51
|
Finotti A, Allegretti M, Gasparello J, Giacomini P, Spandidos DA, Spoto G, Gambari R. Liquid biopsy and PCR-free ultrasensitive detection systems in oncology (Review). Int J Oncol 2018; 53:1395-1434. [PMID: 30085333 PMCID: PMC6086621 DOI: 10.3892/ijo.2018.4516] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023] Open
Abstract
In oncology, liquid biopsy is used in the detection of next-generation analytes, such as tumor cells, cell-free nucleic acids and exosomes in peripheral blood and other body fluids from cancer patients. It is considered one of the most advanced non-invasive diagnostic systems to enable clinically relevant actions and implement precision medicine. Medical actions include, but are not limited to, early diagnosis, staging, prognosis, anticipation (lead time) and the prediction of therapy responses, as well as follow-up. Historically, the applications of liquid biopsy in cancer have focused on circulating tumor cells (CTCs). More recently, this analysis has been extended to circulating free DNA (cfDNA) and microRNAs (miRNAs or miRs) associated with cancer, with potential applications for development into multi-marker diagnostic, prognostic and therapeutic signatures. Liquid biopsies avoid some key limitations of conventional tumor tissue biopsies, including invasive tumor sampling, under-representation of tumor heterogeneity and poor description of clonal evolution during metastatic dissemination, strongly reducing the need for multiple sampling. On the other hand, this approach suffers from important drawbacks, i.e., the fragmentation of cfDNA, the instability of RNA, the low concentrations of certain analytes in body fluids and the confounding presence of normal, as well as aberrant DNAs and RNAs. For these reasons, the analysis of cfDNA has been mostly focused on mutations arising in, and pathognomonicity of, tumor DNA, while the analysis of cfRNA has been mostly focused on miRNA patterns strongly associated with neoplastic transformation/progression. This review lists some major applicative areas, briefly addresses how technology is bypassing liquid biopsy limitations, and places a particular emphasis on novel, PCR-free platforms. The ongoing collaborative efforts of major international consortia are reviewed. In addition to basic and applied research, we will consider technological transfer, including patents, patent applications and available information on clinical trials aimed at verifying the potential of liquid biopsy in cancer.
Collapse
Affiliation(s)
- Alessia Finotti
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy
| | - Matteo Allegretti
- Oncogenomics and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy
| | - Patrizio Giacomini
- Oncogenomics and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| | - Giuseppe Spoto
- Department of Chemistry, Catania University, 95125 Catania, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy
| |
Collapse
|
52
|
MicroRNA in diagnosis and therapy monitoring of early-stage triple-negative breast cancer. Sci Rep 2018; 8:11584. [PMID: 30072748 PMCID: PMC6072710 DOI: 10.1038/s41598-018-29917-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/09/2018] [Indexed: 11/12/2022] Open
Abstract
Breast cancer is a heterogeneous disease with distinct molecular subtypes including the aggressive subtype triple-negative breast cancer (TNBC). We compared blood-borne miRNA signatures of early-stage basal-like (cytokeratin-CK5-positive) TNBC patients to age-matched controls. The miRNAs of TNBC patients were assessed prior to and following platinum-based neoadjuvant chemotherapy (NCT). After an exploratory genome-wide study on 21 cases and 21 controls using microarrays, the identified signatures were verified independently in two laboratories on the same and a new cohort by RT-qPCR. We differentiated the blood of TNBC patients before NCT from controls with 84% sensitivity. The most significant miRNA for this diagnostic classification was miR-126-5p (two tailed t-test p-value of 1.4 × 10−5). Validation confirmed the microarray results for all tested miRNAs. Comparing cancer patients prior to and post NCT highlighted 321 significant miRNAs (among them miR-34a, p-value of 1.2 × 10−23). Our results also suggest that changes in miRNA expression during NCT may have predictive potential to predict pathological complete response (pCR). In conclusion we report that miRNA expression measured from blood facilitates early and minimally-invasive diagnosis of basal-like TNBC. We also demonstrate that NCT has a significant influence on miRNA expression. Finally, we show that blood-borne miRNA profiles monitored over time have potential to predict pCR.
Collapse
|
53
|
Qiu L, Zhang Y, Do DC, Ke X, Zhang S, Lambert K, Kumar S, Hu C, Zhou Y, Ishmael FT, Gao P. miR-155 Modulates Cockroach Allergen- and Oxidative Stress-Induced Cyclooxygenase-2 in Asthma. THE JOURNAL OF IMMUNOLOGY 2018; 201:916-929. [PMID: 29967100 DOI: 10.4049/jimmunol.1701167] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 06/01/2018] [Indexed: 12/13/2022]
Abstract
Exposure to cockroach allergen is a strong risk factor for developing asthma. Asthma has been associated with allergen-induced airway epithelial damage and heightened oxidant stress. In this study, we investigated cockroach allergen-induced oxidative stress in airway epithelium and its underlying mechanisms. We found that cockroach extract (CRE) could induce reactive oxygen species (ROS) production, particularly mitochondrial-derived ROS, in human bronchial epithelial cells. We then used the RT2 Profiler PCR array and identified that cyclooxygenase-2 (COX-2) was the most significantly upregulated gene related to CRE-induced oxidative stress. miR-155, predicted to target COX-2, was increased in CRE-treated human bronchial epithelial cells, and was showed to regulate COX-2 expression. Moreover, miR-155 can bind COX-2, induce COX-2 reporter activity, and maintain mRNA stability. Furthermore, CRE-treated miR-155-/- mice showed reduced levels of ROS and COX-2 expression in lung tissues and PGE2 in bronchoalveolar lavage fluid compared with wild-type mice. These miR-155-/- mice also showed reduced lung inflammation and Th2/Th17 cytokines. In contrast, when miR-155-/- mice were transfected with adeno-associated virus carrying miR-155, the phenotypic changes in CRE-treated miR-155-/- mice were remarkably reversed, including ROS, COX-2 expression, lung inflammation, and Th2/Th17 cytokines. Importantly, plasma miR-155 levels were elevated in severe asthmatics when compared with nonasthmatics or mild-to-moderate asthmatics. These increased plasma miR-155 levels were also observed in asthmatics with cockroach allergy compared with those without cockroach allergy. Collectively, these findings suggest that COX-2 is a major gene related to cockroach allergen-induced oxidative stress and highlight a novel role of miR-155 in regulating the ROS-COX-2 axis in asthma.
Collapse
Affiliation(s)
- Lipeng Qiu
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21224.,Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yan Zhang
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21224.,Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Danh C Do
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Xia Ke
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Simin Zhang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA 17033; and
| | - Kristin Lambert
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA 17033; and
| | - Shruthi Kumar
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Chengping Hu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yufeng Zhou
- Children's Hospital and Institute of Biomedical Sciences, Fudan University, Key Laboratory of Neonatal Diseases, Ministry of Health, Shanghai 201102, China
| | - Faoud T Ishmael
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA 17033; and
| | - Peisong Gao
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21224;
| |
Collapse
|
54
|
Mandujano-Tinoco EA, García-Venzor A, Melendez-Zajgla J, Maldonado V. New emerging roles of microRNAs in breast cancer. Breast Cancer Res Treat 2018; 171:247-259. [PMID: 29948402 DOI: 10.1007/s10549-018-4850-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/03/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND MicroRNAs constitute a large family of non-coding RNAs, which actively participate in tumorigenesis by regulating a set of mRNAs of distinct signaling pathways. An altered expression of these molecules has been found in different tumorigenic processes of breast cancer, the most common type of cancer in the female population worldwide. PURPOSE The objective of this review is to discuss how miRNAs become master regulators in breast tumorigenesis. METHODS An integrative review of miRNAs and breast cancer literature from the last 5 years was done on PubMed. We summarize recent works showing that the defects on the biogenesis of miRNAs are associated with different breast cancer characteristics. Then, we show several examples that demonstrate the link between cellular processes regulated by miRNAs and the hallmarks of breast cancer. Finally, we examine the complexity in the regulation of these molecules as they are modulated by other non-coding RNAs and the clinical applications of miRNAs as they could serve as good diagnostic and classification tools. CONCLUSION The information presented in this review is important to encourage new directed studies that consider microRNAs as a good tool to improve the diagnostic and treatment alternatives in breast cancer.
Collapse
Affiliation(s)
- Edna Ayerim Mandujano-Tinoco
- Epigenetics Laboratory, Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Arenal Tepepan, 14610, Mexico, CDMX, Mexico.,Laboratory of Connective Tissue, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra". Calz., México-Xochimilco 289, Arenal de Guadalupe, 14389, Mexico, CDMX, Mexico
| | - Alfredo García-Venzor
- Epigenetics Laboratory, Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Arenal Tepepan, 14610, Mexico, CDMX, Mexico
| | - Jorge Melendez-Zajgla
- Functional Genomics Laboratory, Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Arenal Tepepan, 14610, Mexico, CDMX, Mexico
| | - Vilma Maldonado
- Epigenetics Laboratory, Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Arenal Tepepan, 14610, Mexico, CDMX, Mexico.
| |
Collapse
|
55
|
Hollis AR, Starkey MP. MicroRNAs in equine veterinary science. Equine Vet J 2018; 50:721-726. [PMID: 29672919 DOI: 10.1111/evj.12954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/31/2018] [Indexed: 12/26/2022]
Abstract
MicroRNAs are small noncoding RNAs that play a pivotal role in diverse cellular processes through post-transcriptional regulation of gene expression. The dysregulation of specific microRNAs is associated with disease development and progression. In this review, we summarise how microRNAs modulate gene expression, and explain microRNA nomenclature. We discuss the potential applications of microRNAs in equine disease diagnosis and treatment, in the context of the sum of current knowledge about microRNA expression in normal and diseased equine tissues.
Collapse
Affiliation(s)
- A R Hollis
- Animal Health Trust, Kentford, Suffolk, UK
| | | |
Collapse
|
56
|
Lagendijk M, Sadaatmand S, Koppert LB, Tilanus-Linthorst MMA, de Weerd V, Ramírez-Moreno R, Smid M, Sieuwerts AM, Martens JWM. MicroRNA expression in pre-treatment plasma of patients with benign breast diseases and breast cancer. Oncotarget 2018; 9:24335-24346. [PMID: 29849944 PMCID: PMC5966243 DOI: 10.18632/oncotarget.25262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
Background MicroRNAs (miRs) are small RNA molecules, influencing messenger RNA (mRNA) expression and translation, and are readily detectable in blood. Some have been reported as potential breast cancer biomarkers. This study aimed to identify and validate miRs indicative of breast cancer. Results Based on the discovery and literature, 18 potentially informative miRs were quantified in the validation cohort. Irrespective of patient and tumour characteristics, hsa-miR-652-5p was significantly upregulated in the malignant compared to benign patients (1.26 fold, P = 0.005) and therefore validated as potential biomarker. In the validation cohort literature-based hsa-let-7b levels were higher in malignant patients as well (1.53 fold, P = 0.011). Two miRs differentiated benign wildtype from benign BRCA1 mutation carriers and an additional 8 miRs differentiated metastastic (n = 8) from non-metastatic (n = 41) cases in the validation cohort. Methods Pre-treatment plasma samples were collected of patients with benign breast disease and breast cancer and divided over a discovery (n = 31) and validation (n = 84) cohort. From the discovery cohort miRs differentially expressed between benign and malignant cases were identified using a 2,000-miR microarray. Literature-based miRs differentiating benign from malignant disease were added. Using RT-qPCR, their expression was investigated in a validation cohort consisting of pre-treatment benign, malignant and metastatic samples. Additionally, benign and malignant cases were compared to benign and malignant cases of BRCA1-mutation carriers. Conclusions Plasma microRNA levels differed between patients with and without breast cancer, between benign disease from wildtype and BRCA1-mutation carriers and between breast cancer with and without metastases. Hsa-miR-652-5p was validated as a potential biomarker for breast cancer.
