, we developed a robust organoid-based drug screening system. By combining the repurposed drug library and computation-based drug prediction, 335 drugs were tested and 34 drugs with anti-CRC effects were identified. More importantly, we conducted a detailed transcriptome analysis of drug responses and divided the drug response signatures into five representative patterns: differentiation induction, growth inhibition, metabolism inhibition, immune response promotion, and cell cycle inhibition. The anticancer activities of drug candidates were further validated in the established patient-derived organoids-based xenograft (PDOX) system in vivo. We found that fedratinib, trametinib, and bortezomib exhibited effective anticancer effects. Furthermore, the concordance and discordance of drug response signatures between organoids in vitro and pairwise PDOX in vivo were evaluated. Our study offers an innovative approach for drug discovery, and the representative transcriptome features of drug responses provide valuable resources for developing novel clinical treatments for CRC.
Collapse
Affiliation(s)
- Yunuo Mao
- School of Life Sciences, Biomedical Pioneering Innovation Center, Department of General Surgery, Third Hospital, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
- The Research Center of Stem Cell and Regenerative Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Wei Wang
- School of Life Sciences, Biomedical Pioneering Innovation Center, Department of General Surgery, Third Hospital, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Jingwei Yang
- School of Life Sciences, Biomedical Pioneering Innovation Center, Department of General Surgery, Third Hospital, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Xin Zhou
- School of Life Sciences, Biomedical Pioneering Innovation Center, Department of General Surgery, Third Hospital, Peking University, Beijing 100871, China
- Peking University Third Hospital Cancer Center, Beijing 100871, China
| | - Yongqu Lu
- School of Life Sciences, Biomedical Pioneering Innovation Center, Department of General Surgery, Third Hospital, Peking University, Beijing 100871, China
- Peking University Third Hospital Cancer Center, Beijing 100871, China
| | - Junpeng Gao
- School of Life Sciences, Biomedical Pioneering Innovation Center, Department of General Surgery, Third Hospital, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Xiao Wang
- School of Life Sciences, Biomedical Pioneering Innovation Center, Department of General Surgery, Third Hospital, Peking University, Beijing 100871, China
| | - Lu Wen
- School of Life Sciences, Biomedical Pioneering Innovation Center, Department of General Surgery, Third Hospital, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Wei Fu
- School of Life Sciences, Biomedical Pioneering Innovation Center, Department of General Surgery, Third Hospital, Peking University, Beijing 100871, China
- Peking University Third Hospital Cancer Center, Beijing 100871, China
| | - Fuchou Tang
- School of Life Sciences, Biomedical Pioneering Innovation Center, Department of General Surgery, Third Hospital, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
81
|
Liu R, Li HF, Li S. PD-1-mediated inhibition of T cell activation: Mechanisms and strategies for cancer combination immunotherapy. CELL INSIGHT 2024; 3:100146. [PMID: 38425643 PMCID: PMC10901852 DOI: 10.1016/j.cellin.2024.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
The programmed cell death 1 (PD-1) immune checkpoint of co-inhibitory signaling plays crucial roles in controlling the magnitude and duration of T cell activation to limit tissue damage and maintain self-tolerance. Cancer cells hijack the co-inhibitory pathway and escape immune surveillance by overexpressing the PD-1 ligand PD-L1. Immune checkpoint inhibitors, such as PD-1 blocking antibody have been approved for tumor immunotherapy. However, not all patients can benefit from PD-1 monotherapy. Combination immunotherapy based on PD-1 axis blockade substantially improves clinical anti-tumor efficacy. In this review, we briefly summarize the current progress on the mechanisms of PD-1-mediated inhibition of T cell activation and strategies for cancer combination immunotherapy.
Collapse
Affiliation(s)
- Rui Liu
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan, 430071, China
- Medical Research Institute, Wuhan, 430071, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, 430071, China
- Wuhan University, Wuhan, 430071, China
| | - Hui-Fang Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan, 430071, China
- Medical Research Institute, Wuhan, 430071, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, 430071, China
- Wuhan University, Wuhan, 430071, China
| | - Shu Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan, 430071, China
- Medical Research Institute, Wuhan, 430071, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, 430071, China
- Wuhan University, Wuhan, 430071, China
| |
Collapse
|
82
|
Jia F, Sun S, Li J, Wang W, Huang H, Hu X, Pan S, Chen W, Shen L, Yao Y, Zheng S, Chen H, Xia W, Yuan H, Zhou J, Yu X, Zhang T, Zhang B, Huang J, Ni C. Neoadjuvant chemotherapy-induced remodeling of human hormonal receptor-positive breast cancer revealed by single-cell RNA sequencing. Cancer Lett 2024; 585:216656. [PMID: 38266804 DOI: 10.1016/j.canlet.2024.216656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
Hormone receptor-positive breast cancer (HR+ BC) is known to be relatively insensitive to chemotherapy, and since chemotherapy has remained the major neoadjuvant therapy for HR+ BC, the undetermined mechanism of chemoresistance and how chemotherapy reshapes the immune microenvironment need to be explored by high-throughput technology. By using single-cell RNA sequencing and multiplexed immunofluorescence staining analysis of HR+ BC samples (paired pre- and post-neoadjuvant chemotherapy (NAC)), the levels of previously unrecognized immune cell subsets, including CD8+ T cells with pronounced expression of T-cell development (LMNA) and cytotoxicity (FGFBP2) markers, CD4+ T cells characterized by proliferation marker (ATP1B3) expression and macrophages characterized by CD52 expression, were found to be increased post-NAC, which were predictive of chemosensitivity and their antitumor function was also validated with in vitro experiments. In terms of immune checkpoint expression of CD8+ T cells, we found their changes were inconsistent post-NAC, that LAG3, VSIR were decreased, and PDCD1, HAVCR2, CTLA4, KLRC1 and BTLA were increased. In addition, we have identified novel genomic and transcriptional patterns of chemoresistant cancer cells, both innate and acquired, and have confirmed their prognostic value with TCGA cohorts. By shedding light on the ecosystem of HR+ BC reshaped by chemotherapy, our results uncover valuable candidates for predicting chemosensitivity and overcoming chemoresistance in HR+ BC.
