51
|
Engelbert N, Rohayem R, Traidl-Hoffmann C. [Global environmental changes and the epithelial barrier hypothesis]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2024; 75:118-125. [PMID: 38212394 DOI: 10.1007/s00105-023-05286-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND The global burden of noncommunicable diseases (NCD) has seen a strong increase in recent decades and attributable to the influence of environmental factors. For a multitude of diseases an association with epithelial barrier damage has been reported. OBJECTIVE This article provides an overview of the health effects of environmental pollution in the context of the epithelial barrier hypothesis of Cezmi Akdis. Additionally, exemplary mechanisms of a barrier damage are described. Finally, possible preventive and therapeutic consequences are discussed. MATERIAL AND METHODS The PubMed database was searched for the relevant topics and selected literature was reviewed. RESULTS A wide variety of substances can damage the epithelial barriers of the skin, lungs and gastrointestinal tract. The rise in the prevalences of atopic diseases could (partly) be due to an increased exposure to barrier-damaging substances, such as particulate matter and laundry detergents. A possible pathogenetic mechanism is the initiation and maintenance of an immune response by subepithelial penetration of microorganisms through damaged epithelia. CONCLUSION Based on the epithelial barrier hypothesis new therapeutic and prevention strategies can be developed. The regulation of hazardous chemicals and the fight against environmental pollution and climate change are necessary to reduce the burden of disease.
Collapse
Affiliation(s)
- Nicole Engelbert
- Lehrstuhl für Umweltmedizin - Medizinische Fakultät, Universität Augsburg, Neusässer Str. 47, 86156, Augsburg, Deutschland
- Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Schweiz
| | - Robin Rohayem
- Lehrstuhl für Umweltmedizin - Medizinische Fakultät, Universität Augsburg, Neusässer Str. 47, 86156, Augsburg, Deutschland
- Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Schweiz
| | - Claudia Traidl-Hoffmann
- Lehrstuhl für Umweltmedizin - Medizinische Fakultät, Universität Augsburg, Neusässer Str. 47, 86156, Augsburg, Deutschland.
- Institut für Umweltmedizin, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt, Augsburg, Deutschland.
- Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Schweiz.
| |
Collapse
|
52
|
Wang BH, Tang LL, Sun XH, Zhang Q, Liu CY, Zhang XN, Yu KY, Yang Y, Hu J, Shi XL, Wang Y, Liu L. Qufeng Xuanbi Formula inhibited benzo[a]pyrene-induced aggravated asthma airway mucus secretion by AhR/ROS/ERK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117203. [PMID: 37734473 DOI: 10.1016/j.jep.2023.117203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/12/2023] [Accepted: 09/17/2023] [Indexed: 09/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Excessive secretion of airway mucus may be an important pathological factor of air pollution-induced acute asthma attacks. Treatment of airway mucus hypersecretion improves asthma aggravated by air pollutants. Qufeng Xuanbi Formula (QFXBF) has been used to treat asthma for more than 30 years. However, whether QFXBF inhibits asthmatic mucus secretion exacerbated by air pollutants has not yet been established. AIM OF THE STUDY This study aimed to evaluate the effect of QFXBF on airway mucus secretion and the mechanism of action in an air pollutant benzo[a]pyrene (BaP)-induced mouse model of aggravated asthma. MATERIALS AND METHODS Ovalbumin (OVA) and BaP co-exposure were used to establish the aggravated asthma model. The average enhanced pause (Penh), serum OVA-specific IgE, and changes in lung histopathology were determined. 16HBE cells exposed to BaP, treatment with QFXBF, arylhydrocarbon receptor (AhR) signal antagonist SR1, reactive oxygen species (ROS) antagonist NAC, or extracellular signal-regulated kinase (ERK1/2) signal antagonist U0126 were established to investigate the effect of QFXBF on BaP-induced mucus secretion and its target. The mRNA and protein expression levels of MUC5AC in the lung tissue and 16HBE cells were examined. We also studied the effect of QFXBF on ROS production. Finally, the protein expression of AhR, phospho-extracellular signal-regulated kinases (p-ERK1/2), and ERK1/2 in 16HBE cells and lung tissues was determined by western blotting. RESULTS Administration of QFXBF significantly alleviated the pathological symptoms, including Penh, serum OVA-specific IgE, and changes in lung histopathology in a BaP-induced mouse model of aggravated asthma. QFXBF inhibited MUC5AC expression in asthmatic mice and 16HBE cells exposed to BaP. ROS production, AhR expression, and ERK1/2 phosphorylation were significantly increased in BaP-induced asthmatic mice and 16HBE cells. Signaling pathway inhibitors StemRegenin 1 (SR1), NAC, and U0126 significantly inhibitedBaP-induced MUC5AC expression in 16HBE cells. SR1 reversed Bap-induced ROS production and ERK activation, and NAC inhibited Bap-induced ERK activation. In addition, QFXBF regulated AhR signaling, inhibited ROS production, reversed ERK activation, and downregulated mucus secretion to improve asthma aggravated by air pollutant BaP. CONCLUSIONS QFXBF can ameliorate mucus secretion in BaP-induced aggravated asthmatic mice and 16HBE cells, and the specific mechanism may be related to the inhibition of the AhR/ROS/ERK signaling pathway.
Collapse
Affiliation(s)
- Bo-Han Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine/ Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Ling-Ling Tang
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Xian-Hong Sun
- Affiliated Hospital of Nanjing University of Chinese Medicine/ Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Qian Zhang
- Department of Pharmacy, Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Chun-Yang Liu
- Department of Pathology, Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Xiao-Na Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine/ Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Ke-Yao Yu
- Affiliated Hospital of Nanjing University of Chinese Medicine/ Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Ying Yang
- Affiliated Hospital of Nanjing University of Chinese Medicine/ Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Jun Hu
- College of Acupuncture-Moxibustion and Tuina & College of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Xiao-Lu Shi
- Affiliated Hospital of Nanjing University of Chinese Medicine/ Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China.
| | - Yue Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine/ Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China.
| | - Li Liu
- Central Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
53
|
Wilgus ML, Merchant M. Clearing the Air: Understanding the Impact of Wildfire Smoke on Asthma and COPD. Healthcare (Basel) 2024; 12:307. [PMID: 38338192 PMCID: PMC10855577 DOI: 10.3390/healthcare12030307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Wildfires are a global natural phenomenon. In North America, wildfires have not only become more frequent, but also more severe and longer in duration, a trend ascribed to climate change combined with large fuel stores left from modern fire suppression. The intensification of wildfire activity has significant implications for planetary health and public health, as exposure to fine particulate matter (PM2.5) in wildfire smoke is linked to adverse health effects. This review focuses on respiratory morbidity from wildfire smoke exposure. Inhalation of wildfire PM2.5 causes lung injury via oxidative stress, local and systemic inflammation, airway epithelium compromise, and increased vulnerability to infection. Wildfire PM2.5 exposure results in exacerbations of pre-existing asthma and chronic obstructive pulmonary disease, with an escalation in healthcare utilization, including emergency department visits and hospitalizations. Wildfire smoke exposure may be associated with asthma onset, long-term impairment of lung function, and increased all-cause mortality. Children, older adults, occupationally-exposed groups, and possibly women are the most at risk from wildfire smoke. Future research is needed to clarify best practices for risk mitigation and wildfire management.
Collapse
Affiliation(s)
- May-Lin Wilgus
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1405, USA;
| | | |
Collapse
|
54
|
Xuan N, Zhao J, Kang Z, Cui W, Tian BP. Neutrophil extracellular traps and their implications in airway inflammatory diseases. Front Med (Lausanne) 2024; 10:1331000. [PMID: 38283037 PMCID: PMC10811107 DOI: 10.3389/fmed.2023.1331000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are essential for immune defense and have been increasingly recognized for their role in infection and inflammation. In the context of airway inflammatory diseases, there is growing evidence suggesting the involvement and significance of NETs. This review aims to provide an overview of the formation mechanisms and components of NETs and their impact on various airway inflammatory diseases, including acute lung injury/ARDS, asthma, chronic obstructive pulmonary disease (COPD) and cystic fibrosis. By understanding the role of NETs in airway inflammation, we can gain valuable insights into the underlying pathogenesis of these diseases and identify potential targets for future therapeutic strategies that either target NETs formation or modulate their harmful effects. Further research is warranted to elucidate the complex interactions between NETs and airway inflammation and to develop targeted therapies that can effectively mitigate their detrimental effects while preserving their beneficial functions in host defense.
Collapse
Affiliation(s)
- Nanxia Xuan
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Zhiying Kang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Cui
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bao-ping Tian
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
55
|
Duraisamy SK, Srinivasan A, Sundar IK. House dust mite and Th2 cytokine-mediated epithelial barrier dysfunction attenuation by KL001 in 16-HBE cells. Tissue Barriers 2024; 12:2203841. [PMID: 37079442 PMCID: PMC10832928 DOI: 10.1080/21688370.2023.2203841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/12/2023] [Indexed: 04/21/2023] Open
Abstract
House dust mite (HDM) is a common aeroallergen that can disrupt the airway epithelial barrier leading to dysregulated immune response, resulting in allergic lung diseases such as asthma. Cryptochrome (CRY), a circadian clock gene, plays an important role in the regulation of metabolism, and immune response. It remains unclear whether stabilizing CRY using KL001 can attenuate HDM/Th2 cytokine-induced epithelial barrier dysfunction in 16-HBE cells. We evaluate the effect of KL001 (20 µM) pre-treatment (4 hrs) in HDM/Th2 cytokine (IL-4 or IL-13)-mediated change in epithelial barrier function. HDM and Th2 cytokine-induced changes in transepithelial electrical resistance (TEER) were determined by an xCELLigence real-time cell analyzer and delocalization of adherens junction complex (AJC: E-cadherin and β-catenin) and tight junction proteins (TJP: Occludin and Zonula occludens-1) by immunostaining and confocal microscopy. Finally, quantitative real-time PCR (qRT-PCR) and Western blotting were used to measure altered gene expression and protein abundance of the epithelial barrier function and core clock genes, respectively. HDM and Th2 cytokine treatment significantly decreased TEER associated with altered gene expression and protein abundance of the selected epithelial barrier function and circadian clock genes. However, pre-treatment with KL001 attenuated HDM and Th2 cytokine-induced epithelial barrier dysfunction as early as 12-24 hrs. KL001 pre-treatment showed attenuation of HDM and Th2 cytokine-induced alteration in the localization and gene expression of AJP and TJP (Cdh1, Ocln, and Zo1) and core clock genes (Clock, Arntl/Bmal1, Cry1/2, Per1/2, Nr1d1/Rev-erbα, and Nfil3). We demonstrate, for the first time, the protective role of KL001 in HDM and Th2 cytokine-mediated epithelial barrier dysfunction.
