51
|
Vanhooren V, Vandenbroucke RE, Dewaele S, Van Hamme E, Haigh JJ, Hochepied T, Libert C. Mice overexpressing β-1,4-Galactosyltransferase I are resistant to TNF-induced inflammation and DSS-induced colitis. PLoS One 2013; 8:e79883. [PMID: 24339869 PMCID: PMC3855152 DOI: 10.1371/journal.pone.0079883] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/26/2013] [Indexed: 12/31/2022] Open
Abstract
Glycosylation is an essential post-translational modification, which determines the function of proteins and important processes such as inflammation. β-1,4-galactosyltransferase I (βGalT1) is a key enzyme involved in the addition of galactose moieties to glycoproteins. Intestinal mucins are glycoproteins that protect the gut barrier against invading pathogens and determine the composition of the intestinal microbiota. Proper glycosylation of mucus is important in this regard. By using ubiquitously expressing βGalT1 transgenic mice, we found that this enzyme led to strong galactosylation of mucus proteins, isolated from the gut of mice. This galactosylation was associated with a drastic change in composition of gut microbiota, as TG mice had a significantly higher Firmicutes to Bacteroidetes ratio. TG mice were strongly protected against TNF-induced systemic inflammation and lethality. Moreover, βGalT1 transgenic mice were protected in a model of DSS-induced colitis, at the level of clinical score, loss of body weight, colon length and gut permeability. These studies put βGalT1 forward as an essential protective player in exacerbated intestinal inflammation. Optimal galactosylation of N-glycans of mucus proteins, determining the bacterial composition of the gut, is a likely mechanism of this function.
Collapse
Affiliation(s)
- Valerie Vanhooren
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Roosmarijn E. Vandenbroucke
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sylviane Dewaele
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Evelien Van Hamme
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jody J. Haigh
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tino Hochepied
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
52
|
Efficient recombinant protein production and secretion from nuclear transgenes in Chlamydomonas reinhardtii. J Biotechnol 2013; 167:101-10. [DOI: 10.1016/j.jbiotec.2012.10.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/10/2012] [Accepted: 10/15/2012] [Indexed: 01/07/2023]
|
53
|
Heidebrecht A, Scheibel T. Recombinant production of spider silk proteins. ADVANCES IN APPLIED MICROBIOLOGY 2013; 82:115-53. [PMID: 23415154 DOI: 10.1016/b978-0-12-407679-2.00004-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Natural spider silk fibers combine extraordinary properties such as stability and flexibility which results in a toughness superseding that of all other fiber materials. As the spider's aggressive territorial behavior renders their farming not feasible, the biotechnological production of spider silk proteins (spidroins) is essential in order to investigate and employ them for applications. In order to accomplish this task, two approaches have been tested: firstly, the expression of partial cDNAs, and secondly, the expression of synthetic genes in several host organisms, including bacteria, yeast, plants, insect cells, mammalian cells, and transgenic animals. The experienced problems include genetic instability, limitations of the translational and transcriptional machinery, and low solubility of the produced proteins. Here, an overview of attempts to recombinantly produce spidroins will be given, and advantages and disadvantages of the different approaches and host organisms will be discussed.
Collapse
|
54
|
Modulation of CD147-induced matrix metalloproteinase activity: role of CD147 N-glycosylation. Biochem J 2012; 449:437-48. [DOI: 10.1042/bj20120343] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Degradation of the basement membrane by MMPs (matrix metalloproteinases) is one of the most critical steps in tumour progression. CD147 is a tumour-associated antigen that plays a key regulatory role for MMP activities. In the present study, mass spectrum analysis demonstrated that the purified native CD147 from human lung cancer tissue was N-glycosylated and contained a series of high-mannose and complex-type N-linked glycan structures. Moreover, native glycosylated CD147 existed exclusively as oligomers in solution and directly stimulated MMP production more efficiently than non-glycosylated prokaryotic CD147. The glycosylation site mutation results indicated that, among three N-glycan attachment sites, the N152Q mutants were retained in the endoplasmic reticulum and unfolded protein response signalling was activated. This improper intracellular accumulation impaired its MMP-inducing activity. Increased β1,6-branching of N-glycans as a result of overexpression of GnT-V (N-acetylglucosaminyltransferase V) plays an important role in tumour metastasis. In the present study, we identified CD147 as a target protein of GnT-V and found that overexpression of GnT-V resulted in an elevated level of CD147 at the plasma membrane and in cell-conditioned medium, thereby increasing the induction of MMPs. The present study reveals the important role of N-glycosylation of CD147 in its biological function and implied that targeting aberrant β1,6-branching of N-glycans on CD147 would be valuable for the development of novel therapeutic modalities against carcinoma.
Collapse
|
55
|
Sengupta PK, Bouchie MP, Nita-Lazar M, Yang HY, Kukuruzinska MA. Coordinate regulation of N-glycosylation gene DPAGT1, canonical Wnt signaling and E-cadherin adhesion. J Cell Sci 2012. [PMID: 23178939 DOI: 10.1242/jcs.113035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The metabolic pathway of protein N-glycosylation influences intercellular adhesion by affecting the composition and cytoskeletal association of E-cadherin protein complexes, or adherens junctions (AJs). In sparse cells, E-cadherin is modified extensively with complex N-glycans and forms nascent AJs, while in dense cultures, hypoglycosylated E-cadherin drives the assembly of mature AJs with increased levels of γ- and α-catenins. N-glycosylation of E-cadherin is controlled by the DPAGT1 gene, a key regulator of the N-glycosylation pathway. DPAGT1 is a target of the canonical Wnt signaling pathway, with both β- and γ-catenins binding to Tcf at its promoter. We now report that DPAGT1 senses cell density through canonical Wnt signaling. In dense cells, depletion of β-catenin from the DPAGT1 promoter correlated with downregulation of its cellular abundance, while loss of nuclear γ-catenin reflected its greater recruitment to AJs. DPAGT1 itself affected canonical Wnt signaling, with forced changes in its expression resulting in corresponding changes in transcriptionally active β-catenin and canonical Wnt activity. Remarkably, a 2.4-fold increase in the DPAGT1 mRNA level resulted in increased N-glycosylation and reduced membrane localization of E-cadherin, coincident with dramatic changes in cell morphology. Lastly, we present evidence that N-glycosylation status of E-cadherin controls its antagonism of canonical Wnt signaling. Transfection of hypoglycosylated E-cadherin mutant, V13, but not fully N-glycosylated E-cadherin, into sparse cells inhibited canonical Wnt activity by depleting nuclear β- and γ-catenins. Collectively, our studies show that cells coordinate DPAGT1 expression and protein N-glycosylation with canonical Wnt signaling and E-cadherin adhesion via positive and negative feedback mechanisms.
Collapse
Affiliation(s)
- Pritam K Sengupta
- Department of Molecular and Cell Biology, Boston University Medical Center, 72 East Concord Street, EVANS-E438, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
56
|
Lotter-Stark HCT, Rybicki EP, Chikwamba RK. Plant made anti-HIV microbicides--a field of opportunity. Biotechnol Adv 2012; 30:1614-26. [PMID: 22750509 PMCID: PMC7132877 DOI: 10.1016/j.biotechadv.2012.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 06/10/2012] [Accepted: 06/20/2012] [Indexed: 12/15/2022]
Abstract
HIV remains a significant global burden and without an effective vaccine, it is crucial to develop microbicides to halt the initial transmission of the virus. Several microbicides have been researched with various levels of success. Amongst these, the broadly neutralising antibodies and peptide lectins are promising in that they can immediately act on the virus and have proven efficacious in in vitro and in vivo protection studies. For the purpose of development and access by the relevant population groups, it is crucial that these microbicides be produced at low cost. For the promising protein and peptide candidate molecules, it appears that current production systems are overburdened and expensive to establish and maintain. With recent developments in vector systems for protein expression coupled with downstream protein purification technologies, plants are rapidly gaining credibility as alternative production systems. Here we evaluate the advances made in host and vector system development for plant expression as well as the progress made in expressing HIV neutralising antibodies and peptide lectins using plant-based platforms.
Collapse
|
57
|
El-Sharkawy I, Sherif S, Mahboob A, Abubaker K, Bouzayen M, Jayasankar S. Expression of auxin-binding protein1 during plum fruit ontogeny supports the potential role of auxin in initiating and enhancing climacteric ripening. PLANT CELL REPORTS 2012; 31:1911-1921. [PMID: 22739723 DOI: 10.1007/s00299-012-1304-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 06/10/2012] [Accepted: 06/12/2012] [Indexed: 06/01/2023]
Abstract
Auxin-binding protein1 (ABP1) is an active element involved in auxin signaling and plays critical roles in auxin-mediated plant development. Here, we report the isolation and characterization of a putative sequence from Prunus salicina L., designated PslABP1. The expected protein exhibits a similar molecular structure to that of well-characterized maize-ABP1; however, PslABP1 displays more sequence polarity in the active-binding site due to substitution of some crucial amino-acid residues predicted to be involved in auxin-binding. Further, PslABP1 expression was assessed throughout fruit ontogeny to determine its role in fruit development. Comparing the expression data with the physiological aspects that characterize fruit-development stages indicates that PslABP1 up-regulation is usually associated with the signature events that are triggered in an auxin-dependent manner such as floral induction, fruit initiation, embryogenesis, and cell division and elongation. However, the diversity in PslABP1 expression profile during the ripening process of early and late plum cultivars seems to be due to the variability of endogenous auxin levels among the two cultivars, which consequently can change the levels of autocatalytic ethylene available for the fruit to co-ordinate ripening. The effect of auxin on stimulating ethylene production and in regulating PslABP1 was investigated. Our data suggest that auxin is involved in the transition of the mature green fruit into the ripening phase and in enhancing the ripening process in both auxin- and ethylene-dependent manners thereafter.