Collapse
Affiliation(s)
- Fang Jia
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China; Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China
| | - Shanshan Sun
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China
| | - Jiaxin Li
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China
| | - Wenwen Wang
- Department of Pathology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huanhuan Huang
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Xiaoxiao Hu
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng Pan
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wuzhen Chen
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lesang Shen
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Yao
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siwei Zheng
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hailong Chen
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjie Xia
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Hongjun Yuan
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Jun Zhou
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuyan Yu
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Zhang
- Department of Radiotherapy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bing Zhang
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China
| | - Jian Huang
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China.
| | - Chao Ni
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China; Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China.
| |
Collapse
|
83
|
Rajan A, Sivapiromrat AK, McAdams MJ. Immunotherapy for Thymomas and Thymic Carcinomas: Current Status and Future Directions. Cancers (Basel) 2024; 16:1369. [PMID: 38611047 PMCID: PMC11010813 DOI: 10.3390/cancers16071369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Thymic epithelial tumors are a histologically diverse group of cancers arising from the epithelial compartment of the thymus. These tumors are characterized by a low tumor mutation burden, a lack of actionable genomic changes, and, especially with thymomas, defects in immune tolerance. Surgery is the mainstay of the management of resectable disease, whereas advanced, unresectable tumors are treated with platinum-based chemotherapy. Disease recurrence can occur months to years after frontline treatment. Although several options are available for conventional treatment of recurrent thymic tumors, response rates are generally low, and treatment-related toxicity can affect quality of life. A subset of patients benefit from biologic therapies, but there remains an unmet need for the development of new treatments. Immune checkpoint inhibitors are safe, clinically active, and have contributed to an improvement in survival for patients with a wide variety of cancers. However, the application of these revolutionary treatments for thymic cancers is limited to their use for the management of recurrent thymic carcinoma because of the risk of immune toxicity. In this paper, we review the current uses of immunotherapy for the management of thymic epithelial tumors and highlight potential strategies to improve safety and broaden the application of these treatments for patients with thymic cancers.
Collapse
Affiliation(s)
- Arun Rajan
- Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
84
|
Wang X, Lamberti G, Di Federico A, Alessi J, Ferrara R, Sholl ML, Awad MM, Vokes N, Ricciuti B. Tumor mutational burden for the prediction of PD-(L)1 blockade efficacy in cancer: challenges and opportunities. Ann Oncol 2024:S0923-7534(24)00084-X. [PMID: 38537779 DOI: 10.1016/j.annonc.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/19/2024] [Accepted: 03/19/2024] [Indexed: 05/16/2024] Open
Abstract
Tumor mutational burden (TMB) is a biomarker that measures the number of somatic mutations in a tumor's genome. TMB has emerged as a predictor of response to immune checkpoint inhibitors (ICIs) in various cancer types, and several studies have shown that patients with high TMB have better outcomes when treated with programmed death-ligand 1-based therapies. Recently, the Food and Drug Administration has approved TMB as a companion diagnostic for the use of pembrolizumab in solid tumors. However, despite its potential, the use of TMB as a biomarker for immunotherapy efficacy is limited by several factors. Here we review the limitations of TMB in predicting immunotherapy outcomes in patients with cancer and discuss potential strategies to optimize its use in the clinic.
Collapse
Affiliation(s)
- X Wang
- Harvard T.H. Chan School of Public Health, Boston
| | - G Lamberti
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - A Di Federico
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - J Alessi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - R Ferrara
- University Vita-Salute San Raffaele, Milan; Department of Medical Oncology, IRCCS San Raffaele, Milan, Italy
| | - M L Sholl
- Department of Pathology, Brigham and Women's Hospital, Boston
| | - M M Awad
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - N Vokes
- Department of Thoracic Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, USA
| | - B Ricciuti
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA.