Collapse
Affiliation(s)
- Santhosh Kumar Duraisamy
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ashokkumar Srinivasan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Isaac Kirubakaran Sundar
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
56
|
Park HW, Lee HS. IL-23 contributes to Particulate Matter induced allergic asthma in the early life of mice and promotes asthma susceptibility. J Mol Med (Berl) 2024; 102:129-142. [PMID: 37994911 DOI: 10.1007/s00109-023-02393-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/10/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
Air pollutant exposure leads to and exacerbates respiratory diseases. Particulate Matter (PM) is a major deleterious factor in the pathophysiology of asthma. Nonetheless, studies on the effects and mechanisms of exposure in the early life of mice remain unresolved. This study aimed to investigate changes in allergic phenotypes and effects on allergen-specific memory T cells resulting from co-exposure of mice in the early life to PM and house dust mites (HDM) and to explore the role of interleukin-23 (IL-23) in this process. PM and low-dose HDM were administered intranasally in 4-day-old C57BL/6 mice. After confirming an increase in IL-23 expression in mouse lung tissues, changes in the asthma phenotype and lung effector/memory Th2 or Th17 cells were evaluated after intranasal administration of anti-IL-23 antibody (Ab) during co-exposure to PM and HDM. Evaluation was performed up to 7 weeks after the last administration. Co-exposure to PM and low-dose HDM resulted in increases in airway hyperresponsiveness (AHR), eosinophils, neutrophils, and persistent Th2/Th17 effector/memory cells, which were all inhibited by anti-IL-23 Ab administration. When low-dose HDM was administered twice after a 7-week rest, mice exposed to PM and HDM during the previous early life period exhibited re-increases AHR, eosinophil count, HDM-specific IgG1, and effector/memory Th2 and Th17 cell populations. However, anti-IL-23 Ab administration during the early life period resulted in inhibition. Co-exposure to PM and low-dose HDM reinforced the allergic phenotypes and allergen-specific memory responses in early life of mice. During this process, IL-23 contributes to the enhancement of effector/memory Th2/Th17 cells and allergic phenotypes. KEY MESSAGES: PM-induced IL-23 expression, allergic responses in HDMinstilled mice of early life period. PM-induced effector/memory Th2/Th17 cells in HDMinstilled mice of early life period. Inhibition of IL-23 reduced the increase in allergic responses. Inhibition of IL-23 reduced the increase in allergic responses. After the resting period, HDM administration showed re-increase in allergic responses. Inhibition of IL-23 reduced the HDM-recall allergic responses.
Collapse
Affiliation(s)
- Heung-Woo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun Seung Lee
- Institute of Allergy and Clinical Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 110-744, Republic of Korea.
| |
Collapse
|
57
|
Mishra S, Kalra N, Botlagunta M, Rajasekaran S. MicroRNA-195-5p mediates arsenic-induced cytotoxicity in human lung epithelial cells: Beneficial role of plant-derived tannic acid. Toxicol Appl Pharmacol 2024; 482:116775. [PMID: 38042305 DOI: 10.1016/j.taap.2023.116775] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Arsenic (As), a highly toxic metalloid, which causes environmental lung diseases and affects millions of people worldwide. Respiratory epithelial cells are essential for maintaining lung homeostasis, aberrant epithelial damage and death due to exposure to a wide range of environmental pollutants, which are considered to be the initial trigger for many pulmonary diseases. Accumulating evidence has shown that microRNAs (miRNAs) appear to be important players in various normal physiological and pathological processes. Therefore, the present study was carried out to examine the cytotoxic effects of a trivalent form of As (As3+) in normal human bronchial (BEAS-2B) and adenocarcinoma alveolar basal (A549) epithelial cells and the role of miR-195-5p. Further, we also explored the protective effects of a natural dietary polyphenol tannic acid (TA). As3+ (1 μM) treatment in BEAS-2B cells for 24 h induced cytotoxicity by decreasing the cell viability, mitochondrial membrane potential (ΔΨm) and inducing reactive oxygen species (ROS) generation, lipid peroxidation (LPO), cell cycle arrest, and apoptosis, which was associated with a significantly higher level of miR-195-5p expression compared with vehicle control. Forced expression of miR-195-5p alone suppressed cell survival, ΔΨm, regulated cell cycle distribution and induced ROS generation in BEAS-2B cells. As expected, miR-195-5p inhibition effectively rescued BEAS-2B cells from As3+-mediated toxicity, confirming the involvement of miR-195-5p in the cytotoxic effects of As3+. Further, TA pre-treatment expressively alleviated As3+-induced toxicity by suppressing ROS production, miR-195-5p expression, and increasing ΔΨm. These in vitro results indicate that miR-195-5p may be useful as a therapeutic target for treating As3+ toxicity.
Collapse
Affiliation(s)
- Sehal Mishra
- Division of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India; School of Bioengineering, VIT Bhopal University, Kothrikalan, Sehore, Madhya Pradesh, India
| | - Neetu Kalra
- School of Bioengineering, VIT Bhopal University, Kothrikalan, Sehore, Madhya Pradesh, India
| | - Mahendran Botlagunta
- School of Bioengineering, VIT Bhopal University, Kothrikalan, Sehore, Madhya Pradesh, India
| | - Subbiah Rajasekaran
- Division of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India.
| |
Collapse
|
58
|
Zeng M, Ye S, Huang W, Deng W, Zou S, Huang C, Qiu H. Relationship between dust allergen sensitization and cardiac autonomic function in patients with chronic obstructive pulmonary disease. Chron Respir Dis 2024; 21:14799731241231814. [PMID: 38307127 PMCID: PMC10838027 DOI: 10.1177/14799731241231814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 01/22/2024] [Indexed: 02/04/2024] Open
Abstract
OBJECTIVE Cardiac autonomic function predicts cardiovascular disease risk. The aim of this study was to investigate the relationship between sensitization to dust allergens and cardiac autonomic dysfunction in patients with chronic obstructive pulmonary disease (COPD), and to provide new ideas for the prevention of cardiovascular complications in these patients. METHODS Immunoassays for sensitization to cats/dogs, cockroaches and dust mites were performed in 840 patients with COPD. Indicators of heart rate variability in these patients were used to assess cardiac autonomic function, including standard deviation of normal-to-normal intervals (SDNN), root-mean square of successive differences between normal-to-normal intervals (RMSSD), low-frequency power (LF), high-frequency power (HF), and LF/HF ratios, which were obtained based on ambulatory electrocardiographic monitoring data. The relationship between sensitization to these dust allergens and heart rate variability was explored using multivariate logistic regression. FINDINGS The multivariate analyses showed that sensitization to total allergens was associated with reduced levels of SDNN, RMSSD, LF and HF and with increased levels of the LF/HF ratio in the patients with COPD (p < .05). CONCLUSION Dust allergen sensitization may be associated with cardiac autonomic dysfunction in patients with COPD. Whether desensitization can prevent cardiovascular complications in these patients should be further explored.
Collapse
Affiliation(s)
- Meie Zeng
- Department of General Practice, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Shuifen Ye
- Department of General Practice, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Wanling Huang
- Department of General Practice, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Weiwei Deng
- Department of General Practice, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Simin Zou
- Department of General Practice, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Chunmei Huang
- Department of General Practice, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Hanzhong Qiu
- Department of General Practice, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| |
Collapse
|
59
|
Katheder NS, Browder KC, Chang D, De Maziere A, Kujala P, van Dijk S, Klumperman J, Lu TC, Li H, Lai Z, Sangaraju D, Jasper H. Nicotinic acetylcholine receptor signaling maintains epithelial barrier integrity. eLife 2023; 12:e86381. [PMID: 38063293 PMCID: PMC10764009 DOI: 10.7554/elife.86381] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 10/31/2023] [Indexed: 01/04/2024] Open
Abstract
Disruption of epithelial barriers is a common disease manifestation in chronic degenerative diseases of the airways, lung, and intestine. Extensive human genetic studies have identified risk loci in such diseases, including in chronic obstructive pulmonary disease (COPD) and inflammatory bowel diseases. The genes associated with these loci have not fully been determined, and functional characterization of such genes requires extensive studies in model organisms. Here, we report the results of a screen in Drosophila melanogaster that allowed for rapid identification, validation, and prioritization of COPD risk genes that were selected based on risk loci identified in human genome-wide association studies (GWAS). Using intestinal barrier dysfunction in flies as a readout, our results validate the impact of candidate gene perturbations on epithelial barrier function in 56% of the cases, resulting in a prioritized target gene list. We further report the functional characterization in flies of one family of these genes, encoding for nicotinic acetylcholine receptor (nAchR) subunits. We find that nAchR signaling in enterocytes of the fly gut promotes epithelial barrier function and epithelial homeostasis by regulating the production of the peritrophic matrix. Our findings identify COPD-associated genes critical for epithelial barrier maintenance, and provide insight into the role of epithelial nAchR signaling for homeostasis.
Collapse
Affiliation(s)
- Nadja S Katheder
- Regenerative Medicine, Genentech, South San Francisco, United States
| | - Kristen C Browder
- Regenerative Medicine, Genentech, South San Francisco, United States
| | - Diana Chang
- Human Genetics, Genentech, South San Francisco, United States
| | - Ann De Maziere
- Center for Molecular Medicine, Cell Biology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Pekka Kujala
- Center for Molecular Medicine, Cell Biology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Suzanne van Dijk
- Center for Molecular Medicine, Cell Biology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Judith Klumperman
- Center for Molecular Medicine, Cell Biology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Tzu-Chiao Lu
- Huffington Center on Aging, Baylor College of Medicine, Houston, United States
| | - Hongjie Li
- Huffington Center on Aging, Baylor College of Medicine, Houston, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Zijuan Lai
- Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, United States
| | - Dewakar Sangaraju
- Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, United States
| | - Heinrich Jasper
- Regenerative Medicine, Genentech, South San Francisco, United States
| |
Collapse
|
60
|
Larson-Casey JL, Saleem K, Surolia R, Pandey J, Mack M, Antony VB, Bodduluri S, Bhatt SP, Duncan SR, Carter AB. Myeloid Heterogeneity Mediates Acute Exacerbations of Pulmonary Fibrosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1714-1724. [PMID: 37782053 PMCID: PMC10843506 DOI: 10.4049/jimmunol.2300053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023]
Abstract
Epidemiological evidence indicates that exposure to particulate matter is linked to the development of idiopathic pulmonary fibrosis (IPF) and increases the incidence of acute exacerbations of IPF. In addition to accelerating the rate of lung function decline, exposure to fine particulate matter (particulate matter smaller than 2.5 μm [PM2.5]) is a risk factor for increased mortality in subjects with IPF. In this article, we show that exposure to PM2.5 mediates monocyte recruitment and fibrotic progression in mice with established fibrosis. In mice with established fibrosis, bronchoalveolar lavage cells showed monocyte/macrophage heterogeneity after exposure to PM2.5. These cells had a significant inflammatory and anti-inflammatory signature. The mixed heterogeneity of cells contributed to the proinflammatory and anti-inflammatory response. Although monocyte-derived macrophages were recruited to the lung in bleomycin-injured mice treated with PM2.5, recruitment of monocytes expressing Ly6Chi to the lung promoted progression of fibrosis, reduced lung aeration on computed tomography, and impacted lung compliance. Ly6Chi monocytes isolated from PM2.5-exposed fibrotic mice showed enhanced expression of proinflammatory markers compared with fibrotic mice exposed to vehicle. Moreover, IPF bronchoalveolar lavage cells treated ex vivo with PM2.5 showed an exaggerated inflammatory response. Targeting Ly6Chi monocyte recruitment inhibited fibrotic progression in mice. Moreover, the adoptive transfer of Ly6Chi monocytes exacerbated established fibrosis. These observations suggest that enhanced recruitment of Ly6Chi monocytes with a proinflammatory phenotype mediates acute exacerbations of pulmonary fibrosis, and targeting these cells may provide a potential novel therapeutic target to protect against acute exacerbations of IPF.