Collapse
Affiliation(s)
- I El-Sharkawy
- Department of Plant Agriculture, University of Guelph, 4890 Victoria Av. N, P.O. Box 7000, Vineland Station, ON, L0R 2E0, Canada
| | | | | | | | | | | |
Collapse
|
58
|
Chen ST, Her GR. Linkage and branch analysis of high-mannose oligosaccharides using closed-ring labeling of 8-aminopyrene-1,3,6-trisulfonate and p-aminobenzoic ethyl ester and negative ion trap mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1408-1418. [PMID: 22673837 DOI: 10.1007/s13361-012-0420-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 05/09/2012] [Accepted: 05/15/2012] [Indexed: 06/01/2023]
Abstract
A strategy based on negative ion electrospray ionization tandem mass spectrometry and closed-ring labeling with both 8-aminopyrene-1,3,6-trisulfonate (APTS) and p-aminobenzoic acid ethyl ester (ABEE) was developed for linkage and branch determination of high-mannose oligosaccharides. X-type cross-ring fragment ions obtained from APTS-labeled oligosaccharides by charge remote fragmentation provided information on linkages near the non-reducing terminus. In contrast, A-type cross-ring fragment ions observed from ABEE-labeled oligosaccharides yielded information on linkages near the reducing terminus. This complementary information provided by APTS- and ABEE-labeled oligosaccharides was utilized to delineate the structures of the high-mannose oligosaccharides. As a demonstration of this approach, the linkages and branches of high-mannose oligosaccharides Man(5)GlcNAc(2), Man(6)GlcNAc(2), Man(8)GlcNAc(2), and Man(9)GlcNAc(2) cleaved from the ribonuclease B were assigned from MS(2) spectra of ABEE- and APTS-labeled derivatives.
Collapse
Affiliation(s)
- Shu-Ting Chen
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | | |
Collapse
|
59
|
Lin CY, Ma YC, Pai PJ, Her GR. A comparative study of glycoprotein concentration, glycoform profile and glycosylation site occupancy using isotope labeling and electrospray linear ion trap mass spectrometry. Anal Chim Acta 2012; 728:49-56. [DOI: 10.1016/j.aca.2012.03.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/26/2012] [Accepted: 03/31/2012] [Indexed: 12/19/2022]
|
60
|
Aberrant amplification of the crosstalk between canonical Wnt signaling and N-glycosylation gene DPAGT1 promotes oral cancer. Oral Oncol 2012; 48:523-9. [PMID: 22341307 DOI: 10.1016/j.oraloncology.2012.01.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 01/17/2012] [Accepted: 01/20/2012] [Indexed: 11/22/2022]
Abstract
Oral cancer is one of the most aggressive epithelial malignancies, whose incidence is on the rise. Previous studies have shown that in a subset of human oral squamous cell carcinoma (OSCC) tumor specimens, overexpression of the DPAGT1 gene, encoding the dolichol-P-dependent N-acetylglucoseamine-1-phosphate transferase, a key regulator of the metabolic pathway of protein N-glycosylation, drives tumor cell discohesion by inhibiting E-cadherin adhesive function. Recently, we reported that DPAGT1 was a target of the canonical Wnt signaling pathway. Here, we link overexpression of DPAGT1 in human OSCC tumor specimens to aberrant activation of canonical Wnt signaling. We report dramatic increases in β- and γ-catenins at the DPAGT1 promoter and correlate them with reduced expression of a Wnt inhibitor, Dickkopf-1 (Dkk-1). Using human squamous carcinoma cell lines of the head and neck, we show that partial inhibition of DPAGT1 reduces canonical Wnt signaling, indicating that DPAGT1 and canonical Wnt signaling function in a positive feedback loop. We provide evidence that E-cadherin inhibits DPAGT1, canonical Wnt signaling and the OSCC cancer phenotype by depleting nuclear β- and γ-catenins, with hypoglycosylated E-cadherin being the most effective. This suggests that in human OSCC, extensive N-glycosylation of E-cadherin compromises its ability to inhibit canonical Wnt signaling and DPAGT1 expression. Our studies reveal a novel interplay between DPAGT1/N-glycosylation and canonical Wnt signaling and suggest that dysregulation of this crosstalk is a key mechanism underlying OSCC. They also suggest that partial inhibition of DPAGT1 may represent an effective way to restore normal interactions among these essential pathways in oral cancer.
Collapse
|
61
|
Breidenbach MA, Palaniappan KK, Pitcher AA, Bertozzi CR. Mapping yeast N-glycosites with isotopically recoded glycans. Mol Cell Proteomics 2012; 11:M111.015339. [PMID: 22261724 PMCID: PMC3433913 DOI: 10.1074/mcp.m111.015339] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Asparagine-linked glycosylation is a common post-translational modification of proteins; in addition to participating in key macromolecular interactions, N-glycans contribute to protein folding, trafficking, and stability. Despite their importance, few N-glycosites have been experimentally mapped in the Saccharomyces cerevisiae proteome. Factors including glycan heterogeneity, low abundance, and low occupancy can complicate site mapping. Here, we report a novel mass spectrometry-based strategy for detection of N-glycosites in the yeast proteome. Our method imparts N-glycopeptide mass envelopes with a pattern that is computationally distinguishable from background ions. Isotopic recoding is achieved via metabolic incorporation of a defined mixture of N-acetylglucosamine isotopologs into N-glycans. Peptides bearing the recoded envelopes are specifically targeted for fragmentation, facilitating high confidence site mapping. This strategy requires no chemical modification of the N-glycans or stringent sample enrichment. Further, enzymatically simplified N-glycans are preserved on peptides. Using this approach, we identify 133 N-glycosites spanning 58 proteins, nearly doubling the number of experimentally observed N-glycosites in the yeast proteome.
Collapse
Affiliation(s)
- Mark A Breidenbach
- Department of Chemistry, Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
62
|
Labat-Robert J, Robert L. Fifty years of structural glycoproteins. ACTA ACUST UNITED AC 2012; 60:66-75. [PMID: 22227294 DOI: 10.1016/j.patbio.2011.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 10/30/2011] [Indexed: 10/14/2022]
Abstract
During decades preceding and following the last war, a favourite subject of biochemists was to study glycoproteins. One class of these substances, found in connective tissues were characterised as polysaccharides, most of them found to be linked to proteins, designated later as glycosaminoglycans and proteoglycans. Another family of glycoconjugates represented epithelial mucins as found in the gastro-intestinal and respiratory tracts and conduits. A third family of glycoconjugates is represented by circulating glycoproteins isolated from the blood plasma, mostly studied by medical biochemists in relation to pathological conditions comprising those increasing during the inflammatory reaction: acute phase glycoproteins. Their study suggested that they might be derived from connective tissues. Although inflammatory glycoproteins derive mostly from the liver, the possibility of connective tissue origin of glycoproteins remained open. Using cornea, an avascular tissue, we could show that connective tissues also synthesize glycoproteins. We proposed to designate them "structural glycoproteins" (SGP-s) to distinguish them from circulating, blood-born glycoproteins coming from the liver. They play locally "structural" roles in connective tissues where they are synthesized. Soon after fibronectin was identified and shown to mediate cell-matrix interactions. A large family of glycoproteins were then isolated from a variety of sources, cells, tissues others than liver, confirming our original hypothesis. The first experiments on these glycoproteins were published from 1961/1962 giving the opportunity to recapitulate this biochemical adventure 50 years later, together with the celebration of the foundation of the first connective tissue society in Europe, as described in the first article in this issue.
Collapse
Affiliation(s)
- J Labat-Robert
- Laboratoire de recherche ophtalmologique, hôpital Hôtel-Dieu, université Paris-5, 1, place du Parvis-Notre-Dame, 75181 Paris cedex 04, France
| | | |
Collapse
|
63
|
Vanhooren V, Dewaele S, Kuro-O M, Taniguchi N, Dollé L, van Grunsven LA, Makrantonaki E, Zouboulis CC, Chen CC, Libert C. Alteration in N-glycomics during mouse aging: a role for FUT8. Aging Cell 2011; 10:1056-66. [PMID: 21951615 DOI: 10.1111/j.1474-9726.2011.00749.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We recently reported that N-glycosylation changes during human aging. To further investigate the molecular basis determining these alterations, the aging process in mice was studied. N-glycan profiling of mouse serum glycoproteins in different age groups of healthy C57BL/6 mice showed substantial age-related changes in three major N-glycan structures: under-galactosylated biantennary (NGA2F), biantennary (NA2), and core α-1,6-fucosylated -β-galactosylated biantennary structures (NA2F). Mice defective in klotho gene expression (kl/kl), which have a shortened lifespan, displayed a similar but accelerated trend. Interestingly, the opposite trend was observed in slow-aging Snell Dwarf mice (dw/dw) and in mice fed a calorically restricted diet. We also discovered that increased expression and activity of α-1,6-fucosyltransferase (FUT8) in the liver are strongly linked to the age-related changes in glycosylation and that this increased FUT8 and fucosylation influence IGF-1 signaling. These data demonstrate that the glycosylation machinery in liver cells is significantly affected during aging and that age-related increased FUT8 activity could influence the aging process by altering the sensitivity of the IGF-1R signaling pathway.
