51
|
Cole M, Anastasiou P, Lee C, Yu X, de Castro A, Roelink J, Moore C, Mugarza E, Jones M, Valand K, Rana S, Colliver E, Angelova M, Enfield KSS, Magness A, Mullokandov A, Kelly G, de Gruijl TD, Molina-Arcas M, Swanton C, Downward J, van Maldegem F. Spatial multiplex analysis of lung cancer reveals that regulatory T cells attenuate KRAS-G12C inhibitor-induced immune responses. SCIENCE ADVANCES 2024; 10:eadl6464. [PMID: 39485838 PMCID: PMC11529713 DOI: 10.1126/sciadv.adl6464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
Kirsten rat sarcoma virus (KRAS)-G12C inhibition causes remodeling of the lung tumor immune microenvironment and synergistic responses to anti-PD-1 treatment, but only in T cell infiltrated tumors. To investigate mechanisms that restrain combination immunotherapy sensitivity in immune-excluded tumors, we used imaging mass cytometry to explore cellular distribution in an immune-evasive KRAS mutant lung cancer model. Cellular spatial pattern characterization revealed a community where CD4+ and CD8+ T cells and dendritic cells were gathered, suggesting localized T cell activation. KRAS-G12C inhibition led to increased PD-1 expression, proliferation, and cytotoxicity of CD8+ T cells, and CXCL9 expression by dendritic cells, indicating an effector response. However, suppressive regulatory T cells (Tregs) were also found in frequent contact with effector T cells within this community. Lung adenocarcinoma clinical samples showed similar communities. Depleting Tregs led to enhanced tumor control in combination with anti-PD-1 and KRAS-G12C inhibitor. Combining Treg depletion with KRAS inhibition shows therapeutic potential for increasing antitumoral immune responses.
Collapse
Affiliation(s)
- Megan Cole
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK
| | | | - Claudia Lee
- Cancer Evolution and Genome Instability Laboratory, Francis Crick Institute, London, UK
| | - Xiaofei Yu
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
| | - Andrea de Castro
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK
| | - Jannes Roelink
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Chris Moore
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK
| | - Edurne Mugarza
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK
| | - Martin Jones
- Electron Microscopy, Francis Crick Institute, London, UK
| | - Karishma Valand
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK
| | - Sareena Rana
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK
| | - Emma Colliver
- Cancer Evolution and Genome Instability Laboratory, Francis Crick Institute, London, UK
| | - Mihaela Angelova
- Cancer Evolution and Genome Instability Laboratory, Francis Crick Institute, London, UK
| | - Katey S. S. Enfield
- Cancer Evolution and Genome Instability Laboratory, Francis Crick Institute, London, UK
| | - Alastair Magness
- Cancer Evolution and Genome Instability Laboratory, Francis Crick Institute, London, UK
| | | | - Gavin Kelly
- Bioinformatics and Biostatistics, Francis Crick Institute, London, UK
| | - Tanja D. de Gruijl
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| | - Julian Downward
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK
| | - Febe van Maldegem
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
| |
Collapse
|
52
|
Dilly J, Hoffman MT, Abbassi L, Li Z, Paradiso F, Parent BD, Hennessey CJ, Jordan AC, Morgado M, Dasgupta S, Uribe GA, Yang A, Kapner KS, Hambitzer FP, Qiang L, Feng H, Geisberg J, Wang J, Evans KE, Lyu H, Schalck A, Feng N, Lopez AM, Bristow CA, Kim MP, Rajapakshe KI, Bahrambeigi V, Roth JA, Garg K, Guerrero PA, Stanger BZ, Cristea S, Lowe SW, Baslan T, Van Allen EM, Mancias JD, Chan E, Anderson A, Katlinskaya YV, Shalek AK, Hong DS, Pant S, Hallin J, Anderes K, Olson P, Heffernan TP, Chugh S, Christensen JG, Maitra A, Wolpin BM, Raghavan S, Nowak JA, Winter PS, Dougan SK, Aguirre AJ. Mechanisms of Resistance to Oncogenic KRAS Inhibition in Pancreatic Cancer. Cancer Discov 2024; 14:2135-2161. [PMID: 38975874 PMCID: PMC11528210 DOI: 10.1158/2159-8290.cd-24-0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/08/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
KRAS inhibitors demonstrate clinical efficacy in pancreatic ductal adenocarcinoma (PDAC); however, resistance is common. Among patients with KRASG12C-mutant PDAC treated with adagrasib or sotorasib, mutations in PIK3CA and KRAS, and amplifications of KRASG12C, MYC, MET, EGFR, and CDK6 emerged at acquired resistance. In PDAC cell lines and organoid models treated with the KRASG12D inhibitor MRTX1133, epithelial-to-mesenchymal transition and PI3K-AKT-mTOR signaling associate with resistance to therapy. MRTX1133 treatment of the KrasLSL-G12D/+; Trp53LSL-R172H/+; p48-Cre (KPC) mouse model yielded deep tumor regressions, but drug resistance ultimately emerged, accompanied by amplifications of Kras, Yap1, Myc, Cdk6, and Abcb1a/b, and co-evolution of drug-resistant transcriptional programs. Moreover, in KPC and PDX models, mesenchymal and basal-like cell states displayed increased response to KRAS inhibition compared to the classical state. Combination treatment with KRASG12D inhibition and chemotherapy significantly improved tumor control in PDAC mouse models. Collectively, these data elucidate co-evolving resistance mechanisms to KRAS inhibition and support multiple combination therapy strategies. Significance: Acquired resistance may limit the impact of KRAS inhibition in patients with PDAC. Using clinical samples and multiple preclinical models, we define heterogeneous genetic and non-genetic mechanisms of resistance to KRAS inhibition that may guide combination therapy approaches to improve the efficacy and durability of these promising therapies for patients. See related commentary by Marasco and Misale, p. 2018.
Collapse
Affiliation(s)
- Julien Dilly
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Megan T. Hoffman
- Harvard Medical School, Boston, Massachusetts
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Laleh Abbassi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Ziyue Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Francesca Paradiso
- Department of Translational Molecular Pathology, Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Brendan D. Parent
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Connor J. Hennessey
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Alexander C. Jordan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Micaela Morgado
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Shatavisha Dasgupta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Giselle A. Uribe
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Annan Yang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Kevin S. Kapner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Felix P. Hambitzer
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Li Qiang
- Harvard Medical School, Boston, Massachusetts
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Hanrong Feng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jacob Geisberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Junning Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kyle E. Evans
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Hengyu Lyu
- Therapeutics Discovery Division, TRACTION Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aislyn Schalck
- Therapeutics Discovery Division, TRACTION Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ningping Feng
- Therapeutics Discovery Division, TRACTION Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anastasia M. Lopez
- Therapeutics Discovery Division, TRACTION Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher A. Bristow
- Therapeutics Discovery Division, TRACTION Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael P. Kim
- Therapeutics Discovery Division, TRACTION Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kimal I. Rajapakshe
- Department of Translational Molecular Pathology, Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vahid Bahrambeigi
- Department of Translational Molecular Pathology, Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer A. Roth
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | | | - Paola A. Guerrero
- Department of Translational Molecular Pathology, Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ben Z. Stanger
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Simona Cristea
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard School of Public Health, Boston, Massachusetts
| | - Scott W. Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Timour Baslan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Eliezer M. Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Joseph D. Mancias
- Harvard Medical School, Boston, Massachusetts
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | | | | | - Alex K. Shalek
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts
- Institute for Medical Engineering and Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - David S. Hong
- University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Shubham Pant
- University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Jill Hallin
- Mirati Therapeutics Inc., San Diego, California
| | | | - Peter Olson
- Mirati Therapeutics Inc., San Diego, California
| | - Timothy P. Heffernan
- Therapeutics Discovery Division, TRACTION Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Seema Chugh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | | | - Anirban Maitra
- Department of Translational Molecular Pathology, Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Brian M. Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Srivatsan Raghavan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Jonathan A. Nowak
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Peter S. Winter
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Stephanie K. Dougan
- Harvard Medical School, Boston, Massachusetts
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Andrew J. Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| |
Collapse
|
53
|
Movahed F, Ourang Z, Neshat R, Hussein WS, Saihood AS, Alarajy MS, Zareii D. PROTACs in gynecological cancers: Current knowledge and future potential as a treatment strategy. Pathol Res Pract 2024; 263:155611. [PMID: 39357191 DOI: 10.1016/j.prp.2024.155611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/01/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Cancer continues to threaten human health regardless of novel therapeutic options. Over the last two decades, targeted therapy has emerged as a significant advancement in treating malignancies, surpassing standard chemoradiotherapy and surgical procedures. Gynecological malignancies, including cervical, endometrial, and ovarian carcinoma, have a bad prognosis in advanced or metastatic stages and are difficult to treat. The advancements in understanding the molecular pathways behind cancer development offer valuable insights into promising targeted medicines, and researchers have always searched for a superior and safe technique to target cancer-related oncoproteins because of the limited therapeutic benefit, drug resistance, and off-target effects of current targeted treatments. Recently, proteolysis-targeting chimeras (PROTACs) have been developed to selectively degrade proteins using the natural ubiquitin-proteasome system (UPS). These approaches have garnered significant attention in the field of cancer research. The rapid progress in PROTACs has also eased the targeting of various oncoproteins in gynecological cancer. Therefore, this review aims to elucidate the mechanism and research advancements of PROTACs and provide a comprehensive overview of their use in gynecological tumors.
Collapse
Affiliation(s)
- Fatemeh Movahed
- Department of Gynecology and Obstetrics, Yas Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Ourang
- M.D, Arak University of Medical Sciences, Arak, Iran
| | - Razieh Neshat
- Department of Biological Sciences, Faculty of Food Biotechnology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Wael Sheet Hussein
- Dental Prosthetics Techniques Department, Health and Medical Techniques College, Alnoor University, Mosul, Iraq
| | - Anwar Salih Saihood
- Department of Microbiology, College of Medicine, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| | - Maythum Shallan Alarajy
- Anesthesia Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, Babylon 51001, Iraq
| | - Donya Zareii
- Department of Biology, Islamic Azad University of Sanandaj, Kurdistan, Iran.
| |
Collapse
|
54
|
Peng TR, Wu TW, Yi TY, Wu AJ. Comparative Efficacy of Adagrasib and Sotorasib in KRAS G12C-Mutant NSCLC: Insights from Pivotal Trials. Cancers (Basel) 2024; 16:3676. [PMID: 39518114 PMCID: PMC11545475 DOI: 10.3390/cancers16213676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Background: The KRAS G12C mutation, prevalent in various malignancies, including non-small cell lung cancer (NSCLC), represents a unique therapeutic target. Adagrasib and sotorasib, two FDA-approved agents specifically targeting this mutation, have shown promise in clinical trials. This study aims to compare their efficacy in treating KRAS G12C-mutated NSCLC, drawing insights from pivotal clinical trials. Methods: We analyzed data from three key clinical trials: KRYSTAL-1, CodeBreak100, and CodeBreak200. Our methodology involved reconstructing individual patient data from published Kaplan-Meier curves using the IPDfromKM tool (Version 0.1.10). The primary endpoints were progression-free survival (PFS) and overall survival (OS), evaluated through hazard ratios (HRs) and the restricted mean survival time (RMST) method. Results: The HR for PFS favored adagrasib (HR: 0.90 [95% CI: 0.69, 1.19], p = 0.473), suggesting a non-significant trend toward better disease control compared to sotorasib. For OS, the HR was 0.99 [95% CI: 0.75, 1.33] (p = 0.969), indicating no significant difference between the two drugs. RMST analysis supported these findings, with adagrasib showing a consistently higher RMST in PFS at 6, 12, and 18 months. However, OS benefits converged over time, with adagrasib marginally surpassing sotorasib by the 18-month mark. Conclusions: This comprehensive analysis reveals that while adagrasib may offer a slight advantage in PFS, both drugs demonstrate comparable efficacy in OS for KRAS G12C-mutated NSCLC. The subtle differences observed, particularly in PFS, could inform clinical decision-making, emphasizing the need for personalized treatment strategies. Future research should focus on long-term effects and identifying patient subgroups that may benefit more from one drug over the other.
Collapse
Affiliation(s)
| | | | - Tai-Yung Yi
- Department of Pharmacy, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan; (T.-R.P.); (T.-W.W.)
| | - An-Jan Wu
- Department of Pharmacy, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan; (T.-R.P.); (T.-W.W.)
| |
Collapse
|
55
|
Mahran R, Kapp JN, Valtonen S, Champagne A, Ning J, Gillette W, Stephen AG, Hao F, Plückthun A, Härmä H, Pantsar T, Kopra K. Beyond KRAS(G12C): Biochemical and Computational Characterization of Sotorasib and Adagrasib Binding Specificity and the Critical Role of H95 and Y96. ACS Chem Biol 2024; 19:2152-2164. [PMID: 39283696 DOI: 10.1021/acschembio.4c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Mutated KRAS proteins are frequently expressed in some of the most lethal human cancers and thus have been a target of intensive drug discovery efforts for decades. Lately, KRAS(G12C) switch-II pocket (SII-P)-targeting covalent small molecule inhibitors have finally reached clinical practice. Sotorasib (AMG-510) was the first FDA-approved covalent inhibitor to treat KRAS(G12C)-positive nonsmall cell lung cancer (NSCLC), followed soon by adagrasib (MRTX849). Both drugs target the GDP-bound state of KRAS(G12C), exploiting the strong nucleophilicity of acquired cysteine. Here, we evaluate the similarities and differences between sotorasib and adagrasib in their RAS SII-P binding by applying biochemical, cellular, and computational methods. Exact knowledge of SII-P engagement can enable targeting this site by reversible inhibitors for KRAS mutants beyond G12C. We show that adagrasib is strictly KRAS- but not KRAS(G12C)-specific due to its strong and unreplaceable interaction with H95. Unlike adagrasib, sotorasib is less dependent on H95 for its binding, making it a RAS isoform-agnostic compound, having a similar functionality also with NRAS and HRAS G12C mutants. Our results emphasize the accessibility of SII-P beyond oncogenic G12C and aid in understanding the molecular mechanism behind the clinically observed drug resistance, associated especially with secondary mutations on KRAS H95 and Y96.