Collapse
Affiliation(s)
- Jennifer L. Larson-Casey
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Komal Saleem
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ranu Surolia
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jyotsana Pandey
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Matthias Mack
- Department of Nephrology, University of Regensburg, Regensburg, Germany
| | - Veena B. Antony
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sandeep Bodduluri
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- UAB Lung Imaging Lab, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Surya P. Bhatt
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- UAB Lung Imaging Lab, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven R. Duncan
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - A. Brent Carter
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Birmingham Veterans Administration Medical Center, Birmingham. AL, USA
| |
Collapse
|
61
|
Tesfaigzi Y, Curtis JL, Petrache I, Polverino F, Kheradmand F, Adcock IM, Rennard SI. Does Chronic Obstructive Pulmonary Disease Originate from Different Cell Types? Am J Respir Cell Mol Biol 2023; 69:500-507. [PMID: 37584669 PMCID: PMC10633838 DOI: 10.1165/rcmb.2023-0175ps] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/16/2023] [Indexed: 08/17/2023] Open
Abstract
The onset of chronic obstructive pulmonary disease (COPD) is heterogeneous, and current approaches to define distinct disease phenotypes are lacking. In addition to clinical methodologies, subtyping COPD has also been challenged by the reliance on human lung samples from late-stage diseases. Different COPD phenotypes may be initiated from the susceptibility of different cell types to cigarette smoke, environmental pollution, and infections at early stages that ultimately converge at later stages in airway remodeling and destruction of the alveoli when the disease is diagnosed. This perspective provides discussion points on how studies to date define different cell types of the lung that can initiate COPD pathogenesis, focusing on the susceptibility of macrophages, T and B cells, mast cells, dendritic cells, endothelial cells, and airway epithelial cells. Additional cell types, including fibroblasts, smooth muscle cells, neuronal cells, and other rare cell types not covered here, may also play a role in orchestrating COPD. Here, we discuss current knowledge gaps, such as which cell types drive distinct disease phenotypes and/or stages of the disease and which cells are primarily affected by the genetic variants identified by whole genome-wide association studies. Applying new technologies that interrogate the functional role of a specific cell type or a combination of cell types as well as single-cell transcriptomics and proteomic approaches are creating new opportunities to understand and clarify the pathophysiology and thereby the clinical heterogeneity of COPD.
Collapse
Affiliation(s)
- Yohannes Tesfaigzi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jeffrey L. Curtis
- Medical Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - Irina Petrache
- Division of Pulmonary Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado
- University of Colorado, Denver, Colorado
| | - Francesca Polverino
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, Baylor University, Houston, Texas
| | - Farrah Kheradmand
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, Baylor University, Houston, Texas
| | - Ian M. Adcock
- Department of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Stephen I. Rennard
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
62
|
Çelebi Sözener Z, Treffeisen ER, Özdel Öztürk B, Schneider LC. Global warming and implications for epithelial barrier disruption and respiratory and dermatologic allergic diseases. J Allergy Clin Immunol 2023; 152:1033-1046. [PMID: 37689250 PMCID: PMC10864040 DOI: 10.1016/j.jaci.2023.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Global warming has direct and indirect effects, as well as short- and long-term impacts on the respiratory and skin barriers. Extreme temperature directly affects the airway epithelial barrier by disrupting the structural proteins and by triggering airway inflammation and hyperreactivity. It enhances tidal volume and respiratory rate by affecting the thermoregulatory system, causing specific airway resistance and reflex bronchoconstriction via activation of bronchopulmonary vagal C fibers and upregulation of transient receptor potential vanilloid (TRPV) 1 and TRPV4. Heat shock proteins are activated under heat stress and contribute to both epithelial barrier dysfunction and airway inflammation. Accordingly, the frequency and severity of allergic rhinitis and asthma have been increasing. Heat activates TRPV3 in keratinocytes, causing the secretion of inflammatory mediators and eventually pruritus. Exposure to air pollutants alters the expression of genes that control skin barrier integrity and triggers an immune response, increasing the incidence and prevalence of atopic dermatitis. There is evidence that extreme temperature, heavy rains and floods, air pollution, and wildfires increase atopic dermatitis flares. In this narrative review, focused on the last 3 years of literature, we explore the effects of global warming on respiratory and skin barrier and their clinical consequences.
Collapse
Affiliation(s)
- Zeynep Çelebi Sözener
- Division of Immunology and Allergic Diseases, Ankara Bilkent City Hospital, Ankara, Turkey.
| | - Elsa R Treffeisen
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Betül Özdel Öztürk
- Division of Immunology and Allergic Diseases, Bolu Izzet Baysal Training and Research Hospital, Bolu, Turkey
| | - Lynda C Schneider
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| |
Collapse
|
63
|
Barada O, Salomé-Desnoulez S, Madouri F, Deslée G, Coraux C, Gosset P, Pichavant M. IL-20 Cytokines Are Involved in the Repair of Airway Epithelial Barrier: Implication in Exposure to Cigarette Smoke and in COPD Pathology. Cells 2023; 12:2464. [PMID: 37887308 PMCID: PMC10604979 DOI: 10.3390/cells12202464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Dysregulated inflammation as seen in chronic obstructive pulmonary disease (COPD) is associated with impaired wound healing. IL-20 cytokines are known to be involved in wound healing processes. The purpose of this study was to use ex vivo and in vitro approaches mimicking COPD to evaluate the potential modulatory role of interleukin-20 (IL-20) on the inflammatory and healing responses to epithelial wounding. METHODS The expression of IL-20 cytokines and their receptors was investigated in lung-derived samples collected from non-COPD and COPD patients, from mice chronically exposed to cigarette smoke and from airway epithelial cells from humans and mice exposed in vitro to cigarette smoke. To investigate the role of IL-20 cytokines in wound healing, experiments were performed using a blocking anti-IL-20Rb antibody. RESULTS Of interest, IL-20 cytokines and their receptors were expressed in bronchial mucosa, especially on airway epithelial cells. Their expression correlated with the disease severity. Blocking these cytokines in a COPD context improved the repair processes after a lesion induced by scratching the epithelial layer. CONCLUSIONS Collectively, this study highlights the implication of IL-20 cytokines in the repair of the airway epithelium and in the pathology of COPD. IL-20 subfamily cytokines might provide therapeutic benefit for patients with COPD to improve epithelial healing.
Collapse
Affiliation(s)
- Olivia Barada
- Institut Pasteur de Lille, Centre d’Infection et d’Immunité de Lille; Université Lille Nord de France; Centre National de la Recherche Scientifique UMR 9017; Institut National de la Santé et de la Recherche Médicale U1019, 59019 Lille, France; (O.B.); (F.M.); (P.G.)
| | - Sophie Salomé-Desnoulez
- Institut Pasteur de Lille, Université de Lille, CNRS UMR9017, Inserm U1019, CHU Lille, US 41—UAR 2014—PLBS, 59000 Lille, France;
| | - Fahima Madouri
- Institut Pasteur de Lille, Centre d’Infection et d’Immunité de Lille; Université Lille Nord de France; Centre National de la Recherche Scientifique UMR 9017; Institut National de la Santé et de la Recherche Médicale U1019, 59019 Lille, France; (O.B.); (F.M.); (P.G.)
| | - Gaëtan Deslée
- Service de Pneumologie, Centre Hospitalier Universitaire de Reims, 51092 Reims, France;
- Institut National de la Santé et de la Recherche Médicale, UMR-S 1250, Université de Reims Champagne-Ardenne (URCA), SFR Cap-Santé, 51100 Reims, France;
| | - Christelle Coraux
- Institut National de la Santé et de la Recherche Médicale, UMR-S 1250, Université de Reims Champagne-Ardenne (URCA), SFR Cap-Santé, 51100 Reims, France;
| | - Philippe Gosset
- Institut Pasteur de Lille, Centre d’Infection et d’Immunité de Lille; Université Lille Nord de France; Centre National de la Recherche Scientifique UMR 9017; Institut National de la Santé et de la Recherche Médicale U1019, 59019 Lille, France; (O.B.); (F.M.); (P.G.)
| | - Muriel Pichavant
- Institut Pasteur de Lille, Centre d’Infection et d’Immunité de Lille; Université Lille Nord de France; Centre National de la Recherche Scientifique UMR 9017; Institut National de la Santé et de la Recherche Médicale U1019, 59019 Lille, France; (O.B.); (F.M.); (P.G.)
| |
Collapse
|
64
|
Somayajulu M, McClellan SA, Muhammed F, Wright R, Hazlett LD. PM 10 and Pseudomonas aeruginosa: effects on corneal epithelium. Front Cell Infect Microbiol 2023; 13:1240903. [PMID: 37868351 PMCID: PMC10585254 DOI: 10.3389/fcimb.2023.1240903] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Purpose In vivo data indicate that mouse corneas exposed to PM10 showed early perforation and thinning after infection with Pseudomonas aeruginosa. To understand the mechanisms underlying this finding, we tested the effects of PM10 and the mitochondria targeted anti-oxidant SKQ1 in immortalized human corneal epithelial cells (HCET) that were challenged with Pseudomonas aeruginosa strain 19660. Methods Mouse corneas were infected with strain 19660 after a 2 week whole-body exposure to PM10 or control air and assessed by clinical scores, slit lamp photography and western blot. HCET were exposed to 100μg/ml PM10 for 24h before challenge with strain 19660 (MOI 20). A subset of cells were pre-treated with 50nM SKQ1 for 1h before PM10 exposure. Phase contrast microscopy was used to study cell morphology, cell viability was measured by an MTT assay, and ROS by DCFH-DA. Levels of pro-inflammatory markers and anti-oxidant enzymes were evaluated by RT-PCR, western blot and ELISA. Reduced glutathione (GSH) and malondialdehyde (MDA) levels were evaluated by assay kits. Results In vivo, whole body exposure to PM10 vs. control air exposed mouse corneas showed early perforation and/or corneal thinning at 3 days post infection, accompanied by increased TNF-α and decreased SOD2 protein levels. In vitro, PM10 induced a dose dependent reduction in cell viability of HCET and significantly increased mRNA levels of pro-inflammatory molecules compared to control. Exposure to PM10 before bacterial challenge further amplified the reduction in cell viability and GSH levels. Furthermore, PM10 exposure also exacerbated the increase in MDA and ROS levels and phase contrast microscopy revealed more rounded cells after strain 19660 challenge. PM10 exposure also further increased the mRNA and protein levels of pro-inflammatory molecules, while anti-inflammatory IL-10 was decreased. SKQ1 reversed the rounded cell morphology observed by phase contrast microscopy, increased levels of MDA, ROS and pro-inflammatory molecules, and restored IL-10. Conclusions PM10 induces decreased cell viability, oxidative stress and inflammation in HCET and has an additive effect upon bacterial challenge. SKQ1 protects against oxidative stress and inflammation induced by PM10 after bacterial challenge by reversing these effects. The findings provide insight into mechanisms underlying early perforation and thinning observed in infected corneas of PM10 exposed mice.