Collapse
Affiliation(s)
- Mirelle Lagendijk
- Department of Surgical Oncology, Erasmus MC Cancer Institute, EA 3075, Rotterdam, The Netherlands
| | - Sepideh Sadaatmand
- Department of Surgical Oncology, Erasmus MC Cancer Institute, EA 3075, Rotterdam, The Netherlands
| | - Linetta B Koppert
- Department of Surgical Oncology, Erasmus MC Cancer Institute, EA 3075, Rotterdam, The Netherlands
| | | | - Vanja de Weerd
- Department of Medical Oncology, Erasmus MC Cancer Institute, EA 3075, Rotterdam, The Netherlands
| | - Raquel Ramírez-Moreno
- Department of Medical Oncology, Erasmus MC Cancer Institute, EA 3075, Rotterdam, The Netherlands
| | - Marcel Smid
- Department of Medical Oncology, Erasmus MC Cancer Institute, EA 3075, Rotterdam, The Netherlands
| | - Anieta M Sieuwerts
- Department of Medical Oncology, Erasmus MC Cancer Institute, EA 3075, Rotterdam, The Netherlands.,Cancer Genomics Centre Netherlands, Erasmus University MC, CN 3015, Rotterdam, The Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, EA 3075, Rotterdam, The Netherlands.,Cancer Genomics Centre Netherlands, Erasmus University MC, CN 3015, Rotterdam, The Netherlands
| |
Collapse
|
57
|
Zaleski M, Kobilay M, Schroeder L, Debald M, Semaan A, Hettwer K, Uhlig S, Kuhn W, Hartmann G, Holdenrieder S. Improved sensitivity for detection of breast cancer by combination of miR-34a and tumor markers CA 15-3 or CEA. Oncotarget 2018; 9:22523-22536. [PMID: 29854296 PMCID: PMC5976482 DOI: 10.18632/oncotarget.25077] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/02/2018] [Indexed: 12/13/2022] Open
Abstract
Background MicroRNAs biomarkers have shown value for diagnosis and prognosis of various cancers. Combination with established tumor markers has rarely been done. Results Breast cancer patients had significantly higher serum RNA loads (AUC 0.665), lower miR-34a (AUC 0.772), higher CEA and CA 15-3 levels (AUCs 0.717 and 0.721) than healthy controls. miR-34a correlated with tumor stage and hormone receptor status. There was no significant difference between groups for all other miRNAs. Combination of miR-34a with CEA or CA 15-3 led to improved AUCs of 0.844 and 0.800, respectively. Sensitivity of miR-34a and CA 15-3 reached 56.1% at 95% specificity. When compared with benign breast diseases, combination of miR-34a (AUC 0.719) and CEA (0.623) or CA 15-3 (0.619) resulted in improved performances (0.794 and 0.741). Sensitivity of miR-34a and CA 15-3 reached 53.7% at 95% specificity. Conclusion While miR-34a provides valuable information for diagnosis and staging, combination with tumor markers CA15-3 or CEA improves the sensitivity for breast cancer detection. Patients and Methods The diagnostic relevance of the miR-21, miR-34a, miR-92a, miR-155, miR-222 and miR-let-7c was tested in sera of 103 individuals (55 breast cancer, 20 benign breast diseases, 28 healthy controls). MiRNAs were detected by quantitative rt-PCR after extraction and reverse transcription. Cel-miR-39 and miR-16 were used for normalization. Established tumor markers CEA, CA 15-3, CA 19-9 and CA 125 were measured by automatized immunoassays. Diagnostic performance was tested by areas under the curve (AUC) of receiver operating characteristic (ROC) curves and sensitivities at 90% and 95% specificity.
Collapse
Affiliation(s)
- Martin Zaleski
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Makbule Kobilay
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Lars Schroeder
- Department of Gynecology and Obstetrics, University Hospital Bonn, Bonn, Germany.,Center for Integrated Oncology (CIO) Köln/Bonn, Bonn, Germany
| | - Manuel Debald
- Department of Gynecology and Obstetrics, University Hospital Bonn, Bonn, Germany.,Center for Integrated Oncology (CIO) Köln/Bonn, Bonn, Germany
| | | | - Karina Hettwer
- QuoData Statistics, Dresden, Germany.,Joint Research and Services Center for Biomarker Evaluation in Oncology, Bonn/Dresden, Germany
| | - Steffen Uhlig
- QuoData Statistics, Dresden, Germany.,Joint Research and Services Center for Biomarker Evaluation in Oncology, Bonn/Dresden, Germany
| | - Walther Kuhn
- Department of Gynecology and Obstetrics, University Hospital Bonn, Bonn, Germany.,Center for Integrated Oncology (CIO) Köln/Bonn, Bonn, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany.,Center for Integrated Oncology (CIO) Köln/Bonn, Bonn, Germany
| | - Stefan Holdenrieder
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany.,Center for Integrated Oncology (CIO) Köln/Bonn, Bonn, Germany.,Joint Research and Services Center for Biomarker Evaluation in Oncology, Bonn/Dresden, Germany
| |
Collapse
|
58
|
Gu L, Yan W, Liu L, Wang S, Zhang X, Lyu M. Research Progress on Rolling Circle Amplification (RCA)-Based Biomedical Sensing. Pharmaceuticals (Basel) 2018; 11:E35. [PMID: 29690513 PMCID: PMC6027247 DOI: 10.3390/ph11020035] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 12/26/2022] Open
Abstract
Enhancing the limit of detection (LOD) is significant for crucial diseases. Cancer development could take more than 10 years, from one mutant cell to a visible tumor. Early diagnosis facilitates more effective treatment and leads to higher survival rate for cancer patients. Rolling circle amplification (RCA) is a simple and efficient isothermal enzymatic process that utilizes nuclease to generate long single stranded DNA (ssDNA) or RNA. The functional nucleic acid unit (aptamer, DNAzyme) could be replicated hundreds of times in a short period, and a lower LOD could be achieved if those units are combined with an enzymatic reaction, Surface Plasmon Resonance, electrochemical, or fluorescence detection, and other different kinds of biosensor. Multifarious RCA-based platforms have been developed to detect a variety of targets including DNA, RNA, SNP, proteins, pathogens, cytokines, micromolecules, and diseased cells. In this review, improvements in using the RCA technique for medical biosensors and biomedical applications were summarized and future trends in related research fields described.
Collapse
Affiliation(s)
- Lide Gu
- College of Marine Life and Fisheries, Huahai Institute of Technology, Lianyungang 222005, China.
| | - Wanli Yan
- College of Marine Life and Fisheries, Huahai Institute of Technology, Lianyungang 222005, China.
| | - Le Liu
- College of Marine Life and Fisheries, Huahai Institute of Technology, Lianyungang 222005, China.
| | - Shujun Wang
- Marine Resources Development Institute of Jiangsu, Lianyungang 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China.
| | - Xu Zhang
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China.
- Verschuren Centre for Sustainability in Energy & the Environment, Cape Breton University, Sydney, NS B1P 6L2, Canada.
| | - Mingsheng Lyu
- College of Marine Life and Fisheries, Huahai Institute of Technology, Lianyungang 222005, China.
- Marine Resources Development Institute of Jiangsu, Lianyungang 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China.
| |
Collapse
|
59
|
Wang SE, Lin RJ. MicroRNA and HER2-overexpressing cancer. Microrna 2018; 2:137-47. [PMID: 25070783 PMCID: PMC4120065 DOI: 10.2174/22115366113029990011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 05/26/2013] [Accepted: 07/10/2013] [Indexed: 02/07/2023]
Abstract
The discovery of microRNAs (miRNAs) has opened up new avenues for studying cancer at the molecular level, featuring a post-genomic era of biomedical research. These non-coding regulatory RNA molecules of ~22 nucleotides have emerged as important cancer biomarkers, effectors, and targets. In this review, we focus on the dysregulated biogenesis and function of miRNAs in cancers with an overexpression of the proto-oncogene HER2. Many of the studies reviewed here were carried out in breast cancer, where HER2 overexpression has been extensively studied and HER2-targeted therapy practiced for more than a decade. MiRNA signatures that can be used to classify tumors with different HER2 status have been reported but little consensus can be established among various studies, emphasizing the needs for additional well-controlled profiling approaches and meta-analyses in large and well-balanced patient cohorts. We further discuss three aspects of microRNA dysregulation in or contribution to HER2-associated malignancies or therapies: (a) miRNAs that are up- or down-regulated by HER2 and mediate the downstream signaling of HER2; (b) miRNAs that suppress the expression of HER2 or a factor in HER2 receptor complexes, such as HER3; and (c) miRNAs that affect responses to anti-HER2 therapies. The regulatory mechanisms are elaborated using mainly examples of miR-205, miR-125, and miR-21. Understanding the regulation and function of miRNAs in HER2-overexpressing tumors shall shed new light on the pathogenic mechanisms of microRNAs and the HER2 proto-oncogene in cancer, as well as on individualized or combinatorial anti-HER2 therapies.
Collapse
Affiliation(s)
| | - Ren-Jang Lin
- Department of Cancer Biology, Beckman Research Institute of City of Hope, KCRB2007, 1500 E. Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
60
|
Gao S, Wang Y, Wang M, Li Z, Zhao Z, Wang RX, Wu R, Yuan Z, Cui R, Jiao K, Wang L, Ouyang L, Liu R. MicroRNA-155, induced by FOXP3 through transcriptional repression of BRCA1, is associated with tumor initiation in human breast cancer. Oncotarget 2018; 8:41451-41464. [PMID: 28562349 PMCID: PMC5522316 DOI: 10.18632/oncotarget.17816] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 04/11/2017] [Indexed: 12/12/2022] Open
Abstract
MicroRNA (miR)-155 is upregulated in breast cancer cells and in sera of patients with breast cancer, but its clinical relevance remains uncertain. The objective of the present effort was to address the transcriptional regulation of miR-155. A bioinformatics analysis of public datasets validated upregulation of miR-155 in tumor cells of patients with breast cancer, particularly those who were at early stages and had triple-negative cancers. The expression profiling and clinical relevance of miR-155 in tumor cells and blood cells were characterized by TaqMan miR assays and, in plasma and exosomes, by nest-quantitative PCR analysis. There was a positive correlation between expression of FOXP3 and miR-155 in breast cancer cell lines and primary breast cancers. In breast cancer cells, FOXP3 induced miR-155 through transcriptional repression of BRCA1. Furthermore, in an Alabama cohort, blood and plasma samples were collected from 259 participants, including patients with breast cancer or benign breast tumors, members of breast cancer families, and matched healthy female controls. For patients with early stage or localized breast cancer, there were high levels of miR-155 in both plasma and blood cells. In cultured breast cancer cells, expression of miR-155 was induced by FOXP3 but was not significantly changed in culture medium or exosomes, suggesting that circulating miR-155 originated from blood cells. These findings reveal a transcriptional axis of FOXP3-BRCA1-miR-155 in breast cancer cells and show that plasma miR-155 may serve as a non-invasive biomarker for detection of early stage breast cancer.
Collapse
Affiliation(s)
- Song Gao
- The Second Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yicun Wang
- Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Meng Wang
- Department of Oncology, Cancer Hospital of Harbin Medical University, Harbin, China
| | - Zhi Li
- Department of General Surgery, Henan Cancer Hospital, Zhengzhou, China
| | - Zhiying Zhao
- School of Computer Science and Engineering, Northeastern University, Shenyang, China
| | - Raymond X Wang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rong Wu
- The Second Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhengwei Yuan
- The Second Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ranji Cui
- Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Kai Jiao
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lizhong Wang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ling Ouyang
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Runhua Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
61
|
Gilam A, Shai A, Ashkenazi I, Sarid LA, Drobot A, Bickel A, Shomron N. MicroRNA regulation of progesterone receptor in breast cancer. Oncotarget 2018; 8:25963-25976. [PMID: 28404930 PMCID: PMC5432230 DOI: 10.18632/oncotarget.15657] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 01/25/2017] [Indexed: 11/25/2022] Open
Abstract
Hormone receptor status is of significant value when deciding on anti-estrogenic adjuvant therapy for breast cancer tumors. However, while estrogen receptor (ER) regulation was intensively studied, the regulation of progesterone receptor (PR) levels has not been extensively investigated. MicroRNAs (miRNAs, miRs) are post-transcriptional negative regulators of gene expression involved in diverse cellular processes. The aim of this study was to identify miRNAs that regulate PR in breast cancer.We mapped potential miRNA binding sites for miR-181a, miR-23a and miR-26b on PR mRNA and demonstrated a direct regulation of PR by these three miRNAs by in-vitro Luciferase binding assays. Over-expression of each miRNA in MCF-7 cells resulted in a reduction in the expression levels of PR mRNA. Then, expression levels of these miRNAs were measured in Formalin-Fixed, Paraffin-Embedded (FFPE) samples of 29 ER-positive breast cancer tumors and adjacent normal breast tissues. A significant reciprocal correlation between PR mRNA and the miRNA levels were identified suggesting a role for miR-181a, miR-23a and miR-26b in PR regulation in breast cancer. Moreover, the average expression fold-changes of the three miRNAs between cancerous and normal tissues displayed an opposite trend when analyzing according to Immuno-histochemistry(IHC) status. Furthermore, miR-181a and miR-26b were found to be over-expressed in most tumor tissues supporting their role in ER-positive breast cancer development. We conclude that miR-181a, miR-23a and miR-26b act as negative regulators of PR expression in ER-positive breast cancer. The diagnostic and prognostic potential of these miRNAs in breast cancer should be further evaluated.
Collapse
Affiliation(s)
- Avital Gilam
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ayelet Shai
- Oncology Department, Galilee Medical Center, Nahariya, Israel.,Faculty of Medicine, Bar Illan University, Zefad, Israel
| | | | - Liat Appel Sarid
- Oncology Department, Galilee Medical Center, Nahariya, Israel.,Faculty of Medicine, Bar Illan University, Zefad, Israel
| | - Assi Drobot
- Oncology Department, Galilee Medical Center, Nahariya, Israel
| | - Amitai Bickel
- Oncology Department, Galilee Medical Center, Nahariya, Israel.,Faculty of Medicine, Bar Illan University, Zefad, Israel
| | - Noam Shomron
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
62
|
Suyal S, Singh MP, Shekhar H, Srivastava S. In silico screening of proteins targeting circulating miRNAs for improved diagnosis of multiple myeloma. Biochem Biophys Res Commun 2018; 497:577-582. [PMID: 29448111 DOI: 10.1016/j.bbrc.2018.02.103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 02/10/2018] [Indexed: 12/20/2022]
Abstract
Multiple Myeloma (MM) is a B-cell malignancy, which is characterized by the expansion of clonal plasma cells in the bone marrow, leading to abnormal accumulation of monoclonal antibodies in circulation. Certain circulating miRNAs are deregulated in MM and their differential expression profiles in body fluids can be quantified and used to discriminate between the premalignant and malignant stages of MM. Our study identifies protein which would show affinity for a selected panel of circulating miRNAs deregulated in MM. Human RNA binding proteins were identified based on their unique RNA binding domains and their interacting probabilities with the panel of miRNAs deregulated in MM. miR-26 was used as a negative control for interaction studies. 3-D structure of candidate proteins were determined and molecular docking was performed to confirm the results. Five RNA binding proteins TROVE2, CUGBP2, DHX8, PUM2 and DKC1 were used for molecular docking studies. DKC1 showed significant hydrogen bonding as well as remarkable binding affinity values of -17.4 kcal/mol with miR-720 (2 H-bonds), -16 kcal/mol with miR-1246 (1 H-bond) and -16.9 kcal/mol with miR-1308 (3 H-bonds). Identified protein-miRNA interaction could be used to develop an economical and reliable ELISA based methodology for improved and sensitive diagnosis of MM patients.
