51
|
Botto C, Rucli M, Tekinsoy MD, Pulman J, Sahel JA, Dalkara D. Early and late stage gene therapy interventions for inherited retinal degenerations. Prog Retin Eye Res 2021; 86:100975. [PMID: 34058340 DOI: 10.1016/j.preteyeres.2021.100975] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022]
Abstract
Inherited and age-related retinal degeneration is the hallmark of a large group of heterogeneous diseases and is the main cause of untreatable blindness today. Genetic factors play a major pathogenic role in retinal degenerations for both monogenic diseases (such as retinitis pigmentosa) and complex diseases with established genetic risk factors (such as age-related macular degeneration). Progress in genotyping techniques and back of the eye imaging are completing our understanding of these diseases and their manifestations in patient populations suffering from retinal degenerations. It is clear that whatever the genetic cause, the majority of vision loss in retinal diseases results from the loss of photoreceptor function. The timing and circumstances surrounding the loss of photoreceptor function determine the adequate therapeutic approach to use for each patient. Among such approaches, gene therapy is rapidly becoming a therapeutic reality applicable in the clinic. This massive move from laboratory work towards clinical application has been propelled by the advances in our understanding of disease genetics and mechanisms, gene delivery vectors, gene editing systems, and compensatory strategies for loss of photoreceptor function. Here, we provide an overview of existing modalities of retinal gene therapy and their relevance based on the needs of patient populations suffering from inherited retinal degenerations.
Collapse
Affiliation(s)
- Catherine Botto
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Marco Rucli
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Müge Defne Tekinsoy
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Juliette Pulman
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France; Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, United States; CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, F-75012, Paris, France; Fondation Ophtalmologique Rothschild, F-75019, Paris, France
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France.
| |
Collapse
|
52
|
Zhu D, Schieferecke AJ, Lopez PA, Schaffer DV. Adeno-Associated Virus Vector for Central Nervous System Gene Therapy. Trends Mol Med 2021; 27:524-537. [PMID: 33895085 DOI: 10.1016/j.molmed.2021.03.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022]
Abstract
The past several years have witnessed significant advances in the development of therapeutic gene delivery for neurological disorders of the central nervous system (CNS). In particular, genome-wide sequencing analysis has deepened our understanding of mutations that underlie many monogenic disorders, which in turn has contributed to clinical advances involving adeno-associated virus (AAV) vector delivery of replacement genes to treat recessive disorders. Moreover, gene therapy has been further bolstered with advances in genome editing tools that allow researchers to silence, repair, and amend endogenous genes. However, despite strong preclinical and clinical progress, challenges remain, including delivery and safety. Here, we discuss advances in AAV engineering, recent developments in cargo design, and translation of these technologies towards clinical progress.
Collapse
Affiliation(s)
- Danqing Zhu
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - Adam J Schieferecke
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Paola A Lopez
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - David V Schaffer
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA; Department of Bioengineering, University of California, Berkeley, CA, 94720, USA; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
53
|
Bansal M, Acharya S, Sharma S, Phutela R, Rauthan R, Maiti S, Chakraborty D. CRISPR Cas9 based genome editing in inherited retinal dystrophies. Ophthalmic Genet 2021; 42:365-374. [PMID: 33821751 DOI: 10.1080/13816810.2021.1904421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Precision genome engineering, with targeted therapy towards patient-specific mutations is predicted to be the future of personalized medicine. Ophthalmology is in the frontiers of development of targeted therapy since the eye is an accessible organ and has the ease of both delivery as well as monitoring effects of therapy. MATERIALS AND METHODS We reviewed literature using keywords CRISPR, precision medicine, genomic editing, retinal dystrophies, retinitis pigmentosa, Usher syndrome, Stargardt's Disease. Further, we collated data on current clinical trials. RESULTS There is growing evidence on the role of genomic editing in retinal dystrophies, the various methods used, and stage of development of different therapies have been summarized in this paper. CONCLUSIONS The CRISPR-Cas9 system has revolutionized genome editing, and opened avenues in drug discovery. It is important to understand the role of this system along with its applicability in the field of ophthalmology. In this review article, we briefly describe its methodology, the strategies of employing it for making genetic perturbations, and explore its applications in inherited retinal dystrophies.
Collapse
Affiliation(s)
- Mayank Bansal
- Council of Scientific and Industrial Research - Institute of Genomics & Integrative Biology, New Delhi, India.,Academy of Scientific & Innovative Research, Ghaziabad, India
| | - Sundaram Acharya
- Council of Scientific and Industrial Research - Institute of Genomics & Integrative Biology, New Delhi, India.,Academy of Scientific & Innovative Research, Ghaziabad, India
| | - Saumya Sharma
- Council of Scientific and Industrial Research - Institute of Genomics & Integrative Biology, New Delhi, India.,Academy of Scientific & Innovative Research, Ghaziabad, India
| | - Rhythm Phutela
- Council of Scientific and Industrial Research - Institute of Genomics & Integrative Biology, New Delhi, India.,Academy of Scientific & Innovative Research, Ghaziabad, India
| | - Riya Rauthan
- Council of Scientific and Industrial Research - Institute of Genomics & Integrative Biology, New Delhi, India.,Academy of Scientific & Innovative Research, Ghaziabad, India
| | - Souvik Maiti
- Council of Scientific and Industrial Research - Institute of Genomics & Integrative Biology, New Delhi, India.,Academy of Scientific & Innovative Research, Ghaziabad, India
| | - Debojyoti Chakraborty
- Council of Scientific and Industrial Research - Institute of Genomics & Integrative Biology, New Delhi, India.,Academy of Scientific & Innovative Research, Ghaziabad, India
| |
Collapse
|
54
|
Singh RK, Binette F, Seiler M, Petersen-Jones SM, Nasonkin IO. Pluripotent Stem Cell-Based Organoid Technologies for Developing Next-Generation Vision Restoration Therapies of Blindness. J Ocul Pharmacol Ther 2021; 37:147-156. [PMID: 33052761 PMCID: PMC8060716 DOI: 10.1089/jop.2020.0016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/28/2020] [Indexed: 12/25/2022] Open
Abstract
Blindness, associated with death of retinal cells at the back of the eye, is caused by a number of conditions with high prevalence such as glaucoma, age-related macular degeneration, and diabetic retinopathy. In addition, a large number of orphan inherited (mostly monogenic) conditions, such as retinitis pigmentosa and Leber Congenital Amaurosis, add to the overall number of patients with blinding retinal degenerative diseases. Blindness caused by deterioration and loss of retina is so far incurable. Modern biomedical research leveraging molecular and regenerative medicine approaches had a number of groundbreaking discoveries and proof-of-principle treatments of blindness in animals. However, these methods are slow to be standardized and commercialized as therapies to benefit people losing their eyesight due to retinal degenerative conditions. In this review, we will outline major regenerative medicine approaches, which are emerging as promising for preserving or/and restoring vision. We discuss the potential of each of these approaches to reach commercialization step and be converted to treatments, which could at least ameliorate blindness caused by retinal cell death.
Collapse
Affiliation(s)
| | | | - Magdalene Seiler
- Stem Cell Research Center, University of California, Irvine, Irvine, California, USA
- Department of Physical Medicine & Rehabilitation, University of California, Irvine, Irvine, California, USA
- Department of Ophthalmology, University of California, Irvine, Irvine, California, USA
- Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, California, USA
| | - Simon M. Petersen-Jones
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | | |
Collapse
|
55
|
Bai Z, Xie Y, Liu L, Shao J, Liu Y, Kong X. Genetic investigation of 211 Chinese families expands the mutational and phenotypical spectra of hereditary retinopathy genes through targeted sequencing technology. BMC Med Genomics 2021; 14:92. [PMID: 33781268 PMCID: PMC8008643 DOI: 10.1186/s12920-021-00935-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 03/08/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Hereditary retinopathy is a significant cause of blindness worldwide. Despite the discovery of many mutations in various retinopathies, a large number of patients remain genetically undiagnosed. Targeted next-generation sequencing of the human genome is a suitable approach for the molecular diagnosis of retinopathy. METHODS We describe a cohort of 211 families from central China with various forms of retinopathy; 95 patients were investigated using multigene panel sequencing, and the other 116 with suspected Leber hereditary optic neuropathy (LHON) were tested by Sanger sequencing. The detected variation of targeted sequencing was verified by PCR-based Sanger sequencing. We performed a comprehensive analysis of the cases using sequencing data and ophthalmologic examination information. RESULTS Potential causal mutations were identified in the majority of families with retinopathy (57.9% of 95 families) and suspected LHON (21.6% of 116 families). There were 68 variants of a certain significance distributed in 31 known disease-causing genes in the 95 families; 37 of the variants are novel and have not been reported to be related to hereditary retinopathy. The NGS panel solution provided a 45.3% potential diagnostic rate for retinopathy families, with candidate gene mutations of undefined pathogenicity revealed in another 12.6%of the families. CONCLUSION Our study uncovered novel mutations and phenotypic aspects of retinopathy and demonstrated the genetic and clinical heterogeneity of related conditions. The findings show the detection rate of pathogenic variants in patients with hereditary retinopathy in central China as well as the diversity and gene distribution of these variants. The significance of molecular genetic testing for patients with hereditary retinopathy is also highlighted.
Collapse
Affiliation(s)
- Zhouxian Bai
- The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yanchuan Xie
- The Department of Central Laboratory, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471003, Henan, China
| | - Lina Liu
- The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jingzhi Shao
- The Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuying Liu
- The Physical Examination Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiangdong Kong
- The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
56
|
Telegenetics for inherited retinal diseases in the COVID-19 environment. Int J Retina Vitreous 2021; 7:25. [PMID: 33781332 PMCID: PMC8006125 DOI: 10.1186/s40942-021-00301-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/23/2021] [Indexed: 11/10/2022] Open
Abstract
Inherited retinal diseases (IRDs) are visually debilitating conditions that affect families worldwide. They require extensive clinical testing, examination, and patient and family counseling, which are frequently accomplished over single-day extended clinic visits. However, the COVID-19 pandemic has limited the number of patients and staff allowed in clinics, leading to interruptions in care. We therefore developed telehealth management protocols for complete or hybrid virtual visits. The three main components of our telegenetics approach included reviewing the diagnostic tests results remotely, in-person or virtual video visits with a retina specialist, and virtual genetic testing using saliva kits. During the first 5 months of the program, telegenetic care was provided for 80 patients, including 3 international patients, and a spectrum of retinal dystrophies were diagnosed and managed. In conclusion, telegenetic virtual visits ensure continuity of care while reducing patient and provider exposure to SARS-CoV-2 and may continue and expand into other medical genetic conditions long after the pandemic.
Collapse
|
57
|
Molinari E, Sayer JA. Gene and epigenetic editing in the treatment of primary ciliopathies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 182:353-401. [PMID: 34175048 DOI: 10.1016/bs.pmbts.2021.01.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Primary ciliopathies are inherited human disorders that arise from mutations in ciliary genes. They represent a spectrum of severe, incurable phenotypes, differentially involving several organs, including the kidney and the eye. The development of gene-based therapies is opening up new avenues for the treatment of ciliopathies. Particularly attractive is the possibility of correcting in situ the causative genetic mutation, or pathological epigenetic changes, through the use of gene editing tools. Due to their versatility and efficacy, CRISPR/Cas-based systems represent the most promising gene editing toolkit for clinical applications. However, delivery and specificity issues have so far held back the translatability of CRISPR/Cas-based therapies into clinical practice, especially where systemic administration is required. The eye, with its characteristics of high accessibility and compartmentalization, represents an ideal target for in situ gene correction. Indeed, studies for the evaluation of a CRISPR/Cas-based therapy for in vivo gene correction to treat a retinal ciliopathy have reached the clinical stage. Further technological advances may be required for the development of in vivo CRISPR-based treatments for the kidney. We discuss here the possibilities and the challenges associated to the implementation of CRISPR/Cas-based therapies for the treatment of primary ciliopathies with renal and retinal phenotypes.