Collapse
Affiliation(s)
| | | | | | | | - Linda D. Hazlett
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, School of Medicine, Detroit, MI, United States
| |
Collapse
|
65
|
Ye YX, Geng TT, Zhou YF, He P, Zhang JJ, Liu G, Willett W, Pan A, Koh WP. Adherence to a Planetary Health Diet, Environmental Impacts, and Mortality in Chinese Adults. JAMA Netw Open 2023; 6:e2339468. [PMID: 37874563 PMCID: PMC10599124 DOI: 10.1001/jamanetworkopen.2023.39468] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/12/2023] [Indexed: 10/25/2023] Open
Abstract
Importance Although the EAT-Lancet Commission has recently proposed a planetary health diet (PHD) to promote human and environmental health, little is known about how PHD affects environment and mortality risk among an Asian population. Objective To investigate whether a PHD score is associated with environmental impacts and mortality outcomes in a Chinese cohort living in Singapore. Design, Setting, and Participants This cohort study used data from the Singapore Chinese Health Study. Eligible participants were without known cardiovascular disease and cancer at baseline; they were recruited between 1993 and 1998 and followed up using record linkage data until 2020. Data were analyzed from September 2022 to April 2023. Exposures PHD score was calculated based on the reference consumption of 14 dietary components in PHD and individual energy intake assessed using a validated food frequency questionnaire in this cohort. Main Outcomes and Measures Diet-related environmental impacts were estimated using a food frequency questionnaire. Mortality outcomes (all-cause, cardiovascular disease, cancer, and respiratory disease) were identified via linkage with a nationwide registry. Results A total of 57 078 participants were included in this study (mean [SD] age, 56.1 (7.9) years; 31 958 women [56.0%]). During a median (IQR) follow-up of 23.4 (18.7-26.2) years, 22 599 deaths occurred. Comparing the highest and lowest quintiles, higher PHD scores were associated with lower greenhouse gas emissions (β = -0.13 kg CO2 equivalent; 95% CI, -0.14 to -0.12 kg CO2 equivalent), but with higher total water footprint (β = 0.12 m3; 95% CI, 0.11-0.13 m3) and land use (β = 0.29 m2; 95% CI, 0.28-0.31 m2). In the adjusted multivariable model, compared with the lowest quintile, participants in the highest quintile of PHD score had lower risk of all-cause mortality (hazard ratio [HR], 0.85; 95% CI, 0.81-0.89), cardiovascular disease mortality (HR, 0.79; 95% CI, 0.73-0.85), cancer mortality (HR, 0.93; 95% CI, 0.86-1.00), and respiratory disease mortality (HR, 0.81; 95% CI, 0.74-0.89). Conclusions and Relevance In this study of Singapore Chinese adults, higher adherence to PHD was associated with reduced risk of chronic disease mortality. However, environmental impacts were uncertain, as higher adherence was associated with lower greenhouse gas emissions but higher total water footprint and land use.
Collapse
Affiliation(s)
- Yi-Xiang Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting-Ting Geng
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| | - Yan-Feng Zhou
- Department of Social Medicine and Health Management, School of Public Health, Guangxi Medical University, Nanning, China
| | - Pan He
- School of Earth and Environmental Sciences, Cardiff University, Cardiff, United Kingdom
| | - Ji-Juan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Walter Willett
- Harvard T.H. Chan School of Public Health, Harvard Medical School, Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - An Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Woon-Puay Koh
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore
| |
Collapse
|
66
|
Hu L, Xu C, Tang X, Yu S, Wang L, Li Q, Zhou X. Fine particulate matter promotes airway inflammation and mucin production by activating endoplasmic reticulum stress and the IRE1α/NOD1/NF‑κB pathway. Int J Mol Med 2023; 52:96. [PMID: 37654182 PMCID: PMC10555484 DOI: 10.3892/ijmm.2023.5299] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023] Open
Abstract
Fine particulate matter (PM2.5) is a type of small particle that is <2.5 µm in diameter that may cause airway inflammation. Thus, the present study aimed to explore the effects of PM2.5 on endoplasmic reticulum (ER) stress and airway inflammation in human airway epithelial cells. For this purpose, HBE135‑E6E7 airway epithelial cells were cultured and exposed to specific concentrations of PM2.5 for various periods of time, and cell viability was determined using a Cell Counting Kit‑8 assay. The results of the present study demonstrated that exposure to PM2.5 increased the mRNA and protein expression levels of interleukin (IL)‑6, tumor necrosis factor (TNF)‑α and mucin 5AC (MUC5AC). Moreover, the expression levels of ER stress‑related proteins, such as glucose‑regulated protein 78, CCAAT‑enhancer binding protein homologous protein, activating transcription factor 6, protein kinase R‑like ER kinase (PERK), phosphorylated (p‑)PERK, inositol‑requiring enzyme 1α (IRE1α) and p‑IRE1α, and nucleotide‑binding oligomerization domain 1 (NOD1) expression levels were increased following exposure to PM2.5. Transfection with IRE1α small interfering RNA (siRNA) led to the increased production of IL‑6, TNF‑α and MUC5AC. Moreover, the expression of NOD1 and the translocation of NF‑κB p65 were inhibited following transfection with IRE1α siRNA. In addition, the results of the present study demonstrated that transfection with NOD1 siRNA decreased the production of IL‑6, TNF‑α and MUC5AC, and decreased the translocation of NF‑κB p65. The expression levels of IL‑6, TNF‑α and MUC5AC were increased in the HBE135‑E6E7 cells following treatment with C12‑iE‑DAP, a NOD1 agonist. Moreover, treatment with C12‑iE‑DAP led to the activation of NF‑κB p65. Collectively, the results of the present study suggest that PM2.5 promotes airway inflammation and mucin production by activating ER stress in HBE135‑E6E7 airway epithelial cells, and that the IRE1α/NOD1/NF‑κB pathway may be involved in this process.
Collapse
Affiliation(s)
- Lihua Hu
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan 570102
| | - Chaoqun Xu
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University
- Emergency and Trauma College, Hainan Medical University, Haikou, Hainan 579199, P.R. China
| | - Xiang Tang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan 570102
| | - Shanjun Yu
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan 570102
| | - Lijun Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan 570102
| | - Qi Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan 570102
| | - Xiangdong Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan 570102
| |
Collapse
|
67
|
Ghosh B, Chengala PP, Shah S, Chen D, Karnam V, Wilmsen K, Yeung-Luk B, Sidhaye VK. Cigarette smoke-induced injury induces distinct sex-specific transcriptional signatures in mice tracheal epithelial cells. Am J Physiol Lung Cell Mol Physiol 2023; 325:L467-L476. [PMID: 37605829 PMCID: PMC10639008 DOI: 10.1152/ajplung.00104.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023] Open
Abstract
The airway epithelial barrier is crucial for defending against respiratory insults and diseases. Disruption of epithelial integrity contributes to respiratory diseases, and sex-specific differences in susceptibility and severity have been observed. However, sex-specific differences in the context of respiratory diseases are often overlooked, especially in murine models. In this study, we investigated the in vitro transcriptomics of male and female murine tracheal epithelial cells (mTECs) in response to chronic cigarette smoke (CS) exposure using an International Organization for Standardization (ISO) puff regimen. Our findings reveal sex-specific differences in the baseline characteristics of airway epithelial cells. Female mTECs demonstrated stronger barrier function and higher ciliary function compared with males. The barrier function was disrupted in both males and females following chronic CS, but the difference was more significant in females due to their higher baseline. Female mice exhibited transcriptional signatures suggesting dedifferentiation with increased basal cells and markers of cellular senescence. Pathway analysis indicated potential protective roles of planar cell polarity (PCP) in preventing dedifferentiation in male mice exposed to CS. We also observed sex-specific differences in the DNA damage response and antioxidant levels, suggesting distinct mechanisms underlying cellular stress. Understanding these sex-specific mechanisms could facilitate the development of targeted therapeutic strategies for lung diseases associated with environmental insults. Recognizing sex-based differences in disease susceptibility and treatment response can lead to personalized care and improved outcomes. Clinical trials should consider sex as a biological variable to develop effective interventions that address the unique differences between men and women in respiratory diseases.NEW & NOTEWORTHY The study underscores the importance of considering sex-specific differences in the airway epithelium in respiratory diseases such as COPD. Differences in gene expression between males and females at baseline and in response to chronic injury in the airway epithelium could have implications on disease susceptibility, both in COPD and other respiratory diseases. Therefore, understanding these differences is crucial for developing targeted therapies to treat respiratory diseases based on a sex-specific manner.
Collapse
Affiliation(s)
- Baishakhi Ghosh
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Pratulya Pragadaraju Chengala
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Sonya Shah
- Zanvyl Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland, United States
| | - Daniel Chen
- Zanvyl Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland, United States
| | - Vaishnavi Karnam
- Zanvyl Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland, United States
| | - Kai Wilmsen
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Bonnie Yeung-Luk
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Venkataramana K Sidhaye
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
68
|
Chen C, Zhang S, Yang T, Wang C, Han G. Associations between environmental heavy metals exposure and preserved ratio impaired spirometry in the U.S. adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108274-108287. [PMID: 37749472 PMCID: PMC10611825 DOI: 10.1007/s11356-023-29688-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/23/2023] [Indexed: 09/27/2023]
Abstract
We examined 9556 individuals aged 18 to 79 years who had information on spirometry testing and heavy metals and used multivariable logistic or linear regression to evaluate associations between serum levels of cadmium, lead, and mercury and PRISm and lung function in U.S. adults, which were conducted first in all participants, and then separately in never/former smokers and current smokers. The overall prevalence of PRISm was 7.02%. High levels of serum cadmium were significantly associated with PRISm in all individuals, no matter in never/former smokers (quartile 4 vs 1, the OR = 2.517, 95% CI = 1.376-4.604, p-trend = 0.0077) and current smokers (quartile 4 vs 1, the OR = 2.201, 95% CI = 1.265-3.830, p-trend = 0.0020). Serum lead and mercury were not significantly correlated with PRISm, regardless of smoking status. Serum cadmium was strongly correlated with lower FEV1/FVC, regardless of smoking status. Besides, serum cadmium was also significantly related to lower FVC % predicted in never/former smokers and lower FEV1% predicted in current smokers. Serum lead was strongly correlated with lower FVC % predicted and FEV1/FVC in all individuals and never/former smokers. And serum mercury was significantly associated with decrements in FVC % predicted in all individuals and current smokers. These findings demonstrate that serum cadmium is associated with a higher risk of PRISm and lower lung function, with the most significant effect on FEV1/FVC in particular. Our results also indicate that exposure to lead and mercury negatively affects lung function in never/former smokers and current smokers, respectively.