| |
Collapse
|
85
|
Yang Y, Xin D, Guan L, Luo X, Wu H, Chu J, Xing J, Liu C, Wang F. Dual immunotherapy in advanced or metastatic non-small cell lung cancer: A network meta-analysis. Heliyon 2024; 10:e27576. [PMID: 38463838 PMCID: PMC10923855 DOI: 10.1016/j.heliyon.2024.e27576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/12/2024] Open
Abstract
Objectives Recently, there has been extensive research on dual immunotherapy for advanced or metastatic non-small cell lung cancer (NSCLC), yet a comprehensive evaluation is lacking. This study aimed to rank the available treatment options and assess the efficacy and safety of dual immunotherapy regimens through the implementation of a Bayesian network meta-analysis (NMA). Materials and methods A thorough search was conducted to recognize eligible randomized controlled trials (RCTs) on March 20, 2023. Overall survival (OS), progression-free survival (PFS), treatment-related adverse events (TRAEs) and grade ≥3 TRAEs were evaluated to identify the efficacy and safety of dual immunotherapy regimens. The surface under the cumulative ranking curve (SUCRA) and P score were employed to rank the treatments. Results Eleven clinical trials involving six different regimens were included in this study. The combination of anti-programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) antibodies with anti-T-cell immunoglobulin and ITIM domain (TIGIT) antibodies emerged as the most promising regimen for improving OS and PFS, followed by anti-PD-1/PD-L1 + anti-cytotoxic T lymphocyte antigen 4 (CTLA-4) + chemotherapy treatment and anti-PD-1/PD-L1 + anti-CTLA-4 treatment. The forest plots demonstrated that these three regimens were all superior to chemotherapy. The above results were observed in both unselected treatment line and first-line settings. The least likely to be associated with TRAEs and grade ≥3 TRAEs were respectively anti-CTLA-4 treatment and anti-PD-1/PD-L1 + anti-TIGIT treatment, with anti-PD-1/PD-L1 + anti-CTLA-4 + chemotherapy treatment to be the worst. Conclusions This NMA validated the promising efficacy and safety of dual immunotherapy in advanced or metastatic NSCLC. Among them, anti-PD-1/PD-L1 + anti-TIGIT regimen emerges as a highly potential therapeutic approach. Ongoing research efforts should focus on improving treatment regimens, identifying biomarkers, and managing TRAEs to optimize the patient benefits of dual immunotherapy.
Collapse
Affiliation(s)
- Yuanyuan Yang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Dao Xin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Lulu Guan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xi Luo
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Han Wu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jingwen Chu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jianxiang Xing
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chengjiang Liu
- Department of General Medicine, Affiliated Anqing First People's Hospital of Anhui Medical University, Anqing 246000, China
| | - Feng Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
86
|
Li X, Huntoon K, Wang Y, Lee D, Dong S, Antony A, Walkey C, Kim BYS, Jiang W. Radiation Synergizes with IL2/IL15 Stimulation to Enhance Innate Immune Activation and Antitumor Immunity. Mol Cancer Ther 2024; 23:330-342. [PMID: 37956421 DOI: 10.1158/1535-7163.mct-23-0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/24/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
Ionizing radiation is known to possess immune modulatory properties. However, how radiotherapy (RT) may complement with different types of immunotherapies to boost antitumor responses is unclear. In mice implanted with EO771 syngeneic tumors, NL-201 a stable, highly potent CD25-independent agonist to IL2 and IL15 receptors with enhanced affinity for IL2Rβγ was given with or without RT. Flow analysis and Western blot analysis was performed to determine the mechanisms involved. STING (-/-) and CD11c+ knockout mice were implanted with EO771 tumors to confirm the essential signaling and cell types required to mediate the effects seen. Combination of RT and NL-201 to enhance systemic immunotherapy with an anti-PD-1 checkpoint inhibitor was utilized to determine tumor growth inhibition and survival, along characterization of tumor microenvironment as compared with all other treatment groups. Here, we showed that RT, synergizing with NL-201 produced enhanced antitumor immune responses in murine breast cancer models. When given together, RT and NL-201 enhanced activation of the cytosolic DNA sensor cyclic GMP-AMP synthase-stimulator of IFN genes (cGAS-STING) pathway, resulting in increased type I IFN production in dendritic cells (DC), and consequently greater tumor infiltration and more efficient priming of antigen-specific T cells. The immune stimulatory mechanisms triggered by NL-201 and RT resulted in superior tumor growth inhibition and survival benefit in both localized and metastatic cancers. Our results support further preclinical and clinical investigation of this novel synergism regimen in locally advanced and metastatic settings.
Collapse
Affiliation(s)
- Xuefeng Li
- Cancer Center, the First Hospital of Jilin University, Changchun, P.R. China
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kristin Huntoon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yifan Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - DaeYong Lee
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shiyan Dong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Abin Antony
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carl Walkey
- Neoleukin Therapeutics, Inc., Seattle, Washington
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
87
|
Hu R, Lan J, Zhang D, Shen W. Nanotherapeutics for prostate cancer treatment: A comprehensive review. Biomaterials 2024; 305:122469. [PMID: 38244344 DOI: 10.1016/j.biomaterials.2024.122469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/22/2024]
Abstract
Prostate cancer (PCa) is the most prevalent solid organ malignancy and seriously affects male health. The adverse effects of prostate cancer therapeutics can cause secondary damage to patients. Nanotherapeutics, which have special targeting abilities and controlled therapeutic release profiles, may serve as alternative agents for PCa treatment. At present, many nanotherapeutics have been developed to treat PCa and have shown better treatment effects in animals than traditional therapeutics. Although PCa nanotherapeutics are highly attractive, few successful cases have been reported in clinical practice. To help researchers design valuable nanotherapeutics for PCa treatment and avoid useless efforts, herein, we first reviewed the strategies and challenges involved in prostate cancer treatment. Subsequently, we presented a comprehensive review of nanotherapeutics for PCa treatment, including their targeting methods, controlled release strategies, therapeutic approaches and mechanisms. Finally, we proposed the future prospects of nanotherapeutics for PCa treatment.
