51
|
Kane JP, Malloy MJ. Lipoproteins and amyloid vascular disease. Curr Opin Lipidol 2016; 27:640-641. [PMID: 27805977 DOI: 10.1097/mol.0000000000000364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- John P Kane
- Cardiovascular Research Institute; University of California Medical Center, San Francisco, California, USA
| | | |
Collapse
|
52
|
Xi D, Zhao J, Lai W, Guo Z. Systematic analysis of the molecular mechanism underlying atherosclerosis using a text mining approach. Hum Genomics 2016; 10:14. [PMID: 27251057 PMCID: PMC4890502 DOI: 10.1186/s40246-016-0075-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/25/2016] [Indexed: 12/24/2022] Open
Abstract
Background Atherosclerosis is one of the common health threats all over the world. It is a complex heritable disease that affects arterial blood vessels. Chronic inflammatory response plays an important role in atherogenesis. There has been little success in fully identifying functionally important genes in the pathogenesis of atherosclerosis. Results In the present study, we performed a systematic analysis of atherosclerosis-related genes using text mining. We identified a total of 1312 genes. Gene ontology (GO) analysis revealed that a total of 35 terms exhibited significance (p < 0.05) as overrepresented terms, indicating that atherosclerosis invokes many genes with a wide range of different functions. Pathway analysis demonstrated that the most highly enriched pathway is the Toll-like receptor signaling pathway. Finally, through gene network analysis, we prioritized 48 genes using the hub gene method. Conclusions Our study provides a valuable resource for the in-depth understanding of the mechanism underlying atherosclerosis. Electronic supplementary material The online version of this article (doi:10.1186/s40246-016-0075-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dan Xi
- Division of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Jinzhen Zhao
- Division of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Wenyan Lai
- Laboratory of Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.
| | - Zhigang Guo
- Division of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
53
|
Van der Veken B, De Meyer GR, Martinet W. Intraplaque neovascularization as a novel therapeutic target in advanced atherosclerosis. Expert Opin Ther Targets 2016; 20:1247-57. [PMID: 27148888 DOI: 10.1080/14728222.2016.1186650] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Atherosclerosis is a lipid-driven inflammatory process with a tremendously high mortality due to acute cardiac events. There is an emerging need for new therapies to stabilize atherosclerotic lesions. Growing evidence suggests that intraplaque (IP) neovascularisation and IP hemorrhages are important contributors to plaque instability. AREAS COVERED Neovascularization is a complex process that involves different growth factors and inflammatory mediators of which their individual significance in atherosclerosis remains poorly understood. This review discusses different aspects of IP neovascularization in atherosclerosis including the potential treatment opportunities to stabilize advanced plaques. Furthermore, we highlight the development of accurate and feasible in vivo imaging modalities for IP neovascularization to prevent acute events. EXPERT OPINION Although lack of a valuable animal model of IP neovascularization impeded the investigation of a causal and straightforward link between neovascularization and atherosclerosis, recent evidence shows that vein grafts in ApoE*3 Leiden mice as well as plaques in ApoE(-/-) Fbn1(C1039G+/-) mice are useful models for intraplaque neovessel research. Even though interference with vascular endothelial growth factor (VEGF) signalling has been widely investigated, new therapeutic opportunities have emerged. Cell metabolism, in particular glycolysis and fatty acid oxidation, appears to perform a crucial role in the development of IP neovessels and thereby serves as a promising target.
Collapse
Affiliation(s)
- Bieke Van der Veken
- a Laboratory of Physiopharmacology , University of Antwerp , Antwerp , Belgium
| | - Guido Ry De Meyer
- a Laboratory of Physiopharmacology , University of Antwerp , Antwerp , Belgium
| | - Wim Martinet
- a Laboratory of Physiopharmacology , University of Antwerp , Antwerp , Belgium
| |
Collapse
|
54
|
Kral JB, Schrottmaier WC, Salzmann M, Assinger A. Platelet Interaction with Innate Immune Cells. Transfus Med Hemother 2016; 43:78-88. [PMID: 27226790 DOI: 10.1159/000444807] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/07/2016] [Indexed: 12/11/2022] Open
Abstract
Beyond their traditional role in haemostasis and thrombosis, platelets are increasingly recognised as immune modulatory cells. Activated platelets and platelet-derived microparticles can bind to leukocytes, which stimulates mutual activation and results in rapid, local release of platelet-derived cytokines. Thereby platelets modulate leukocyte effector functions and contribute to inflammatory and immune responses to injury or infection. Platelets enhance leukocyte extravasation, differentiation and cytokine release. Platelet-neutrophil interactions boost oxidative burst, neutrophil extracellular trap formation and phagocytosis and play an important role in host defence. Platelet interactions with monocytes propagate their differentiation into macrophages, modulate cytokine release and attenuate macrophage functions. Depending on the underlying pathology, platelets can enhance or diminish leukocyte cytokine production, indicating that platelet-leukocyte interactions represent a fine balanced system to restrict excessive inflammation during infection. In atherosclerosis, platelet interaction with neutrophils, monocytes and dendritic cells accelerates key steps of atherogenesis by promoting leukocyte extravasation and foam cell formation. Platelet-leukocyte interactions at sites of atherosclerotic lesions destabilise atherosclerotic plaques and promote plaque rupture. Leukocytes in turn also modulate platelet function and production, which either results in enhanced platelet destruction or increased platelet production. This review aims to summarise the key effects of platelet-leukocyte interactions in inflammation, infection and atherosclerosis.
Collapse
Affiliation(s)
- Julia Barbara Kral
- Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Manuel Salzmann
- Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
55
|
Chatterjee M, von Ungern-Sternberg SNI, Seizer P, Schlegel F, Büttcher M, Sindhu NA, Müller S, Mack A, Gawaz M. Platelet-derived CXCL12 regulates monocyte function, survival, differentiation into macrophages and foam cells through differential involvement of CXCR4-CXCR7. Cell Death Dis 2015; 6:e1989. [PMID: 26583329 PMCID: PMC4670914 DOI: 10.1038/cddis.2015.233] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/26/2015] [Accepted: 07/15/2015] [Indexed: 01/18/2023]
Abstract
Platelets store and release CXCL12 (SDF-1), which governs differentiation of hematopoietic progenitors into either endothelial or macrophage-foam cells. CXCL12 ligates CXCR4 and CXCR7 and regulates monocyte/macrophage functions. This study deciphers the relative contribution of CXCR4-CXCR7 in mediating the effects of platelet-derived CXCL12 on monocyte function, survival, and differentiation. CXCL12 and macrophage migration inhibitory factor (MIF) that ligate CXCR4-CXCR7 induced a dynamic bidirectional trafficking of the receptors, causing CXCR4 internalization and CXCR7 externalization during chemotaxis, thereby influencing relative receptor availability, unlike MCP-1. In vivo we found enhanced accumulation of platelets and platelet-macrophage co-aggregates in peritoneal fluid following induction of peritonitis in mice. The relative surface expression of CXCL12, CXCR4, and CXCR7 among infiltrated monocytes was also enhanced as compared with peripheral blood. Platelet-derived CXCL12 from collagen-adherent platelets and recombinant CXCL12 induced monocyte chemotaxis specifically through CXCR4 engagement. Adhesion of monocytes to immobilized CXCL12 and CXCL12-enriched activated platelet surface under static and dynamic arterial flow conditions were mediated primarily through CXCR7 and were counter-regulated by neutralizing platelet-derived CXCL12. Monocytes and culture-derived-M1-M2 macrophages phagocytosed platelets, with the phagocytic potential of culture-derived-M1 macrophages higher than M2 involving CXCR4-CXCR7 participation. CXCR7 was the primary receptor in promoting monocyte survival as exerted by platelet-derived CXCL12 against BH3-mimetic induced apoptosis (phosphatidylserine exposure, caspase-3 activation, loss of mitochondrial transmembrane potential). In co-culture experiments with platelets, monocytes predominantly differentiated into CD163(+) macrophages, which was attenuated upon CXCL12 neutralization and CXCR4/CXCR7 blocking antibodies. Moreover, OxLDL uptake by platelets induced platelet apoptosis, like other platelet agonists TRAP and collagen-related peptide (CRP). CXCL12 facilitated phagocytosis of apoptotic platelets by monocytes and M1-M2 macrophages, also promoted their differentiation into foam cells via CXCR4 and CXCR7. Thus, platelet-derived CXCL12 could regulate monocyte-macrophage functions through differential engagement of CXCR4 and CXCR7, indicating an important role in inflammation at site of platelet accumulation.
Collapse
Affiliation(s)
- M Chatterjee
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Universität Tübingen, 72076 Tübingen, Germany
| | - S N I von Ungern-Sternberg
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Universität Tübingen, 72076 Tübingen, Germany
| | - P Seizer
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Universität Tübingen, 72076 Tübingen, Germany
| | - F Schlegel
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Universität Tübingen, 72076 Tübingen, Germany
| | - M Büttcher
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Universität Tübingen, 72076 Tübingen, Germany
| | - N A Sindhu
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Universität Tübingen, 72076 Tübingen, Germany
| | - S Müller
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Universität Tübingen, 72076 Tübingen, Germany
| | - A Mack
- Institute of Anatomy, Universität Tübingen, Neuroanatomie, 72074 Tübingen, Germany
| | - M Gawaz
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Universität Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
56
|
Martorana A, Di Lorenzo F, Belli L, Sancesario G, Toniolo S, Sallustio F, Sancesario GM, Koch G. Cerebrospinal Fluid Aβ42 Levels: When Physiological Become Pathological State. CNS Neurosci Ther 2015; 21:921-5. [PMID: 26555572 DOI: 10.1111/cns.12476] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 12/31/2022] Open
Abstract
Impaired amyloid beta (Aβ) metabolism is currently considered central to understand the pathophysiology of Alzheimer's disease (AD). Measurements of cerebrospinal fluid Aβ levels remain the most useful marker for diagnostic purposes and to individuate people at risk for AD. Despite recent advances criticized the direct role in neurodegeneration of cortical neurons, Aβ is considered responsible for synaptopathy and impairment of neurotransmission and therefore remains the major trigger of AD and future pharmacological treatment remain Aβ oriented. However, experimental and clinical findings showed that Aβ peptides could have a wider range of action responsible for cell dysfunction and for appearance of clinico-pathological entities different from AD. Such findings may induce misunderstanding of the real role played by Aβ in AD and therefore strengthen criticism on its centrality and need for CSF measurements. Aim of this review is to discuss the role of CSF Aβ levels in light of experimental, clinical pathologic, and electrophysiological results in AD and other pathological entities to put in a correct frame the value of Aβ changes.