Collapse
Affiliation(s)
- Chen Chen
- National Center for Respiratory MedicineNational Clinical Research Center for Respiratory DiseasesInstitute of Respiratory MedicineDepartment of Traditional Chinese Medicine for Pulmonary Diseases, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Shunan Zhang
- National Center for Respiratory MedicineNational Clinical Research Center for Respiratory DiseasesInstitute of Respiratory MedicineDepartment of Traditional Chinese Medicine for Pulmonary Diseases, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Ting Yang
- National Center for Respiratory MedicineNational Clinical Research Center for Respiratory DiseasesInstitute of Respiratory MedicineDepartment of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| | - Chen Wang
- National Center for Respiratory MedicineNational Clinical Research Center for Respiratory DiseasesInstitute of Respiratory MedicineDepartment of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Guiling Han
- National Center for Respiratory MedicineNational Clinical Research Center for Respiratory DiseasesInstitute of Respiratory MedicineDepartment of Traditional Chinese Medicine for Pulmonary Diseases, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| |
Collapse
|
69
|
Shen W, Li X, Fang Q, Li G, Xiao W, Wu Y, Liu J, Hu W, Lu H, Huang F. The impact of ambient air pollutants on childhood respiratory system disease and the resulting disease burden: a time-series study. Int Arch Occup Environ Health 2023; 96:1087-1100. [PMID: 37338586 DOI: 10.1007/s00420-023-01991-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023]
Abstract
PURPOSE The effects of air pollution on human health have long been a hot topic of research. For respiratory diseases, a large number of studies have proved that air pollution is one of the main causes. The purpose of this study was to investigate the risk of hospitalization of children with respiratory system diseases (CRSD) caused by six pollutants (PM2.5, PM10, NO2, SO2, CO, and O3) in Hefei City, and further calculate the disease burden. METHOD In the first stage, the generalized additive models were combined with the distributed lag non-linear models to evaluate the impact of air pollution on the inpatients for CRSD in Hefei. In the second stage, this study used the cost-of-illness approach to calculate the attributable number of hospitalizations and the extra disease burden. RESULT Overall, all the six kinds of pollutants had the strongest effects on CRSD inpatients within lag10 days. SO2 and CO caused the highest and lowest harm, respectively, and the RR values were SO2 (lag0-5): 1.1 20 (1.053, 1.191), and CO (lag0-6): 1.002 (1.001, 1.003). During the study period (January 1, 2014 to December 30, 2020), the 7-year cumulative burden of disease was 36.19 million CNY under the WHO air pollution standards. CONCLUSION In general, we found that six air pollutants were risk factors for CRSD in Hefei City, and create a huge burden of disease.
Collapse
Affiliation(s)
- Wenbin Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Xue Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Qingfeng Fang
- Department of Infectious Diseases, Anhui Provincial Children's Hospital, Hefei, Anhui, China
| | - Guoao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Wei Xiao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Yueyang Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Jianjun Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Wenlei Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Huanhuan Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Fen Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China.
| |
Collapse
|
70
|
Messingschlager M, Bartel-Steinbach M, Mackowiak SD, Denkena J, Bieg M, Klös M, Seegebarth A, Straff W, Süring K, Ishaque N, Eils R, Lehmann I, Lermen D, Trump S. Genome-wide DNA methylation sequencing identifies epigenetic perturbations in the upper airways under long-term exposure to moderate levels of ambient air pollution. ENVIRONMENTAL RESEARCH 2023; 233:116413. [PMID: 37343754 DOI: 10.1016/j.envres.2023.116413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/30/2023] [Accepted: 06/11/2023] [Indexed: 06/23/2023]
Abstract
While the link between exposure to high levels of ambient particulate matter (PM) and increased incidences of respiratory and cardiovascular diseases is widely recognized, recent epidemiological studies have shown that low PM concentrations are equally associated with adverse health effects. As DNA methylation is one of the main mechanisms by which cells regulate and stabilize gene expression, changes in the methylome could constitute early indicators of dysregulated signaling pathways. So far, little is known about PM-associated DNA methylation changes in the upper airways, the first point of contact between airborne pollutants and the human body. Here, we focused on cells of the upper respiratory tract and assessed their genome-wide DNA methylation pattern to explore exposure-associated early regulatory changes. Using a mobile epidemiological laboratory, nasal lavage samples were collected from a cohort of 60 adults that lived in districts with records of low (Simmerath) or moderate (Stuttgart) PM10 levels in Germany. PM10 concentrations were verified by particle measurements on the days of the sample collection and genome-wide DNA methylation was determined by enzymatic methyl sequencing at single-base resolution. We identified 231 differentially methylated regions (DMRs) between moderately and lowly PM10 exposed individuals. A high proportion of DMRs overlapped with regulatory elements, and DMR target genes were involved in pathways regulating cellular redox homeostasis and immune response. In addition, we found distinct changes in DNA methylation of the HOXA gene cluster whose methylation levels have previously been linked to air pollution exposure but also to carcinogenesis in several instances. The findings of this study suggest that regulatory changes in upper airway cells occur at PM10 levels below current European thresholds, some of which may be involved in the development of air pollution-related diseases.
Collapse
Affiliation(s)
- Marey Messingschlager
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Molecular Epidemiology Unit, Charitéplatz 1, 10117, Berlin, Germany; Freie Universität Berlin, Institute for Biology, Königin-Luise-Strasse 12-16, 14195, Berlin, Germany
| | - Martina Bartel-Steinbach
- Fraunhofer Institute for Biomedical Engineering IBMT, Josef-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Sebastian D Mackowiak
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Johanna Denkena
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Matthias Bieg
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Matthias Klös
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Molecular Epidemiology Unit, Charitéplatz 1, 10117, Berlin, Germany
| | - Anke Seegebarth
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Molecular Epidemiology Unit, Charitéplatz 1, 10117, Berlin, Germany
| | - Wolfgang Straff
- Environmental Medicine and Health Effects Assessment, German Environment Agency, Corrensplatz 1, 14195, Berlin, Germany
| | - Katrin Süring
- Environmental Medicine and Health Effects Assessment, German Environment Agency, Corrensplatz 1, 14195, Berlin, Germany
| | - Naveed Ishaque
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Roland Eils
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Charitéplatz 1, 10117, Berlin, Germany; German Center for Lung Research (DZL), Germany; Health Data Science Unit, Heidelberg University Hospital and BioQuant, University of Heidelberg, Germany; Freie Universität Berlin, Department of Mathematics and Computer Science, Arnimallee 14, 14195, Berlin, Germany
| | - Irina Lehmann
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Molecular Epidemiology Unit, Charitéplatz 1, 10117, Berlin, Germany; German Center for Lung Research (DZL), Germany.
| | - Dominik Lermen
- Fraunhofer Institute for Biomedical Engineering IBMT, Josef-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Saskia Trump
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Molecular Epidemiology Unit, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
71
|
Brigham E, Hashimoto A, Alexis NE. Air Pollution and Diet: Potential Interacting Exposures in Asthma. Curr Allergy Asthma Rep 2023; 23:541-553. [PMID: 37440094 DOI: 10.1007/s11882-023-01101-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2023] [Indexed: 07/14/2023]
Abstract
PURPOSE OF REVIEW To provide a review of emerging literature describing the impact of diet on the respiratory response to air pollution in asthma. RECENT FINDINGS Asthma phenotyping (observable characteristics) and endotyping (mechanistic pathways) have increased the specificity of diagnostic and treatment pathways and opened the doors to the identification of subphenotypes with enhanced susceptibility to exposures and interventions. Mechanisms underlying the airway immune response to air pollution are still being defined but include oxidative stress, inflammation, and activation of adaptive and innate immune responses, with genetic susceptibility highlighted. Of these, neutrophil recruitment and activation appear prominent; however, understanding neutrophil function in response to pollutant exposures is a research gap. Diet may play a role in asthma pathogenesis and morbidity; therefore, diet modification is a potential target opportunity to protect against pollutant-induced lung injury. In particular, in vivo and in vitro data suggest the potential for diet to modify the inflammatory response in the airways, including impacts on neutrophil recruitment and function. Murine models provide compelling results in regard to the potential for dietary components (including fiber, antioxidants, and omega-3 fatty acids) to buffer against the inflammatory response to air pollution in the lung. Precision lifestyle approaches to asthma management and respiratory protection in the context of air pollution exposures may evolve to include diet, pending the results of further epidemiologic and causal investigation and with neutrophil recruitment and activation as a candidate mechanism.
Collapse
Affiliation(s)
- Emily Brigham
- Division of Respirology, University of British Columbia, Vancouver, BC, Canada.
- Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.
| | - Alisa Hashimoto
- Faculty of Science, University of British Columbia, BC, Vancouver, Canada
| | - Neil E Alexis
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Pediatrics, Division of Allergy, Immunology, Rheumatology and Infectious Disease, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
72
|
Schichlein KD, Smith GJ, Jaspers I. Protective effects of inhaled antioxidants against air pollution-induced pathological responses. Respir Res 2023; 24:187. [PMID: 37443038 DOI: 10.1186/s12931-023-02490-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
As the public health burden of air pollution continues to increase, new strategies to mitigate harmful health effects are needed. Dietary antioxidants have previously been explored to protect against air pollution-induced lung injury producing inconclusive results. Inhaled (pulmonary or nasal) administration of antioxidants presents a more promising approach as it could directly increase antioxidant levels in the airway surface liquid (ASL), providing protection against oxidative damage from air pollution. Several antioxidants have been shown to exhibit antioxidant, anti-inflammatory, and anti-microbial properties in in vitro and in vivo models of air pollution exposure; however, little work has been done to translate these basic research findings into practice. This narrative review summarizes these findings and data from human studies using inhaled antioxidants in response to air pollution, which have produced positive results, indicating further investigation is warranted. In addition to human studies, cell and murine studies should be conducted using more relevant models of exposure such as air-liquid interface (ALI) cultures of primary cells and non-aqueous apical delivery of antioxidants and pollutants. Inhalation of antioxidants shows promise as a protective intervention to prevent air pollution-induced lung injury and exacerbation of existing lung disease.
Collapse
Affiliation(s)
- Kevin D Schichlein
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC, 27599-7310, USA
| | - Gregory J Smith
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC, 27599-7310, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ilona Jaspers
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC, 27599-7310, USA.