Collapse
Affiliation(s)
- Shradha Suyal
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004, India
| | - Manish Pratap Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004, India
| | - Himanshu Shekhar
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004, India
| | - Sameer Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004, India.
| |
Collapse
|
63
|
Identification of a circulating microRNA signature to distinguish recurrence in breast cancer patients. Oncotarget 2018; 7:55231-55248. [PMID: 27409424 PMCID: PMC5342414 DOI: 10.18632/oncotarget.10485] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/12/2016] [Indexed: 01/04/2023] Open
Abstract
There is an urgent need for novel noninvasive prognostic biomarkers for monitoring the recurrence of breast cancer. The purpose of this study is to identify circulating microRNAs that can predict breast cancer recurrence. We conducted a microRNA profiling experiment in serum samples from 48 breast cancer patients using Exiqon miRCURY microRNA RT-PCR panels. Significantly differentiated miRNAs for recurrence in the discovery profiling were further validated in an independent set of sera from 20 patients with breast cancer recurrences and 22 patients without recurrences. We identified seven miRNAs that were differentially expressed between breast cancer patients with and without recurrences, including four miRNAs upregulated (miR-21-5p, miR-375, miR-205-5p, and miR-194-5p) and three miRNAs downregulated (miR-382-5p, miR-376c-3p, and miR-411-5p) for recurrent patients. Using penalized logistic regression, we built a 7-miRNA signature for breast cancer recurrence, which had an excellent discriminating capacity (concordance index=0.914). This signature was significantly associated with recurrence after adjusting for known prognostic factors, and it was applicable to both hormone-receptor positive (concordance index=0.890) and triple-negative breast cancers (concordance index=0.942). We also found the 7-miRNA signature were reliably measured across different runs of PCR experiments (intra-class correlation coefficient=0.780) and the signature was significantly higher in breast cancer patients with recurrence than healthy controls (p=1.1×10−5). In conclusion, circulating miRNAs are promising biomarkers and the signature may be developed into a minimally invasive multi-marker blood test for continuously monitoring the recurrence of breast cancer. It should be further validated for different subtypes of breast cancers in longitudinal studies.
Collapse
|
64
|
Chiba M, Monzen S, Iwaya C, Kashiwagi Y, Yamada S, Hosokawa Y, Mariya Y, Nakamura T, Wojcik A. Serum miR-375-3p increase in mice exposed to a high dose of ionizing radiation. Sci Rep 2018; 8:1302. [PMID: 29358747 PMCID: PMC5778023 DOI: 10.1038/s41598-018-19763-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 01/09/2018] [Indexed: 12/14/2022] Open
Abstract
Exposure to high-doses of ionizing radiation (IR) leads to development of a strong acute radiation syndrome (ARS) in mammals. ARS manifests after a latency period and it is important to develop fast prognostic biomarkers for its early detection and assessment. Analysis of chromosomal aberrations in peripheral blood lymphocytes is the gold standard of biological dosimetry, but it fails after high doses of IR. Therefore, it is important to establish novel biomarkers of exposure that are fast and reliable also in the high dose range. Here, we investigated the applicability of miRNA levels in mouse serum. We found significantly increased levels of miR-375-3p following whole body exposure to 7 Gy of X-rays. In addition, we analyzed their levels in various organs of control mice and found them to be especially abundant in the pancreas and the intestine. Following a dose of 7 Gy, extensive cell death occurred in these tissues and this correlated negatively with the levels of miR-375-3p in the organs. We conclude that high expressing tissues of miR-375-3p may secrete this miRNA in serum following exposure to 7 Gy. Therefore, elevated miR-375-3p in serum may be a predictor of tissue damage induced by exposure to a high radiation dose.
Collapse
Affiliation(s)
- Mitsuru Chiba
- Department of Bioscience and Laboratory Medicine, Graduate School of Health Sciences, Hirosaki University, 66-1, Hon-cho, Hirosaki, Aomori, 036-8564, Japan.
| | - Satoru Monzen
- Department of Radiation Sciences, Graduate School of Health Sciences, Hirosaki University, 66-1, Hon-cho, Hirosaki, Aomori, 036-8564, Japan
| | - Chihiro Iwaya
- Department of Medical Technology, Hirosaki University School of Health Sciences, 66-1, Hon-cho, Hirosaki, Aomori, 036-8564, Japan
| | - Yuri Kashiwagi
- Department of Medical Technology, Hirosaki University School of Health Sciences, 66-1, Hon-cho, Hirosaki, Aomori, 036-8564, Japan
| | - Sunao Yamada
- Department of Medical Technology, Hirosaki University School of Health Sciences, 66-1, Hon-cho, Hirosaki, Aomori, 036-8564, Japan
| | - Yoichiro Hosokawa
- Department of Radiation Sciences, Graduate School of Health Sciences, Hirosaki University, 66-1, Hon-cho, Hirosaki, Aomori, 036-8564, Japan
| | - Yasushi Mariya
- Department of Radiology and Radiation Oncology, Mutsu General Hospital, 1-2-8, Kogawa-machi, Mutsu, Aomori, 035-0071, Japan
| | - Toshiya Nakamura
- Department of Bioscience and Laboratory Medicine, Graduate School of Health Sciences, Hirosaki University, 66-1, Hon-cho, Hirosaki, Aomori, 036-8564, Japan
| | - Andrzej Wojcik
- Department of Molecular Biosciences, The Wenner Gren Instititute, Stockholm University, Svante Arrhenius väg 20 C, 10691, Stockholm, Sweden.,Department of Radiobiology and Immunology, Institute of Biology, Jan Kochanowski University, ul. Swietokrzyska 15, 25-406, Kielce, Poland
| |
Collapse
|
65
|
Pasculli B, Barbano R, Parrella P. Epigenetics of breast cancer: Biology and clinical implication in the era of precision medicine. Semin Cancer Biol 2018; 51:22-35. [PMID: 29339244 DOI: 10.1016/j.semcancer.2018.01.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 12/15/2017] [Accepted: 01/11/2018] [Indexed: 02/09/2023]
Abstract
In the last years, mortality from breast cancer has declined in western countries as a consequence of a more widespread screening resulting in earlier detection, as well as an improved molecular classification and advances in adjuvant treatment. Nevertheless, approximately one third of breast cancer patients will develop distant metastases and eventually die for the disease. There is now a compelling body of evidence suggesting that epigenetic modifications comprising DNA methylation and chromatin remodeling play a pivotal role since the early stages of breast cancerogenesis. In addition, recently, increasing emphasis is being placed on the property of ncRNAs to finely control gene expression at multiple levels by interacting with a wide array of molecules such that they might be designated as epigenetic modifiers. In this review, we summarize the current knowledge about the involvement of epigenetic modifications in breast cancer, and provide an overview of the significant association of epigenetic traits with the breast cancer clinicopathological features, emphasizing the potentiality of epigenetic marks to become biomarkers in the context of precision medicine.
Collapse
Affiliation(s)
- Barbara Pasculli
- Laboratory of Oncology, IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo, FG, Italy.
| | - Raffaela Barbano
- Laboratory of Oncology, IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo, FG, Italy.
| | - Paola Parrella
- Laboratory of Oncology, IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo, FG, Italy.
| |
Collapse
|
66
|
Asiaf A, Ahmad ST, Arjumand W, Zargar MA. MicroRNAs in Breast Cancer: Diagnostic and Therapeutic Potential. Methods Mol Biol 2018; 1699:23-43. [PMID: 29086366 DOI: 10.1007/978-1-4939-7435-1_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are a large family of small, approximately 20-22 nucleotide, noncoding RNAs that regulate the expression of target genes, at the post-transcriptional level. miRNAs are involved in virtually diverse biological processes and play crucial roles in cellular processes, such as cell differentiation, proliferation, and apoptosis. Accumulating lines of evidence have indicated that miRNAs play important roles in the maintenance of biological homeostasis and that aberrant expression levels of miRNAs are associated with the onset of many diseases, including cancer. It is possible that the diverse roles that miRNAs play, have potential to provide valuable information in a clinical setting, demonstrating the potential to act as both screening tools for the stratification of high-risk patients, while informing the treatment decision-making process. Increasing evidence suggests that some miRNAs may even provide assistance in the diagnosis of patients with breast cancer. In addition, miRNAs may themselves be considered therapeutic targets, with inhibition or reintroduction of a particular miRNA capable of inducing a response in-vivo. This chapter discusses the role of miRNAs as oncogenes and tumor suppressors in breast cancer development and metastasis . It focuses on miRNAs that have prognostic, diagnostic, or predictive potential in breast cancer as well as the possible challenges in the translation of such observations to the clinic.
Collapse
Affiliation(s)
- Asia Asiaf
- Department of Biochemistry, Faculty of Science, University of Kashmir, Hazratbal Srinagar, J&K, 190006, India
| | - Shiekh Tanveer Ahmad
- Clarke H. Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, 2A25 HRIC, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Wani Arjumand
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, 2A32 HRIC, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Mohammad Afzal Zargar
- Department of Biochemistry, Faculty of Science, University of Kashmir, Hazratbal Srinagar, J&K, 190006, India.
| |
Collapse
|
67
|
Zhou Y, Do DC, Ishmael FT, Squadrito ML, Tang HM, Tang HL, Hsu MH, Qiu L, Li C, Zhang Y, Becker KG, Wan M, Huang SK, Gao P. Mannose receptor modulates macrophage polarization and allergic inflammation through miR-511-3p. J Allergy Clin Immunol 2018; 141:350-364.e8. [PMID: 28629744 PMCID: PMC5944850 DOI: 10.1016/j.jaci.2017.04.049] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 03/10/2017] [Accepted: 04/24/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Mannose receptor (MRC1/CD206) has been suggested to mediate allergic sensitization and asthma to multiple glycoallergens, including cockroach allergens. OBJECTIVE We sought to determine the existence of a protective mechanism through which MRC1 limits allergic inflammation through its intronic miR-511-3p. METHODS We examined MRC1-mediated cockroach allergen uptake by lung macrophages and lung inflammation using C57BL/6 wild-type (WT) and Mrc1-/- mice. The role of miR-511-3p in macrophage polarization and cockroach allergen-induced lung inflammation in mice transfected with adeno-associated virus (AAV)-miR-511-3p (AAV-cytomegalovirus-miR-511-3p-enhanced green fluorescent protein) was analyzed. Gene profiling of macrophages with or without miR-511-3p overexpression was also performed. RESULTS Mrc1-/- lung macrophages showed a significant reduction in cockroach allergen uptake compared with WT mice, and Mrc1-/- mice had an exacerbated lung inflammation with increased levels of cockroach allergen-specific IgE and TH2/TH17 cytokines in a cockroach allergen-induced mouse model compared with WT mice. Macrophages from Mrc1-/- mice showed significantly reduced levels of miR-511-3 and an M1 phenotype, whereas overexpression of miR-511-3p rendered macrophages to exhibit a M2 phenotype. Furthermore, mice transfected with AAV-miR-511-3p showed a significant reduction in cockroach allergen-induced inflammation. Profiling of macrophages with or without miR-511-3p overexpression identified 729 differentially expressed genes, wherein expression of prostaglandin D2 synthase (Ptgds) and its product PGD2 were significantly downregulated by miR-511-3p. Ptgds showed a robust binding to miR-511-3p, which might contribute to the protective effect of miR-511-3p. Plasma levels of miR-511-3p were significantly lower in human asthmatic patients compared with nonasthmatic subjects. CONCLUSION These studies support a critical but previously unrecognized role of MRC1 and miR-511-3p in protection against allergen-induced lung inflammation.