Collapse
Affiliation(s)
- Elisa Molinari
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom; Renal Services, The Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
58
|
Peptidomimetics Therapeutics for Retinal Disease. Biomolecules 2021; 11:biom11030339. [PMID: 33668179 PMCID: PMC7995992 DOI: 10.3390/biom11030339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/11/2021] [Accepted: 02/20/2021] [Indexed: 12/28/2022] Open
Abstract
Ocular disorders originating in the retina can result in a partial or total loss of vision, making drug delivery to the retina of vital importance. However, effectively delivering drugs to the retina remains a challenge for ophthalmologists due to various anatomical and physicochemical barriers in the eye. This review introduces diverse administration routes and the accordant pharmacokinetic profiles of ocular drugs to aid in the development of safe and efficient drug delivery systems to the retina with a focus on peptidomimetics as a growing class of retinal drugs, which have great therapeutic potential and a high degree of specificity. We also discuss the pharmacokinetic profiles of small molecule drugs due to their structural similarity to small peptidomimetics. Lastly, various formulation strategies are suggested to overcome pharmacokinetic hurdles such as solubility, retention time, enzymatic degradation, tissue targeting, and membrane permeability. This knowledge can be used to help design ocular delivery platforms for peptidomimetics, not only for the treatment of various retinal diseases, but also for the selection of potential peptidomimetic drug targets.
Collapse
|
59
|
Caruso S, Ryu J, Quinn PM, Tsang SH. Precision metabolome reprogramming for imprecision therapeutics in retinitis pigmentosa. J Clin Invest 2021; 130:3971-3973. [PMID: 32657778 DOI: 10.1172/jci139239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Retinitis pigmentosa (RP), the most common form of rod-cone dystrophy, is caused by greater than 3100 mutations in more than 71 genes, many of which are preferentially expressed in rod photoreceptors. Cone death generally follows rod loss regardless of the underlying pathogenic mutation. Preventing the secondary loss of cone photoreceptors would preserve central visual acuity and substantially improve patients' quality of life. In this issue of the JCI, Wang et al. demonstrate that adeno-associated virus-mediated overexpression of TGF-β1 promoted cone survival and function in 3 distinct RP models with rod-specific mutations. TGF-β1 induces microglia to metabolically tune from a glycolytic phenotype (M1) to an oxidative phenotype (M2), which associates with neuroprotection and the antiinflammatory ecosystem. Consolidating the results of this study with our current understanding of how TGF-β1 regulates microglia polarization, we highlight cell-specific metabolome reprogramming as a promising non-gene-specific therapeutic avenue for inherited retinal degenerations.
Collapse
Affiliation(s)
- Salvatore Caruso
- Jonas Children's Vision Care and Bernard and Shirlee Brown Glaucoma Research Laboratory.,Department of Biomedical Engineering, and
| | - Joseph Ryu
- Jonas Children's Vision Care and Bernard and Shirlee Brown Glaucoma Research Laboratory
| | - Peter Mj Quinn
- Jonas Children's Vision Care and Bernard and Shirlee Brown Glaucoma Research Laboratory
| | - Stephen H Tsang
- Jonas Children's Vision Care and Bernard and Shirlee Brown Glaucoma Research Laboratory.,Columbia Stem Cell Initiative.,Department of Ophthalmology.,Department of Pathology.,Department of Cell Biology.,Department of Biomedical Engineering, and.,Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
60
|
White KA, Nelvagal HR, Poole TA, Lu B, Johnson TB, Davis S, Pratt MA, Brudvig J, Assis AB, Likhite S, Meyer K, Kaspar BK, Cooper JD, Wang S, Weimer JM. Intracranial delivery of AAV9 gene therapy partially prevents retinal degeneration and visual deficits in CLN6-Batten disease mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 20:497-507. [PMID: 33665223 PMCID: PMC7887332 DOI: 10.1016/j.omtm.2020.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023]
Abstract
Batten disease is a family of rare, fatal, neuropediatric diseases presenting with memory/learning decline, blindness, and loss of motor function. Recently, we reported the use of an AAV9-mediated gene therapy that prevents disease progression in a mouse model of CLN6-Batten disease (Cln6 nclf ), restoring lifespans in treated animals. Despite the success of our viral-mediated gene therapy, the dosing strategy was optimized for delivery to the brain parenchyma and may limit the therapeutic potential to other disease-relevant tissues, such as the eye. Here, we examine whether cerebrospinal fluid (CSF) delivery of scAAV9.CB.CLN6 is sufficient to ameliorate visual deficits in Cln6 nclf mice. We show that intracerebroventricular (i.c.v.) delivery of scAAV9.CB.CLN6 completely prevents hallmark Batten disease pathology in the visual processing centers of the brain, preserving neurons of the superior colliculus, thalamus, and cerebral cortex. Importantly, i.c.v.-delivered scAAV9.CB.CLN6 also expresses in many cells throughout the central retina, preserving many photoreceptors typically lost in Cln6 nclf mice. Lastly, scAAV9.CB.CLN6 treatment partially preserved visual acuity in Cln6 nclf mice as measured by optokinetic response. Taken together, we report the first instance of CSF-delivered viral gene reaching and rescuing pathology in both the brain parenchyma and retinal neurons, thereby partially slowing visual deterioration.
Collapse
Affiliation(s)
- Katherine A White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Hemanth R Nelvagal
- Pediatric Storage Disorders Laboratory, Division of Genetics and Genomics, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Pediatrics, The Lundquist Institute at Harbor-UCLA Medical Center and David Geffen School of Medicine, UCLA, Torrance, CA 90502, USA
| | - Timothy A Poole
- Pediatric Storage Disorders Laboratory, Division of Genetics and Genomics, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bin Lu
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Tyler B Johnson
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA.,Amicus Therapeutics, Philadelphia, PA 19104, USA
| | - Samantha Davis
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Melissa A Pratt
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Jon Brudvig
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Ana B Assis
- Department of Pediatrics, The Lundquist Institute at Harbor-UCLA Medical Center and David Geffen School of Medicine, UCLA, Torrance, CA 90502, USA
| | - Shibi Likhite
- Nationwide Children's Hospital. He was involved in AAV9 construct development
| | - Kathrin Meyer
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Brian K Kaspar
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Jonathan D Cooper
- Pediatric Storage Disorders Laboratory, Division of Genetics and Genomics, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Pediatrics, The Lundquist Institute at Harbor-UCLA Medical Center and David Geffen School of Medicine, UCLA, Torrance, CA 90502, USA
| | - Shaomei Wang
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jill M Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA.,Amicus Therapeutics, Philadelphia, PA 19104, USA.,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57069, USA
| |
Collapse
|
61
|
Kiser PD, Palczewski K. Pathways and disease-causing alterations in visual chromophore production for vertebrate vision. J Biol Chem 2021; 296:100072. [PMID: 33187985 PMCID: PMC7948990 DOI: 10.1074/jbc.rev120.014405] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
All that we view of the world begins with an ultrafast cis to trans photoisomerization of the retinylidene chromophore associated with the visual pigments of rod and cone photoreceptors. The continual responsiveness of these photoreceptors is then sustained by regeneration processes that convert the trans-retinoid back to an 11-cis configuration. Recent biochemical and electrophysiological analyses of the retinal G-protein-coupled receptor (RGR) suggest that it could sustain the responsiveness of photoreceptor cells, particularly cones, even under bright light conditions. Thus, two mechanisms have evolved to accomplish the reisomerization: one involving the well-studied retinoid isomerase (RPE65) and a second photoisomerase reaction mediated by the RGR. Impairments to the pathways that transform all-trans-retinal back to 11-cis-retinal are associated with mild to severe forms of retinal dystrophy. Moreover, with age there also is a decline in the rate of chromophore regeneration. Both pharmacological and genetic approaches are being used to bypass visual cycle defects and consequently mitigate blinding diseases. Rapid progress in the use of genome editing also is paving the way for the treatment of disparate retinal diseases. In this review, we provide an update on visual cycle biochemistry and then discuss visual-cycle-related diseases and emerging therapeutics for these disorders. There is hope that these advances will be helpful in treating more complex diseases of the eye, including age-related macular degeneration (AMD).
Collapse
Affiliation(s)
- Philip D Kiser
- The Department of Physiology & Biophysics, University of California, Irvine, California, USA; Research Service, The VA Long Beach Health Care System, Long Beach, California, USA; The Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, California, USA.
| | - Krzysztof Palczewski
- The Department of Physiology & Biophysics, University of California, Irvine, California, USA; The Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, California, USA; The Department of Chemistry, University of California, Irvine, California, USA.
| |
Collapse
|
62
|
Kim US, Mahroo OA, Mollon JD, Yu-Wai-Man P. Retinal Ganglion Cells-Diversity of Cell Types and Clinical Relevance. Front Neurol 2021; 12:661938. [PMID: 34093409 PMCID: PMC8175861 DOI: 10.3389/fneur.2021.661938] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/06/2021] [Indexed: 11/24/2022] Open
Abstract
Retinal ganglion cells (RGCs) are the bridging neurons that connect the retinal input to the visual processing centres within the central nervous system. There is a remarkable diversity of RGCs and the various subtypes have unique morphological features, distinct functions, and characteristic pathways linking the inner retina to the relevant brain areas. A number of psychophysical and electrophysiological tests have been refined to investigate this large and varied population of RGCs. Technological advances, such as high-resolution optical coherence tomography imaging, have provided additional tools to define the pattern of RGC involvement and the chronological sequence of events in both inherited and acquired optic neuropathies. The mechanistic insights gained from these studies, in particular the selective vulnerability and relative resilience of particular RGC subtypes, are of fundamental importance as they are directly relevant to the development of targeted therapies for these invariably progressive blinding diseases. This review provides a comprehensive description of the various types of RGCs, the developments in proposed methods of classification, and the current gaps in our knowledge of how these RGCs are differentially affected depending on the underlying aetiology. The synthesis of the current body of knowledge on the diversity of RGCs and the pathways that are potentially amenable to therapeutic modulation will hopefully lead to much needed effective treatments for patients with optic neuropathies.