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
73
|
Puisney-Dakhli C, Oikonomou EK, Tharaud M, Sivry Y, Berret JF, Baeza-Squiban A. Effects of brake wear nanoparticles on the protection and repair functions of the airway epithelium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121554. [PMID: 37044251 DOI: 10.1016/j.envpol.2023.121554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Long term exposure to particulate air pollution is known to increase respiratory morbidity and mortality. In urban areas with dense traffic most of these particles are generated by vehicles, via engine exhaust or wear processes. Non-exhaust particles come from wear processes such as those concerning brakes and their toxicity is little studied. To improve our understanding of the lung toxicity mechanisms of the nanometric fraction of brake wear nanoparticles (BWNPs), we studied whether these particles affect the barrier properties of the respiratory epithelium considering particle translocation, mucus production and repair efficiency. The Calu-3 cell line grown in two-compartment chambers was used to mimic the bronchial epithelial barrier. BWNPs detected by single-particle ICP-MS were shown to cross the epithelial tissue in small amounts without affecting the barrier integrity properties, because the permeability to Lucifer yellow was not increased and there was no cytotoxicity as assessed by the release of lactate-dehydrogenase. The interaction of BWNPs with the barrier did not induce a pro-inflammatory response, but increased the expression and production of MU5AC, a mucin, by a mechanism involving the epidermal growth factor receptor pathway. During a wound healing assay, BWNP-loaded cells exhibited the same ability to migrate, but those at the edge of the wound showed higher 5-ethynyl-2'-deoxyuridine incorporation, suggesting a higher proliferation rate. Altogether these results showed that BW. NPs do not exert overt cytotoxicity and inflammation but can translocate through the epithelial barrier in small amounts and increase mucus production, a key feature of acute inflammatory and chronic obstructive pulmonary diseases. Their loading in epithelial cells may impair the repair process through increased proliferation.
Collapse
Affiliation(s)
- Chloé Puisney-Dakhli
- Université Paris Cité, Unit of Functional and Adaptive Biology (BFA), UMR 8251 CNRS, F-75205, Paris, France
| | - Evdokia K Oikonomou
- Université Paris Cité, Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS, Paris, France
| | - Mickaël Tharaud
- Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, F-75005, Paris, France
| | - Yann Sivry
- Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, F-75005, Paris, France
| | - Jean-François Berret
- Université Paris Cité, Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS, Paris, France
| | - Armelle Baeza-Squiban
- Université Paris Cité, Unit of Functional and Adaptive Biology (BFA), UMR 8251 CNRS, F-75205, Paris, France.
| |
Collapse
|
74
|
Endaryanto A, Darma A, Sundjaya T, Masita BM, Basrowi RW. The Notorious Triumvirate in Pediatric Health: Air Pollution, Respiratory Allergy, and Infection. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1067. [PMID: 37371298 DOI: 10.3390/children10061067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
A plausible association is suspected among air pollution, respiratory allergic disorder, and infection. These three factors could cause uncontrollable chronic inflammation in the airway tract, creating a negative impact on the physiology of the respiratory system. This review aims to understand the underlying pathophysiology in explaining the association among air pollution, respiratory allergy, and infection in the pediatric population and to capture the public's attention regarding the interaction among these three factors, as they synergistically reduce the health status of children living in polluted countries globally, including Indonesia.
Collapse
Affiliation(s)
- Anang Endaryanto
- Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Andy Darma
- Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Tonny Sundjaya
- Medical and Science Affairs Division, Danone Specialized Nutrition Indonesia, Jakarta 12940, Indonesia
| | - Bertri Maulidya Masita
- Medical and Science Affairs Division, Danone Specialized Nutrition Indonesia, Jakarta 12940, Indonesia
| | - Ray Wagiu Basrowi
- Medical and Science Affairs Division, Danone Specialized Nutrition Indonesia, Jakarta 12940, Indonesia
| |
Collapse
|
75
|
Choudhury A, Simnani FZ, Singh D, Patel P, Sinha A, Nandi A, Ghosh A, Saha U, Kumari K, Jaganathan SK, Kaushik NK, Panda PK, Suar M, Verma SK. Atmospheric microplastic and nanoplastic: The toxicological paradigm on the cellular system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115018. [PMID: 37216859 DOI: 10.1016/j.ecoenv.2023.115018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023]
Abstract
The increasing demand for plastic in our daily lives has led to global plastic pollution. The improper disposal of plastic has resulted in a massive amount of atmospheric microplastics (MPs), which has further resulted in the production of atmospheric nanoplastics (NPs). Because of its intimate relationship with the environment and human health, microplastic and nanoplastic contamination is becoming a problem. Because microplastics and nanoplastics are microscopic and light, they may penetrate deep into the human lungs. Despite several studies demonstrating the abundance of microplastics and nanoplastics in the air, the potential risks of atmospheric microplastics and nanoplastics remain unknown. Because of its small size, atmospheric nanoplastic characterization has presented significant challenges. This paper describes sampling and characterization procedures for atmospheric microplastics and nanoplastics. This study also examines the numerous harmful effects of plastic particles on human health and other species. There is a significant void in research on the toxicity of airborne microplastics and nanoplastics upon inhalation, which has significant toxicological potential in the future. Further study is needed to determine the influence of microplastic and nanoplastic on pulmonary diseases.
Collapse
Affiliation(s)
- Anmol Choudhury
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | | | - Dibyangshee Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Paritosh Patel
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Aditya Nandi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Aishee Ghosh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Utsa Saha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Khushbu Kumari
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Saravana Kumar Jaganathan
- School of Engineering, College of Science, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Pritam Kumar Panda
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden.
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India.
| | - Suresh K Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India.
| |
Collapse
|
76
|
Muhammad Firdaus FI, Nashihah AK, Mohd Fauzi MB, Manira M, Aminuddin S, Lokanathan Y. Application of Conditioned Medium for In Vitro Modeling and Repair of Respiratory Tissue. APPLIED SCIENCES 2023; 13:5862. [DOI: 10.3390/app13105862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Background: The idea of exploring respiratory therapy in vitro predominantly guided by cell-secreted substances has gained ground in recent years. A conditioned medium (CM) consists of protein milieu that contains a diverse spectrum of cytokines, chemokines, angiogenic agents, and growth factors. This review evaluated the efficacy of using CM collected in an in vitro respiratory epithelial model. Methods: Twenty-six papers were included in this review: twenty-one cellular response studies on respiratory secretome application and five studies involving animal research. Results: The CM produced by differentiated cells from respiratory and non-respiratory systems, such as mesenchymal stem cells (MSC), exhibited the similar overall effect of improving proliferation and regeneration. Not only could differentiated cells from respiratory tissues increase proliferation, migration, and attachment, but the CM was also able to protect the respiratory epithelium against cytotoxicity. Most non-respiratory tissue CM was used as a treatment model to determine the effects of the therapy, while only one study used particle-based CM and reported decreased epithelial cell tight junctions, which harmed the epithelial barrier. Conclusion: As it resolves the challenges related to cell development and wound healing while simultaneously generally reducing the danger of immunological compatibility and tumorigenicity, CM might be a potential regenerative therapy in numerous respiratory illnesses. However, additional research is required to justify using CM in respiratory epithelium clinical practice.
Collapse
Affiliation(s)
- Fairuz Izan Muhammad Firdaus
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Ab. Karim Nashihah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mh. Busra Mohd Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Maarof Manira
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Saim Aminuddin
- Graduate School of Medicine, KPJ Healthcare University College, Kota Seriemas, Nilai 71800, Malaysia
- KPJ Ampang Puteri Specialist Hospital, Ampang 68000, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
77
|
Sin DD, Doiron D, Agusti A, Anzueto A, Barnes PJ, Celli BR, Criner GJ, Halpin D, Han MK, Martinez FJ, Montes de Oca M, Papi A, Pavord I, Roche N, Singh D, Stockley R, Lopez Varlera MV, Wedzicha J, Vogelmeier C, Bourbeau J. Air pollution and COPD: GOLD 2023 committee report. Eur Respir J 2023; 61:2202469. [PMID: 36958741 DOI: 10.1183/13993003.02469-2022] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/04/2023] [Indexed: 03/25/2023]
Abstract
Exposure to air pollution is a major contributor to the pathogenesis of COPD worldwide. Indeed, most recent estimates suggest that 50% of the total attributable risk of COPD may be related to air pollution. In response, the Global Initiative for Chronic Obstructive Lung Disease (GOLD) Scientific Committee performed a comprehensive review on this topic, qualitatively synthesised the evidence to date and proffered recommendations to mitigate the risk. The review found that both gaseous and particulate components of air pollution are likely contributors to COPD. There are no absolutely safe levels of ambient air pollution and the relationship between air pollution levels and respiratory events is supra-linear. Wildfires and extreme weather events such as heat waves, which are becoming more common owing to climate change, are major threats to COPD patients and acutely increase their risk of morbidity and mortality. Exposure to air pollution also impairs lung growth in children and as such may lead to developmental COPD. GOLD recommends strong public health policies around the world to reduce ambient air pollution and for implementation of public warning systems and advisories, including where possible the use of personalised apps, to alert patients when ambient air pollution levels exceed acceptable minimal thresholds. When household particulate content exceeds acceptable thresholds, patients should consider using air cleaners and filters where feasible. Air pollution is a major health threat to patients living with COPD and actions are urgently required to reduce the morbidity and mortality related to poor air quality around the world.
Collapse
Affiliation(s)
- Don D Sin
- Centre for Heart Lung Innovation, St Paul's Hospital and University of British Columbia Division of Respiratory Medicine, Vancouver, BC, Canada
| | - Dany Doiron
- McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Alvar Agusti
- Respiratory Institute, Hospital Clinic, IDIBAPS, University of Barcelona and CIBERES, Barcelona, Spain
| | - Antonio Anzueto
- South Texas Veterans Health Care System, University of Texas, San Antonio, TX, USA
| | - Peter J Barnes
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | | | - David Halpin
- University of Exeter Medical School, College of Medicine and Health, University of Exeter, Exeter, UK
| | | | - Fernando J Martinez
- Weill Cornell Medical Center/New York-Presbyterian Hospital, New York, NY, USA
| | - Maria Montes de Oca
- Hospital Universitario de Caracas, Universidad Central de Venezuela, Centro Médico de Caracas, Caracas, Venezuela
| | - Alberto Papi
- Respiratory Medicine, University of Ferrara, Ferrara, Italy
| | - Ian Pavord
- Respiratory Medicine Unit and Oxford Respiratory NIHR Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicolas Roche
- Service de Pneumologie, Hôpital Cochin, AP-HP, Université Paris Cité, UMR 1016, Institut Cochin, Paris, France
| | - Dave Singh
- University of Manchester, Manchester, UK
| | | | | | - Jadwiga Wedzicha
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Claus Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, University Hospital Giessen and Marburg, German Center for Lung Research (DZL), University of Marburg, Marburg, Germany
| | - Jean Bourbeau
- McGill University Health Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
78
|
Uskoković V. Lessons from the history of inorganic nanoparticles for inhalable diagnostics and therapeutics. Adv Colloid Interface Sci 2023; 315:102903. [PMID: 37084546 DOI: 10.1016/j.cis.2023.102903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
The respiratory tract is one of the most accessible ones to exogenous nanoparticles, yet drug delivery by their means to it is made extraordinarily challenging because of the plexus of aerodynamic, hemodynamic and biomolecular factors at cellular and extracellular levels that synergistically define the safety and efficacy of this process. Here, the use of inorganic nanoparticles (INPs) for inhalable diagnostics and therapies of the lung is viewed through the prism of the history of studies on the interaction of INPs with the lower respiratory tract. The most conceptually and methodologically innovative and illuminative studies are referred to in the chronological order, as they were reported in the literature, and the trends in the progress of understanding this interaction of immense therapeutic and toxicological significance are being deduced from it. The most outstanding actual trends delineated include the diminishment of toxicity via surface functionalization, cell targeting, tagging and tracking via controlled binding and uptake, hybrid INP treatments, magnetic guidance, combined drug and gene delivery, use as adjuvants in inhalable vaccines, and other. Many of the understudied research directions, which have been accomplished by the nanostructured organic polymers in the pulmonary niche, are discussed. The progress in the use of INPs as inhalable diagnostics or therapeutics has been hampered by their well-recognized inflammatory potential and toxicity in the respiratory tract. However, the annual numbers of methodologically innovative studies have been on the rise throughout the past two decades, suggesting that this is a prolific direction of research, its comparatively poor commercial takings notwithstanding. Still, the lack of consensus on the effects of many INP compositions at low but therapeutically effective doses, the plethora of contradictory reports on ostensibly identical chemical compositions and NP properties, and the many cases of antagonism in combinatorial NP treatments imply that the rational design of inhalable medical devices based on INPs must rely on qualitative principles for the most part and embrace a partially stochastic approach as well. At the same time, the fact that the most studied INPs for pulmonary applications have been those with some of the thickest records of pulmonary toxicity, e.g., carbon, silver, gold, silica and iron oxide, is a silent call for the expansion of the search for new inorganic compositions for use in inhalable therapies to new territories.