Collapse
Affiliation(s)
- Alessandro Martorana
- Clinica Neurologica, Sytem Medicine Department, University of Rome "Tor Vergata", Rome, Italy
| | - Francesco Di Lorenzo
- Clinica Neurologica, Sytem Medicine Department, University of Rome "Tor Vergata", Rome, Italy.,Non-Invasive Brain Stimulation Unit, Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Lorena Belli
- Clinica Neurologica, Sytem Medicine Department, University of Rome "Tor Vergata", Rome, Italy
| | - Giuseppe Sancesario
- Clinica Neurologica, Sytem Medicine Department, University of Rome "Tor Vergata", Rome, Italy
| | - Sofia Toniolo
- Clinica Neurologica, Sytem Medicine Department, University of Rome "Tor Vergata", Rome, Italy
| | - Fabrizio Sallustio
- Clinica Neurologica, Sytem Medicine Department, University of Rome "Tor Vergata", Rome, Italy
| | | | - Giacomo Koch
- Non-Invasive Brain Stimulation Unit, Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| |
Collapse
|
57
|
Gutowska I, Baranowska-Bosiacka I, Goschorska M, Kolasa A, Łukomska A, Jakubczyk K, Dec K, Chlubek D. Fluoride as a factor initiating and potentiating inflammation in THP1 differentiated monocytes/macrophages. Toxicol In Vitro 2015; 29:1661-8. [PMID: 26119525 DOI: 10.1016/j.tiv.2015.06.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 02/08/2023]
Abstract
It is well known that exposure to fluorides lead to an increased ROS production and enhances the inflammatory reactions. Therefore we decided to examine whether cyclooxygenases (particular COX-2) activity and expression may be changed by fluoride in THP1 macrophages and in this way may change the prostanoids biosynthesis. In the present work we demonstrate that fluoride increased concentration of PGE2 and TXA2 in THP1 macrophages. Following exposure to 1-10 μM NaF, COX-2 protein and COX-2 transcript increased markedly. COX-2 protein up-regulation probably is mediated by ROS, produced during fluoride-induced inflammatory reactions. Additional fluoride activates the transcription factor, nuclear factor (NF)-kappaB, which is involved in the up-regulation of COX-2 gene expression. This study indicated that even in small concentrations fluoride changes the amounts and activity of COX-1 and COX-2 enzymes taking part in the initiating and development of inflammatory process.
Collapse
Affiliation(s)
- I Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24 Str., Szczecin, Poland
| | - I Baranowska-Bosiacka
- Department of Biochemistry, Pomeranian Medical University, Powstańców Wlkp 72 Str., Szczecin, Poland.
| | - M Goschorska
- Department of Biochemistry, Pomeranian Medical University, Powstańców Wlkp 72 Str., Szczecin, Poland
| | - A Kolasa
- Department of Histology and Embryology, Pomeranian Medical University, Powstańców Wlkp 72 Str., Szczecin, Poland
| | - A Łukomska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24 Str., Szczecin, Poland
| | - K Jakubczyk
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24 Str., Szczecin, Poland
| | - K Dec
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24 Str., Szczecin, Poland
| | - D Chlubek
- Department of Biochemistry, Pomeranian Medical University, Powstańców Wlkp 72 Str., Szczecin, Poland
| |
Collapse
|
58
|
Gupta A, Iadecola C. Impaired Aβ clearance: a potential link between atherosclerosis and Alzheimer's disease. Front Aging Neurosci 2015; 7:115. [PMID: 26136682 PMCID: PMC4468824 DOI: 10.3389/fnagi.2015.00115] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 05/29/2015] [Indexed: 11/14/2022] Open
Abstract
Alzheimer’s Disease (AD) and atherosclerosis remain two of the largest public health burdens in the world today. Although traditionally considered distinct pathological entities, mounting epidemiologic, clinical and experimental evidence suggests that cerebrovascular atherosclerosis and AD interact reciprocally to disrupt brain structure and function. Whereas the hypoperfusion and hypoxia caused by atherosclerosis of cerebral vessels may enhance the production of amyloid-β peptide (Aβ), a peptide central to AD pathology, Aβ, in turn, may promote formation of atherosclerotic lesions through vascular oxidative stress and endothelial dysfunction leading to additional vascular damage. Here, we briefly review evidence suggesting that impaired clearance of Aβ is an additional, simultaneously occurring mechanism by which AD and cerebrovascular disease may be causally linked. We examine the literature supporting mechanisms by which flow-limiting large-artery stenosis, arterial stiffening and microvascular dysfunction could contribute to AD pathophysiology by impairing Aβ clearance and elevating brain levels of Aβ. Finally, we highlight the need for further research to improve our understanding of the complex interactions of AD and atherosclerosis with Aβ clearance, which may ultimately serve to guide the development of novel diagnostic and therapeutic approaches for this devastating and highly prevalent condition.
Collapse
Affiliation(s)
- Ajay Gupta
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA ; Department of Radiology, Weill Cornell Medical College New York, NY, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA
| |
Collapse
|
59
|
Williams B. Amyloid beta and cardiovascular disease: intriguing questions indeed. J Am Coll Cardiol 2015; 65:917-9. [PMID: 25744008 DOI: 10.1016/j.jacc.2015.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/15/2015] [Indexed: 11/25/2022]
Affiliation(s)
- Bryan Williams
- National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London, London, United Kingdom.
| |
Collapse
|
60
|
Jacobin-Valat MJ, Laroche-Traineau J, Larivière M, Mornet S, Sanchez S, Biran M, Lebaron C, Boudon J, Lacomme S, Cérutti M, Clofent-Sanchez G. Nanoparticles functionalised with an anti-platelet human antibody for in vivo detection of atherosclerotic plaque by magnetic resonance imaging. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:927-37. [PMID: 25684334 DOI: 10.1016/j.nano.2014.12.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 11/29/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
Abstract
UNLABELLED Atherosclerosis is an inflammatory disease associated with the formation of atheroma plaques likely to rupture in which platelets are involved both in atherogenesis and atherothrombosis. The rupture is linked to the molecular composition of vulnerable plaques, causing acute cardiovascular events. In this study we propose an original targeted contrast agent for molecular imaging of atherosclerosis. Versatile USPIO (VUSPIO) nanoparticles, enhancing contrast in MR imaging, were functionalised with a recombinant human IgG4 antibody, rIgG4 TEG4, targeting human activated platelets. The maintenance of immunoreactivity of the targeted VUSPIO against platelets was confirmed in vitro by flow cytometry, transmission electronic and optical microscopy. In the atherosclerotic ApoE(-/-) mouse model, high-resolution ex vivo MRI demonstrated the selective binding of TEG4-VUSPIO on atheroma plaques. It is noteworthy that the rationale for targeting platelets within atherosclerotic lesions is highlighted by our targeted contrast agent using a human anti-αIIbβ3 antibody as a targeting moiety. FROM THE CLINICAL EDITOR Current clinical assessment of atherosclerotic plagues is suboptimal. The authors in the article designed functionalized superparamagnetic iron oxide nanoparticles with TEG4, a recombinant human antibody, to target activated platelets. By using MRI, these nanoparticles can be utilized to study the process of atheroma pathogenesis.
Collapse
Affiliation(s)
- Marie-Josée Jacobin-Valat
- CNRS, UMR5536, CRMSB, Centre de Résonance Magnétique des Systèmes Biologiques, Université Bordeaux, Bordeaux, France; Plateforme Technologique et d'Innovation Biomédicale, Pessac, France
| | - Jeanny Laroche-Traineau
- CNRS, UMR5536, CRMSB, Centre de Résonance Magnétique des Systèmes Biologiques, Université Bordeaux, Bordeaux, France; Plateforme Technologique et d'Innovation Biomédicale, Pessac, France
| | - Mélusine Larivière
- CNRS, UMR5536, CRMSB, Centre de Résonance Magnétique des Systèmes Biologiques, Université Bordeaux, Bordeaux, France; Plateforme Technologique et d'Innovation Biomédicale, Pessac, France
| | - Stéphane Mornet
- CNRS, UPR9048, Université de Bordeaux, Institut de Chimie de la Matière Condensée de Bordeaux, Pessac, France
| | - Stéphane Sanchez
- CNRS, UMR5536, CRMSB, Centre de Résonance Magnétique des Systèmes Biologiques, Université Bordeaux, Bordeaux, France; Plateforme Technologique et d'Innovation Biomédicale, Pessac, France
| | - Marc Biran
- CNRS, UMR5536, CRMSB, Centre de Résonance Magnétique des Systèmes Biologiques, Université Bordeaux, Bordeaux, France
| | - Caroline Lebaron
- CNRS, UPS3044, "Baculovirus et thérapie", St Christol-Les-Alez, France
| | - Julien Boudon
- CNRS, UPR9048, Université de Bordeaux, Institut de Chimie de la Matière Condensée de Bordeaux, Pessac, France
| | - Sabrina Lacomme
- Bordeaux Imaging Center, Université Bordeaux, Bordeaux, France
| | - Martine Cérutti
- CNRS, UPS3044, "Baculovirus et thérapie", St Christol-Les-Alez, France
| | - Gisèle Clofent-Sanchez
- CNRS, UMR5536, CRMSB, Centre de Résonance Magnétique des Systèmes Biologiques, Université Bordeaux, Bordeaux, France; Plateforme Technologique et d'Innovation Biomédicale, Pessac, France.
| |
Collapse
|
61
|
Feng Y, Dorhoi A, Mollenkopf HJ, Yin H, Dong Z, Mao L, Zhou J, Bi A, Weber S, Maertzdorf J, Chen G, Chen Y, Kaufmann SHE. Platelets direct monocyte differentiation into epithelioid-like multinucleated giant foam cells with suppressive capacity upon mycobacterial stimulation. J Infect Dis 2014; 210:1700-10. [PMID: 24987031 PMCID: PMC4224136 DOI: 10.1093/infdis/jiu355] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Epithelioid, foam, and multinucleated giant cells (MNGCs) are characteristics of tuberculosis granulomas, yet the precise genesis and functions of these transformed macrophages are unclear. We evaluated the role of platelets as drivers of macrophage transformation in mycobacterial infection. METHODS We employed flow cytometry and microscopy to assess cellular phenotype and phagocytosis. Immune assays allowed quantification of cytokines and chemokines, whereas gene microarray technology was applied to estimate global transcriptome alterations. Immunohistochemical investigations of tuberculosis granulomas substantiated our findings at the site of infection. RESULTS Monocytes differentiated in presence of platelets (MP-Macs) acquired a foamy, epithelioid appearance and gave rise to MNGCs (MP-MNGCs). MP-Macs up-regulated activation markers, phagocytosed mycobacteria, and released abundant interleukin 10. Upon extended culture, MP-Macs shared transcriptional features with epithelioid cells and M2 macrophages and up-regulated CXCL5 transcripts. In line with this, CXCL5 concentrations were significantly increased in airways of active tuberculosis patients. The platelet-specific CD42b antigen was detected in MP-Macs, likewise in macrophages, MNGCs, and epithelioid cells within tuberculosis granulomas, along with the platelet aggregation-inducing factor PDPN. CONCLUSIONS Platelets drive macrophage differentiation into MNGCs with characteristics of epithelioid, foam, and giant cells observed in tuberculosis granulomas. Our data define platelets as novel participants in tuberculosis pathogenesis.