Collapse
Affiliation(s)
- Ungsoo Samuel Kim
- Kim's Eye Hospital, Seoul, South Korea
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- *Correspondence: Ungsoo Samuel Kim
| | - Omar A. Mahroo
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
- Section of Ophthalmology, King's College London, St. Thomas' Hospital Campus, London, United Kingdom
| | - John D. Mollon
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Patrick Yu-Wai-Man
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
63
|
Lee SJ, Wang W, Jin L, Lu X, Gao L, Chen Y, Liu T, Emery D, Vukmanic E, Liu Y, Kaplan HJ, Dean DC. Rod photoreceptor clearance due to misfolded rhodopsin is linked to a DAMP-immune checkpoint switch. J Biol Chem 2021; 296:100102. [PMID: 33214223 PMCID: PMC7949052 DOI: 10.1074/jbc.ra120.016053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 01/19/2023] Open
Abstract
Chronic endoplasmic reticulum stress resulting from misfolding of the visual pigment rhodopsin (RHO) can lead to loss of rod photoreceptors, which initiates retinitis pigmentosa, characterized initially by diminished nighttime and peripheral vision. Cone photoreceptors depend on rods for glucose transport, which the neurons use for assembly of visual pigment-rich structures; as such, loss of rods also leads to a secondary loss of cone function, diminishing high-resolution color vision utilized for tasks including reading, driving, and facial recognition. If dysfunctional rods could be maintained to continue to serve this secondary cone preservation function, it might benefit patients with retinitis pigmentosa, but the mechanisms by which rods are removed are not fully established. Using pigs expressing mutant RHO, we find that induction of a danger-associated molecular pattern (DAMP) "eat me" signal on the surface of mutant rods is correlated with targeting the live cells for (PrCR) by retinal myeloid cells. Glucocorticoid therapy leads to replacement of this DAMP with a "don't eat me" immune checkpoint on the rod surface and inhibition of PrCR. Surviving rods then continue to promote glucose transport to cones, maintaining their viability.
Collapse
Affiliation(s)
- Sang Joon Lee
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky, USA; Department of Ophthalmology, Kosin University College of Medicine, Seo-gu, Busan, Korea
| | - Wei Wang
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky, USA
| | - Lei Jin
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky, USA; Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Xiaoqin Lu
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky, USA; Department of Medicine, University of Louisville Health Sciences Center, Louisville, Kentucky, USA
| | - Lei Gao
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky, USA; Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yao Chen
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky, USA; Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Tingting Liu
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky, USA; Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Douglas Emery
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky, USA; Department of Medicine, University of Louisville Health Sciences Center, Louisville, Kentucky, USA
| | - Eric Vukmanic
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky, USA; Department of Medicine, University of Louisville Health Sciences Center, Louisville, Kentucky, USA
| | - Yongqing Liu
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky, USA; Department of Medicine, University of Louisville Health Sciences Center, Louisville, Kentucky, USA
| | - Henry J Kaplan
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky, USA
| | - Douglas C Dean
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky, USA; Department of Medicine, University of Louisville Health Sciences Center, Louisville, Kentucky, USA.
| |
Collapse
|
64
|
Downie L, Amor DJ, Halliday J, Lewis S, Martyn M, Goranitis I. Exome Sequencing for Isolated Congenital Hearing Loss: A Cost-Effectiveness Analysis. Laryngoscope 2020; 131:E2371-E2377. [PMID: 33382469 DOI: 10.1002/lary.29356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVES/HYPOTHESIS To assess the relative cost-effectiveness of exome sequencing for isolated congenital deafness compared with standard care. STUDY DESIGN Incremental cost-effectiveness and cost-benefit analyses were undertaken from the perspective of the Australian healthcare system using an 18-year time horizon. METHODS A decision tree was used to model the costs and outcomes associated with exome sequencing and standard care for infants presenting with isolated congenital deafness. RESULTS Exome sequencing resulted in an incremental cost of AU$1,000 per child and an additional 30 diagnoses per 100 children tested. The incremental cost-effectiveness ratio was AU$3,333 per additional diagnosis. The mean societal willingness to pay for exome sequencing was estimated at AU$4,600 per child tested relative to standard care, resulting in a positive net benefit of AU$3,600. Deterministic and probabilistic sensitivity analyses confirmed the cost-effectiveness of exome sequencing. CONCLUSIONS Our findings demonstrate the cost-effectiveness of exome sequencing in congenital hearing loss, through increased diagnostic rate and consequent improved process of care by reducing or ceasing diagnostic investigation or facilitating targeted further investigation. We recommend equitable funding for exome sequencing in infants presenting with isolated congenital hearing loss. LEVEL OF EVIDENCE N/A. Laryngoscope, 131:E2371-E2377, 2021.
Collapse
Affiliation(s)
- Lilian Downie
- Victorian Clinical Genetics Services, Melbourne, Victoria, Australia.,Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - David J Amor
- Victorian Clinical Genetics Services, Melbourne, Victoria, Australia.,Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Jane Halliday
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Sharon Lewis
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Melissa Martyn
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Melbourne Genomics Health Alliance, Melbourne, Victoria, Australia
| | - Ilias Goranitis
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Centre for Health Policy, University of Melbourne, Melbourne, Victoria, Australia.,Australian Genomics Health Alliance, Melbourne, Victoria, Australia
| |
Collapse
|
65
|
Biswas P, Borooah S, Matsui H, Voronchikhina M, Zhou J, Zawaydeh Q, Raghavendra PB, Ferreyra H, Riazuddin SA, Wahlin K, Frazer KA, Ayyagari R. Detection and validation of novel mutations in MERTK in a simplex case of retinal degeneration using WGS and hiPSC-RPEs model. Hum Mutat 2020; 42:189-199. [PMID: 33252167 DOI: 10.1002/humu.24146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/03/2020] [Accepted: 11/24/2020] [Indexed: 12/30/2022]
Abstract
Inherited retinal degenerations (IRDs) are a group of genetically heterogeneous conditions with a broad phenotypic heterogeneity. Here, we report detection and validation of the underlying cause of progressive retinal degeneration in a nuclear family of European descent with a single affected individual. Whole genome sequencing of the proband and her unaffected sibling identified a novel intron 8 donor splice site variant (c.1296 + 1G>A) and a novel 731 base pair deletion encompassing exon 9 (Chr2:g.112751488_112752218 del) resulting in c.1297_1451del; p.K433_G484fsTer3 in the Mer tyrosine kinase protooncogene (MERTK), which is highly expressed in the retinal pigment epithelium (RPE). The proband carried both variants in the heterozygous state, which segregated with disease in the pedigree. These MERTK variants are predicted to result in the defective splicing of exon 8 and loss of exon 9 respectively. To evaluate the impact of these novel variants, peripheral blood mononuclear cells of the proband and her parents were reprogrammed to humaninduced pluripotent stem cell (hiPSC) lines, which were subsequently differentiated to hiPSC-RPE. Analysis of the proband's hiPSC-RPE revealed the absence of both MERTK transcript and its respective protein as well as abnormal phagocytosis when compared with the parental hiPSC-RPE. In summary, whole genome sequencing identified novel compound heterozygous variants in MERTK as the underlying cause of progressive retinal degeneration in a simplex case. Further, analysis using an hiPSC-RPE model established the functional impact of novel MERTK mutations and revealed the potential mechanism underlying pathology in the proband.
Collapse
Affiliation(s)
- Pooja Biswas
- Shiley Eye Institute, University of California San Diego, La Jolla, California, USA.,REVA University, Bengaluru, Karnataka, India
| | - Shyamanga Borooah
- Shiley Eye Institute, University of California San Diego, La Jolla, California, USA
| | - Hiroko Matsui
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - Marina Voronchikhina
- Shiley Eye Institute, University of California San Diego, La Jolla, California, USA
| | - Jason Zhou
- Shiley Eye Institute, University of California San Diego, La Jolla, California, USA
| | - Qais Zawaydeh
- Shiley Eye Institute, University of California San Diego, La Jolla, California, USA
| | - Pongali B Raghavendra
- REVA University, Bengaluru, Karnataka, India.,School of Regenerative Medicine, Manipal University-MAHE, Bangalore, India
| | - Henry Ferreyra
- Shiley Eye Institute, University of California San Diego, La Jolla, California, USA
| | - S Amer Riazuddin
- Wilmer Eye Institute, Johns Hopkins Univesity School of Medicine, Baltimore, Maryland, USA
| | - Karl Wahlin
- Shiley Eye Institute, University of California San Diego, La Jolla, California, USA
| | - Kelly A Frazer
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA.,Department of Pediatrics, Rady Children's Hospital, Division of Genome Information Sciences, San Diego, California, USA
| | - Radha Ayyagari
- Shiley Eye Institute, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
66
|
Velez G, Mahajan VB. Molecular Surgery: Proteomics of a Rare Genetic Disease Gives Insight into Common Causes of Blindness. iScience 2020; 23:101667. [PMID: 33134897 PMCID: PMC7586135 DOI: 10.1016/j.isci.2020.101667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Rare diseases are an emerging global health priority. Although individually rare, the prevalence of rare "orphan" diseases is high, affecting approximately 300 million people worldwide. Treatments for these conditions are often inadequate, leaving the disease to progress unabated. Here, we review the clinical features and pathophysiology of neovascular inflammatory vitreoretinopathy (NIV), a rare inflammatory retinal disease caused by mutations in the CAPN5 gene. Although the prevalence of NIV is low (1 in 1,000,000 people), the disease mimics more common causes of blindness (e.g. uveitis, retinitis pigmentosa, proliferative diabetic retinopathy, and proliferative vitreoretinopathy) at distinct clinical stages. There is no cure for NIV to date. We highlight how personalized proteomics helped identify potential stage-specific biomarkers and drug targets in liquid vitreous biopsies. The NIV vitreous proteome revealed enrichment of molecular pathways associated with common retinal pathologies and implicated superior targets for therapeutic drug repositioning. In addition, we review our pipeline for collecting, storing, and analyzing ophthalmic surgical samples. This approach can be adapted to treat a variety of rare genetic diseases.
Collapse
Affiliation(s)
- Gabriel Velez
- Omics Laboratory, Stanford University, Palo Alto, CA, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA 94304, USA
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
| | - Vinit B. Mahajan
- Omics Laboratory, Stanford University, Palo Alto, CA, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA 94304, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
67
|
Lin FL, Wang PY, Chuang YF, Wang JH, Wong VHY, Bui BV, Liu GS. Gene Therapy Intervention in Neovascular Eye Disease: A Recent Update. Mol Ther 2020; 28:2120-2138. [PMID: 32649860 PMCID: PMC7544979 DOI: 10.1016/j.ymthe.2020.06.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/15/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
Aberrant growth of blood vessels (neovascularization) is a key feature of severe eye diseases that can cause legal blindness, including neovascular age-related macular degeneration (nAMD) and diabetic retinopathy (DR). The development of anti-vascular endothelial growth factor (VEGF) agents has revolutionized the treatment of ocular neovascularization. Novel proangiogenic targets, such as angiopoietin and platelet-derived growth factor (PDGF), are under development for patients who respond poorly to anti-VEGF therapy and to reduce adverse effects from long-term VEGF inhibition. A rapidly advancing area is gene therapy, which may provide significant therapeutic benefits. Viral vector-mediated transgene delivery provides the potential for continuous production of antiangiogenic proteins, which would avoid the need for repeated anti-VEGF injections. Gene silencing with RNA interference to target ocular angiogenesis has been investigated in clinical trials. Proof-of-concept gene therapy studies using gene-editing tools such as CRISPR-Cas have already been shown to be effective in suppressing neovascularization in animal models, highlighting the therapeutic potential of the system for treatment of aberrant ocular angiogenesis. This review provides updates on the development of anti-VEGF agents and novel antiangiogenic targets. We also summarize current gene therapy strategies already in clinical trials and those with the latest approaches utilizing CRISPR-Cas gene editing against aberrant ocular neovascularization.