Collapse
Affiliation(s)
- Randa Mahran
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland
| | - Jonas N Kapp
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Salla Valtonen
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland
| | - Allison Champagne
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, 8560 Progress Drive, Frederick, Maryland 21702, United States
| | - Jinying Ning
- KYinno Biotechnology Co., Ltd., Yizhuang Biomedical Park, No. 88 Kechuang Six Street, BDA, Beijing 101111, China
| | - William Gillette
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, 8560 Progress Drive, Frederick, Maryland 21702, United States
| | - Andrew G Stephen
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, 8560 Progress Drive, Frederick, Maryland 21702, United States
| | - Feng Hao
- KYinno Biotechnology Co., Ltd., Yizhuang Biomedical Park, No. 88 Kechuang Six Street, BDA, Beijing 101111, China
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Harri Härmä
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland
| | - Tatu Pantsar
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonrinne 3, 70210 Kuopio, Finland
| | - Kari Kopra
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland
| |
Collapse
|
56
|
Foote JB, Mattox TE, Keeton AB, Chen X, Smith F, Berry KL, Holmes T, Wang J, Huang CH, Ward AB, Mitra AK, Ramirez-Alcantara V, Hardy C, Fleten KG, Flatmark K, Yoon KJ, Sarvesh S, Nagaraju GP, Bandi DSR, Maxuitenko YY, Valiyaveettil J, Carstens JL, Buchsbaum DJ, Yang J, Zhou G, Nurmemmedov E, Babic I, Gaponenko V, Abdelkarim H, Boyd MR, Gorman GS, Manne U, Bae S, El-Rayes BF, Piazza GA. A Novel Pan-RAS Inhibitor with a Unique Mechanism of Action Blocks Tumor Growth in Mouse Models of GI Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.17.541233. [PMID: 38328254 PMCID: PMC10849544 DOI: 10.1101/2023.05.17.541233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Here, we describe a novel pan-RAS inhibitor, ADT-007, that potently inhibited the growth of RAS mutant cancer cells irrespective of the RAS mutation or isozyme. RAS WT cancer cells with GTP-activated RAS from upstream mutations were equally sensitive. Conversely, RAS WT cancer cells harboring downstream BRAF mutations and normal cells were essentially insensitive to ADT-007. Sensitivity of cancer cells to ADT-007 required activated RAS and dependence on RAS for proliferation, while insensitivity was attributed to metabolic deactivation by UDP-glucuronosyltransferases expressed in RAS WT and normal cells but repressed in RAS mutant cancer cells. ADT-007 binds nucleotide-free RAS to block GTP activation of effector interactions and MAPK/AKT signaling, resulting in mitotic arrest and apoptosis. ADT-007 displayed unique advantages over mutant-specific KRAS and pan-KRAS inhibitors, as well as other pan-RAS inhibitors that could impact in vivo antitumor efficacy by escaping compensatory mechanisms leading to resistance. Local administration of ADT-007 showed robust antitumor activity in syngeneic immune-competent and xenogeneic immune-deficient mouse models of colorectal and pancreatic cancer. The antitumor activity of ADT-007 was associated with the suppression of MAPK signaling and activation of innate and adaptive immunity in the tumor immune microenvironment. Oral administration of ADT-007 prodrug also inhibited tumor growth, supporting further development of this novel class of pan-RAS inhibitors for RAS-driven cancers. SIGNIFICANCE ADT-007 has unique pharmacological properties with distinct advantages over other RAS inhibitors by circumventing resistance and activating antitumor immunity. ADT-007 prodrugs and analogs with oral bioavailability warrant further development for RAS-driven cancers.
Collapse
|
57
|
Parise A, Cresca S, Magistrato A. Molecular dynamics simulations for the structure-based drug design: targeting small-GTPases proteins. Expert Opin Drug Discov 2024; 19:1259-1279. [PMID: 39105536 DOI: 10.1080/17460441.2024.2387856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024]
Abstract
INTRODUCTION Molecular Dynamics (MD) simulations can support mechanism-based drug design. Indeed, MD simulations by capturing biomolecule motions at finite temperatures can reveal hidden binding sites, accurately predict drug-binding poses, and estimate the thermodynamics and kinetics, crucial information for drug discovery campaigns. Small-Guanosine Triphosphate Phosphohydrolases (GTPases) regulate a cascade of signaling events, that affect most cellular processes. Their deregulation is linked to several diseases, making them appealing drug targets. The broad roles of small-GTPases in cellular processes and the recent approval of a covalent KRas inhibitor as an anticancer agent renewed the interest in targeting small-GTPase with small molecules. AREA COVERED This review emphasizes the role of MD simulations in elucidating small-GTPase mechanisms, assessing the impact of cancer-related variants, and discovering novel inhibitors. EXPERT OPINION The application of MD simulations to small-GTPases exemplifies the role of MD simulations in the structure-based drug design process for challenging biomolecular targets. Furthermore, AI and machine learning-enhanced MD simulations, coupled with the upcoming power of quantum computing, are promising instruments to target elusive small-GTPases mutations and splice variants. This powerful synergy will aid in developing innovative therapeutic strategies associated to small-GTPases deregulation, which could potentially be used for personalized therapies and in a tissue-agnostic manner to treat tumors with mutations in small-GTPases.
Collapse
Affiliation(s)
- Angela Parise
- Consiglio Nazionale delle Ricerche (CNR) - Istituto Officina dei Materiali (IOM), c/o International School for Advanced Studies (SISSA), Trieste, Italy
| | - Sofia Cresca
- Consiglio Nazionale delle Ricerche (CNR) - Istituto Officina dei Materiali (IOM), c/o International School for Advanced Studies (SISSA), Trieste, Italy
| | - Alessandra Magistrato
- Consiglio Nazionale delle Ricerche (CNR) - Istituto Officina dei Materiali (IOM), c/o International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
58
|
Sudhakar N, Yan L, Qiryaqos F, Engstrom LD, Laguer J, Calinisan A, Hebbert A, Waters L, Moya K, Bowcut V, Vegar L, Ketcham JM, Ivetac A, Smith CR, Lawson JD, Rahbaek L, Clarine J, Nguyen N, Saechao B, Parker C, Elliott AJ, Vanderpool D, He L, Hover LD, Fernandez-Banet J, Coma S, Pachter JA, Hallin J, Marx MA, Briere DM, Christensen JG, Olson P, Haling J, Khare S. The SOS1 Inhibitor MRTX0902 Blocks KRAS Activation and Demonstrates Antitumor Activity in Cancers Dependent on KRAS Nucleotide Loading. Mol Cancer Ther 2024; 23:1418-1430. [PMID: 38904222 PMCID: PMC11443210 DOI: 10.1158/1535-7163.mct-23-0870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/14/2024] [Accepted: 04/05/2024] [Indexed: 04/21/2024]
Abstract
KRAS is the most frequently mutated oncogene in human cancer and facilitates uncontrolled growth through hyperactivation of the receptor tyrosine kinase (RTK)/mitogen-activated protein kinase (MAPK) pathway. The Son of Sevenless homolog 1 (SOS1) protein functions as a guanine nucleotide exchange factor (GEF) for the RAS subfamily of small GTPases and represents a druggable target in the pathway. Using a structure-based drug discovery approach, MRTX0902 was identified as a selective and potent SOS1 inhibitor that disrupts the KRAS:SOS1 protein-protein interaction to prevent SOS1-mediated nucleotide exchange on KRAS and translates into an anti-proliferative effect in cancer cell lines with genetic alterations of the KRAS-MAPK pathway. MRTX0902 augmented the antitumor activity of the KRAS G12C inhibitor adagrasib when dosed in combination in eight out of 12 KRAS G12C-mutant human non-small cell lung cancer and colorectal cancer xenograft models. Pharmacogenomic profiling in preclinical models identified cell cycle genes and the SOS2 homolog as genetic co-dependencies and implicated tumor suppressor genes (NF1 and PTEN) in resistance following combination treatment. Lastly, combined vertical inhibition of RTK/MAPK pathway signaling by MRTX0902 with inhibitors of EGFR or RAF/MEK led to greater downregulation of pathway signaling and improved antitumor responses in KRAS-MAPK pathway-mutant models. These studies demonstrate the potential clinical application of dual inhibition of SOS1 and KRAS G12C and additional SOS1 combination strategies that will aide in the understanding of SOS1 and RTK/MAPK biology in targeted cancer therapy.
Collapse
Affiliation(s)
| | - Larry Yan
- Mirati Therapeutics, Inc., San Diego, California
| | | | | | - Jade Laguer
- Mirati Therapeutics, Inc., San Diego, California
| | | | | | - Laura Waters
- Mirati Therapeutics, Inc., San Diego, California
| | - Krystal Moya
- Mirati Therapeutics, Inc., San Diego, California
| | | | - Laura Vegar
- Mirati Therapeutics, Inc., San Diego, California
| | | | | | | | | | - Lisa Rahbaek
- Mirati Therapeutics, Inc., San Diego, California
| | | | | | | | - Cody Parker
- Mirati Therapeutics, Inc., San Diego, California
| | | | | | - Leo He
- Monoceros Biosciences LLC, San Diego, California
| | | | | | | | | | - Jill Hallin
- Mirati Therapeutics, Inc., San Diego, California
| | | | | | | | - Peter Olson
- Mirati Therapeutics, Inc., San Diego, California
| | - Jacob Haling
- Mirati Therapeutics, Inc., San Diego, California
| | - Shilpi Khare
- Mirati Therapeutics, Inc., San Diego, California
| |
Collapse
|
59
|
Healy FM, Turner AL, Marensi V, MacEwan DJ. Mediating kinase activity in Ras-mutant cancer: potential for an individualised approach? Front Pharmacol 2024; 15:1441938. [PMID: 39372214 PMCID: PMC11450236 DOI: 10.3389/fphar.2024.1441938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024] Open
Abstract
It is widely acknowledged that there is a considerable number of oncogenic mutations within the Ras superfamily of small GTPases which are the driving force behind a multitude of cancers. Ras proteins mediate a plethora of kinase pathways, including the MAPK, PI3K, and Ral pathways. Since Ras was considered undruggable until recently, pharmacological targeting of pathways downstream of Ras has been attempted to varying success, though drug resistance has often proven an issue. Nuances between kinase pathway activation in the presence of various Ras mutants are thought to contribute to the resistance, however, the reasoning behind activation of different pathways in different Ras mutational contexts is yet to be fully elucidated. Indeed, such disparities often depend on cancer type and disease progression. However, we are in a revolutionary age of Ras mutant targeted therapy, with direct-targeting KRAS-G12C inhibitors revolutionising the field and achieving FDA-approval in recent years. However, these are only beneficial in a subset of patients. Approximately 90% of Ras-mutant cancers are not KRAS-G12C mutant, and therefore raises the question as to whether other distinct amino acid substitutions within Ras may one day be targetable in a similar manner, and indeed whether better understanding of the downstream pathways these various mutants activate could further improve therapy. Here, we discuss the favouring of kinase pathways across an array of Ras-mutant oncogenic contexts and assess recent advances in pharmacological targeting of various Ras mutants. Ultimately, we will examine the utility of individualised pharmacological approaches to Ras-mediated cancer.
Collapse
Affiliation(s)
- Fiona M. Healy
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Amy L. Turner
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Vanessa Marensi
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Chester Medical School, University of Chester, Chester, United Kingdom
| | - David J. MacEwan
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
60
|
Bear AS, Nadler RB, O'Hara MH, Stanton KL, Xu C, Saporito RJ, Rech AJ, Baroja ML, Blanchard T, Elliott MH, Ford MJ, Jones R, Patel S, Brennan A, O'Neil Z, Powell DJ, Vonderheide RH, Linette GP, Carreno BM. Natural TCRs targeting KRASG12V display fine specificity and sensitivity to human solid tumors. J Clin Invest 2024; 134:e175790. [PMID: 39287991 PMCID: PMC11529987 DOI: 10.1172/jci175790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUNDNeoantigens derived from KRASMUT have been described, but the fine antigen specificity of T cell responses directed against these epitopes is poorly understood. Here, we explore KRASMUT immunogenicity and the properties of 4 T cell receptors (TCRs) specific for KRASG12V restricted to the HLA-A3 superfamily of class I alleles.METHODSA phase 1 clinical vaccine trial targeting KRASMUT was conducted. TCRs targeting KRASG12V restricted to HLA-A*03:01 or HLA-A*11:01 were isolated from vaccinated patients or healthy individuals. A comprehensive analysis of TCR antigen specificity, affinity, crossreactivity, and CD8 coreceptor dependence was performed. TCR lytic activity was evaluated, and target antigen density was determined by quantitative immunopeptidomics.RESULTSVaccination against KRASMUT resulted in the priming of CD8+ and CD4+ T cell responses. KRASG12V -specific natural (not affinity enhanced) TCRs exhibited exquisite specificity to mutated protein with no discernible reactivity against KRASWT. TCR-recognition motifs were determined and used to identify and exclude crossreactivity to noncognate peptides derived from the human proteome. Both HLA-A*03:01 and HLA-A*11:01-restricted TCR-redirected CD8+ T cells exhibited potent lytic activity against KRASG12V cancers, while only HLA-A*11:01-restricted TCR-T CD4+ T cells exhibited antitumor effector functions consistent with partial coreceptor dependence. All KRASG12V-specific TCRs displayed high sensitivity for antigen as demonstrated by their ability to eliminate tumor cell lines expressing low levels of peptide/HLA (4.4 to 242) complexes per cell.CONCLUSIONThis study identifies KRASG12V-specific TCRs with high therapeutic potential for the development of TCR-T cell therapies.TRIAL REGISTRATIONClinicalTrials.gov NCT03592888.FUNDINGAACR SU2C/Lustgarten Foundation, Parker Institute for Cancer Immunotherapy, and NIH.
Collapse
Affiliation(s)
- Adham S Bear
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine
| | | | - Mark H O'Hara
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine
- Abramson Cancer Center, and
| | - Kelsey L Stanton
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Chong Xu
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert J Saporito
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrew J Rech
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Miren L Baroja
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tatiana Blanchard
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maxwell H Elliott
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - Shivang Patel
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrea Brennan
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zachary O'Neil
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel J Powell
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine and
| | - Robert H Vonderheide
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine
- Abramson Cancer Center, and
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gerald P Linette
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine
- Abramson Cancer Center, and
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Beatriz M Carreno
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine and
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
61
|
Lilja J, Kaivola J, Conway JRW, Vuorio J, Parkkola H, Roivas P, Dibus M, Chastney MR, Varila T, Jacquemet G, Peuhu E, Wang E, Pentikäinen U, Martinez D Posada I, Hamidi H, Najumudeen AK, Sansom OJ, Barsukov IL, Abankwa D, Vattulainen I, Salmi M, Ivaska J. SHANK3 depletion leads to ERK signalling overdose and cell death in KRAS-mutant cancers. Nat Commun 2024; 15:8002. [PMID: 39266533 PMCID: PMC11393128 DOI: 10.1038/s41467-024-52326-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
The KRAS oncogene drives many common and highly fatal malignancies. These include pancreatic, lung, and colorectal cancer, where various activating KRAS mutations have made the development of KRAS inhibitors difficult. Here we identify the scaffold protein SH3 and multiple ankyrin repeat domain 3 (SHANK3) as a RAS interactor that binds active KRAS, including mutant forms, competes with RAF and limits oncogenic KRAS downstream signalling, maintaining mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) activity at an optimal level. SHANK3 depletion breaches this threshold, triggering MAPK/ERK signalling hyperactivation and MAPK/ERK-dependent cell death in KRAS-mutant cancers. Targeting this vulnerability through RNA interference or nanobody-mediated disruption of the SHANK3-KRAS interaction constrains tumour growth in vivo in female mice. Thus, inhibition of SHANK3-KRAS interaction represents an alternative strategy for selective killing of KRAS-mutant cancer cells through excessive signalling.
Collapse
Affiliation(s)
- Johanna Lilja
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
| | - Jasmin Kaivola
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
| | - James R W Conway
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
| | - Joni Vuorio
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Hanna Parkkola
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
| | - Pekka Roivas
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
- Institute of Biomedicine, University of Turku, FI-20520, Turku, Finland
| | - Michal Dibus
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
| | - Megan R Chastney
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
| | - Taru Varila
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
| | - Guillaume Jacquemet
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, FI-20520, Turku, Finland
- Turku Bioimaging, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, FI-20520, Turku, Finland
| | - Emilia Peuhu
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
- Institute of Biomedicine, Cancer Research Laboratory FICAN West, University of Turku, FI-20520, Turku, Finland
| | - Emily Wang
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Ulla Pentikäinen
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
- Institute of Biomedicine, University of Turku, FI-20520, Turku, Finland
| | | | - Hellyeh Hamidi
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
| | - Arafath K Najumudeen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- CRUK Scotland Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Owen J Sansom
- CRUK Scotland Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Igor L Barsukov
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Daniel Abankwa
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
- Department of Life Sciences and Medicine, University of Luxembourg, 4365, Esch- sur-Alzette, Luxembourg
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Marko Salmi
- Institute of Biomedicine, University of Turku, FI-20520, Turku, Finland
- MediCity Research Laboratory, University of Turku, FI-20520, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, FI-20520, Turku, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, FI-20520, Turku, Finland.