Collapse
Affiliation(s)
- Ruimin Hu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jin Lan
- Department of Ultrasound, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Dinglin Zhang
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Wenhao Shen
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
88
|
Hong Q, Ding S, Xing C, Mu Z. Advances in tumor immune microenvironment of head and neck squamous cell carcinoma: A review of literature. Medicine (Baltimore) 2024; 103:e37387. [PMID: 38428879 PMCID: PMC10906580 DOI: 10.1097/md.0000000000037387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/03/2024] Open
Abstract
Squamous cell carcinoma is seen as principal malignancy of head and neck. Tumor immune microenvironment plays a vital role in the occurrence, development and treatment of head and neck squamous cell carcinoma (HNSCC). The effect of immunotherapy, in particular, is closely related to tumor immune microenvironment. This review searched for high-quality literature included within PubMed, Web of Science, and Scopus using the keywords "head and neck cancers," "tumor microenvironment" and "immunotherapy," with the view to summarizing the characteristics of HNSCC immune microenvironment and how various subsets of immune cells promote tumorigenesis. At the same time, based on the favorable prospects of immunotherapy having been shown currently, the study is committed to pinpointing the latest progress of HNSCC immunotherapy, which is of great significance in not only further guiding the diagnosis and treatment of HNSCC, but also conducting its prognostic judgement.
Collapse
Affiliation(s)
- Qichao Hong
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Shun Ding
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Chengliang Xing
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Zhonglin Mu
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| |
Collapse
|
89
|
Zhou Y, Zhang W, Wang B, Wang P, Li D, Cao T, Zhang D, Han H, Bai M, Wang X, Zhao X, Lu Y. Mitochondria-targeted photodynamic therapy triggers GSDME-mediated pyroptosis and sensitizes anti-PD-1 therapy in colorectal cancer. J Immunother Cancer 2024; 12:e008054. [PMID: 38429070 PMCID: PMC10910688 DOI: 10.1136/jitc-2023-008054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND The effectiveness of immune checkpoint inhibitors in colorectal cancer (CRC) is limited due to the low tumor neoantigen load and low immune infiltration in most microsatellite-stable (MSS) tumors. This study aimed to develop a mitochondria-targeted photodynamic therapy (PDT) approach to provoke host antitumor immunity of MSS-CRC and elucidate the underlying molecular mechanisms. METHODS The role and mechanism of mitochondria-targeted PDT in inhibiting CRC progression and inducing pyroptosis were evaluated both in vitro and in vivo. The immune effects of PDT sensitization on PD-1 blockade were also assessed in CT26 and 4T1 tumor-bearing mouse models. RESULTS Here, we report that PDT using IR700DX-6T, a photosensitizer targeting the mitochondrial translocation protein, may trigger an antitumor immune response initiated by pyroptosis in CRC. Mechanistically, IR700DX-6T-PDT produced reactive oxygen species on light irradiation and promoted downstream p38 phosphorylation and active caspase3 (CASP3)-mediated cleavage of gasdermin E (GSDME), subsequently inducing pyroptosis. Furthermore, IR700DX-6T-PDT enhanced the sensitivity of MSS-CRC cells to PD-1 blockade. Decitabine, a demethylation drug used to treat hematologic neoplasms, disrupted the abnormal methylation pattern of GSDME in tumor cells, enhanced the efficacy of IR700DX-6T-PDT, and elicited a potent antitumor immune response in combination with PD-1 blockade and IR700DX-6T-PDT. CONCLUSION Our work provides clear a understanding of immunogenic cell death triggered by mitochondria-targeted PDT, offering a new approach for enhancing the efficacy of PD-1 blockade in CRC.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Wenyao Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Boda Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Pei Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Danxiu Li
- Department of Gastroenterology, The 980th Hospital of the PLA Joint Logistics Support Force (Primary Bethune International Peace Hospital of PLA), Shijiazhuang, Hebei, China
| | - Tianyu Cao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Dawei Zhang
- Department of Pancreatic Hepatobiliary Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hua Han
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Mingfeng Bai
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xin Wang
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaodi Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuanyuan Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
90
|
Zhu X, Zheng W, Wang X, Li Z, Shen X, Chen Q, Lu Y, Chen K, Ai S, Zhu Y, Guan W, Yao S, Liu S. Enhanced Photodynamic Therapy Synergizing with Inhibition of Tumor Neutrophil Ferroptosis Boosts Anti-PD-1 Therapy of Gastric Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307870. [PMID: 38233204 DOI: 10.1002/advs.202307870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/19/2023] [Indexed: 01/19/2024]
Abstract
For tumor treatment, the ultimate goal in tumor therapy is to eliminate the primary tumor, manage potential metastases, and trigger an antitumor immune response, resulting in the complete clearance of all malignant cells. Tumor microenvironment (TME) refers to the local biological environment of solid tumors and has increasingly become an attractive target for cancer therapy. Neutrophils within TME of gastric cancer (GC) spontaneously undergo ferroptosis, and this process releases oxidized lipids that limit T cell activity. Enhanced photodynamic therapy (PDT) mediated by di-iodinated IR780 (Icy7) significantly increases the production of reactive oxygen species (ROS). Meanwhile, neutrophil ferroptosis can be triggered by increased ROS generation in the TME. In this study, a liposome encapsulating both ferroptosis inhibitor Liproxstatin-1 and modified photosensitizer Icy7, denoted LLI, significantly inhibits tumor growth of GC. LLI internalizes into MFC cells to generate ROS causing immunogenic cell death (ICD). Simultaneously, liposome-deliver Liproxstatin-1 effectively inhibits the ferroptosis of tumor neutrophils. LLI-based immunogenic PDT and neutrophil-targeting immunotherapy synergistically boost the anti-PD-1 treatment to elicit potent TME and systemic antitumor immune response with abscopal effects. In conclusion, LLI holds great potential for GC immunotherapy.
