51
|
Ji A, Li X, Fang S, Qin Z, Bai C, Wang C, Zhang Z. Primary culture of Zhikong scallop Chlamys farreri hemocytes as an in vitro model for studying host-pathogen interactions. DISEASES OF AQUATIC ORGANISMS 2017; 125:217-226. [PMID: 28792420 DOI: 10.3354/dao03145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Primary cultured cells can be a useful tool in studies on physiology, virology, and toxicology. Hemocytes play an important role in animal rapid response to pathogen invasion. In this study, an appropriate medium for primary culture of hemocytes of the bivalve Chlamys farreri was developed by adding 5% fetal bovine serum and 1% C. farreri serum to Leibovitz L-15 medium. These primary cultured hemocytes were maintained for more than 40 d in vitro and were classified into 3 types: (1) granulocytes containing numerous granules in the cytoplasm, (2) hyalinocytes with no or few granules, (3) a small percentage of macrophage-like cells. Furthermore, the primary cultured hemocytes were observed to be sensitive to bacterial and viral challenges. These hemocytes could phagocytose the bacterium Vibrio anguillarum, and presented cytopathic effects on the extracellular products (ECPs) of V. anguillarum; the mRNA level of QM, which plays an important role in immune response, also significantly increased 12 h after infection. When these hemocytes were challenged with ostreid herpesvirus 1 (OsHV-1), virus particles and empty capsids in the cells infected for 48 h were observed by transmission electron microscopy, and the QM mRNA level increased significantly at 12 h and 24 h following OsHV-1 challenge. This primary culture system is available for C. farreri hemocytes which can be used in the future to study host-pathogen interactions.
Collapse
Affiliation(s)
- Aichang Ji
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | | | | | | | | | | | | |
Collapse
|
52
|
Young T, Kesarcodi-Watson A, Alfaro AC, Merien F, Nguyen TV, Mae H, Le DV, Villas-Bôas S. Differential expression of novel metabolic and immunological biomarkers in oysters challenged with a virulent strain of OsHV-1. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 73:229-245. [PMID: 28373065 DOI: 10.1016/j.dci.2017.03.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/30/2017] [Accepted: 03/30/2017] [Indexed: 06/07/2023]
Abstract
Early lifestages of the Pacific oyster (Crassostrea gigas) are highly susceptible to infection by OsHV-1 μVar, but little information exists regarding metabolic or pathophysiological responses of larval hosts. Using a metabolomics approach, we identified a range of metabolic and immunological responses in oyster larvae exposed to OsHV-1 μVar; some of which have not previously been reported in molluscs. Multivariate analyses of entire metabolite profiles were able to separate infected from non-infected larvae. Correlation analysis revealed the presence of major perturbations in the underlying biochemical networks and secondary pathway analysis of functionally-related metabolites identified a number of prospective pathways differentially regulated in virus-exposed larvae. These results provide new insights into the pathogenic mechanisms of OsHV-1 infection in oyster larvae, which may be applied to develop disease mitigation strategies and/or as new phenotypic information for selective breeding programmes aiming to enhance viral resistance.
Collapse
Affiliation(s)
- Tim Young
- Institute for Applied Ecology New Zealand, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand; Metabolomics Laboratory, School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
| | | | - Andrea C Alfaro
- Institute for Applied Ecology New Zealand, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand.
| | - Fabrice Merien
- AUT-Roche Diagnostics Laboratory, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Thao V Nguyen
- Institute for Applied Ecology New Zealand, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Hannah Mae
- Cawthron Institute, 98 Halifax Street East, Private Bag 2, Nelson 7042, New Zealand
| | - Dung V Le
- Institute for Applied Ecology New Zealand, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Silas Villas-Bôas
- Metabolomics Laboratory, School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
| |
Collapse
|
53
|
Martenot C, Gervais O, Chollet B, Houssin M, Renault T. Haemocytes collected from experimentally infected Pacific oysters, Crassostrea gigas: Detection of ostreid herpesvirus 1 DNA, RNA, and proteins in relation with inhibition of apoptosis. PLoS One 2017; 12:e0177448. [PMID: 28542284 PMCID: PMC5436676 DOI: 10.1371/journal.pone.0177448] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/27/2017] [Indexed: 11/18/2022] Open
Abstract
Recent transcriptomic approaches focused on anti-viral immunity in molluscs lead to the assumption that the innate immune system, such as apoptosis, plays a crucial role against ostreid herpesvirus type 1 (OsHV-1), infecting Pacific cupped oyster, Crassostrea gigas. Apoptosis constitutes a major mechanism of anti-viral response by limiting viral spread and eliminating infected cells. In this way, an OsHV-1 challenge was performed and oysters were monitored at three times post injection to investigate viral infection and host response: 2h (early after viral injection in the adductor muscle), 24h (intermediate time), and 48h (just before first oyster mortality record). Virus infection, associated with high cumulative mortality rates (74% and 100%), was demonstrated in haemocytes by combining several detection techniques such as real-time PCR, real-time RT PCR, immunofluorescence assay, and transmission electron microscopy examination. High viral DNA amounts ranged from 5.46×104 to 3.68×105 DNA copies ng-1 of total DNA, were detected in dead oysters and an increase of viral transcripts was observed from 2, 24, and 48hpi for the five targeted OsHV-1 genes encoding three putative membrane proteins (ORFs 25, 41, and 72), a putative dUTPase (ORF 75), and a putative apoptosis inhibitor (ORF 87). Apoptosis was studied at molecular and cellular levels with an early marker (phosphatidyl-serine externalisation measured by flow cytometry and epifluorescence microscopy) and a later parameter (DNA fragmentation by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling assay (TUNEL)). The down-regulation of genes encoding proteins involved in the activation of the apoptotic pathway (TNF and caspase 3) and the up-regulation of genes encoding anti-apoptotic proteins (IAP-2, and Bcl-2) suggested an important anti-apoptosis phenomenon in haemocytes from OsHV-1 infected oysters at 24 and 48hpi. Additionally, more phosphatidyl-serines were externalized and more cells with DNA fragmentation were observed in haemocytes collected from artificial seawater injected oysters than in haemocytes collected from OsHV-1 infected oysters at 24 and 48hpi, suggesting an inhibition of the apoptotic process in presence of the virus. In conclusion, this study is the first to focus on C. gigas haemocytes, cells involved in the host immune defense, during an OsHV-1 challenge in controlled conditions by combining various and original approaches to investigate apoptosis at molecular and cellular levels.
Collapse
Affiliation(s)
- Claire Martenot
- Ifremer (Institut Français de Recherche pour l'Exploitation de la Mer), Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
- * E-mail:
| | - Ophélie Gervais
- Ifremer (Institut Français de Recherche pour l'Exploitation de la Mer), Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | - Bruno Chollet
- Ifremer (Institut Français de Recherche pour l'Exploitation de la Mer), Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | | | - Tristan Renault
- Ifremer, Département Ressources Biologiques et Environnement, Nantes, France
| |
Collapse
|
54
|
Vincent-Hubert F, Morga B, Renault T, Le Guyader F. Adsorption of norovirus and ostreid herpesvirus type 1 to polymer membranes for the development of passive samplers. J Appl Microbiol 2017; 122:1039-1047. [DOI: 10.1111/jam.13394] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/20/2016] [Accepted: 01/02/2017] [Indexed: 02/04/2023]
Affiliation(s)
- F. Vincent-Hubert
- Laboratoire de Microbiologie; LSEM/SG2M; Ifremer; Nantes Cedex 03 France
| | - B. Morga
- Laboratoire de Génétique et Pathologie des Mollusques; SG2M Station de La Tremblade; La Tremblade France
| | - T. Renault
- Département Ressources Biologiques et Environnement; Ifremer; Nantes France
| | - F.S. Le Guyader
- Laboratoire de Microbiologie; LSEM/SG2M; Ifremer; Nantes Cedex 03 France
| |
Collapse
|
55
|
Azéma P, Lamy JB, Boudry P, Renault T, Travers MA, Dégremont L. Genetic parameters of resistance to Vibrio aestuarianus, and OsHV-1 infections in the Pacific oyster, Crassostrea gigas, at three different life stages. Genet Sel Evol 2017; 49:23. [PMID: 28201985 PMCID: PMC5311879 DOI: 10.1186/s12711-017-0297-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 02/08/2017] [Indexed: 12/11/2022] Open
Abstract
Background In France, two main diseases threaten Pacific oyster production. Since 2008, Crassostrea gigas spat have suffered massive losses due to the ostreid herpesvirus OsHV-1, and since 2012, significant mortalities in commercial-size adults have been related to infection by the bacterium Vibrio aestuarianus. The genetic basis for resistance to V. aestuarianus and OsHV-1 and the nature of the genetic correlation between these two traits were investigated by using 20 half-sib sire families, each containing two full-sib families. For each disease, controlled infectious challenges were conducted using naïve oysters that were 3 to 26 months old. In addition, siblings were tested under field, pond and raceway conditions to determine whether laboratory trials reflected mortality events that occur in the oyster industry. Results First, we estimated the genetic basis of resistance to V. aestuarianus in C. gigas. Susceptibility to the infection was low for oysters in spat stage but increased with later life stages. Second, we confirmed a strong genetic basis of resistance to OsHV-1 infection at early stages and demonstrated that it was also strong at later stages. Most families had increased resistance to OsHV-1 infection from the spat to adult stages, while others consistently showed low or high mortality rates related to OsHV-1 infection, regardless of the life stage. Our third main finding was the absence of genetic correlations between resistance to OsHV-1 infection and resistance to V. aestuarianus infection. Conclusions Selective breeding to enhance resistance to OsHV-1 infection could be achieved through selective breeding at early stages and would not affect resistance to V. aestuarianus infection. However, our results suggest that the potential to select for improved resistance to V. aestuarianus is lower. Selection for dual resistance to OsHV-1 and V. aestuarianus infection in C. gigas might reduce the impact of these two major diseases by selecting families that have the highest breeding values for resistance to both diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12711-017-0297-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patrick Azéma
- Laboratoire de Génétique et Pathologie des Mollusques Marins, Ifremer, avenue Mus de Loup, 17390, La Tremblade, France
| | - Jean-Baptiste Lamy
- Laboratoire de Génétique et Pathologie des Mollusques Marins, Ifremer, avenue Mus de Loup, 17390, La Tremblade, France
| | - Pierre Boudry
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 LEMAR (UBO/CNRS/IRD/Ifremer), Centre de Bretagne, Ifremer, CS 10070, 29280, Plouzané, France
| | - Tristan Renault
- Département Ressources Biologique et Environnement, Ifremer, Rue de l'Ile d'Yeu, 44300, Nantes, France
| | - Marie-Agnès Travers
- Laboratoire de Génétique et Pathologie des Mollusques Marins, Ifremer, avenue Mus de Loup, 17390, La Tremblade, France
| | - Lionel Dégremont
- Laboratoire de Génétique et Pathologie des Mollusques Marins, Ifremer, avenue Mus de Loup, 17390, La Tremblade, France.
| |
Collapse
|
56
|
Arzul I, Corbeil S, Morga B, Renault T. Viruses infecting marine molluscs. J Invertebr Pathol 2017; 147:118-135. [PMID: 28189502 DOI: 10.1016/j.jip.2017.01.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 11/19/2022]
Abstract
Although a wide range of viruses have been reported in marine molluscs, most of these reports rely on ultrastructural examination and few of these viruses have been fully characterized. The lack of marine mollusc cell lines restricts virus isolation capacities and subsequent characterization works. Our current knowledge is mostly restricted to viruses affecting farmed species such as oysters Crassostrea gigas, abalone Haliotis diversicolor supertexta or the scallop Chlamys farreri. Molecular approaches which are needed to identify virus affiliation have been carried out for a small number of viruses, most of them belonging to the Herpesviridae and birnaviridae families. These last years, the use of New Generation Sequencing approach has allowed increasing the number of sequenced viral genomes and has improved our capacity to investigate the diversity of viruses infecting marine molluscs. This new information has in turn allowed designing more efficient diagnostic tools. Moreover, the development of experimental infection protocols has answered some questions regarding the pathogenesis of these viruses and their interactions with their hosts. Control and management of viral diseases in molluscs mostly involve active surveillance, implementation of effective bio security measures and development of breeding programs. However factors triggering pathogen development and the life cycle and status of the viruses outside their mollusc hosts still need further investigations.