Collapse
Affiliation(s)
- Fan-Li Lin
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| | - Yu-Fan Chuang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Vickie H Y Wong
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Guei-Sheung Liu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia; Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC 3002, Australia.
| |
Collapse
|
68
|
Tissue-Specific Delivery of CRISPR Therapeutics: Strategies and Mechanisms of Non-Viral Vectors. Int J Mol Sci 2020; 21:ijms21197353. [PMID: 33027946 PMCID: PMC7583726 DOI: 10.3390/ijms21197353] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) genome editing system has been the focus of intense research in the last decade due to its superior ability to desirably target and edit DNA sequences. The applicability of the CRISPR-Cas system to in vivo genome editing has acquired substantial credit for a future in vivo gene-based therapeutic. Challenges such as targeting the wrong tissue, undesirable genetic mutations, or immunogenic responses, need to be tackled before CRISPR-Cas systems can be translated for clinical use. Hence, there is an evident gap in the field for a strategy to enhance the specificity of delivery of CRISPR-Cas gene editing systems for in vivo applications. Current approaches using viral vectors do not address these main challenges and, therefore, strategies to develop non-viral delivery systems are being explored. Peptide-based systems represent an attractive approach to developing gene-based therapeutics due to their specificity of targeting, scale-up potential, lack of an immunogenic response and resistance to proteolysis. In this review, we discuss the most recent efforts towards novel non-viral delivery systems, focusing on strategies and mechanisms of peptide-based delivery systems, that can specifically deliver CRISPR components to different cell types for therapeutic and research purposes.
Collapse
|
69
|
Oh JK, Levi SR, Kim J, Lima de Carvalho JR, Ryu J, Sparrow JR, Tsang SH. Differences in Intraretinal Pigment Migration Across Inherited Retinal Dystrophies. Am J Ophthalmol 2020; 217:252-260. [PMID: 32442431 DOI: 10.1016/j.ajo.2020.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/15/2020] [Accepted: 05/08/2020] [Indexed: 01/12/2023]
Abstract
PURPOSE To determine whether there are differences in the prevalence of intraretinal pigment migration (IPM) across ages and genetic causes of inherited retinal dystrophies (IRDs). DESIGN Retrospective cohort study. METHODS Patients were evaluated at a single tertiary referral center. All patients with a clinical diagnosis of IRD and confirmatory genetic testing were included in these analyses. A total of 392 patients fit inclusion criteria, and 151 patients were excluded based on inconclusive genetic testing. Patients were placed into 3 groups, ciliary and ciliary-related photoreceptor, nonciliary photoreceptor, and retinal pigment epithelium (RPE), based on the cellular expression of the gene and the primary affected cell type. The presence of IPM was evaluated by using slit lamp biomicroscopy, indirect ophthalmoscopy, and wide-field color fundus photography. RESULTS IPM was seen in 257 of 339 patients (75.8%) with mutations in photoreceptor-specific genes and in 18 of 53 patients (34.0%) with mutations in RPE-specific genes (P < .0001). Pairwise analysis following stratification by age and gene category suggested significant differences at all age groups between patients with mutations in photoreceptor-specific genes and patients with mutations in RPE-specific genes (P < .05). A fitted multivariate logistic regression model was produced and demonstrated that the incidence of IPM increases as a function of both age and gene category. CONCLUSIONS IPM is a finding more commonly observed in IRDs caused by mutations in photoreceptor-specific genes than RPE-specific genes. The absence of IPM does not always rule out IRD and should raise suspicion for disease mutations in RPE-specific genes.
Collapse
Affiliation(s)
- Jin Kyun Oh
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, USA; College of Medicine, State University of New York at Downstate Medical Center, Brooklyn, New York, USA
| | - Sarah R Levi
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, USA
| | - Joonpyo Kim
- Department of Statistics, Seoul National University, Seoul, South Korea
| | - Jose Ronaldo Lima de Carvalho
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, USA; Department of Ophthalmology, Empresa Brasileira de Servicos Hospitalares, Hospital das Clinicas de Pernambuco, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Department of Ophthalmology, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Joseph Ryu
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, USA
| | - Janet R Sparrow
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, USA; Department of Pathology and Cell Biology, and Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, New York, USA; Department of Pathology & Cell Biology, and Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA
| | - Stephen H Tsang
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, USA; Department of Pathology and Cell Biology, and Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, New York, USA; Department of Pathology & Cell Biology, and Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
70
|
Huelse J, Fridlyand D, Earp S, DeRyckere D, Graham DK. MERTK in cancer therapy: Targeting the receptor tyrosine kinase in tumor cells and the immune system. Pharmacol Ther 2020; 213:107577. [PMID: 32417270 PMCID: PMC9847360 DOI: 10.1016/j.pharmthera.2020.107577] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The receptor tyrosine kinase MERTK is aberrantly expressed in numerous human malignancies, and is a novel target in cancer therapeutics. Physiologic roles of MERTK include regulation of tissue homeostasis and repair, innate immune control, and platelet aggregation. However, aberrant expression in a wide range of liquid and solid malignancies promotes neoplasia via growth factor independence, cell cycle progression, proliferation and tumor growth, resistance to apoptosis, and promotion of tumor metastases. Additionally, MERTK signaling contributes to an immunosuppressive tumor microenvironment via induction of an anti-inflammatory cytokine profile and regulation of the PD-1 axis, as well as regulation of macrophage, myeloid-derived suppressor cell, natural killer cell and T cell functions. Various MERTK-directed therapies are in preclinical development, and clinical trials are underway. In this review we discuss MERTK inhibition as an emerging strategy for cancer therapy, focusing on MERTK expression and function in neoplasia and its role in mediating resistance to cytotoxic and targeted therapies as well as in suppressing anti-tumor immunity. Additionally, we review preclinical and clinical pharmacological strategies to target MERTK.
Collapse
Affiliation(s)
- Justus Huelse
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Diana Fridlyand
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Shelton Earp
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Douglas K. Graham
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, Georgia
| |
Collapse
|
71
|
Huelse JM, Fridlyand DM, Earp S, DeRyckere D, Graham DK. MERTK in cancer therapy: Targeting the receptor tyrosine kinase in tumor cells and the immune system. Pharmacol Ther 2020. [PMID: 32417270 DOI: 10.1016/j.pharmthera.2020.107577107577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The receptor tyrosine kinase MERTK is aberrantly expressed in numerous human malignancies, and is a novel target in cancer therapeutics. Physiologic roles of MERTK include regulation of tissue homeostasis and repair, innate immune control, and platelet aggregation. However, aberrant expression in a wide range of liquid and solid malignancies promotes neoplasia via growth factor independence, cell cycle progression, proliferation and tumor growth, resistance to apoptosis, and promotion of tumor metastases. Additionally, MERTK signaling contributes to an immunosuppressive tumor microenvironment via induction of an anti-inflammatory cytokine profile and regulation of the PD-1 axis, as well as regulation of macrophage, myeloid-derived suppressor cell, natural killer cell and T cell functions. Various MERTK-directed therapies are in preclinical development, and clinical trials are underway. In this review we discuss MERTK inhibition as an emerging strategy for cancer therapy, focusing on MERTK expression and function in neoplasia and its role in mediating resistance to cytotoxic and targeted therapies as well as in suppressing anti-tumor immunity. Additionally, we review preclinical and clinical pharmacological strategies to target MERTK.
Collapse
Affiliation(s)
- Justus M Huelse
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Diana M Fridlyand
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Shelton Earp
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Douglas K Graham
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA, USA.
| |
Collapse
|
72
|
Jinda W, Tuekprakhon A, Thongnoppakhun W, Limwongse C, Trinavarat A, Atchaneeyasakul LO. Molecular and clinical characterization of Thai patients with achromatopsia: identification of three novel disease-associated variants in the CNGA3 and CNGB3 genes. Int Ophthalmol 2020; 41:121-134. [PMID: 32869108 DOI: 10.1007/s10792-020-01559-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/17/2020] [Indexed: 11/24/2022]
Abstract
PURPOSE Achromatopsia (ACHM) is an autosomal recessive cone disorder characterized by pendular nystagmus, photophobia, reduced visual acuity, and partial or total absence of color vision. Mutations in six genes (CNGA3, CNGB3, GNAT2, PDE6C, PDE6H, and ATF6) have been reported in ACHM. There is no information on these disease-associated genes in Thai population. This study aimed to investigate the molecular and clinical characteristics in Thai patients with ACHM. METHODS Seven unrelated Thai patients with ACHM were recruited. Detailed ophthalmologic examination was performed. Polymerase chain reaction (PCR)-coupled single-strand conformation polymorphism (SSCP) screening followed by Sanger sequencing was used to identify sequence variants in all exons and splice junctions of three genes (CNGA3, CNGB3, and GNAT2). The pathogenicity of the detected variants was interpreted. Segregation analysis was performed to determine variant sharing in available family members. RESULTS Four patients displayed different SSCP migration patterns. Sequence analysis revealed a reported pathogenic and a novel disease-associated variant in the CNGA3 gene. For the CNGB3 gene, we found two novel disease-associated variants and a reported variant of uncertain significance (VUS). Segregation analysis confirmed that the variants identified in each patient were present in the heterozygous state in their corresponding family members, which was consistent with an autosomal recessive mode of inheritance. CONCLUSIONS This study demonstrated the first molecular and clinical characterization of ACHM in Thai patients. The identification of disease-associated genes in a specific population leads to a personalized gene therapy benefiting those affected patients.
Collapse
Affiliation(s)
- Worapoj Jinda
- Division of Medical Genetics Research and Laboratory, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Aekkachai Tuekprakhon
- Clinical Molecular Pathology Laboratory, Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanna Thongnoppakhun
- Division of Medical Genetics Research and Laboratory, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanin Limwongse
- Division of Medical Genetics Research and Laboratory, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Division of Medical Genetics, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Adisak Trinavarat
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - La-Ongsri Atchaneeyasakul
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
73
|
Gallego C, Gonçalves MAFV, Wijnholds J. Novel Therapeutic Approaches for the Treatment of Retinal Degenerative Diseases: Focus on CRISPR/Cas-Based Gene Editing. Front Neurosci 2020; 14:838. [PMID: 32973430 PMCID: PMC7468381 DOI: 10.3389/fnins.2020.00838] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
Inherited retinal diseases encompass a highly heterogenous group of disorders caused by a wide range of genetic variants and with diverse clinical symptoms that converge in the common trait of retinal degeneration. Indeed, mutations in over 270 genes have been associated with some form of retinal degenerative phenotype. Given the immune privileged status of the eye, cell replacement and gene augmentation therapies have been envisioned. While some of these approaches, such as delivery of genes through recombinant adeno-associated viral vectors, have been successfully tested in clinical trials, not all patients will benefit from current advancements due to their underlying genotype or phenotypic traits. Gene editing arises as an alternative therapeutic strategy seeking to correct mutations at the endogenous locus and rescue normal gene expression. Hence, gene editing technologies can in principle be tailored for treating retinal degeneration. Here we provide an overview of the different gene editing strategies that are being developed to overcome the challenges imposed by the post-mitotic nature of retinal cell types. We further discuss their advantages and drawbacks as well as the hurdles for their implementation in treating retinal diseases, which include the broad range of mutations and, in some instances, the size of the affected genes. Although therapeutic gene editing is at an early stage of development, it has the potential of enriching the portfolio of personalized molecular medicines directed at treating genetic diseases.