- Department of Life Technologies, University of Turku, Turku, Finland.
- Foundation for the Finnish Cancer Institute, Tukholmankatu 8, FI-00014, Helsinki, Finland.
- Western Finnish Cancer Center, University of Turku, Turku, FI-20520, Finland.
| |
Collapse
|
62
|
Xiao A, Fakih M. KRAS G12C Inhibitors in the Treatment of Metastatic Colorectal Cancer. Clin Colorectal Cancer 2024; 23:199-206. [PMID: 38825433 DOI: 10.1016/j.clcc.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/11/2024] [Indexed: 06/04/2024]
Abstract
KRAS mutations contribute substantially to the overall colorectal cancer burden and have long been a focus of drug development efforts. After a lengthy preclinical road, KRAS inhibition via the G12C allele has finally become a therapeutic reality. Unlike in NSCLC, early studies of KRAS inhibitors in CRC struggled to demonstrate single agent activity. Investigation into these tissue-specific treatment differences has led to a deeper understanding of the complexities of MAPK signaling and the diverse adaptive feedback responses to KRAS inhibition. EGFR reactivation has emerged as a principal resistance mechanism to KRAS inhibitor monotherapy. Thus, the field has pivoted to dual EGFR/KRAS blockade with promising efficacy. Despite significant strides in the treatment of KRAS G12C mutated CRC, new challenges are on the horizon. Alternative RTK reactivation and countless acquired molecular resistance mechanisms have shifted the treatment goalpost. This review focuses on the historical and contemporary clinical strategies of targeting KRAS G12C alterations in CRC and highlights future directions to overcome treatment challenges.
Collapse
Affiliation(s)
- Annie Xiao
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd. Duarte, CA
| | - Marwan Fakih
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd. Duarte, CA.
| |
Collapse
|
63
|
López-Estévez AM, Sanjurjo L, Turrero Á, Arriaga I, Abrescia NGA, Poveda A, Jiménez-Barbero J, Vidal A, Torres D, Alonso MJ. Nanotechnology-assisted intracellular delivery of antibody as a precision therapy approach for KRAS-driven tumors. J Control Release 2024; 373:277-292. [PMID: 39019086 DOI: 10.1016/j.jconrel.2024.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
The Kirsten Rat Sarcoma Virus (KRAS) oncoprotein, one of the most prevalent mutations in cancer, has been deemed undruggable for decades. The hypothesis of this work was that delivering anti-KRAS monoclonal antibody (mAb) at the intracellular level could effectively target the KRAS oncoprotein. To reach this goal, we designed and developed tLyP1-targeted palmitoyl hyaluronate (HAC16)-based nanoassemblies (HANAs) adapted for the association of bevacizumab as a model mAb. Selected candidates with adequate physicochemical properties (below 150 nm, neutral surface charge), and high drug loading capacity (>10%, w/w) were adapted to entrap the antiKRASG12V mAb. The resulting antiKRASG12V-loaded HANAs exhibited a bilayer composed of HAC16 polymer and phosphatidylcholine (PC) enclosing a hydrophilic core, as evidenced by cryogenic-transmission electron microscopy (cryo-TEM) and X-ray photoelectron spectroscopy (XPS). Selected prototypes were found to efficiently engage the target KRASG12V and, inhibit proliferation and colony formation in KRASG12V-mutated lung cancer cell lines. In vivo, a selected formulation exhibited a tumor growth reduction in a pancreatic tumor-bearing mouse model. In brief, this study offers evidence of the potential to use nanotechnology for developing anti-KRAS precision therapy and provides a rational framework for advancing mAb intracellular delivery against intracellular targets.
Collapse
Affiliation(s)
- Ana M López-Estévez
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Lucía Sanjurjo
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ángela Turrero
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Iker Arriaga
- Structure and Cell Biology of Viruses Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Nicola G A Abrescia
- Structure and Cell Biology of Viruses Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Ana Poveda
- Chemical Glycobiology Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Jesús Jiménez-Barbero
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain; Chemical Glycobiology Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Anxo Vidal
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Dolores Torres
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
64
|
Thatikonda V, Lyu H, Jurado S, Kostyrko K, Bristow CA, Albrecht C, Alpar D, Arnhof H, Bergner O, Bosch K, Feng N, Gao S, Gerlach D, Gmachl M, Hinkel M, Lieb S, Jeschko A, Machado AA, Madensky T, Marszalek ED, Mahendra M, Melo-Zainzinger G, Molkentine JM, Jaeger PA, Peng DH, Schenk RL, Sorokin A, Strauss S, Trapani F, Kopetz S, Vellano CP, Petronczki M, Kraut N, Heffernan TP, Marszalek JR, Pearson M, Waizenegger IC, Hofmann MH. Co-targeting SOS1 enhances the antitumor effects of KRAS G12C inhibitors by addressing intrinsic and acquired resistance. NATURE CANCER 2024; 5:1352-1370. [PMID: 39103541 PMCID: PMC11424490 DOI: 10.1038/s43018-024-00800-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/08/2024] [Indexed: 08/07/2024]
Abstract
Combination approaches are needed to strengthen and extend the clinical response to KRASG12C inhibitors (KRASG12Ci). Here, we assessed the antitumor responses of KRASG12C mutant lung and colorectal cancer models to combination treatment with a SOS1 inhibitor (SOS1i), BI-3406, plus the KRASG12C inhibitor, adagrasib. We found that responses to BI-3406 plus adagrasib were stronger than to adagrasib alone, comparable to adagrasib with SHP2 (SHP2i) or EGFR inhibitors and correlated with stronger suppression of RAS-MAPK signaling. BI-3406 plus adagrasib treatment also delayed the emergence of acquired resistance and elicited antitumor responses from adagrasib-resistant models. Resistance to KRASG12Ci seemed to be driven by upregulation of MRAS activity, which both SOS1i and SHP2i were found to potently inhibit. Knockdown of SHOC2, a MRAS complex partner, partially restored response to KRASG12Ci treatment. These results suggest KRASG12C plus SOS1i to be a promising strategy for treating both KRASG12Ci naive and relapsed KRASG12C-mutant tumors.
Collapse
Affiliation(s)
- Venu Thatikonda
- Boehringer Ingelheim RCV, Vienna, Austria.
- Exscientia, Vienna, Austria.
| | - Hengyu Lyu
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Christopher A Bristow
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | - Ningping Feng
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sisi Gao
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | - Annette A Machado
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Ethan D Marszalek
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mikhila Mahendra
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Jessica M Molkentine
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - David H Peng
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Alexey Sorokin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher P Vellano
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Timothy P Heffernan
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph R Marszalek
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | |
Collapse
|
65
|
Keane F, Chou JF, Walch H, Schoenfeld J, Singhal A, Cowzer D, Harrold E, O’Connor CA, Park W, Varghese A, El Dika I, Balogun F, Yu KH, Capanu M, Schultz N, Yaeger R, O’Reilly EM. Precision medicine for pancreatic cancer: characterizing the clinicogenomic landscape and outcomes of KRAS G12C-mutated disease. J Natl Cancer Inst 2024; 116:1429-1438. [PMID: 38702822 PMCID: PMC11378314 DOI: 10.1093/jnci/djae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/27/2024] [Accepted: 04/20/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Mutated Kirsten rat sarcoma viral oncogene homolog (KRAS) is the most common oncogene alteration in pancreatic ductal adenocarcinoma, and KRAS glycine to cystine substitution at codon 12 (G12C) mutations (KRAS G12Cmut) are observed in 1%-2%. Several inhibitors of KRAS G12C have recently demonstrated promise in solid tumors, including pancreatic cancer. Little is known regarding clinical, genomics, and outcome data of this population. METHODS Patients with pancreatic cancer and KRAS G12Cmut were identified at Memorial Sloan Kettering Cancer Center and via the American Association of Cancer Research Project Genomics, Evidence, Neoplasia, Information, Exchange database. Clinical, treatment, genomic, and outcomes data were analyzed. A cohort of patients at Memorial Sloan Kettering Cancer Center with non-G12C KRAS pancreatic cancer was included for comparison. RESULTS Among 3571 patients with pancreatic ductal adenocarcinoma, 39 (1.1%) with KRAS G12Cmut were identified. Median age was 67 years, and 56% were female. Median body mass index was 29.2 kg/m2, and 67% had a smoking history. Median overall survival was 13 months (95% CI: 9.4 months, not reached) for stage IV and 26 months (95% CI: 23 months, not reached) for stage I-III. Complete genomic data (via American Association of Cancer Research Project Genomics, Evidence, Neoplasia, Information, Exchange database) was available for 74 patients. Most common co-alterations included TP53 (73%), CDKN2A (33%), SMAD4 (28%), and ARID1A (21%). Compared with a large cohort (n = 2931) of non-G12C KRAS-mutated pancreatic ductal adenocarcinoma, ARID1A co-mutations were more frequent in KRAS G12Cmut (P < .05). Overall survival did not differ between KRAS G12Cmut and non-G12C KRAS pancreatic ductal adenocarcinoma. Germline pathogenic variants were identified in 17% of patients; 2 patients received KRAS G12C-directed therapy. CONCLUSION Pancreatic cancer and KRAS G12Cmut may be associated with a distinct clinical phenotype. Genomic features are similar to non-G12C KRAS-mutated pancreatic cancer, although enrichment of ARID1A co-mutations was observed. Targeting of KRAS G12C in pancreatic cancer provides a precedent for broader KRAS targeting in pancreatic cancer.
Collapse
Affiliation(s)
- Fergus Keane
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreas Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joanne F Chou
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Henry Walch
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joshua Schoenfeld
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreas Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anupriya Singhal
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreas Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Darren Cowzer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emily Harrold
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Catherine A O’Connor
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreas Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wungki Park
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreas Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Anna Varghese
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreas Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Imane El Dika
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Fiyinfolu Balogun
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreas Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Kenneth H Yu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreas Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Marinela Capanu
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nikolaus Schultz
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Eileen M O’Reilly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreas Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
66
|
He D, Bai R, Chen N, Cui J. Immune status and combined immunotherapy progression in Kirsten rat sarcoma viral oncogene homolog (KRAS)-mutant tumors. Chin J Cancer Res 2024; 36:421-441. [PMID: 39246706 PMCID: PMC11377883 DOI: 10.21147/j.issn.1000-9604.2024.04.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS) is the most frequently mutated oncogene, occurring in various tumor types. Despite extensive efforts over the past 40 years to develop inhibitors targeting KRAS mutations, resistance to these inhibitors has eventually emerged. A more precise understanding of KRAS mutations and the mechanism of resistance development is essential for creating novel inhibitors that target specifically KRAS mutations and can delay or overcome resistance. Immunotherapy has developed rapidly in recent years, and in-depth dissection of the tumor immune microenvironment has led researchers to shift their focus to patients with KRAS mutations, finding that immune factors play an essential role in KRAS-mutant (KRAS-Mut) tumor therapy and targeted drug resistance. Breakthroughs and transitions from targeted therapy to immunotherapy have provided new hope for treating refractory patients. Here, we reviewed KRAS mutation-targeted treatment strategies and resistance issues, focusing on our in-depth exploration of the specific immune status of patients with KRAS mutations and the impact of body immunity following KRAS inhibition. We aimed to guide innovative approaches combining RAS inhibition with immunotherapy, review advances in preclinical and clinical stages, and discuss challenges and future directions.
Collapse
Affiliation(s)
- Dongsheng He
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Rilan Bai
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Naifei Chen
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Jiuwei Cui
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
67
|
Ghazi PC, O'Toole KT, Srinivas Boggaram S, Scherzer MT, Silvis MR, Zhang Y, Bogdan M, Smith BD, Lozano G, Flynn DL, Snyder EL, Kinsey CG, McMahon M. Inhibition of ULK1/2 and KRAS G12C controls tumor growth in preclinical models of lung cancer. eLife 2024; 13:RP96992. [PMID: 39213022 PMCID: PMC11364435 DOI: 10.7554/elife.96992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Mutational activation of KRAS occurs commonly in lung carcinogenesis and, with the recent U.S. Food and Drug Administration approval of covalent inhibitors of KRASG12C such as sotorasib or adagrasib, KRAS oncoproteins are important pharmacological targets in non-small cell lung cancer (NSCLC). However, not all KRASG12C-driven NSCLCs respond to these inhibitors, and the emergence of drug resistance in those patients who do respond can be rapid and pleiotropic. Hence, based on a backbone of covalent inhibition of KRASG12C, efforts are underway to develop effective combination therapies. Here, we report that the inhibition of KRASG12C signaling increases autophagy in KRASG12C-expressing lung cancer cells. Moreover, the combination of DCC-3116, a selective ULK1/2 inhibitor, plus sotorasib displays cooperative/synergistic suppression of human KRASG12C-driven lung cancer cell proliferation in vitro and superior tumor control in vivo. Additionally, in genetically engineered mouse models of KRASG12C-driven NSCLC, inhibition of either KRASG12C or ULK1/2 decreases tumor burden and increases mouse survival. Consequently, these data suggest that ULK1/2-mediated autophagy is a pharmacologically actionable cytoprotective stress response to inhibition of KRASG12C in lung cancer.
Collapse
Affiliation(s)
- Phaedra C Ghazi
- Department of Oncological Sciences, University of UtahSalt Lake CityUnited States
- Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Kayla T O'Toole
- Department of Oncological Sciences, University of UtahSalt Lake CityUnited States
- Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Sanjana Srinivas Boggaram
- Department of Oncological Sciences, University of UtahSalt Lake CityUnited States
- Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Michael T Scherzer
- Department of Oncological Sciences, University of UtahSalt Lake CityUnited States
- Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Mark R Silvis
- Department of Oncological Sciences, University of UtahSalt Lake CityUnited States
- Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Yun Zhang
- Department of Genetics, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | | | | | - Guillermina Lozano
- Department of Genetics, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | | | - Eric L Snyder
- Department of Oncological Sciences, University of UtahSalt Lake CityUnited States
- Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
- Department of Pathology, University of UtahSalt Lake CityUnited States
| | - Conan G Kinsey
- Department of Oncological Sciences, University of UtahSalt Lake CityUnited States
- Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
- Department of Internal Medicine, Division of Medical Oncology, University of UtahSalt Lake CityUnited States
| | - Martin McMahon
- Department of Oncological Sciences, University of UtahSalt Lake CityUnited States
- Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
- Department of Dermatology, University of UtahSalt Lake CityUnited States
| |
Collapse
|
68
|
Nokin MJ, Mira A, Patrucco E, Ricciuti B, Cousin S, Soubeyran I, San José S, Peirone S, Caizzi L, Vietti Michelina S, Bourdon A, Wang X, Alvarez-Villanueva D, Martínez-Iniesta M, Vidal A, Rodrigues T, García-Macías C, Awad MM, Nadal E, Villanueva A, Italiano A, Cereda M, Santamaría D, Ambrogio C. RAS-ON inhibition overcomes clinical resistance to KRAS G12C-OFF covalent blockade. Nat Commun 2024; 15:7554. [PMID: 39215000 PMCID: PMC11364849 DOI: 10.1038/s41467-024-51828-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Selective KRASG12C inhibitors have been developed to covalently lock the oncogene in the inactive GDP-bound state. Two of these molecules, sotorasib and adagrasib, are approved for the treatment of adult patients with KRASG12C-mutated previously treated advanced non-small cell lung cancer. Drug treatment imposes selective pressures leading to the outgrowth of drug-resistant variants. Mass sequencing from patients' biopsies identified a number of acquired KRAS mutations -both in cis and in trans- in resistant tumors. We demonstrate here that disease progression in vivo can also occur due to adaptive mechanisms and increased KRAS-GTP loading. Using the preclinical tool tri-complex KRASG12C-selective covalent inhibitor, RMC-4998 (also known as RM-029), that targets the active GTP-bound (ON) state of the oncogene, we provide a proof-of-concept that the clinical stage KRASG12C(ON) inhibitor RMC-6291 alone or in combination with KRASG12C(OFF) drugs can be an alternative potential therapeutic strategy to circumvent resistance due to increased KRAS-GTP loading.