Collapse
Affiliation(s)
- Yonghong Feng
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, China
| | - Anca Dorhoi
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Hans-Joachim Mollenkopf
- Max Planck Institute for Infection Biology, Core Facility Microarray/Genomics, Berlin, Germany
| | - Hongyun Yin
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, China
| | - Zhengwei Dong
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University
| | - Ling Mao
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, China
| | - Jun Zhou
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University
| | - Aixiao Bi
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, China
| | - Stephan Weber
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Jeroen Maertzdorf
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Gang Chen
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University
| | - Yang Chen
- Bioinformatics Division and Center for Synthetic and Systems Biology, TNLIST, Department of Automation, Tsinghua University, Beijing, China
| | - Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
62
|
Lathe R, Sapronova A, Kotelevtsev Y. Atherosclerosis and Alzheimer--diseases with a common cause? Inflammation, oxysterols, vasculature. BMC Geriatr 2014; 14:36. [PMID: 24656052 PMCID: PMC3994432 DOI: 10.1186/1471-2318-14-36] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 02/26/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Aging is accompanied by increasing vulnerability to pathologies such as atherosclerosis (ATH) and Alzheimer disease (AD). Are these different pathologies, or different presentations with a similar underlying pathoetiology? DISCUSSION Both ATH and AD involve inflammation, macrophage infiltration, and occlusion of the vasculature. Allelic variants in common genes including APOE predispose to both diseases. In both there is strong evidence of disease association with viral and bacterial pathogens including herpes simplex and Chlamydophila. Furthermore, ablation of components of the immune system (or of bone marrow-derived macrophages alone) in animal models restricts disease development in both cases, arguing that both are accentuated by inflammatory/immune pathways. We discuss that amyloid β, a distinguishing feature of AD, also plays a key role in ATH. Several drugs, at least in mouse models, are effective in preventing the development of both ATH and AD. Given similar age-dependence, genetic underpinnings, involvement of the vasculature, association with infection, Aβ involvement, the central role of macrophages, and drug overlap, we conclude that the two conditions reflect different manifestations of a common pathoetiology. MECHANISM Infection and inflammation selectively induce the expression of cholesterol 25-hydroxylase (CH25H). Acutely, the production of 'immunosterol' 25-hydroxycholesterol (25OHC) defends against enveloped viruses. We present evidence that chronic macrophage CH25H upregulation leads to catalyzed esterification of sterols via 25OHC-driven allosteric activation of ACAT (acyl-CoA cholesterol acyltransferase/SOAT), intracellular accumulation of cholesteryl esters and lipid droplets, vascular occlusion, and overt disease. SUMMARY We postulate that AD and ATH are both caused by chronic immunologic challenge that induces CH25H expression and protection against particular infectious agents, but at the expense of longer-term pathology.
Collapse
Affiliation(s)
- Richard Lathe
- State University of Pushchino, Prospekt Nauki, Pushchino 142290, Moscow Region, Russia
- Pushchino Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290 Moscow Region, Russia
- Pieta Research, PO Box 27069, Edinburgh EH10 5YW, UK
| | - Alexandra Sapronova
- State University of Pushchino, Prospekt Nauki, Pushchino 142290, Moscow Region, Russia
- Pushchino Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290 Moscow Region, Russia
- Optical Research Group, Laboratory of Evolutionary Biophysics of Development, Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Yuri Kotelevtsev
- State University of Pushchino, Prospekt Nauki, Pushchino 142290, Moscow Region, Russia
- Pushchino Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290 Moscow Region, Russia
- Biomedical Centre for Research Education and Innovation (CREI), Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Little France, Edinburgh EH16 4TJ, UK
| |
Collapse
|
63
|
Badrnya S, Schrottmaier WC, Kral JB, Yaiw KC, Volf I, Schabbauer G, Söderberg-Nauclér C, Assinger A. Platelets mediate oxidized low-density lipoprotein-induced monocyte extravasation and foam cell formation. Arterioscler Thromb Vasc Biol 2014; 34:571-80. [PMID: 24371083 DOI: 10.1161/atvbaha.113.302919] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE A growing body of evidence indicates that platelets contribute to the onset and progression of atherosclerosis by modulating immune responses. We aimed to elucidate the effects of oxidized low-density lipoprotein (OxLDL) on platelet-monocyte interactions and the consequences of these interactions on platelet phagocytosis, chemokine release, monocyte extravasation, and foam cell formation. APPROACH AND RESULTS Confocal microscopy and flow cytometric analysis revealed that in vitro and in vivo stimulation with OxLDL resulted in rapid formation of platelet-monocyte aggregates, with a preference for CD16+ monocyte subsets. This platelet-monocyte interaction facilitated OxLDL uptake by monocytes, in a process that involved platelet CD36-OxLDL interaction, release of chemokines, such as CXC motif ligand 4, direct platelet-monocyte interaction, and phagocytosis of platelets. Inhibition of cyclooxygenase with acetylsalicylic acid and antagonists of ADP receptors, P2Y1 and P2Y12, partly abrogated OxLDL-induced platelet-monocyte aggregates and platelet-mediated lipid uptake in monocytes. Platelets also enhanced OxLDL-induced monocyte transmigration across an endothelial monolayer via direct interaction with monocytes in a transwell assay. Importantly, in LDLR(-/-) mice, platelet depletion resulted in a significant decrease of peritoneal macrophage recruitment and foam cell formation in a thioglycollate-elicited peritonitis model. In platelet-depleted wild-type mice, transfusion of ex vivo OxLDL-stimulated platelets induced monocyte extravasation to a higher extent when compared with resting platelets. CONCLUSIONS Our results on OxLDL-mediated platelet-monocyte aggregate formation, which promoted phenotypic changes in monocytes, monocyte extravasation and enhanced foam cell formation in vitro and in vivo, provide a novel mechanism for how platelets potentiate key steps of atherosclerotic plaque development and plaque destabilization.
Collapse
Affiliation(s)
- Sigrun Badrnya
- From the Institute of Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (S.B., W.C.S., J.B.K., I.V., G.S., A.A.); and Department of Medicine, Solna, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden (K.-C.Y., C.S.-N., A.A.)
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Gonzalez J, Donoso W, Díaz N, Albornoz ME, Huilcaman R, Morales E, Moore-Carrasco R. High fat diet induces adhesion of platelets to endothelium in two models of dyslipidemia. J Obes 2014; 2014:591270. [PMID: 25328689 PMCID: PMC4195255 DOI: 10.1155/2014/591270] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 01/06/2023] Open
Abstract
Cardiovascular diseases (CVD) represent about 30% of all global deaths. It is currently accepted that, in the atherogenic process, platelets play an important role, contributing to endothelial activation and modulation of the inflammatory phenomenon, promoting the beginning and formation of lesions and their subsequent thrombotic complications. The objective of the present work was to study using immunohistochemistry, the presence of platelets, monocytes/macrophages, and cell adhesion molecules (CD61, CD163, and CD54), in two stages of the atheromatous process. CF-1 mice fed a fat diet were used to obtain early stages of atheromatous process, denominated early stage of atherosclerosis, and ApoE(-/-) mice fed a fat diet were used to observe advanced stages of atherosclerosis. The CF-1 mice model presented immunostaining on endothelial surface for all three markers studied; the advanced atherosclerosis model in ApoE(-/-) mice also presented granular immunostaining on lesion thickness, for the same markers. These results suggest that platelets participate in atheromatous process from early stages to advance d stages. High fat diet induces adhesion of platelets to endothelial cells in vivo. These findings support studying the participation of platelets in the formation of atheromatous plate.
Collapse
Affiliation(s)
- Jaime Gonzalez
- Departamento de Bioquímica Clínica e Inmunohematología, Facultad de Ciencias de la Salud, Universidad de Talca, P.O. Box 747, Talca, Chile
| | - Wendy Donoso
- Departamento de Estomatología, Facultad de Ciencias de la Salud, Universidad de Talca, Avenida Lircay s/n, Talca, Chile
| | - Natalia Díaz
- Departamento de Bioquímica Clínica e Inmunohematología, Facultad de Ciencias de la Salud, Universidad de Talca, P.O. Box 747, Talca, Chile
| | - María Eliana Albornoz
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Avenida Lircay s/n, Talca, Chile
| | - Ricardo Huilcaman
- Departamento de Bioquímica Clínica e Inmunohematología, Facultad de Ciencias de la Salud, Universidad de Talca, P.O. Box 747, Talca, Chile
| | - Erik Morales
- Facultad de Medicina, Universidad Católica del Maule, Avenida San Miguel 3605, 3480112 Talca, Chile
| | - Rodrigo Moore-Carrasco
- Departamento de Bioquímica Clínica e Inmunohematología, Facultad de Ciencias de la Salud, Universidad de Talca, P.O. Box 747, Talca, Chile
- Centro de Estudios en Alimentos Procesados (CEAP), Conicyt-Regional, Gore Maule, R09I2001, Avenida San Miguel 3425, 3480137 Talca, Chile
- Programa Investigación de Excelencia Interdisciplinario en Envejecimiento Saludable PIEI-ES, Universidad de Talca, Avenida Lircay s/n, Talca, Chile
- *Rodrigo Moore-Carrasco:
| |
Collapse
|
65
|
Valanti E, Tsompanidis A, Sanoudou D. Pharmacogenomics in the development and characterization of atheroprotective drugs. Methods Mol Biol 2014; 1175:259-300. [PMID: 25150873 DOI: 10.1007/978-1-4939-0956-8_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Atherosclerosis is the main cause of cardiovascular disease (CVD) and can lead to stroke, myocardial infarction, and death. The clinically available atheroprotective drugs aim mainly at reducing the levels of circulating low-density lipoprotein (LDL), increasing high-density lipoprotein (HDL), and attenuating inflammation. However, the cardiovascular risk remains high, along with morbidity, mortality, and incidence of adverse drug events. Pharmacogenomics is increasingly contributing towards the characterization of existing atheroprotective drugs, the evaluation of novel ones, and the identification of promising, unexplored therapeutic targets, at the global molecular pathway level. This chapter presents highlights of pharmacogenomics investigations and discoveries that have contributed towards the elucidation of pharmacological atheroprotection, while opening the way to new therapeutic approaches.