Collapse
Affiliation(s)
- Valerie Vanhooren
- Department for Molecular Biomedical Research, VIB, Technologiepark 927, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Shibui A, Nambu A, Shimura E, Yamaguchi S, Shiraishi C, Sato Y, Okumura K, Sugano S, Hozumi N, Nakae S. Alteration of immune responses by N-acetylglucosaminyltransferase V during allergic airway inflammation. Allergol Int 2011; 60:345-54. [PMID: 21502802 DOI: 10.2332/allergolint.10-oa-0283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 12/20/2010] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND β-1,6-N-acetylglucosaminyltransferase V (Mgat5 or GlcNac-TV), which is involved in the glycosylation of proteins, is known to be important for down-regulation of TCR-mediated T-cell activation and negatively regulates induction of contact dermatitis and experimental autoimmune encephalomyelitis. However, the role of Mgat5 in the induction of allergic airway inflammation remains unclear. METHODS To elucidate the role of Mgat5 in the pathogenesis of allergic airway inflammation, ovalbumin (OVA)-induced airway inflammation was induced in Mgat5-deficient mice. The OVA-specific lymphocyte proliferation and cytokine production levels, OVA-specific IgG1, IgG2a and IgE levels in the serum, and the number of leukocytes and cytokine levels in the bronchoalveolar lavage (BAL) fluid were compared between wild-type and Mgat5-deficient mice. RESULTS OVA-specific lymphocyte proliferation and production of IFN-γ and IL-10, but not IL-4, were increased in Mgat5-deficient mice, suggesting that Th2-type immune responses are seemed to be suppressed by increased IFN-γ and IL-10 production in these mice. However, Th2-type responses such as OVA-specific IgG1, but not IgE, and IL-5 levels in BAL fluids were increased in Mgat5-deficient mice. Meanwhile, the number of eosinophils was normal, but the numbers of neutrophils, macrophages and lymphocytes were reduced, in these mutant mice during OVA-induced airway inflammation. CONCLUSIONS Mgat5-dependent glycosylation of proteins can modulate acquired immune responses, but it is not essential for the development of OVA-induced eosinophilic airway inflammation.
Collapse
Affiliation(s)
- Akiko Shibui
- Department of Medical Genomics, Graduate School of Frontier Sciences, The University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Li Q, Huang J, Liu S, Li J, Yang X, Liu Y, Liu Z. Proteomic analysis of young leaves at three developmental stages in an albino tea cultivar. Proteome Sci 2011; 9:44. [PMID: 21806834 PMCID: PMC3162873 DOI: 10.1186/1477-5956-9-44] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 08/02/2011] [Indexed: 01/02/2023] Open
Abstract
Background White leaf No.1 is a typical albino tea cultivar grown in China and it has received increased attention in recent years due to the fact that white leaves containing a high level of amino acids, which are very important components affecting the quality of tea drink. According to the color of its leaves, the development of this tea cultivar is divided into three stages: the pre-albinistic stage, the albinistic stage and the regreening stage. To understand the intricate mechanism of periodic albinism, a comparative proteomic approach based on two-dimensional electrophoresis (2-DE) and mass spectrometry was adopted first time to identify proteins that changed in abundance during the three developmental periods. Results The 2-DE results showed that the expression level of 61 protein spots varied markedly during the three developmental stages. To analyze the functions of the significantly differentially expressed protein spots, 30 spots were excised from gels and analyzed by matrix-assisted laser desorption ionization-time of flight-tandem mass spectrometry. Of these, 26 spots were successfully identified. All identified protein spots were involved in metabolism of carbon, nitrogen and sulfur, photosynthesis, protein processing, stress defense and RNA processing, indicating these physiological processes may play crucial roles in the periodic albinism. Quantitative real-time RT-PCR analysis was used to assess the transcriptional level of differentially expressed proteins. In addition, the ultrastructural studies revealed that the etioplast-chloroplast transition in the leaf cell of White leaf No. 1 was inhibited and the grana in the chloroplast was destroyed at the albinistic stage. Conclusions In this work, the proteomic analysis revealed that some proteins may have important roles in the molecular events involved in periodic albinism of White leaf No. 1 and identificated many attractive candidates for further investigation. In addition, the ultrastructural studies revealed that the change in leaf color of White leaf No. 1 might be a consequence of suppression of the etioplast-chloroplast transition and damage to grana in the chloroplast induced by temperature. These results provide much useful information to improve our understanding of the mechanism of albinism in the albino tea cultivar.
Collapse
Affiliation(s)
- Qin Li
- Key Laboratory of Tea Science of Ministry of Education and Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, Hunan 410128, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
66
|
Yang W, Wagener J, Wolf N, Schmidt M, Kimmig R, Winterhager E, Gellhaus A. Impact of CCN3 (NOV) glycosylation on migration/invasion properties and cell growth of the choriocarcinoma cell line Jeg3. Hum Reprod 2011; 26:2850-60. [PMID: 21784733 DOI: 10.1093/humrep/der239] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Recently we have shown that the matricellular CCN3 protein expressed in invasive extravillous trophoblast cells (EVTs) is decreased in early-onset pre-eclampsia and is regulated by oxygen tension. Pathogenesis of pre-eclampsia relies on a shallow invasion of EVTs into the spiral arteries, which leads to hypoxia accompanied by uteroplacental insufficiency. Here we investigated the function of glycosylated and non-glycosylated CCN3 protein on cell growth as well as migration and invasion properties of the malignant trophoblast cell line Jeg3 which is a widely used model for the invasive trophoblast. METHODS AND RESULTS Stable transfection of Jeg3 choriocarcinoma cells with full length CCN3 resulted in high expression of secreted glycosylated and cellular non-glycosylated CCN3. These cells revealed significantly reduced growth in cell numbers combined with a significantly increased migratory and invasive capacity. Matrix metalloprotease (MMP)-2 and MMP-9 activities were enhanced dependent on CCN3 expression, which could be confirmed by CCN3 knockdown studies. Using recombinant glycosylated and non-glycosylated CCN3, we revealed that CCN3 decreased growth in Jeg3 cell numbers independent of its glycosylation status, whereas only non-glycosylated CCN3 was able to enhance migration and invasion properties. CONCLUSIONS The present results suggest that CCN3 protein regulates the decrease in Jeg3 cell numbers independent of its glycosylation status, whereas migratory and invasive properties are influenced only by non-glycosylated CCN3. An impaired balance in the expression of glycosylated and non-glycosylated CCN3 could contribute to the shallow invasion of EVTs observed in pre-eclampsia.
Collapse
Affiliation(s)
- Wei Yang
- Department of Molecular Biology, University Hospital Essen, 45145 Essen, Germany
| | | | | | | | | | | | | |
Collapse
|
67
|
Post-translational modifications, a key process in CD36 function: lessons from the spontaneously hypertensive rat heart. J Mol Cell Cardiol 2011; 51:99-108. [PMID: 21510957 DOI: 10.1016/j.yjmcc.2011.04.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 04/01/2011] [Accepted: 04/04/2011] [Indexed: 11/21/2022]
Abstract
CD36, a multifunctional protein, is involved in cardiac long chain fatty acid (LCFA) metabolism and in the etiology of heart diseases, yet the functional impact of Cd36 gene variants remains unclear. In 7-week-old spontaneously hypertensive rats (SHR), which, like humans, carry numerous mutations in Cd36, we tested the hypothesis that their restricted cardiac LCFA utilization occurs prior to hypertrophy due to defective CD36 post-translational modifications (PTM), as assessed by ex vivo perfusion of (13)C-labeled substrates and biochemical techniques. Compared to their controls, SHR hearts displayed a lower (i) contribution of LCFA to β-oxidation (-40%) and triglycerides (+2.8 folds), which was not explained by transcriptional changes or malonyl-CoA level, a recognized β-oxidation inhibitor, and (ii) membrane-associated CD36 protein level, but unchanged distribution. Other results demonstrate alterations in CD36 PTM in SHR hearts, specifically by N-glycosylation, and the importance of O-linked-β-N-acetylglucosamine for its membrane recruitment and role in LCFA use in the heart.
Collapse
|
68
|
Zelinger L, Banin E, Obolensky A, Mizrahi-Meissonnier L, Beryozkin A, Bandah-Rozenfeld D, Frenkel S, Ben-Yosef T, Merin S, Schwartz SB, Cideciyan AV, Jacobson SG, Sharon D. A missense mutation in DHDDS, encoding dehydrodolichyl diphosphate synthase, is associated with autosomal-recessive retinitis pigmentosa in Ashkenazi Jews. Am J Hum Genet 2011; 88:207-15. [PMID: 21295282 DOI: 10.1016/j.ajhg.2011.01.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 12/29/2010] [Accepted: 01/10/2011] [Indexed: 11/30/2022] Open
Abstract
Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal degenerations caused by mutations in at least 50 genes. Using homozygosity mapping in Ashkenazi Jewish (AJ) patients with autosomal-recessive RP (arRP), we identified a shared 1.7 Mb homozygous region on chromosome 1p36.11. Sequence analysis revealed a founder homozygous missense mutation, c.124A>G (p.Lys42Glu), in the dehydrodolichyl diphosphate synthase gene (DHDDS) in 20 AJ patients with RP of 15 unrelated families. The mutation was not identified in an additional set of 109 AJ patients with RP, in 20 AJ patients with other inherited retinal diseases, or in 70 patients with retinal degeneration of other ethnic origins. The mutation was found heterozygously in 1 out of 322 ethnically matched normal control individuals. RT-PCR analysis in 21 human tissues revealed ubiquitous expression of DHDDS. Immunohistochemical analysis of the human retina with anti-DHDDS antibodies revealed intense labeling of the cone and rod photoreceptor inner segments. Clinical manifestations of patients who are homozygous for the c.124A>G mutation were within the spectrum associated with arRP. Most patients had symptoms of night and peripheral vision loss, nondetectable electroretinographic responses, constriction of visual fields, and funduscopic hallmarks of retinal degeneration. DHDDS is a key enzyme in the pathway of dolichol, which plays an important role in N-glycosylation of many glycoproteins, including rhodopsin. Our results support a pivotal role of DHDDS in retinal function and may allow for new therapeutic interventions for RP.