Collapse
Affiliation(s)
- Marie-Julie Nokin
- INSERM U1312, University of Bordeaux, IECB, Pessac, France
- Laboratory of Biology of Tumor and Development (LBTD), GIGA-Cancer, University of Liège, Liège, Belgium
| | - Alessia Mira
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Enrico Patrucco
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Biagio Ricciuti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sophie Cousin
- Department of Medical Oncology, Institut Bergonié, Bordeaux, France
| | | | - Sonia San José
- INSERM U1312, University of Bordeaux, IECB, Pessac, France
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Serena Peirone
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, Milan, Italy
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov. le 142, km 3.95, Candiolo, Torino, Italy
| | - Livia Caizzi
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov. le 142, km 3.95, Candiolo, Torino, Italy
| | - Sandra Vietti Michelina
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | | | - Xinan Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Daniel Alvarez-Villanueva
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
| | - María Martínez-Iniesta
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
| | - August Vidal
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Telmo Rodrigues
- Comparative Pathology Unit, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Carmen García-Macías
- Comparative Pathology Unit, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Mark M Awad
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ernest Nadal
- Department of Medical Oncology, Catalan Institute of Oncology (ICO); Preclinical and Experimental Research in Thoracic Tumors (PReTT) Group, Oncobell Program, IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Alberto Villanueva
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Medical Oncology, Catalan Institute of Oncology (ICO); Preclinical and Experimental Research in Thoracic Tumors (PReTT) Group, Oncobell Program, IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Antoine Italiano
- Department of Medical Oncology, Institut Bergonié, Bordeaux, France.
| | - Matteo Cereda
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, Milan, Italy.
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov. le 142, km 3.95, Candiolo, Torino, Italy.
| | - David Santamaría
- INSERM U1312, University of Bordeaux, IECB, Pessac, France.
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain.
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy.
| |
Collapse
|
69
|
Takeda M, Theardy MS, Sorokin A, Coker O, Kanikarla P, Chen S, Yang Z, Nguyen P, Wei Y, Yao J, Wang X, Yan L, Jin Y, Cai Y, Paku M, Chen Z, Li KZ, Citron F, Tomihara H, Gao S, Deem AK, Zhao J, Wang H, Hanash S, DePinho RA, Maitra A, Draetta GF, Ying H, Kopetz S, Yao W. Therapeutic targeting of Syndecan-1 axis overcomes acquired resistance to KRAS-targeted therapy in gastrointestinal cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606865. [PMID: 39211217 PMCID: PMC11361106 DOI: 10.1101/2024.08.06.606865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The therapeutic benefit of recently developed mutant KRAS (mKRAS) inhibitors has been limited by the rapid onset of resistance. Here, we aimed to delineate the mechanisms underlying acquired resistance to mKRAS inhibition and identify actionable targets for overcoming this clinical challenge. Previously, we identified Syndecan-1 (SDC1) as a key effector for pancreatic cancer progression whose surface expression is driven by mKRAS. By leveraging both pancreatic and colorectal cancer models, we found that surface SDC1 expression was initially diminished upon mKRAS inhibition, but recovered in tumor cells that bypass mKRAS dependency. Functional studies showed that these tumors depended on SDC1 for survival, further establishing SDC1 as a driver for the acquired resistance to mKRAS inhibition. Mechanistically, we revealed that the YAP1-SDC1 axis was the major driving force for bypassing mKRAS dependency to sustain nutrient salvage machinery and tumor maintenance. Specifically, YAP1 activation mediated the recovery of SDC1 localization on cell surface that sustained macropinocytosis and enhanced the activation of multiple RTKs, promoting resistance to KRAS-targeted therapy. Overall, our study has provided the rationale for targeting the YAP-SDC1 axis to overcome resistance to mKRAS inhibition, thereby revealing new therapeutic opportunities for improving the clinical outcome of patients with KRAS-mutated cancers.
Collapse
|
70
|
Izumi M, Costa DB, Kobayashi SS. Targeting of drug-tolerant persister cells as an approach to counter drug resistance in non-small cell lung cancer. Lung Cancer 2024; 194:107885. [PMID: 39002493 PMCID: PMC11305904 DOI: 10.1016/j.lungcan.2024.107885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
The advent of targeted therapies revolutionized treatments of advanced oncogene-driven non-small cell lung cancer (NSCLC). Nonetheless, despite initial dramatic responses, development of drug resistance is inevitable. Although mechanisms underlying acquired resistance, such as on-target mutations, bypass pathways, or lineage transformation, have been described, overcoming drug resistance remains challenging. Recent evidence suggests that drug-tolerant persister (DTP) cells, which are tumor cells tolerant to initial drug exposure, give rise to cells that acquire drug resistance. Thus, the possibility of eradicating cancer by targeting DTP cells is under investigation, and various strategies are proposed. Here, we review overall features of DTP cells, current efforts to define DTP markers, and potential therapeutic strategies to target and eradicate DTP cells in oncogene-driven NSCLC. We also discuss future challenges in the field.
Collapse
Affiliation(s)
- Motohiro Izumi
- Department of Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daniel B Costa
- Department of Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Susumu S Kobayashi
- Department of Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
71
|
Luo J, Villaruz LC. Tackling KRAS G12C-mutated non-small-cell lung cancer: iteration and exploration. THE LANCET. RESPIRATORY MEDICINE 2024; 12:576-577. [PMID: 38870980 DOI: 10.1016/s2213-2600(24)00116-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 06/15/2024]
Affiliation(s)
- Jia Luo
- Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
72
|
Li W, Yin Z, Li X, Ma D, Yi S, Zhang Z, Zou C, Bu K, Dai M, Yue J, Chen Y, Zhang X, Zhang S. A hybrid quantum computing pipeline for real world drug discovery. Sci Rep 2024; 14:16942. [PMID: 39043787 PMCID: PMC11266395 DOI: 10.1038/s41598-024-67897-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
Quantum computing, with its superior computational capabilities compared to classical approaches, holds the potential to revolutionize numerous scientific domains, including pharmaceuticals. However, the application of quantum computing for drug discovery has primarily been limited to proof-of-concept studies, which often fail to capture the intricacies of real-world drug development challenges. In this study, we diverge from conventional investigations by developing a hybrid quantum computing pipeline tailored to address genuine drug design problems. Our approach underscores the application of quantum computation in drug discovery and propels it towards more scalable system. We specifically construct our versatile quantum computing pipeline to address two critical tasks in drug discovery: the precise determination of Gibbs free energy profiles for prodrug activation involving covalent bond cleavage, and the accurate simulation of covalent bond interactions. This work serves as a pioneering effort in benchmarking quantum computing against veritable scenarios encountered in drug design, especially the covalent bonding issue present in both of the case studies, thereby transitioning from theoretical models to tangible applications. Our results demonstrate the potential of a quantum computing pipeline for integration into real world drug design workflows.
Collapse
Affiliation(s)
- Weitang Li
- Tencent Quantum Lab, Shenzhen, 518057, China
| | - Zhi Yin
- AceMapAI Biotechnology, Suzhou, 215000, China.
- School of Science, Ningbo University of Technology, Ningbo, 315211, China.
| | - Xiaoran Li
- AceMapAI Biotechnology, Suzhou, 215000, China
| | | | - Shuang Yi
- AceMapAI Biotechnology, Suzhou, 215000, China
| | | | - Chenji Zou
- Tencent Quantum Lab, Shenzhen, 518057, China
| | - Kunliang Bu
- Tencent Quantum Lab, Shenzhen, 518057, China
| | - Maochun Dai
- Tencent Quantum Lab, Shenzhen, 518057, China
| | - Jie Yue
- Tencent Quantum Lab, Shenzhen, 518057, China
| | - Yuzong Chen
- AceMapAI Joint Lab, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaojin Zhang
- AceMapAI Joint Lab, China Pharmaceutical University, Nanjing, 211198, China.
| | | |
Collapse
|
73
|
Oliveira SM, Carvalho PD, Serra-Roma A, Oliveira P, Ribeiro A, Carvalho J, Martins F, Machado AL, Oliveira MJ, Velho S. Fibroblasts Promote Resistance to KRAS Silencing in Colorectal Cancer Cells. Cancers (Basel) 2024; 16:2595. [PMID: 39061234 PMCID: PMC11274566 DOI: 10.3390/cancers16142595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Colorectal cancer (CRC) responses to KRAS-targeted inhibition have been limited due to low response rates, the mechanisms of which remain unknown. Herein, we explored the cancer-associated fibroblasts (CAFs) secretome as a mediator of resistance to KRAS silencing. CRC cell lines HCT15, HCT116, and SW480 were cultured either in recommended media or in conditioned media from a normal colon fibroblast cell line (CCD-18Co) activated with rhTGF-β1 to induce a CAF-like phenotype. The expression of membrane stem cell markers was analyzed by flow cytometry. Stem cell potential was evaluated by a sphere formation assay. RNAseq was performed in KRAS-silenced HCT116 colonospheres treated with either control media or conditioned media from CAFs. Our results demonstrated that KRAS-silencing up-regulated CD24 and down-regulated CD49f and CD104 in the three cell lines, leading to a reduction in sphere-forming efficiency. However, CAF-secreted factors restored stem cell marker expression and increased stemness. RNA sequencing showed that CAF-secreted factors up-regulated genes associated with pro-tumorigenic pathways in KRAS-silenced cells, including KRAS, TGFβ, NOTCH, WNT, MYC, cell cycle progression and exit from quiescence, epithelial-mesenchymal transition, and immune regulation. Overall, our results suggest that resistance to KRAS-targeted inhibition might derive not only from cell-intrinsic causes but also from external elements, such as fibroblast-secreted factors.
Collapse
Affiliation(s)
- Susana Mendonça Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- FMUP—Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- ESS|P.PORTO—Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Patrícia Dias Carvalho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - André Serra-Roma
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Patrícia Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Andreia Ribeiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Joana Carvalho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Flávia Martins
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- FMUP—Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Ana Luísa Machado
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- FMUP—Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- ESS|P.PORTO—Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Maria José Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- FMUP—Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre 823, 4150-177 Porto, Portugal
| | - Sérgia Velho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| |
Collapse
|
74
|
Kitai H, Choi PH, Yang YC, Boyer JA, Whaley A, Pancholi P, Thant C, Reiter J, Chen K, Markov V, Taniguchi H, Yamaguchi R, Ebi H, Evans J, Jiang J, Lee B, Wildes D, de Stanchina E, Smith JAM, Singh M, Rosen N. Combined inhibition of KRAS G12C and mTORC1 kinase is synergistic in non-small cell lung cancer. Nat Commun 2024; 15:6076. [PMID: 39025835 PMCID: PMC11258147 DOI: 10.1038/s41467-024-50063-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/28/2024] [Indexed: 07/20/2024] Open
Abstract
Current KRASG12C (OFF) inhibitors that target inactive GDP-bound KRASG12C cause responses in less than half of patients and these responses are not durable. A class of RASG12C (ON) inhibitors that targets active GTP-bound KRASG12C blocks ERK signaling more potently than the inactive-state inhibitors. Sensitivity to either class of agents is strongly correlated with inhibition of mTORC1 activity. We have previously shown that PI3K/mTOR and ERK-signaling pathways converge on key cellular processes and that inhibition of both pathways is required for inhibition of these processes and for significant antitumor activity. We find here that the combination of a KRASG12C inhibitor with a selective mTORC1 kinase inhibitor causes synergistic inhibition of Cyclin D1 expression and cap-dependent translation. Moreover, BIM upregulation by KRASG12C inhibition and inhibition of MCL-1 expression by the mTORC1 inhibitor are both required to induce significant cell death. In vivo, this combination causes deep, durable tumor regressions and is well tolerated. This study suggests that the ERK and PI3K/mTOR pathways each mitigate the effects of inhibition of the other and that combinatorial inhibition is a potential strategy for treating KRASG12C-dependent lung cancer.
Collapse
Affiliation(s)
- Hidenori Kitai
- Program in Molecular Pharmacology and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Philip H Choi
- Program in Molecular Pharmacology and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yu C Yang
- Department of Biology, Revolution Medicines Inc., Redwood City, CA, USA
| | - Jacob A Boyer
- Program in Molecular Pharmacology and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adele Whaley
- Program in Molecular Pharmacology and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Priya Pancholi
- Program in Molecular Pharmacology and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Claire Thant
- Program in Molecular Pharmacology and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jason Reiter
- Program in Molecular Pharmacology and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kevin Chen
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vladimir Markov
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hirokazu Taniguchi
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rui Yamaguchi
- Division of Cancer Systems Biology, Aichi Cancer Center Research Institute, Nagoya, Aichi, 464-8681, Japan
| | - Hiromichi Ebi
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Aichi, 464-8681, Japan
| | - James Evans
- Department of Biology, Revolution Medicines Inc., Redwood City, CA, USA
| | - Jingjing Jiang
- Department of Biology, Revolution Medicines Inc., Redwood City, CA, USA
| | - Bianca Lee
- Department of Biology, Revolution Medicines Inc., Redwood City, CA, USA
| | - David Wildes
- Department of Biology, Revolution Medicines Inc., Redwood City, CA, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Mallika Singh
- Department of Biology, Revolution Medicines Inc., Redwood City, CA, USA.
| | - Neal Rosen
- Program in Molecular Pharmacology and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
75
|
Oya Y, Imaizumi K, Mitsudomi T. The next-generation KRAS inhibitors…What comes after sotorasib and adagrasib? Lung Cancer 2024; 194:107886. [PMID: 39047616 DOI: 10.1016/j.lungcan.2024.107886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/30/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
The Kirsten rat sarcoma viral oncogene homolog (KRAS) is one of the first driver oncogenes identified in human cancer in the early 1980s. However, it has been deemed 'undruggable' for nearly four decades until the discovery of KRAS G12C covalent inhibitors, which marked a pivotal breakthrough. Currently, sotorasib and adagrasib have been approved by the US FDA to treat patients with non-small cell lung cancer (NSCLC) harboring KRAS G12C mutation. However, their efficacy is somewhat limited compared to that of other targeted therapies owing to intrinsic resistance or early acquisition of resistance. While G12C is the predominant subtype of KRAS mutations in NSCLC, G12D/V is prevalent in colorectal and pancreatic cancers. These facts have spurred active research to develop more potent KRAS G12C inhibitors as well as inhibitors targeting non-G12C KRAS mutations. Novel approaches, such as molecular shielding or targeted protein degradation, are also under development. Combining KRAS inhibitors with inhibitors of the receptor-tyrosine kinase-RAS-mitogen-activated protein kinase (MAPK) pathway is underway to counteract redundant feedback mechanisms. Additionally, immunological approaches utilizing T-cell receptor (TCR)-engineered T cell therapy or vaccines, and Hapimmune antibodies are ongoing. This review delineates the recent advancements in KRAS inhibitor development in the post-sotorasib/adagrasib era, with a focus on NSCLC.