Collapse
Affiliation(s)
- Yufeng Zhou
- Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Md; Children's Hospital and the Institute of Biomedical Sciences and, Fudan University, and Key Laboratory of Neonatal Diseases, Ministry of Health, Shanghai, China
| | - Danh C Do
- Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Faoud T Ishmael
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, Pa
| | - Mario Leonardo Squadrito
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ho Man Tang
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Ho Lam Tang
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Md
| | - Man-Hsun Hsu
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, Pa
| | - Lipeng Qiu
- Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Changjun Li
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Yongqing Zhang
- Gene Expression & Genomics Unit, National Institute on Aging, National Institutes of Health, Baltimore, Md
| | - Kevin G Becker
- Gene Expression & Genomics Unit, National Institute on Aging, National Institutes of Health, Baltimore, Md
| | - Mei Wan
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Shau-Ku Huang
- Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Md; National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Lou-Hu Hospital, Shen-Zhen University, Shen-Zhen, China.
| | - Peisong Gao
- Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Md.
| |
Collapse
|
68
|
Umu SU, Langseth H, Bucher-Johannessen C, Fromm B, Keller A, Meese E, Lauritzen M, Leithaug M, Lyle R, Rounge TB. A comprehensive profile of circulating RNAs in human serum. RNA Biol 2017; 15:242-250. [PMID: 29219730 PMCID: PMC5798962 DOI: 10.1080/15476286.2017.1403003] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Non-coding RNA (ncRNA) molecules have fundamental roles in cells and many are also stable in body fluids as extracellular RNAs. In this study, we used RNA sequencing (RNA-seq) to investigate the profile of small non-coding RNA (sncRNA) in human serum. We analyzed 10 billion Illumina reads from 477 serum samples, included in the Norwegian population-based Janus Serum Bank (JSB). We found that the core serum RNA repertoire includes 258 micro RNAs (miRNA), 441 piwi-interacting RNAs (piRNA), 411 transfer RNAs (tRNA), 24 small nucleolar RNAs (snoRNA), 125 small nuclear RNAs (snRNA) and 123 miscellaneous RNAs (misc-RNA). We also investigated biological and technical variation in expression, and the results suggest that many RNA molecules identified in serum contain signs of biological variation. They are therefore unlikely to be random degradation by-products. In addition, the presence of specific fragments of tRNA, snoRNA, Vault RNA and Y_RNA indicates protection from degradation. Our results suggest that many circulating RNAs in serum can be potential biomarkers.
Collapse
Affiliation(s)
- Sinan Uğur Umu
- a Department of Research , Cancer Registry of Norway , Oslo , Norway
| | - Hilde Langseth
- a Department of Research , Cancer Registry of Norway , Oslo , Norway
| | | | - Bastian Fromm
- b Department of Tumor Biology , Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital , Nydalen, Oslo , Norway
| | - Andreas Keller
- c Department of Clinical Bioinformatics , Saarland University , Saarbruecken , Germany
| | - Eckart Meese
- d Department of Human Genetics , Saarland University , Homburg/Saar , Germany
| | | | - Magnus Leithaug
- e Department of Medical Genetics , Oslo University Hospital and University of Oslo , Oslo , Norway
| | - Robert Lyle
- e Department of Medical Genetics , Oslo University Hospital and University of Oslo , Oslo , Norway.,f PharmaTox Strategic Research Initiative, School of Pharmacy, Faculty of Mathematics and Natural Sciences , University of Oslo , Oslo , Norway
| | - Trine B Rounge
- a Department of Research , Cancer Registry of Norway , Oslo , Norway
| |
Collapse
|
69
|
Qattan A, Intabli H, Alkhayal W, Eltabache C, Tweigieri T, Amer SB. Robust expression of tumor suppressor miRNA's let-7 and miR-195 detected in plasma of Saudi female breast cancer patients. BMC Cancer 2017; 17:799. [PMID: 29183284 PMCID: PMC5706292 DOI: 10.1186/s12885-017-3776-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 11/13/2017] [Indexed: 12/26/2022] Open
Abstract
Background Female breast cancer is frequently diagnosed at a later stage and the leading cause of cancer deaths world-wide. Levels of cell-free circulating microRNAs (miRNAs) can potentially be used as biomarkers to measure disease progression in breast cancer patients in a non-invasive way and are therefore of high clinical value. Methods Using quantitative RT-PCR, circulating miRNAs were measured in blood samples collected from disease-free individuals (n = 34), triple-negative breast tumours (TNBC) (n = 36) and luminal tumours (n = 57). In addition to intergroup comparisons, plasma miRNA expression levels of all groups were analyzed against RNASeq data from cancerous breast tissue via The Cancer Genome Atlas (TCGA). Results A differential set of 18 miRNAs were identified in the plasma of breast cancer patients and 10 miRNAs were uniquely identified based on ROC analysis. The most striking findings revealed elevated tumor suppressor let-7 miRNA in luminal breast cancer patients, irrespective of subtype, and elevated miR-195 in plasma of TNBC breast cancer patients. In contrast, hsa-miR-195 and let-7 miRNAs were absent from cancerous TCGA tissue and strongly expressed in surrounding non-tumor tissue indicating that cancerous cells may selectively export tumor suppressor hsa-miR-195 and let-7 miRNAs in order to maintain oncogenesis. Conclusions While studies have indicated that the restoration of let-7 and miR-195 may be a potential therapy for cancer, these results suggested that tumor cells may selectively export hsa-miR-195 and let-7 miRNAs thereby neutralizing their potential therapeutic effect. However, in order to facilitate earlier detection of breast cancer, blood based screening of hsa-miR-195 and let-7 may be beneficial in a female patient cohort. Electronic supplementary material The online version of this article (10.1186/s12885-017-3776-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amal Qattan
- Breast Cancer Research, Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, P.O.Box 3354, Riyadh, 11211, Saudi Arabia. .,Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences (SMHS), George Washington University, 2600 Virginia Avenue, NW, Suite 300, Washington, DC, 20037, USA. .,College of Medicine, Alfaisal University, P.O.Box 50927, Riyadh, 11533, Saudi Arabia.
| | - Haya Intabli
- Breast Cancer Research, Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, P.O.Box 3354, Riyadh, 11211, Saudi Arabia.,College of Medicine, Alfaisal University, P.O.Box 50927, Riyadh, 11533, Saudi Arabia
| | - Wafa Alkhayal
- College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.,Department of Surgery, King Faisal Specialist Hospital and Research centre, Riyadh, Saudi Arabia
| | - Chafica Eltabache
- Breast Cancer Research, Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, P.O.Box 3354, Riyadh, 11211, Saudi Arabia
| | - Taher Tweigieri
- Department of Oncology, King Faisal Specialist Hospital and Research centre, Riyadh, Saudi Arabia
| | - Suad Bin Amer
- Breast Cancer Research, Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, P.O.Box 3354, Riyadh, 11211, Saudi Arabia.
| |
Collapse
|
70
|
Baldassarre A, Felli C, Prantera G, Masotti A. Circulating microRNAs and Bioinformatics Tools to Discover Novel Diagnostic Biomarkers of Pediatric Diseases. Genes (Basel) 2017; 8:genes8090234. [PMID: 28925938 PMCID: PMC5615367 DOI: 10.3390/genes8090234] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression at the post-transcriptional level. Current studies have shown that miRNAs are also present in extracellular spaces, packaged into various membrane-bound vesicles, or associated with RNA-binding proteins. Circulating miRNAs are highly stable and can act as intercellular messengers to affect many physiological processes. MicroRNAs circulating in body fluids have generated strong interest in their potential use as clinical biomarkers. In fact, their remarkable stability and the relative ease of detection make circulating miRNAs ideal tools for rapid and non-invasive diagnosis. This review summarizes recent insights about the origin, functions and diagnostic potential of extracellular miRNAs by especially focusing on pediatric diseases in order to explore the feasibility of alternative sampling sources for the development of non-invasive pediatric diagnostics. We will also discuss specific bioinformatics tools and databases for circulating miRNAs focused on the identification and discovery of novel diagnostic biomarkers of pediatric diseases.
Collapse
Affiliation(s)
| | - Cristina Felli
- Bambino Gesù Children's Hospital-IRCCS, Research Laboratories, 00146 Rome, Italy.
| | - Giorgio Prantera
- Department of Ecology and Biology, Università della Tuscia, 01100 Viterbo, Italy.
| | - Andrea Masotti
- Bambino Gesù Children's Hospital-IRCCS, Research Laboratories, 00146 Rome, Italy.
| |
Collapse
|
71
|
Hamam R, Hamam D, Alsaleh KA, Kassem M, Zaher W, Alfayez M, Aldahmash A, Alajez NM. Circulating microRNAs in breast cancer: novel diagnostic and prognostic biomarkers. Cell Death Dis 2017; 8:e3045. [PMID: 28880270 PMCID: PMC5636984 DOI: 10.1038/cddis.2017.440] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 06/13/2017] [Accepted: 06/20/2017] [Indexed: 12/13/2022]
Abstract
Effective management of breast cancer depends on early diagnosis and proper monitoring of patients' response to therapy. However, these goals are difficult to achieve because of the lack of sensitive and specific biomarkers for early detection and for disease monitoring. Accumulating evidence in the past several years has highlighted the potential use of peripheral blood circulating nucleic acids such as DNA, mRNA and micro (mi)RNA in breast cancer diagnosis, prognosis and for monitoring response to anticancer therapy. Among these, circulating miRNA is increasingly recognized as a promising biomarker, given the ease with which miRNAs can be isolated and their structural stability under different conditions of sample processing and isolation. In this review, we provide current state-of-the-art of miRNA biogenesis, function and discuss the advantages, limitations, as well as pitfalls of using circulating miRNAs as diagnostic, prognostic or predictive biomarkers in breast cancer management.
Collapse
Affiliation(s)
- Rimi Hamam
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Dana Hamam
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia.,McGill University Health Centre and RI-MUHC, Montreal, Canada
| | - Khalid A Alsaleh
- Medical Oncology Unit, Department of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Moustapha Kassem
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia.,KMEB, Department of Endocrinology, University of Southern Denmark, Odense, Denmark.,Institute of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Waleed Zaher
- Department of Anatomy, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia.,College of Medicine Research Center, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Musaad Alfayez
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Abdullah Aldahmash
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia.,Prince Naif Health Research Center, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Nehad M Alajez
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
72
|
Yadav S, Shekhawat M, Jahagirdar D, Kumar Sharma N. Natural and artificial small RNAs: a promising avenue of nucleic acid therapeutics for cancer. Cancer Biol Med 2017; 14:242-253. [PMID: 28884041 PMCID: PMC5570601 DOI: 10.20892/j.issn.2095-3941.2017.0038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/22/2017] [Indexed: 01/02/2023] Open
Abstract
Since the failure of traditional therapy, gene therapy using functional DNA sequence and small RNA/DNA molecules (oligonucleotide) has become a promising avenue for cancer treatment. The discovery of RNA molecules has impelled researchers to investigate small regulatory RNA from various natural and artificial sources and determine a cogent target for controlling tumor progression. Small regulatory RNAs are used for therapeutic silencing of oncogenes and aberrant DNA repair response genes. Despite their advantages, therapies based on small RNAs exhibit limitations in terms of stability of therapeutic drugs, precision-based delivery in tissues, precision-based intercellular and intracellular targeting, and tumor heterogeneity-based responses. In this study, we summarize the potential and drawbacks of small RNAs in nucleic acid therapeutics for cancer.
Collapse
Affiliation(s)
- Sunny Yadav
- Cancer and Translational Research Lab, Dr. D.Y Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| | - Mamta Shekhawat
- Cancer and Translational Research Lab, Dr. D.Y Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| | - Devashree Jahagirdar
- Cancer and Translational Research Lab, Dr. D.Y Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D.Y Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| |
Collapse
|
73
|
Gasparri ML, Casorelli A, Bardhi E, Besharat AR, Savone D, Ruscito I, Farooqi AA, Papadia A, Mueller MD, Ferretti E, Benedetti Panici P. Beyond circulating microRNA biomarkers: Urinary microRNAs in ovarian and breast cancer. Tumour Biol 2017; 39:1010428317695525. [PMID: 28459207 DOI: 10.1177/1010428317695525] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most common malignancy in women worldwide, and ovarian cancer is the most lethal gynecological malignancy. Women carrying a BRCA1/2 mutation have a very high lifetime risk of developing breast and ovarian cancer. The only effective risk-reducing strategy in BRCA-mutated women is a prophylactic surgery with bilateral mastectomy and bilateral salpingo-oophorectomy. However, many women are reluctant to undergo these prophylactic surgeries due to a consequent mutilated body perception, unfulfilled family planning, and precocious menopause. In these patients, an effective screening strategy is available only for breast cancer, but it only consists in close radiological exams with a significant burden for the health system and a significant distress to the patients. No biomarkers have been shown to effectively detect breast and ovarian cancer at an early stage. MicroRNAs (miRNAs) are key regulatory molecules operating in a post-transcriptional regulation of gene expression. Aberrant expression of miRNAs has been documented in several pathological conditions, including solid tumors, suggesting their involvement in tumorigenesis. miRNAs can be detected in blood and urine and could be used as biomarkers in solid tumors. Encouraging results are emerging in gynecological malignancy as well, and suggest a different pattern of expression of miRNAs in biological fluids of breast and ovarian cancer patients as compared to healthy control. Aim of this study is to highlight the role of the urinary miRNAs which are specifically associated with cancer and to investigate their role in early diagnosis and in determining the prognosis in breast and ovarian cancer.