Collapse
Affiliation(s)
- Efi Valanti
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Athens, 115 27, Greece
| | | | | |
Collapse
|
66
|
Caravaggio JW, Hasu M, MacLaren R, Thabet M, Raizman JE, Veinot JP, Marcel YL, Milne RW, Whitman SC. Insulin-degrading enzyme deficiency in bone marrow cells increases atherosclerosis in LDL receptor-deficient mice. Cardiovasc Pathol 2013; 22:458-64. [PMID: 23684818 DOI: 10.1016/j.carpath.2013.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/21/2013] [Accepted: 03/23/2013] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Insulin-degrading enzyme (IDE), a protease implicated in several chronic diseases, associates with the cytoplasmic domain of the macrophage Type A scavenger receptor (SR-A). Our goal was to investigate the effect of IDE deficiency (Ide(-/-)) on diet-induced atherosclerosis in low density lipoprotein-deficient (Ldlr(-/-)) mice and on SR-A function. METHODS Irradiated Ldlr(-/-) or Ide(-/-)Ldlr(-/-) mice were reconstituted with wild-type or Ide(-/-) bone marrow and, 6 weeks later, were placed on a high-fat diet for 8 weeks. RESULTS After 8 weeks on a high-fat diet, male Ldlr(-/-) recipients of Ide(-/-) bone marrow had more atherosclerosis, higher serum cholesterol and increased lesion-associated β-amyloid, an IDE substrate, and receptor for advanced glycation end products (RAGE), a proinflammatory receptor for β-amyloid, compared to male Ldlr(-/-) recipients of wild-type bone marrow. IDE deficiency in male Ldlr(-/-) recipient mice did not affect atherosclerosis or cholesterol levels and moderated the effects of IDE deficiency of bone marrow-derived cells. No differences were seen between Ldlr(-/-) and Ide(-/-)Ldlr(-/-) female mice reconstituted with Ide(-/-) or wild-type bone marrow. IDE deficiency in macrophages did not alter SR-A levels, cell surface SR-A, or foam cell formation. CONCLUSION IDE deficiency in bone marrow-derived cells results in larger atherosclerotic lesions, increased lesion-associated Aβ and RAGE, and higher serum cholesterol in male, Ldlr(-/-) mice.
Collapse
Affiliation(s)
- Justin W Caravaggio
- University of Ottawa Heart Institute, University of Ottawa, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
d'Uscio LV, Das P, Santhanam AV, He T, Younkin SG, Katusic ZS. Activation of PPARδ prevents endothelial dysfunction induced by overexpression of amyloid-β precursor protein. Cardiovasc Res 2012; 96:504-12. [PMID: 22886847 PMCID: PMC3500044 DOI: 10.1093/cvr/cvs266] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 07/19/2012] [Accepted: 08/03/2012] [Indexed: 01/09/2023] Open
Abstract
AIMS Existing evidence suggests that amyloid-β precursor protein (APP) causes endothelial dysfunction and contributes to pathogenesis of atherosclerosis. In the present study, experiments were designed to: (1) determine the mechanisms underlying endothelial dysfunction and (2) define the effects of peroxisome proliferator-activated receptor delta (PPARδ) ligand on endothelial function in transgenic Tg2576 mice overexpressing mutated human APP. METHODS AND RESULTS Confocal microscopy and western blot analyses of wild-type mice aortas provided evidence that APP protein is mainly present in endothelial cells. Overexpression of APP significantly impaired endothelium-dependent relaxations to acetylcholine and phosphorylation of endothelial nitric oxide synthase at Ser(1177) in aortas. HPLC analysis revealed that tetrahydrobiopterin (BH(4)) levels were reduced in Tg2576 mice aortas. This was caused by increased oxidation of BH(4) and reduced expression and activity of GTP-cyclohydrolase I. Furthermore, gp91phox protein expression and superoxide anion production were increased in aortas of Tg2576 mice. This augmented superoxide formation was completely prevented by the NADPH oxidase inhibitor VAS2870. Expression of copper-/zinc-superoxide dismutase (Cu/ZnSOD) and extracellular SOD was downregulated. Treatment with PPARδ ligand GW501516 (2 mg/kg/day) for 14 days significantly increased BH(4) bioavailability and improved endothelium-dependent relaxations in Tg2576 mice aortas. GW501516 also normalized protein expression of gp91(phox) and SODs, thereby reducing production of superoxide anion in the aortas. CONCLUSION Our results suggest that in APP transgenic mice loss of nitric oxide and increased oxidative stress are the major causes of endothelial dysfunction. The vascular protective effects of GW501516 in Tg2576 mice appear to be critically dependent on prevention of superoxide anion production.
Collapse
Affiliation(s)
- Livius V. d'Uscio
- Department of Anesthesiology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Pritam Das
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | - Anantha V.R. Santhanam
- Department of Anesthesiology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Tongrong He
- Department of Anesthesiology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Steven G. Younkin
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | - Zvonimir S. Katusic
- Department of Anesthesiology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
68
|
Kokjohn TA, Van Vickle GD, Maarouf CL, Kalback WM, Hunter JM, Daugs ID, Luehrs DC, Lopez J, Brune D, Sue LI, Beach TG, Castaño EM, Roher AE. Chemical characterization of pro-inflammatory amyloid-beta peptides in human atherosclerotic lesions and platelets. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1508-14. [PMID: 21784149 DOI: 10.1016/j.bbadis.2011.07.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 06/27/2011] [Accepted: 07/05/2011] [Indexed: 01/23/2023]
Abstract
Amyloid-β (Aβ) peptides are intimately involved in the inflammatory pathology of atherosclerotic vascular disease (AVD) and Alzheimer's disease (AD). Although substantial amounts of these peptides are produced in the periphery, their role and significance to vascular disease outside the brain requires further investigation. Amyloid-β peptides present in the walls of human aorta atherosclerotic lesions as well as activated and non-activated human platelets were isolated using sequential size-exclusion columns and HPLC reverse-phase methods. The Aβ peptide isolates were quantified by ELISA and structurally analyzed using MALDI-TOF mass spectrometry procedures. Our experiments revealed that both aorta and platelets contained Aβ peptides, predominately Aβ40. The source of the Aβ pool in aortic atherosclerosis lesions is probably the activated platelets and/or vascular wall cells expressing APP/PN2. Significant levels of Aβ42 are present in the plasma, suggesting that this reservoir makes a minor contribution to atherosclerotic plaques. Our data reveal that although aortic atherosclerosis and AD cerebrovascular amyloidosis exhibit clearly divergent end-stage manifestations, both vascular diseases share some key pathophysiological promoting elements and pathways. Whether they happen to be deposited in vessels of the central nervous system or atherosclerotic plaques in the periphery, Aβ peptides may promote and perhaps synergize chronic inflammatory processes which culminate in the degeneration, malfunction and ultimate destruction of arterial walls.
Collapse
Affiliation(s)
- Tyler A Kokjohn
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
The PPAR-Platelet Connection: Modulators of Inflammation and Potential Cardiovascular Effects. PPAR Res 2011; 2008:328172. [PMID: 18288284 PMCID: PMC2233896 DOI: 10.1155/2008/328172] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 11/06/2007] [Indexed: 01/08/2023] Open
Abstract
Historically, platelets were viewed as simple anucleate cells responsible for initiating thrombosis and maintaining
hemostasis, but clearly they are also key mediators of inflammation and immune cell activation. An emerging body of
evidence links platelet function and thrombosis to vascular inflammation. peroxisome proliferator-activated receptors
(PPARs) play a major role in modulating inflammation and, interestingly, PPARs (PPARβ/δ and PPARγ) were recently
identified in platelets. Additionally, PPAR agonists attenuate platelet activation; an important discovery for two reasons.
First, activated platelets are formidable antagonists that initiate and prolong a cascade of events that contribute to
cardiovascular disease (CVD) progression. Dampening platelet release of proinflammatory mediators, including
CD40 ligand (CD40L, CD154), is essential to hinder this cascade. Second, understanding the biologic importance
of platelet PPARs and the mechanism(s) by which PPARs regulate platelet activation will be imperative in designing
therapeutic strategies lacking the deleterious or unwanted side effects of current treatment options.
Collapse
|
70
|
Foster PP, Rosenblatt KP, Kuljiš RO. Exercise-induced cognitive plasticity, implications for mild cognitive impairment and Alzheimer's disease. Front Neurol 2011; 2:28. [PMID: 21602910 PMCID: PMC3092070 DOI: 10.3389/fneur.2011.00028] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 04/18/2011] [Indexed: 12/17/2022] Open
Abstract
Lifestyle factors such as intellectual stimulation, cognitive and social engagement, nutrition, and various types of exercise appear to reduce the risk for common age-associated disorders such as Alzheimer’s disease (AD) and vascular dementia. In fact, many studies have suggested that promoting physical activity can have a protective effect against cognitive deterioration later in life. Slowing or a deterioration of walking speed is associated with a poor performance in tests assessing psychomotor speed and verbal fluency in elderly individuals. Fitness training influences a wide range of cognitive processes, and the largest positive impact observed is for executive (a.k.a. frontal lobe) functions. Studies show that exercise improves additional cognitive functions such as tasks mediated by the hippocampus, and result in major changes in plasticity in the hippocampus. Interestingly, this exercise-induced plasticity is also pronounced in APOE ε4 carriers who express a risk factor for late-onset AD that may modulate the effect of treatments. Based on AD staging by Braak and Braak (1991) and Braak et al. (1993) we propose that the effects of exercise occur in two temporo-spatial continua of events. The “inward” continuum from isocortex (neocortex) to entorhinal cortex/hippocampus for amyloidosis and a reciprocal “outward” continuum for neurofibrillary alterations. The exercise-induced hypertrophy of the hippocampus at the core of these continua is evaluated in terms of potential for prevention to stave off neuronal degeneration. Exercise-induced production of growth factors such as the brain-derived neurotrophic factor (BDNF) has been shown to enhance neurogenesis and to play a key role in positive cognitive effects. Insulin-like growth factor (IGF-1) may mediate the exercise-induced response to exercise on BDNF, neurogenesis, and cognitive performance. It is also postulated to regulate brain amyloid β (Aβ) levels by increased clearance via the choroid plexus. Growth factors, specifically fibroblast growth factor and IGF-1 receptors and/or their downstream signaling pathways may interact with the Klotho gene which functions as an aging suppressor gene. Neurons may not be the only cells affected by exercise. Glia (astrocytes and microglia), neurovascular units and the Fourth Element may also be affected in a differential fashion by the AD process. Analyses of these factors, as suggested by the multi-dimensional matrix approach, are needed to improve our understanding of this complex multi-factorial process, which is increasingly relevant to conquering the escalating and intersecting world-wide epidemics of dementia, diabetes, and sarcopenia that threaten the global healthcare system. Physical activity and interventions aimed at enhancing and/or mimicking the effects of exercise are likely to play a significant role in mitigating these epidemics, together with the embryonic efforts to develop cognitive rehabilitation for neurodegenerative disorders.