Collapse
Affiliation(s)
- Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, TardigradeNano LLC, 7 Park Vista, Irvine, CA 92604, USA; Department of Mechanical Engineering, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA.
| |
Collapse
|
79
|
Choi J, Shim JJ, Lee MG, Rhee CK, Joo H, Lee JH, Park HY, Kim WJ, Um SJ, Kim DK, Min KH. Association Between Air Pollution and Viral Infection in Severe Acute Exacerbation of Chronic Obstructive Pulmonary Disease. J Korean Med Sci 2023; 38:e68. [PMID: 36880109 PMCID: PMC9988434 DOI: 10.3346/jkms.2023.38.e68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/08/2022] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Respiratory pathogen infections and air pollution are main causes of acute exacerbation of chronic obstructive pulmonary disease (AECOPD). Air pollution has a direct effect on the airway epithelial barrier and the immune system, which can have an influence on infection. However, studies on the relationship between respiratory infections and air pollutants in severe AECOPD are limited. Thus, the objective of this study was to investigate the correlation between air pollution and respiratory pathogen in severe AECOPD. METHODS This multicenter observational study was conducted by reviewing electronic medical records of patients with AECOPD at 28 hospitals in South Korea. Patients were divided into four groups according to the comprehensive air-quality index (CAI) used in Korea. Identification rates of bacteria and viruses of each group were analyzed. RESULTS Viral pathogens were identified in 270 (36.7%) of 735 patients. Viral identification rate was different (P = 0.012) according to air pollution. Specifically, the virus detection rate was 55.9% in the group of CAI 'D' with the highest air pollution. It was 24.4% in the group of CAI 'A' with the lowest air pollution. This pattern was clearly seen for influenza virus A (P = 0.042). When further analysis was performed with particulate matter (PM), the higher/lower the PM level, the higher/lower the virus detection rate. However, no significant difference was found in the analysis related to bacteria. CONCLUSION Air pollution may make COPD patients more susceptible to respiratory viral infections, especially influenza virus A. Thus, on days with poor air quality, COPD patients need to be more careful about respiratory infections.
Collapse
Affiliation(s)
- Juwhan Choi
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Jae Jeong Shim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Myung Goo Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Hallym University Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Korea
| | - Chin Kook Rhee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyonsoo Joo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jin Hwa Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, Korea
| | - Hye Yun Park
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Woo Jin Kim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University College of Medicine, Chuncheon, Korea
| | - Soo-Jung Um
- Division of Respiratory Medicine, Department of Internal Medicine, Dong-A University College of Medicine, Dong-A University Medical Center, Busan, Korea
| | - Deog Kyeom Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea.
| | - Kyung Hoon Min
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea.
| |
Collapse
|
80
|
Losol P, Sokolowska M, Chang YS. Interactions between microbiome and underlying mechanisms in asthma. Respir Med 2023; 208:107118. [PMID: 36641058 DOI: 10.1016/j.rmed.2023.107118] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Microbiome primes host innate immunity in utero and play fundamental roles in the development, training, and function of the immune system throughout the life. Interplay between the microbiome and immune system maintains mucosal homeostasis, while alterations of microbial community dysregulate immune responses, leading to distinct phenotypic features of immune-mediated diseases including asthma. Microbial imbalance within the mucosal environments, including upper and lower airways, skin, and gut, has consistently been observed in asthma patients and linked to increased asthma exacerbations and severity. Microbiome research has increased to uncover hidden microbial members, function, and immunoregulatory effects of bacterial metabolites within the mucosa. This review provides an overview of environmental and genetic factors that modulate the composition and function of the microbiome, and the impacts of microbiome metabolites and skin microbiota on immune regulation in asthma.
Collapse
Affiliation(s)
- Purevsuren Losol
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Medical Research Center, Seoul National University, Seoul, South Korea; Department of Molecular Biology and Genetics, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), Herman-Burchard Strasse 9, CH7265, Davos, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Yoon-Seok Chang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Medical Research Center, Seoul National University, Seoul, South Korea.
| |
Collapse
|
81
|
Singh S, Dutta J, Ray A, Karmakar A, Mabalirajan U. Airway Epithelium: A Neglected but Crucial Cell Type in Asthma Pathobiology. Diagnostics (Basel) 2023; 13:diagnostics13040808. [PMID: 36832296 PMCID: PMC9955099 DOI: 10.3390/diagnostics13040808] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023] Open
Abstract
The features of allergic asthma are believed to be mediated mostly through the Th2 immune response. In this Th2-dominant concept, the airway epithelium is presented as the helpless victim of Th2 cytokines. However, this Th2-dominant concept is inadequate to fill some of the vital knowledge gaps in asthma pathogenesis, like the poor correlation between airway inflammation and airway remodeling and severe asthma endotypes, including Th2-low asthma, therapy resistance, etc. Since the discovery of type 2 innate lymphoid cells in 2010, asthma researchers started believing in that the airway epithelium played a crucial role, as alarmins, which are the inducers of ILC2, are almost exclusively secreted by the airway epithelium. This underscores the eminence of airway epithelium in asthma pathogenesis. However, the airway epithelium has a bipartite functionality in sustaining healthy lung homeostasis and asthmatic lungs. On the one hand, the airway epithelium maintains lung homeostasis against environmental irritants/pollutants with the aid of its various armamentaria, including its chemosensory apparatus and detoxification system. Alternatively, it induces an ILC2-mediated type 2 immune response through alarmins to amplify the inflammatory response. However, the available evidence indicates that restoring epithelial health may attenuate asthmatic features. Thus, we conjecture that an epithelium-driven concept in asthma pathogenesis could fill most of the gaps in current asthma knowledge, and the incorporation of epithelial-protective agents to enhance the robustness of the epithelial barrier and the combative capacity of the airway epithelium against exogenous irritants/allergens may mitigate asthma incidence and severity, resulting in better asthma control.
Collapse
Affiliation(s)
- Sabita Singh
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Joytri Dutta
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Archita Ray
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Atmaja Karmakar
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Ulaganathan Mabalirajan
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
- Correspondence:
| |
Collapse
|
82
|
Hua L, Ju L, Xu H, Li C, Sun S, Zhang Q, Cao J, Ding R. Outdoor air pollution exposure and the risk of asthma and wheezing in the offspring. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:14165-14189. [PMID: 36149565 DOI: 10.1007/s11356-022-23094-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
According to the "fetal origin of disease" hypothesis, air pollution exposure in pregnancy may play an important role in stimulating the early programming of asthma and allergies. However, previous studies reported inconsistent findings. The aim of this meta-analysis was to provide higher grade evidence and quantitatively analyze the link between prenatal exposure to outdoor air pollutants and childhood asthma and wheezing. Databases (Web of Science and PubMed) were extensively searched for articles published from the start of the database to September 15, 2021. Either random-effect model or fixed-effect model was used to estimate the disease-specific relative risks (RR) with the corresponding 95% confidence intervals (CIs) to estimate the association. Newcastle-Ottawa Quality Score (NOS) was used to assess the quality of studies. This study finally included 13 cohort studies, and the findings showed that NO2 and SO2 exposure during entire pregnancy was significantly associated with wheezing (RR = 1.032, 95% CI: 1.000, 1.066) and asthma (RR = 1.114, 95% CI: 1.066, 1.164), respectively. Further analyses showed that PM2.5 were positively associated with asthma in the second (RR = 1.194, 95% CI: 1.143, 1.247) and third trimester (RR = 1.050, 95% CI: 1.007, 1.094), while NO2 (RR = 1.060, 95% CI: 1.021, 1.101) and SO2 (RR = 1.067, 95% CI: 1.013, 1.123) were shown positively associated with asthma only in the second trimester. The relationship between wheezing and outdoor air pollutants was not significant in any of the pregnancy subgroups. This study suggests that prenatal exposure of outdoor air pollution may increase the asthma and wheezing risk in the offspring and that the second trimester may be a sensitive period for air pollution exposure. But the interpretation of the causal association is hampered by limited number of studies on dose response.
Collapse
Affiliation(s)
- Lei Hua
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Liangliang Ju
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hanbing Xu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Changlian Li
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shu Sun
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Qi Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jiyu Cao
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Department of Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Rui Ding
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
83
|
Zhang HP, Sun YL, Wang YF, Yazici D, Azkur D, Ogulur I, Azkur AK, Yang ZW, Chen XX, Zhang AZ, Hu JQ, Liu GH, Akdis M, Akdis CA, Gao YD. Recent developments in the immunopathology of COVID-19. Allergy 2023; 78:369-388. [PMID: 36420736 PMCID: PMC10108124 DOI: 10.1111/all.15593] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/01/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
There has been an important change in the clinical characteristics and immune profile of Coronavirus disease 2019 (COVID-19) patients during the pandemic thanks to the extensive vaccination programs. Here, we highlight recent studies on COVID-19, from the clinical and immunological characteristics to the protective and risk factors for severity and mortality of COVID-19. The efficacy of the COVID-19 vaccines and potential allergic reactions after administration are also discussed. The occurrence of new variants of concerns such as Omicron BA.2, BA.4, and BA.5 and the global administration of COVID-19 vaccines have changed the clinical scenario of COVID-19. Multisystem inflammatory syndrome in children (MIS-C) may cause severe and heterogeneous disease but with a lower mortality rate. Perturbations in immunity of T cells, B cells, and mast cells, as well as autoantibodies and metabolic reprogramming may contribute to the long-term symptoms of COVID-19. There is conflicting evidence about whether atopic diseases, such as allergic asthma and rhinitis, are associated with a lower susceptibility and better outcomes of COVID-19. At the beginning of pandemic, the European Academy of Allergy and Clinical Immunology (EAACI) developed guidelines that provided timely information for the management of allergic diseases and preventive measures to reduce transmission in the allergic clinics. The global distribution of COVID-19 vaccines and emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with reduced pathogenic potential dramatically decreased the morbidity, severity, and mortality of COVID-19. Nevertheless, breakthrough infection remains a challenge for disease control. Hypersensitivity reactions (HSR) to COVID-19 vaccines are low compared to other vaccines, and these were addressed in EAACI statements that provided indications for the management of allergic reactions, including anaphylaxis to COVID-19 vaccines. We have gained a depth knowledge and experience in the over 2 years since the start of the pandemic, and yet a full eradication of SARS-CoV-2 is not on the horizon. Novel strategies are warranted to prevent severe disease in high-risk groups, the development of MIS-C and long COVID-19.