Collapse
Affiliation(s)
- Isabelle Arzul
- Ifremer, SG2M-LGPMM, Station La Tremblade, 17390 La Tremblade, France
| | - Serge Corbeil
- CSIRO Australian Animal Health Laboratory, 5 Portarlington Road, Geelong East, Victoria 3220, Australia
| | - Benjamin Morga
- Ifremer, SG2M-LGPMM, Station La Tremblade, 17390 La Tremblade, France
| | - Tristan Renault
- Ifremer, RBE, Centre Atlantique, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France.
| |
Collapse
|
57
|
Evans O, Paul-Pont I, Whittington RJ. Detection of ostreid herpesvirus 1 microvariant DNA in aquatic invertebrate species, sediment and other samples collected from the Georges River estuary, New South Wales, Australia. DISEASES OF AQUATIC ORGANISMS 2017; 122:247-255. [PMID: 28117303 DOI: 10.3354/dao03078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ostreid herpesvirus 1 microvariants (OsHV-1) present a serious threat to the Australian Crassostrea gigas industry. Of great concern is the propensity for mortality due to the virus recurring each season in farmed oysters. However, the source of the virus in recurrent outbreaks remains unclear. Reference strain ostreid herpesvirus 1 (OsHV-1 ref) and other related variants have been detected in several aquatic invertebrate species other than C. gigas in Europe, Asia and the USA. The aim of this study was to confirm the presence or absence of OsHV-1 in a range of opportunistically sampled aquatic invertebrate species inhabiting specific locations within the Georges River estuary in New South Wales, Australia. OsHV-1 DNA was detected in samples of wild C. gigas, Saccostrea glomerata, Anadara trapezia, mussels (Mytilus spp., Trichomya hirsuta), whelks (Batillaria australis or Pyrazus ebeninus) and barnacles Balanus spp. collected from several sites between October 2012 and April 2013. Viral loads in non-ostreid species were consistently low, as was the prevalence of OsHV-1 DNA detection. Viral concentrations were highest in wild C. gigas and S. glomerata; the prevalence of detectable OsHV-1 DNA in these oysters reached approximately 68 and 43%, respectively, at least once during the study. These species may be important to the transmission and/or persistence of OsHV-1 in endemically infected Australian estuaries.
Collapse
Affiliation(s)
- Olivia Evans
- Faculty of Veterinary Science, School of Life and Environmental Sciences, The University of Sydney, Camden, NSW 2570, Australia
| | | | | |
Collapse
|
58
|
Bai CM, Wang QC, Morga B, Shi J, Wang CM. Experimental infection of adult Scapharca broughtonii with Ostreid herpesvirus SB strain. J Invertebr Pathol 2016; 143:79-82. [PMID: 27939653 DOI: 10.1016/j.jip.2016.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/04/2016] [Accepted: 12/06/2016] [Indexed: 10/20/2022]
Abstract
We investigated the susceptibility of ark shell, Scapharca broughtonii, adults to Ostreid herpesvirus SB strain (OsHV-1-SB) through experimental infection by intramuscular injection assays. Results showed the onset of mortality occurred at 3days post injection, one day after the water turbidity became evident in rearing tanks. The mortality curves for the challenged group were similar to those observed at affected hatcheries. Histological lesions, herpesvirus-like particles and high OsHV-1-SB quantities were detected in challenged ark shells. This is the first study to successfully reproduce OsHV-1 disease in Arcoida species, and very few studies in adult bivalves (over 24months old).
Collapse
Affiliation(s)
- Chang-Ming Bai
- Division of Maricultural Organism Disease Control and Molecular Pathology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qing-Chen Wang
- Division of Maricultural Organism Disease Control and Molecular Pathology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Benjamin Morga
- Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Laboratoire de Génétique et Pathologie (LGP), Avenue de Mus de Loup, 17390 La Tremblade, France
| | - Jie Shi
- Division of Maricultural Organism Disease Control and Molecular Pathology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Chong-Ming Wang
- Division of Maricultural Organism Disease Control and Molecular Pathology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
59
|
Prado-Alvarez M, Darmody G, Hutton S, O'Reilly A, Lynch SA, Culloty SC. Occurrence of OsHV-1 in Crassostrea gigas Cultured in Ireland during an Exceptionally Warm Summer. Selection of Less Susceptible Oysters. Front Physiol 2016; 7:492. [PMID: 27877131 PMCID: PMC5099240 DOI: 10.3389/fphys.2016.00492] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 10/11/2016] [Indexed: 11/13/2022] Open
Abstract
The occurrence of OsHV-1, a herpes virus causing mass mortality in the Pacific oyster Crassostrea gigas was investigated with the aim to select individuals with different susceptibility to the infection. Naïve spat transferred to infected areas and juveniles currently being grown at those sites were analyzed using molecular and histology approaches. The survey period distinguishes itself by very warm temperatures reaching up to 3.5°C above the average. The virus was not detected in the virus free area although a spread of the disease could be expected due to high temperatures. Overall mortality, prevalence of infection and viral load was higher in spat confirming the higher susceptibility in early life stages. OsHV-1 and oyster mortality were detected in naïve spat after 15 days of cohabitation with infected animals. Although, infection was associated with mortality in spat, the high seawater temperatures could also be the direct cause of mortality at the warmest site. One stock of juveniles suffered an event of abnormal mortality that was significantly associated with OsHV-1 infection. Those animals were infected with a previously undescribed microvariant whereas the other stocks were infected with OsHV-1 μVar. Cell lesions due to the infection were observed by histology and true infections were corroborated by in situ hybridization. Survivors from the natural outbreak were exposed to OsHV-1 μVar by intramuscular injection and were compared to naïve animals. The survival rate in previously exposed animals was significantly higher than in naïve oysters. Results derived from this study allowed the selection of animals that might possess interesting characteristics for future analysis on OsHV-1 resistance.
Collapse
Affiliation(s)
- Maria Prado-Alvarez
- Aquaculture and Fisheries Development Centre, School of Biological, Earth and Environmental Science and Environmental Research Institute, University College Cork Cork, Ireland
| | - Grainne Darmody
- Aquaculture and Fisheries Development Centre, School of Biological, Earth and Environmental Science and Environmental Research Institute, University College Cork Cork, Ireland
| | - Stephen Hutton
- Aquaculture and Fisheries Development Centre, School of Biological, Earth and Environmental Science and Environmental Research Institute, University College Cork Cork, Ireland
| | - Amy O'Reilly
- Aquaculture and Fisheries Development Centre, School of Biological, Earth and Environmental Science and Environmental Research Institute, University College Cork Cork, Ireland
| | - Sharon A Lynch
- Aquaculture and Fisheries Development Centre, School of Biological, Earth and Environmental Science and Environmental Research Institute, University College Cork Cork, Ireland
| | - Sarah C Culloty
- Aquaculture and Fisheries Development Centre, School of Biological, Earth and Environmental Science and Environmental Research Institute, University College Cork Cork, Ireland
| |
Collapse
|
60
|
Azéma P, Travers MA, Benabdelmouna A, Dégremont L. Single or dual experimental infections with Vibrio aestuarianus and OsHV-1 in diploid and triploid Crassostrea gigas at the spat, juvenile and adult stages. J Invertebr Pathol 2016; 139:92-101. [PMID: 27503207 DOI: 10.1016/j.jip.2016.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 11/15/2022]
Abstract
French production of the Pacific cupped oyster, Crassostrea gigas, is currently threatened by two pathogens, OsHV-1 and V. aestuarianus. While oysters selected for their higher resistance to OsHV-1 are now available for the industry, the impact of V. aestuarianus on such oysters is unknown, especially for triploids. In addition, experimental infection has used the virus or the bacteria alone, but there have been no investigations of dual exposure to these pathogens. This study is the first report of single or dual exposure in spat (Spat1 and Spat2), juvenile and adult naïve oysters. For each of the two stocks evaluated, unselected oysters and oysters selected for their higher resistance to OsHV-1 infection were tested, as well as their triploid siblings of the selected oysters produced using cytochalasin B. We confirmed that resistance to OsHV-1 infection and susceptibility to V. aestuarianus increased with age and size, although selected oysters were not significantly impacted by OsHV-1 whatever their ploidy, size or age. We found different mortality patterns depending on the pathogen tested. The mortality pattern was similar for oysters exposed to OsHV-1 or to both pathogens in the Spat1 trial (4months old and 1.9g). The mortality pattern was similar for oysters exposed to V. aestuarianus or to both pathogens in the Adult trial (25months old and 63.1g). Surprisingly, mortality was much higher (ranging from 75.9% to 100%), in particular for the selected oysters, for the Spat2 (8months old/3.9g) and Juvenile trials (16months old/18.4g) given a dual exposure, regardless of the level of selection for OsHV-1 and the ploidy state. Our findings highlight an important threat for oyster farmers: oysters exposed to both pathogens could experience dramatic mortality rates, even in oysters selected for their higher resistance to OsHV-1. Finally, our study demonstrated for the first time that triploid oysters were more susceptible to experimental challenges with V. aestuarianus at the spat stage than their diploid siblings. However, the difference in mortality between the triploids and diploids remained limited and ranged from 22.9% to 6.6% for spat and adults, respectively with a relatively regularly decrease in the difference with increased age.
Collapse
Affiliation(s)
- Patrick Azéma
- Ifremer, RBE-SG2M-LGPMM, station de la Tremblade, F-17390, France.
| | | | | | - Lionel Dégremont
- Ifremer, RBE-SG2M-LGPMM, station de la Tremblade, F-17390, France.
| |
Collapse
|
61
|
Green TJ, Vergnes A, Montagnani C, de Lorgeril J. Distinct immune responses of juvenile and adult oysters (Crassostrea gigas) to viral and bacterial infections. Vet Res 2016; 47:72. [PMID: 27439510 PMCID: PMC4955271 DOI: 10.1186/s13567-016-0356-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/02/2016] [Indexed: 12/24/2022] Open
Abstract
Since 2008, massive mortality events of Pacific oysters (Crassostrea gigas) have been reported worldwide and these disease events are often associated with Ostreid herpesvirus type 1 (OsHV-1). Epidemiological field studies have also reported oyster age and other pathogens of the Vibrio genus are contributing factors to this syndrome. We undertook a controlled laboratory experiment to simultaneously investigate survival and immunological response of juvenile and adult C. gigas at different time-points post-infection with OsHV-1, Vibrio tasmaniensis LGP32 and V. aestuarianus. Our data corroborates epidemiological studies that juveniles are more susceptible to OsHV-1, whereas adults are more susceptible to Vibrio. We measured the expression of 102 immune-genes by high-throughput RT-qPCR, which revealed oysters have different transcriptional responses to OsHV-1 and Vibrio. The transcriptional response in the early stages of OsHV-1 infection involved genes related to apoptosis and the interferon-pathway. Transcriptional response to Vibrio infection involved antimicrobial peptides, heat shock proteins and galectins. Interestingly, oysters in the later stages of OsHV-1 infection had a transcriptional response that resembled an antibacterial response, which is suggestive of the oyster’s microbiome causing secondary infections (dysbiosis-driven pathology). This study provides molecular evidence that oysters can mount distinct immune response to viral and bacterial pathogens and these responses differ depending on the age of the host.
Collapse
Affiliation(s)
- Timothy J Green
- IFREMER, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, 34095, Montpellier, France.,Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Agnes Vergnes
- IFREMER, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, 34095, Montpellier, France
| | - Caroline Montagnani
- IFREMER, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, 34095, Montpellier, France.
| | - Julien de Lorgeril
- IFREMER, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, 34095, Montpellier, France
| |
Collapse
|
62
|
In situ localization and tissue distribution of ostreid herpesvirus 1 proteins in infected Pacific oyster, Crassostrea gigas. J Invertebr Pathol 2016; 136:124-35. [PMID: 27066775 DOI: 10.1016/j.jip.2016.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 11/20/2022]
Abstract
Immunohistochemistry (IHC) assays were conducted on paraffin sections from experimentally infected spat and unchallenged spat produced in hatchery to determine the tissue distribution of three viral proteins within the Pacific oyster, Crassostrea gigas. Polyclonal antibodies were produced from recombinant proteins corresponding to two putative membrane proteins and one putative apoptosis inhibitor encoded by ORF 25, 72, and 87, respectively. Results were then compared to those obtained by in situ hybridization performed on the same individuals, and showed a substantial agreement according to Landis and Koch numeric scale. Positive signals were mainly observed in connective tissue of gills, mantle, adductor muscle, heart, digestive gland, labial palps, and gonads of infected spat. Positive signals were also reported in digestive epithelia. However, few positive signals were also observed in healthy appearing oysters (unchallenged spat) and could be due to virus persistence after a primary infection. Cellular localization of staining seemed to be linked to the function of the viral protein targeted. A nucleus staining was preferentially observed with antibodies targeting the putative apoptosis inhibitor protein whereas a cytoplasmic localization was obtained using antibodies recognizing putative membrane proteins. The detection of viral proteins was often associated with histopathological changes previously reported during OsHV-1 infection by histology and transmission electron microscopy. Within the 6h after viral suspension injection, positive signals were almost at the maximal level with the three antibodies and all studied organs appeared infected at 28h post viral injection. Connective tissue appeared to be a privileged site for OsHV-1 replication even if positive signals were observed in the epithelium cells of different organs which may be interpreted as a hypothetical portal of entry or release for the virus. IHC constitutes a suited method for analyzing the early infection stages of OsHV-1 infection and a useful tool to investigate interactions between OsHV-1 and its host at a protein level.