Collapse
Affiliation(s)
- Maria Luisa Gasparri
- 1 Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, Rome, Italy.,2 Department of Obstetrics and Gynecology, University Hospital of Berne, University of Berne, Berne, Switzerland
| | - Assunta Casorelli
- 1 Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, Rome, Italy
| | - Erlisa Bardhi
- 1 Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, Rome, Italy
| | - Aris Raad Besharat
- 1 Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, Rome, Italy
| | - Delia Savone
- 1 Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, Rome, Italy
| | - Ilary Ruscito
- 1 Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, Rome, Italy
| | - Ammad Ahmad Farooqi
- 3 Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| | - Andrea Papadia
- 2 Department of Obstetrics and Gynecology, University Hospital of Berne, University of Berne, Berne, Switzerland
| | - Michael David Mueller
- 2 Department of Obstetrics and Gynecology, University Hospital of Berne, University of Berne, Berne, Switzerland
| | - Elisabetta Ferretti
- 4 Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.,5 Neuromed Institute, Pozzilli, Italy
| | | |
Collapse
|
74
|
Abstract
The accuracy and efficiency of tumor treatment depends mainly on early and precise diagnosis. Although histopathology is always the gold standard for cancer diagnosis, noninvasive biomarkers represent an opportunity for early detection and molecular staging of cancer. Besides the classical tumor markers, noncoding RNAs (ncRNAs) emerge to be a novel category of biomarker for cancer diagnosis since the dysregulation of ncRNAs is closely associated with the development and progression of human cancers such as liver, lung, breast, gastric, and other kinds of cancers. In this chapter, we will summarize the different types of ncRNAs in the diagnosis of major human cancers. In addition, we will introduce the recent advances in the detection and applications of circulating serum or plasma ncRNAs and non-blood fluid ncRNAs because the noninvasive body fluid-based assays are easy to examine for cancer diagnosis and monitoring.
Collapse
|
75
|
Identification of a Specific miRNA Profile in HIV-Exposed Seronegative Individuals. J Acquir Immune Defic Syndr 2017; 73:11-9. [PMID: 27171739 DOI: 10.1097/qai.0000000000001070] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE MicroRNAs (miRNAs) are small noncoding RNAs involved in the posttranscriptional regulation of gene expression that play important roles in viral infections. Alterations of specific miRNAs are described in HIV infection, suggesting a role for miRNAs in pathogenesis of this disease. We verified whether a particular miRNA signature could be identified in natural resistance to HIV-1. METHODS Expression level of 84 miRNAs was analyzed by RT-qPCR in plasma and unstimulated peripheral blood mononuclear cell (PBMC) of 30 seronegative individuals repeatedly exposed to HIV-1 (HESN), 30 HIV seropositive subjects (HIV+), and 30 healthy controls (HC). Results were confirmed by individual RT-qPCR in in vitro HIV-1-infected PBMC and in their cell culture medium. Dicer and Drosha expression was analyzed in basal PBMC. RESULTS Whereas Dicer and Drosha expression was comparable in HESN, HIV+ and HC, several miRNAs were upregulated both in HESN and HIV+ compared with HC. Furthermore, miRNA-29a and miR-223 were upregulated in both unstimulated PBMC and plasma of HESN alone; their expression was reduced upon in vitro HIV-1 infection of HESN PBMC indicating that, upon infection, they are secreted in the extracellular milieu. These results were confirmed by individual qPCR. CONCLUSIONS Our studies demonstrate that HIV-1 exposure modifies miRNAs expression even in the absence of productive infection. Because those miRNAs that are specifically increased only in HESN have been known to reduce HIV-1 replication, their modulation could represent an important mechanism in resistance to HIV-1 infection.
Collapse
|
76
|
Bahrami A, Aledavood A, Anvari K, Hassanian SM, Maftouh M, Yaghobzade A, Salarzaee O, ShahidSales S, Avan A. The prognostic and therapeutic application of microRNAs in breast cancer: Tissue and circulating microRNAs. J Cell Physiol 2017; 233:774-786. [DOI: 10.1002/jcp.25813] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 01/19/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Afsane Bahrami
- Molecular Medicine Group, Department of Modern Sciences and TechnologiesMashhad University of Medical SciencesMashhadIran
| | - Amir Aledavood
- Cancer Research Center, School of MedicineMashhad University of Medical SciencesMashhadIran
| | - Kazem Anvari
- Cancer Research Center, School of MedicineMashhad University of Medical SciencesMashhadIran
| | - Seyed Mahdi Hassanian
- Department of Medical Biotechnology, School of MedicineMashhad University of Medical SciencesMashhadIran
- Metabolic Syndrome Research Center, School of MedicineMashhad University of Medical SciencesMashhadIran
| | - Mina Maftouh
- Metabolic Syndrome Research Center, School of MedicineMashhad University of Medical SciencesMashhadIran
- Dr Akbarzadeh Pathobiology and Genetics LabMashhad University of Medical SciencesMashhadIran
| | - Ali Yaghobzade
- Student Research Committee, School of MedicineMashhad University of Medical SciencesMashhadIran
| | - Omid Salarzaee
- Student Research Committee, School of MedicineMashhad University of Medical SciencesMashhadIran
| | - Soodabeh ShahidSales
- Cancer Research Center, School of MedicineMashhad University of Medical SciencesMashhadIran
| | - Amir Avan
- Metabolic Syndrome Research Center, School of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
77
|
Leecharoenkiat K, Tanaka Y, Harada Y, Chaichompoo P, Sarakul O, Abe Y, Smith DR, Fucharoen S, Svasti S, Umemura T. Plasma microRNA-451 as a novel hemolytic marker for β0-thalassemia/HbE disease. Mol Med Rep 2017; 15:2495-2502. [PMID: 28447765 PMCID: PMC5428399 DOI: 10.3892/mmr.2017.6326] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/06/2016] [Indexed: 01/13/2023] Open
Abstract
In Southeast Asia, particularly in Thailand, β0-thalassemia/hemoglobin E (HbE) disease is a common hereditary hematological disease. It is associated with pathophysiological processes, such as the intramedullary destruction of immature erythroid cells and peripheral hemolysis of mature red blood cells. MicroRNA (miR) sequences, which are short non-coding RNA that regulate gene expression in a suppressive manner, serve a crucial role in human erythropoiesis. In the present study, the plasma levels of the erythroid-expressed miRNAs, miR‑451 and miR‑155, were analyzed in 23 patients with β0-thalassemia/HbE and 16 control subjects. Reverse transcription‑quantitative polymerase chain reaction analysis revealed significantly higher levels of plasma miR‑451 and miR‑155 in β0‑thalassemia/HbE patients when compared to the control subjects. Notably, among the β0‑thalassemia/HbE patients, a significant increase in miR‑451 levels was detected in severe cases when compared with mild cases. The levels of plasma miR‑451 correlated with reticulocyte and platelet counts. The results suggest that increased plasma miR‑451 levels may be associated with the degree of hemolysis and accelerated erythropoiesis in β0‑thalassemia/HbE patients. In conclusion, miR‑451 may represent a relevant biomarker for pathological erythropoiesis associated with β0-thalassemia/HbE.
Collapse
Affiliation(s)
- Kamonlak Leecharoenkiat
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yuka Tanaka
- Division of Medical Technology, Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Yasuko Harada
- Division of Medical Technology, Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Porntip Chaichompoo
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Orawan Sarakul
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Yasunobu Abe
- Department of Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Duncan Richard Smith
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Saovaros Svasti
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Tsukuru Umemura
- Division of Medical Technology, Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| |
Collapse
|
78
|
Pattern recognition for predictive, preventive, and personalized medicine in cancer. EPMA J 2017; 8:51-60. [PMID: 28620443 DOI: 10.1007/s13167-017-0083-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/05/2017] [Indexed: 12/18/2022]
Abstract
Predictive, preventive, and personalized medicine (PPPM) is the hot spot and future direction in the field of cancer. Cancer is a complex, whole-body disease that involved multi-factors, multi-processes, and multi-consequences. A series of molecular alterations at different levels of genes (genome), RNAs (transcriptome), proteins (proteome), peptides (peptidome), metabolites (metabolome), and imaging characteristics (radiome) that resulted from exogenous and endogenous carcinogens are involved in tumorigenesis and mutually associate and function in a network system, thus determines the difficulty in the use of a single molecule as biomarker for personalized prediction, prevention, diagnosis, and treatment for cancer. A key molecule-panel is necessary for accurate PPPM practice. Pattern recognition is an effective methodology to discover key molecule-panel for cancer. The modern omics, computation biology, and systems biology technologies lead to the possibility in recognizing really reliable molecular pattern for PPPM practice in cancer. The present article reviewed the pathophysiological basis, methodology, and perspective usages of pattern recognition for PPPM in cancer so that our previous opinion on multi-parameter strategies for PPPM in cancer is translated into real research and development of PPPM or precision medicine (PM) in cancer.
Collapse
|
79
|
Li G, Hu J, Hu G. Biomarker Studies in Early Detection and Prognosis of Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1026:27-39. [PMID: 29282678 DOI: 10.1007/978-981-10-6020-5_2] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Breast cancer is characterized with enormous heterogeneity, which represents the major hurdle for accurate diagnosis and curative therapy. It is generally believed that genome unstability and molecular evolvability underlie the robustness of cancer cells in hostile microenvironment and their resilience to therapeutic intervention. Conventional histopathological classification of breast cancer falls short of providing sufficient prognostic and predictive power, and thus biomarkers indicative of tumor intrinsic features at molecular levels have been actively pursued in biomedical researches. Currently, a number of molecular biomarkers are being used in standard clinical practice, including the hormone receptors for breast cancer subtyping and several genes involved in genome maintenance for prediction of breast cancer susceptibility. In addition, a number of biomarkers of single genes or multigene signatures have been approved for clinical use for breast cancer prognosis. A growing body of molecular biomarkers are being studied and tested to facilitate disease diagnosis and management, especially for breast cancer early detection, accurate prediction of metastatic behaviors, and selection of therapy. However, most of them are still at the preclinical stages. Finally, biomarkers of noninvasive protocols, such as serological molecules, have advantages in detection convenience over other biomarker types and therefore are of particular interest in translational and clinical development to improve diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Gang Li
- Chinese Academy of Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jing Hu
- Chinese Academy of Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Guohong Hu
- Chinese Academy of Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China.
- Shanghai Jiao-Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
80
|
O'Brien KP, Ramphul E, Howard L, Gallagher WM, Malone C, Kerin MJ, Dwyer RM. Circulating MicroRNAs in Cancer. Methods Mol Biol 2017; 1509:123-139. [PMID: 27826923 DOI: 10.1007/978-1-4939-6524-3_12] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is believed that microRNAs have potential as circulating biomarkers of disease; however, successful clinical implementation remains a challenge. This chapter highlights broad variations in approaches to microRNA analysis where whole blood, serum and plasma have each been employed as viable sources. Further discrepancies in approaches are seen in endogenous controls and extraction methods utilized. This has resulted in contradictory publications, even when the same microRNA is targeted in the same disease setting.Analysis of blood samples highlighted the impact of both collection method and storage, on the microRNA profile. Analysis of a panel of microRNAs across whole blood, serum, and plasma originating from the same individual emphasized the impact of starting material on microRNA profile. This is a highly topical field of research with immense potential for translation into the clinical setting. Standardization of sample harvesting, processing and analysis will be key to this translation. Methods of sample harvesting, preservation, and analysis are outlined, with important mitigating factors highlighted.
Collapse
Affiliation(s)
- Killian P O'Brien
- Discipline of Surgery, Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| | - Eimear Ramphul
- Discipline of Surgery, Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| | - Linda Howard
- Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| | - William M Gallagher
- Cancer Biology and Therapeutics Laboratory, UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Carmel Malone
- Discipline of Surgery, Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| | - Michael J Kerin
- Discipline of Surgery, Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| | - Róisín M Dwyer
- Discipline of Surgery, Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
81
|
Kanlikilicer P, Rashed MH, Bayraktar R, Mitra R, Ivan C, Aslan B, Zhang X, Filant J, Silva AM, Rodriguez-Aguayo C, Bayraktar E, Pichler M, Ozpolat B, Calin GA, Sood AK, Lopez-Berestein G. Ubiquitous Release of Exosomal Tumor Suppressor miR-6126 from Ovarian Cancer Cells. Cancer Res 2016; 76:7194-7207. [PMID: 27742688 PMCID: PMC5901763 DOI: 10.1158/0008-5472.can-16-0714] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/14/2016] [Accepted: 09/23/2016] [Indexed: 01/01/2023]
Abstract
Cancer cells actively promote their tumorigenic behavior by reprogramming gene expression. Loading intraluminal vesicles with specific miRNAs and releasing them into the tumor microenvironment as exosomes is one mechanism of reprogramming whose regulation remains to be elucidated. Here, we report that miR-6126 is ubiquitously released in high abundance from both chemosensitive and chemoresistant ovarian cancer cells via exosomes. Overexpression of miR-6126 was confirmed in healthy ovarian tissue compared with ovarian cancer patient samples and correlated with better overall survival in patients with high-grade serous ovarian cancer. miR-6126 acted as a tumor suppressor by directly targeting integrin-β1, a key regulator of cancer cell metastasis. miR-6126 mimic treatment of cancer cells resulted in increased miR-6126 and decreased integrin-β1 mRNA levels in the exosome. Functional analysis showed that treatment of endothelial cells with miR-6126 mimic significantly reduced tube formation as well as invasion and migration capacities of ovarian cancer cells in vitro Administration of miR-6126 mimic in an orthotopic mouse model of ovarian cancer elicited a relative reduction in tumor growth, proliferating cells, and microvessel density. miR-6126 inhibition promoted oncogenic behavior by leading ovarian cancer cells to release more exosomes. Our findings provide new insights into the role of exosomal miRNA-mediated tumor progression and suggest a new therapeutic approach to disrupt oncogenic phenotypes in tumors. Cancer Res; 76(24); 7194-207. ©2016 AACR.