Collapse
Affiliation(s)
- Yuko Oya
- Department of Respiratory Medicine, Fujita Health University, Japan
| | | | - Tetsuya Mitsudomi
- Department of Thoracic Surgery, Izumi City General Hospital, Japan; Kindai University, Faculty of Medicine, Japan.
| |
Collapse
|
76
|
Ernst SM, van Marion R, Atmodimedjo PN, de Jonge E, Mathijssen RHJ, Paats MS, de Bruijn P, Koolen SL, von der Thüsen JH, Aerts JGJV, van Schaik RHN, Dubbink HJ, Dingemans AMC. Clinical Utility of Circulating Tumor DNA in Patients With Advanced KRAS G12C-Mutated NSCLC Treated With Sotorasib. J Thorac Oncol 2024; 19:995-1006. [PMID: 38615940 DOI: 10.1016/j.jtho.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
INTRODUCTION For patients with KRASG12C-mutated NSCLC who are treated with sotorasib, there is a lack of biomarkers to guide treatment decisions. We therefore investigated the clinical utility of pretreatment and on-treatment circulating tumor DNA (ctDNA) and treatment-emergent alterations on disease progression. METHODS Patients with KRASG12C-mutated NSCLC treated with sotorasib were prospectively enrolled in our biomarker study (NCT05221372). Plasma samples were collected before sotorasib treatment, at first-response evaluation and at disease progression. The TruSight Oncology 500 panel was used for ctDNA and variant allele frequency analysis. Tumor response and progression-free survival were assessed per Response Evaluation Criteria in Solid Tumors version 1.1. RESULTS Pretreatment KRASG12C ctDNA was detected in 50 of 66 patients (76%). Patients with detectable KRASG12C had inferior progression-free survival (hazard ratio [HR] 2.13 [95% confidence interval [CI]: 1.06-4.30], p = 0.031) and overall survival (HR 2.61 [95% CI: 1.16-5.91], p = 0.017). At first-response evaluation (n = 40), 29 patients (73%) had a molecular response. Molecular nonresponders had inferior overall survival (HR 3.58 [95% CI: 1.65-7.74], p = 0.00059). The disease control rate was significantly higher in those with a molecular response (97% versus 64%, p = 0.015). KRAS amplifications were identified as recurrent treatment-emergent alterations. CONCLUSIONS Our data suggest detectable pretreatment KRASG12C ctDNA as a marker for poor prognosis and on-treatment ctDNA clearance as a marker for treatment response. We identified KRAS amplifications as a potential recurring resistance mechanism to sotorasib. Identifying patients with superior prognosis could aid in optimizing time of treatment initiation, and identifying patients at risk of early progression could allow for earlier treatment decisions.
Collapse
Affiliation(s)
- Sophie M Ernst
- Department of Respiratory Medicine, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Ronald van Marion
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Peggy N Atmodimedjo
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Evert de Jonge
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Marthe S Paats
- Department of Respiratory Medicine, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Peter de Bruijn
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Stijn L Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands; Department of Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jan H von der Thüsen
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joachim G J V Aerts
- Department of Respiratory Medicine, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Hendrikus J Dubbink
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Anne-Marie C Dingemans
- Department of Respiratory Medicine, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
77
|
Ryan MB, Quade B, Schenk N, Fang Z, Zingg M, Cohen SE, Swalm BM, Li C, Özen A, Ye C, Ritorto MS, Huang X, Dar AC, Han Y, Hoeflich KP, Hale M, Hagel M. The Pan-RAF-MEK Nondegrading Molecular Glue NST-628 Is a Potent and Brain-Penetrant Inhibitor of the RAS-MAPK Pathway with Activity across Diverse RAS- and RAF-Driven Cancers. Cancer Discov 2024; 14:1190-1205. [PMID: 38588399 PMCID: PMC11215411 DOI: 10.1158/2159-8290.cd-24-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/10/2024]
Abstract
Alterations in the RAS-MAPK signaling cascade are common across multiple solid tumor types and are a driver for many cancers. NST-628 is a potent pan-RAF-MEK molecular glue that prevents the phosphorylation and activation of MEK by RAF, overcoming the limitations of traditional RAS-MAPK inhibitors and leading to deep durable inhibition of the pathway. Cellular, biochemical, and structural analyses of RAF-MEK complexes show that NST-628 engages all isoforms of RAF and prevents the formation of BRAF-CRAF heterodimers, a differentiated mechanism from all current RAF inhibitors. With a potent and durable inhibition of the RAF-MEK signaling complex as well as high intrinsic permeability into the brain, NST-628 demonstrates broad efficacy in cellular and patient-derived tumor models harboring diverse MAPK pathway alterations, including orthotopic intracranial models. Given its functional and pharmacokinetic mechanisms that are differentiated from previous therapies, NST-628 is positioned to make an impact clinically in areas of unmet patient need. Significance: This study introduces NST-628, a molecular glue having differentiated mechanism and drug-like properties. NST-628 treatment leads to broad efficacy with high tolerability and central nervous system activity across multiple RAS- and RAF-driven tumor models. NST-628 has the potential to provide transformative clinical benefits as both monotherapy and vertical combination anchor.
Collapse
Affiliation(s)
| | | | | | - Zhong Fang
- Nested Therapeutics, Cambridge, Massachusetts.
| | | | | | | | - Chun Li
- Nested Therapeutics, Cambridge, Massachusetts.
| | | | - Chaoyang Ye
- Nested Therapeutics, Cambridge, Massachusetts.
| | | | - Xin Huang
- Nested Therapeutics, Cambridge, Massachusetts.
| | - Arvin C. Dar
- Program in Chemical Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Yongxin Han
- Nested Therapeutics, Cambridge, Massachusetts.
| | | | | | | |
Collapse
|
78
|
Ghazi PC, O'Toole KT, Srinivas Boggaram S, Scherzer MT, Silvis MR, Zhang Y, Bogdan M, Smith BD, Lozano G, Flynn DL, Snyder EL, Kinsey CG, McMahon M. Inhibition of ULK1/2 and KRAS G12C controls tumor growth in preclinical models of lung cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579200. [PMID: 38370808 PMCID: PMC10871191 DOI: 10.1101/2024.02.06.579200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Mutational activation of KRAS occurs commonly in lung carcinogenesis and, with the recent FDA approval of covalent inhibitors of KRAS G12C such as sotorasib or adagrasib, KRAS oncoproteins are important pharmacological targets in non-small cell lung cancer (NSCLC). However, not all KRAS G12C -driven NSCLCs respond to these inhibitors, and the emergence of drug resistance in those patients that do respond can be rapid and pleiotropic. Hence, based on a backbone of covalent inhibition of KRAS G12C , efforts are underway to develop effective combination therapies. Here we report that inhibition of KRAS G12C signaling increases autophagy in KRAS G12C expressing lung cancer cells. Moreover, the combination of DCC-3116, a selective ULK1/2 inhibitor, plus sotorasib displays cooperative/synergistic suppression of human KRAS G12C -driven lung cancer cell proliferation in vitro and superior tumor control in vivo . Additionally, in genetically engineered mouse models of KRAS G12C -driven NSCLC, inhibition of either KRAS G12C or ULK1/2 decreases tumor burden and increases mouse survival. Consequently, these data suggest that ULK1/2-mediated autophagy is a pharmacologically actionable cytoprotective stress response to inhibition of KRAS G12C in lung cancer.
Collapse
|
79
|
Escher TE, Yuk SA, Qian Y, Stubbs CK, Scott EA, Satchell KJF. Therapeutic expression of RAS Degrader RRSP in Pancreatic Cancer via Nanocarrier-mediated mRNA delivery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598439. [PMID: 38948803 PMCID: PMC11212117 DOI: 10.1101/2024.06.11.598439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
About one-third of all human cancers encode abnormal RAS proteins locked in a constitutively activated state to drive malignant transformation and uncontrolled tumor growth. Despite progress in development of small molecules for treatment of mutant KRAS cancers, there is a need for a pan-RAS inhibitor that is effective against all RAS isoforms and variants and that avoids drug resistance. We have previously shown that the naturally occurring bacterial enzyme RAS/RAP1-specific endopeptidase (RRSP) is a potent RAS degrader that can be re-engineered as a biologic therapy to induce regression of colorectal, breast, and pancreatic tumors. Here, we have developed a strategy for in vivo expression of this RAS degrader via mRNA delivery using a synthetic nonviral gene delivery platform composed of the poly(ethylene glycol)-b-poly(propylene sulfide) (PEG-b-PPS) block copolymer conjugated to a dendritic cationic peptide (PPDP2). Using this strategy, PPDP2 is shown to deliver mRNA to both human and mouse pancreatic cells resulting in RRSP gene expression, activity, and loss of cell proliferation. Further, pancreatic tumors are reduced with residual tumors lacking detectable RAS and phosphorylated ERK. These data support that mRNA-loaded synthetic nanocarrier delivery of a RAS degrader can interrupt the RAS signaling system within pancreatic cancer cells while avoiding side effects during therapy.
Collapse
Affiliation(s)
- Taylor E Escher
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611 United States
| | - Simseok A Yuk
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Yuan Qian
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Caleb K Stubbs
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611 United States
| | - Evan A Scott
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Robert H. Lurie Comprehensive Cancer Research Center, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611 United States
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611 United States
- Robert H. Lurie Comprehensive Cancer Research Center, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611 United States
| |
Collapse
|
80
|
Rosell R, Jantus-Lewintre E, Cao P, Cai X, Xing B, Ito M, Gomez-Vazquez JL, Marco-Jordán M, Calabuig-Fariñas S, Cardona AF, Codony-Servat J, Gonzalez J, València-Clua K, Aguilar A, Pedraz-Valdunciel C, Dantes Z, Jain A, Chandan S, Molina-Vila MA, Arrieta O, Ferrero M, Camps C, González-Cao M. KRAS-mutant non-small cell lung cancer (NSCLC) therapy based on tepotinib and omeprazole combination. Cell Commun Signal 2024; 22:324. [PMID: 38867255 PMCID: PMC11167791 DOI: 10.1186/s12964-024-01667-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/17/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND KRAS-mutant non-small cell lung cancer (NSCLC) shows a relatively low response rate to chemotherapy, immunotherapy and KRAS-G12C selective inhibitors, leading to short median progression-free survival, and overall survival. The MET receptor tyrosine kinase (c-MET), the cognate receptor of hepatocyte growth factor (HGF), was reported to be overexpressed in KRAS-mutant lung cancer cells leading to tumor-growth in anchorage-independent conditions. METHODS Cell viability assay and synergy analysis were carried out in native, sotorasib and trametinib-resistant KRAS-mutant NSCLC cell lines. Colony formation assays and Western blot analysis were also performed. RNA isolation from tumors of KRAS-mutant NSCLC patients was performed and KRAS and MET mRNA expression was determined by real-time RT-qPCR. In vivo studies were conducted in NSCLC (NCI-H358) cell-derived tumor xenograft model. RESULTS Our research has shown promising activity of omeprazole, a V-ATPase-driven proton pump inhibitor with potential anti-cancer properties, in combination with the MET inhibitor tepotinib in KRAS-mutant G12C and non-G12C NSCLC cell lines, as well as in G12C inhibitor (AMG510, sotorasib) and MEK inhibitor (trametinib)-resistant cell lines. Moreover, in a xenograft mouse model, combination of omeprazole plus tepotinib caused tumor growth regression. We observed that the combination of these two drugs downregulates phosphorylation of the glycolytic enzyme enolase 1 (ENO1) and the low-density lipoprotein receptor-related protein (LRP) 5/6 in the H358 KRAS G12C cell line, but not in the H358 sotorasib resistant, indicating that the effect of the combination could be independent of ENO1. In addition, we examined the probability of recurrence-free survival and overall survival in 40 early lung adenocarcinoma patients with KRAS G12C mutation stratified by KRAS and MET mRNA levels. Significant differences were observed in recurrence-free survival according to high levels of KRAS mRNA expression. Hazard ratio (HR) of recurrence-free survival was 7.291 (p = 0.014) for high levels of KRAS mRNA expression and 3.742 (p = 0.052) for high MET mRNA expression. CONCLUSIONS We posit that the combination of the V-ATPase inhibitor omeprazole plus tepotinib warrants further assessment in KRAS-mutant G12C and non G12C cell lines, including those resistant to the covalent KRAS G12C inhibitors.
Collapse
Affiliation(s)
- Rafael Rosell
- Germans Trias i Pujol Research Institute, Badalona (IGTP), Barcelona, Spain.
- IOR, Hospital Quiron-Dexeus Barcelona, Barcelona, Spain.
- Laboratory of Molecular Biology, Germans Trias i Pujol Health Sciences Institute and Hospital (IGTP), Camí de les Escoles, s/n, 08916, Badalona, Barcelona, Spain.
| | - Eloisa Jantus-Lewintre
- Molecular Oncology Laboratory, Fundación Investigación Hospital General Universitario de Valencia, Valencia, Spain.
- Trial Mixed Unit, Centro Investigación Príncipe Felipe-Fundación Investigación Hospital General Universitario de Valencia, Valencia, Spain.
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain.
- Department of Biotechnology, Universitat Politècnica de València, Camí de Vera s/n, Valencia, 46022, Spain.
- Joint Unit: Nanomedicine, Centro Investigación Príncipe Felipe-Universitat Politècnica de Valencia, Valencia, Spain.
| | - Peng Cao
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China.
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou Peoples Hospital, Quzhou, China.
- Shandong Academy of Chinese Medicine, Jinan, China.
| | - Xueting Cai
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Baojuan Xing
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Masaoki Ito
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Jose Luis Gomez-Vazquez
- Germans Trias i Pujol Research Institute, Badalona (IGTP), Barcelona, Spain
- Hospital Universitari de Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | | | - Silvia Calabuig-Fariñas
- Molecular Oncology Laboratory, Fundación Investigación Hospital General Universitario de Valencia, Valencia, Spain
- Trial Mixed Unit, Centro Investigación Príncipe Felipe-Fundación Investigación Hospital General Universitario de Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
- Department of Pathology, Universitat de Valéncia, Valencia, Spain
| | - Andrés Felipe Cardona
- Institute of Research and Education, Luis Carlos Sarmiento Angulo Cancer Treatment and Research Center - CTIC, Bogotá, Colombia
| | - Jordi Codony-Servat
- Germans Trias i Pujol Research Institute, Badalona (IGTP), Barcelona, Spain
- Pangaea Oncology, Hospital Quiron-Dexeus Barcelona, Barcelona, Spain
| | - Jessica Gonzalez
- Germans Trias i Pujol Research Institute, Badalona (IGTP), Barcelona, Spain
| | | | | | | | | | - Anisha Jain
- Department of Microbiology, JSS Academy of Higher Education & Research, Mysuru, India
| | - S Chandan
- Department of Microbiology, JSS Academy of Higher Education & Research, Mysuru, India
| | | | - Oscar Arrieta
- National Institute of Cancerology (INCAN), Mexico City, Mexico
| | - Macarena Ferrero
- Trial Mixed Unit, Centro Investigación Príncipe Felipe-Fundación Investigación Hospital General Universitario de Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Carlos Camps
- Trial Mixed Unit, Centro Investigación Príncipe Felipe-Fundación Investigación Hospital General Universitario de Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
- Medical Oncology Department, General University Hospital of Valencia, Valencia, Spain
| | | |
Collapse
|
81
|
Klomp JA, Klomp JE, Stalnecker CA, Bryant KL, Edwards AC, Drizyte-Miller K, Hibshman PS, Diehl JN, Lee YS, Morales AJ, Taylor KE, Peng S, Tran NL, Herring LE, Prevatte AW, Barker NK, Hover LD, Hallin J, Chowdhury S, Coker O, Lee HM, Goodwin CM, Gautam P, Olson P, Christensen JG, Shen JP, Kopetz S, Graves LM, Lim KH, Wang-Gillam A, Wennerberg K, Cox AD, Der CJ. Defining the KRAS- and ERK-dependent transcriptome in KRAS-mutant cancers. Science 2024; 384:eadk0775. [PMID: 38843331 PMCID: PMC11301402 DOI: 10.1126/science.adk0775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 04/17/2024] [Indexed: 06/15/2024]
Abstract
How the KRAS oncogene drives cancer growth remains poorly understood. Therefore, we established a systemwide portrait of KRAS- and extracellular signal-regulated kinase (ERK)-dependent gene transcription in KRAS-mutant cancer to delineate the molecular mechanisms of growth and of inhibitor resistance. Unexpectedly, our KRAS-dependent gene signature diverges substantially from the frequently cited Hallmark KRAS signaling gene signature, is driven predominantly through the ERK mitogen-activated protein kinase (MAPK) cascade, and accurately reflects KRAS- and ERK-regulated gene transcription in KRAS-mutant cancer patients. Integration with our ERK-regulated phospho- and total proteome highlights ERK deregulation of the anaphase promoting complex/cyclosome (APC/C) and other components of the cell cycle machinery as key processes that drive pancreatic ductal adenocarcinoma (PDAC) growth. Our findings elucidate mechanistically the critical role of ERK in driving KRAS-mutant tumor growth and in resistance to KRAS-ERK MAPK targeted therapies.