Collapse
Affiliation(s)
- Lina Zelinger
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Rising A, Widhe M, Johansson J, Hedhammar M. Spider silk proteins: recent advances in recombinant production, structure-function relationships and biomedical applications. Cell Mol Life Sci 2011; 68:169-84. [PMID: 20668909 PMCID: PMC11114806 DOI: 10.1007/s00018-010-0462-z] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 06/04/2010] [Accepted: 07/09/2010] [Indexed: 11/26/2022]
Abstract
Spider dragline silk is an outstanding material made up of unique proteins-spidroins. Analysis of the amino acid sequences of full-length spidroins reveals a tripartite composition: an N-terminal non-repetitive domain, a highly repetitive central part composed of approximately 100 polyalanine/glycine rich co-segments and a C-terminal non-repetitive domain. Recent molecular data on the terminal domains suggest that these have different functions. The composite nature of spidroins allows for recombinant production of individual and combined regions. Miniaturized spidroins designed by linking the terminal domains with a limited number of repetitive segments recapitulate the properties of native spidroins to a surprisingly large extent, provided that they are produced and isolated in a manner that retains water solubility until fibre formation is triggered. Biocompatibility studies in cell culture or in vivo of native and recombinant spider silk indicate that they are surprisingly well tolerated, suggesting that recombinant spider silk has potential for biomedical applications.
Collapse
Affiliation(s)
- Anna Rising
- Department of Anatomy Physiology and Biochemistry, The Biomedical Centre, Swedish University of Agricultural Sciences, 751-23 Uppsala, Sweden
| | - Mona Widhe
- Department of Anatomy Physiology and Biochemistry, The Biomedical Centre, Swedish University of Agricultural Sciences, 751-23 Uppsala, Sweden
| | - Jan Johansson
- Department of Anatomy Physiology and Biochemistry, The Biomedical Centre, Swedish University of Agricultural Sciences, 751-23 Uppsala, Sweden
| | - My Hedhammar
- Department of Anatomy Physiology and Biochemistry, The Biomedical Centre, Swedish University of Agricultural Sciences, 751-23 Uppsala, Sweden
| |
Collapse
|
70
|
Kotz A, Wagener J, Engel J, Routier FH, Echtenacher B, Jacobsen I, Heesemann J, Ebel F. Approaching the secrets of N-glycosylation in Aspergillus fumigatus: characterization of the AfOch1 protein. PLoS One 2010; 5:e15729. [PMID: 21206755 PMCID: PMC3012087 DOI: 10.1371/journal.pone.0015729] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 11/22/2010] [Indexed: 11/21/2022] Open
Abstract
The mannosyltransferase Och1 is the key enzyme for synthesis of elaborated protein N-glycans in yeast. In filamentous fungi genes implicated in outer chain formation are present, but their function is unclear. In this study we have analyzed the Och1 protein of Aspergillus fumigatus. We provide first evidence that poly-mannosylated N-glycans exist in A. fumigatus and that their synthesis requires AfOch1 activity. This implies that AfOch1 plays a similar role as S. cerevisiae ScOch1 in the initiation of an N-glycan outer chain. A Δafoch1 mutant showed normal growth under standard and various stress conditions including elevated temperature, cell wall and oxidative stress. However, sporulation of this mutant was dramatically reduced in the presence of high calcium concentrations, suggesting that certain proteins engaged in sporulation require N-glycan outer chains to be fully functional. A characteristic feature of AfOch1 and Och1 homologues from other filamentous fungi is a signal peptide that clearly distinguishes them from their yeast counterparts. However, this difference does not appear to have consequences for its localization in the Golgi. Replacing the signal peptide of AfOch1 by a membrane anchor had no impact on its ability to complement the sporulation defect of the Δafoch1 strain. The mutant triggered a normal cytokine response in infected murine macrophages, arguing against a role of outer chains as relevant Aspergillus pathogen associated molecular patterns. Infection experiments provided no evidence for attenuation in virulence; in fact, according to our data the Δafoch1 mutant may even be slightly more virulent than the control strains.
Collapse
Affiliation(s)
- Andrea Kotz
- Max-von-Pettenkofer-Institute, Ludwig-Maximilians-University, Munich, Germany
| | - Johannes Wagener
- Max-von-Pettenkofer-Institute, Ludwig-Maximilians-University, Munich, Germany
| | - Jakob Engel
- Department of Cellular Chemistry, Hanover Medical School, Hanover, Germany
| | | | - Bernd Echtenacher
- Institute for Immunology, University of Regensburg, Regensburg, Germany
| | - Ilse Jacobsen
- Department for Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Jürgen Heesemann
- Max-von-Pettenkofer-Institute, Ludwig-Maximilians-University, Munich, Germany
- Faculty of Medicine, Center of Integrated Protein Science Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Frank Ebel
- Max-von-Pettenkofer-Institute, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
71
|
Chen CC, Engelborghs S, Dewaele S, Le Bastard N, Martin JJ, Vanhooren V, Libert C, De Deyn PP. Altered serum glycomics in Alzheimer disease: a potential blood biomarker? Rejuvenation Res 2010; 13:439-44. [PMID: 20426627 DOI: 10.1089/rej.2009.0992] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We investigated whether blood N-glycan changes can be used as a diagnostic biomarker for Alzheimer disease (AD). We used DNA sequencer-assisted, fluorophore-assisted carbohydrate electrophoresis (DSA-FACE) technology to assay N-glycans in sera from 79 autopsy-confirmed dementia patients and 149 healthy controls. One N-glycan (NA2F) was substantially decreased in AD patients but not in controls. Use of NA2F for discriminating AD between dementia patients and healthy controls showed a diagnostic accuracy of 85.7% +/- 2.8% with 92% specificity and 70% sensitivity. The decrease in the level of NA2F in AD patients compared to non-AD patients was more pronounced in females (p < 0.0001) than in males (p < 0.014). Use of NA2F to differentiate female AD from female non-AD patients reached a diagnostic accuracy of 90.7% +/- 4.8 %. Pearson correlation analysis showed that in female dementia patients, serum NA2F levels were significantly correlated with the cerebrospinal fluid (CSF) beta-amyloid peptide of 42 amino acids (Abeta(1-42)) and tau phosphorylated at threonine 181 (P-tau(181P)) levels, whereas in male dementia patients serum NA2F levels were significantly correlated only with CSF total tau protein (T-tau) level. Thus, we suggest that the serum N-glycan marker might be suitable for longitudinal and follow-up studies.
Collapse
Affiliation(s)
- Cuiying Chitty Chen
- Department for Molecular Biomedical Research, VIB, Gent-Zwijnaarde, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Nomura T, Ikeda M, Ishiyama S, Mita K, Tamura T, Okada T, Fujiyama K, Usami A. Cloning and characterization of a β-N-acetylglucosaminidase (BmFDL) from silkworm Bombyx mori. J Biosci Bioeng 2010; 110:386-91. [PMID: 20547376 DOI: 10.1016/j.jbiosc.2010.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 04/15/2010] [Accepted: 04/20/2010] [Indexed: 10/19/2022]
Abstract
In insects, β-N-acetylglucosaminidase (GlcNAcase) participates in critical physiological processes such as fertilization, metamorphosis, and glycoconjugate degradation. Insects produce glycoproteins carrying paucimannosidic-type N-glycans, the terminal GlcNAc residue of which is cleaved by a GlcNAc-linkage specific GlcNAcase, also known as the fused lobes (FDL) protein. To obtain information on the structure of GlcNAcases and insight into their contribution to physiological processes, we cloned Bombyx mori FDL (BmFDL) from silkworm larvae. The full-length cDNA (1.9 kb) encoded a protein of 633 amino acids with 42% amino acid sequence identity to Drosophila melanogaster FDL (DmFDL). Recombinant BmFDL cleaved only β-1,2-linked GlcNAc residues from the α-1,3 branch of biantennary N-glycan. This substrate specificity was similar to that of DmFDL. Microsomal FDL activity was inhibited by anti-BmFDL antibodies. Taken together, our results suggest that BmFDL is a N-glycan-processing GlcNAcase in B. mori.