Collapse
Affiliation(s)
- Carmen Gallego
- Department of Ophthalmology, Leiden University Medical Center, Leiden, Netherlands
| | - Manuel A F V Gonçalves
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center, Leiden, Netherlands.,Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| |
Collapse
|
74
|
Özmert E, Arslan U. Management of retinitis pigmentosa by Wharton's jelly-derived mesenchymal stem cells: prospective analysis of 1-year results. Stem Cell Res Ther 2020; 11:353. [PMID: 32787913 PMCID: PMC7425139 DOI: 10.1186/s13287-020-01870-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/31/2022] Open
Abstract
PURPOSE The aim of the study was to investigate annual structural and functional results, and their correlation with inheritance pattern of retinitis pigmentosa (RP) patients who were treated with Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs). MATERIAL AND METHODS This prospective, sequential, open-label phase-3 clinical study was conducted at Ankara University Faculty of Medicine, Department of Ophthalmology, between April 2019 and May 2020. The study included 34 eyes from 32 retinitis pigmentosa patients of various genotypes who were enrolled in the stem cells clinical trial. The patients were followed for 12 months after the WJ-MSCs transplantation into subtenon space and evaluated with consecutive examinations. Genetic mutations were investigated using a retinitis pigmentosa panel sequencing method consisting of 90 genes. All patients underwent a complete routine ophthalmic examination with best corrected visual acuity, optical coherence tomography angiography, visual field, and full-field electroretinography. Quantitative data obtained from baseline (T0), 6th month (T1), and 12th month (T2) examinations were compared. RESULTS According to timepoints at T0, T1, and T2: The mean outer retinal thickness was 100.3 μm, 119.1 μm, and 118.0 μm, respectively (p = 0.01; T0 < T1, T2). The mean horizontal ellipsoid zone width were 2.65 mm, 2.70 mm, and 2.69 mm respectively (p = 0.01; T0 < T1, T2). The mean best corrected visual acuity (BCVA) were 70.5 letters, 80.6 letters, and 79.9 letters, respectively (p = 0.01; T0 < T1, T2). The mean fundus perimetry deviation index (FPDI) was 8.0%, 11.4%, and 11.6%, respectively (p = 0.01; T0 < T1, T2). The mean full-field flicker ERG parameters at T0, T1, and T2: amplitudes were 2.4 mV, 5.0 mV, and 4.6 mV, respectively (p = 0.01; T0 < T1, T2). Implicit time were 43.3 ms, 37.9 ms, and 38.6 ms, respectively (p = 0.01; T0 > T1, T2). According to inheritance pattern, BCVA, FPDI, ERG amplitude, and implicit time data improved significantly in autosomal dominant (AD) and in autosomal recessive (AR) RP at 1 year follow-up (pAD = 0.01, pAR = 0.01; pAD = pAR > pX-linked). No ocular or systemic adverse events related to the surgical methods and/or WJ-MSCs were observed during the 1 year follow-up period. CONCLUSION Subtenon transplantation of WJ-MSCs was found to be effective and safe in the treatment of RP during the first year, similar to the sixth month's results. In autosomal dominant and autosomal recessive inheritance of RP, regardless of the genetic mutations, subtenon administration of WJ-MSCs can be considered an effective and safe option without any adverse effect for slowing or stopping the disease progression. TRIAL REGISTRATION ClinicalTrials.gov, NCT04224207 . Registered 8 January 2020.
Collapse
Affiliation(s)
- Emin Özmert
- Faculty of Medicine Department of Ophthalmology, Ankara University, Ankara, Turkey
| | - Umut Arslan
- Bioretina Eye Clinic, Ankara University Technopolis, Neorama Ofis 55-56 Yaşam Cad. No 13/A Beştepe, Yenimahalle, Ankara, Turkey
| |
Collapse
|
75
|
Christie KA, Robertson LJ, Conway C, Blighe K, DeDionisio LA, Chao-Shern C, Kowalczyk AM, Marshall J, Turnbull D, Nesbit MA, Moore CBT. Mutation-Independent Allele-Specific Editing by CRISPR-Cas9, a Novel Approach to Treat Autosomal Dominant Disease. Mol Ther 2020; 28:1846-1857. [PMID: 32416058 PMCID: PMC7403340 DOI: 10.1016/j.ymthe.2020.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/14/2020] [Accepted: 05/01/2020] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas9 provides a tool to treat autosomal dominant disease by non-homologous end joining (NHEJ) gene disruption of the mutant allele. In order to discriminate between wild-type and mutant alleles, Streptococcus pyogenes Cas9 (SpCas9) must be able to detect a single nucleotide change. Allele-specific editing can be achieved by using either a guide-specific approach, in which the missense mutation is found within the guide sequence, or a protospacer-adjacent motif (PAM)-specific approach, in which the missense mutation generates a novel PAM. While both approaches have been shown to offer allele specificity in certain contexts, in cases where numerous missense mutations are associated with a particular disease, such as TGFBI (transforming growth factor β-induced) corneal dystrophies, it is neither possible nor realistic to target each mutation individually. In this study, we demonstrate allele-specific CRISPR gene editing independent of the disease-causing mutation that is capable of achieving complete allele discrimination, and we propose it as a targeting approach for autosomal dominant disease. Our approach utilizes natural variants in the target region that contain a PAM on one allele that lies in cis with the causative mutation, removing the constraints of a mutation-dependent approach. Our innovative patient-specific guide design approach takes into account the patient's individual genetic make-up, allowing on- and off-target activity to be assessed in a personalized manner.
Collapse
Affiliation(s)
- Kathleen A Christie
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK
| | - Louise J Robertson
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK
| | - Caroline Conway
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK
| | - Kevin Blighe
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK
| | | | - Connie Chao-Shern
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK; Avellino Laboratories, Menlo Park, CA 94025, USA
| | - Amanda M Kowalczyk
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK
| | - John Marshall
- Department of Genetics, UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Doug Turnbull
- Genomics and Cell Characterization Core Facility, University of Oregon, OR 97403, USA
| | - M Andrew Nesbit
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK
| | - C B Tara Moore
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK; Avellino Laboratories, Menlo Park, CA 94025, USA.
| |
Collapse
|
76
|
French LS, Mellough CB, Chen FK, Carvalho LS. A Review of Gene, Drug and Cell-Based Therapies for Usher Syndrome. Front Cell Neurosci 2020; 14:183. [PMID: 32733204 PMCID: PMC7363968 DOI: 10.3389/fncel.2020.00183] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Usher syndrome is a genetic disorder causing neurosensory hearing loss and blindness from retinitis pigmentosa (RP). Adaptive techniques such as braille, digital and optical magnifiers, mobility training, cochlear implants, or other assistive listening devices are indispensable for reducing disability. However, there is currently no treatment to reduce or arrest sensory cell degeneration. There are several classes of treatments for Usher syndrome being investigated. The present article reviews the progress this research has made towards delivering commercial options for patients with Usher syndrome.
Collapse
Affiliation(s)
- Lucy S French
- Centre for Ophthalmology and Visual Sciences (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
| | - Carla B Mellough
- Centre for Ophthalmology and Visual Sciences (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
| | - Fred K Chen
- Centre for Ophthalmology and Visual Sciences (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia.,Department of Ophthalmology, Royal Perth Hospital, Perth, WA, Australia.,Department of Ophthalmology, Perth Children's Hospital, Nedlands, WA, Australia
| | - Livia S Carvalho
- Centre for Ophthalmology and Visual Sciences (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
77
|
Finkelstein S, Gospe SM, Schuhmann K, Shevchenko A, Arshavsky VY, Lobanova ES. Phosphoinositide Profile of the Mouse Retina. Cells 2020; 9:cells9061417. [PMID: 32517352 PMCID: PMC7349851 DOI: 10.3390/cells9061417] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/18/2020] [Accepted: 06/04/2020] [Indexed: 12/24/2022] Open
Abstract
Phosphoinositides are known to play multiple roles in eukaryotic cells. Although dysregulation of phosphoinositide metabolism in the retina has been reported to cause visual dysfunction in animal models and human patients, our understanding of the phosphoinositide composition of the retina is limited. Here, we report a characterization of the phosphoinositide profile of the mouse retina and an analysis of the subcellular localization of major phosphorylated phosphoinositide forms in light-sensitive photoreceptor neurons. Using chromatography of deacylated phosphatidylinositol headgroups, we established PI(4,5)P2 and PI(4)P as two major phosphorylated phosphoinositides in the retina. Using high-resolution mass spectrometry, we revealed 18:0/20:4 and 16:0/20:4 as major fatty-acyl chains of retinal phosphoinositides. Finally, analysis of fluorescent phosphoinositide sensors in rod photoreceptors demonstrated distinct subcellular distribution patterns of major phosphoinositides. The PI(4,5)P2 reporter was enriched in the inner segments and synapses, but was barely detected in the light-sensitive outer segments. The PI(4)P reporter was mostly found in the outer and inner segments and the areas around nuclei, but to a lesser degree in the synaptic region. These findings provide support for future mechanistic studies defining the biological significance of major mono- (PI(4)P) and bisphosphate (PI(4,5)P2) phosphatidylinositols in photoreceptor biology and retinal health.
Collapse
Affiliation(s)
- Stella Finkelstein
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA; (S.F.); (S.M.G.III); (V.Y.A.)
| | - Sidney M. Gospe
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA; (S.F.); (S.M.G.III); (V.Y.A.)
| | - Kai Schuhmann
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; (K.S.); (A.S.)
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; (K.S.); (A.S.)
| | - Vadim Y. Arshavsky
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA; (S.F.); (S.M.G.III); (V.Y.A.)
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Ekaterina S. Lobanova
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
78
|
Simon CJ, Sahel JA, Duebel J, Herlitze S, Dalkara D. Opsins for vision restoration. Biochem Biophys Res Commun 2020; 527:325-330. [DOI: 10.1016/j.bbrc.2019.12.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 12/20/2019] [Indexed: 12/17/2022]
|
79
|
|
80
|
Chen Y, Zhi S, Liang P, Zheng Q, Liu M, Zhao Q, Ren J, Cui J, Huang J, Liu Y, Songyang Z. Single AAV-Mediated CRISPR-SaCas9 Inhibits HSV-1 Replication by Editing ICP4 in Trigeminal Ganglion Neurons. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:33-43. [PMID: 32577430 PMCID: PMC7298336 DOI: 10.1016/j.omtm.2020.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/19/2020] [Indexed: 12/26/2022]
Abstract
Herpes simplex keratitis (HSK) is the most common cause of corneal blindness in developed nations, caused by primary or recurrent herpes simplex virus 1 (HSV-1) infection of the cornea. Latent infection of HSV-1, especially in the trigeminal ganglion (TG), causes recurrence of HSV-1 infection. As antiviral treatment is not effective on latent HSV-1, to test the possibility of inhibiting HSV-1 by SpCas9 (Streptococcus pyogenes Cas9) or SaCas9 (Staphylococcus aureus Cas9), ICP0 and ICP4, two important genes required for HSV-1 replication and reactivation, were chosen as targets. In Vero cells, SpCas9 and SaCas9 targeting ICP0 or ICP4 can effectively inhibit the proliferation of HSV-1 without affecting cell viability. No significant guide RNA (gRNA)-dependent off-targets were observed in the human genome by digenome sequencing and deep sequencing verification. Adeno-associated virus 1 (AAV1)-mediated delivery of SaCas9 inhibits HSV-1 replication by targeting ICP4 in mouse primary TG neuronal cells. SpCas9 and SaCas9 are able to inhibit HSV-1 infection in Vero cells and mouse TG neuronal cultures with high efficiency and good biosafety. AAV1-mediated delivery of SaCas9 shows great potential in treating HSK and inhibiting HSV-1 in TG neurons. Further investigations may be needed to test the inhibition of latent infections, which may result in the development of novel methods for treating viral diseases.