Collapse
Affiliation(s)
- Jeffrey A. Klomp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jennifer E. Klomp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Clint A. Stalnecker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kirsten L. Bryant
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - A. Cole Edwards
- Cell Biology & Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kristina Drizyte-Miller
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Priya S. Hibshman
- Cell Biology & Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - J. Nathaniel Diehl
- Curriculum in Genetics & Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ye S. Lee
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexis J. Morales
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Khalilah E. Taylor
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sen Peng
- Illumina, Inc., San Diego, CA 92121, USA
| | - Nhan L. Tran
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - Laura E. Herring
- Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alex W. Prevatte
- Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Natalie K. Barker
- Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Jill Hallin
- Mirati Therapeutics, Inc., San Diego, CA 92121, USA
| | - Saikat Chowdhury
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Oluwadara Coker
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Hey Min Lee
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Craig M. Goodwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Prson Gautam
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Peter Olson
- Mirati Therapeutics, Inc., San Diego, CA 92121, USA
| | | | - John P. Shen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Lee M. Graves
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kian-Huat Lim
- Division of Medical Oncology, Department of Internal Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Andrea Wang-Gillam
- Division of Medical Oncology, Department of Internal Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Adrienne D. Cox
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Cell Biology & Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Channing J. Der
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Cell Biology & Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Genetics & Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
82
|
Jiang J, Jiang L, Maldonato BJ, Wang Y, Holderfield M, Aronchik I, Winters IP, Salman Z, Blaj C, Menard M, Brodbeck J, Chen Z, Wei X, Rosen MJ, Gindin Y, Lee BJ, Evans JW, Chang S, Wang Z, Seamon KJ, Parsons D, Cregg J, Marquez A, Tomlinson AC, Yano JK, Knox JE, Quintana E, Aguirre AJ, Arbour KC, Reed A, Gustafson WC, Gill AL, Koltun ES, Wildes D, Smith JA, Wang Z, Singh M. Translational and Therapeutic Evaluation of RAS-GTP Inhibition by RMC-6236 in RAS-Driven Cancers. Cancer Discov 2024; 14:994-1017. [PMID: 38593348 PMCID: PMC11149917 DOI: 10.1158/2159-8290.cd-24-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/09/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
RAS-driven cancers comprise up to 30% of human cancers. RMC-6236 is a RAS(ON) multi-selective noncovalent inhibitor of the active, GTP-bound state of both mutant and wild-type variants of canonical RAS isoforms with broad therapeutic potential for the aforementioned unmet medical need. RMC-6236 exhibited potent anticancer activity across RAS-addicted cell lines, particularly those harboring mutations at codon 12 of KRAS. Notably, oral administration of RMC-6236 was tolerated in vivo and drove profound tumor regressions across multiple tumor types in a mouse clinical trial with KRASG12X xenograft models. Translational PK/efficacy and PK/PD modeling predicted that daily doses of 100 mg and 300 mg would achieve tumor control and objective responses, respectively, in patients with RAS-driven tumors. Consistent with this, we describe here objective responses in two patients (at 300 mg daily) with advanced KRASG12X lung and pancreatic adenocarcinoma, respectively, demonstrating the initial activity of RMC-6236 in an ongoing phase I/Ib clinical trial (NCT05379985). SIGNIFICANCE The discovery of RMC-6236 enables the first-ever therapeutic evaluation of targeted and concurrent inhibition of canonical mutant and wild-type RAS-GTP in RAS-driven cancers. We demonstrate that broad-spectrum RAS-GTP inhibition is tolerable at exposures that induce profound tumor regressions in preclinical models of, and in patients with, such tumors. This article is featured in Selected Articles from This Issue, p. 897.
Collapse
Affiliation(s)
| | - Lingyan Jiang
- Revolution Medicines, Inc., Redwood City, California
| | | | - Yingyun Wang
- Revolution Medicines, Inc., Redwood City, California
| | | | - Ida Aronchik
- Revolution Medicines, Inc., Redwood City, California
| | - Ian P. Winters
- Revolution Medicines, Inc., Redwood City, California
- D2G Oncology, Inc., Mountain View, California
| | - Zeena Salman
- Revolution Medicines, Inc., Redwood City, California
| | - Cristina Blaj
- Revolution Medicines, Inc., Redwood City, California
| | - Marie Menard
- Revolution Medicines, Inc., Redwood City, California
| | - Jens Brodbeck
- Revolution Medicines, Inc., Redwood City, California
| | - Zhe Chen
- Revolution Medicines, Inc., Redwood City, California
| | - Xing Wei
- Revolution Medicines, Inc., Redwood City, California
| | | | | | - Bianca J. Lee
- Revolution Medicines, Inc., Redwood City, California
| | | | | | - Zhican Wang
- Revolution Medicines, Inc., Redwood City, California
| | | | - Dylan Parsons
- Revolution Medicines, Inc., Redwood City, California
| | - James Cregg
- Revolution Medicines, Inc., Redwood City, California
| | - Abby Marquez
- Revolution Medicines, Inc., Redwood City, California
| | | | - Jason K. Yano
- Revolution Medicines, Inc., Redwood City, California
| | - John E. Knox
- Revolution Medicines, Inc., Redwood City, California
| | - Elsa Quintana
- Revolution Medicines, Inc., Redwood City, California
| | - Andrew J. Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Kathryn C. Arbour
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Abby Reed
- The Christ Hospital Cancer Center, Cincinnati, Ohio
| | | | | | | | - David Wildes
- Revolution Medicines, Inc., Redwood City, California
| | | | | | - Mallika Singh
- Revolution Medicines, Inc., Redwood City, California
| |
Collapse
|
83
|
Yaeger R, Uboha NV, Pelster MS, Bekaii-Saab TS, Barve M, Saltzman J, Sabari JK, Peguero JA, Paulson AS, Jänne PA, Cruz-Correa M, Anderes K, Velastegui K, Yan X, Der-Torossian H, Klempner SJ, Kopetz SE. Efficacy and Safety of Adagrasib plus Cetuximab in Patients with KRASG12C-Mutated Metastatic Colorectal Cancer. Cancer Discov 2024; 14:982-993. [PMID: 38587856 PMCID: PMC11152245 DOI: 10.1158/2159-8290.cd-24-0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
Adagrasib, an irreversible, selective KRASG12C inhibitor, may be an effective treatment in KRASG12C-mutated colorectal cancer, particularly when combined with an anti-EGFR antibody. In this analysis of the KRYSTAL-1 trial, patients with previously treated KRASG12C-mutated unresectable or metastatic colorectal cancer received adagrasib (600 mg twice daily) plus cetuximab. The primary endpoint was objective response rate (ORR) by blinded independent central review. Ninety-four patients received adagrasib plus cetuximab. With a median follow-up of 11.9 months, ORR was 34.0%, disease control rate was 85.1%, and median duration of response was 5.8 months (95% confidence interval [CI], 4.2-7.6). Median progression-free survival was 6.9 months (95% CI, 5.7-7.4) and median overall survival was 15.9 months (95% CI, 11.8-18.8). Treatment-related adverse events (TRAEs) occurred in all patients; grade 3-4 in 27.7% and no grade 5. No TRAEs led to adagrasib discontinuation. Exploratory analyses suggest circulating tumor DNA may identify features of response and acquired resistance. SIGNIFICANCE Adagrasib plus cetuximab demonstrates promising clinical activity and tolerable safety in heavily pretreated patients with unresectable or metastatic KRASG12C-mutated colorectal cancer. These data support a potential new standard of care and highlight the significance of testing and identification of KRASG12C mutations in patients with colorectal cancer. This article is featured in Selected Articles from This Issue, p. 897.
Collapse
Affiliation(s)
- Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nataliya V. Uboha
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin, Madison, Wisconsin
| | | | | | - Minal Barve
- Mary Crowley Cancer Research Center, Dallas, Texas
| | - Joel Saltzman
- Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, Ohio
| | - Joshua K. Sabari
- Division of Medical Oncology, Perlmutter Cancer Center, New York University Langone Health, New York, New York
| | | | - Andrew Scott Paulson
- Department of Medical Oncology, Texas Oncology – Baylor Charles A. Sammons Cancer Center, Dallas, Texas
| | - Pasi A. Jänne
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | | | - Kenna Anderes
- Mirati Therapeutics, a wholly owned subsidiary of Bristol Myers Squibb Company, San Diego, California
| | - Karen Velastegui
- Mirati Therapeutics, a wholly owned subsidiary of Bristol Myers Squibb Company, San Diego, California
| | - Xiaohong Yan
- Mirati Therapeutics, a wholly owned subsidiary of Bristol Myers Squibb Company, San Diego, California
| | - Hirak Der-Torossian
- Mirati Therapeutics, a wholly owned subsidiary of Bristol Myers Squibb Company, San Diego, California
| | - Samuel J. Klempner
- Division of Hematology-Oncology, Massachusetts General Cancer Center, Boston, Massachusetts
| | - Scott E. Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
84
|
Scardaci R, Berlinska E, Scaparone P, Vietti Michelina S, Garbo E, Novello S, Santamaria D, Ambrogio C. Novel RAF-directed approaches to overcome current clinical limits and block the RAS/RAF node. Mol Oncol 2024; 18:1355-1377. [PMID: 38362705 PMCID: PMC11161739 DOI: 10.1002/1878-0261.13605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/30/2023] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Mutations in the RAS-RAF-MEK-ERK pathway are frequent alterations in cancer and RASopathies, and while RAS oncogene activation alone affects 19% of all patients and accounts for approximately 3.4 million new cases every year, less frequent alterations in the cascade's downstream effectors are also involved in cancer etiology. RAS proteins initiate the signaling cascade by promoting the dimerization of RAF kinases, which can act as oncoproteins as well: BRAFV600E is the most common oncogenic driver, mutated in the 8% of all malignancies. Research in this field led to the development of drugs that target the BRAFV600-like mutations (Class I), which are now utilized in clinics, but cause paradoxical activation of the pathway and resistance development. Furthermore, they are ineffective against non-BRAFV600E malignancies that dimerize and could be either RTK/RAS independent or dependent (Class II and III, respectively), which are still lacking an effective treatment. This review discusses the recent advances in anti-RAF therapies, including paradox breakers, dimer-inhibitors, immunotherapies, and other novel approaches, critically evaluating their efficacy in overcoming the therapeutic limitations, and their putative role in blocking the RAS pathway.
Collapse
Affiliation(s)
- Rossella Scardaci
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Ewa Berlinska
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Pietro Scaparone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Sandra Vietti Michelina
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Edoardo Garbo
- Department of OncologyUniversity of Torino, San Luigi HospitalOrbassanoItaly
| | - Silvia Novello
- Department of OncologyUniversity of Torino, San Luigi HospitalOrbassanoItaly
| | - David Santamaria
- Centro de Investigación del CáncerCSIC‐Universidad de SalamancaSpain
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| |
Collapse
|
85
|
Gebregiworgis T, Chan JYL, Kuntz DA, Privé GG, Marshall CB, Ikura M. Crystal structure of NRAS Q61K with a ligand-induced pocket near switch II. Eur J Cell Biol 2024; 103:151414. [PMID: 38640594 DOI: 10.1016/j.ejcb.2024.151414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024] Open
Abstract
The RAS isoforms (KRAS, HRAS and NRAS) have distinct cancer type-specific profiles. NRAS mutations are the second most prevalent RAS mutations in skin and hematological malignancies. Although RAS proteins were considered undruggable for decades, isoform and mutation-specific investigations have produced successful RAS inhibitors that are either specific to certain mutants, isoforms (pan-KRAS) or target all RAS proteins (pan-RAS). While extensive structural and biochemical investigations have focused mainly on K- and H-RAS mutations, NRAS mutations have received less attention, and the most prevalent NRAS mutations in human cancers, Q61K and Q61R, are rare in K- and H-RAS. This manuscript presents a crystal structure of the NRAS Q61K mutant in the GTP-bound form. Our structure reveals a previously unseen pocket near switch II induced by the binding of a ligand to the active form of the protein. This observation reveals a binding site that can potentially be exploited for development of inhibitors against mutant NRAS. Furthermore, the well-resolved catalytic site of this GTPase bound to native GTP provides insight into the stalled GTP hydrolysis observed for NRAS-Q61K.
Collapse
Affiliation(s)
- Teklab Gebregiworgis
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada; Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada; Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5W9, Canada.
| | - Jonathan Yui-Lai Chan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Douglas A Kuntz
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Gilbert G Privé
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada; Department of Biochemistry, University of Toronto, 1 Kings College Circle, Toronto, Ontario M5S 1A8, Canada; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | - Christopher B Marshall
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada.
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada.
| |
Collapse
|
86
|
Sreter KB, Catarata MJ, von Laffert M, Frille A. Resistance to KRAS inhibition in advanced non-small cell lung cancer. Front Oncol 2024; 14:1357898. [PMID: 38846975 PMCID: PMC11153770 DOI: 10.3389/fonc.2024.1357898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
Lung cancer remains the leading cause of cancer death globally. More than 50% of new cases are diagnosed in an advanced or metastatic stage, thus contributing to the poor survival of such patients. Mutations in the KRAS (Kirsten rat sarcoma virus) gene occur in nearly a third of lung adenocarcinoma and have for decades been deemed an 'undruggable' target. Yet, in recent years, a growing number of small molecules, such as the GTPase inhibitors, has been investigated in clinical trials of lung cancer patients harboring KRAS mutations, yielding promising results with improved outcomes. Currently, there are only two approved targeted therapies (adagrasib and sotorasib) for advanced or metastatic KRAS-mutated NSCLC from the second-line setting onwards. In this narrative review, we will focus on KRAS, its molecular basis, the role of its co-mutations, clinical evidence for its inhibition, putative mutation to resistance, and future strategies to overcome resistance to KRAS inhibition.