Collapse
Affiliation(s)
- Tsuyoshi Nomura
- Research Institute of Biological Science, Katakura industries CO., LTD., 1548 Simo-okutomi, Sayama, Saitama 350-1332, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Janik ME, Lityńska A, Vereecken P. Cell migration-the role of integrin glycosylation. Biochim Biophys Acta Gen Subj 2010; 1800:545-55. [PMID: 20332015 DOI: 10.1016/j.bbagen.2010.03.013] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 03/11/2010] [Accepted: 03/17/2010] [Indexed: 12/25/2022]
Abstract
BACKGROUND Cell migration is an essential process in organ homeostasis, in inflammation, and also in metastasis, the main cause of death from cancer. The extracellular matrix (ECM) serves as the molecular scaffold for cell adhesion and migration; in the first phase of migration, adhesion of cells to the ECM is critical. Engagement of integrin receptors with ECM ligands gives rise to the formation of complex multiprotein structures which link the ECM to the cytoplasmic actin skeleton. Both ECM proteins and the adhesion receptors are glycoproteins, and it is well accepted that N-glycans modulate their conformation and activity, thereby affecting cell-ECM interactions. Likely targets for glycosylation are the integrins, whose ability to form functional dimers depends upon the presence of N-linked oligosaccharides. Cell migratory behavior may depend on the level of expression of adhesion proteins, and their N-glycosylation that affect receptor-ligand binding. SCOPE OF REVIEW The mechanism underlying the effect of integrin glycosylation on migration is still unknown, but results gained from integrins with artificial or mutated N-glycosylation sites provide evidence that integrin function can be regulated by changes in glycosylation. GENERAL SIGNIFICANCE A better understanding of the molecular mechanism of cell migration processes could lead to novel diagnostic and therapeutic approaches and applications. For this, the proteins and oligosaccharides involved in these events need to be characterized.
Collapse
Affiliation(s)
- Marcelina E Janik
- Department of Glycoconjugate Biochemistry, Institute of Zoology, Jagiellonian University, Krakow, Poland.
| | | | | |
Collapse
|
74
|
Liu Y, Nguyen A, Wolfert RL, Zhuo S. Enhancing the secretion of recombinant proteins by engineering N-glycosylation sites. Biotechnol Prog 2010; 25:1468-75. [PMID: 19637381 DOI: 10.1002/btpr.241] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
N-glycosylation is important for the folding and quality control of membrane and secretory proteins. We used mutagenesis to introduce N-glycosylation sequons in recombinant proteins to improve their secretion in HEK293 cells. Seven recombinant proteins, with or without endogenous N-glycosylation sequons, were tested by this method. Our results indicate that N-glycosylation sequons located at the N- or C-terminal are glycosylated at high rates and thus the N- and C-terminal may be convenient sites for effectively attaching oligosaccharide chains. More importantly, introduction of oligosaccharide chains at such positions has been found to improve the secretion levels for the majority of the recombinant proteins in our studies, regardless of endogenous N-glycosylation, presumably by improving their folding in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Yan Liu
- Dept. of Protein Science, diaDexus, Inc., South San Francisco, CA 94080, USA
| | | | | | | |
Collapse
|
75
|
Afonso-Oramas D, Cruz-Muros I, de la Rosa DÁ, Abreu P, Giráldez T, Castro-Hernández J, Salas-Hernández J, Lanciego JL, Rodríguez M, González-Hernández T. Dopamine transporter glycosylation correlates with the vulnerability of midbrain dopaminergic cells in Parkinson's disease. Neurobiol Dis 2009; 36:494-508. [DOI: 10.1016/j.nbd.2009.09.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 09/03/2009] [Accepted: 09/07/2009] [Indexed: 10/20/2022] Open
|
76
|
Zhou YQ, Chen SL, Ju JY, Shen L, Liu Y, Zhen S, Lv N, He ZG, Zhu LP. Tumor suppressor function of BCSC-1 in nasopharyngeal carcinoma. Cancer Sci 2009; 100:1817-22. [PMID: 19656157 PMCID: PMC11159686 DOI: 10.1111/j.1349-7006.2009.01261.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BCSC-1 is dramatically upregulated in CNE-2L2 human nasopharyngeal carcinoma cells with reduced malignancy (AS cells) and is proposed to be a candidate tumor suppressor gene. We therefore examined the effect of BCSC-1 expression on malignant behaviors of CNE-2L2 cells. Growth in vitro and tumorigenesis in nude mice of wild-type CNE-2L2 cells (W cells) were inhibited by ectopic BCSC-1, and those of AS cells were promoted by BCSC-1 suppression. The tumor suppressor function of BCSC-1 was further confirmed by a study showing that intratumor BCSC-1 injection caused growth suppression of the tumor from W cells inoculated in nude mice. Immunohistochemistry exhibited marked reduction of BCSC-1 expression in 11 of 39 human nasopharyngeal carcinoma specimens. Because BCSC-1 expression was as rich as that in normal cells in the rest of the carcinoma specimens and was poor in CNE-2L2 cells, HNE-1 human nasopharyngeal carcinoma cells with rich BCSC-1 expression were used as a control in the study. No effect of BCSC-1 transfection on growth of the cells was observed. The data suggest that BCSC-1 suppression might play roles in tumorigenesis of some nasopharyngeal carcinomas and that BCSC-1 might be a potential gene therapy target in nasopharyngeal carcinomas with poor BCSC-1 expression. Enhanced aggregation of cells together with increased E-cadherin and alpha-catenin expression and reduced Wnt signaling might be involved in the mechanisms of tumor suppressor function of BCSC-1.
Collapse
Affiliation(s)
- Y Q Zhou
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
The use of mushroom-forming fungi for the production of N-glycosylated therapeutic proteins. Trends Microbiol 2009; 17:439-43. [PMID: 19758804 DOI: 10.1016/j.tim.2009.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 07/13/2009] [Accepted: 07/20/2009] [Indexed: 11/23/2022]
Abstract
The market for N-glycosylated therapeutic proteins represents multi-billion dollars in sales and is growing more than 10% each year. This requires cost-effective production platforms that display correct and homogeneous N-glycosylation. Based on recent results, we propose to use mushroom-forming basidiomycetes for the production of N-glycosylated therapeutic proteins.
Collapse
|
78
|
Abstract
Bves was discovered in 1999 by two independent laboratories using screens to identify novel genes that were highly expressed in the developing heart (Reese et al., 1999; Andree et al., 2000). As an evolutionarily conserved transmembrane protein, Bves is postulated to play a role in cell adhesion and cell motility. In studies of Bves protein disruption, there have been multiple phenotypes, but few molecular mechanisms have been advanced to explain the underlying cause of these phenotypes. As the molecular function of Bves protein begins to be uncovered, it is now time to review the literature to examine the significance of this work and future directions of study. This review summarizes the literature on this unique protein and explores new and exciting data that support emerging themes on its molecular function.
Collapse
Affiliation(s)
- H A Hager
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-6300, USA
| | | |
Collapse
|
79
|
U. Nihlén, P. Montnémery, L. H. Lin. Increased serum levels of carbohydrate-deficient transferrin in patients with chronic obstructive pulmonary disease. Scandinavian Journal of Clinical and Laboratory Investigation 2009. [DOI: 10.1080/00365510120033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
80
|
Harmsen MM, van Solt CB, Fijten HPD. Enhancement of toxin- and virus-neutralizing capacity of single-domain antibody fragments by N-glycosylation. Appl Microbiol Biotechnol 2009; 84:1087-94. [PMID: 19455325 PMCID: PMC2755796 DOI: 10.1007/s00253-009-2029-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 04/29/2009] [Accepted: 04/29/2009] [Indexed: 11/26/2022]
Abstract
Single-domain antibody fragments (VHHs) have several beneficial properties as compared to conventional antibody fragments. However, their small size complicates their toxin- and virus-neutralizing capacity. We isolated 27 VHHs binding Escherichia coli heat-labile toxin and expressed these in Saccharomyces cerevisiae. The most potent neutralizing VHH (LT109) was N-glycosylated, resulting in a large increase in molecular mass. This suggests that N-glycosylation of LT109 improves its neutralizing capacity. Indeed, deglycosylation of LT109 decreased its neutralizing capacity three- to fivefold. We also studied the effect of glycosylation of two previously isolated VHHs on their ability to neutralize foot-and-mouth disease virus. For this purpose, these VHHs that lacked potential N-glycosylation sites were genetically fused to another VHH that was known to be glycosylated. The resulting fusion proteins were also N-glycosylated. They neutralized the virus at at least fourfold-lower VHH concentrations as compared to the single, non-glycosylated VHHs and at at least 50-fold-lower VHH concentrations as compared to their deglycosylated counterparts. Thus, we have shown that N-glycosylation of VHHs contributes to toxin- and virus-neutralizing capacity.
Collapse
Affiliation(s)
- M M Harmsen
- Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands.
| | | | | |
Collapse
|
81
|
Genomic and biochemical analysis of N glycosylation in the mushroom-forming basidiomycete Schizophyllum commune. Appl Environ Microbiol 2009; 75:4648-52. [PMID: 19411416 DOI: 10.1128/aem.00352-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
N-linked glycans of Schizophyllum commune consist of Man(5-9)GlcNAc(2) structures. Lack of further glycan maturation is explained by the absence of genes encoding such functions in this and other homobasidiomycetes. N-linked glycans in vegetative mycelium and fruiting bodies of S. commune are mainly Man(7)GlcNAc(2) and Man(5)GlcNAc(2), respectively, suggesting more efficient mannose trimming in the mushroom.