Collapse
Affiliation(s)
- Yuxi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shengyao Zhi
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Puping Liang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qi Zheng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Mengni Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qi Zhao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jian Ren
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Junjiu Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Corresponding author: Junjiu Huang, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
- Corresponding author: Yizhi Liu, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Zhou Songyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Corresponding author Zhou Songyang, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| |
Collapse
|
81
|
The retina revolution: signaling pathway therapies, genetic therapies, mitochondrial therapies, artificial intelligence. Curr Opin Ophthalmol 2020; 31:207-214. [PMID: 32205471 DOI: 10.1097/icu.0000000000000656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW The aim of this article is to review and discuss the history, current state, and future implications of promising biomedical offerings in the field of retina. RECENT FINDINGS The technologies discussed are some of the more recent promising biomedical developments within the field of retina. There is a US Food and Drug Administration-approved gene therapy product and artificial intelligence device for retina, with many other offerings in the pipeline. SUMMARY Signaling pathway therapies, genetic therapies, mitochondrial therapies, and artificial intelligence have shaped retina care as we know it and are poised to further impact the future of retina care. Retina specialists have the privilege and responsibility of shaping this future for the visual health of current and future generations.
Collapse
|
82
|
Trapani I, Auricchio A. Has retinal gene therapy come of age? From bench to bedside and back to bench. Hum Mol Genet 2020; 28:R108-R118. [PMID: 31238338 PMCID: PMC6797000 DOI: 10.1093/hmg/ddz130] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 04/24/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
Abstract
Retinal gene therapy has advanced considerably in the past three decades. Initial efforts have been devoted to comprehensively explore and optimize the transduction abilities of gene delivery vectors, define the appropriate intraocular administration routes and obtain evidence of efficacy in animal models of inherited retinal diseases (IRDs). Successful translation in clinical trials of the initial promising proof-of-concept studies led to the important milestone of the first approved product for retinal gene therapy in both US and Europe. The unprecedented clinical development observed during the last decade in the field is however highlighting new challenges that will need to be overcome to bring gene therapy to fruition to a larger patient population within and beyond the realm of IRDs.
Collapse
Affiliation(s)
- Ivana Trapani
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Translational Medicine, Federico II University, Naples, Italy
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Department of Advanced Biomedicine, Federico II University, Naples, Italy
| |
Collapse
|
83
|
Cehajic-Kapetanovic J, Xue K, Martinez-Fernandez de la Camara C, Nanda A, Davies A, Wood LJ, Salvetti AP, Fischer MD, Aylward JW, Barnard AR, Jolly JK, Luo E, Lujan BJ, Ong T, Girach A, Black GCM, Gregori NZ, Davis JL, Rosa PR, Lotery AJ, Lam BL, Stanga PE, MacLaren RE. Initial results from a first-in-human gene therapy trial on X-linked retinitis pigmentosa caused by mutations in RPGR. Nat Med 2020; 26:354-359. [PMID: 32094925 PMCID: PMC7104347 DOI: 10.1038/s41591-020-0763-1] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 01/10/2020] [Indexed: 12/21/2022]
Abstract
Retinal gene therapy has shown great promise in treating retinitis pigmentosa (RP), a primary photoreceptor degeneration that leads to severe sight loss in young people. In the present study, we report the first-in-human phase 1/2, dose-escalation clinical trial for X-linked RP caused by mutations in the RP GTPase regulator (RPGR) gene in 18 patients over up to 6 months of follow-up (https://clinicaltrials.gov/: NCT03116113). The primary outcome of the study was safety, and secondary outcomes included visual acuity, microperimetry and central retinal thickness. Apart from steroid-responsive subretinal inflammation in patients at the higher doses, there were no notable safety concerns after subretinal delivery of an adeno-associated viral vector encoding codon-optimized human RPGR (AAV8-coRPGR), meeting the pre-specified primary endpoint. Visual field improvements beginning at 1 month and maintained to the last point of follow-up were observed in six patients.
Collapse
Affiliation(s)
- Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Cristina Martinez-Fernandez de la Camara
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Anika Nanda
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Alexandra Davies
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Laura J Wood
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Anna Paola Salvetti
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - M Dominik Fischer
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - James W Aylward
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Alun R Barnard
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jasleen K Jolly
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Brandon J Lujan
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - Tuyen Ong
- Nightstar Therapeutics Ltd, London, UK
| | | | - Graeme C M Black
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital and Manchester Vision Regeneration Laboratory, Manchester Royal Eye Hospital, Manchester Academic Health Science Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | | | | | - Andrew J Lotery
- Clinical Neurosciences Research Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | - Paulo E Stanga
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital and Manchester Vision Regeneration Laboratory, Manchester Royal Eye Hospital, Manchester Academic Health Science Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
84
|
Komáromy AM. CRISPR-Cas9 Disruption of Aquaporin 1: An Alternative to Glaucoma Eye Drop Therapy? Mol Ther 2020; 28:706-708. [PMID: 32078805 DOI: 10.1016/j.ymthe.2020.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- András M Komáromy
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
85
|
Joe MK, Li W, Hiriyanna S, Yu W, Shah SA, Abu-Asab M, Qian H, Wu Z. A Common Outer Retinal Change in Retinal Degeneration by Optical Coherence Tomography Can Be Used to Assess Outcomes of Gene Therapy. Hum Gene Ther 2019; 30:1520-1530. [PMID: 31672061 DOI: 10.1089/hum.2019.162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Identifying early disease hallmarks in animal models with slow disease progression may expedite disease detection and assessment of treatment outcomes. Using optical coherence tomography, a widely applied noninvasive method for monitoring retinal structure changes, we analyzed retinal optical sections from six mouse lines with retinal degeneration caused by mutations in different disease-causing genes. While images from wild-type mice revealed four well-separated hyper-reflective bands in the outer retina (designated as outer retina reflective bands, ORRBs) at all ages, the second band (ORRB2) and the third band (ORRB3) were merged in retinas of five mutant mouse lines at early ages, suggesting the pathological nature of this alteration. This ORRB change appeared to be degenerating photoreceptor related, and occurred before obvious morphological changes that can be identified on both hematoxylin and eosin-stained sections and electron microscopic sections. Importantly, the merging of ORRB2 and ORRB3 was reversed by treatment with adeno-associated viral vector-mediated gene replacement therapies, and this restoration occurred much earlier than measurable functional or structural improvement. Our data suggest that the ORRB change could be a common hallmark of early retinal degeneration and its restoration could be used for rapid and noninvasive assessment of therapeutic effects following gene therapy or other treatment interventions.
Collapse
Affiliation(s)
- Myung Kuk Joe
- Ocular Gene Therapy Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Wenbo Li
- Ocular Gene Therapy Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Suja Hiriyanna
- Ocular Gene Therapy Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Wenhan Yu
- Ocular Gene Therapy Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Shreya A Shah
- Ocular Gene Therapy Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Mones Abu-Asab
- Histopathology Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Haohua Qian
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Zhijian Wu
- Ocular Gene Therapy Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
86
|
Liu W, Yang C, Liu Y, Jiang G. CRISPR/Cas9 System and its Research Progress in Gene Therapy. Anticancer Agents Med Chem 2019; 19:1912-1919. [PMID: 31633477 DOI: 10.2174/1871520619666191014103711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/05/2019] [Accepted: 09/18/2019] [Indexed: 12/26/2022]
Abstract
Genome editing refers to changing the genome sequence of an organism by knockout, insertion, and site mutation, resulting in changes in the genetic information of the organism. The clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPR-associated protein-9 nuclease (Cas9) system is a genome editing technique developed by the acquired immune system in the microbes, such as bacteria and archaebacteria, which targets and edits genome sequences according to the principle of complementary base pairing. This technique can be used to edit endogenous genomic DNA sequences in organisms accurately and has been widely used in fields, such as biotechnology, cancer gene therapy, and dermatology. In this review, we summarize the history, structure, mechanism, and application of CRISPR/Cas9 in gene therapy and dermatological diseases.
Collapse
Affiliation(s)
- Wenlou Liu
- Department of Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Chunsheng Yang
- Department of Dermatology, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, No. 62, Huaihai Road(S.), Huai'an 223002, China
| | - Yanqun Liu
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| |
Collapse
|
87
|
Johnson S, Buessing M, O’Connell T, Pitluck S, Ciulla TA. Cost-effectiveness of Voretigene Neparvovec-rzyl vs Standard Care for RPE65-Mediated Inherited Retinal Disease. JAMA Ophthalmol 2019; 137:1115-1123. [PMID: 31318398 PMCID: PMC6646972 DOI: 10.1001/jamaophthalmol.2019.2512] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 05/19/2019] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Voretigene neparvovec-rzyl, the first gene therapy approved by the US Food and Drug Administration, was approved for the treatment for RPE65-mediated inherited retinal disease (IRD) in December 2017. This gene therapy is associated with high up-front costs and high efficacy, although of unknown duration, and its cost-effectiveness has not been assessed with RPE65 IRD-specific, longitudinal, patient-observation-level data. OBJECTIVE To assess the incremental cost-effectiveness ratio (ICER) of voretigene neparvovec-rzyl compared with standard care for RPE65-mediated inherited retinal disease. DESIGN, SETTING, AND PARTICIPANTS In this economic analysis, a health state transition model based on visual acuity and field with a lifetime horizon was developed to estimate the cost-effectiveness of voretigene neparvovec-rzyl. The model was populated with data from a clinical trial of voretigene neparvovec-rzyl to evaluate treatment outcome and a natural history study of RPE65-mediated IRD to examine disease progression. Direct costs were derived from the literature. Indirect costs, including educational attainment, productivity, caregiver burden, and governmental programs, were estimated using published literature and data analysis of public national surveys. A health utility vignette study specific to RPE65-mediated IRD was used for health utility inputs. The cost-effectiveness study described in this article was conducted from September 15, 2017, to August 23, 2018. EXPOSURES Bilateral voretigene neparvovec-rzyl therapy or standard care. MAIN OUTCOMES AND MEASURES Incremental cost-effectiveness ratio. RESULTS The model population included 70 patients with RPE65-mediated IRD, with a mean age of 15 years; 42 of 70 patients (60%) were female. In the base case, voretigene neparvovec-rzyl compared with standard care was associated with lower total costs ($2.2 million vs $2.8 million) and higher quality-adjusted life-years (18.1 vs 8.6). Voretigene neparvovec-rzyl remains cost-effective if at least 8.8% of the long-term treatment effect continues after year 3 when including indirect costs and 43.3% when excluding indirect costs, assuming a cost threshold of $150 000 per quality-adjusted life-year. CONCLUSIONS AND RELEVANCE Results of this study suggest that voretigene neparvovec-rzyl is cost-effective compared with standard care when using a lifetime horizon, excluding indirect costs, and using a threshold of $150 000 per quality-adjusted life-year.