Collapse
Affiliation(s)
- Xudong Zhu
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Wenxuan Zheng
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Xingzhou Wang
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Zhiyan Li
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Xiaofei Shen
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Qi Chen
- China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, 210008, China
| | - Yanjun Lu
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Kai Chen
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Shichao Ai
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yun Zhu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Wenxian Guan
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Shankun Yao
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Song Liu
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| |
Collapse
|
91
|
Zhao Z, Zhang S, Jiang N, Zhu W, Song D, Liu S, Yu W, Bai Y, Zhang Y, Wang X, Zhong X, Guo H, Guo Z, Yang R, Li JP. Patient-derived Immunocompetent Tumor Organoids: A Platform for Chemotherapy Evaluation in the Context of T-cell Recognition. Angew Chem Int Ed Engl 2024; 63:e202317613. [PMID: 38195970 DOI: 10.1002/anie.202317613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
Most of the anticancer compounds synthesized by chemists are primarily evaluated for their direct cytotoxic effects at the cellular level, often overlooking the critical role of the immune system. In this study, we developed a patient-derived, T-cell-retaining tumor organoid model that allows us to evaluate the anticancer efficacy of chemical drugs under the synergistic paradigm of antigen-specific T-cell-dependent killing, which may reveal the missed drug hits in the simple cytotoxic assay. We evaluated clinically approved platinum (Pt) drugs and a custom library of twenty-eight PtIV compounds. We observed low direct cytotoxicity of Pt drugs, but variable synergistic effects in combination with immune checkpoint inhibitors (ICIs). In contrast, the majority of PtIV compounds exhibited potent tumor-killing capabilities. Interestingly, several PtIV compounds went beyond direct tumor killing and showed significant immunosynergistic effects with ICIs, outstanding at sub-micromolar concentrations. Among these, Pt-19, PtIV compounds with cinnamate axial ligands, emerged as the most therapeutically potent, demonstrating pronounced immunosynergistic effects by promoting the release of cytotoxic cytokines, activating immune-related pathways and enhancing T cell receptor (TCR) clonal expansion. Overall, this initiative marks the first use of patient-derived immunocompetent tumor organoids to explore and study chemotherapy, advancing their path toward more effective small molecule drug discovery.
Collapse
Affiliation(s)
- Zihan Zhao
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Shuren Zhang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Ning Jiang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Wenjie Zhu
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Dongfan Song
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Siyang Liu
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Wenhao Yu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Yuhao Bai
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Yulin Zhang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Xiaoyu Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Xuanmeng Zhong
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Rong Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Jie P Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
92
|
Albu DI, Wolf BJ, Qin Y, Wang X, Daniel Ulumben A, Su M, Li V, Ding E, Angel Gonzalo J, Kong J, Jadhav R, Kuklin N, Visintin A, Gong B, Schuetz TJ. A bispecific anti-PD-1 and PD-L1 antibody induces PD-1 cleavage and provides enhanced anti-tumor activity. Oncoimmunology 2024; 13:2316945. [PMID: 38379869 PMCID: PMC10877993 DOI: 10.1080/2162402x.2024.2316945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
Combinatorial strategies, such as targeting different immune checkpoint receptors, hold promise to increase the breadth and duration of the response to cancer therapy. Here we describe the preclinical evaluation of CTX-8371, a protein construct which combines PD-1 and PD-L1 targeting in one bispecific, tetravalent antibody. CTX-8371 matched or surpassed the activity of anti-PD-1 and PD-L1 benchmark antibodies in several in vitro T cell activation assays and outperformed clinically approved benchmarks in the subcutaneous MC38 colon and the B16F10 lung metastasis mouse tumor models. Investigation into the mechanism of action revealed that CTX-8371 co-engagement of PD-1 and PD-L1 induced the proteolytic cleavage and loss of cell surface PD-1, which is a novel and non-redundant mechanism that adds to the PD-1/PD-L1 signaling axis blockade. The combination of CTX-8371 and an agonistic anti-CD137 antibody further increased the anti-tumor efficacy with long-lasting curative therapeutic effect. In summary, CTX-8371 is a novel checkpoint inhibitor that might provide greater clinical benefit compared to current anti-PD-1 and PD-L1 antibodies, especially when combined with agents with orthogonal mechanisms of action, such as agonistic anti-CD137 antibodies.
Collapse
Affiliation(s)
| | | | - Yan Qin
- Compass Therapeutics Inc, Boston, MA, USA
| | | | | | - Mei Su
- Compass Therapeutics Inc, Boston, MA, USA
| | - Vivian Li
- Compass Therapeutics Inc, Boston, MA, USA
| | | | | | - Jason Kong
- Compass Therapeutics Inc, Boston, MA, USA
| | | | | | | | - Bing Gong
- Compass Therapeutics Inc, Boston, MA, USA
| | | |
Collapse
|
93
|
Li T, Wang P, Sun G, Zou Y, Cheng Y, Wang H, Lu Y, Shi J, Wang K, Zhang Q, Ye H. hccTAAb Atlas: An Integrated Knowledge Database for Tumor-Associated Autoantibodies in Hepatocellular Carcinoma. J Proteome Res 2024; 23:728-737. [PMID: 38156953 DOI: 10.1021/acs.jproteome.3c00579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Tumor-associated autoantibodies (TAAbs) have demonstrated potential as biomarkers for cancer detection. However, the understanding of their role in hepatocellular carcinoma (HCC) remains limited. In this study, we aimed to systematically collect and standardize information about these TAAbs and establish a comprehensive database as a platform for in-depth research. A total of 170 TAAbs were identified from published papers retrieved from PubMed, Web of Science, and Embase. Following normative reannotation, these TAAbs were referred to as 162 official symbols. The hccTAAb (tumor-associated autoantibodies in hepatocellular carcinoma) atlas was developed using the R Shiny framework and incorporating literature-based and multiomics data sets. This comprehensive online resource provides key information such as sensitivity, specificity, and additional details such as official symbols, official full names, UniProt, NCBI, HPA, neXtProt, and aliases through hyperlinks. Additionally, hccTAAb offers six analytical modules for visualizing expression profiles, survival analysis, immune infiltration, similarity analysis, DNA methylation, and DNA mutation analysis. Overall, the hccTAAb Atlas provides valuable insights into the mechanisms underlying TAAb and has the potential to enhance the diagnosis and treatment of HCC using autoantibodies. The hccTAAb Atlas is freely accessible at https://nscc.v.zzu.edu.cn/hccTAAb/.