Collapse
|
82
|
Sun Q, Kang X, Zhang Y, Zhou H, Dai Z, Lu W, Zhou X, Liu X, Yang P, Liu Y. DSA affinity glycoproteome of human liver tissue. Arch Biochem Biophys 2009; 484:24-9. [PMID: 19467628 DOI: 10.1016/j.abb.2009.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 01/10/2009] [Accepted: 01/12/2009] [Indexed: 11/26/2022]
Abstract
Due to the critical roles of glycoproteins in the activities of cells to tissues, mapping of liver glycoproteome may provide valuable basic information for finding disease marker proteins. In this study, Datura Stramonium Agglutinin (DSA) was chosen to enrich N-linked glycoproteins for its broader specificity with tri- or tetra-antennary complex type. DSA affinity glycoproteins' profiles of human liver tissue were generated by two-dimensional electrophoresis (2-DE) followed by glycoprotein staining based on multiplexed proteomics (MP) technology. 64+/-3 (n=3) protein spots were detected and 41 of glycoproteins were identified via peptide mass fingerprinting (PMF) using MALDI-TOF-MS/MS and annotated to IPI databases. Identified glycoproteins definitely take part in the regulation of cell cycle and metabolic processes. The detailed carbohydrate moiety of some glycoproteins might be concluded according to the literatures. The construction of DSA affinity glycoprotein database would contribute to the subsequent research.
Collapse
Affiliation(s)
- Qiangling Sun
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Wilson N, Simpson R, Cooper-Liddell C. Introductory glycosylation analysis using SDS-PAGE and peptide mass fingerprinting. Methods Mol Biol 2009; 534:205-212. [PMID: 19277550 DOI: 10.1007/978-1-59745-022-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Glycosylation is extremely complex, with the potential for a protein to have oligosaccharides attached at multiple sites, and for each site of glycosylation to have multiple structures attached to it. Structural information on the oligosaccharides bound to either asparagine residues (N-linked) or serine and threonine residues (O-linked) requires sensitive, specialised, and complex techniques and equipment. We show here, however, that a large amount of information regarding the glycosylation of glycoproteins can be obtained with common protein techniques such as 1D SDS-PAGE and peptide mass fingerprinting (PMF). Enzymatic deglycosylation in combination with SDS-PAGE and PMF analysis can determine the relative percentage of N-linked carbohydrate on the glycosylated protein, as well as attachment sites of the oligosaccharides.
Collapse
Affiliation(s)
- Nicole Wilson
- Apollo Cytokine Research, Beaconsfield, Sydney, NSW, Australia
| | | | | |
Collapse
|
84
|
Tian Y, Ju JY, Zhou YQ, Liu Y, Zhu LP. Inhibition of alpha-mannosidase Man2c1 gene expression suppresses growth of esophageal carcinoma cells through mitotic arrest and apoptosis. Cancer Sci 2008; 99:2428-34. [PMID: 19018777 PMCID: PMC11158925 DOI: 10.1111/j.1349-7006.2008.01019.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 08/25/2008] [Accepted: 08/25/2008] [Indexed: 12/29/2022] Open
Abstract
To study the effects of suppressed alpha-mannosidase Man2c1 gene expression on EC9706 human esophageal carcinoma cells, the cells were treated with short interfering RNA. Growth inhibition of EC9706 cells was observed when Man2c1 expression was inhibited in this way. Flow cytometric analysis showed accumulation of cells in S and G(2)-M phases, as well as cell apoptosis. The mitotic index test showed cell-cycle arrest at the M checkpoint. Although the percentage of cells in (pro)metaphase increased, the proportion of cells in anaphase and telophase decreased. Apoptosis was trigged by mitotic arrest. Furthermore, microtubules in EC9607 cells were examined by means of fluorescence staining of alpha-tubulin. Although control cells showed a nest-like microtubule network, the microtubule network in experimental cells was vague and condensed at the perinuclear region. Some cells with Man2c1 suppression had large protrusions of cytoplasm, some of which linked with the main body through a long, thin connection. Western blotting showed that tubulin polymerization was inhibited. The data imply that induction of mitotic arrest and consequent apoptosis resulted from microtubule disorganization, which appears to be one of the major cellular mechanisms by which suppressed expression of the Man2c1 gene causes growth inhibition of EC9706 esophageal carcinoma cells. In addition, Man2c1 suppression results in upregulation of E-cadherin, alpha-catenin, and beta-catenin expression in cells.
Collapse
Affiliation(s)
- Yun Tian
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | | | | | | | | |
Collapse
|
85
|
Gupta G, Sinha S, Mitra N, Surolia A. Probing into the role of conserved N-glycosylation sites in the Tyrosinase glycoprotein family. Glycoconj J 2008; 26:691-5. [PMID: 19015978 DOI: 10.1007/s10719-008-9213-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 09/08/2008] [Accepted: 10/28/2008] [Indexed: 11/25/2022]
Abstract
N-linked glycosylation has a profound effect on the proper folding, oligomerization and stability of glycoproteins. These glycans impart many properties to proteins that may be important for their proper functioning, besides having a tendency to exert a chaperone-like effect on them. Certain glycosylation sites in a protein however, are more important than other sites for their function and stability. It has been observed that some N-glycosylation sites are conserved over families of glycoproteins over evolution, one such being the tyrosinase related protein family. The role of these conserved N-glycosylation sites in their trafficking, sorting, stability and activity has been examined here. By scrutinizing the different glycosylation sites on this family of glycoproteins it was inferred that different sites in the same family of polypeptides can perform distinct functions and conserved sites across the paralogues may perform diverse functions.
Collapse
Affiliation(s)
- Garima Gupta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | | | | |
Collapse
|
86
|
von Schaewen A, Frank J, Koiwa H. Role of complex N-glycans in plant stress tolerance. PLANT SIGNALING & BEHAVIOR 2008; 3:871-3. [PMID: 19704526 PMCID: PMC2634401 DOI: 10.4161/psb.3.10.6227] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 05/05/2008] [Indexed: 05/08/2023]
Abstract
In plant cells, glycans attached to asparagine (N) residues of proteins undergo various modifications in the endoplasmic reticulum and the Golgi apparatus. The N-glycan modifications in the Golgi apparatus result in complex N-glycans attached to membrane proteins, secreted proteins and vacuolar proteins. Recently, we have investigated the role of complex N-glycans in plants using a series of Arabidopsis thaliana mutants affected in complex N-glycan biosynthesis.1 Several mutant plants including complex glycan 1 (cgl1) displayed a salt-sensitive phenotype during their root growth, which was associated with radial swelling and loss of apical dominance. Among the proteins whose N-glycans are affected by the cgl1 mutation is a membrane anchored beta1,4-endoglucanase, KORRIGAN1/RADIALLY SWOLLEN 2 (KOR1/RSW2) involved in cellulose biosynthesis. The cgl1 mutation strongly enhanced the phenotype of a temperature sensitive allele of KOR1/RSW2 (rsw2-1) even at the permissive temperature. This establishes that plant complex N-glycan modification is important for the in vivo function of KOR1/RSW2. Furthermore, rsw2-1 as well as another cellulose biosynthesis mutant rsw1-1 exhibited also a salt-sensitive phenotype at the permissive temperature. Based on these findings, we propose that one of the mechanisms that cause salt-induced root growth arrest is dysfunction of cell wall biosynthesis that induces mitotic arrest in the root apical meristem.
Collapse
Affiliation(s)
- Antje von Schaewen
- Molekulare Physiologie der Pflanzen; Institut für Botanik; Westfälische Wilhelms-Universität Münster; Münster Germany
| | - Julia Frank
- Molekulare Physiologie der Pflanzen; Institut für Botanik; Westfälische Wilhelms-Universität Münster; Münster Germany
| | - Hisashi Koiwa
- Vegetable and Fruit Improvement Center; Department of Horticultural Sciences; and Molecular and Environmental Plant Science Program; Texas A&M University; College Station, Texas USA
| |
Collapse
|
87
|
Resistance of SKW6 cell to apoptosis induction with anti-Fas antibody upon transduction of a reverse fragment to a cDNA encoding human 6A8 alpha-mannosidase. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 2008; 44:365-72. [PMID: 18726417 DOI: 10.1007/bf02879603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2000] [Indexed: 10/22/2022]
Abstract
The effect of transduction with a reverse fragment to a cDNA encoding human 6A8 alpha-mannosidase on apoptosis induction of human B cell line SKW6 by anti-Fas antibody was tested. Apoptosis-inducer of anti-Fas monoclonal antibody was used to induce apoptosis in SKW6 cells. Giemsa's staining, Annexin-V-FLUOS staining and DNA ladder test were used to determine the events of apoptosis. Indirect immunofluorescent staining with anti-Fas antibody was performed to detect the surface Fas expression. In a time-course test of 12, 24 and 36 h for apoptosis induction by anti-Fas antibody, DNA ladder was observed in the wild-type SKW6 cells in a time-dependent fashion. Mock transduction had no effect on DNA ladder production. However, no DNA ladder was detected in the rAAV-antisense 6A8 cDNA-transduced SKW6. Results from Annexin-V-FLUOS staining on anti-Fas antibody-treated cells revealed that the staining-positive rate in the rAAV-antisense 6A8 cDNA-transduced SKW6 cells was decreased in comparison to that in the wild-type and the mock-transduced cells. Giemsa's staining observation showed that the number of dying (with apoptotic bodies) and dead cells was reduced in the rAAV-antisense 6A8 cDNA-transduced SKW6 cells in comparison with that in the wild-type and the mock-transduced cells upon anti-Fas antibody induction. The transduction did not affect the expression of Fas molecular on cell surface. 100% cells in all the groups showed Fas expression. The SKW6 cells became resistant to apoptosis induction by anti-Fas antibody upon transduction with a reverse fragment to a cDNA encoding human 6A8 alpha-mannosidase. The transduction did not affect the expression of Fas molecule on cells.