Collapse
Affiliation(s)
- Philip P Foster
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Texas Medical Branch Galveston, TX, USA
| | | | | |
Collapse
|
71
|
Van De Parre TJL, Guns PJDF, Fransen P, Martinet W, Bult H, Herman AG, De Meyer GRY. Attenuated atherogenesis in apolipoprotein E-deficient mice lacking amyloid precursor protein. Atherosclerosis 2011; 216:54-8. [PMID: 21316678 DOI: 10.1016/j.atherosclerosis.2011.01.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 01/17/2011] [Accepted: 01/18/2011] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Recent evidence suggests that amyloid precursor protein (APP) is overexpressed in atherosclerosis-prone regions of mouse aorta. We therefore investigated in the present study whether APP has a role in the progression and composition of atherosclerotic plaques. METHODS AND RESULTS Apolipoprotein E-deficient (apoE(-/-)) mice were crossbred with animals lacking APP (APP(-/-)). After 16 weeks on a Western-type diet, apoE(-/-) and APP(-/-)/apoE(-/-) mice showed similar cholesterol levels. However, atherosclerotic plaque size was significantly reduced in the distal thoracic aorta (90% reduction) and abdominal aorta (75% reduction) of APP(-/-)/apoE(-/-) mice as compared to apoE(-/-). Plaques at the level of the aortic valves were not different in size, but showed a more stable phenotype in APP(-/-)/apoE(-/-) mice, as indicated by a reduced macrophage content, an increased amount of collagen and a thicker fibrous cap. CONCLUSION Our findings provide evidence that lack of APP attenuates atherogenesis and leads to plaque stability.
Collapse
Affiliation(s)
- Tim J L Van De Parre
- Division of Pharmacology, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Wilrijk, Belgium
| | | | | | | | | | | | | |
Collapse
|
72
|
Tibolla G, Norata G, Meda C, Arnaboldi L, Uboldi P, Piazza F, Ferrarese C, Corsini A, Maggi A, Vegeto E, Catapano A. Increased atherosclerosis and vascular inflammation in APP transgenic mice with apolipoprotein E deficiency. Atherosclerosis 2010; 210:78-87. [DOI: 10.1016/j.atherosclerosis.2009.10.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 10/29/2009] [Accepted: 10/30/2009] [Indexed: 11/30/2022]
|
73
|
Schick BP. Serglycin proteoglycan deletion in mouse platelets: physiological effects and their implications for platelet contributions to thrombosis, inflammation, atherosclerosis, and metastasis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 93:235-87. [PMID: 20807648 DOI: 10.1016/s1877-1173(10)93011-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Serglycin is found in all nucleated hematopoietic cells and platelets, blood vessels, various reproductive and developmental tissues, and in chondrocytes. The serglycin knockout mouse has demonstrated that this proteoglycan is required for proper generation and function of secretory granules in several hematopoietic cells. The effects on platelets are profound, and include diminishing platelet aggregation responses and formation of platelet thrombi. This chapter will review cell-specific aspects of serglycin structure, its gene regulation, cell and tissue localization, and the effects of serglycin deletion on hematopoietic cell granule structure and function. The effects of serglycin knockout on platelets are described and discussed in detail. Rationales for further investigations into the contribution of serglycin to the known roles of platelets in thrombosis, inflammation, atherosclerosis, and tumor metastasis are presented.
Collapse
Affiliation(s)
- Barbara P Schick
- Department of Medicine, Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
74
|
Roher AE, Esh CL, Kokjohn TA, Castaño EM, Van Vickle GD, Kalback WM, Patton RL, Luehrs DC, Daugs ID, Kuo YM, Emmerling MR, Soares H, Quinn JF, Kaye J, Connor DJ, Silverberg NB, Adler CH, Seward JD, Beach TG, Sabbagh MN. Amyloid beta peptides in human plasma and tissues and their significance for Alzheimer's disease. Alzheimers Dement 2009; 5:18-29. [PMID: 19118806 DOI: 10.1016/j.jalz.2008.10.004] [Citation(s) in RCA: 302] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 08/27/2008] [Accepted: 10/06/2008] [Indexed: 01/17/2023]
Abstract
BACKGROUND We evaluated the amounts of amyloid beta (Abeta)) peptides in the central nervous system (CNS) and in reservoirs outside the CNS and their potential impact on Abeta plasma levels and Alzheimer's disease (AD) pathology. METHODS Amyloid beta levels were measured in (1) the plasma of AD and nondemented (ND) controls in a longitudinal study, (2) the plasma of a cohort of AD patients receiving a cholinesterase inhibitor, and (3) the skeletal muscle, liver, aorta, platelets, leptomeningeal arteries, and in gray and white matter of AD and ND control subjects. RESULTS Plasma Abeta levels fluctuated over time and among individuals, suggesting continuous contributions from brain and peripheral tissues and associations with reactive circulating proteins. Arteries with atherosclerosis had larger amounts of Abeta40 than disease-free vessels. Inactivated platelets contained more Abeta peptides than activated ones. Substantially more Abeta was present in liver samples from ND patients. Overall, AD brain and skeletal muscle contained increased levels of Abeta. CONCLUSIONS Efforts to use plasma levels of Abeta peptides as AD biomarkers or disease-staging scales have failed. Peripheral tissues might contribute to both the circulating amyloid pool and AD pathology within the brain and its vasculature. The wide spread of plasma Abeta values is also due in part to the ability of Abeta to bind to a variety of plasma and membrane proteins. Sources outside the CNS must be accounted for because pharmacologic interventions to reduce cerebral amyloid are assessed by monitoring Abeta plasma levels. Furthermore, the long-range impact of Abeta immunotherapy on peripheral Abeta sources should also be considered.
Collapse
Affiliation(s)
- Alex E Roher
- The Longtine Center for Molecular Biology and Genetics, Sun Health Research Institute, Sun City, AZ, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Elevated levels of platelet microparticles in carotid atherosclerosis and during the postprandial state. Thromb Res 2008; 123:881-6. [PMID: 19073340 DOI: 10.1016/j.thromres.2008.10.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 09/12/2008] [Accepted: 10/30/2008] [Indexed: 11/24/2022]
Abstract
BACKGROUND Platelet microparticles (PMPs) possess proatherogenic and procoagulant properties which may play a role in atherogenesis and subsequent thromboembolic complications. The present study was conducted to investigate the possible relationship between carotid atherosclerosis and plasma concentrations of PMPs, and elucidate if plasma levels of PMPs were affected by postprandial hypertriglyceridemia. METHODS AND RESULTS Subjects with ultrasound-assessed carotid atherosclerotic plaques (echogenic; n=20 and echolucent; n=20), assessed by ultrasonography, and subjects without carotid plaques (n=20) were recruited from a population-based study and underwent a standard fat tolerance test. Subjects with carotid plaques had significantly higher levels of large PMPs than subjects without carotid atherosclerotic plaques (96.7+/-50.4 microg/l versus 56.1+/-34.9 microg/l), after adjustments for traditional cardiovascular risk factors and use cardiovascular drugs (p=0.021). Plasma PMPs were not associated with plaque echogenicity. Postprandial hypertriglyceridemia induced a similar increase in plasma PMPs within all groups. Significant correlations were found between an increase in plasma triglycerides and percent elevation in total PMPs (r=0.29, p<0.05) and large PMPs (r=0.34, p<0.01) in the postprandial phase. CONCLUSIONS Individuals with echogenic and echolucent carotid atherosclerotic plaques have statistically significant elevation of large plasma PMPs compared to age/sex-matched normal controls. Postprandial hypertriglyceridemia induces a significant, similar increase in plasma PMPs in individuals with and without carotid atherosclerotic plaques which could be of pathophysiological importance in atherogenesis.
Collapse
|
76
|
Austin SA, Combs CK. Amyloid precursor protein mediates monocyte adhesion in AD tissue and apoE(-)/(-) mice. Neurobiol Aging 2008; 31:1854-66. [PMID: 19058878 DOI: 10.1016/j.neurobiolaging.2008.10.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 10/07/2008] [Accepted: 10/17/2008] [Indexed: 10/21/2022]
Abstract
Amyloid precursor protein (APP) is a type 1 integral membrane protein, which is highly conserved and ubiquitously expressed. Numerous data suggest it functions in cellular adhesion. For example, APP binds components of the extracellular matrix to propagate intracellular signaling responses. In order to investigate adhesion-related changes in inflamed vasculature, brains from apolipoprotein E(-/-) (apoE(-/-)) mice were examined for changes related to APP then compared to human Alzheimer's disease (AD) brains. Cerebrovasculature from mouse apoE(-)/(-) and human AD brains revealed strong immunoreactivity for APP, APP phosphorylated at tyrosine residue 682 (pAPP) and Aβ. Further, Western blot analyses from mouse apoE(-/-) and AD brains showed statistically higher protein levels of APP, pAPP and increased APP association with the tyrosine kinase, Src. Lastly, utilizing a modified Stamper-Woodruff adhesion assay, we demonstrated that adhesion of monocytic cells to apoE(-/-) and AD brain endothelium is partially APP dependent. These data suggest that endothelial APP function coupled with increased Aβ production are involved in the vascular dysfunction associated with atherosclerosis and AD.
Collapse
Affiliation(s)
- Susan A Austin
- Department of Pharmacology, Physiology & Therapeutics, University of North Dakota, School of Medicine and Health Sciences, 504 Hamline St., Room 116, Grand Forks, ND 58203, United States
| | | |
Collapse
|
77
|
Moura R, Tjwa M, Vandervoort P, Van kerckhoven S, Holvoet P, Hoylaerts MF. Thrombospondin-1 Deficiency Accelerates Atherosclerotic Plaque Maturation in
ApoE
−/−
Mice. Circ Res 2008; 103:1181-9. [DOI: 10.1161/circresaha.108.185645] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Thrombospondin (TSP)1 is implicated in various inflammatory processes, but its role in atherosclerotic plaque formation and progression is unclear. Therefore, the development of atherosclerosis was compared in
ApoE
−/−
and
Tsp1
−/−
ApoE
−/−
mice kept on a normocholesterolemic diet. At 6 months, morphometric analysis of the aortic root of both mouse genotypes showed comparable lesion areas. Even when plaque burden increased ≈5-fold in
ApoE
−/−
and 10-fold in
Tsp1
−/−
ApoE
−/−
mice, during the subsequent 3 months, total plaque areas were comparable at 9 months. In contrast, plaque composition differed substantially between genotypes: smooth muscle cell areas, mostly located in the fibrous cap of
ApoE
−/−
plaques, both at 6 and 9 months, were 3-fold smaller in
Tsp1
−/−
ApoE
−/−
plaques, which, in addition, were also more fibrotic. Moreover, inflammation by macrophages was twice as high in
Tsp1
−/−
ApoE
−/−
plaques. This correlated with a 30-fold elevated incidence of elastic lamina degradation, with matrix metalloproteinase-9 accumulation, underneath plaques and manifestation of ectasia, exclusively in
Tsp1
−/−
ApoE
−/−
mice. At 9 months, the necrotic core was 1.4-fold larger and 4-fold higher numbers of undigested disintegrated apoptotic cells were found in
Tsp1
−/−
ApoE
−/−
plaques. Phagocytosis of platelets by cultured
Tsp1
−/−
macrophages revealed the instrumental role of TSP1 in phagocytosis, corroborating the defective intraplaque phagocytosis of apoptotic cells. Hence, the altered smooth muscle cell phenotype in
Tsp1
−/−
ApoE
−/−
mice has limited quantitative impact on atherosclerosis, but defective TSP1-mediated phagocytosis enhanced plaque necrotic core formation, accelerating inflammation and macrophage-induced elastin degradation by metalloproteinases, speeding up plaque maturation and vessel wall degeneration.