Collapse
|
63
|
Lassudrie M, Soudant P, Nicolas JL, Miner P, Le Grand J, Lambert C, Le Goïc N, Hégaret H, Fabioux C. Exposure to the toxic dinoflagellate Alexandrium catenella modulates juvenile oyster Crassostrea gigas hemocyte variables subjected to different biotic conditions. FISH & SHELLFISH IMMUNOLOGY 2016; 51:104-115. [PMID: 26882980 DOI: 10.1016/j.fsi.2016.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/08/2016] [Accepted: 02/12/2016] [Indexed: 06/05/2023]
Abstract
The Pacific oyster Crassostrea gigas is an important commercial species cultured throughout the world. Oyster production practices often include transfers of animals into new environments that can be stressful, especially at young ages. This study was undertaken to determine if a toxic Alexandrium bloom, occurring repeatedly in French oyster beds, could modulate juvenile oyster cellular immune responses (i.e. hemocyte variables). We simulated planting on commercial beds by conducting a cohabitation exposure of juvenile, "specific pathogen-free" (SPF) oysters (naïve from the environment) with previously field-exposed oysters to induce interactions with new microorganisms. Indeed, toxic Alexandrium spp. exposures have been reported to modulate bivalve interaction with specific pathogens, as well as physiological and immunological variables in bivalves. In summary, SPF oysters were subjected to an artificial bloom of Alexandrium catenella, simultaneously with a cohabitation challenge. Exposure to A. catenella, and thus to the paralytic shellfish toxins (PSTs) and extracellular bioactive compounds produced by this alga, induced higher concentration, size, complexity and reactive oxygen species (ROS) production of circulating hemocytes. Challenge by cohabitation with field-exposed oysters also activated these hemocyte responses, suggesting a defense response to new microorganism exposure. These hemocyte responses to cohabitation challenge, however, were partially inhibited by A. catenella exposure, which enhanced hemocyte mortality, suggesting either detrimental effects of the interaction of both stressors on immune capacity, or the implementation of an alternative immune strategy through apoptosis. Indeed, no infection with specific pathogens (herpesvirus OsHV-1 or Vibrio aesturianus) was detected. Additionally, lower PST accumulation in challenged oysters suggests a physiological impairment through alteration of feeding-related processes. Overall, results of this study show that a short-term exposure to A. catenella combined with an exposure to a modified microbial community inhibited some hemocyte responses, and likely compromised physiological condition of the juvenile oysters.
Collapse
Affiliation(s)
- Malwenn Lassudrie
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER - Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise - Rue Dumont d'Urville, 29280 Plouzané, France.
| | - Philippe Soudant
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER - Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise - Rue Dumont d'Urville, 29280 Plouzané, France.
| | - Jean-Louis Nicolas
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER - Ifremer, Laboratoire de Physiologie des Invertébrés, Technopôle Brest-Iroise BP 70, 29280 Plouzané, France.
| | - Philippe Miner
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER - Ifremer, Laboratoire de Physiologie des Invertébrés, Technopôle Brest-Iroise BP 70, 29280 Plouzané, France.
| | - Jacqueline Le Grand
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER - Ifremer, Laboratoire de Physiologie des Invertébrés, Technopôle Brest-Iroise BP 70, 29280 Plouzané, France.
| | - Christophe Lambert
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER - Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise - Rue Dumont d'Urville, 29280 Plouzané, France.
| | - Nelly Le Goïc
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER - Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise - Rue Dumont d'Urville, 29280 Plouzané, France.
| | - Hélène Hégaret
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER - Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise - Rue Dumont d'Urville, 29280 Plouzané, France.
| | - Caroline Fabioux
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER - Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise - Rue Dumont d'Urville, 29280 Plouzané, France.
| |
Collapse
|
64
|
Moreau P, Moreau K, Segarra A, Tourbiez D, Travers MA, Rubinsztein DC, Renault T. Autophagy plays an important role in protecting Pacific oysters from OsHV-1 and Vibrio aestuarianus infections. Autophagy 2016; 11:516-26. [PMID: 25714877 PMCID: PMC4502751 DOI: 10.1080/15548627.2015.1017188] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent mass mortality outbreaks around the world in Pacific oysters, Crassostrea gigas, have seriously affected the aquaculture economy. Although the causes for these mortality outbreaks appear complex, infectious agents are involved. Two pathogens are associated with mass mortality outbreaks, the virus ostreid herpesvirus 1 (OsHV-1) and the bacterium Vibrio aestuarianus. Here we describe the interactions between these 2 pathogens and autophagy, a conserved intracellular pathway playing a key role in innate immunity. We show for the first time that autophagy pathway is present and functional in Pacific oysters and plays an important role to protect animals from infections. This study contributes to better understand the innate immune system of Pacific oysters.
Collapse
Key Words
- ATG, autophagy-related
- Atg8–PE, Atg8–phosphatidylethenolamine
- Crassostrea gigas
- DNA, deoxyribonucleic acid
- LC3-II, cleaved, lipidated and autophagosome-associated form of LC3
- MAP1LC3A/B (LC3A/B), microtubule-associated proteins 1 light chain 3 alpha/beta (mammalian orthologs of the predicted Crassostrea gigas LC3 and yeast Atg8)
- NH4Cl, ammonium chloride
- OsHV-1
- OsHV-1, Ostreid herpesvirus 1
- PCR, polymerase chain reaction
- Pacific oyster
- Vibrio aestuarianus
- autophagy
- hpi, hours postinfection
Collapse
Affiliation(s)
- Pierrick Moreau
- a Ifremer (Institut Français de Recherche pour l'Exploitation de la Mer); Laboratoire de Génétique et Pathologie des Mollusques Marins; Ronce Les Bains ; La Tremblade , France
| | | | | | | | | | | | | |
Collapse
|
65
|
Burge CA, Friedman CS, Getchell R, House M, Lafferty KD, Mydlarz LD, Prager KC, Sutherland KP, Renault T, Kiryu I, Vega-Thurber R. Complementary approaches to diagnosing marine diseases: a union of the modern and the classic. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150207. [PMID: 26880839 PMCID: PMC4760137 DOI: 10.1098/rstb.2015.0207] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2015] [Indexed: 01/01/2023] Open
Abstract
Linking marine epizootics to a specific aetiology is notoriously difficult. Recent diagnostic successes show that marine disease diagnosis requires both modern, cutting-edge technology (e.g. metagenomics, quantitative real-time PCR) and more classic methods (e.g. transect surveys, histopathology and cell culture). Here, we discuss how this combination of traditional and modern approaches is necessary for rapid and accurate identification of marine diseases, and emphasize how sole reliance on any one technology or technique may lead disease investigations astray. We present diagnostic approaches at different scales, from the macro (environment, community, population and organismal scales) to the micro (tissue, organ, cell and genomic scales). We use disease case studies from a broad range of taxa to illustrate diagnostic successes from combining traditional and modern diagnostic methods. Finally, we recognize the need for increased capacity of centralized databases, networks, data repositories and contingency plans for diagnosis and management of marine disease.
Collapse
Affiliation(s)
- Colleen A Burge
- Institute of Marine and Environmental Technology, University of Maryland Baltimore County, 701 E Pratt Street, Baltimore, MD 21202, USA
| | - Carolyn S Friedman
- School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, WA 98195, USA
| | - Rodman Getchell
- Department of Microbiology and Immunology, C4-177 Vet Med Center, College of Veterinary Medicine, Cornell University, 930 Campus Road, Ithaca, NY 14853, USA
| | - Marcia House
- Northwest Indian Fisheries Commission, 6730 Martin Way East, Olympia, WA 98516, USA
| | - Kevin D Lafferty
- US Geological Survey, Western Ecological Research Center, c/o Marine Science Institute, University of California, Santa Barbara, CA 93106, USA
| | - Laura D Mydlarz
- Department of Biology, University of Texas Arlington, 501 South Nedderman, Arlington, TX 76019, USA
| | - Katherine C Prager
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Tristan Renault
- Ifremer, Département Ressources Biologiques et Environnement, rue de l'Ile d'Yeu, 44311 Nantes Cedex 03, France
| | - Ikunari Kiryu
- National Research Institute of Aquaculture, Fisheries Research Agency, Mie 516-0193, Japan
| | | |
Collapse
|
66
|
López Sanmartín M, Power DM, de la Herrán R, Navas JI, Batista FM. Experimental infection of European flat oyster Ostrea edulis with ostreid herpesvirus 1 microvar (OsHV-1μvar): Mortality, viral load and detection of viral transcripts by in situ hybridization. Virus Res 2016; 217:55-62. [PMID: 26945849 DOI: 10.1016/j.virusres.2016.01.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 01/29/2016] [Indexed: 11/29/2022]
Abstract
Ostreid herpesvirus 1 (OsHV-1) infections have been reported in several bivalve species. Mortality of Pacific oyster Crassostrea gigas spat has increased considerably in Europe since 2008 linked to the spread of a variant of OsHV-1 called μvar. In the present study we demonstrated that O. edulis juveniles can be infected by OsHV-1μvar when administered as an intramuscular injection. Mortality in the oysters injected with OsHV-1μvar was first detected 4 days after injection and reached 25% mortality at day 10. Moreover, the high viral load observed and the detection of viral transcripts by in situ hybridization in several tissues of dying oysters suggested that OsHV-1μvar was the cause of mortality in the O. edulis juveniles. This is therefore the first study to provide evidence about the pathogenicity of OsHV-1μvar in a species that does not belong to the Crassostrea genus. Additionally, we present a novel method to detect OsHV-1 transcripts in infected individuals' using in situ hybridization.
Collapse
Affiliation(s)
- Monserrat López Sanmartín
- Instituto de Investigación y Formación Agraria y Pesquera (IFAPA), Centro Agua del Pino, Junta de Andalucía, Ctra. El Rompido-Punta Umbría, km 4, 21459 Cartaya, Spain.
| | - Deborah M Power
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | | | - José I Navas
- Instituto de Investigación y Formación Agraria y Pesquera (IFAPA), Centro Agua del Pino, Junta de Andalucía, Ctra. El Rompido-Punta Umbría, km 4, 21459 Cartaya, Spain
| | - Frederico M Batista
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Instituto Português do Mar e da Atmosfera, Divisão de Aquicultura e Valorização, Estação Experimental de Moluscicultura de Tavira, Av. 5 de Outubro, 8700-305 Olhão, Portugal
| |
Collapse
|
67
|
Detection and distribution of ostreid herpesvirus 1 in experimentally infected Pacific oyster spat. J Invertebr Pathol 2016; 133:59-65. [DOI: 10.1016/j.jip.2015.11.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/27/2015] [Accepted: 11/30/2015] [Indexed: 11/22/2022]
|
68
|
Azéma P, Travers MA, De Lorgeril J, Tourbiez D, Dégremont L. Can selection for resistance to OsHV-1 infection modify susceptibility to Vibrio aestuarianus infection in Crassostrea gigas? First insights from experimental challenges using primary and successive exposures. Vet Res 2015; 46:139. [PMID: 26646058 PMCID: PMC4673786 DOI: 10.1186/s13567-015-0282-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/13/2015] [Indexed: 12/17/2022] Open
Abstract
Since 2008, the emergent virus OsHV-1µvar has provoked massive mortality events in Crassostrea gigas spat and juveniles in France. Since 2012, mortality driven by the pathogenic bacteria Vibrio aestuarianus has stricken market-sized adults. A hypothesis to explain the sudden increase in mortality observed in France since 2012 is that selective pressure due to recurrent viral infections could have led to a higher susceptibility of adults to Vibrio infection. In our study, two OsHV-1-resistant lines (AS and BS) and their respective controls (AC and BC) were experimentally challenged in the laboratory to determine their level of susceptibility to V. aestuarianus infection. At the juvenile stage, the selected lines exhibited lower mortality (14 and 33%) than the control lines (71 and 80%), suggesting dual-resistance to OsHV-1 and V. aestuarianus in C. gigas. Interestingly, this pattern was not observed at the adult stage, where higher mortality was detected for AS (68%) and BC (62%) than AC (39%) and BS (49%). These results were confirmed by the analysis of the expression of 31 immune-related genes in unchallenged oysters. Differential gene expression discriminated oysters according to their susceptibility to infection at both the juvenile and adult stages, suggesting that resistance to V. aestuarianus infection resulted in complex interactions between the genotype, stage of development and immunity status. Finally, survivors of the V. aestuarianus challenge at the juvenile stage still exhibited significant mortality at the adult stage during a second and third V. aestuarianus challenge, indicating that these survivors were not genetically resistant.
