51
|
Bellissimo DC, Chen CH, Zhu Q, Bagga S, Lee CT, He B, Wertheim GB, Jordan M, Tan K, Worthen GS, Gilliland DG, Speck NA. Runx1 negatively regulates inflammatory cytokine production by neutrophils in response to Toll-like receptor signaling. Blood Adv 2020; 4:1145-1158. [PMID: 32208490 PMCID: PMC7094023 DOI: 10.1182/bloodadvances.2019000785] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/13/2020] [Indexed: 01/14/2023] Open
Abstract
RUNX1 is frequently mutated in myeloid and lymphoid malignancies. It has been shown to negatively regulate Toll-like receptor 4 (TLR4) signaling through nuclear factor κB (NF-κB) in lung epithelial cells. Here we show that RUNX1 regulates TLR1/2 and TLR4 signaling and inflammatory cytokine production by neutrophils. Hematopoietic-specific RUNX1 loss increased the production of proinflammatory mediators, including tumor necrosis factor-α (TNF-α), by bone marrow neutrophils in response to TLR1/2 and TLR4 agonists. Hematopoietic RUNX1 loss also resulted in profound damage to the lung parenchyma following inhalation of the TLR4 ligand lipopolysaccharide (LPS). However, neutrophils with neutrophil-specific RUNX1 loss lacked the inflammatory phenotype caused by pan-hematopoietic RUNX1 loss, indicating that dysregulated TLR4 signaling is not due to loss of RUNX1 in neutrophils per se. Rather, single-cell RNA sequencing indicates the dysregulation originates in a neutrophil precursor. Enhanced inflammatory cytokine production by neutrophils following pan-hematopoietic RUNX1 loss correlated with increased degradation of the inhibitor of NF-κB signaling, and RUNX1-deficient neutrophils displayed broad transcriptional upregulation of many of the core components of the TLR4 signaling pathway. Hence, early, pan-hematopoietic RUNX1 loss de-represses an innate immune signaling transcriptional program that is maintained in terminally differentiated neutrophils, resulting in their hyperinflammatory state. We hypothesize that inflammatory cytokine production by neutrophils may contribute to leukemia associated with inherited RUNX1 mutations.
Collapse
Affiliation(s)
- Dana C Bellissimo
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Chia-Hui Chen
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Qin Zhu
- Graduate Group in Genomics and Computational Biology
| | - Sumedha Bagga
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Chung-Tsai Lee
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Bing He
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Gerald B Wertheim
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, and
| | - Martha Jordan
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, and
| | - Kai Tan
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Graduate Group in Genomics and Computational Biology
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - G Scott Worthen
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Nancy A Speck
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
52
|
Chen ELY, Thompson PK, Zúñiga-Pflücker JC. RBPJ-dependent Notch signaling initiates the T cell program in a subset of thymus-seeding progenitors. Nat Immunol 2019; 20:1456-1468. [PMID: 31636466 PMCID: PMC6858571 DOI: 10.1038/s41590-019-0518-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/11/2019] [Indexed: 12/30/2022]
Abstract
T cell specification and commitment require Notch signaling. Although the requirement for Notch signaling during intrathymic T cell development is known, it is still unclear whether the onset of T cell priming can occur in a prethymic niche and whether RBPJ-dependent Notch signaling has a role during this event. Here, we established an Rbpj-inducible system that allowed temporal and tissue-specific control of the responsiveness to Notch in all hematopoietic cells. Using this system, we found that Notch signaling was required before the early T cell progenitor stage in the thymus. Lymphoid-primed multipotent progenitors in the bone marrow underwent Notch signaling with Rbpj induction, which inhibited development towards the myeloid lineage in thymus-seeding progenitors. Thus, our results indicated that the onset of T cell differentiation occurred in a prethymic setting, and that Notch played an important role during this event.