Collapse
Affiliation(s)
| | | | | | | | - Thomas A. Ciulla
- Spark Therapeutics Inc, Philadelphia, Pennsylvania
- currently, Clearside Biomedical, Alpharetta, Georgia
| |
Collapse
|
88
|
Gamm DM, Clark E, Capowski EE, Singh R. The Role of FGF9 in the Production of Neural Retina and RPE in a Pluripotent Stem Cell Model of Early Human Retinal Development. Am J Ophthalmol 2019; 206:113-131. [PMID: 31078532 DOI: 10.1016/j.ajo.2019.04.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/11/2019] [Accepted: 04/18/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE To investigate the role of fibroblast growth factors (FGFs) in the production of neural retina (NR) and retinal pigmented epithelium (RPE) in a human pluripotent stem cell model of early retinal development. METHODS Human induced pluripotent stem cell (hiPSC) lines from an individual with microphthalmia caused by a functional null mutation (R200Q) in visual system homeobox 2 (VSX2), a transcription factor involved in early NR progenitor cell (NRPC) production, and a normal sibling were differentiated along the retinal and forebrain lineages using an established protocol. Quantitative and global gene expression analyses (microarray and RNAseq) were used to investigate endogenous FGF expression profiles in these cultures over time. Based on these results, mutant and control hiPSC cultures were treated exogenously with selected FGFs and subjected to gene and protein expression analyses to determine their effects on RPE and NR production. RESULTS We found that FGF9 and FGF19 were selectively increased in early hiPSC-derived optic vesicles (OVs) when compared to isogenic cultures of hiPSC-derived forebrain neurospheres. Furthermore, these same FGFs were downregulated over time in (R200Q)VSX2 hiPSC-OVs relative to sibling control hiPSC-OVs. Interestingly, long-term supplementation with FGF9, but not FGF19, partially rescued the mutant retinal phenotype of the (R200Q)VSX2 hiPSC-OV model. However, antagonizing FGF9 in wild-type control hiPSCs did not alter OV development. CONCLUSIONS Our results show that FGF9 acts in concert with VSX2 to promote NR differentiation in hiPSC-OVs and has potential to be used to manipulate early retinogenesis and mitigate ocular defects caused by functional loss of VSX2 activity. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.
Collapse
Affiliation(s)
- David M Gamm
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA; Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | - Eric Clark
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Ruchira Singh
- Department of Ophthalmology, University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
89
|
Falasconi A, Biagioni M, Novelli E, Piano I, Gargini C, Strettoi E. Retinal Phenotype in the rd9 Mutant Mouse, a Model of X-Linked RP. Front Neurosci 2019; 13:991. [PMID: 31607844 PMCID: PMC6761883 DOI: 10.3389/fnins.2019.00991] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/03/2019] [Indexed: 12/25/2022] Open
Abstract
Retinal degeneration 9 (rd9) mice carry a mutation in the retina specific “Retinitis Pigmentosa GTPase Regulator (RPGR)” Open Reading Frame (ORF) 15 gene, located on the X chromosome and represent a rare model of X-linked Retinitis Pigmentosa (XLRP), a common and severe form of retinal degeneration (Wright et al., 2010; Tsang and Sharma, 2018). The rd9 RPGR-ORF15 mutation in mice causes lack of the protein in photoreceptors and a slow degeneration of these cells with consequent decrease in Outer Nuclear Layer (ONL) thickness and amplitude of ERG responses, as previously described (Thompson et al., 2012). However, relative rates of rod and cone photoreceptor loss, as well as secondary alterations occurring in neuronal and non-neuronal retinal cell types of rd9 mutants remain to be assessed. Aim of this study is to extend phenotype analysis of the rd9 mouse retina focusing on changes occurring in cells directly interacting with photoreceptors. To this purpose, first we estimated rod and cone survival and its degree of intraretinal variation over time; then, we studied the morphology of horizontal and bipolar cells and of the retinal pigment epithelium (RPE), extending our observations to glial cell reactivity. We found that in rd9 retinas rod (but not cone) death is the main cause of decrease in ONL thickness and that degeneration shows a high degree of intraretinal variation. Rod loss drives remodeling in the outer retina, with sprouting of second-order neurons of the rod-pathway and relative sparing of cone pathway elements. Remarkably, despite cone survival, functional defects can be clearly detected in ERG recordings in both scotopic and photopic conditions. Moderate levels of Muller cells and microglial reactivity are sided by striking attenuation of staining for RPE tight junctions, suggesting altered integrity of the outer Blood Retina Barrier (BRB). Because of many features resembling slowly progressing photoreceptor degeneration paradigms or early stages of more aggressive forms of RP, the rd9 mouse model can be considered a rare and useful tool to investigate retinal changes associated to a process of photoreceptor death sustained throughout life and to reveal disease biomarkers (e.g., BRB alterations) of human XLRP.
Collapse
Affiliation(s)
- Antonio Falasconi
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy.,Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Martina Biagioni
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
| | - Elena Novelli
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
| | - Ilaria Piano
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Enrica Strettoi
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
| |
Collapse
|
90
|
Miller JC, Patil DP, Xia DF, Paine CB, Fauser F, Richards HW, Shivak DA, Bendaña YR, Hinkley SJ, Scarlott NA, Lam SC, Reik A, Zhou Y, Paschon DE, Li P, Wangzor T, Lee G, Zhang L, Rebar EJ. Enhancing gene editing specificity by attenuating DNA cleavage kinetics. Nat Biotechnol 2019; 37:945-952. [PMID: 31359006 DOI: 10.1038/s41587-019-0186-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 06/11/2019] [Indexed: 12/22/2022]
Abstract
Engineered nucleases have gained broad appeal for their ability to mediate highly efficient genome editing. However the specificity of these reagents remains a concern, especially for therapeutic applications, given the potential mutagenic consequences of off-target cleavage. Here we have developed an approach for improving the specificity of zinc finger nucleases (ZFNs) that engineers the FokI catalytic domain with the aim of slowing cleavage, which should selectively reduce activity at low-affinity off-target sites. For three ZFN pairs, we engineered single-residue substitutions in the FokI domain that preserved full on-target activity but showed a reduction in off-target indels of up to 3,000-fold. By combining this approach with substitutions that reduced the affinity of zinc fingers, we developed ZFNs specific for the TRAC locus that mediated 98% knockout in T cells with no detectable off-target activity at an assay background of ~0.01%. We anticipate that this approach, and the FokI variants we report, will enable routine generation of nucleases for gene editing with no detectable off-target activity.
Collapse
Affiliation(s)
| | | | - Danny F Xia
- Sangamo Therapeutics, Inc., Richmond, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Patrick Li
- Sangamo Therapeutics, Inc., Richmond, CA, USA
| | | | - Gary Lee
- Sangamo Therapeutics, Inc., Richmond, CA, USA
| | - Lei Zhang
- Sangamo Therapeutics, Inc., Richmond, CA, USA
| | | |
Collapse
|
91
|
Wood EH, Tang PH, De la Huerta I, Korot E, Muscat S, Palanker DA, Williams GA. STEM CELL THERAPIES, GENE-BASED THERAPIES, OPTOGENETICS, AND RETINAL PROSTHETICS: Current State and Implications for the Future. Retina 2019; 39:820-835. [PMID: 30664120 PMCID: PMC6492547 DOI: 10.1097/iae.0000000000002449] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE To review and discuss current innovations and future implications of promising biotechnology and biomedical offerings in the field of retina. We focus on therapies that have already emerged as clinical offerings or are poised to do so. METHODS Literature review and commentary focusing on stem cell therapies, gene-based therapies, optogenetic therapies, and retinal prosthetic devices. RESULTS The technologies discussed herein are some of the more recent promising biotechnology and biomedical developments within the field of retina. Retinal prosthetic devices and gene-based therapies both have an FDA-approved product for ophthalmology, and many other offerings (including optogenetics) are in the pipeline. Stem cell therapies offer personalized medicine through novel regenerative mechanisms but entail complex ethical and reimbursement challenges. CONCLUSION Stem cell therapies, gene-based therapies, optogenetics, and retinal prosthetic devices represent a new era of biotechnological and biomedical progress. These bring new ethical, regulatory, care delivery, and reimbursement challenges. By addressing these issues proactively, we may accelerate delivery of care to patients in a safe, efficient, and value-based manner.
Collapse
Affiliation(s)
| | - Peter H Tang
- Department of Ophthalmology, Hansen Experimental Physics Laboratory, Stanford University, Stanford, California
| | | | - Edward Korot
- Oakland University William Beaumont School of Medicine, Rochester, Michigan
| | | | - Daniel A Palanker
- Department of Ophthalmology, Hansen Experimental Physics Laboratory, Stanford University, Stanford, California
| | - George A Williams
- Associated Retinal Consultants, Royal Oak, Michigan
- Oakland University William Beaumont School of Medicine, Rochester, Michigan
| |
Collapse
|
92
|
Maeda A, Mandai M, Takahashi M. Gene and Induced Pluripotent Stem Cell Therapy for Retinal Diseases. Annu Rev Genomics Hum Genet 2019; 20:201-216. [PMID: 31018110 DOI: 10.1146/annurev-genom-083118-015043] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Given the importance of visual information to many daily activities, retinal degenerative diseases-which include both inherited conditions (such as retinitis pigmentosa) and acquired conditions (such as age-related macular degeneration)-can have a dramatic impact on human lives. The therapeutic options for these diseases remain limited. Since the discovery of the first causal gene for retinitis pigmentosa almost three decades ago, more than 250 genes have been identified, and gene therapies have been rapidly developed. Simultaneously, stem cell technologies such as induced pluripotent stem cell-based transplantation have advanced and have been applied to the treatment of retinal degenerative diseases. Here, we review recent progress in these expanding fields and discuss the potential for precision medicine in ophthalmic care.
Collapse
Affiliation(s)
- Akiko Maeda
- Laboratory for Retinal Regeneration, Center for Biosystems Dynamics Research, RIKEN, Kobe, Hyogo 650-0047, Japan;
| | - Michiko Mandai
- Laboratory for Retinal Regeneration, Center for Biosystems Dynamics Research, RIKEN, Kobe, Hyogo 650-0047, Japan;
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, Center for Biosystems Dynamics Research, RIKEN, Kobe, Hyogo 650-0047, Japan; .,Kobe City Eye Center Hospital, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
93
|
Wheway G, Nazlamova L, Turner D, Cross S. 661W Photoreceptor Cell Line as a Cell Model for Studying Retinal Ciliopathies. Front Genet 2019; 10:308. [PMID: 31024622 PMCID: PMC6459963 DOI: 10.3389/fgene.2019.00308] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/21/2019] [Indexed: 12/20/2022] Open
Abstract
The retina contains several ciliated cell types, including the retinal pigment epithelium (RPE) and photoreceptor cells. The photoreceptor cilium is one of the most highly modified sensory cilia in the human body. The outer segment of the photoreceptor is a highly elaborate primary cilium, containing stacks or folds of membrane where the photopigment molecules are located. Perhaps unsurprisingly, defects in cilia often lead to retinal phenotypes, either as part of syndromic conditions involving other organs, or in isolation in the so-called retinal ciliopathies. The study of retinal ciliopathies has been limited by a lack of retinal cell lines. RPE1 retinal pigment epithelial cell line is commonly used in such studies, but the existence of a photoreceptor cell line has largely been neglected in the retinal ciliopathy field. 661W cone photoreceptor cells, derived from mouse, have been widely used as a model for studying macular degeneration, but not described as a model for studying retinal ciliopathies such as retinitis pigmentosa. Here, we characterize the 661W cell line as a model for studying retinal ciliopathies. We fully characterize the expression profile of these cells, using whole transcriptome RNA sequencing, and provide this data on Gene Expression Omnibus for the advantage of the scientific community. We show that these cells express the majority of markers of cone cell origin. Using immunostaining and confocal microscopy, alongside scanning electron microscopy, we show that these cells grow long primary cilia, reminiscent of photoreceptor outer segments, and localize many cilium proteins to the axoneme, membrane and transition zone. We show that siRNA knockdown of cilia genes Ift88 results in loss of cilia, and that this can be assayed by high-throughput screening. We present evidence that the 661W cell line is a useful cell model for studying retinal ciliopathies.