Collapse
Affiliation(s)
| | - Maria Joana Catarata
- Pulmonology Department, Hospital de Braga, Braga, Portugal
- Tumour & Microenvironment Interactions Group, I3S-Institute for Health Research & Innovation, University of Porto, Porto, Portugal
| | | | - Armin Frille
- Department of Respiratory Medicine, Leipzig University, Leipzig, Germany
| |
Collapse
|
87
|
Lokhandwala J, Smalley TB, Tran TH. Structural perspectives on recent breakthrough efforts toward direct drugging of RAS and acquired resistance. Front Oncol 2024; 14:1394702. [PMID: 38841166 PMCID: PMC11150659 DOI: 10.3389/fonc.2024.1394702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/24/2024] [Indexed: 06/07/2024] Open
Abstract
The Kirsten rat sarcoma viral oncoprotein homolog (KRAS) is currently a primary focus of oncologists and translational scientists, driven by exciting results with KRAS-targeted therapies for non-small cell lung cancer (NSCLC) patients. While KRAS mutations continue to drive high cancer diagnosis and death, researchers have developed unique strategies to target KRAS variations. Having been investigated over the past 40 years and considered "undruggable" due to the lack of pharmacological binding pockets, recent breakthroughs and accelerated FDA approval of the first covalent inhibitors targeting KRASG12C, have largely sparked further drug development. Small molecule development has targeted the previously identified primary location alterations such as G12, G13, Q61, and expanded to address the emerging secondary mutations and acquired resistance. Of interest, the non-covalent KRASG12D targeting inhibitor MRTX-1133 has shown promising results in humanized pancreatic cancer mouse models and is seemingly making its way from bench to bedside. While this manuscript was under review a novel class of first covalent inhibitors specific for G12D was published, These so-called malolactones can crosslink both GDP and GTP bound forms of G12D. Inhibition of the latter state suppressed downstream signaling and cancer cell proliferation in vitro and in mouse xenografts. Moreover, a non-covalent pan-KRAS inhibitor, BI-2865, reduced tumor proliferation in cell lines and mouse models. Finally, the next generation of KRAS mutant-specific and pan-RAS tri-complex inhibitors have revolutionized RAS drug discovery. This review will give a structural biology perspective on the current generation of KRAS inhibitors through the lens of emerging secondary mutations and acquired resistance.
Collapse
Affiliation(s)
- Jameela Lokhandwala
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Tracess B. Smalley
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Timothy H. Tran
- Chemical Biology Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| |
Collapse
|
88
|
Tran NL, Jiang J, Ma M, Gadbois GE, Gulay KCM, Verano A, Zhou H, Huang CT, Scott DA, Bang AG, Tiriac H, Lowy AM, Wang ES, Ferguson FM. ZBTB11 Depletion Targets Metabolic Vulnerabilities in K-Ras Inhibitor Resistant PDAC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.19.594824. [PMID: 38826238 PMCID: PMC11142081 DOI: 10.1101/2024.05.19.594824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Over 95% of pancreatic ductal adenocarcinomas (PDAC) harbor oncogenic mutations in K-Ras. Upon treatment with K-Ras inhibitors, PDAC cancer cells undergo metabolic reprogramming towards an oxidative phosphorylation-dependent, drug-resistant state. However, direct inhibition of complex I is poorly tolerated in patients due to on-target induction of peripheral neuropathy. In this work, we develop molecular glue degraders against ZBTB11, a C2H2 zinc finger transcription factor that regulates the nuclear transcription of components of the mitoribosome and electron transport chain. Our ZBTB11 degraders leverage the differences in demand for biogenesis of mitochondrial components between human neurons and rapidly-dividing pancreatic cancer cells, to selectively target the K-Ras inhibitor resistant state in PDAC. Combination treatment of both K-Ras inhibitor-resistant cell lines and multidrug resistant patient-derived organoids resulted in superior anti-cancer activity compared to single agent treatment, while sparing hiPSC-derived neurons. Proteomic and stable isotope tracing studies revealed mitoribosome depletion and impairment of the TCA cycle as key events that mediate this response. Together, this work validates ZBTB11 as a vulnerability in K-Ras inhibitor-resistant PDAC and provides a suite of molecular glue degrader tool compounds to investigate its function.
Collapse
Affiliation(s)
- Nathan L. Tran
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA
- Cancer Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Jiewei Jiang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA
| | - Min Ma
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA
| | - Gillian E. Gadbois
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA
| | - Kevin C. M. Gulay
- Department of Surgery, Division of Surgical Oncology, UCSD Moores Cancer Center, University of California San Diego, La Jolla, CA
| | - Alyssa Verano
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115
| | - Haowen Zhou
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Chun-Teng Huang
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - David A. Scott
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Anne G. Bang
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Herve Tiriac
- Department of Surgery, Division of Surgical Oncology, UCSD Moores Cancer Center, University of California San Diego, La Jolla, CA
| | - Andrew M. Lowy
- Department of Surgery, Division of Surgical Oncology, UCSD Moores Cancer Center, University of California San Diego, La Jolla, CA
| | - Eric S. Wang
- Cancer Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Fleur M. Ferguson
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA
| |
Collapse
|
89
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
90
|
Balasooriya ER, Wu Q, Ellis H, Zhen Y, Norden BL, Corcoran RB, Mohan A, Martin E, Franovic A, Tyhonas J, Lardy M, Grandinetti KB, Pelham R, Soroceanu L, Silveira VS, Bardeesy N. The Irreversible FGFR Inhibitor KIN-3248 Overcomes FGFR2 Kinase Domain Mutations. Clin Cancer Res 2024; 30:2181-2192. [PMID: 38437671 PMCID: PMC11229173 DOI: 10.1158/1078-0432.ccr-23-3588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/24/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
PURPOSE FGFR2 and FGFR3 show oncogenic activation in many cancer types, often through chromosomal fusion or extracellular domain mutation. FGFR2 and FGFR3 alterations are most prevalent in intrahepatic cholangiocarcinoma (ICC) and bladder cancers, respectively, and multiple selective reversible and covalent pan-FGFR tyrosine kinase inhibitors (TKI) have been approved in these contexts. However, resistance, often due to acquired secondary mutations in the FGFR2/3 kinase domain, limits efficacy. Resistance is typically polyclonal, involving a spectrum of different mutations that most frequently affect the molecular brake and gatekeeper residues (N550 and V565 in FGFR2). EXPERIMENTAL DESIGN Here, we characterize the activity of the next-generation covalent FGFR inhibitor, KIN-3248, in preclinical models of FGFR2 fusion+ ICC harboring a series of secondary kinase domain mutations, in vitro and in vivo. We also test select FGFR3 alleles in bladder cancer models. RESULTS KIN-3248 exhibits potent selectivity for FGFR1-3 and retains activity against various FGFR2 kinase domain mutations, in addition to being effective against FGFR3 V555M and N540K mutations. Notably, KIN-3248 activity extends to the FGFR2 V565F gatekeeper mutation, which causes profound resistance to currently approved FGFR inhibitors. Combination treatment with EGFR or MEK inhibitors potentiates KIN-3248 efficacy in vivo, including in models harboring FGFR2 kinase domain mutations. CONCLUSIONS Thus, KIN-3248 is a novel FGFR1-4 inhibitor whose distinct activity profile against FGFR kinase domain mutations highlights its potential for the treatment of ICC and other FGFR-driven cancers.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cholangiocarcinoma/drug therapy
- Cholangiocarcinoma/genetics
- Cholangiocarcinoma/pathology
- Drug Resistance, Neoplasm/genetics
- Mutation
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors
- Urinary Bladder Neoplasms/drug therapy
- Urinary Bladder Neoplasms/genetics
- Urinary Bladder Neoplasms/pathology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Eranga R. Balasooriya
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Cancer Program, Broad Institute, Cambridge, MA, USA
| | - Qibiao Wu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Cancer Program, Broad Institute, Cambridge, MA, USA
| | - Haley Ellis
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Cancer Program, Broad Institute, Cambridge, MA, USA
| | - Yuanli Zhen
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Cancer Program, Broad Institute, Cambridge, MA, USA
| | - Bryanna L. Norden
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Ryan B. Corcoran
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | - Vanessa S. Silveira
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Cancer Program, Broad Institute, Cambridge, MA, USA
| | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Cancer Program, Broad Institute, Cambridge, MA, USA
| |
Collapse
|
91
|
Long SA, Amparo AM, Goodhart G, Ahmad SA, Waters AM. Evaluation of KRAS inhibitor-directed therapies for pancreatic cancer treatment. Front Oncol 2024; 14:1402128. [PMID: 38800401 PMCID: PMC11116577 DOI: 10.3389/fonc.2024.1402128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Despite significant advancements in the treatment of other cancers, pancreatic ductal adenocarcinoma (PDAC) remains one of the world's deadliest cancers. More than 90% of PDAC patients harbor a Kirsten rat sarcoma (KRAS) gene mutation. Although the clinical potential of anti-KRAS therapies has long been realized, all initial efforts to target KRAS were unsuccessful. However, with the recent development of a new generation of KRAS-targeting drugs, multiple KRAS-targeted treatment options for patients with PDAC have entered clinical trials. In this review, we provide an overview of current standard of care treatment, describe RAS signaling and the relevance of KRAS mutations, and discuss RAS isoform- and mutation-specific differences. We also evaluate the clinical efficacy and safety of mutation-selective and multi-selective inhibitors, in the context of PDAC. We then provide a comparison of clinically relevant KRAS inhibitors to second-line PDAC treatment options. Finally, we discuss putative resistance mechanisms that may limit the clinical effectiveness of KRAS-targeted therapies and provide a brief overview of promising therapeutic approaches in development that are focused on mitigating these resistance mechanisms.
Collapse
Affiliation(s)
- Szu-Aun Long
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Amber M. Amparo
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Grace Goodhart
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Syed A. Ahmad
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Andrew M. Waters
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
92
|
Yin H, Tang Q, Xia H, Bi F. Targeting RAF dimers in RAS mutant tumors: From biology to clinic. Acta Pharm Sin B 2024; 14:1895-1923. [PMID: 38799634 PMCID: PMC11120325 DOI: 10.1016/j.apsb.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/02/2024] [Accepted: 02/20/2024] [Indexed: 05/29/2024] Open
Abstract
RAS mutations occur in approximately 30% of tumors worldwide and have a poor prognosis due to limited therapies. Covalent targeting of KRAS G12C has achieved significant success in recent years, but there is still a lack of efficient therapeutic approaches for tumors with non-G12C KRAS mutations. A highly promising approach is to target the MAPK pathway downstream of RAS, with a particular focus on RAF kinases. First-generation RAF inhibitors have been authorized to treat BRAF mutant tumors for over a decade. However, their use in RAS-mutated tumors is not recommended due to the paradoxical ERK activation mainly caused by RAF dimerization. To address the issue of RAF dimerization, type II RAF inhibitors have emerged as leading candidates. Recent clinical studies have shown the initial effectiveness of these agents against RAS mutant tumors. Promisingly, type II RAF inhibitors in combination with MEK or ERK inhibitors have demonstrated impressive efficacy in RAS mutant tumors. This review aims to clarify the importance of RAF dimerization in cellular signaling and resistance to treatment in tumors with RAS mutations, as well as recent progress in therapeutic approaches to address the problem of RAF dimerization in RAS mutant tumors.
Collapse
Affiliation(s)
- Huanhuan Yin
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiulin Tang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongwei Xia
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Feng Bi
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
93
|
Ye W, Lu X, Qiao Y, Ou WB. Activity and resistance to KRAS G12C inhibitors in non-small cell lung cancer and colorectal cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189108. [PMID: 38723697 DOI: 10.1016/j.bbcan.2024.189108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Non-small cell lung cancer (NSCLC) and colorectal cancer (CRC) are associated with a high mortality rate. Mutations in the V-Ki-ras2 Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) proto-oncogene GTPase (KRAS) are frequently observed in these cancers. Owing to its structural attributes, KRAS has traditionally been regarded as an "undruggable" target. However, recent advances have identified a novel mutational regulatory site, KRASG12C switch II, leading to the development of two KRASG12C inhibitors (adagrasib and sotorasib) that are FDA-approved. This groundbreaking discovery has revolutionized our understanding of the KRAS locus and offers treatment options for patients with NSCLC harboring KRAS mutations. Due to the presence of alternative resistance pathways, the use of KRASG12C inhibitors as a standalone treatment for patients with CRC is not considered optimal. However, the combination of KRASG12C inhibitors with other targeted drugs has demonstrated greater efficacy in CRC patients harboring KRAS mutations. Furthermore, NSCLC and CRC patients harboring KRASG12C mutations inevitably develop primary or acquired resistance to drug therapy. By gaining a comprehensive understanding of resistance mechanisms, such as secondary mutations of KRAS, mutations of downstream intermediates, co-mutations with KRAS, receptor tyrosine kinase (RTK) activation, Epithelial-Mesenchymal Transitions (EMTs), and tumor remodeling, the implementation of KRASG12C inhibitor-based combination therapy holds promise as a viable solution. Furthermore, the emergence of protein hydrolysis-targeted chimeras and molecular glue technologies has been facilitated by collaborative efforts in structural science and pharmacology. This paper aims to provide a comprehensive review of the recent advancements in various aspects related to the KRAS gene, including the KRAS signaling pathway, tumor immunity, and immune microenvironment crosstalk, as well as the latest developments in KRASG12C inhibitors and mechanisms of resistance. In addition, this study discusses the strategies used to address drug resistance in light of the crosstalk between these factors. In the coming years, there will likely be advancements in the development of more efficacious pharmaceuticals and targeted therapeutic approaches for treating NSCLC and CRC. Consequently, individuals with KRAS-mutant NSCLC may experience a prolonged response duration and improved treatment outcomes.
Collapse
Affiliation(s)
- Wei Ye
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Xin Lu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Yue Qiao
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Wen-Bin Ou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.