Collapse
|
88
|
Oshima A, Jaijo T, Aller E, Millan JM, Carney C, Usami S, Moller C, Kimberling WJ. Mutation profile of the CDH23 gene in 56 probands with Usher syndrome type I. Hum Mutat 2008; 29:E37-46. [PMID: 18429043 DOI: 10.1002/humu.20761] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mutations in the human gene encoding cadherin23 (CDH23) cause Usher syndrome type 1D (USH1D) and nonsyndromic hearing loss. Individuals with Usher syndrome type I have profound congenital deafness, vestibular areflexia and usually begin to exhibit signs of RP in early adolescence. In the present study, we carried out the mutation analysis in all 69 exons of the CDH23 gene in 56 Usher type 1 probands already screened for mutations in MYO7A. A total of 18 of 56 subjects (32.1%) were observed to have one or two CDH23 variants that are presumed to be pathologic. Twenty one different pathologic genome variants were observed of which 15 were novel. Out of a total of 112 alleles, 31 (27.7%) were considered pathologic. Based on our results it is estimated that about 20% of patients with Usher syndrome type I have CDH23 mutations.
Collapse
Affiliation(s)
- A Oshima
- Center for the Study and Treatment of Usher Syndrome, Boys Town National research hospital, Omaha, Nebraska 68131, USA
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Wilson JJ, Brodbelt JS. Ultraviolet photodissociation at 355 nm of fluorescently labeled oligosaccharides. Anal Chem 2008; 80:5186-96. [PMID: 18505268 DOI: 10.1021/ac800315k] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ultraviolet photodissociation (UVPD) produces complementary fragmentation to collision-induced dissociation (CID) when implemented for activation of fluorescently labeled oligosaccharide and glycan ions. Reductive amination of oligosaccharides with fluorophore reagents results in efficient photon absorption at 355 nm, producing fragment ions from the nonreducing end that do not contain the appended fluorophore. In contrast to the fragment ions observed upon UVPD (A- and C-type ions), CID produces mainly reducing end fragments retaining the fluorophore (Y-type ions). UVPD affords better isomeric differentiation of both the lacto-N-fucopentaoses series and the lacto-N-difucohexaoses series, but in general, the combination of UVPD and CID offers the most diagnostic elucidation of complex branched oligosaccharides. Four fluorophores yielded similar MS/MS results; however, 6-aminoquinoline (6-AQ), 2-amino-9(10 H)-acridone (AMAC) and 7-aminomethylcoumarin (AMC) afforded more efficient photon absorption and subsequent dissociation than 2-aminobenzamide (2-AB). UVPD also was useful for characterization of glycans released from ribonuclease B and derivatized with 6-AQ. Lastly, electron photodetachment dissociation of oligosaccharides derivatized with 7-amino-1,3-naphthalenedisulfonic acid (AGA) yielded unique cross-ring cleavages similar to those obtained by electron detachment dissociation.
Collapse
Affiliation(s)
- Jeffrey J Wilson
- Department of Chemistry and Biochemistry, 1 University Station A5300, University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
90
|
N-glycan profiling in the study of human aging. Biogerontology 2008; 9:351-6. [PMID: 18431686 DOI: 10.1007/s10522-008-9140-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 03/31/2008] [Indexed: 02/07/2023]
Abstract
Most secreted proteins produced by the human body are modified by glycosylation. It is well known that the oligosaccharides (glycans) of glycoproteins are important for initiation of various cellular recognition signals that are essential for the maintenance of the ordered social life of each cell within a multi-cellular organism. The sugar chains can be altered by the physiological or pathophysiological condition of the cell. We describe a detailed protocol for the analysis of N-linked glycans in blood via DNA sequencing equipment-Fluorophore Assisted Carbohydrate Electrophoresis (DSA-FACE). The key features of this technique are its robustness, high throughput, high sensitivity and reliable quantification. Based on DSA-FACE technology, we previously reported that N-glycan profiling of the human serum shows substantial changes with increasing age in three major N-glycan structures. We proposed that measurement of the N-glycan level changes could provide a surrogate marker for general health or for age-related disease progression, and for monitoring the improvement of health after therapy.
Collapse
|
91
|
Abstract
The endoplasmic reticulum (ER) is the first sub-cellular compartment encountered by secretory proteins en route to the plasma membrane. Newly synthesized secretory proteins translocate into the ER lumen and acquire their correct conformation prior to being exported to later compartments. When folding is not properly achieved, proteins accumulate in the ER due to resident quality control machineries and terminally misfolded proteins are ultimately degraded through the ER-associated degradation pathway. All these molecular machines function in a coordinated fashion to restore and maintain ER homeostasis. A fifth molecular machine plays a coordinating role in the ER. Indeed, the ER stress signaling machinery signals ER dysfunction to the rest of the cell and consequently integrates the functions of the four other molecular machines to improve their operation in stressful conditions. In this work, we have attempted to define the ER as a molecular biological system regulated by its own specific signaling pathways defined as the Unfolded Protein Response to delineate a systems biology approach of ER stress signaling.
Collapse
|
92
|
Abstract
The production by filamentous fungi of therapeutic glycoproteins intended for use in mammals is held back by the inherent difference in protein N-glycosylation and by the inability of the fungal cell to modify proteins with mammalian glycosylation structures. Here, we report protein N-glycan engineering in two Aspergillus species. We functionally expressed in the fungal hosts heterologous chimeric fusion proteins containing different localization peptides and catalytic domains. This strategy allowed the isolation of a strain with a functional alpha-1,2-mannosidase producing increased amounts of N-glycans of the Man5GlcNAc2 type. This strain was further engineered by the introduction of a functional GlcNAc transferase I construct yielding GlcNAcMan5GlcNac2 N-glycans. Additionally, we deleted algC genes coding for an enzyme involved in an early step of the fungal glycosylation pathway yielding Man3GlcNAc2 N-glycans. This modification of fungal glycosylation is a step toward the ability to produce humanized complex N-glycans on therapeutic proteins in filamentous fungi.
Collapse
|
93
|
Vanhooren V, Desmyter L, Liu XE, Cardelli M, Franceschi C, Federico A, Libert C, Laroy W, Dewaele S, Contreras R, Chen C. N-Glycomic Changes in Serum Proteins During Human Aging. Rejuvenation Res 2007; 10:521-531a. [DOI: 10.1089/rej.2007.0556] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Valerie Vanhooren
- Department of Molecular Biology, Ghent University and Department of Molecular Biomedical Research, Flanders Interuniversity Institute for Biotechnology (V.I.B.), Ghent, Belgium
| | - Liesbeth Desmyter
- Department of Molecular Biology, Ghent University and Department of Molecular Biomedical Research, Flanders Interuniversity Institute for Biotechnology (V.I.B.), Ghent, Belgium
| | - Xue-En Liu
- Department of Molecular Biology, Ghent University and Department of Molecular Biomedical Research, Flanders Interuniversity Institute for Biotechnology (V.I.B.), Ghent, Belgium
| | | | | | - Antonio Federico
- Dip.di Scienze Neurologiche e del, Comportamento–Università degli Studi di Siena, Siena, Italy
| | - Claude Libert
- Department of Molecular Biology, Ghent University and Department of Molecular Biomedical Research, Flanders Interuniversity Institute for Biotechnology (V.I.B.), Ghent, Belgium
| | - Wouter Laroy
- Department of Molecular Biology, Ghent University and Department of Molecular Biomedical Research, Flanders Interuniversity Institute for Biotechnology (V.I.B.), Ghent, Belgium
| | - Sylviane Dewaele
- Department of Molecular Biology, Ghent University and Department of Molecular Biomedical Research, Flanders Interuniversity Institute for Biotechnology (V.I.B.), Ghent, Belgium
| | - Roland Contreras
- Department of Molecular Biology, Ghent University and Department of Molecular Biomedical Research, Flanders Interuniversity Institute for Biotechnology (V.I.B.), Ghent, Belgium
| | - Cuiying Chen
- Department of Molecular Biology, Ghent University and Department of Molecular Biomedical Research, Flanders Interuniversity Institute for Biotechnology (V.I.B.), Ghent, Belgium
| |
Collapse
|
94
|
Pikulski M, Hargrove A, Shabbir SH, Anslyn EV, Brodbelt JS. Sequencing and characterization of oligosaccharides using infrared multiphoton dissociation and boronic acid derivatization in a quadrupole ion trap. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:2094-2106. [PMID: 17936010 DOI: 10.1016/j.jasms.2007.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 09/07/2007] [Accepted: 09/07/2007] [Indexed: 05/25/2023]
Abstract
A simplified method for determining the sequence and branching of oligosaccharides using infrared multiphoton dissociation (IRMPD) in a quadrupole ion trap (QIT) is described. An IR-active boronic acid (IRABA) reagent is used to derivatize the oligosaccharides before IRMPD analysis. The IRABA ligand is designed to both enhance the efficiency of the derivatization reaction and to facilitate the photon absorption process. The resulting IRMPD spectra display oligosaccharide fragments that are formed from primarily one type of diagnostic cleavage, thus making sequencing straightforward. The presence of sequential fragment ions, a phenomenon of IRMPD, permit the comprehensive sequencing of the oligosaccharides studied in a single stage of activation. We demonstrate this approach for two series of oligosaccharides, the lacto-N-fucopentaoses (LNFPs) and the lacto-N-difucohexaoses (LNDFHs).