Collapse
Affiliation(s)
- Patrick Azéma
- Ifremer, Laboratoire de Génétique et Pathologie des Mollusques Marins, Avenue Mus de Loup, 17390, La Tremblade, France.
| | - Marie-Agnès Travers
- Ifremer, Laboratoire de Génétique et Pathologie des Mollusques Marins, Avenue Mus de Loup, 17390, La Tremblade, France.
| | - Julien De Lorgeril
- Ifremer, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, 34095, Montpellier, France.
| | - Delphine Tourbiez
- Ifremer, Laboratoire de Génétique et Pathologie des Mollusques Marins, Avenue Mus de Loup, 17390, La Tremblade, France.
| | - Lionel Dégremont
- Ifremer, Laboratoire de Génétique et Pathologie des Mollusques Marins, Avenue Mus de Loup, 17390, La Tremblade, France.
| |
Collapse
|
69
|
Green TJ, Rolland JL, Vergnes A, Raftos D, Montagnani C. OsHV-1 countermeasures to the Pacific oyster's anti-viral response. FISH & SHELLFISH IMMUNOLOGY 2015; 47:435-443. [PMID: 26384844 DOI: 10.1016/j.fsi.2015.09.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/06/2015] [Accepted: 09/14/2015] [Indexed: 06/05/2023]
Abstract
The host-pathogen interactions between the Pacific oyster (Crassostrea gigas) and Ostreid herpesvirus type 1 (OsHV-1) are poorly characterised. Herpesviruses are a group of large, DNA viruses that are known to encode gene products that subvert their host's antiviral response. It is likely that OsHV-1 has also evolved similar strategies as its genome encodes genes with high homology to C. gigas inhibitors of apoptosis (IAPs) and an interferon-stimulated gene (termed CH25H). The first objective of this study was to simultaneously investigate the expression of C. gigas and OsHV-1 genes that share high sequence homology during an acute infection. Comparison of apoptosis-related genes revealed that components of the extrinsic apoptosis pathway (TNF) were induced in response to OsHV-1 infection, but we failed to observe evidence of apoptosis using a combination of biochemical and molecular assays. IAPs encoded by OsHV-1 were highly expressed during the acute stage of infection and may explain why we didn't observe evidence of apoptosis. However, C. gigas must have an alternative mechanism to apoptosis for clearing OsHV-1 from infected gill cells as we observed a reduction in viral DNA between 27 and 54 h post-infection. The reduction of viral DNA in C. gigas gill cells occurred after the up-regulation of interferon-stimulated genes (viperin, PKR, ADAR). In a second objective, we manipulated the host's anti-viral response by injecting C. gigas with a small dose of poly I:C at the time of OsHV-1 infection. This small dose of poly I:C was unable to induce transcription of known antiviral effectors (ISGs), but these oysters were still capable of inhibiting OsHV-1 replication. This result suggests dsRNA induces an anti-viral response that is additional to the IFN-like pathway.
Collapse
Affiliation(s)
- Timothy J Green
- Department of Biological Sciences, Macquarie University, NSW, 2109, Australia; Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW, 2088, Australia.
| | - Jean-Luc Rolland
- IFREMER, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095, Montpellier, France
| | - Agnes Vergnes
- IFREMER, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095, Montpellier, France
| | - David Raftos
- Department of Biological Sciences, Macquarie University, NSW, 2109, Australia; Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW, 2088, Australia
| | - Caroline Montagnani
- IFREMER, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095, Montpellier, France
| |
Collapse
|
70
|
Zhang G, Li L, Meng J, Qi H, Qu T, Xu F, Zhang L. Molecular Basis for Adaptation of Oysters to Stressful Marine Intertidal Environments. Annu Rev Anim Biosci 2015; 4:357-81. [PMID: 26515272 DOI: 10.1146/annurev-animal-022114-110903] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oysters that occupy estuarine and intertidal habitats have well-developed stress tolerance mechanisms to tolerate harsh and dynamically changing environments. In this review, we summarize common pathways and genomic features in oyster that are responsive to environmental stressors such as temperature, salinity, hypoxia, air exposure, pathogens, and anthropogenic pollutions. We first introduce the key genes involved in several pathways, which constitute the molecular basis for adaptation to stress. We use genome analysis to highlight the strong cellular homeostasis system, a unique adaptive characteristic of oysters. Next, we provide a global view of features of the oyster genome that contribute to stress adaptation, including oyster-specific gene expansion, highly inducible expression, and functional divergence. Finally, we review the consequences of interactions between oysters and the environment from ecological and evolutionary perspectives by discussing mass mortality and adaptive divergence among populations and related species of the genus Crassostrea. We conclude with prospects for future study.
Collapse
Affiliation(s)
- Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, 266071 China;
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, 266071 China;
| | - Jie Meng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, 266071 China;
| | - Haigang Qi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, 266071 China;
| | - Tao Qu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, 266071 China;
| | - Fei Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, 266071 China;
| | - Linlin Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, 266071 China;
| |
Collapse
|
71
|
He Y, Jouaux A, Ford SE, Lelong C, Sourdaine P, Mathieu M, Guo X. Transcriptome analysis reveals strong and complex antiviral response in a mollusc. FISH & SHELLFISH IMMUNOLOGY 2015; 46:131-144. [PMID: 26004318 DOI: 10.1016/j.fsi.2015.05.023] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 05/10/2015] [Accepted: 05/12/2015] [Indexed: 06/04/2023]
Abstract
Viruses are highly abundant in the oceans, and how filter-feeding molluscs without adaptive immunity defend themselves against viruses is not well understood. We studied the response of a mollusc Crassostrea gigas to Ostreid herpesvirus 1 µVar (OsHV-1μVar) infections using transcriptome sequencing. OsHV-1μVar can replicate extremely rapidly after challenge of C. gigas as evidenced by explosive viral transcription and DNA synthesis, which peaked at 24 and 48 h post-inoculation, respectively, accompanied by heavy oyster mortalities. At 120 h post-injection, however, viral gene transcription and DNA load, and oyster mortality, were greatly reduced indicating an end of active infections and effective control of viral replication in surviving oysters. Transcriptome analysis of the host revealed strong and complex responses involving the activation of all major innate immune pathways that are equipped with expanded and often novel receptors and adaptors. Novel Toll-like receptor (TLR) and MyD88-like genes lacking essential domains were highly up-regulated in the oyster, possibly interfering with TLR signal transduction. RIG-1/MDA5 receptors for viral RNA, interferon-regulatory factors, tissue necrosis factors and interleukin-17 were highly activated and likely central to the oyster's antiviral response. Genes related to anti-apoptosis, oxidation, RNA and protein destruction were also highly up-regulated, while genes related to anti-oxidation were down-regulated. The oxidative burst induced by the up-regulation of oxidases and severe down-regulation of anti-oxidant genes may be important for the destruction of viral components, but may also exacerbate oyster mortality. This study provides unprecedented insights into antiviral response in a mollusc. The mobilization and complex regulation of expanded innate immune-gene families highlights the oyster genome's adaptation to a virus-rich marine environment.
Collapse
Affiliation(s)
- Yan He
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, China; Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, Port Norris, NJ 08345, USA
| | - Aude Jouaux
- UMR BOREA, "Biologie des Organismes et Ecosystèmes Aquatiques", MNHN, UPMC, UCBN, CNRS-7208, IRD, Université de Caen Basse-Normandie, Esplanade de la Paix, 14032 CAEN, France
| | - Susan E Ford
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, Port Norris, NJ 08345, USA
| | - Christophe Lelong
- UMR BOREA, "Biologie des Organismes et Ecosystèmes Aquatiques", MNHN, UPMC, UCBN, CNRS-7208, IRD, Université de Caen Basse-Normandie, Esplanade de la Paix, 14032 CAEN, France
| | - Pascal Sourdaine
- UMR BOREA, "Biologie des Organismes et Ecosystèmes Aquatiques", MNHN, UPMC, UCBN, CNRS-7208, IRD, Université de Caen Basse-Normandie, Esplanade de la Paix, 14032 CAEN, France
| | - Michel Mathieu
- UMR BOREA, "Biologie des Organismes et Ecosystèmes Aquatiques", MNHN, UPMC, UCBN, CNRS-7208, IRD, Université de Caen Basse-Normandie, Esplanade de la Paix, 14032 CAEN, France
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, Port Norris, NJ 08345, USA.
| |
Collapse
|
72
|
Barbosa Solomieu V, Renault T, Travers MA. Mass mortality in bivalves and the intricate case of the Pacific oyster, Crassostrea gigas. J Invertebr Pathol 2015. [PMID: 26210497 DOI: 10.1016/j.jip.2015.07.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Massive mortality outbreaks in cultured bivalves have been reported worldwide and they have been associated with infection by a range of viral and bacterial pathogens. Due to their economic and social impact, these episodes constitute a particularly sensitive issue in Pacific oyster (Crassostrea gigas) production. Since 2008, mortality outbreaks affecting C. gigas have increased in terms of intensity and geographic distribution. Epidemiologic surveys have lead to the incrimination of pathogens, specifically OsHV-1 and bacteria of the Vibrio genus, in particular Vibrio aestuarianus. Pathogen diversity may partially account for the variability in the outcome of infections. Host factors (age, reproductive status...) including their genetic background that has an impact on host susceptibility toward infection, also play a role herein. Finally, environmental factors have significant effects on the pathogens themselves, on the host and on the host-pathogen interaction. Further knowledge on pathogen diversity, classification, and spread, may contribute toward a better understanding of this issue and potential ways to mitigate the impact of these outbreaks.
Collapse
Affiliation(s)
- Valérie Barbosa Solomieu
- Université de Bretagne Occidentale, Direction Europe et International, Présidence, 3 rue des Archives, CS93837, 29238 Brest CEDEX 3, France
| | - Tristan Renault
- Ifremer, Unité Santé Génétique Microbiologie des Mollusques (SG2M), Laboratoire de Génétique et Pathologie des Mollusques Marins (LGPMM), 17390 La Tremblade, France.
| | - Marie-Agnès Travers
- Ifremer, Unité Santé Génétique Microbiologie des Mollusques (SG2M), Laboratoire de Génétique et Pathologie des Mollusques Marins (LGPMM), 17390 La Tremblade, France
| |
Collapse
|
73
|
Petton B, Bruto M, James A, Labreuche Y, Alunno-Bruscia M, Le Roux F. Crassostrea gigas mortality in France: the usual suspect, a herpes virus, may not be the killer in this polymicrobial opportunistic disease. Front Microbiol 2015. [PMID: 26217318 PMCID: PMC4491618 DOI: 10.3389/fmicb.2015.00686] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Successive disease outbreaks in oyster (Crassostrea gigas) beds in France have resulted in dramatic losses in production, and subsequent decline in the oyster-farming industry. Deaths of juvenile oysters have been associated with the presence of a herpes virus (OsHV-1 μvar) and bacterial populations of the genus Vibrio. Although the pathogenicity of OsHV-1 μvar, as well as several strains of Vibrio has been demonstrated by experimental infections, our understanding of the complexity of infections occurring in the natural environment remains limited. In the present study, we use specific-pathogen-free (SPF) oysters infected in an estuarine environment to study the diversity and dynamics of cultured microbial populations during disease expression. We observe that rapid Vibrio colonization followed by viral replication precedes oyster death. No correlation was found between the vibrio concentration and viral load in co-infected animals. We show that the quantity of viral DNA is a predictor of mortality, however, in the absence of bacteria, a high load of herpes virus is not sufficient to induce the full expression of the disease. In addition, we demonstrate that juvenile mortalities can occur in the absence of herpes virus, indicating that the herpes virus appears neither essential nor sufficient to cause juvenile deaths; whereas bacteria are necessary for the disease. Finally, we demonstrate that oysters are a reservoir of putative pathogens, and that the geographic origin, age, and cultivation method of oysters influence disease expression.