Collapse
Affiliation(s)
- Rute Moura
- From the Center for Molecular and Vascular Biology (R.M., P.V., S.V.k., M.F.H.); Center for Transgene Technology and Gene Therapy (M.T.); and Atherosclerosis and Metabolism Unit (P.H.), Department of Cardiovascular Diseases, University of Leuven, Belgium
| | - Marc Tjwa
- From the Center for Molecular and Vascular Biology (R.M., P.V., S.V.k., M.F.H.); Center for Transgene Technology and Gene Therapy (M.T.); and Atherosclerosis and Metabolism Unit (P.H.), Department of Cardiovascular Diseases, University of Leuven, Belgium
| | - Petra Vandervoort
- From the Center for Molecular and Vascular Biology (R.M., P.V., S.V.k., M.F.H.); Center for Transgene Technology and Gene Therapy (M.T.); and Atherosclerosis and Metabolism Unit (P.H.), Department of Cardiovascular Diseases, University of Leuven, Belgium
| | - Soetkin Van kerckhoven
- From the Center for Molecular and Vascular Biology (R.M., P.V., S.V.k., M.F.H.); Center for Transgene Technology and Gene Therapy (M.T.); and Atherosclerosis and Metabolism Unit (P.H.), Department of Cardiovascular Diseases, University of Leuven, Belgium
| | - Paul Holvoet
- From the Center for Molecular and Vascular Biology (R.M., P.V., S.V.k., M.F.H.); Center for Transgene Technology and Gene Therapy (M.T.); and Atherosclerosis and Metabolism Unit (P.H.), Department of Cardiovascular Diseases, University of Leuven, Belgium
| | - Marc F. Hoylaerts
- From the Center for Molecular and Vascular Biology (R.M., P.V., S.V.k., M.F.H.); Center for Transgene Technology and Gene Therapy (M.T.); and Atherosclerosis and Metabolism Unit (P.H.), Department of Cardiovascular Diseases, University of Leuven, Belgium
| |
Collapse
|
78
|
Langer HF, Gawaz M. Platelets in regenerative medicine. Basic Res Cardiol 2008; 103:299-307. [DOI: 10.1007/s00395-008-0721-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 02/25/2008] [Indexed: 01/08/2023]
|
79
|
Siegel-Axel D, Daub K, Seizer P, Lindemann S, Gawaz M. Platelet lipoprotein interplay: trigger of foam cell formation and driver of atherosclerosis. Cardiovasc Res 2008; 78:8-17. [DOI: 10.1093/cvr/cvn015] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
80
|
Tiwari R, Singh V, Barthwal M. Macrophages: An elusive yet emerging therapeutic target of atherosclerosis. Med Res Rev 2008; 28:483-544. [DOI: 10.1002/med.20118] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
81
|
Aslam R, Kim M, Speck E, Seetanah AC, Molinski S, Freedman J, Semple J. Platelet and red blood cell phagocytosis kinetics are differentially controlled by phosphatase activity within mononuclear cells. Transfusion 2007; 47:2161-8. [DOI: 10.1111/j.1537-2995.2007.01441.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
82
|
Gunzburg MJ, Perugini MA, Howlett GJ. Structural basis for the recognition and cross-linking of amyloid fibrils by human apolipoprotein E. J Biol Chem 2007; 282:35831-41. [PMID: 17916554 DOI: 10.1074/jbc.m706425200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein (apo) E is a well characterized lipid-binding protein in plasma that also exists as a common nonfibrillar component of both cerebral and systemic amyloid deposits. A genetic link between a common isoform of apoE, apoE4, and the incidence of late onset Alzheimer disease has drawn considerable attention to the potential roles of apoE in amyloid-related disease. We examined the interactions of apoE with amyloid fibrils composed of apoC-II and the amyloid-beta (Abeta) peptide. Aggregates of apoE with Abeta and apoC-II are found in Alzheimer and atherosclerotic plaques, respectively. Sedimentation velocity and fibril size distribution analysis showed that apoE3 and E4 isoforms bind and noncovalently cross-link apoC-II fibrils in a similar manner. This ability to cross-link apoC-II fibrils was abolished by the dissociation of the apoE tetramer to monomers or by thrombin cleavage to yield separate N- and C-terminal domains. Preparative ultracentrifuge binding studies indicated that apoE and the isolated N- and C-terminal domains of apoE bind with submicromolar affinities to both apoC-II and Abeta fibrils. Fluorescence quenching and resonance energy transfer experiments confirmed that both domains of apoE interact with apoC-II fibrils and demonstrated that the binding of the isolated N-terminal domain of apoE to apoC-II or Abeta fibrils is accompanied by a significant conformational change with helix three of the domain moving relative to helix one. We propose a model involving the interaction of apoE with patterns of aligned residues that could explain the general ability of apoE to bind to a diverse range of amyloid fibrils.
Collapse
Affiliation(s)
- Menachem J Gunzburg
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
83
|
Lindemann S, Krämer B, Daub K, Stellos K, Gawaz M. Molecular pathways used by platelets to initiate and accelerate atherogenesis. Curr Opin Lipidol 2007; 18:566-73. [PMID: 17885429 DOI: 10.1097/mol.0b013e3282ef7c1e] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The response to injury model in the development of atherosclerosis is broadly accepted by the scientific audience. Platelets are generally not believed to be involved in the initiation of atherosclerosis. New data imply, however, that the response to injury model is too simple for a complete understanding of the inflammatory disease atherosclerosis. The involvement of platelets in the initiation of atherosclerotic lesion formation is critical in directing the atherosclerotic process into regeneration or ongoing vascular injury. RECENT FINDINGS Platelets internalize oxidized phospholipids and promote foam cell formation. Platelets also recruit circulating blood cells including progenitor cells to the vessel, that are able to differentiate into foam cells or endothelial cells depending on conditions. Platelets express various scavenger receptors that are able to regulate LDL-uptake. LDL-laden platelets are internalized by adherent progenitor cells that in turn differentiate into macrophages and foam cells. SUMMARY An expanding body of evidence continues to build on the role of platelets as initial actors in the development of atherosclerotic lesions. Platelets bind to leukocytes, endothelial cells, and circulating progenitor cells and initiate monocyte transformation into macrophages. Therefore platelets regulate the initiation, development and total extent of atherosclerotic lesions.
Collapse
Affiliation(s)
- Stephan Lindemann
- Medical Clinic III, Cardiology and Circulatory Diseases, Eberhard Karls University, Tübingen, Germany
| | | | | | | | | |
Collapse
|
84
|
Association of Plasma Levels of F11 Receptor/Junctional Adhesion Molecule-A (F11R/JAM-A) With Human Atherosclerosis. J Am Coll Cardiol 2007; 50:1768-76. [DOI: 10.1016/j.jacc.2007.05.051] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 05/03/2007] [Accepted: 05/28/2007] [Indexed: 11/23/2022]
|
85
|
Schulz B, Liebisch G, Grandl M, Werner T, Barlage S, Schmitz G. β-Amyloid (Aβ40, Aβ42) binding to modified LDL accelerates macrophage foam cell formation. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:1335-44. [PMID: 17881287 DOI: 10.1016/j.bbalip.2007.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 08/01/2007] [Accepted: 08/02/2007] [Indexed: 11/26/2022]
Abstract
Apart from its role as a risk factor in arteriosclerosis, plasma cholesterol is increasingly recognized to play a major role in the pathogenesis of Alzheimer's disease (AD). Moreover, alterations of intracellular cholesterol metabolism in neuronal and vascular cells are of considerable importance for the understanding of AD. Cellular cholesterol accumulation enhances the deposition of insoluble beta-amyloid peptides, which is considered a hallmark in the pathogenesis of AD. In order to test the hypothesis, whether exogenous beta-amyloid peptides (Abeta42, Abeta40) might contribute to cellular cholesterol accumulation by opsonization of lipoproteins, we compared the binding and uptake of native LDL, enzymatically modified LDL (E-LDL), copper oxidized LDL (Ox-LDL) and HDL as control, preincubated either in the absence or presence of Abeta42 or Abeta40, by human monocytes or monocyte-derived macrophages. Incubation of monocytes and macrophages with Abeta-lipoprotein-complexes lead to increased cellular free and esterified cholesterol when compared to non-opsonized lipoproteins, except for HDL. Furthermore, the cellular uptake of these complexes regulated Abeta-receptors such as FPRL-1 or LRP/CD91. In summary, our results suggest that Abeta42 and Abeta40 act as potent opsonins for LDL, E-LDL and Ox-LDL and enhance cellular cholesterol accumulation as well as Abeta-deposition in vessel wall macrophages.
Collapse
Affiliation(s)
- Berta Schulz
- Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, 93042 Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
86
|
Patel RT, Lev EI, Vaduganathan M, Guthikonda S, Bergeron A, Maresh K, Dong JF, Kleiman NS. Platelet reactivity among Asian Indians and Caucasians. Platelets 2007; 18:261-5. [PMID: 17538846 DOI: 10.1080/09537100701235716] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Asian Indians are reported to have higher mortality and morbidity from coronary artery disease (CAD) than other ethnic groups. This variation in events cannot be explained only by differences in conventional risk factors. Platelet activation is an important factor in the pathogenesis of CAD, however, there are limited data concerning platelet reactivity in Asian Indians. Therefore, we aimed to examine platelet reactivity in healthy Asian Indians vs. Caucasians. Thirty-five healthy, nonsmoking Asian Indians (mean age 30.1 +/- 3.6 years, 31.4% women) were matched for age and sex with 35 healthy, nonsmoking Caucasians (mean age 30.8 +/- 5 years, 31.4% women). Platelet reactivity was evaluated by measuring platelet aggregation, platelet leukocyte aggregates (PLA) formation in response to a 6-mer thrombin receptor agonist peptide (TRAP) at a final concentration of 40 microM and flow cytometry determined P-selectin expression induced by ADP, TRAP and arachidonic acid (AA). In addition, P-Selectin glycoprotein ligand-1 (PSGL-1) density on leukocytes was measured. There were no differences in platelet aggregation, basal PLA or PSGL-1 density on leukocytes between the two groups. AA-stimulated P-selectin expression was significantly higher in Asian Indians than in Caucasians (6.1 +/- 0.51 vs. 4.2 +/- 0.41 MFI, P < 0.02). After stimulation with TRAP, platelets from Asian Indians had increased PLA formation compared with Caucasians (41.6 +/- 2.9% vs. 31.4 +/- 2.7%, P < 0.02). AA induced P-selectin expression and TRAP stimulated PLA formation is increased in Asian Indians compared with Caucasians. These differences indicate an increase in measures of platelet reactivity among Asian Indians and may help elucidate the reported disparity in cardiovascular disease rates between the two ethnic groups.