Collapse
Affiliation(s)
- Michael Pikulski
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712-0165, USA
| | | | | | | | | |
Collapse
|
95
|
Igura M, Maita N, Kamishikiryo J, Yamada M, Obita T, Maenaka K, Kohda D. Structure-guided identification of a new catalytic motif of oligosaccharyltransferase. EMBO J 2007; 27:234-43. [PMID: 18046457 DOI: 10.1038/sj.emboj.7601940] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 11/08/2007] [Indexed: 12/21/2022] Open
Abstract
Asn-glycosylation is widespread not only in eukaryotes but also in archaea and some eubacteria. Oligosaccharyltransferase (OST) catalyzes the co-translational transfer of an oligosaccharide from a lipid donor to an asparagine residue in nascent polypeptide chains. Here, we report that a thermophilic archaeon, Pyrococcus furiosus OST is composed of the STT3 protein alone, and catalyzes the transfer of a heptasaccharide, containing one hexouronate and two pentose residues, onto peptides in an Asn-X-Thr/Ser-motif-dependent manner. We also determined the 2.7-A resolution crystal structure of the C-terminal soluble domain of Pyrococcus STT3. The structure-based multiple sequence alignment revealed a new motif, DxxK, which is adjacent to the well-conserved WWDYG motif in the tertiary structure. The mutagenesis of the DK motif residues in yeast STT3 revealed the essential role of the motif in the catalytic activity. The function of this motif may be related to the binding of the pyrophosphate group of lipid-linked oligosaccharide donors through a transiently bound cation. Our structure provides the first structural insights into the formation of the oligosaccharide-asparagine bond.
Collapse
Affiliation(s)
- Mayumi Igura
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
96
|
Zhou J, Zhang H, Liu X, Wang PG, Qi Q. Influence of N-Glycosylation on Saccharomyces cerevisiae Morphology: A Golgi Glycosylation Mutant Shows Cell Division Defects. Curr Microbiol 2007; 55:198-204. [PMID: 17661134 DOI: 10.1007/s00284-006-0585-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 04/23/2007] [Indexed: 11/24/2022]
Abstract
The N-glycosylation mutants (mnn1 and mnn1 och1) show different morphological characteristics at the restrictive and nonpermissive temperature. We deleted the MNN1 to eliminate the terminal alpha1, 3-linked mannose of hypermannosylation and deleted the OCH1 to block the elongation of the main backbone chain. The mnn1 cells exhibited no observable change with respect to the wild-type strain at 28 degrees C and 37 degrees C, but the mnn1 och1 double mutant exhibited defects in cell cytokinesis, showed a slower growth rate, and became temperature-sensitive. Meanwhile, the mnn1 och1 mutant tended to aggregate, which was probably due to the glycolsylation defect. Loss of mannosyl-phosphate-accepting sites in this mutant migth result in reduced charge repulsion between cell surfaces. Pyridylaminated glycans were profiled and purified through an NH(2) column by size-fractionation high-performance liquid chromatography. Matrix assisted laser desoption/ionization time of flight mass spectrometry (MALDI TOF/MS) analysis of the N-glycan structure of the mnn1 och1 mutant revealed that the main component is Man(8)GlcNAc(2).
Collapse
Affiliation(s)
- Jungang Zhou
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, 250100, Jinan, People's Republic of China
| | | | | | | | | |
Collapse
|
97
|
Cheng HL, Pai PJ, Her GR. Linkage and branch determination of N-linked oligosaccharides using sequential degradation/closed-ring chromophore labeling/negative ion trap mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:248-59. [PMID: 17084089 DOI: 10.1016/j.jasms.2006.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 09/10/2006] [Accepted: 09/14/2006] [Indexed: 05/12/2023]
Abstract
A method based on sequential degradation, p-aminobenzoic ethyl ester (ABEE) closed-ring labeling, and negative ion electrospray ionization tandem mass spectrometry is presented for the study of linkage and branch determination for N-linked oligosaccharides. Closed-ring labeling provides greater linkage information than the more popular open-ring reductive amination approach. In addition, after high-performance liquid chromatography (HPLC) separation, closed-ring labeling allows for regeneration of the underivatized oligosaccharide, a requirement for alkaline sequential degradation. The analytical scheme presented here uses HPLC separation of closed-ring labeled oligosaccharides to resolve the mixture into individual forms that undergo subsequent structural analysis by negative ion tandem mass spectrometry. To facilitate complete structural analysis, particularly for larger sugars, the closed-ring labels are removed and the sugars are sequentially degraded by controlled alkaline hydrolysis. It is noteworthy that for sugars containing sialic acid moieties, a protecting group must be used to stabilize sialic acid groups during sequential alkaline degradation. This described approach was applied to two high mannose oligosaccharides M5G2, M6G2 cleaved from the ribonuclease B and a complex oligosaccharide A2 cleaved from transferrin.
Collapse
Affiliation(s)
- Hsing-Ling Cheng
- Department of Chemistry, National Taiwan University, Taipei, Taiwan, R.O.C
| | | | | |
Collapse
|
98
|
Loriol C, Audfray A, Dupuy F, Germot A, Maftah A. The two N-glycans present on bovine Pofut1 are differently involved in its solubility and activity. FEBS J 2007; 274:1202-11. [PMID: 17263732 DOI: 10.1111/j.1742-4658.2007.05663.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
O-Fucosylation is a post-translational glycosylation in which an O-fucose is covalently attached to the hydroxyl group of a specific serine or threonine residue. This modification occurs within the consensus sequence C2X(4-5)(S/T)C3 present on epidermal growth factor-like repeats of several proteins, including the Notch receptors and their ligands. The enzyme responsible for the addition of O-fucose to epidermal growth factor-like repeats is protein O-fucosyltransferase 1. Protein O-fucosyltransferase 1-mediated O-fucosylation is essential in Notch signaling, folding and targeting to the cell surface. Here, we studied the expression pattern of protein O-fucosyltransferase 1 in cattle and showed that the active enzyme is present in all tissues examined from embryo and adult as a glycoprotein with two N-glycans. By comparing protein O-fucosyltransferase 1 sequences available in databases, we observed that mammalian protein O-fucosyltransferase 1 enzymes possess two putative N-glycosylation sites, and that only the first is conserved among bilaterians. To gain more insight regarding the significance of N-glycans on protein O-fucosyltransferase 1, we substituted, by site-directed mutagenesis, bovine protein O-fucosyltransferase 1 N65, N163 or both, with L or Q. We demonstrated that the loss of N-glycan on N163 caused a slight decrease in protein O-fucosyltransferase 1 activity. In contrast, glycosylation of N65 was crucial for protein O-fucosyltransferase 1 functionality. Loss of glycosylation at N65 resulted in aggregation of protein O-fucosyltransferase 1, suggesting that N-glycosylation at this site is essential for proper folding of the enzyme.
Collapse
Affiliation(s)
- Céline Loriol
- INRA, UMR1061 Unité de Génétique Moléculaire Animale, GDR-CNRS 2590, Université de Limoges, IFR 45, Faculté des Sciences et Techniques, 87060 Limoges, France
| | | | | | | | | |
Collapse
|
99
|
Nakano S, Mishiro T, Takahara S, Yokoi H, Hamada D, Yukata K, Takata Y, Goto T, Egawa H, Yasuoka S, Furouchi H, Hirasaka K, Nikawa T, Yasui N. Distinct expression of mast cell tryptase and protease activated receptor-2 in synovia of rheumatoid arthritis and osteoarthritis. Clin Rheumatol 2007; 26:1284-92. [PMID: 17205215 DOI: 10.1007/s10067-006-0495-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2006] [Revised: 11/13/2006] [Accepted: 11/13/2006] [Indexed: 10/23/2022]
Abstract
The objective of this study is to examine the differential expression of mast cell tryptase and its receptor, protease-activated receptor-2 (PAR-2), in the synovium and synovial fluid of patients with rheumatoid arthritis (RA) and osteoarthritis (OA). Biochemical and immunohistochemical analyses were performed to determine whether the trypsin-like protease in the synovium is identical to mast cell tryptase. The effects of mast cell tryptase on the proliferation of synovial fibroblast-like cells (SFCs) and the release of IL-8 thereof were evaluated by the [3H]-thymidine incorporation and ELISA, respectively. The trypsin-like protease in the synovium of RA patients was identical to human mast cell tryptase, which was composed of two subunits: 33 and 34 kDa. The 33- and 34-kDa proteins are different glycosylated forms of the 31-kDa protein, which was unglycosylated. Mast cell tryptase activity in RA synovial fluid was significantly higher than that in OA synovial fluid, while their activities and expression in the synovium were similar. Expression of PAR-2 mRNA in the synovium was higher in RA than in OA. Mast cell tryptase containing the unglycosylated 31-kDa subunit was the predominant form in synovial fluid. RA patients had higher amounts of this subunit in their synovial fluid than OA patients. Mast cell tryptase and PAR-2 activating peptide stimulated the proliferation of SFCs and release of IL-8 from these cells. Mast cell tryptase secretion into RA synovial fluid is higher than OA synovial fluid. Mast cell tryptase in synovial fluid stimulates the proliferation of SFCs and the release of pro-inflammatory cytokines via PAR-2, which may contribute to exacerbation of synovitis in RA.
Collapse
Affiliation(s)
- Shunji Nakano
- Department of Orthopedics, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto, and Department of Internal Medicine, Hakuai Kinen Hospital, Tokushima, 770-8503, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Raju TS, Scallon B. Fc Glycans Terminated withN-Acetylglucosamine Residues Increase Antibody Resistance to Papain. Biotechnol Prog 2007. [DOI: 10.1002/bp070118k] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|