| |
Collapse
|
94
|
Wasko UN, Jiang J, Dalton TC, Curiel-Garcia A, Edwards AC, Wang Y, Lee B, Orlen M, Tian S, Stalnecker CA, Drizyte-Miller K, Menard M, Dilly J, Sastra SA, Palermo CF, Hasselluhn MC, Decker-Farrell AR, Chang S, Jiang L, Wei X, Yang YC, Helland C, Courtney H, Gindin Y, Muonio K, Zhao R, Kemp SB, Clendenin C, Sor R, Vostrejs WP, Hibshman PS, Amparo AM, Hennessey C, Rees MG, Ronan MM, Roth JA, Brodbeck J, Tomassoni L, Bakir B, Socci ND, Herring LE, Barker NK, Wang J, Cleary JM, Wolpin BM, Chabot JA, Kluger MD, Manji GA, Tsai KY, Sekulic M, Lagana SM, Califano A, Quintana E, Wang Z, Smith JAM, Holderfield M, Wildes D, Lowe SW, Badgley MA, Aguirre AJ, Vonderheide RH, Stanger BZ, Baslan T, Der CJ, Singh M, Olive KP. Tumour-selective activity of RAS-GTP inhibition in pancreatic cancer. Nature 2024; 629:927-936. [PMID: 38588697 PMCID: PMC11111406 DOI: 10.1038/s41586-024-07379-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Broad-spectrum RAS inhibition has the potential to benefit roughly a quarter of human patients with cancer whose tumours are driven by RAS mutations1,2. RMC-7977 is a highly selective inhibitor of the active GTP-bound forms of KRAS, HRAS and NRAS, with affinity for both mutant and wild-type variants3. More than 90% of cases of human pancreatic ductal adenocarcinoma (PDAC) are driven by activating mutations in KRAS4. Here we assessed the therapeutic potential of RMC-7977 in a comprehensive range of PDAC models. We observed broad and pronounced anti-tumour activity across models following direct RAS inhibition at exposures that were well-tolerated in vivo. Pharmacological analyses revealed divergent responses to RMC-7977 in tumour versus normal tissues. Treated tumours exhibited waves of apoptosis along with sustained proliferative arrest, whereas normal tissues underwent only transient decreases in proliferation, with no evidence of apoptosis. In the autochthonous KPC mouse model, RMC-7977 treatment resulted in a profound extension of survival followed by on-treatment relapse. Analysis of relapsed tumours identified Myc copy number gain as a prevalent candidate resistance mechanism, which could be overcome by combinatorial TEAD inhibition in vitro. Together, these data establish a strong preclinical rationale for the use of broad-spectrum RAS-GTP inhibition in the setting of PDAC and identify a promising candidate combination therapeutic regimen to overcome monotherapy resistance.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Mice
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Disease Models, Animal
- DNA Copy Number Variations
- Drug Resistance, Neoplasm/drug effects
- Genes, myc
- Guanosine Triphosphate/metabolism
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/genetics
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Proto-Oncogene Proteins p21(ras)/genetics
- Proto-Oncogene Proteins p21(ras)/metabolism
- Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors
- Treatment Outcome
- Xenograft Model Antitumor Assays
- Mutation
Collapse
Affiliation(s)
- Urszula N Wasko
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Tanner C Dalton
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Alvaro Curiel-Garcia
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - A Cole Edwards
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Bianca Lee
- Revolution Medicines, Redwood City, CA, USA
| | - Margo Orlen
- University of Pennsylvania Perelman School of Medicine, Department of Medicine, Philadelphia, PA, USA
| | - Sha Tian
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Clint A Stalnecker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kristina Drizyte-Miller
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Julien Dilly
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Stephen A Sastra
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Carmine F Palermo
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Marie C Hasselluhn
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Amanda R Decker-Farrell
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | | | | | - Xing Wei
- Revolution Medicines, Redwood City, CA, USA
| | - Yu C Yang
- Revolution Medicines, Redwood City, CA, USA
| | | | | | | | | | | | - Samantha B Kemp
- University of Pennsylvania Perelman School of Medicine, Department of Medicine, Philadelphia, PA, USA
| | - Cynthia Clendenin
- University of Pennsylvania Perelman School of Medicine, Abramson Cancer Center, Philadelphia, PA, USA
| | - Rina Sor
- University of Pennsylvania Perelman School of Medicine, Abramson Cancer Center, Philadelphia, PA, USA
| | - William P Vostrejs
- University of Pennsylvania Perelman School of Medicine, Department of Medicine, Philadelphia, PA, USA
| | - Priya S Hibshman
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amber M Amparo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Connor Hennessey
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Matthew G Rees
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | | | | | - Lorenzo Tomassoni
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Basil Bakir
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Nicholas D Socci
- Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laura E Herring
- UNC Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Natalie K Barker
- UNC Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Junning Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - James M Cleary
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - John A Chabot
- Department of Surgery, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael D Kluger
- Department of Surgery, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Gulam A Manji
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Kenneth Y Tsai
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Miroslav Sekulic
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Stephen M Lagana
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Andrea Califano
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- J. P. Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
- Chan Zuckerberg Biohub New York, New York, NY, USA
| | | | | | | | | | | | - Scott W Lowe
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael A Badgley
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Andrew J Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Robert H Vonderheide
- University of Pennsylvania Perelman School of Medicine, Department of Medicine, Philadelphia, PA, USA
- University of Pennsylvania Perelman School of Medicine, Abramson Cancer Center, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Ben Z Stanger
- University of Pennsylvania Perelman School of Medicine, Department of Medicine, Philadelphia, PA, USA
- University of Pennsylvania Perelman School of Medicine, Abramson Cancer Center, Philadelphia, PA, USA
| | - Timour Baslan
- Department of Biomedical Sciences, School of Veterinary Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Channing J Der
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Kenneth P Olive
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
95
|
Perurena N, Situ L, Cichowski K. Combinatorial strategies to target RAS-driven cancers. Nat Rev Cancer 2024; 24:316-337. [PMID: 38627557 DOI: 10.1038/s41568-024-00679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 05/01/2024]
Abstract
Although RAS was formerly considered undruggable, various agents that inhibit RAS or specific RAS oncoproteins have now been developed. Indeed, the importance of directly targeting RAS has recently been illustrated by the clinical success of mutant-selective KRAS inhibitors. Nevertheless, responses to these agents are typically incomplete and restricted to a subset of patients, highlighting the need to develop more effective treatments, which will likely require a combinatorial approach. Vertical strategies that target multiple nodes within the RAS pathway to achieve deeper suppression are being investigated and have precedence in other contexts. However, alternative strategies that co-target RAS and other therapeutic vulnerabilities have been identified, which may mitigate the requirement for profound pathway suppression. Regardless, the efficacy of any given approach will likely be dictated by genetic, epigenetic and tumour-specific variables. Here we discuss various combinatorial strategies to treat KRAS-driven cancers, highlighting mechanistic concepts that may extend to tumours harbouring other RAS mutations. Although many promising combinations have been identified, clinical responses will ultimately depend on whether a therapeutic window can be achieved and our ability to prospectively select responsive patients. Therefore, we must continue to develop and understand biologically diverse strategies to maximize our likelihood of success.
Collapse
Affiliation(s)
- Naiara Perurena
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Lisa Situ
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Karen Cichowski
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Ludwig Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
96
|
Rubinson DA, Tanaka N, Fece de la Cruz F, Kapner KS, Rosenthal MH, Norden BL, Barnes H, Ehnstrom S, Morales-Giron AA, Brais LK, Lemke CT, Aguirre AJ, Corcoran RB. Sotorasib Is a Pan-RASG12C Inhibitor Capable of Driving Clinical Response in NRASG12C Cancers. Cancer Discov 2024; 14:727-736. [PMID: 38236605 PMCID: PMC11061598 DOI: 10.1158/2159-8290.cd-23-1138] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/09/2023] [Accepted: 01/16/2024] [Indexed: 01/19/2024]
Abstract
KRASG12C inhibitors, like sotorasib and adagrasib, potently and selectively inhibit KRASG12C through a covalent interaction with the mutant cysteine, driving clinical efficacy in KRASG12C tumors. Because amino acid sequences of the three main RAS isoforms-KRAS, NRAS, and HRAS-are highly similar, we hypothesized that some KRASG12C inhibitors might also target NRASG12C and/or HRASG12C, which are less common but critical oncogenic driver mutations in some tumors. Although some inhibitors, like adagrasib, were highly selective for KRASG12C, others also potently inhibited NRASG12C and/or HRASG12C. Notably, sotorasib was five-fold more potent against NRASG12C compared with KRASG12C or HRASG12C. Structural and reciprocal mutagenesis studies suggested that differences in isoform-specific binding are mediated by a single amino acid: Histidine-95 in KRAS (Leucine-95 in NRAS). A patient with NRASG12C colorectal cancer treated with sotorasib and the anti-EGFR antibody panitumumab achieved a marked tumor response, demonstrating that sotorasib can be clinically effective in NRASG12C-mutated tumors. SIGNIFICANCE These studies demonstrate that certain KRASG12C inhibitors effectively target all RASG12C mutations and that sotorasib specifically is a potent NRASG12C inhibitor capable of driving clinical responses. These findings have important implications for the treatment of patients with NRASG12C or HRASG12C cancers and could guide design of NRAS or HRAS inhibitors. See related commentary by Seale and Misale, p. 698. This article is featured in Selected Articles from This Issue, p. 695.
Collapse
Affiliation(s)
- Douglas A. Rubinson
- Dana Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Noritaka Tanaka
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Ferran Fece de la Cruz
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Kevin S. Kapner
- Dana Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Michael H. Rosenthal
- Dana Farber Cancer Institute and Brigham and Women's Hospital, Department of Radiology, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Bryanna L. Norden
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Haley Barnes
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Sara Ehnstrom
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Alvin A. Morales-Giron
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Lauren K. Brais
- Dana Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | | | - Andrew J. Aguirre
- Dana Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Ryan B. Corcoran
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
97
|
Park SY, Gowda Saralamma VV, Nale SD, Kim CJ, Jo YS, Baig MH, Cho J. Design, synthesis, and evaluation of purine and pyrimidine-based KRAS G12D inhibitors: Towards potential anticancer therapy. Heliyon 2024; 10:e28495. [PMID: 38617914 PMCID: PMC11015380 DOI: 10.1016/j.heliyon.2024.e28495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/16/2024] Open
Abstract
Oncogenic RAS mutations, commonly observed in human tumors, affect approximately 30% of cancer cases and pose a significant challenge for effective cancer treatment. Current strategies to inhibit the KRAS G12D mutation have shown limited success, emphasizing the urgent need for new therapeutic approaches. In this study, we designed and synthesized several purine and pyrimidine analogs as inhibitors for the KRAS G12D mutation. Our synthesized compounds demonstrated potent anticancer activity against cell lines with the KRAS G12D mutation, effectively impeding their growth. They also exhibited low toxicity in normal cells, indicating their selective action against cancer cells harboring the KRAS G12D mutation. Notably, the lead compound, PU1-1 induced the programmed cell death of KRAS G12D-mutated cells and reduced the levels of active KRAS and its downstream signaling proteins. Moreover, PU1-1 significantly shrunk the tumor size in a pancreatic xenograft model induced by the KRAS G12D mutation, further validating its potential as a therapeutic agent. These findings highlight the potential of purine-based KRAS G12D inhibitors as candidates for targeted cancer therapy. However, further exploration and optimization of these compounds are essential to meet the unmet clinical needs of patients with KRAS-mutant cancers.
Collapse
Affiliation(s)
- So-Youn Park
- College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, Republic of Korea
| | - Venu Venkatarame Gowda Saralamma
- Department of Family Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211 Eonju-Ro, Gangnam-Gu, Seoul 06273, Republic of Korea
| | - Sagar Dattatraya Nale
- BNJBiopharma, 2nd Floor Memorial Hall, 85, Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Chang Joong Kim
- Department of Biotechnology, Graduate School, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Yun Seong Jo
- Department of Family Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211 Eonju-Ro, Gangnam-Gu, Seoul 06273, Republic of Korea
| | - Mohammad Hassan Baig
- Department of Family Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211 Eonju-Ro, Gangnam-Gu, Seoul 06273, Republic of Korea
| | - JungHwan Cho
- College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, Republic of Korea
| |
Collapse
|
98
|
Xiang Y, Liu X, Wang Y, Zheng D, Meng Q, Jiang L, Yang S, Zhang S, Zhang X, Liu Y, Wang B. Mechanisms of resistance to targeted therapy and immunotherapy in non-small cell lung cancer: promising strategies to overcoming challenges. Front Immunol 2024; 15:1366260. [PMID: 38655260 PMCID: PMC11035781 DOI: 10.3389/fimmu.2024.1366260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
Resistance to targeted therapy and immunotherapy in non-small cell lung cancer (NSCLC) is a significant challenge in the treatment of this disease. The mechanisms of resistance are multifactorial and include molecular target alterations and activation of alternative pathways, tumor heterogeneity and tumor microenvironment change, immune evasion, and immunosuppression. Promising strategies for overcoming resistance include the development of combination therapies, understanding the resistance mechanisms to better use novel drug targets, the identification of biomarkers, the modulation of the tumor microenvironment and so on. Ongoing research into the mechanisms of resistance and the development of new therapeutic approaches hold great promise for improving outcomes for patients with NSCLC. Here, we summarize diverse mechanisms driving resistance to targeted therapy and immunotherapy in NSCLC and the latest potential and promising strategies to overcome the resistance to help patients who suffer from NSCLC.
Collapse
Affiliation(s)
- Yuchu Xiang
- West China Hospital of Sichuan University, Sichuan University, Chengdu, China
| | - Xudong Liu
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yifan Wang
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Dawei Zheng
- The College of Life Science, Sichuan University, Chengdu, China
| | - Qiuxing Meng
- Department of Laboratory Medicine, Liuzhou People’s Hospital, Liuzhou, China
- Guangxi Health Commission Key Laboratory of Clinical Biotechnology (Liuzhou People’s Hospital), Liuzhou, China
| | - Lingling Jiang
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Sha Yang
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China
| | - Sijia Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zhang
- Zhongshan Hospital of Fudan University, Xiamen, Fujian, China
| | - Yan Liu
- Department of Organ Transplantation, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Bo Wang
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| |
Collapse
|
99
|
Karachaliou A, Kotteas E, Fiste O, Syrigos K. Emerging Therapies in Kirsten Rat Sarcoma Virus (+) Non-Small-Cell Lung Cancer. Cancers (Basel) 2024; 16:1447. [PMID: 38672529 PMCID: PMC11048139 DOI: 10.3390/cancers16081447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/31/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Kirsten rat sarcoma virus (KRAS) is the most frequently found oncogene in human cancers, including non-small-cell lung cancer (NSCLC). For many years, KRAS was considered "undruggable" due to its structure and difficult targeting. However, the discovery of the switch II region in the KRAS-G12C-mutated protein has changed the therapeutic landscape with the design and development of novel direct KRAS-G12C inhibitors. Sotorasib and adagrasib are FDA-approved targeted agents for pre-treated patients with KRAS-G12C-mutated NSCLC. Despite promising results, the efficacy of these novel inhibitors is limited by mechanisms of resistance. Ongoing studies are evaluating combination strategies for overcoming resistance. In this review, we summarize the biology of the KRAS protein and the characteristics of KRAS mutations. We then present current and emerging therapeutic approaches for targeting KRAS mutation subtypes intending to provide individualized treatment for lung cancer harboring this challenging driver mutation.
Collapse
Affiliation(s)
- Anastasia Karachaliou
- Oncology Unit, Third Department of Internal Medicine and Laboratory, Medical School, National and Kapodistrian University of Athens, “Sotiria” General Hospital, 11527 Athens, Greece; (E.K.); (O.F.); (K.S.)
| | | | | | | |
Collapse
|
100
|
Ash LJ, Busia-Bourdain O, Okpattah D, Kamel A, Liberchuk A, Wolfe AL. KRAS: Biology, Inhibition, and Mechanisms of Inhibitor Resistance. Curr Oncol 2024; 31:2024-2046. [PMID: 38668053 PMCID: PMC11049385 DOI: 10.3390/curroncol31040150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
KRAS is a small GTPase that is among the most commonly mutated oncogenes in cancer. Here, we discuss KRAS biology, therapeutic avenues to target it, and mechanisms of resistance that tumors employ in response to KRAS inhibition. Several strategies are under investigation for inhibiting oncogenic KRAS, including small molecule compounds targeting specific KRAS mutations, pan-KRAS inhibitors, PROTACs, siRNAs, PNAs, and mutant KRAS-specific immunostimulatory strategies. A central challenge to therapeutic effectiveness is the frequent development of resistance to these treatments. Direct resistance mechanisms can involve KRAS mutations that reduce drug efficacy or copy number alterations that increase the expression of mutant KRAS. Indirect resistance mechanisms arise from mutations that can rescue mutant KRAS-dependent cells either by reactivating the same signaling or via alternative pathways. Further, non-mutational forms of resistance can take the form of epigenetic marks, transcriptional reprogramming, or alterations within the tumor microenvironment. As the possible strategies to inhibit KRAS expand, understanding the nuances of resistance mechanisms is paramount to the development of both enhanced therapeutics and innovative drug combinations.
Collapse
Affiliation(s)
- Leonard J. Ash
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Molecular, Cellular, and Developmental Biology Subprogram of the Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY 10031, USA
| | - Ottavia Busia-Bourdain
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
| | - Daniel Okpattah
- Biochemistry Ph.D. Program, Graduate Center, City University of New York, New York, NY 10031, USA
| | - Avrosina Kamel
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Macaulay Honors College, Hunter College, City University of New York, New York, NY 10065, USA
| | - Ariel Liberchuk
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Macaulay Honors College, Hunter College, City University of New York, New York, NY 10065, USA
| | - Andrew L. Wolfe
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Molecular, Cellular, and Developmental Biology Subprogram of the Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY 10031, USA
- Biochemistry Ph.D. Program, Graduate Center, City University of New York, New York, NY 10031, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|