Collapse
Affiliation(s)
- Edward L Y Chen
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Patrycja K Thompson
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Juan Carlos Zúñiga-Pflücker
- Sunnybrook Research Institute, Toronto, Ontario, Canada. .,Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
53
|
Duan Y, Prasad R, Feng D, Beli E, Li Calzi S, Longhini ALF, Lamendella R, Floyd JL, Dupont M, Noothi SK, Sreejit G, Athmanathan B, Wright J, Jensen AR, Oudit GY, Markel TA, Nagareddy PR, Obukhov AG, Grant MB. Bone Marrow-Derived Cells Restore Functional Integrity of the Gut Epithelial and Vascular Barriers in a Model of Diabetes and ACE2 Deficiency. Circ Res 2019; 125:969-988. [PMID: 31610731 DOI: 10.1161/circresaha.119.315743] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RATIONALE There is incomplete knowledge of the impact of bone marrow cells on the gut microbiome and gut barrier function. OBJECTIVE We postulated that diabetes mellitus and systemic ACE2 (angiotensin-converting enzyme 2) deficiency would synergize to adversely impact both the microbiome and gut barrier function. METHODS AND RESULTS Bacterial 16S rRNA sequencing and metatranscriptomic analysis were performed on fecal samples from wild-type, ACE2-/y, Akita (type 1 diabetes mellitus), and ACE2-/y-Akita mice. Gut barrier integrity was assessed by immunofluorescence, and bone marrow cell extravasation into the small intestine was evaluated by flow cytometry. In the ACE2-/y-Akita or Akita mice, the disrupted barrier was associated with reduced levels of myeloid angiogenic cells, but no increase in inflammatory monocytes was observed within the gut parenchyma. Genomic and metatranscriptomic analysis of the microbiome of ACE2-/y-Akita mice demonstrated a marked increase in peptidoglycan-producing bacteria. When compared with control cohorts treated with saline, intraperitoneal administration of myeloid angiogenic cells significantly decreased the microbiome gene expression associated with peptidoglycan biosynthesis and restored epithelial and endothelial gut barrier integrity. Also indicative of diabetic gut barrier dysfunction, increased levels of peptidoglycan and FABP-2 (intestinal fatty acid-binding protein 2) were observed in plasma of human subjects with type 1 diabetes mellitus (n=21) and type 2 diabetes mellitus (n=23) compared with nondiabetic controls (n=23). Using human retinal endothelial cells, we determined that peptidoglycan activates a noncanonical TLR-2 (Toll-like receptor 2) associated MyD88 (myeloid differentiation primary response protein 88)-ARNO (ADP-ribosylation factor nucleotide-binding site opener)-ARF6 (ADP-ribosylation factor 6) signaling cascade, resulting in destabilization of p120-catenin and internalization of VE-cadherin as a mechanism of deleterious impact of peptidoglycan on the endothelium. CONCLUSIONS We demonstrate for the first time that the defect in gut barrier function and dysbiosis in ACE2-/y-Akita mice can be favorably impacted by exogenous administration of myeloid angiogenic cells.
Collapse
Affiliation(s)
- Yaqian Duan
- From the Department of Anatomy, Cell Biology and Physiology (Y.D., A.G.O.), Indiana University School of Medicine, Indianapolis.,Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, China (Y.D.)
| | - Ram Prasad
- Department of Ophthalmology and Visual Sciences (R.P., S.L.C., A.L.F.L., J.L.F., M.D., S.K.N., M.B.G.), University of Alabama at Birmingham
| | - Dongni Feng
- Department of Ophthalmology, The Eugene and Marilyn Glick Eye Institute (D.F., E.B.), Indiana University School of Medicine, Indianapolis
| | - Eleni Beli
- Department of Ophthalmology, The Eugene and Marilyn Glick Eye Institute (D.F., E.B.), Indiana University School of Medicine, Indianapolis
| | - Sergio Li Calzi
- Department of Ophthalmology and Visual Sciences (R.P., S.L.C., A.L.F.L., J.L.F., M.D., S.K.N., M.B.G.), University of Alabama at Birmingham
| | - Ana Leda F Longhini
- Department of Ophthalmology and Visual Sciences (R.P., S.L.C., A.L.F.L., J.L.F., M.D., S.K.N., M.B.G.), University of Alabama at Birmingham
| | - Regina Lamendella
- Ohio State University, Wright Labs, LLC, Huntingdon, PA (R.L., J.W.)
| | - Jason L Floyd
- Department of Ophthalmology and Visual Sciences (R.P., S.L.C., A.L.F.L., J.L.F., M.D., S.K.N., M.B.G.), University of Alabama at Birmingham
| | - Mariana Dupont
- Department of Ophthalmology and Visual Sciences (R.P., S.L.C., A.L.F.L., J.L.F., M.D., S.K.N., M.B.G.), University of Alabama at Birmingham
| | - Sunil K Noothi
- Department of Ophthalmology and Visual Sciences (R.P., S.L.C., A.L.F.L., J.L.F., M.D., S.K.N., M.B.G.), University of Alabama at Birmingham
| | | | | | - Justin Wright
- Ohio State University, Wright Labs, LLC, Huntingdon, PA (R.L., J.W.)