Collapse
Affiliation(s)
- Rajnikant T Patel
- Division of Cardiology, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Abstract
An expanding body of evidence continues to build on the role of platelets as initial actors in the development of atherosclerotic lesions. Platelets bind to leukocytes and endothelial cells, and initiate monocyte transformation into macrophages. Platelets internalize oxidized phospholipids and promote foam cell formation. Platelets also recruit progenitor cells to the scene that are able to differentiate into foam cells or endothelial cells depending on conditions. Platelets tip the scales in the initiation, development and total extent of atherosclerotic lesions.
Collapse
Affiliation(s)
- S Lindemann
- Medizinische Klinik III, Eberhard Karls-Universität Tübingen, Tübingen, Germany
| | | | | | | |
Collapse
|
88
|
Zana M, Janka Z, Kálmán J. Oxidative stress: A bridge between Down's syndrome and Alzheimer's disease. Neurobiol Aging 2007; 28:648-76. [PMID: 16624449 DOI: 10.1016/j.neurobiolaging.2006.03.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 02/23/2006] [Accepted: 03/16/2006] [Indexed: 12/20/2022]
Abstract
Besides the genetic, biochemical and neuropathological analogies between Down's syndrome (DS) and Alzheimer's disease (AD), there is ample evidence of the involvement of oxidative stress (OS) in the pathogenesis of both disorders. The present paper reviews the publications on DS and AD in the past 10 years in light of the "gene dosage" and "two-hit" hypotheses, with regard to the alterations caused by OS in both the central nervous system and the periphery, and the main pipeline of antioxidant therapeutic strategies. OS occurs decades prior to the signature pathology and manifests as lipid, protein and DNA oxidation, and mitochondrial abnormalities. In clinical settings, the assessment of OS has traditionally been hampered by the use of assays that suffer from inherent problems related to specificity and/or sensitivity, which explains some of the conflicting results presented in this work. For DS, no scientifically proven diet or drug is yet available, and AD trials have not provided a satisfactory approach for the prevention of and therapy against OS, although most of them still need evidence-based confirmation. In the future, a balanced up-regulation of endogenous antioxidants, together with multiple exogenous antioxidant supplementation, may be expected to be one of the most promising treatment methods.
Collapse
Affiliation(s)
- Marianna Zana
- Department of Psychiatry, Faculty of Medicine, Albert Szent-Györgyi Center for Medical and Pharmaceutical Sciences, University of Szeged, 6 Semmelweis St, Szeged H-6725, Hungary.
| | | | | |
Collapse
|
89
|
Staessen JA, Richart T, Birkenhäger WH. Less Atherosclerosis and Lower Blood Pressure for a Meaningful Life Perspective With More Brain. Hypertension 2007; 49:389-400. [PMID: 17283254 DOI: 10.1161/01.hyp.0000258151.00728.d8] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jan A Staessen
- Studies Coordinating Centre, Division of Hypertension and Cardiovascular Rehabilitation, Department of Cardiovascular Diseases, University of Leuven, Leuven, Belgium.
| | | | | |
Collapse
|
90
|
Leroyer AS, Isobe H, Lesèche G, Castier Y, Wassef M, Mallat Z, Binder BR, Tedgui A, Boulanger CM. Cellular origins and thrombogenic activity of microparticles isolated from human atherosclerotic plaques. J Am Coll Cardiol 2007; 49:772-7. [PMID: 17306706 DOI: 10.1016/j.jacc.2006.10.053] [Citation(s) in RCA: 289] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 09/08/2006] [Accepted: 10/09/2006] [Indexed: 11/26/2022]
Abstract
OBJECTIVES In this study, we evaluated the cellular origins and thrombogenic potential of microparticles. BACKGROUND Human atherosclerotic plaques contain submicron vesicles (microparticles) released during cell activation or apoptosis. METHODS Microparticles were purified from plaques and platelet-free plasma from 26 patients undergoing carotid endarterectomy. Flow cytometry analysis revealed the presence of large amounts of microparticles in plaques but not in healthy vessels. RESULTS Most plaque microparticles originated from leukocytes, of which 29 +/- 5% were macrophages, 15 +/- 3% lymphocytes, and 8 +/- 1% granulocytes. Plaques microparticles also derived from erythrocytes (27 +/- 4%), smooth muscle (13 +/- 4%) and endothelial cells (8 +/- 2%), but not from platelets. Plaques from asymptomatic and symptomatic patients showed no differences in microparticle origins. Microparticles were at least 200-fold more concentrated in plaque than in plasma. Plasma microparticles were primarily platelet-derived in contrast with those of plaque and showed no smooth muscle cell origin. Both plaque and plasma microparticles exposed tissue factor and generated thrombin, but this activity was twice as high in microparticles isolated from plaques, reflecting the thrombogenic contribution of the individual classes of microparticles. CONCLUSIONS These results demonstrate that microparticles are more abundant and more thrombogenic in human atherosclerotic plaques than in plasma. The different cellular origins of plaque and plasma microparticles might explain the increased thrombogenic activity of plaque microparticles.
Collapse
|
91
|
Seimon TA, Obstfeld A, Moore KJ, Golenbock DT, Tabas I. Combinatorial pattern recognition receptor signaling alters the balance of life and death in macrophages. Proc Natl Acad Sci U S A 2006; 103:19794-9. [PMID: 17167049 PMCID: PMC1750881 DOI: 10.1073/pnas.0609671104] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Macrophage pattern recognition receptors (PRRs) play key roles in innate immunity, but they also may contribute to disease processes under certain pathological conditions. We recently showed that engagement of the type A scavenger receptor (SRA), a PRR, triggers JNK-dependent apoptosis in endoplasmic reticulum (ER)-stressed macrophages. In advanced atherosclerotic lesions, the SRA, activated JNK, and ER stress are observed in macrophages, and macrophage death in advanced atheromata leads to plaque necrosis. Herein, we show that SRA ligands trigger apoptosis in ER-stressed macrophages by cooperating with another PRR, Toll-like receptor 4 (TLR4), to redirect TLR4 signaling from prosurvival to proapoptotic. Common SRA ligands activate both TLR4 signaling and engage the SRA. The TLR4 effect results in activation of the proapoptotic MyD88-JNK branch of TLR4, whereas the SRA effect silences the prosurvival IRF-3-IFN-beta branch of TLR4. The normal cell-survival effect of LPS-induced TLR4 activation is converted into an apoptosis response by immunoneutralization of IFN-beta, and the apoptosis effect of SRA ligands is converted into a cell-survival response by reconstitution with IFN-beta. Thus, combinatorial signaling between two distinct PRRs results in a functional outcome-macrophage apoptosis that does not occur with either PRR alone. PRR-induced macrophage death may play important roles in advanced atherosclerosis and in other innate immunity-related processes in which the balance between macrophage survival and death is critical.
Collapse
Affiliation(s)
| | | | - Kathryn J. Moore
- Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114; and
| | - Douglas T. Golenbock
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Ira Tabas
- Anatomy and Cell Biology and Physiology and Cellular Biophysics, Columbia University, New York, NY 10032
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
92
|
Cullen KM, Kócsi Z, Stone J. Microvascular pathology in the aging human brain: Evidence that senile plaques are sites of microhaemorrhages. Neurobiol Aging 2006; 27:1786-96. [DOI: 10.1016/j.neurobiolaging.2005.10.016] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
93
|
Daub K, Langer H, Seizer P, Stellos K, May AE, Goyal P, Bigalke B, Schönberger T, Geisler T, Siegel-Axel D, Oostendorp RAJ, Lindemann S, Gawaz M. Platelets induce differentiation of human CD34+ progenitor cells into foam cells and endothelial cells. FASEB J 2006; 20:2559-61. [PMID: 17077283 DOI: 10.1096/fj.06-6265fje] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recruitment of human CD34+ progenitor cells toward vascular lesions and differentiation into vascular cells has been regarded as a critical initial step in atherosclerosis. Previously we found that adherent platelets represent potential mediators of progenitor cell homing besides their role in thrombus formation. On the other hand, foam cell formation represents a key process in atherosclerotic plaque formation. To investigate whether platelets are involved in progenitor cell recruitment and differentiation into endothelial cells and foam cells, we examined the interactions of platelets and CD34+ progenitor cells. Cocultivation experiments showed that human platelets recruit CD34+ progenitor cells via the specific adhesion receptors P-selectin/PSGL-1 and beta1- and beta2-integrins. Furthermore, platelets were found to induce differentiation of CD34+ progenitor cells into mature foam cells and endothelial cells. Platelet-induced foam cell generation could be prevented partially by HMG coenzyme A reductase inhibitors via reduction of matrix metalloproteinase-9 (MMP-9) secretion. Finally, agonists of peroxisome proliferator-activated receptor-alpha and -gamma attenuated platelet-induced foam cell generation and production of MMP-9. The present study describes a potentially important mechanism of platelet-induced foam cell formation and generation of endothelium in atherogenesis and atheroprogression. The understanding and modulation of these mechanisms may offer new treatment strategies for patients at high risk for atherosclerotic diseases.
Collapse
Affiliation(s)
- Karin Daub
- Medizinische Klinik III, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Abstract
PURPOSE OF REVIEW Amyloid deposits are a defining feature of several age-related and debilitating diseases. Their widespread presence in atherosclerotic plaques suggests a potential role in lesion development. This review discusses the proteins known to accumulate in atheroma and examines the evidence that amyloid-like structures activate macrophage signaling pathways linked to inflammation and prothrombotic potential. RECENT FINDINGS Numerous proteins that accumulate in atherosclerotic plaques form amyloid fibrils in vivo, including apolipoproteins, beta-amyloid, and alpha1-antitrypsin. In addition, oxidation or enzymatic modification of low-density lipoproteins induces a structural reorganization of the particle, including the acquisition of amyloid-like properties. Similarly, glycation of serum albumin, as observed in diabetes, is accompanied by the formation of aggregates with all the hallmarks of amyloid. Several receptors implicated in atherogenesis modulate the fate of amyloid fibrils by mediating their clearance (scavenger receptors A and B-I), activating inflammatory signaling cascades (receptor for advanced glycation endproducts), or both (CD36). Finally, recent studies indicate that amyloid deposition accelerates diet-induced atherosclerosis in mice. SUMMARY Given the substantial evidence that amyloid fibrils or preamyloidogenic species are cytotoxic, the aberrant deposition of amyloid in the intima may be pathologically important in vascular inflammation and the promotion of atherosclerosis.