Collapse
Affiliation(s)
- Tiandong Li
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| | - Peng Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| | - Guiying Sun
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| | - Yuanlin Zou
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| | - Yifan Cheng
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| | - Han Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| | - Yin Lu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| | - Jianxiang Shi
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Keyan Wang
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Qiang Zhang
- School of Nursing and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Hua Ye
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
94
|
Tang M, Luo W, Zhou Y, Zhang Z, Jiang Z. Anoikis-related gene CDKN2A predicts prognosis and immune response and mediates proliferation and migration in thyroid carcinoma. Transl Oncol 2024; 40:101873. [PMID: 38141377 PMCID: PMC10788268 DOI: 10.1016/j.tranon.2023.101873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/25/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023] Open
Abstract
Thyroid carcinoma (THCA) is a tumor commonly occurring in the endocrine system, and its incidence rate is increasing yearly. Anoikis is a type of cell death involved in the carcinogenesis process. This study aimed to investigate the prognosis and immune correlations of anoikis in THCA. Our study used several bioinformatics algorithms (co-expression analysis, univariate and multivariate Cox analysis) to screen anoikis-related genes (ARGs) to construct risk models. Through receiver operating characteristic (ROC) curve, nomogram, and independent prognostic analysis found that the constructed model had ideal predictive value for THCA. The consensus clustering method was used to divide ARG patterns into three subgroups, and there were significant differences in survival among the three subgroups. The CIBERSORT algorithm demonstrated strong correlations among immune infiltrating cells, prognostic genes, and risk scores. Univariate and multivariate Cox analysis showed that CDKN2A is an independent prognostic gene. Basic experiments (immunohistochemistry, qRT-PCR, etc.) showed that the expression levels of CDKN2A mRNA and protein were highly expressed in THCA, which was consistent with the results of bioinformatics analysis. In vitro, the knockdown of CDKN2A significantly inhibited the proliferation and migration of THCA cells. In summary, our study utilized eight ARGs to construct an accurate risk model. ARGs, especially CDKN2A, play a crucial role in the occurrence and development of THCA and can become potential targets for treating THCA patients.
Collapse
Affiliation(s)
- Mengjie Tang
- Department of Pathology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wen Luo
- Department of Nuclear Medicine, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yusong Zhou
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhun Zhang
- Department of Breast and Thyroid Surgery, The Third Xiangya Hospital, Central South University, Changsha, China.
| | - Zhongjun Jiang
- Department of Thyroid and Breast Surgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
95
|
Mo Y, Zou Z, Chen E. Targeting ferroptosis in hepatocellular carcinoma. Hepatol Int 2024; 18:32-49. [PMID: 37880567 DOI: 10.1007/s12072-023-10593-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/04/2023] [Indexed: 10/27/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor with complex survival mechanism and drug resistance, resulting in cancer-related high mortality in the world. Ferroptosis represents a form of regulated cell death, typically distinguished by iron-dependent lipid peroxidation. Cancer cells often employ antioxidant defenses to evade the harmful effects of excess iron. Recent research has proposed that directing interventions towards ferroptosis could serve as an effective strategy in curbing the proliferation and invasion of HCC. Immunotherapy has made some preliminary progress in the remodeling of immune microenvironment, but it has not completely inhibited HCC growth, invasion and drug resistance. Furthermore, ferroptosis is widely observed in the formation of immune microenvironment of HCC and mediates the response of many targeted drugs and immunotherapy. Clarifying the role of ferroptosis in these complex processes is expected to provide a new prospect for HCC treatment. In this review, we outline the mechanisms by which HCC develops invasiveness and drug resistance by evading iron-dependent death, and paint a comprehensive landscape of ferroptosis in different cell types in the HCC immune microenvironment.
Collapse
Affiliation(s)
- Yuqian Mo
- School of Public Health, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhilin Zou
- Department of Ophthalmology, Affiliated Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Erbao Chen
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China.