Collapse
Affiliation(s)
- Huan-Ping Zhang
- Department of Allergology, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuan-Li Sun
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan-Fen Wang
- Department of Pediatrics, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Dilek Azkur
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, University of Kirikkale, Kirikkale, Turkey
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ahmet Kursat Azkur
- Department of Virology, Faculty of Veterinary Medicine, University of Kirikkale, Kirikkale, Turkey
| | - Zhao-Wei Yang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao-Xue Chen
- Department of Allergology, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Ai-Zhi Zhang
- Intensive Care Unit, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jia-Qian Hu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guang-Hui Liu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ya-Dong Gao
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
84
|
Mitra P, Chakraborty D, Nayek S, Kundu S, Mishra D, Dan U, Mondal NK. Biomass using tribal women exhibited respiratory symptoms, hypertensive risks and abnormal pulmonary function. CHEMOSPHERE 2023; 311:136995. [PMID: 36330973 DOI: 10.1016/j.chemosphere.2022.136995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
In rural areas of developing countries, solid fuels are still widely used for cooking, heating, and lighting purposes. This study investigates the effects of household air pollutants (HAPs) exposure on the occurrence of respiratory symptoms, blood pressure, and lung function. In this study, we randomly selected 123 (83 biomass and 40 clean fuel user) subjects to assess the impact of smoke generated from solid biomass fuel by assessing their health status along with the ventilation pattern of the kitchens and living rooms. HAPs (PM10, PM2.5, and CO) and different health parameters were measured along with monitoring of self-reported health symptoms for a consecutive period of eight months. Results revealed that the concentration of CO, PM2.5, and PM10 were found highest in biomass using households. Higher odds of the upper respiratory symptoms, runny nose (OR: 4.08, 95% CI: 1.22-22.14, p < 0.03), nasal congestion (OR: 9.07, 95% CI: 1.39-97.89, p < 0.01) and the odds of the lower respiratory symptoms like wheezing (OR: 1.62, 95% CI: 1.23-10.94, p < 0.01), breathlessness (OR: 4.44, 95% CI: 1.3-14.75, p < 0.01), chest tightness (OR: 4.89, 95% CI: 1.23-22.14, p < 0.03) and dry cough (OR: 3.661, 95% CI: 1.05-12.25, p < 0.04) were significantly higher in biomass fuel user. Similarly higher systolic (+11.41 mmHg), higher diastolic pressure (+3.3 mmHg), higher pulse pressure (+8.11 mmHg), and a 6 mmHg higher mean arterial pressure among biomass fuel using tribal women. The risk of hypertension was significantly (p < 0.03) higher (OR: 3.04; 95% CI: 1.18-7.89) among solid biomass fuel users. The lung abnormality was recorded 28.91% (OR: 5.02, 95% CI: 1.50 to 16.56, p < 0.01) among biomass fuel user. Finally, it is suggested that the use of efficient cookstoves, increase in cross ventilation, and cleaner fuel are urgently needed to curb the pollution load.
Collapse
Affiliation(s)
- Pradip Mitra
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, West, Bengal, India
| | - Deep Chakraborty
- Department of Environmental Health Engineering, Faculty of Public Health, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, Tamilnadu, 600116, India
| | - Sukanta Nayek
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, West, Bengal, India
| | - Soumya Kundu
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, West, Bengal, India
| | - Debojyoti Mishra
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, West, Bengal, India
| | - Utpal Dan
- Principal, Diamond Harbour Government Medical College and Hospital, South 24, Pargans, West Bengal, India
| | - Naba Kumar Mondal
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, West, Bengal, India.
| |
Collapse
|
85
|
Yang FM, Hu MC, Weng CM, Chuang HC, Lan YT, Su BH, Heo KS, Kuo HP. Loss of PP4 contributes to diesel exhaust particles-induced epithelial barrier integrity disruption and alarmins release. Allergy 2022. [PMID: 36458827 DOI: 10.1111/all.15604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Affiliation(s)
- Feng-Ming Yang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Meng-Chun Hu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chih-Ming Weng
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Thoracic Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ting Lan
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Bing-Hua Su
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kyung-Sun Heo
- College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Han-Pin Kuo
- Department of Thoracic Medicine, Taipei Medical University Hospital, Taipei, Taiwan.,Pulmonary Medicine Research Center, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
86
|
Wu X, Ciminieri C, Bos IST, Woest ME, D'Ambrosi A, Wardenaar R, Spierings DCJ, Königshoff M, Schmidt M, Kistemaker LEM, Gosens R. Diesel exhaust particles distort lung epithelial progenitors and their fibroblast niche. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119292. [PMID: 35439594 PMCID: PMC11251497 DOI: 10.1016/j.envpol.2022.119292] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/01/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive lung disease characterized by inflammation and impaired tissue regeneration, and is reported as the fourth leading cause of death worldwide by the Centers for Disease Control and Prevention (CDC). Environmental pollution and specifically motor vehicle emissions are known to play a role in the pathogenesis of COPD, but little is still known about the molecular mechanisms that are altered following diesel exhaust particles (DEP) exposure. Here we used lung organoids derived from co-culture of alveolar epithelial progenitors and fibroblasts to investigate the effect of DEP on the epithelial-mesenchymal signaling niche in the distal lung, which is essential for tissue repair. We found that DEP treatment impaired the number as well as the average diameter of both airway and alveolar type of lung organoids. Bulk RNA-sequencing of re-sorted epithelial cells and fibroblasts following organoid co-culture shows that the Nrf2 pathway, which regulates antioxidants' activity, was upregulated in both cell populations in response to DEP; and WNT/β-catenin signaling, which is essential to promote epithelial repair, was downregulated in DEP-exposed epithelial cells. We show that pharmacological treatment with anti-oxidant agents such as N-acetyl cysteine (NAC) or Mitoquinone mesylate (MitoQ) reversed the effect of DEP on organoids growth. Additionally, a WNT/β-catenin activator (CHIR99021) successfully restored WNT signaling and promoted organoid growth upon DEP exposure. We propose that targeting oxidative stress and specific signaling pathways affected by DEP in the distal lung may represent a strategy to restore tissue repair in COPD.
Collapse
Affiliation(s)
- Xinhui Wu
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Chiara Ciminieri
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - I Sophie T Bos
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Manon E Woest
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Aquilo BV, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands
| | - Angela D'Ambrosi
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - René Wardenaar
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713AV, Groningen, the Netherlands
| | - Diana C J Spierings
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713AV, Groningen, the Netherlands
| | - Melanie Königshoff
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Martina Schmidt
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Loes E M Kistemaker
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Aquilo BV, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Aquilo BV, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands.
| |
Collapse
|
87
|
Wang Y, Hu X, Sun Y, Huang Y. The Role of ASIC1a in Inflammatory Immune Diseases: A Potential Therapeutic Target. Front Pharmacol 2022; 13:942209. [PMID: 35873582 PMCID: PMC9304623 DOI: 10.3389/fphar.2022.942209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022] Open
Abstract
It is acknowledged that chronic inflammation is associated with a rise in extracellular proton concentrations. The acid-sensing ion channel 1a (ASIC1a) belongs to the extracellular H+-activated cation channel family. Recently, many studies have been conducted on ASIC1a and inflammatory immune diseases. Here, in this review, we will focus on the role of ASIC1a in several inflammatory immune diseases so as to provide new perspectives for clinical treatment.
Collapse
Affiliation(s)
- Yinghong Wang
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaojie Hu
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yancai Sun
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Yancai Sun, ; Yan Huang,
| | - Yan Huang
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- *Correspondence: Yancai Sun, ; Yan Huang,
| |
Collapse
|
88
|
Fu YS, Kang N, Yu Y, Mi Y, Guo J, Wu J, Weng CF. Polyphenols, flavonoids and inflammasomes: the role of cigarette smoke in COPD. Eur Respir Rev 2022; 31:31/164/220028. [PMID: 35705209 PMCID: PMC9648508 DOI: 10.1183/16000617.0028-2022] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
COPD is predicted to become the third leading cause of morbidity and mortality worldwide by 2030. Cigarette smoking (active or passive) is one of its chief causes, with about 20% of cigarette smokers developing COPD from cigarette smoke (CS)-induced irreversible damage and sustained inflammation of the airway epithelium. Inflammasome activation leads to the cleavage of pro-interleukin (IL)-1β and pro-IL-18, along with the release of pro-inflammatory cytokines via gasdermin D N-terminal fragment membrane pores, which further triggers acute phase pro-inflammatory responses and concurrent pyroptosis. There is currently intense interest in the role of nucleotide-binding oligomerisation domain-like receptor family, pyrin domain containing protein-3 inflammasomes in chronic inflammatory lung diseases such as COPD and their potential for therapeutic targeting. Phytochemicals including polyphenols and flavonoids have phyto-medicinal benefits in CS-COPD. Here, we review published articles from the last decade regarding the known associations between inflammasome-mediated responses and ameliorations in pre-clinical manifestations of CS-COPD via polyphenol and flavonoid treatment, with a focus on the underlying mechanistic insights. This article will potentially assist the development of drugs for the prevention and therapy of COPD, particularly in cigarette smokers. This review compiles current investigations into the role of polyphenols/flavonoids in the alleviation of cigarette smoke-induced inflammasome; notably it provides a promising hit for rectifying the treatment of COPD.https://bit.ly/36OcUO9
Collapse
Affiliation(s)
- Yaw-Syan Fu
- Anatomy and Functional Physiology Section, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China.,Institute of Respiratory Disease, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China
| | - Ning Kang
- Dept of Otorhinolaryngology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China
| | - Yanping Yu
- Institute of Respiratory Disease, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China
| | - Yan Mi
- Institute of Respiratory Disease, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China
| | - Jialin Guo
- Anatomy and Functional Physiology Section, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China
| | - Jingyi Wu
- Anatomy and Functional Physiology Section, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China
| | - Ching-Feng Weng
- Anatomy and Functional Physiology Section, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China .,Institute of Respiratory Disease, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China
| |
Collapse
|