Collapse
Affiliation(s)
- Gabrielle Wheway
- Centre for Research in Biosciences, University of the West of England, Bristol, Bristol, United Kingdom.,Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Human Development and Health, Southampton General Hospital, Southampton, United Kingdom
| | - Liliya Nazlamova
- Centre for Research in Biosciences, University of the West of England, Bristol, Bristol, United Kingdom.,Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Human Development and Health, Southampton General Hospital, Southampton, United Kingdom
| | - Dann Turner
- Centre for Research in Biosciences, University of the West of England, Bristol, Bristol, United Kingdom
| | - Stephen Cross
- Wolfson Bioimaging Facility, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
94
|
Horton RH, Lucassen AM. Recent developments in genetic/genomic medicine. Clin Sci (Lond) 2019; 133:697-708. [PMID: 30837331 PMCID: PMC6399103 DOI: 10.1042/cs20180436] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/21/2018] [Accepted: 02/27/2019] [Indexed: 12/23/2022]
Abstract
Advances in genetic technology are having a major impact in the clinic, and mean that many perceptions of the role and scope of genetic testing are having to change. Genomic testing brings with it a greater opportunity for diagnosis, or predictions of future diagnoses, but also an increased chance of uncertain or unexpected findings, many of which may have impacts for multiple members of a person's family. In the past, genetic testing was rarely able to provide rapid results, but the increasing speed and availability of genomic testing is changing this, meaning that genomic information is increasingly influencing decisions around patient care in the acute inpatient setting. The landscape of treatment options for genetic conditions is shifting, which has evolving implications for clinical discussions around previously untreatable disorders. Furthermore, the point of access to testing is changing with increasing provision direct to the consumer outside the formal healthcare setting. This review outlines the ways in which genetic medicine is developing in light of technological advances.
Collapse
Affiliation(s)
- Rachel H Horton
- Clinical Ethics and Law, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Anneke M Lucassen
- Clinical Ethics and Law, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
95
|
Hudry E, Vandenberghe LH. Therapeutic AAV Gene Transfer to the Nervous System: A Clinical Reality. Neuron 2019; 101:839-862. [PMID: 30844402 PMCID: PMC11804970 DOI: 10.1016/j.neuron.2019.02.017] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023]
Abstract
Gene transfer has long been a compelling yet elusive therapeutic modality. First mainly considered for rare inherited disorders, gene therapy may open treatment opportunities for more challenging and complex diseases such as Alzheimer's or Parkinson's disease. Today, examples of striking clinical proof of concept, the first gene therapy drugs coming onto the market, and the emergence of powerful new molecular tools have broadened the number of avenues to target neurological disorders but have also highlighted safety concerns and technology gaps. The vector of choice for many nervous system targets currently is the adeno-associated viral (AAV) vector due to its desirable safety profile and strong neuronal tropism. In aggregate, the clinical success, the preclinical potential, and the technological innovation have made therapeutic AAV drug development a reality, particularly for nervous system disorders. Here, we discuss the rationale, opportunities, limitations, and progress in clinical AAV gene therapy.
Collapse
Affiliation(s)
- Eloise Hudry
- Department of Neurology, The Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA.
| | - Luk H Vandenberghe
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Harvard Program in Therapeutic Science, Harvard University, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
96
|
Ong T, Pennesi ME, Birch DG, Lam BL, Tsang SH. Adeno-Associated Viral Gene Therapy for Inherited Retinal Disease. Pharm Res 2019; 36:34. [PMID: 30617669 PMCID: PMC6534121 DOI: 10.1007/s11095-018-2564-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/13/2018] [Indexed: 01/17/2023]
Abstract
Inherited retinal diseases (IRDs) are a group of rare, heterogenous eye disorders caused by gene mutations that result in degeneration of the retina. There are currently limited treatment options for IRDs; however, retinal gene therapy holds great promise for the treatment of different forms of inherited blindness. One such IRD for which gene therapy has shown positive initial results is choroideremia, a rare, X-linked degenerative disorder of the retina and choroid. Mutation of the CHM gene leads to an absence of functional Rab escort protein 1 (REP1), which causes retinal pigment epithelium cell death and photoreceptor degeneration. The condition presents in childhood as night blindness, followed by progressive constriction of visual fields, generally leading to vision loss in early adulthood and total blindness thereafter. A recently developed adeno-associated virus-2 (AAV2) vector construct encoding REP1 (AAV2-REP1) has been shown to deliver a functional version of the CHM gene into the retinal pigment epithelium and photoreceptor cells. Phase 1 and 2 studies of AAV2-REP1 in patients with choroideremia have produced encouraging results, suggesting that it is possible not only to slow or stop the decline in vision following treatment with AAV2-REP1, but also to improve visual acuity in some patients.
Collapse
Affiliation(s)
- Tuyen Ong
- Nightstar Therapeutics, 203 Crescent Street, Suite 303, Waltham, Massachusetts, 02453, USA.
| | - Mark E Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - David G Birch
- Retina Foundation of the Southwest, Dallas, Texas, USA
| | - Byron L Lam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Stephen H Tsang
- Department of Ophthalmology and of Pathology and Cell Biology, Columbia University, New York, New York, USA
| |
Collapse
|
97
|
Baehr W, Hanke-Gogokhia C, Sharif A, Reed M, Dahl T, Frederick JM, Ying G. Insights into photoreceptor ciliogenesis revealed by animal models. Prog Retin Eye Res 2018; 71:26-56. [PMID: 30590118 DOI: 10.1016/j.preteyeres.2018.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 12/10/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022]
Abstract
Photoreceptors are polarized neurons, with very specific subcellular compartmentalization and unique requirements for protein expression and trafficking. Each photoreceptor contains an outer segment, the site of photon capture that initiates vision, an inner segment that houses the biosynthetic machinery and a synaptic terminal for signal transmission to downstream neurons. Outer segments and inner segments are connected by a connecting cilium (CC), the equivalent of a transition zone (TZ) of primary cilia. The connecting cilium is part of the basal body/axoneme backbone that stabilizes the outer segment. This report will update the reader on late developments in photoreceptor ciliogenesis and transition zone formation, specifically in mouse photoreceptors, focusing on early events in photoreceptor ciliogenesis. The connecting cilium, an elongated and narrow structure through which all outer segment proteins and membrane components must traffic, functions as a gate that controls access to the outer segment. Here we will review genes and their protein products essential for basal body maturation and for CC/TZ genesis, sorted by phenotype. Emphasis is given to naturally occurring mouse mutants and gene knockouts that interfere with CC/TZ formation and ciliogenesis.
Collapse
Affiliation(s)
- Wolfgang Baehr
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA.
| | - Christin Hanke-Gogokhia
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Ali Sharif
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Michelle Reed
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Tiffanie Dahl
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Jeanne M Frederick
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Guoxin Ying
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| |
Collapse
|
98
|
Davis JL. The Blunt End: Surgical Challenges of Gene Therapy for Inherited Retinal Diseases. Am J Ophthalmol 2018; 196:xxv-xxix. [PMID: 30194931 DOI: 10.1016/j.ajo.2018.08.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/29/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE To review barriers to effective transduction of cells in the subretinal plane during gene therapy surgery for inherited retinal dystrophies (IRD). DESIGN Perspective. METHODS Case-based learning in clinical trials and commercial applications of gene therapy in a tertiary care, university-affiliated hospital. MEDLINE search for publications relevant to retinal surgical technique for gene therapy, clinical trials results for gene therapy of IRD, adenoviral-associated viral vector design, and immune response to viral vectors. RESULTS The most important surgical issues are safe access to the subretinal space, intraoperative visualization with optical coherence tomography to protect the macula, and quantitation of viral dose. Other issues for retinal surgeons are patient selection, target zone planning, and control of inflammation. Vector-related issues that may affect the precision of treatment involve capsid interaction with the innate and adaptive immune systems and selective targeting of cell types. CONCLUSIONS Most current gene therapy vectors for monogenic IRD require physical proximity to target tissues under the retina in order to work. New surgical skills and new instrumentation are under development. So far, the host immune response does not seem to cause rejection of genes delivered by viral vectors but the efficiency of transduction can only be indirectly assessed by long-term visual outcomes.
Collapse
|
99
|
Jiang DJ, Xu CL, Tsang SH. Revolution in Gene Medicine Therapy and Genome Surgery. Genes (Basel) 2018; 9:E575. [PMID: 30486314 PMCID: PMC6315778 DOI: 10.3390/genes9120575] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/17/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022] Open
Abstract
Recently, there have been revolutions in the development of both gene medicine therapy and genome surgical treatments for inherited disorders. Much of this progress has been centered on hereditary retinal dystrophies, because the eye is an immune-privileged and anatomically ideal target. Gene therapy treatments, already demonstrated to be safe and efficacious in numerous clinical trials, are benefitting from the development of new viral vectors, such as dual and triple adeno-associated virus (AAV) vectors. CRISPR/Cas9, which revolutionized the field of gene editing, is being adapted into more precise "high fidelity" and catalytically dead variants. Newer CRISPR endonucleases, such as CjCas9 and Cas12a, are generating excitement in the field as well. Stem cell therapy has emerged as a promising alternative, allowing human embryo-derived stem cells and induced pluripotent stem cells to be edited precisely in vitro and then reintroduced into the body. This article highlights recent progress made in gene therapy and genome surgery for retinal disorders, and it provides an update on precision medicine Food and Drug Administration (FDA) treatment trials.
Collapse
Affiliation(s)
- David J Jiang
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University, New York, NY, 10032, USA.
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, 10032, USA.
| | - Christine L Xu
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University, New York, NY, 10032, USA.
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, 10032, USA.
| | - Stephen H Tsang
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University, New York, NY, 10032, USA.
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, 10032, USA.
- Department of Pathology & Cell Biology, Stem Cell Initiative (CSCI), Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
100
|
Abstract
Recently, there have been revolutions in the development of both gene medicine therapy and genome surgical treatments for inherited disorders. Much of this progress has been centered on hereditary retinal dystrophies, because the eye is an immune-privileged and anatomically ideal target. Gene therapy treatments, already demonstrated to be safe and efficacious in numerous clinical trials, are benefitting from the development of new viral vectors, such as dual and triple adeno-associated virus (AAV) vectors. CRISPR/Cas9, which revolutionized the field of gene editing, is being adapted into more precise "high fidelity" and catalytically dead variants. Newer CRISPR endonucleases, such as CjCas9 and Cas12a, are generating excitement in the field as well. Stem cell therapy has emerged as a promising alternative, allowing human embryo-derived stem cells and induced pluripotent stem cells to be edited precisely in vitro and then reintroduced into the body. This article highlights recent progress made in gene therapy and genome surgery for retinal disorders, and it provides an update on precision medicine Food and Drug Administration (FDA) treatment trials.
Collapse
Affiliation(s)
- David J Jiang
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University, New York, NY, 10032, USA. .,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, 10032, USA.
| | - Christine L Xu
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University, New York, NY, 10032, USA. .,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, 10032, USA.
| | - Stephen H Tsang
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University, New York, NY, 10032, USA. .,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, 10032, USA. .,Department of Pathology & Cell Biology, Stem Cell Initiative (CSCI), Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|