Collapse
Affiliation(s)
- Pinar Kanlikilicer
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mohammed H Rashed
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Recep Bayraktar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rahul Mitra
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Burcu Aslan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xinna Zhang
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Justyna Filant
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Andreia M Silva
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Emine Bayraktar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Martin Pichler
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Division of Oncology, Medical University of Graz, Austria
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
82
|
Isaacs SR, Wang J, Kim KW, Yin C, Zhou L, Mi QS, Craig ME. MicroRNAs in Type 1 Diabetes: Complex Interregulation of the Immune System, β Cell Function and Viral Infections. Curr Diab Rep 2016; 16:133. [PMID: 27844276 DOI: 10.1007/s11892-016-0819-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Since the discovery of the first mammalian microRNA (miRNA) more than two decades ago, a plethora of miRNAs has been identified in humans, now amounting to more than 2500. Essential for post-transcriptional regulation of gene networks integral for developmental pathways and immune response, it is not surprising that dysregulation of miRNAs is often associated with the aetiology of complex diseases including cancer, diabetes and autoimmune disorders. Despite massive expansion of small RNA studies and extensive investigation in diverse disease contexts, the role of miRNAs in type 1 diabetes has only recently been explored. Key studies using human islets have recently implicated virus-induced miRNA dysregulation as a pivotal mechanism of β cell destruction, while the interplay between miRNAs, the immune system and β cell survival has been illustrated in studies using animal and cellular models of disease. The role of specific miRNAs as major players in immune system homeostasis highlights their exciting potential as therapeutics and prognostic biomarkers of type 1 diabetes.
Collapse
Affiliation(s)
- Sonia R Isaacs
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
- UNSW and POWH Virology Research Laboratory, Prince of Wales Hospital, Sydney, NSW, 2031, Australia
| | - Jie Wang
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, 48202, USA
- Department of Dermatology, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Ki Wook Kim
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
- UNSW and POWH Virology Research Laboratory, Prince of Wales Hospital, Sydney, NSW, 2031, Australia
| | - Congcong Yin
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, 48202, USA
- Department of Dermatology, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Li Zhou
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, 48202, USA
- Department of Dermatology, Henry Ford Health System, Detroit, MI, 48202, USA
- Department of Internal Medicine, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Qing Sheng Mi
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, 48202, USA
- Department of Dermatology, Henry Ford Health System, Detroit, MI, 48202, USA
- Department of Internal Medicine, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Maria E Craig
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia.
- UNSW and POWH Virology Research Laboratory, Prince of Wales Hospital, Sydney, NSW, 2031, Australia.
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, NSW, 2145, Australia.
- Discipline of Child and Adolescent Health, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
83
|
Dai H, Gallagher D, Schmitt S, Pessetto ZY, Fan F, Godwin AK, Tawfik O. Role of miR-139 as a surrogate marker for tumor aggression in breast cancer. Hum Pathol 2016; 61:68-77. [PMID: 27864119 DOI: 10.1016/j.humpath.2016.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 02/07/2023]
Abstract
MicroRNAs are non-protein coding molecules that play a key role in oncogenesis, tumor progression, and metastasis in many types of malignancies including breast cancer. In the current study, we studied the expression of microRNA-139-5p (miR-139) in invasive ductal carcinoma (IDC) of the breast and correlated its expression with tumor grade, molecular subtype, hormonal status, human epidermal growth factor receptor 2 status, proliferation index, tumor size, lymph node status, patient's age, and overall survival in 74 IDC cases. In addition, we compared and correlated miR-139 expression in 18 paired serum and tissue samples from patients with IDC to assess its value as a serum marker. Our data showed that miR-139 was down-regulated in all tumor tissue samples compared with control. More pronounced down-regulation was seen in tumors that were higher grade, estrogen receptor negative, progesterone receptor negative, more proliferative, or larger in size (P < .05). Although not statistically significant, lower miR-139 level was frequently associated with human epidermal growth factor receptor 2 overexpression. In addition, significantly lower miR-139 tissue level was seen in patients who were deceased (P = .027), although older age (>50 years) and positive local nodal disease did not adversely affect miR-139 expression. In contrast, serum miR-139 profile of the patients appeared similar to that of normal control. In conclusion, our study demonstrated that down-regulation of miR-139 was associated with aggressive tumor behavior and disease progression in breast cancer. miR-139 may serve as a risk assessment biomarker in tailoring treatment options.
Collapse
MESH Headings
- Biomarkers, Tumor/classification
- Biomarkers, Tumor/genetics
- Biopsy
- Breast Neoplasms/blood
- Breast Neoplasms/genetics
- Breast Neoplasms/mortality
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/blood
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/mortality
- Carcinoma, Ductal, Breast/pathology
- Cell Proliferation
- Disease Progression
- Down-Regulation
- Female
- Gene Expression Regulation, Neoplastic
- Genetic Predisposition to Disease
- Humans
- MicroRNAs/blood
- MicroRNAs/genetics
- Middle Aged
- Neoplasm Grading
- Neoplasm Invasiveness
- Phenotype
- Retrospective Studies
- Reverse Transcriptase Polymerase Chain Reaction
- Risk Factors
- Survival Analysis
- Tumor Burden
Collapse
Affiliation(s)
- Hongyan Dai
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66160
| | - Dan Gallagher
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66160
| | - Sarah Schmitt
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66160
| | - Ziyan Y Pessetto
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66160
| | - Fang Fan
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66160
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66160
| | - Ossama Tawfik
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66160.
| |
Collapse
|
84
|
Lyng MB, Kodahl AR, Binder H, Ditzel HJ. Prospective validation of a blood-based 9-miRNA profile for early detection of breast cancer in a cohort of women examined by clinical mammography. Mol Oncol 2016; 10:1621-1626. [PMID: 27839676 DOI: 10.1016/j.molonc.2016.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/23/2016] [Accepted: 10/17/2016] [Indexed: 12/21/2022] Open
Abstract
Mammography is the predominant screening method for early detection of breast cancer, but has limitations and could be rendered more accurate by combination with a blood-based biomarker profile. Circulating microRNAs (miRNAs) are increasingly recognized as strong biomarkers, and we previously developed a 9-miRNA profile using serum and LNA-based qPCR that effectively stratified patients with early stage breast cancer vs. healthy women. To further develop the test into routine clinical practice, we collected serum of women examined by clinical mammography (N = 197) according to standard operational procedures (SOPs) of the Danish Cancer Biobank. The performance of the circulating 9-miRNA profile was analyzed in 116 of these women, including 36 with breast cancer (aged 50-74), following a standardized protocol that mimicked a routine clinical set-up. We confirmed that the profile is significantly different between women with breast cancer and controls (p-value <0.0001), with an AUC of 0.61. Significantly, one woman whose 9-miRNA profile predicted a 73% probability of having breast cancer indeed developed the disease within one year despite being categorized as clinically healthy at the time of blood sample collection and mammography. We propose that this miRNA profile combined with mammography will increase the overall accuracy of early detection of breast cancer.
Collapse
Affiliation(s)
- Maria B Lyng
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| | - Annette R Kodahl
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Harald Binder
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Henrik J Ditzel
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Oncology, Odense University Hospital, Odense, Denmark.
| |
Collapse
|
85
|
Halimi M, Shahabi A, Moslemi D, Parsian H, Asghari SM, Sariri R, Yeganeh F, Zabihi E. Human serum miR-34a as an indicator of exposure to ionizing radiation. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2016; 55:423-429. [PMID: 27561942 DOI: 10.1007/s00411-016-0661-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/17/2016] [Indexed: 06/06/2023]
Abstract
Radiation exposure in industrial accidents or nuclear device attacks is a major public health concern. There is an urgent need for markers that rapidly identify people exposed to ionizing radiation (IR). Finding a blood-based marker is advantageous because of the ease of sample collection. This study was designed to test the hypothesis that serum miR-34a could serve as an indicator of exposure to IR. Therefore, 44 women with breast cancer, where radiotherapy was part of their therapeutic protocol, were investigated in this study. After demonstrating the appropriateness of our microRNA (miRNA) extraction efficiency and miRNA assay in human serum, we analyzed the miR-34a level in paired serum samples before and after radiotherapy. Fifty Gy X-ray irradiation in daily dose fractions of 2 Gy, 5 days per week, was used in this study. We demonstrated that IR significantly increased serum level of miR-34a. By measuring miR-34a in serum, we could distinguish irradiated patients with sensitivity of 65 % and specificity of 75 %. According to this study, serum miR-34a has the potential to be used as an indicator of radiation exposure.
Collapse
Affiliation(s)
- Mohammad Halimi
- Department of Biology, Babol Branch, Islamic Azad University, Babol, Iran
- Young Researchers and Elite Club, Babol Branch, Islamic Azad University, Babol, Iran
| | - Ahmad Shahabi
- Department of Biology, Babol Branch, Islamic Azad University, Babol, Iran
- Young Researchers and Elite Club, Babol Branch, Islamic Azad University, Babol, Iran
| | - Dariush Moslemi
- Department of Radiation Oncology, Babol University of Medical Sciences, Babol, Iran
| | - Hadi Parsian
- Cellular and molecular biology research center, Health research institute, Babol University of Medical Sciences, Babol, Iran.
- Clinical biochemistry department, Babol University of Medical Sciences, Babol, Iran.
| | - S Mohsen Asghari
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | - Reyhaneh Sariri
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Farshid Yeganeh
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Zabihi
- Cellular and molecular biology research center, Health research institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
86
|
Amorim M, Salta S, Henrique R, Jerónimo C. Decoding the usefulness of non-coding RNAs as breast cancer markers. J Transl Med 2016; 14:265. [PMID: 27629831 PMCID: PMC5024523 DOI: 10.1186/s12967-016-1025-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/31/2016] [Indexed: 12/19/2022] Open
Abstract
Although important advances in the management of breast cancer (BC) have been recently accomplished, it still constitutes the leading cause of cancer death in women worldwide. BC is a heterogeneous and complex disease, making clinical prediction of outcome a very challenging task. In recent years, gene expression profiling emerged as a tool to assist in clinical decision, enabling the identification of genetic signatures that better predict prognosis and response to therapy. Nevertheless, translation to routine practice has been limited by economical and technical reasons and, thus, novel biomarkers, especially those requiring non-invasive or minimally invasive collection procedures, while retaining high sensitivity and specificity might represent a significant development in this field. An increasing amount of evidence demonstrates that non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are aberrantly expressed in several cancers, including BC. miRNAs are of particular interest as new, easily accessible, cost-effective and non-invasive tools for precise management of BC patients because they circulate in bodily fluids (e.g., serum and plasma) in a very stable manner, enabling BC assessment and monitoring through liquid biopsies. This review focus on how ncRNAs have the potential to answer present clinical needs in the personalized management of patients with BC and comprehensively describes the state of the art on the role of ncRNAs in the diagnosis, prognosis and prediction of response to therapy in BC.
Collapse
Affiliation(s)
- Maria Amorim
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPOPorto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal
| | - Sofia Salta
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPOPorto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPOPorto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPOPorto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal. .,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal.
| |
Collapse
|
87
|
The effects of low-level laser irradiation on breast tumor in mice and the expression of Let-7a, miR-155, miR-21, miR125, and miR376b. Lasers Med Sci 2016; 31:1775-1782. [DOI: 10.1007/s10103-016-2049-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 08/05/2016] [Indexed: 12/20/2022]
|
88
|
Gautam A, Kumar R, Dimitrov G, Hoke A, Hammamieh R, Jett M. Identification of extracellular miRNA in archived serum samples by next-generation sequencing from RNA extracted using multiple methods. Mol Biol Rep 2016; 43:1165-78. [PMID: 27510798 PMCID: PMC5025515 DOI: 10.1007/s11033-016-4043-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 07/11/2016] [Indexed: 12/22/2022]
Abstract
miRNAs act as important regulators of gene expression by promoting mRNA degradation or by attenuating protein translation. Since miRNAs are stably expressed in bodily fluids, there is growing interest in profiling these miRNAs, as it is minimally invasive and cost-effective as a diagnostic matrix. A technical hurdle in studying miRNA dynamics is the ability to reliably extract miRNA as small sample volumes and low RNA abundance create challenges for extraction and downstream applications. The purpose of this study was to develop a pipeline for the recovery of miRNA using small volumes of archived serum samples. The RNA was extracted employing several widely utilized RNA isolation kits/methods with and without addition of a carrier. The small RNA library preparation was carried out using Illumina TruSeq small RNA kit and sequencing was carried out using Illumina platform. A fraction of five microliters of total RNA was used for library preparation as quantification is below the detection limit. We were able to profile miRNA levels in serum from all the methods tested. We found out that addition of nucleic acid based carrier molecules had higher numbers of processed reads but it did not enhance the mapping of any miRBase annotated sequences. However, some of the extraction procedures offer certain advantages: RNA extracted by TRIzol seemed to align to the miRBase best; extractions using TRIzol with carrier yielded higher miRNA-to-small RNA ratios. Nuclease free glycogen can be carrier of choice for miRNA sequencing. Our findings illustrate that miRNA extraction and quantification is influenced by the choice of methodologies. Addition of nucleic acid- based carrier molecules during extraction procedure is not a good choice when assaying miRNA using sequencing. The careful selection of an extraction method permits the archived serum samples to become valuable resources for high-throughput applications.