Collapse
Affiliation(s)
- Bruno Petton
- LEMAR UMR 6539, Ifremer Argenton-en-Landunvez, France
| | - Maxime Bruto
- Unité Physiologie Fonctionnelle des Organismes Marins, Ifremer Plouzané, France ; CNRS, Equipe Génomique des Vibrios, LBI2M, UPMC Paris 06, UMR 8227, Integrative Biology of Marine Models, Sorbonne Universités Roscoff, France
| | - Adèle James
- Unité Physiologie Fonctionnelle des Organismes Marins, Ifremer Plouzané, France ; CNRS, Equipe Génomique des Vibrios, LBI2M, UPMC Paris 06, UMR 8227, Integrative Biology of Marine Models, Sorbonne Universités Roscoff, France
| | - Yannick Labreuche
- Unité Physiologie Fonctionnelle des Organismes Marins, Ifremer Plouzané, France ; CNRS, Equipe Génomique des Vibrios, LBI2M, UPMC Paris 06, UMR 8227, Integrative Biology of Marine Models, Sorbonne Universités Roscoff, France
| | | | - Frédérique Le Roux
- Unité Physiologie Fonctionnelle des Organismes Marins, Ifremer Plouzané, France ; CNRS, Equipe Génomique des Vibrios, LBI2M, UPMC Paris 06, UMR 8227, Integrative Biology of Marine Models, Sorbonne Universités Roscoff, France
| |
Collapse
|
74
|
Moreau P, Faury N, Burgeot T, Renault T. Pesticides and Ostreid Herpesvirus 1 Infection in the Pacific Oyster, Crassostrea gigas. PLoS One 2015; 10:e0130628. [PMID: 26107171 PMCID: PMC4479877 DOI: 10.1371/journal.pone.0130628] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/21/2015] [Indexed: 12/25/2022] Open
Abstract
Since 2008, mass mortality outbreaks have been reported in all French regions producing Pacific oysters, and in several Member States of the European Union. These mass mortality events of Pacific oysters are related to OsHV-1 infection. They occur during spring and summer periods leaving suspect the quality of the marine environment and the role of seasonal use of pesticides associated with the arrival of freshwater in oyster rearing areas. Pesticides have been also detected in French coastal waters, especially in areas of oyster production. Using PMA real-time PCR we showed that a mixture of 14 pesticides has no effect on the integrity of virus capsids from viral suspension in the conditions tested. A contact of oysters with this pesticide mixture was related to higher mortality rates among experimentally infected animals in comparison with control ones (no previous pesticide exposure before experimental infection). We therefore suggest that pesticides at realistic concentration can exert adverse effects on Pacific oysters and causes an increased susceptibility to the viral infection in experimental conditions.
Collapse
Affiliation(s)
- Pierrick Moreau
- Ifremer (Institut Français de Recherche pour l’Exploitation de la Mer), Unité Santé, Génétique et Microbiologie des Mollusques, Laboratoire de Génétique et Pathologie des Mollusques Marins, Ronce les Bains, 17390, La Tremblade, France
- Unité des Hépacivirus et Immunité Innée, Institut Pasteur, Paris, France
| | - Nicole Faury
- Ifremer (Institut Français de Recherche pour l’Exploitation de la Mer), Unité Santé, Génétique et Microbiologie des Mollusques, Laboratoire de Génétique et Pathologie des Mollusques Marins, Ronce les Bains, 17390, La Tremblade, France
| | - Thierry Burgeot
- Ifremer (Institut Français de Recherche pour l’Exploitation de la Mer), Ifremer Research Unit of Biogeochemistry and Ecotoxicology, rue de l’Ile d’Yeu, BP, 21105, 44311 Nantes, France
| | - Tristan Renault
- Ifremer (Institut Français de Recherche pour l’Exploitation de la Mer), Unité Santé, Génétique et Microbiologie des Mollusques, Laboratoire de Génétique et Pathologie des Mollusques Marins, Ronce les Bains, 17390, La Tremblade, France
- * E-mail:
| |
Collapse
|
75
|
Dégremont L, Lamy JB, Pépin JF, Travers MA, Renault T. New Insight for the Genetic Evaluation of Resistance to Ostreid Herpesvirus Infection, a Worldwide Disease, in Crassostrea gigas. PLoS One 2015; 10:e0127917. [PMID: 26039375 PMCID: PMC4454582 DOI: 10.1371/journal.pone.0127917] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 04/20/2015] [Indexed: 11/19/2022] Open
Abstract
The Pacific oyster, Crassostrea gigas, is the most important commercial oyster species cultivated in the world. Meanwhile, the ostreid herpesvirus 1 (OsHV-1) is one of the major pathogens affecting the Pacific oyster, and numerous mortality outbreaks related to this pathogen are now reported worldwide. To assess the genetic basis of resistance to OsHV-1 infection in spat C. gigas and to facilitate breeding programs for such a trait, if any exist, we compared the mortality of half- and full-sib families using three field methods and a controlled challenge by OsHV-1 in the laboratory. In the field, three methods were tested: (A) one family per bag; (B) one family per small soft mesh bag and all families inside one bag; (C) same as the previous methods but the oysters were individually labelled and then mixed. The mean mortality ranged from 80 to 82% and was related to OsHV-1 based on viral DNA detection. The narrow-sense heritability for mortality, and thus OsHV-1 resistance, ranged from 0.49 to 0.60. The high positive genetic correlations across the field methods suggested no genotype by environment interaction. Ideally, selective breeding could use method B, which is less time- and space-consuming. The narrow sense heritability for mortality under OsHV-1 challenge was 0.61, and genetic correlation between the field and the laboratory was ranged from 0.68 to 0.75, suggesting a weak genotype by environment interaction. Thus, most of families showing the highest survival performed well in field and laboratory conditions, and a similar trend was also observed for families with the lowest survival. In conclusion, this is the first study demonstrating a large additive genetic variation for resistance to OsHV-1 infection in C. gigas, regardless of the methods used, which should help in selective breeding to improve resistance to viral infection in C. gigas.
Collapse
Affiliation(s)
- Lionel Dégremont
- Institut Français de Recherche pour l’Exploitation de la Mer, Laboratoire de Génétique et de Pathologie des Mollusques Marins, Avenue Mus de Loup, La Tremblade, France
| | - Jean-Baptiste Lamy
- Institut Français de Recherche pour l’Exploitation de la Mer, Laboratoire de Génétique et de Pathologie des Mollusques Marins, Avenue Mus de Loup, La Tremblade, France
| | - Jean-François Pépin
- Institut Français de Recherche pour l’Exploitation de la Mer, Laboratoire Environnement Ressources des Pertuis Charentais, Avenue Mus de Loup, La Tremblade, France
| | - Marie-Agnès Travers
- Institut Français de Recherche pour l’Exploitation de la Mer, Laboratoire de Génétique et de Pathologie des Mollusques Marins, Avenue Mus de Loup, La Tremblade, France
| | - Tristan Renault
- Institut Français de Recherche pour l’Exploitation de la Mer, Laboratoire de Génétique et de Pathologie des Mollusques Marins, Avenue Mus de Loup, La Tremblade, France
| |
Collapse
|
76
|
|
77
|
Tan TLS, Paul-Pont I, Evans OM, Watterson D, Young P, Whittington R, Fougerouse A, Bichet H, Barnes AC, Dang C. Resistance of Black-lip learl oyster, Pinctada margaritifera, to infection by Ostreid herpes virus 1μvar under experimental challenge may be mediated by humoral antiviral activity. FISH & SHELLFISH IMMUNOLOGY 2015; 44:232-240. [PMID: 25712854 DOI: 10.1016/j.fsi.2015.02.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 01/19/2015] [Accepted: 02/14/2015] [Indexed: 06/04/2023]
Abstract
Ostreid herpesvirus 1 (OsHV-1) has induced mass mortalities of the larvae and spat of Pacific oysters, Crassostrea gigas, in Europe and, more recently, in Oceania. The production of pearls from the Black-lip pearl oyster, Pinctada margaritifera, represents the second largest source of income to the economies of French Polynesia and many Pacific Island nations that could be severely compromised in the event of a disease outbreak. Coincidentally with the occurrence of OsHV-1 in the southern hemisphere, C. gigas imported from New Zealand and France into French Polynesia tested positive for OsHV-1. Although interspecies viral transmission has been demonstrated, the transmissibility of OsHV-1 to P. margaritifera is unknown. We investigated the susceptibility of juvenile P. margaritifera to OsHV-1 μvar that were injected with tissue homogenates sourced from either naturally infected or healthy C. gigas. The infection challenge lasted 14 days post-injection (dpi) with sampling at 0, 1, 2, 3, 5, 7 and 14 days. Mortality rate, viral prevalence, and cellular immune responses in experimental animals were determined. Tissues were screened by light microscopy and TEM. Pacific oysters were also challenged and used as a positive control to validate the efficiency of OsHV-1 μvar infection. Viral particles and features such as marginated chromatin and highly electron dense nuclei were observed in C. gigas but not in P. margaritifera. Mortality rates and hemocyte immune parameters, including phagocytosis and respiratory burst, were similar between challenged and control P. margaritifera. Herpesvirus-inhibiting activity was demonstrated in the acellular fraction of the hemolymph from P. margaritifera, suggesting that the humoral immunity is critical in the defence against herpesvirus in pearl oysters. Overall, these results suggest that under the conditions of the experimental challenge, P. margaritifera was not sensitive to OsHV-1 μvar and was not an effective host/carrier. The nature and spectrum of activity of the humoral antiviral activity is worthy of further investigation.
Collapse
Affiliation(s)
- Terence L S Tan
- The University of Queensland, School of Biological Sciences and Centre for Marine Science, Brisbane, Queensland 4072, Australia
| | - Ika Paul-Pont
- The University of Sydney, Faculty of Veterinary Science, Camden, New South Wales 2570, Australia
| | - Olivia M Evans
- The University of Sydney, Faculty of Veterinary Science, Camden, New South Wales 2570, Australia
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Paul Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Richard Whittington
- The University of Sydney, Faculty of Veterinary Science, Camden, New South Wales 2570, Australia
| | | | - Hervé Bichet
- Direction des Ressources Marines, Papeete, French Polynesia
| | - Andrew C Barnes
- The University of Queensland, School of Biological Sciences and Centre for Marine Science, Brisbane, Queensland 4072, Australia.
| | - Cécile Dang
- The University of Queensland, School of Biological Sciences and Centre for Marine Science, Brisbane, Queensland 4072, Australia
| |
Collapse
|
78
|
Paul-Pont I, Evans O, Dhand NK, Whittington RJ. Experimental infections of Pacific oyster Crassostrea gigas using the Australian ostreid herpesvirus-1 (OsHV-1) µVar strain. DISEASES OF AQUATIC ORGANISMS 2015; 113:137-147. [PMID: 25751856 DOI: 10.3354/dao02826] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In Australia, the spread of the ostreid herpesvirus-1 microvariant (OsHV-1 µVar) threatens the Pacific oyster industry. There is an urgent need to develop an experimental infection model in order to study the pathogenesis of the virus under controlled laboratory conditions. The present study constitutes the first attempt to use archived frozen oysters as a source of inoculum, based on the Australian OsHV-1 µVar strain. Experiments were conducted to test (1) virus infectivity, (2) the dose-response relationship for OsHV-1, and (3) the best conditions in which to store infective viral inoculum. Intramuscular injection of a viral inoculum consistently led to an onset of mortality 48 h post-injection and a final cumulative mortality exceeding 90%, in association with high viral loads (1 × 105 to 3 × 107 copies of virus mg-1) in dead individuals. For the first time, an infective inoculum was produced from frozen oysters (tissues stored at -80°C for 6 mo). Storage of purified viral inoculum at +4°C for 3 mo provided similar results to use of fresh inoculum, whereas storage at -20°C, -80°C and room temperature was detrimental to infectivity. A dose-response relationship for OsHV-1 was identified but further research is recommended to determine the most appropriate viral concentration for development of infection models that would be used for different purposes. Overall, this work highlights the best practices and potential issues that may occur in the development of a reproducible and transferable infection model for studying the pathogenicity of the Australian OsHV-1 strain in Crassostrea gigas under experimental conditions.