| |
Collapse
|
96
|
Hu Y, Nie W, Lyu L, Zhang X, Wang W, Zhang Y, He S, Guo A, Liu F, Wang B, Qian Z, Gao X. Tumor-Microenvironment-Activatable Nanoparticle Mediating Immunogene Therapy and M2 Macrophage-Targeted Inhibitor for Synergistic Cancer Immunotherapy. ACS NANO 2024; 18:3295-3312. [PMID: 38252684 DOI: 10.1021/acsnano.3c10037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Immunotherapy has achieved prominent clinical efficacy in combating cancer and has recently become a mainstream treatment strategy. However, achieving broad efficacy with a single modality is challenging, and the heterogeneity of the tumor microenvironment (TME) restricts the accuracy and effectiveness of immunotherapy strategies for tumors. Herein, a TME-responsive targeted nanoparticle to enhance antitumor immunity and reverse immune escape by codelivering interleukin-12 (IL-12) expressing gene and colony-stimulating factor-1 receptor (CSF-1R) inhibitor PLX3397 (PLX) is presented. The introduction of disulfide bonds and cyclo(Arg-Gly-Asp-d-Phe-Lys) (cRGD) peptides conferred reduction reactivity and tumor targeting to the nanoparticles, respectively. It is hypothesized that activating host immunity by the local expression of IL-12, while modulating the tumor-associated macrophages (TAM) function through blocking CSF-1/CSF-1R signaling, could constitute a feasible approach for cancer immunotherapy. The fabricated functional nanoparticle successfully ameliorated the TME by stimulating the proliferation and activation of T lymphocytes, promoting the repolarization of TAMs, reducing myeloid-derived suppressor cells (MDSCs), and promoting the maturation of dendritic cells (DC) as well as the secretion of antitumor cytokines, which efficiently suppressed tumor growth and metastasis. Finally, substantial changes in the TME were deciphered by single-cell analysis including infiltration of different cells, transcriptional states, secretory signaling and cell-cell communications. These findings provide a promising combinatorial immunotherapy strategy through immunomodulatory nanoparticles.
Collapse
Affiliation(s)
- Yuzhu Hu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, PR China
- Department of Radiation Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, PR China
| | - Wen Nie
- Department of Radiation Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, PR China
| | - Liang Lyu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, PR China
| | - Xifeng Zhang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, PR China
| | - Wanyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, PR China
| | - Yunchu Zhang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, PR China
| | - Shi He
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, PR China
| | - Anjie Guo
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, PR China
| | - Fei Liu
- Department of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bilan Wang
- Department of Pharmacy, West China Second University Hospital of Sichuan University, Chengdu 610041, P. R. China
| | - Zhiyong Qian
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, PR China
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, PR China
| |
Collapse
|
97
|
Liu X, Zhang G, Li S, Liu Y, Ma K, Wang L. Identification of gut microbes-related molecular subtypes and their biomarkers in colorectal cancer. Aging (Albany NY) 2024; 16:2249-2272. [PMID: 38289597 PMCID: PMC10911361 DOI: 10.18632/aging.205480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/06/2023] [Indexed: 02/22/2024]
Abstract
The role of gut microbes (GM) and their metabolites in colorectal cancer (CRC) development has attracted increasing attention. Several studies have identified specific microorganisms that are closely associated with CRC occurrence and progression, as well as key genes associated with gut microorganisms. However, the extent to which gut microbes-related genes can serve as biomarkers for CRC progression or prognosis is still poorly understood. This study used a bioinformatics-based approach to synthetically analyze the large amount of available data stored in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Through this analysis, this study identified two distinct CRC molecular subtypes associated with GM, as well as CRC markers related to GM. In addition, these new subtypes exhibit significantly different survival outcomes and are characterized by distinct immune landscapes and biological functions. Gut microbes-related biomarkers (GMRBs), IL7 and BCL10, were identified and found to have independent prognostic value and predictability for immunotherapeutic response in CRC patients. In addition, a systematic collection and review of prior research literature on GM and CRC provided additional evidence to support these findings. In conclusion, this paper provides new insights into the underlying pathological mechanisms by which GM promotes the development of CRC and suggests potentially viable solutions for individualized prevention, screening, and treatment of CRC.
Collapse
Affiliation(s)
- Xuliang Liu
- Department of General Surgery, Division of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Guolin Zhang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shiyao Li
- Department of Respiratory Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yuechuan Liu
- Department of General Surgery, Division of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Kexin Ma
- Department of General Surgery, Division of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Liming Wang
- Department of General Surgery, Division of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
98
|
Li D, Cao D, Sun Y, Cui Y, Zhang Y, Jiang J, Cao X. The roles of epigallocatechin gallate in the tumor microenvironment, metabolic reprogramming, and immunotherapy. Front Immunol 2024; 15:1331641. [PMID: 38348027 PMCID: PMC10859531 DOI: 10.3389/fimmu.2024.1331641] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Cancer, a disease that modern medicine has not fully understood and conquered, with its high incidence and mortality, deprives countless patients of health and even life. According to global cancer statistics, there were an estimated 19.3 million new cancer cases and nearly 10 million cancer deaths in 2020, with the age-standardized incidence and mortality rates of 201.0 and 100.7 per 100,000, respectively. Although remarkable advancements have been made in therapeutic strategies recently, the overall prognosis of cancer patients remains not optimistic. Consequently, there are still many severe challenges to be faced and difficult problems to be solved in cancer therapy today. Epigallocatechin gallate (EGCG), a natural polyphenol extracted from tea leaves, has received much attention for its antitumor effects. Accumulating investigations have confirmed that EGCG can inhibit tumorigenesis and progression by triggering apoptosis, suppressing proliferation, invasion, and migration, altering tumor epigenetic modification, and overcoming chemotherapy resistance. Nevertheless, its regulatory roles and biomolecular mechanisms in the immune microenvironment, metabolic microenvironment, and immunotherapy remain obscure. In this article, we summarized the most recent updates about the effects of EGCG on tumor microenvironment (TME), metabolic reprogramming, and anti-cancer immunotherapy. The results demonstrated EGCG can promote the anti-cancer immune response of cytotoxic lymphocytes and dendritic cells (DCs), attenuate the immunosuppression of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs), and inhibit the tumor-promoting functions of tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), and various stromal cells including cancer-associated fibroblasts (CAFs), endothelial cells (ECs), stellate cells, and mesenchymal stem/stromal cells (MSCs). Additionally, EGCG can suppress multiple metabolic reprogramming pathways, including glucose uptake, aerobic glycolysis, glutamine metabolism, fatty acid anabolism, and nucleotide synthesis. Finally, EGCG, as an immunomodulator and immune checkpoint blockade, can enhance immunotherapeutic efficacy and may be a promising candidate for antitumor immunotherapy. In conclusion, EGCG plays versatile regulatory roles in TME and metabolic reprogramming, which provides novel insights and combined therapeutic strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Dongming Li