Collapse
Affiliation(s)
- Aarti Gautam
- US Army Center for Environmental Health Research, 568 Doughten Drive, Fort Detrick, 21702-5010, MD, USA
| | - Raina Kumar
- Advanced Biomedical Computing Center, Frederick National Laboratory for Cancer Research/Leidos-Biomedical Inc., Frederick, MD, 21702, USA
| | - George Dimitrov
- Advanced Biomedical Computing Center, Frederick National Laboratory for Cancer Research/Leidos-Biomedical Inc., Frederick, MD, 21702, USA
| | - Allison Hoke
- The Geneva Foundation, US Army Center for Environmental Health Research, Fort Detrick, MD, 21702, USA
| | - Rasha Hammamieh
- US Army Center for Environmental Health Research, 568 Doughten Drive, Fort Detrick, 21702-5010, MD, USA
| | - Marti Jett
- US Army Center for Environmental Health Research, 568 Doughten Drive, Fort Detrick, 21702-5010, MD, USA.
| |
Collapse
|
89
|
Fritz JV, Heintz-Buschart A, Ghosal A, Wampach L, Etheridge A, Galas D, Wilmes P. Sources and Functions of Extracellular Small RNAs in Human Circulation. Annu Rev Nutr 2016; 36:301-36. [PMID: 27215587 PMCID: PMC5479634 DOI: 10.1146/annurev-nutr-071715-050711] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Various biotypes of endogenous small RNAs (sRNAs) have been detected in human circulation, including microRNAs, transfer RNAs, ribosomal RNA, and yRNA fragments. These extracellular sRNAs (ex-sRNAs) are packaged and secreted by many different cell types. Ex-sRNAs exhibit differences in abundance in several disease states and have, therefore, been proposed for use as effective biomarkers. Furthermore, exosome-borne ex-sRNAs have been reported to elicit physiological responses in acceptor cells. Exogenous ex-sRNAs derived from diet (most prominently from plants) and microorganisms have also been reported in human blood. Essential issues that remain to be conclusively addressed concern the (a) presence and sources of exogenous ex-sRNAs in human bodily fluids, (b) detection and measurement of ex-sRNAs in human circulation, (c) selectivity of ex-sRNA export and import, (d) sensitivity and specificity of ex-sRNA delivery to cellular targets, and (e) cell-, tissue-, organ-, and organism-wide impacts of ex-sRNA-mediated cell-to-cell communication. We survey the present state of knowledge of most of these issues in this review.
Collapse
MESH Headings
- Animals
- Biological Transport
- Biomarkers/blood
- Cell Communication
- Diet
- Gastrointestinal Microbiome/immunology
- Gene Expression Regulation
- Host-Parasite Interactions
- Host-Pathogen Interactions
- Humans
- Immunity, Innate
- MicroRNAs/blood
- MicroRNAs/metabolism
- Models, Biological
- RNA, Bacterial/blood
- RNA, Bacterial/metabolism
- RNA, Plant/blood
- RNA, Plant/metabolism
- RNA, Ribosomal/blood
- RNA, Ribosomal/metabolism
- RNA, Small Interfering/blood
- RNA, Small Interfering/metabolism
- RNA, Small Untranslated/blood
- RNA, Small Untranslated/metabolism
- RNA, Transfer/blood
- RNA, Transfer/metabolism
- RNA, Viral/blood
- RNA, Viral/metabolism
Collapse
Affiliation(s)
- Joëlle V Fritz
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, L-4367 Belvaux, Luxembourg; ,
| | - Anna Heintz-Buschart
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, L-4367 Belvaux, Luxembourg; ,
| | - Anubrata Ghosal
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Linda Wampach
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, L-4367 Belvaux, Luxembourg; ,
| | - Alton Etheridge
- Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122
| | - David Galas
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, L-4367 Belvaux, Luxembourg; ,
- Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, L-4367 Belvaux, Luxembourg; ,
| |
Collapse
|
90
|
Thakur S, Grover RK, Gupta S, Yadav AK, Das BC. Identification of Specific miRNA Signature in Paired Sera and Tissue Samples of Indian Women with Triple Negative Breast Cancer. PLoS One 2016; 11:e0158946. [PMID: 27404381 PMCID: PMC4942139 DOI: 10.1371/journal.pone.0158946] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/24/2016] [Indexed: 12/15/2022] Open
Abstract
Of several subtypes of breast cancer, triple negative breast cancer (TNBC) is a highly aggressive tumor that lacks expression of hormone receptors for estrogen, progesterone and human epidermal growth factor receptor 2 and shows a worst prognosis. The small noncoding RNAs (miRNAs) considered as master regulator of gene expression play a key role in cancer initiation, progression and drug resistance and have emerged as attractive molecular biomarkers for diagnosis, prognosis and treatment targets in cancer. We have done expression profiling of selected miRNAs in paired serum and tissue samples of TNBC patients and corresponding cell lines and compared with that of other subtypes, in order to identify novel serum miRNA biomarkers for early detection and progression of TNBC. A total of 85 paired tumor tissues and sera with an equal number of adjacent normal tissue margins and normal sera from age matched healthy women including tissue and sera samples from 15 benign fibroadenomas were employed for the study. We report for the first time an extremely high prevalence (73.9%) of TNBC in premenopausal women below 35 years of age and a significant altered expression of a panel of three specific oncogenic miRNAs- miR-21, miR-221, miR-210, and three tumor suppressor miRNAs- miR-195, miR-145 and Let-7a in both tissues and corresponding sera of TNBC patients when compared with triple positive breast cancer (TPBC) patients. While miR-21, miR-221 and miR-210 showed significant over-expression, miR-195 and miR-145 were downregulated and well correlated with various clinicopathological and demographic risk factors, tumor grade, clinical stage and hormone receptor status. Interestingly, despite being a known tumor suppressor, Let-7a showed a significant overexpression in TNBCs. It is suggested that this panel of six miRNA signature may serve as a minimally invasive biomarker for an early detection of TNBC patients.
Collapse
Affiliation(s)
- Seema Thakur
- Dr. B.R. Ambedker Centre for Biomedical Research, University of Delhi, New Delhi, India
| | | | | | - Ajay K. Yadav
- Dr. B.R. Ambedker Centre for Biomedical Research, University of Delhi, New Delhi, India
| | - Bhudev C. Das
- Dr. B.R. Ambedker Centre for Biomedical Research, University of Delhi, New Delhi, India
- Stem Cell & Cancer Research Lab, Amity Institute of Molecular Medicine & stem cell Research (AIMMSCR), Amity University, Uttar Pradesh, Sector 125, Noida-201313, India
- * E-mail: ;
| |
Collapse
|
91
|
Wan QS, Zhang KH. Noninvasive detection of gastric cancer. Tumour Biol 2016; 37:11633-11643. [PMID: 27381515 DOI: 10.1007/s13277-016-5129-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/29/2016] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer (GC) is the fifth most common cancer and the third common cause of cancer death worldwide. Endoscopy is the most effective method for GC screening, but its application is limited by the invasion. Therefore, continuous efforts have been made to develop noninvasive methods for GC detection and promising results have been reported. Here, we review the advances in GC detection by protein and nucleic acid tumor markers, circulating tumor cells, and tumor-associated autoantibodies in peripheral blood. Some potential new noninvasive methods for GC detection are also reviewed, including exhaled breath analysis, blood spectroscopy analysis and molecular imaging.
Collapse
Affiliation(s)
- Qin-Si Wan
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology and Hepatology, 17 Yongwai Zheng Street, Nanchang, Jiangxi, 330006, China
| | - Kun-He Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology and Hepatology, 17 Yongwai Zheng Street, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
92
|
Diagnostic, Prognostic, and Therapeutic Value of Circulating miRNAs in Heart Failure Patients Associated with Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5893064. [PMID: 27379177 PMCID: PMC4917723 DOI: 10.1155/2016/5893064] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/18/2016] [Accepted: 04/26/2016] [Indexed: 12/17/2022]
Abstract
Heart failure is a major public health problem especially in the aging population (≥65 years old), affecting nearly 5 million Americans and 15 million European people. Effective management of heart failure (HF) depends on a correct and rapid diagnosis. Presently, BNP (brain natriuretic peptide) or N-terminal pro-brain natriuretic peptide (NT-proBNP) assay is generally accepted by the international community for diagnostic evaluation and risk stratification of patients with HF. However, regardless of its widespread clinical use, BNP is still encumbered by reduced specificity. As a result, diagnosis of heart failure remains challenging. Although significant improvement happened in the clinical management of HF over the last 2 decades, traditional treatments are ultimately ineffective in many patients who progress to advanced HF. Therefore, a novel diagnostic, prognostic biomarker and new therapeutic approach are required for clinical management of HF patients. Circulating miRNAs seem to be the right choice for novel noninvasive biomarkers as well as new treatment strategies for HF. In this review, we briefly discuss the diagnostic, prognostic, and therapeutic role of circulating miRNAs in heart failure patients. We also mentioned our own technique of extraction of RNA and detection of circulating miRNAs from human plasma and oxidative stress associated miRNAs with HF.
Collapse
|
93
|
Das DK, Osborne JR, Lin HY, Park JY, Ogunwobi OO. miR-1207-3p Is a Novel Prognostic Biomarker of Prostate Cancer. Transl Oncol 2016; 9:236-41. [PMID: 27267842 PMCID: PMC4907897 DOI: 10.1016/j.tranon.2016.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/08/2016] [Indexed: 01/04/2023] Open
Abstract
MicroRNAs (miRNAs) have been found to be dysregulated in prostate cancer (PCa). In this study, we investigated if miR-1207-3p is capable of distinguishing between indolent and aggressive PCa and if it contributes to explaining the disproportionate aggressiveness of PCa in men of African ancestry (moAA). A total of 404 patients with primary adenocarcinoma of the prostate were recruited between 1988 and 2003 at the Moffitt Cancer Center, Tampa, FL, USA. Patient clinicopathological features and demographic characteristics such as race were identified. RNA samples from 404 postprostatectomy prostate tumor tissue samples were analyzed by real-time quantitative reverse transcription polymerase chain reaction for the mRNA expression of miR-1207-3p. miR-1207-3p expression in PCa that resulted in overall death or PCa-specific death is significantly higher than in PCa cases that did not. The same positive correlation holds true for other clinical characteristics such as biochemical recurrence, Gleason score, clinical stage, and prostate-specific antigen level. Furthermore, miR-1207-3p expression was significantly less in moAA in comparison to Caucasian men. We also evaluated whether miR-1207-3p is associated with clinical outcomes adjusted for age at diagnosis and tumor stage in the modeling. Using competing risk regression, the PCa patients with a high miR-1207-3p expression (≥6 vs 3) had a high risk to develop PCa recurrence (hazard rate = 2.5, P < .001) adjusting for age at diagnosis and tumor stage. In conclusion, miR-1207-3p is a promising novel prognostic biomarker for PCa. Furthermore, miR-1207-3p may also be important in explaining the disproportionate aggressiveness of PCa in moAA.
Collapse
Affiliation(s)
- Dibash K Das
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY, 10065, USA; The Graduate Center Departments of Biology and Biochemistry, The City University of New York, New York, NY, 10016, USA
| | - Joseph R Osborne
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Hui-Yi Lin
- School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA, 70112
| | - Jong Y Park
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA.
| | - Olorunseun O Ogunwobi
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY, 10065, USA; The Graduate Center Departments of Biology and Biochemistry, The City University of New York, New York, NY, 10016, USA; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College Cornell University, New York, NY, 10065, USA.
| |
Collapse
|
94
|
Hamdi K, Blancato J, Goerlitz D, Islam MD, Neili B, Abidi A, Gat A, Ayed FB, Chivi S, Loffredo CA, Jillson I, Elgaaied AB, Marrakchi R. Circulating Cell-free miRNA Expression and its Association with Clinicopathologic Features in Inflammatory and Non-Inflammatory Breast Cancer. Asian Pac J Cancer Prev 2016; 17:1801-10. [DOI: 10.7314/apjcp.2016.17.4.1801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
95
|
Usmani A, Shoro AA, Shirazi B, Memon Z. Investigative and extrapolative role of microRNAs' genetic expression in breast carcinoma. Pak J Med Sci 2016; 32:766-72. [PMID: 27375730 PMCID: PMC4928439 DOI: 10.12669/pjms.323.9321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 11/17/2015] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRs) are non-coding ribonucleic acids consisting of about 18-22 nucleotide bases. Expression of several miRs can be altered in breast carcinomas in comparison to healthy breast tissue, or between various subtypes of breast cancer. These are regulated as either oncogene or tumor suppressors, this shows that their expression is misrepresented in cancers. Some miRs are specifically associated with breast cancer and are affected by cancer-restricted signaling pathways e.g. downstream of estrogen receptor-α or HER2/neu. Connection of multiple miRs with breast cancer, and the fact that most of these post transcript structures may transform complex functional networks of mRNAs, identify them as potential investigative, extrapolative and predictive tumor markers, as well as possible targets for treatment. Investigative tools that are currently available are RNA-based molecular techniques. An additional advantage related to miRs in oncology is that they are remarkably stable and are notably detectable in serum and plasma. Literature search was performed by using database of PubMed, the keywords used were microRNA (52 searches) AND breast cancer (169 searches). PERN was used by database of Bahria University, this included literature and articles from international sources; 2 articles from Pakistan on this topic were consulted (one in international journal and one in a local journal). Of these, 49 articles were shortlisted which discussed relation of microRNA genetic expression in breast cancer. These articles were consulted for this review.