Collapse
Affiliation(s)
- Geoffrey J Howlett
- Department of Biochemistry and Molecular Biology, University of Melbourne, Victoria, Australia
| | | |
Collapse
|
95
|
Carter CJ. Convergence of genes implicated in Alzheimer's disease on the cerebral cholesterol shuttle: APP, cholesterol, lipoproteins, and atherosclerosis. Neurochem Int 2006; 50:12-38. [PMID: 16973241 DOI: 10.1016/j.neuint.2006.07.007] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 06/30/2006] [Accepted: 07/11/2006] [Indexed: 11/24/2022]
Abstract
Polymorphic genes associated with Alzheimer's disease (see ) delineate a clearly defined pathway related to cerebral and peripheral cholesterol and lipoprotein homoeostasis. They include all of the key components of a glia/neurone cholesterol shuttle including cholesterol binding lipoproteins APOA1, APOA4, APOC1, APOC2, APOC3, APOD, APOE and LPA, cholesterol transporters ABCA1, ABCA2, lipoprotein receptors LDLR, LRP1, LRP8 and VLDLR, and the cholesterol metabolising enzymes CYP46A1 and CH25H, whose oxysterol products activate the liver X receptor NR1H2 and are metabolised to esters by SOAT1. LIPA metabolises cholesterol esters, which are transported by the cholesteryl ester transport protein CETP. The transcription factor SREBF1 controls the expression of most enzymes of cholesterol synthesis. APP is involved in this shuttle as it metabolises cholesterol to 7-betahydroxycholesterol, a substrate of SOAT1 and HSD11B1, binds to APOE and is tethered to LRP1 via APPB1, APBB2 and APBB3 at the cytoplasmic domain and via LRPAP1 at the extracellular domain. APP cleavage products are also able to prevent cholesterol binding to APOE. BACE cleaves both APP and LRP1. Gamma-secretase (PSEN1, PSEN2, NCSTN) cleaves LRP1 and LRP8 as well as APP and their degradation products control transcription factor TFCP2, which regulates thymidylate synthase (TS) and GSK3B expression. GSK3B is known to phosphorylate the microtubule protein tau (MAPT). Dysfunction of this cascade, carved out by genes implicated in Alzheimer's disease, may play a major role in its pathology. Many other genes associated with Alzheimer's disease affect cholesterol or lipoprotein function and/or have also been implicated in atherosclerosis, a feature of Alzheimer's disease, and this duality may well explain the close links between vascular and cerebral pathology in Alzheimer's disease. The definition of many of these genes as risk factors is highly contested. However, when polymorphic susceptibility genes belong to the same signaling pathway, the risk associated with multigenic disease is better related to the integrated effects of multiple polymorphisms of genes within the same pathway than to variants in any single gene [Wu, X., Gu, J., Grossman, H.B., Amos, C.I., Etzel, C., Huang, M., Zhang, Q., Millikan, R.E., Lerner, S., Dinney, C.P., Spitz, M.R., 2006. Bladder cancer predisposition: a multigenic approach to DNA-repair and cell-cycle-control genes. Am. J. Hum. Genet. 78, 464-479.]. Thus, the fact that Alzheimer's disease susceptibility genes converge on a clearly defined signaling network has important implications for genetic association studies.
Collapse
|
96
|
Moore KJ, Freeman MW. Scavenger receptors in atherosclerosis: beyond lipid uptake. Arterioscler Thromb Vasc Biol 2006; 26:1702-11. [PMID: 16728653 DOI: 10.1161/01.atv.0000229218.97976.43] [Citation(s) in RCA: 403] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Atherosclerotic vascular disease arises as a consequence of the deposition and retention of serum lipoproteins in the artery wall. Macrophages in lesions have been shown to express > or = 6 structurally different scavenger receptors for uptake of modified forms of low-density lipoproteins (LDLs) that promote the cellular accumulation of cholesterol. Because cholesterol-laden macrophage foam cells are the primary component of the fatty streak, the earliest atherosclerotic lesion, lipid uptake by these pathways has long been considered a requisite and initiating event in the pathogenesis of atherosclerosis. Although the removal of proinflammatory modified LDLs from the artery wall via scavenger receptors would seem beneficial, the pathways distal to scavenger receptor uptake that metabolize the modified lipoproteins appear to become overwhelmed, leading to the accumulation of cholesterol-laden macrophages and establishment of a chronic inflammatory setting. These observations have led to the current dogma concerning scavenger receptors, which is that they are proatherogenic molecules. However, recent studies suggest that the effects of scavenger receptors on atherogenesis may be more complex. In addition to modified lipoprotein uptake, these proteins are now known to regulate apoptotic cell clearance, initiate signal transduction, and serve as pattern recognition receptors for pathogens, activities that may contribute both to proinflammatory and anti-inflammatory forces regulating atherogenesis. In this review, we focus on recent advances in our knowledge of scavenger receptor regulation and signal transduction, their roles in sterile inflammation and infection, and the potential impact of these pathways in regulating the balance of lipid accumulation and inflammation in the artery wall.
Collapse
Affiliation(s)
- Kathryn J Moore
- Lipid Metabolism Unit, GRJ1328, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114, USA.
| | | |
Collapse
|
97
|
Abstract
The vascular endothelium synthesises the vasodilator and anti-aggregatory mediator nitric oxide (NO) from L-arginine. This action is catalysed by the action of NO synthases, of which two forms are present in the endothelium. Endothelial (e)NOS is highly regulated, constitutively active and generates NO in response to shear stress and other physiological stimuli. Inducible (i)NOS is expressed in response to immunological stimuli, is transcriptionally regulated and, once activated, generates large amounts of NO that contribute to pathological conditions. The physiological actions of NO include the regulation of vascular tone and blood pressure, prevention of platelet aggregation and inhibition of vascular smooth muscle proliferation. Many of these actions are a result of the activation by NO of the soluble guanylate cyclase and consequent generation of cyclic guanosine monophosphate (cGMP). An additional target of NO is the cytochrome c oxidase, the terminal enzyme in the electron transport chain, which is inhibited by NO in a manner that is reversible and competitive with oxygen. The consequent reduction of cytochrome c oxidase leads to the release of superoxide anion. This may be an NO-regulated cell signalling system which, under certain circumstances, may lead to the formation of the powerful oxidant species, peroxynitrite, that is associated with a variety of vascular diseases.
Collapse
Affiliation(s)
- S Moncada
- The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
98
|
Beher D, Graham SL. Protease inhibitors as potential disease-modifying therapeutics for Alzheimer’s disease. Expert Opin Investig Drugs 2005; 14:1385-409. [PMID: 16255678 DOI: 10.1517/13543784.14.11.1385] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The current lack of an effective treatment for Alzheimer's disease (AD) has fuelled an intense search for novel therapies for this neurodegenerative condition. Aberrant production or decreased clearance of amyloid-beta peptides is widely accepted to be causative for AD. Amyloid-beta peptides are produced by sequential processing of the beta-amyloid precursor protein by the two aspartyl-type proteases beta-secretase and gamma-secretase. Because proteases are generally classified as druggable, these secretases are a centre of attraction for various drug discovery efforts. Although a large number of specific drug-like gamma-secretase inhibitors have been discovered, progress towards the clinic has been slowed by the broad substrate specificity of this unusual intramembrane-cleaving enzyme. In particular, the Notch receptor depends on gamma-secretase for its signalling function and, thus, gamma-secretase inhibition produces distinct phenotypes related to a disturbance of this pathway in preclinical animal models. The main task now is to define the therapeutic window in man between desired central efficacy and Notch-related side effects. In contrast, most studies with knockout animals have indicated that beta-secretase inhibition may have minimal adverse effects; however, the properties of the active site of this enzyme make it difficult to find small-molecule inhibitors that bind with high affinity. In most instances, inhibitors are large and peptidic in nature and, therefore, unsuitable as drug candidates. Thus, there are many issues associated with the development of protease inhibitors for AD that must be addressed before they can be used to test the 'amyloid cascade hypothesis' in the clinic. The outcomes of such trials will provide new directions to the scientific community and hopefully new treatment options for AD patients.
Collapse
Affiliation(s)
- Dirk Beher
- Department of Molecular & Cellular Neuroscience, Merck Sharp & Dohme Research Laboratories, The Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, UK.
| | | |
Collapse
|
99
|
Wang BS, Chen JH, Liang YC, Duh PD. Effects of Welsh onion on oxidation of low-density lipoprotein and nitric oxide production in macrophage cell line RAW 264.7. Food Chem 2005. [DOI: 10.1016/j.foodchem.2004.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
100
|
Schrijvers DM, De Meyer GRY, Kockx MM, Herman AG, Martinet W. Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis. Arterioscler Thromb Vasc Biol 2005; 25:1256-61. [PMID: 15831805 DOI: 10.1161/01.atv.0000166517.18801.a7] [Citation(s) in RCA: 372] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Apoptotic cell death has been demonstrated in advanced human atherosclerotic plaques. Apoptotic cells (ACs) should be rapidly removed by macrophages, otherwise secondary necrosis occurs, which in turn elicits inflammatory responses and plaque progression. Therefore, we investigated the efficiency of phagocytosis of ACs by macrophages in atherosclerosis. METHODS AND RESULTS Human endarterectomy specimens and human tonsils were costained for CD68 (macrophages) and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) (apoptosis). Free and phagocytized ACs were counted in both tissues. The ratio of free versus phagocytized AC was 19-times higher in human atherosclerotic plaques as compared with human tonsils, indicating a severe defect in clearance of AC. Impaired phagocytosis of AC was also detected in plaques from cholesterol-fed rabbits and did not further change with plaque progression. In vitro experiments with J774 or peritoneal mouse macrophages showed that several factors caused impaired phagocytosis of AC including cytoplasmic overload of macrophages with indigestible material (beads), free radical attack, and competitive inhibition among oxidized red blood cells, oxidized low-density lipoprotein and ACs for the same receptor(s) on the macrophage. CONCLUSIONS Our data demonstrate that phagocytosis of ACs is impaired in atherosclerotic plaques, which is at least partly attributed to oxidative stress and cytoplasmic saturation with indigestible material.
Collapse
|