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Donghui Cao
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Yuanlin Sun
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Yingnan Cui
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Yangyu Zhang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Jing Jiang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Xueyuan Cao
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
99
|
Losurdo A, Dipasquale A, Giordano L, Persico P, Lorenzi E, Di Muzio A, Barigazzi C, Korolewicz J, Mehan A, Mohammed O, Scheiner B, Pinato DJ, Santoro A, Simonelli M. Refining patient selection for next-generation immunotherapeutic early-phase clinical trials with a novel and externally validated prognostic nomogram. Front Immunol 2024; 15:1323151. [PMID: 38298193 PMCID: PMC10828843 DOI: 10.3389/fimmu.2024.1323151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
Introduction Identifying which patient may benefit from immunotherapeutic early-phase clinical trials is an unmet need in drug development. Among several proposed prognostic scores, none has been validated in patients receiving immunomodulating agents (IMAs)-based combinations. Patients and methods We retrospectively collected data of 208 patients enrolled in early-phase clinical trials investigating IMAs at our Institution, correlating clinical and blood-based variables with overall survival (OS). A retrospective cohort of 50 patients treated with IMAs at Imperial College (Hammersmith Hospital, London, UK) was used for validation. Results A total of 173 subjects were selected for analyses. Most frequent cancers included non-small cell lung cancer (26%), hepatocellular carcinoma (21.5%) and glioblastoma (13%). Multivariate analysis (MVA) revealed 3 factors to be independently associated with OS: line of treatment (second and third vs subsequent, HR 0.61, 95% CI 0.40-0.93, p 0.02), serum albumin as continuous variable (HR 0.57, 95% CI 0.36-0.91, p 0.02) and number of metastatic sites (<3 vs ≥3, HR 0.68, 95% CI 0.48-0.98, p 0.04). After splitting albumin value at the median (3.84 g/dL), a score system was capable of stratifying patients in 3 groups with significantly different OS (p<0.0001). Relationship with OS reproduced in the external cohort (p=0.008). Then, from these factors we built a nomogram. Conclusions Prior treatment, serum albumin and number of metastatic sites are readily available prognostic traits in patients with advanced malignancies participating into immunotherapy early-phase trials. Combination of these factors can optimize patient selection at study enrollment, maximizing therapeutic intent.
Collapse
Affiliation(s)
- Agnese Losurdo
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Milan, Italy
| | - Angelo Dipasquale
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Milan, Italy
| | - Laura Giordano
- Biostatistic Unit, IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Milan, Italy
| | - Pasquale Persico
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Milan, Italy
| | - Elena Lorenzi
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Milan, Italy
| | - Antonio Di Muzio
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Milan, Italy
| | - Chiara Barigazzi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Milan, Italy
| | - James Korolewicz
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Aman Mehan
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Oreoluwa Mohammed
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Benhard Scheiner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - David J. Pinato
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Division of Oncology, Department of Translational Medicine (DIMET), Università del Piemonte Orientale A. Avogadro, Novara, Italy
| | - Armando Santoro
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Milan, Italy
| | - Matteo Simonelli
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Milan, Italy
| |
Collapse
|
100
|
Xu P, Ma J, Zhou Y, Gu Y, Cheng X, Wang Y, Wang Y, Gao M. Radiotherapy-Triggered In Situ Tumor Vaccination Boosts Checkpoint Blockaded Immune Response via Antigen-Capturing Nanoadjuvants. ACS NANO 2024; 18:1022-1040. [PMID: 38131289 DOI: 10.1021/acsnano.3c10225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
In situ vaccination (ISV) formed with the aid of intratumorally injected adjuvants has shed bright light on enhancing the abscopal therapeutic effects of radiotherapy. However, the limited availability of antigens resulting from the radiotherapy-induced immunogenic cell death largely hampers the clinical outcome of ISV. To maximally utilize the radiotherapy-induced antigen, we herein developed a strategy by capturing the radiotherapy-induced antigen in situ with a nanoadjuvant comprised of CpG-loaded Fe3O4 nanoparticles. The highly efficient click reaction between the maleimide residue on the nanoadjuvant and sulfhydryl group on the antigen maximized the bioavailability of autoantigens and CpG adjuvant in vivo. Importantly, combined immune checkpoint blockade can reverse T cell exhaustion after treatment with radiotherapy-induced ISV, thereby largely suppressing the treated and distant tumor. Mechanistically, metabolomics reveals the intratumorally injected nanoadjuvants disrupt redox homeostasis in the tumor microenvironment, further inducing tumor ferroptosis after radiotherapy. Overall, the current study highlights the immense potential of the innovative antigen-capturing nanoadjuvants for synergistically enhancing the antitumor effect.
Collapse
Affiliation(s)
- Pei Xu
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Li Huili Hospital, Ningbo University, Ningbo 315201, China
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jie Ma
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yang Zhou
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Li Huili Hospital, Ningbo University, Ningbo 315201, China
| | - Yuan Gu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xiaju Cheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yangyun Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yong Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Mingyuan Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
- The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou 215004, China
| |
Collapse
|