Collapse
Affiliation(s)
- Ambreen Usmani
- Prof. Ambreen Usmani, Prof. & HOD, Anatomy, Bahria University Medical and Dental College, Karachi, Pakistan
| | - Amir Ali Shoro
- Prof. Amir Ali Shoro, Principal & Dean, Professor of Anatomy, Liaquat National Hospital & Medical College, Karachi, Pakistan
| | - Bushra Shirazi
- Prof. Bushra Shirazi, Professor of Surgery, Associate Dean-Clinical, Ziauddin University, Karachi, Pakistan
| | - Zahida Memon
- Prof. Zahida Memon, Professor & HOD-Pharmacology, Associate Dean-Pre Clinical, Ziauddin University, Karachi, Pakistan
| |
Collapse
|
96
|
Al-Khanbashi M, Caramuta S, Alajmi AM, Al-Haddabi I, Al-Riyami M, Lui WO, Al-Moundhri MS. Tissue and Serum miRNA Profile in Locally Advanced Breast Cancer (LABC) in Response to Neo-Adjuvant Chemotherapy (NAC) Treatment. PLoS One 2016; 11:e0152032. [PMID: 27064979 PMCID: PMC4827834 DOI: 10.1371/journal.pone.0152032] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/08/2016] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION MicroRNAs (miRNAs) are small non-coding RNA that plays a vital role in cancer progression. Neo-adjuvant chemotherapy (NAC) has become the standard of care for locally advanced breast cancer. The aim of this study was to evaluate miRNA alterations during NAC using multiple samples of tissue and serum to correlate miRNA expression with clinico-pathological features and patient outcomes. METHODS Tissue and serum samples were collected from patients with locally advanced breast cancer undergoing NAC at four time points: time of diagnosis, after the first and fourth cycle of doxorubicin/cyclophosphamide treatment, and after the fourth cycle of docetaxel administration. First, we evaluated the miRNA expression profiles in tissue and correlated expression with clinico-pathological features. Then, a panel of four miRNAs (miR-451, miR-3200, miR-21, and miR-205) in serum samples was further validated using quantitative reverse-transcription polymerase chain reaction (RT-qPCR). The alterations in serum levels of miRNA, associations with clinical and pathological responses, correlation with clinico-pathological features, and survival outcomes were studied using Friedman, Mann-Whitney U, and Spearman, Wilcoxon signed-ranks tests. P≤0.05 was considered statistically significant. RESULTS We analyzed 72 tissue samples and 108 serum samples from 9 patients and 27 patients, respectively. MicroRNA expression profiling of tumor versus normal tissue revealed more than 100 differentially expressed miRNAs. Serum miR-451 levels were significantly decreased during treatment, and higher serum levels were associated with improved clinical and pathological responses and disease-free survival. This is one of the early reports on miR-3200 in response to treatment in breast cancer, as serum levels of miR-3200 found to decline during NAC, and higher serum levels were associated with lower residual breast cancer burden and relapse rates at time of diagnosis. CONCLUSION Variations in serum miRNA levels during NAC treatment may be therapeutically significant for predicting response and survival outcomes.
Collapse
Affiliation(s)
- Manal Al-Khanbashi
- Medical Oncology Unit, Department of Medicine, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Stefano Caramuta
- Department of Oncology-Pathology, Karolinska institute, Cancer Center Karolinska, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Adil M. Alajmi
- Department of Surgery, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Ibrahim Al-Haddabi
- Department of Pathology, College of Medicine, Sultan Qaboos University, Muscat, Oman
| | - Marwa Al-Riyami
- Department of Pathology, College of Medicine, Sultan Qaboos University, Muscat, Oman
| | - Weng-Onn Lui
- Department of Oncology-Pathology, Karolinska institute, Cancer Center Karolinska, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Mansour S. Al-Moundhri
- Medical Oncology Unit, Department of Medicine, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
97
|
Das SG, Romagnoli M, Mineva ND, Barillé-Nion S, Jézéquel P, Campone M, Sonenshein GE. miR-720 is a downstream target of an ADAM8-induced ERK signaling cascade that promotes the migratory and invasive phenotype of triple-negative breast cancer cells. Breast Cancer Res 2016; 18:40. [PMID: 27039296 PMCID: PMC4818899 DOI: 10.1186/s13058-016-0699-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/14/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND ADAM8 (a disintegrin and metalloproteinase 8) protein promotes the invasive and metastatic phenotype of triple-negative breast cancer (TNBC) cells. High ADAM8 expression in breast cancer patients is an independent predictor of poor prognosis. Here, we investigated whether ADAM8 regulates specific miRNAs, their roles in aggressive phenotype, and potential use as biomarkers of disease. METHODS Microarray analysis was performed on RNA from MDA-MB-231 cells after transient ADAM8 knockdown using TaqMan miRNA cards. Changes in miRNA levels were confirmed using two ADAM8 siRNAs in TNBC cell lines. Kinase inhibitors, β1-integrin antagonist antibody, and different forms of ADAM8 were employed to elucidate the signaling pathway required for miR-720 expression. miR-720 levels were modulated using a specific antagomiR or a mimic, and effects on aggressive phenotype of TNBC cells were determined using Boyden chamber and 3D-Matrigel outgrowth assays. Plasma was isolated from mice before and after implantation of MDA-MB-231 cells and analyzed for miR-720 levels. Serum samples of TNBC patients were evaluated for their ADAM8 and miR-720 levels. RESULTS We identified 68 miRNAs differentially regulated upon ADAM8 knockdown, including decreased levels of secreted miR-720. Ectopic overexpression of wild-type ADAM8 or forms that lack metalloproteinase activity similarly induced miR-720 levels. The disintegrin and cysteine-rich domains of ADAM8 were shown to induce miR-720 via activation of a β1-integrin to ERK signaling cascade. Knockdown of miR-720 led to a significant decrease in migratory and invasive abilities of TNBC cells. Conversely, miR-720 overexpression rescued these properties. A profound increase in plasma levels of miR-720 was detected 7 days after TNBC cell inoculation into mouse mammary fat pads when tumors were barely palpable. Concordantly, miR-720 levels were found to be significantly higher in serum samples of TNBC patients with high ADAM8 expression. CONCLUSIONS We have shown for the first time that miR-720 is induced by ADAM8 signaling via ERK and plays an essential role in promoting the aggressive phenotype of TNBCs. miR-720 is elevated in serum of patients with ADAM8-high TNBC and, in a group with other miRNAs downstream of ADAM8, holds promise as a biomarker for early detection of or treatment response of ADAM8-positive TNBCs.
Collapse
Affiliation(s)
- Sonia G. Das
- />Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 USA
| | - Mathilde Romagnoli
- />Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 USA
- />Present address: Institut Curie, Centre de Recherche, UMR 144, 26 Rue d’Ulm, 75248 Paris, France
| | - Nora D. Mineva
- />Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 USA
| | | | - Pascal Jézéquel
- />INSERM U892, IRT-UN, 8 quai Moncousu, 44007 Nantes Cedex, France
- />Institut de Cancérologie de Nantes, Centre de Lutte Contre le Cancer René Gauducheau, Boulevard Jacques Monod, 44 805 Saint-Herblain-Nantes Cedex, France
| | - Mario Campone
- />INSERM U892, IRT-UN, 8 quai Moncousu, 44007 Nantes Cedex, France
- />Institut de Cancérologie de Nantes, Centre de Lutte Contre le Cancer René Gauducheau, Boulevard Jacques Monod, 44 805 Saint-Herblain-Nantes Cedex, France
| | - Gail E. Sonenshein
- />Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 USA
| |
Collapse
|
98
|
Zhao C, Lu F, Chen H, Zhao F, Zhu Z, Zhao X, Chen H. Clinical significance of circulating miRNA detection in lung cancer. Med Oncol 2016; 33:41. [PMID: 27034265 DOI: 10.1007/s12032-016-0757-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 12/17/2022]
Abstract
Lung cancer is the most common cancer in the world and the leading cause of tumor death among males. MicroRNAs (miRNAs) are single-stranded RNAs of approximately 22 nucleotides and constituted a new class of gene regulators in humans. As a novel class of emerging biomarkers, the aberrant expression of miRNA has been detected in various tumors. miRNAs are secreted into circulation by microvesicles from the broken tumor cells and act as either oncogenes or tumor suppressors in tumor tissues. In this review, we summarized different circulating miRNAs and their expression level as well as predictable values in lung cancer patients which were investigated in recent 5 years. Circulating miRNAs are found to be dysregulated and have association with clinicopathological parameters and overall survival in lung cancer patients. In conclusion, circulating miRNAs have the potential for distinguishing lung cancer patients from healthy individuals, with the advantages of stabilities, noninvasiveness and cost-effectiveness.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, People's Republic of China.,Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Funian Lu
- Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Hongxia Chen
- Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Fuqiang Zhao
- Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Ziwen Zhu
- Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, People's Republic of China.,Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Xianda Zhao
- Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Honglei Chen
- Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
99
|
Petrović N, Kolaković A, Stanković A, Lukić S, Řami A, ivković M, Mandušić V. miR-155 expression level changes might be associated with initial phases of breast cancer pathogenesis and lymph-node metastasis. Cancer Biomark 2016; 16:385-94. [DOI: 10.3233/cbm-160577] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Nina Petrović
- University of Belgrade-Vinča Institute of Nuclear Sciences, Mike Petrovića Alasa, Belgrade, Serbia
| | - Ana Kolaković
- University of Belgrade-Vinča Institute of Nuclear Sciences, Mike Petrovića Alasa, Belgrade, Serbia
| | - Aleksandra Stanković
- University of Belgrade-Vinča Institute of Nuclear Sciences, Mike Petrovića Alasa, Belgrade, Serbia
| | - Silvana Lukić
- Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Ahmad Řami
- University of Belgrade-Vinča Institute of Nuclear Sciences, Mike Petrovića Alasa, Belgrade, Serbia
| | - Maja ivković
- University of Belgrade-Vinča Institute of Nuclear Sciences, Mike Petrovića Alasa, Belgrade, Serbia
| | - Vesna Mandušić
- University of Belgrade-Vinča Institute of Nuclear Sciences, Mike Petrovića Alasa, Belgrade, Serbia
| |
Collapse
|
100
|
Panganiban RP, Wang Y, Howrylak J, Chinchilli VM, Craig TJ, August A, Ishmael FT. Circulating microRNAs as biomarkers in patients with allergic rhinitis and asthma. J Allergy Clin Immunol 2016; 137:1423-32. [PMID: 27025347 DOI: 10.1016/j.jaci.2016.01.029] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 11/20/2015] [Accepted: 01/08/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are emerging as important regulatory molecules that might be involved in the pathogenesis of various diseases. Circulating miRNAs might be noninvasive biomarkers to diagnose and characterize asthma and allergic rhinitis (AR). OBJECTIVE We sought to determine whether miRNAs are differentially expressed in the blood of asthmatic patients compared with those in the blood of nonasthmatic patients with AR and nonallergic nonasthmatic subjects. Furthermore, we sought to establish whether miRNAs could be used to characterize or subtype asthmatic patients. METHODS Expression of plasma miRNAs was measured by using real-time quantitative PCR in 35 asthmatic patients, 25 nonasthmatic patients with AR, and 19 nonallergic nonasthmatic subjects. Differentially expressed miRNAs were identified by using Kruskal-Wallis 1-way ANOVA with Bonferroni P value adjustment to correct for multiple comparisons. A random forest classification algorithm combined with a leave-one-out cross-validation approach was implemented to assess the predictive capacities of the profiled miRNAs. RESULTS We identified 30 miRNAs that were differentially expressed among healthy, allergic, and asthmatic subjects. These miRNAs fit into 5 different expression pattern groups. Among asthmatic patients, miRNA expression profiles identified 2 subtypes that differed by high or low peripheral eosinophil levels. Circulating miR-125b, miR-16, miR-299-5p, miR-126, miR-206, and miR-133b levels were most predictive of allergic and asthmatic status. CONCLUSIONS Subsets of circulating miRNAs are uniquely expressed in patients with AR and asthmatic patients and have potential for use as noninvasive biomarkers to diagnose and characterize these diseases.
Collapse
Affiliation(s)
- Ronaldo P Panganiban
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, Pa; Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pa
| | - Yanli Wang
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pa; Bioinformatics and Genomic Program, Pennsylvania State University, University Park, Pa
| | - Judie Howrylak
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, Pa
| | - Vernon M Chinchilli
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, Pa
| | - Timothy J Craig
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, Pa
| | - Avery August
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY
| | - Faoud T Ishmael
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, Pa; Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pa.
| |
Collapse
|