Collapse
Affiliation(s)
- Ika Paul-Pont
- Faculty of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden, NSW 2570, Australia
| | | | | | | |
Collapse
|
79
|
Evans O, Paul-Pont I, Hick P, Whittington R. A simple centrifugation method for improving the detection of Ostreid herpesvirus-1 (OsHV-1) in natural seawater samples with an assessment of the potential for particulate attachment. J Virol Methods 2014; 210:59-66. [DOI: 10.1016/j.jviromet.2014.09.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 09/20/2014] [Accepted: 09/24/2014] [Indexed: 10/24/2022]
|
80
|
Development of an in situ hybridization assay for the detection of ostreid herpesvirus type 1 mRNAs in the Pacific oyster, Crassostrea gigas. J Virol Methods 2014; 211:43-50. [PMID: 25455903 DOI: 10.1016/j.jviromet.2014.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 10/10/2014] [Accepted: 10/14/2014] [Indexed: 11/21/2022]
Abstract
An in situ hybridization protocol for detecting mRNAs of ostreid herpesvirus type 1 (OsHV-1) which infects Pacific oysters, Crassostrea gigas, was developed. Three RNA probes were synthesized by cloning three partial OsHV-1 genes into plasmids using three specific primer pairs, and performing a transcription in the presence of digoxigenin dUTP. The RNA probes were able to detect the virus mRNAs in paraffin sections of experimentally infected oysters 26 h post-injection. The in situ hybridization showed that the OsHV-1 mRNAs were mainly present in connective tissues in gills, mantle, adductor muscle, digestive gland and gonads. DNA detection by in situ hybridization using a DNA probe and viral DNA quantitation by real-time PCR were also performed and results were compared with those obtained using RNA probes.
Collapse
|
81
|
Segarra A, Baillon L, Tourbiez D, Benabdelmouna A, Faury N, Bourgougnon N, Renault T. Ostreid herpesvirus type 1 replication and host response in adult Pacific oysters, Crassostrea gigas. Vet Res 2014; 45:103. [PMID: 25294338 PMCID: PMC4198667 DOI: 10.1186/s13567-014-0103-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 09/24/2014] [Indexed: 11/10/2022] Open
Abstract
Since 2008, massive mortality outbreaks associated with OsHV-1 detection have been reported in Crassostrea gigas spat and juveniles in several countries. Nevertheless, adult oysters do not demonstrate mortality in the field related to OsHV-1 detection and were thus assumed to be more resistant to viral infection. Determining how virus and adult oyster interact is a major goal in understanding why mortality events are not reported among adult Pacific oysters. Dual transcriptomics of virus-host interactions were explored by real-time PCR in adult oysters after a virus injection. Thirty-nine viral genes and five host genes including MyD88, IFI44, IkB2, IAP and Gly were measured at 0.5, 10, 26, 72 and 144 hours post infection (hpi). No viral RNA among the 39 genes was detected at 144 hpi suggesting the adult oysters are able to inhibit viral replication. Moreover, the IAP gene (oyster gene) shows significant up-regulation in infected adults compared to control adults. This result suggests that over-expression of IAP could be a reaction to OsHV-1 infection, which may induce the apoptotic process. Apoptosis could be a main mechanism involved in disease resistance in adults. Antiviral activity of haemolymph against herpes simplex virus (HSV-1) was not significantly different between infected adults versus control.
Collapse
Affiliation(s)
- Amélie Segarra
- Ifremer (Institut Français de Recherche pour l'Exploitation de la Mer), Unité Santé Génétique et Microbiologie des Mollusques (SG2M), Laboratoire de Génétique et Pathologie des Mollusques Marins (LGPMM), Avenue de Mus de Loup, 17390, La Tremblade, France.
| | - Laury Baillon
- Ifremer (Institut Français de Recherche pour l'Exploitation de la Mer), Unité Santé Génétique et Microbiologie des Mollusques (SG2M), Laboratoire de Génétique et Pathologie des Mollusques Marins (LGPMM), Avenue de Mus de Loup, 17390, La Tremblade, France.
| | - Delphine Tourbiez
- Ifremer (Institut Français de Recherche pour l'Exploitation de la Mer), Unité Santé Génétique et Microbiologie des Mollusques (SG2M), Laboratoire de Génétique et Pathologie des Mollusques Marins (LGPMM), Avenue de Mus de Loup, 17390, La Tremblade, France.
| | - Abdellah Benabdelmouna
- Ifremer (Institut Français de Recherche pour l'Exploitation de la Mer), Unité Santé Génétique et Microbiologie des Mollusques (SG2M), Laboratoire de Génétique et Pathologie des Mollusques Marins (LGPMM), Avenue de Mus de Loup, 17390, La Tremblade, France.
| | - Nicole Faury
- Ifremer (Institut Français de Recherche pour l'Exploitation de la Mer), Unité Santé Génétique et Microbiologie des Mollusques (SG2M), Laboratoire de Génétique et Pathologie des Mollusques Marins (LGPMM), Avenue de Mus de Loup, 17390, La Tremblade, France.
| | - Nathalie Bourgougnon
- Université de Bretagne Sud (UBS), Centre d'Enseignement et de Recherche Yves Coppens, Laboratoire de Biotechnologie et Chimie Marines EA3884 (LBCM), Université Européenne de Bretagne (UEB), Campus de Tohannic, BP573, 56017, Vannes Cedex, France.
| | - Tristan Renault
- Ifremer (Institut Français de Recherche pour l'Exploitation de la Mer), Unité Santé Génétique et Microbiologie des Mollusques (SG2M), Laboratoire de Génétique et Pathologie des Mollusques Marins (LGPMM), Avenue de Mus de Loup, 17390, La Tremblade, France.
| |
Collapse
|
82
|
Corporeau C, Tamayo D, Pernet F, Quéré C, Madec S. Proteomic signatures of the oyster metabolic response to herpesvirus OsHV-1 μVar infection. J Proteomics 2014; 109:176-87. [DOI: 10.1016/j.jprot.2014.06.030] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/18/2014] [Accepted: 06/28/2014] [Indexed: 10/25/2022]
|
83
|
Normand J, Blin JL, Jouaux A. Rearing practices identified as risk factors for ostreid herpesvirus 1 (OsHV-1) infection in Pacific oyster Crassostrea gigas spat. DISEASES OF AQUATIC ORGANISMS 2014; 110:201-211. [PMID: 25114044 DOI: 10.3354/dao02756] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Early detection of Pacific oyster spat infected with ostreid herpesvirus 1 (OsHV-1) could prevent introduction of OsHV-1-infected individuals into farming areas or onshore rearing facilities, thus reducing the risk of infection of naïve oysters in such production systems. Experiments were conducted on several hundred oyster spat provided by producers in order to examine whether early rearing practices could be considered as potential risk factors for (1) OsHV-1 infection as detected by molecular methods and (2) spat mortality experimentally induced through thermal challenge. Spat groups collected on oyster beds and hatchery spat reared in growout areas during summer exhibited higher viral DNA contamination and mortalities during the trial than spat kept in onshore rearing facilities. Quantification of viral DNA before and during the trial showed that infection prevalence and intensity changed over time and revealed latent infection initially unsuspected in 3 of 10 groups. Thermal challenge induced a clear increase in the probability of detecting infected individuals, particularly for groups exhibiting significant prevalence of OsHV-1-contaminated spat prior to the challenge. The use of detection methods are discussed in relation to early rearing practices and disease control strategies.
Collapse
Affiliation(s)
- Julien Normand
- Centre de Référence sur l'Huître, Université de Caen Basse Normandie, Caen, France
| | | | | |
Collapse
|
84
|
Alternative splicing and immune response of Crassostrea gigas tumor necrosis factor receptor-associated factor 3. Mol Biol Rep 2014; 41:6481-91. [DOI: 10.1007/s11033-014-3531-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 06/19/2014] [Indexed: 11/26/2022]
|
85
|
Segarra A, Mauduit F, Faury N, Trancart S, Dégremont L, Tourbiez D, Haffner P, Barbosa-Solomieu V, Pépin JF, Travers MA, Renault T. Dual transcriptomics of virus-host interactions: comparing two Pacific oyster families presenting contrasted susceptibility to ostreid herpesvirus 1. BMC Genomics 2014; 15:580. [PMID: 25012085 PMCID: PMC4111845 DOI: 10.1186/1471-2164-15-580] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 07/01/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Massive mortality outbreaks affecting Pacific oyster (Crassostrea gigas) spat in various countries have been associated with the detection of a herpesvirus called ostreid herpesvirus type 1 (OsHV-1). However, few studies have been performed to understand and follow viral gene expression, as it has been done in vertebrate herpesviruses. In this work, experimental infection trials of C. gigas spat with OsHV-1 were conducted in order to test the susceptibility of several bi-parental oyster families to this virus and to analyze host-pathogen interactions using in vivo transcriptomic approaches. RESULTS The divergent response of these oyster families in terms of mortality confirmed that susceptibility to OsHV-1 infection has a significant genetic component. Two families with contrasted survival rates were selected. A total of 39 viral genes and five host genes were monitored by real-time PCR. Initial results provided information on (i) the virus cycle of OsHV-1 based on the kinetics of viral DNA replication and transcription and (ii) host defense mechanisms against the virus. CONCLUSIONS In the two selected families, the detected amounts of viral DNA and RNA were significantly different. This result suggests that Pacific oysters are genetically diverse in terms of their susceptibility to OsHV-1 infection. This contrasted susceptibility was associated with dissimilar host gene expression profiles. Moreover, the present study showed a positive correlation between viral DNA amounts and the level of expression of selected oyster genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Tristan Renault
- Ifremer (Institut Français de Recherche pour l'Exploitation de la Mer), Unité Santé Génétique et Microbiologie des Mollusques (SG2M), Laboratoire de Génétique et Pathologie des Mollusques Marins (LGPMM), Avenue de Mus de Loup, 17390 La Tremblade, France.
| |
Collapse
|
86
|
Keeling SE, Brosnahan CL, Williams R, Gias E, Hannah M, Bueno R, McDonald WL, Johnston C. New Zealand juvenile oyster mortality associated with ostreid herpesvirus 1-an opportunistic longitudinal study. DISEASES OF AQUATIC ORGANISMS 2014; 109:231-239. [PMID: 24991849 DOI: 10.3354/dao02735] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
During the 2010-11 summer outbreak of ostreid herpesvirus 1 (OsHV-1) in New Zealand, an opportunistic longitudinal field study was conducted. OsHV-1 PCR-negative oyster spat (Crassostrea gigas) were relocated to an OsHV-1 PCR-positive area of the North Island of New Zealand that was experiencing juvenile oyster mortalities. Over a period of 13 d, spat were monitored for mortality, sampled for histopathology, and tested for the presence of OsHV-1 using real time PCR and Vibrio culture. Histopathology showed some evidence of tissue pathology; however, no consistent progressive pathology was apparent. Field mortalities were evident from Day 6 on. After 5 and 7 d of exposure, 83 and 100% of spat, respectively, tested positive for the virus by real time PCR. Vibrio species recovered during the longitudinal study included V. splendidus and V. aestuarianus. This study offers insight into the rapidity of onset and virulence of the virus in naïve oyster spat in New Zealand waters.
Collapse
Affiliation(s)
- S E Keeling
- Animal Health Laboratory, Investigation and Diagnostic Centre-Wallaceville, Ministry for Primary Industries, 66 Ward St, PO Box 40742, Upper Hutt 5018, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Ostreid herpesvirus 1 infection among Pacific oyster (Crassostrea gigas) Spat: relevance of water temperature to virus replication and circulation prior to the onset of mortality. Appl Environ Microbiol 2014; 80:5419-26. [PMID: 24973071 DOI: 10.1128/aem.00484-14] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A number of bivalve species worldwide, including the Pacific oyster, Crassostrea gigas, have been affected by mass mortality events associated with herpesviruses, resulting in significant losses. A particular herpesvirus was purified from naturally infected larval Pacific oysters, and its genome was completely sequenced. This virus has been classified as Ostreid herpesvirus 1 (OsHV-1) within the family Malacoherpesviridae. Since 2008, mass mortality outbreaks among C. gigas in Europe have been related to the detection of a variant of OsHV-1 called μVar. Additional data are necessary to better describe mortality events in relation to environmental-parameter fluctuations and OsHV-1 detection. For this purpose, a single batch of Pacific oyster spat was deployed in 4 different locations in the Marennes-Oleron area (France): an oyster pond ("claire"), a shellfish nursery, and two locations in the field. Mortality rates were recorded based on regular observation, and samples were collected to search for and quantify OsHV-1 DNA by real-time PCR. Although similar massive mortality rates were reported at the 4 sites, mortality was detected earlier in the pond and in the nursery than at both field sites. This difference may be related to earlier increases in water temperature. Mass mortality was observed among oysters a few days after increases in the number of PCR-positive oysters and viral-DNA amounts were recorded. An initial increment in the number of PCR-positive oysters was reported at both field sites during the survey in the absence of significant mortality. During this period, the water temperature was below 16°C.
Collapse
|
88
|
Contrasted survival under field or controlled conditions displays associations between mRNA levels of candidate genes and response to OsHV-1 infection in the Pacific oyster Crassostrea gigas. Mar Genomics 2014; 15:95-102. [DOI: 10.1016/j.margen.2014.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 02/13/2014] [Accepted: 02/15/2014] [Indexed: 11/22/2022]
|
89
|
Segarra A, Faury N, Pépin JF, Renault T. Transcriptomic study of 39 ostreid herpesvirus 1 genes during an experimental infection. J Invertebr Pathol 2014; 119:5-11. [PMID: 24681357 DOI: 10.1016/j.jip.2014.03.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 12/29/2022]
Abstract
Massive mortality outbreaks have been reported in France since 2008 among Pacific oysters, Crassostrea gigas, with the detection of a particular OsHV-1 variant called μVar. Virus infection can be induced in healthy spat in experimental conditions allowing to better understand the disease process, including viral gene expression. Although gene expression of other herpesviruses has been widely studied, we provide the first study following viral gene expression of OsHV-1 over time. In this context, an in vivo transcriptomic study targeting 39 OsHV-1 genes was carried out during an experimental infection of Pacific oyster spat. For the first time, several OsHV-1 mRNAs were detected by real-time PCR at 0 h, 2 h, 4 h, 18 h, 26 h and 42 h post-injection. Several transcripts were detected at 2h post-infection and at 18 h post-infection for all selected ORFs. Quantification of virus gene expression at different times of infection was also carried out using an oyster housekeeping gene, Elongation factor. Developing an OsHV-1-specific reverse transcriptase real time PCR targeting 39 viral gene appears a new tool in terms of diagnosis and can be used to complement viral DNA detection in order to monitor viral replication.
Collapse
Affiliation(s)
- Amélie Segarra
- Ifremer (Institut Français de Recherche pour l'Exploitation de la Mer), Unité Santé, Génétique et Microbiologie des Mollusques (SG2M), Laboratoire de Génétique et Pathologie des Mollusques Marins (LGPMM), Avenue de Mus de Loup, 17390 La Tremblade, France
| | - Nicole Faury
- Ifremer (Institut Français de Recherche pour l'Exploitation de la Mer), Unité Santé, Génétique et Microbiologie des Mollusques (SG2M), Laboratoire de Génétique et Pathologie des Mollusques Marins (LGPMM), Avenue de Mus de Loup, 17390 La Tremblade, France
| | - Jean-François Pépin
- Ifremer, Laboratoire Environnement Ressources des Pertuis Charentais (LERPC), Avenue de Mus de Loup, 17390 La Tremblade, France
| | - Tristan Renault
- Ifremer (Institut Français de Recherche pour l'Exploitation de la Mer), Unité Santé, Génétique et Microbiologie des Mollusques (SG2M), Laboratoire de Génétique et Pathologie des Mollusques Marins (LGPMM), Avenue de Mus de Loup, 17390 La Tremblade, France.
| |
Collapse
|
90
|
Pernet F, Lagarde F, Jeannée N, Daigle G, Barret J, Le Gall P, Quere C, D’orbcastel ER. Spatial and temporal dynamics of mass mortalities in oysters is influenced by energetic reserves and food quality. PLoS One 2014; 9:e88469. [PMID: 24551106 PMCID: PMC3925110 DOI: 10.1371/journal.pone.0088469] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 01/08/2014] [Indexed: 11/18/2022] Open
Abstract
Although spatial studies of diseases on land have a long history, far fewer have been made on aquatic diseases. Here, we present the first large-scale, high-resolution spatial and temporal representation of a mass mortality phenomenon cause by the Ostreid herpesvirus (OsHV-1) that has affected oysters (Crassostrea gigas) every year since 2008, in relation to their energetic reserves and the quality of their food. Disease mortality was investigated in healthy oysters deployed at 106 locations in the Thau Mediterranean lagoon before the start of the epizootic in spring 2011. We found that disease mortality of oysters showed strong spatial dependence clearly reflecting the epizootic process of local transmission. Disease initiated inside oyster farms spread rapidly beyond these areas. Local differences in energetic condition of oysters, partly driven by variation in food quality, played a significant role in the spatial and temporal dynamics of disease mortality. In particular, the relative contribution of diatoms to the diet of oysters was positively correlated with their energetic reserves, which in turn decreased the risk of disease mortality.
Collapse
Affiliation(s)
- Fabrice Pernet
- Ifremer, Laboratoire Environnement Ressource du Languedoc Roussillon, Bd Jean Monnet, Sète, France
- UMR LEMAR Ifremer/CNRS/UBO/IRD, Technopole de Brest-Iroise, Plouzané, France
- * E-mail:
| | - Franck Lagarde
- Ifremer, Laboratoire Environnement Ressource du Languedoc Roussillon, Bd Jean Monnet, Sète, France
| | | | - Gaetan Daigle
- Université Laval, Département de mathématiques et de statistique, Pavillon Alexandre-Vachon, Québec, Québec, Canada
| | - Jean Barret
- Ifremer, Laboratoire Environnement Ressource du Languedoc Roussillon, Bd Jean Monnet, Sète, France
| | - Patrik Le Gall
- Ifremer, Laboratoire Environnement Ressource du Languedoc Roussillon, Bd Jean Monnet, Sète, France
| | - Claudie Quere
- UMR LEMAR Ifremer/CNRS/UBO/IRD, Technopole de Brest-Iroise, Plouzané, France
| | | |
Collapse
|
91
|
Binias C, Gonzalez P, Provost M, Lambert C, de Montaudouin X. Brown muscle disease: impact on Manila clam Venerupis (=Ruditapes) philippinarum biology. FISH & SHELLFISH IMMUNOLOGY 2014; 36:510-518. [PMID: 24378680 DOI: 10.1016/j.fsi.2013.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 12/04/2013] [Accepted: 12/18/2013] [Indexed: 06/03/2023]
Abstract
This study assessed the effect of Brown Muscle Disease (BMD) on Manila clam Venerupis philippinarum fitness. BMD was discovered in 2005. It affects the posterior adductor muscle and leads to clam gaping and eventually death. Three statuses of clams were compared: buried individuals with no signs of BMD (BUR); clams at the surface of the sediment with no signs of BMD (SURF) and clams at the surface of the sediment exhibiting signs of brown muscle disease (BMD). Physiological (condition index), immune (hemocyte parameters) and molecular (gene expressions) parameters collected seasonally were analyzed and compared. Results demonstrated a seasonal pattern in condition index (CI) with peaks in spring/summer and decreases in autumn/winter. At each season, the highest CI was observed in BUR and the lowest CI was observed in BMD. In terms of immune response, phagocytosis rate and capacity were higher in clams with BMD whereas the health status of the clams did not influence the total hemocyte count. Genes involved in the immune system (comp, tnf, inter) were upregulated in clams with BMD. The molecular analysis of gill and posterior muscle showed higher mitochondrial metabolism (cox-1, 16S) in cells of infected clams, suggesting a stronger energetic demand by these cells. Finally, genes involved in oxidative stress response (cat, sod), detoxification (mt) and DNA repair (gadd45) were also overexpressed due to reactive oxygen species production. Most of the studied parameters underlined a cause-effect correlation between Manila clam health status (BUR, SUR, BMD) and physiological parameters. An important stress response was observed in BMD-infected clams at different scales, i.e. condition index, immune parameters and stress-related gene expression.
Collapse
Affiliation(s)
- Cindy Binias
- Université Bordeaux, EPOC, UMR 5805, 33120 Arcachon, France.
| | | | - Margot Provost
- Université Bordeaux, EPOC, UMR 5805, 33120 Arcachon, France
| | - Christophe Lambert
- LEMAR CNRS (UMR 6539), IUEM, Université de Bretagne occidentale, 29280 Plouzané, France
| | | |
Collapse
|
92
|
Risk factors associated with increased mortality of farmed Pacific oysters in Ireland during 2011. Prev Vet Med 2014; 113:257-67. [DOI: 10.1016/j.prevetmed.2013.10.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 10/16/2013] [Accepted: 10/24/2013] [Indexed: 11/24/2022]
|
93
|
Green TJ, Montagnani C, Benkendorff K, Robinson N, Speck P. Ontogeny and water temperature influences the antiviral response of the Pacific oyster, Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2014; 36:151-157. [PMID: 24200990 DOI: 10.1016/j.fsi.2013.10.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 10/24/2013] [Accepted: 10/25/2013] [Indexed: 06/02/2023]
Abstract
Disease is caused by a complex interaction between the pathogen, environment, and the physiological status of the host. Determining how host ontogeny interacts with water temperature to influence the antiviral response of the Pacific oysters, Crassostrea gigas, is a major goal in understanding why juvenile Pacific oysters are dying during summer as a result of the global emergence of a new genotype of the Ostreid herpesvirus, termed OsHV-1 μvar. We measured the effect of temperature (12 vs 22 °C) on the antiviral response of adult and juvenile C. gigas injected with poly I:C. Poly I:C up-regulated the expression of numerous immune genes, including TLR, MyD88, IκB-1, Rel, IRF, MDA5, STING, SOC, PKR, Viperin and Mpeg1. At 22 °C, these immune genes showed significant up-regulation in juvenile and adult oysters, but the majority of these genes were up-regulated 12 h post-injection for juveniles compared to 26 h for adults. At 12 °C, the response of these genes was completely inhibited in juveniles and delayed in adults. Temperature and age had no effect on hemolymph antiviral activity against herpes simplex virus (HSV-1). These results suggest that oysters rely on a cellular response to minimise viral replication, involving recognition of virus-associated molecular patterns to induce host cells into an antiviral state, as opposed to producing broad-spectrum antiviral compounds. This cellular response, measured by antiviral gene expression of circulating hemocytes, was influenced by temperature and oyster age. We speculate whether the vigorous antiviral response of juveniles at 22 °C results in an immune-mediated disorder causing mortality.
Collapse
Affiliation(s)
- Timothy J Green
- School of Biological Sciences and Australian Seafood Cooperative Research Centre, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia.
| | - Caroline Montagnani
- Ifremer, UMR 5119 Ecology of Coastal Marine Systems, Université Montpellier 2, Place Eugène Bataillon, CC80, 30495 Montpellier cedex 05, France
| | - Kirsten Benkendorff
- Marine Ecology Research Centre, Southern Cross University, P.O. Box 157, Lismore, NSW 2480, Australia
| | - Nick Robinson
- School of Biological Sciences and Australian Seafood Cooperative Research Centre, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia; Nofima, P.O. Box 210, N-1431 Ås, Norway
| | - Peter Speck
- School of Biological Sciences and Australian Seafood Cooperative Research Centre, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| |
Collapse
|
94
|
Jouaux A, Lafont M, Blin JL, Houssin M, Mathieu M, Lelong C. Physiological change under OsHV-1 contamination in Pacific oyster Crassostrea gigas through massive mortality events on fields. BMC Genomics 2013; 14:590. [PMID: 23987141 PMCID: PMC3766697 DOI: 10.1186/1471-2164-14-590] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 08/12/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Massive mortalities have been observed in France since 2008 on spat and juvenile Pacific oysters, Crassostrea gigas. A herpes virus called OsHV-1, easily detectable by PCR, has been implicated in the mortalities as demonstrated by the results of numerous field studies linking mortality with OsHV-1 prevalence. Moreover, experimental infections using viral particles have documented the pathogenicity of OsHV-1 but the physiological responses of host to pathogen are not well known. RESULTS The aim of this study was to understand mechanisms brought into play against the virus during infection in the field. A microarray assay has been developed for a major part of the oyster genome and used for studying the host transcriptome across mortality on field. Spat with and without detectable OsHV-1 infection presenting or not mortality respectively were compared by microarray during mortality episodes. In this study, a number of genes are regulated in the response to pathogen infection on field and seems to argue to an implication of the virus in the observed mortality. The result allowed establishment of a hypothetic scheme of the host cell's infection by, and response to, the pathogen. CONCLUSIONS This response shows a "sensu stricto" innate immunity through genic regulation of the virus OsHV-1 life cycle, but also others biological processes resulting to complex interactions between host and pathogens in general.
Collapse
Affiliation(s)
- Aude Jouaux
- CNRS INEE, BioMEA, Caen Cedex 14 032, France
- Biologie des Organismes Marins et des Ecosystèmes Associés (BioMEA), IBFA, SFR ICORE, Université de Caen Basse-Normandie, Caen Cedex 14032, France
- Centre de Référence sur l’Huître, Université de Caen Basse Normandie, Caen Cedex 14 032, France
| | - Maxime Lafont
- CNRS INEE, BioMEA, Caen Cedex 14 032, France
- Biologie des Organismes Marins et des Ecosystèmes Associés (BioMEA), IBFA, SFR ICORE, Université de Caen Basse-Normandie, Caen Cedex 14032, France
- Centre de Référence sur l’Huître, Université de Caen Basse Normandie, Caen Cedex 14 032, France
| | - Jean-Louis Blin
- Centre de Référence sur l’Huître, Université de Caen Basse Normandie, Caen Cedex 14 032, France
- Synergie Mer Et Littoral, Zone conchylicole, Blainville sur mer 50 560, France
| | - Maryline Houssin
- Centre de Référence sur l’Huître, Université de Caen Basse Normandie, Caen Cedex 14 032, France
- Laboratoire Frank Duncombe, Saint Contest Cedex 4 14 053, France
| | - Michel Mathieu
- CNRS INEE, BioMEA, Caen Cedex 14 032, France
- Biologie des Organismes Marins et des Ecosystèmes Associés (BioMEA), IBFA, SFR ICORE, Université de Caen Basse-Normandie, Caen Cedex 14032, France
- Centre de Référence sur l’Huître, Université de Caen Basse Normandie, Caen Cedex 14 032, France
| | - Christophe Lelong
- CNRS INEE, BioMEA, Caen Cedex 14 032, France
- Biologie des Organismes Marins et des Ecosystèmes Associés (BioMEA), IBFA, SFR ICORE, Université de Caen Basse-Normandie, Caen Cedex 14032, France
- Centre de Référence sur l’Huître, Université de Caen Basse Normandie, Caen Cedex 14 032, France
| |
Collapse
|
95
|
Green TJ, Montagnani C. Poly I:C induces a protective antiviral immune response in the Pacific oyster (Crassostrea gigas) against subsequent challenge with Ostreid herpesvirus (OsHV-1 μvar). FISH & SHELLFISH IMMUNOLOGY 2013; 35:382-388. [PMID: 23685009 DOI: 10.1016/j.fsi.2013.04.051] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/19/2013] [Accepted: 04/29/2013] [Indexed: 06/02/2023]
Abstract
In-vivo studies were carried out to investigate the protective effect of a synthetic viral analogue (poly I:C) against Ostreid herpes virus (OsHV-1 μvar). Pacific oysters (Crassostrea gigas) were immune-primed by intramuscular injection of 240 μg of poly I:C or sterile seawater at 1 day prior to infection with OsHV-1 μvar. Poly I:C injection induced an antiviral state in C. gigas as the percentage of viral-infected oysters at 48 h post infection was significantly lower in the poly I:C treatment (11%) compared to seawater controls (100%). In an additional experiment, we demonstrated that the protective role of poly I:C is reproducible and elicits a specific antiviral response as immune-priming with heat-killed Vibrio splendidus provided no protection against subsequent viral infection. In both experiments, genes homologous to a toll-like receptor (TLR), MyD88, interferon regulatory factor (IRF) and protein kinase R (PKR) were up-regulated in oysters immune-primed with poly I:C compared to seawater controls (p < 0.05). The MyD88, IRF and PKR genes were also significantly up-regulated in response to OsHV-1 μvar infection (p < 0.05), which is suggestive that they are implicated in the antiviral response of C. gigas. Our results demonstrate that C. gigas can recognise double-strand RNA to initiate an innate immune response that inhibits viral infection. The observed response has striking similarities to the hallmarks of the type-1 interferon response of vertebrates.
Collapse
Affiliation(s)
- Timothy J Green
- Ifremer, UMR 5119 "Ecology of Coastal Marine Systems", Université Montpellier 2, Place Eugène Bataillon, CC80, 30495 Montpellier Cedex 05, France.
| | | |
Collapse
|
96
|
Paul-Pont I, Dhand NK, Whittington RJ. Spatial distribution of mortality in Pacific oysters Crassostrea gigas: reflection on mechanisms of OsHV-1 transmission. DISEASES OF AQUATIC ORGANISMS 2013; 105:127-138. [PMID: 23872856 DOI: 10.3354/dao02615] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The ostreid herpesvirus OsHV-1 has the potential to devastate Pacific oyster Crassostrea gigas culture in Australia as it has done in many other countries, highlighting the need for a better understanding of disease expression and transmission. The aim of this study was to assess the spatial distribution of OsHV-1-associated mortalities in one of only two infected areas in Australia, Woolooware Bay (Botany Bay, New South Wales). In October 2011, healthy sentinel Pacific oysters were placed in 3 different locations at 3 different tidal levels, and OsHV-1 associated mortalities were closely monitored over 7 mo. The outbreak started in November 2011, and the disease remained active until April 2012. Three major mortality events were detected. Rather than being a propagating epizootic, it appeared that most oysters were infected from a common environmental source. The distribution of OsHV-1-associated mortalities was spatially clustered, highly variable and clearly dependent on the age of oysters and their position in the water column. Non-random distribution of mortalities at macro scale (sites several km apart) and micro scale (within rearing trays), and vertical clustering patterns in the water column are discussed in regard to factors known to influence mechanism of disease transmission in aquatic environments (hydrodynamics, physical disturbances, host density/distribution, and variations of environmental parameters). A new hypothesis proposing that OsHV-1 may be carried through water by particles, possibly plankton, is also suggested to explain the patchy distribution of mortalities in Woolooware Bay.
Collapse
Affiliation(s)
- Ika Paul-Pont
- Faculty of Veterinary Science, The University of Sydney, Camden, New South Wales, Australia.
| | | | | |
Collapse
|
97
|
Jenkins C, Hick P, Gabor M, Spiers Z, Fell SA, Gu X, Read A, Go J, Dove M, O'Connor W, Kirkland PD, Frances J. Identification and characterisation of an ostreid herpesvirus-1 microvariant (OsHV-1 µ-var) in Crassostrea gigas (Pacific oysters) in Australia. DISEASES OF AQUATIC ORGANISMS 2013; 105:109-126. [PMID: 23872855 DOI: 10.3354/dao02623] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Between November 2010 and January 2011, triploid Crassostrea gigas (Pacific oysters) cultivated in the Georges River, New South Wales, experienced >95% mortality. Mortalities also occurred in wild diploid C. gigas in the Georges River and shortly thereafter in the adjacent Parramatta River estuary upstream from Sydney Harbour. Neighbouring Saccostrea glomerata (Sydney rock oysters) did not experience mortalities in either estuary. Surviving oysters were collected to investigate the cause of mortalities. Histologically all oysters displayed significant pathology, and molecular testing revealed a high prevalence of ostreid herpesvirus-1 (OsHV-1). Quantitative PCR indicated that many C. gigas were carrying a high viral load at the time of sampling, while the load in S. glomerata was significantly lower (p < 0.001). Subsequent in situ hybridisation experiments confirmed the presence of a herpesvirus in C. gigas but not S. glomerata tissues, suggesting that S. glomerata is not susceptible to infection with OsHV-1. Naïve sentinel triploid C. gigas placed in the Georges River estuary in January 2011 quickly became infected and experienced nearly 100% mortality within 2 wk of exposure, indicating the persistence of the virus in the environment. Phylogenetic analysis of sequences derived from the C2/C6 region of the virus revealed that the Australian strain of OsHV-1 belongs to the microvariant (µ-var) cluster, which has been associated with severe mortalities in C. gigas in other countries since 2008. Environmental data revealed that the Woolooware Bay outbreaks occurred during a time of considerable environmental disturbance, with increased water temperatures, heavy rainfall, a toxic phytoplankton bloom and the presence of a pathogenic Vibrio sp. all potentially contributing to oyster stress. This is the first confirmed report of OsHV-1 µ-var related C. gigas mortalities in Australia.
Collapse
Affiliation(s)
- Cheryl Jenkins
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Burge CA, Friedman CS. Quantifying Ostreid herpesvirus (OsHV-1) genome copies and expression during transmission. MICROBIAL ECOLOGY 2012; 63:596-604. [PMID: 21935610 DOI: 10.1007/s00248-011-9937-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 08/26/2011] [Indexed: 05/03/2023]
Abstract
Understanding the pathogenic potential of a new pathogen strain or a known pathogen in a new locale is crucial for management of disease in both wild and farmed animals. The Ostreid herpesvirus-1 (OsHV-1), a known pathogen of early-life-stage Pacific oysters, Crassostrea gigas, has been associated with mortalities of juvenile oysters in many locations around the world including Tomales Bay, California. In two trials, the California OsHV-1 strain was transmitted from infected juvenile C. gigas to naïve C. gigas larvae. Survival of control larvae was high throughout both trials (97-100%) and low among those exposed to OsHV-1. No OsHV-1-exposed larvae survived to day 9 in trial 1, while trial 2 was terminated at day 7 when survival was 36.90 ± 8.66%. To assess the amount of OsHV-1 DNA present, we employed quantitative polymerase chain reaction (qPCR) assays based on the A fragment and OsHV-1 catalytic subunit of a DNA polymerase δ (DNA pol) gene. Viral genome copy numbers based on qPCR assays peaked between 3 and 5 days. To measure the presence of viable and actively transcribing virus, the DNA pol gene qPCR assay was optimized for RNA analysis after being reverse transcribed (RT-qPCR). A decline in virus gene expression was measured using RT-qPCR: relative to earlier experimental time points copy numbers were significantly lower on day 9, trial 1 (p < 0.05) and day 7, trial 2 (p < 0.05). Peaks in copies of active virus per genome occurred during two periods in trial 1 (days 1 and 5/7, p < 0.05) and one period in trial 2 (day 1, p < 0.05). Transmission electron microscopy confirmed OsHV-1 infection; herpesvirus-like nucleocapsids, capsids, and extracellular particles were visualized. We demonstrated the ability to transmit OsHV-1 from infected juvenile oysters to naïve larvae, which indicates the spread of OsHV-1 between infected hosts in the field and between commercial farms is possible. We also developed an important tool (OsHV-1-specific RT-qPCR for an active virus gene) for use in monitoring for active virus in the field and in laboratory based transmission experiments.
Collapse
Affiliation(s)
- Colleen A Burge
- School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, WA 98195, USA.
| | | |
Collapse
|
99
|
Analysis of clinical ostreid herpesvirus 1 (Malacoherpesviridae) specimens by sequencing amplified fragments from three virus genome areas. J Virol 2012; 86:5942-7. [PMID: 22419803 DOI: 10.1128/jvi.06534-11] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although there are a number of ostreid herpesvirus 1 (OsHV-1) variants, it is expected that the true diversity of this virus will be known only after the analysis of significantly more data. To this end, we analyzed 72 OsHV-1 "specimens" collected mainly in France over an 18-year period, from 1993 to 2010. Additional samples were also collected in Ireland, the United States, China, Japan, and New Zealand. Three virus genome regions (open reading frame 4 [ORF4], ORF35, -36, -37, and -38, and ORF42 and -43) were selected for PCR analysis and sequencing. Although ORF4 appeared to be the most polymorphic genome area, distinguishing several genogroups, ORF35, -36, -37, and -38 and ORF42 and -43 also showed variations useful in grouping subpopulations of this virus.
Collapse
|
100
|
Corbeil S, McColl KA, Williams LM, Mohammad I, Hyatt AD, Crameri SG, Fegan M, Crane MSJ. Abalone viral ganglioneuritis: establishment and use of an experimental immersion challenge system for the study of abalone herpes virus infections in Australian abalone. Virus Res 2012; 165:207-13. [PMID: 22387967 DOI: 10.1016/j.virusres.2012.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 02/14/2012] [Accepted: 02/16/2012] [Indexed: 10/28/2022]
Abstract
In late 2005, acute mortalities occurred in abalone on farms located in Victoria, Australia. Disease was associated with infection by an abalone herpes virus (AbHV). Subsequently, starting in 2006, the disease (abalone viral ganglioneuritis; AVG) was discovered in wild abalone in Victorian open waters. Currently, it continues to spread, albeit at a slow rate, along the Victorian coast-line. Here, we report on experimental transmission trials that were carried out by immersion using water into which diseased abalone had shed infectious viral particles. At various time points following exposure, naïve abalone were assessed by an AbHV-specific real-time PCR and histological analyses including in situ hybridization (ISH). Results demonstrated that while exposed abalone began displaying clinical signs of the disease from 60 hours post exposure (hpe), they tested positive for the presence of viral DNA at 36 hpe. Of further interest, the AbHV DNA probe used in the ISH assay detected the virus as early as 48 hpe.
Collapse
Affiliation(s)
- Serge Corbeil
- CSIRO, Livestock Industries, Australian Animal Health Laboratory, 5 Portarlington Road, Geelong East, Victoria 3220, Australia.
| | | | | | | | | | | | | | | |
Collapse
|