| | - Amanda R Jensen
- Riley Hospital for Children, Pediatric Surgery (A.R.J., T.A.M.), Indiana University School of Medicine, Indianapolis
| | - Gavin Y Oudit
- Ohio State University, Wright Labs, LLC, Huntingdon, PA (R.L., J.W.)
| | - Troy A Markel
- Riley Hospital for Children, Pediatric Surgery (A.R.J., T.A.M.), Indiana University School of Medicine, Indianapolis
| | | | - Alexander G Obukhov
- From the Department of Anatomy, Cell Biology and Physiology (Y.D., A.G.O.), Indiana University School of Medicine, Indianapolis
| | - Maria B Grant
- Department of Ophthalmology and Visual Sciences (R.P., S.L.C., A.L.F.L., J.L.F., M.D., S.K.N., M.B.G.), University of Alabama at Birmingham
| |
Collapse
|
54
|
Mass E. Delineating the origins, developmental programs and homeostatic functions of tissue-resident macrophages. Int Immunol 2019; 30:493-501. [PMID: 29986024 DOI: 10.1093/intimm/dxy044] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/04/2018] [Indexed: 12/22/2022] Open
Abstract
A literature covering 150 years of research indicates that macrophages are a diverse family of professional phagocytes that continuously explore their environment, recognize and scavenge pathogens, unfit cells, cell debris as well as metabolites, and produce a large range of bioactive molecules and growth factors. A new paradigm suggests that most tissue-resident macrophages originate from fetal precursors that colonize developing organs and self-maintain independently of bone marrow-derived cells throughout life. The differentiation of these precursors is driven by a core macrophage transcriptional program and immediately followed by their specification through expression of tissue-specific transcriptional regulators early during embryogenesis. Despite our increasing understanding of ontogeny and genetic programs that shape differentiation processes and functions of macrophages, the precise developmental trajectories of tissue-resident macrophages remain undefined. Here, I review current models of fetal hematopoietic waves, possible routes of macrophage development and their roles during homeostasis. Further, transgenic mouse models are discussed providing a toolset to study the developmentally and functionally distinct arms of the phagocyte system in vivo.
Collapse
Affiliation(s)
- Elvira Mass
- Developmental Biology of the Innate Immune System, LIMES-Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
55
|
Nbn-Mre11 interaction is required for tumor suppression and genomic integrity. Proc Natl Acad Sci U S A 2019; 116:15178-15183. [PMID: 31285322 DOI: 10.1073/pnas.1905305116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We derived a mouse model in which a mutant form of Nbn/Nbs1mid8 (hereafter Nbnmid8) exhibits severely impaired binding to the Mre11-Rad50 core of the Mre11 complex. The Nbn mid8 allele was expressed exclusively in hematopoietic lineages (in Nbn -/mid8vav mice). Unlike Nbn flox/floxvav mice with Nbn deficiency in the bone marrow, Nbn -/mid8vav mice were viable. Nbn -/mid8vav mice hematopoiesis was profoundly defective, exhibiting reduced cellularity of thymus and bone marrow, and stage-specific blockage of B cell development. Within 6 mo, Nbn -/mid8 mice developed highly penetrant T cell leukemias. Nbn -/mid8vav leukemias recapitulated mutational features of human T cell acute lymphoblastic leukemia (T-ALL), containing mutations in NOTCH1, TP53, BCL6, BCOR, and IKZF1, suggesting that Nbn mid8 mice may provide a venue to examine the relationship between the Mre11 complex and oncogene activation in the hematopoietic compartment. Genomic analysis of Nbn -/mid8vav malignancies showed focal amplification of 9qA2, causing overexpression of MRE11 and CHK1 We propose that overexpression of MRE11 compensates for the metastable Mre11-Nbnmid8 interaction, and that selective pressure for overexpression reflects the essential role of Nbn in promoting assembly and activity of the Mre11 complex.
Collapse
|
56
|
Singh T, Colberg JK, Sarmiento L, Chaves P, Hansen L, Bsharat S, Cataldo LR, Dudenhöffer-Pfeifer M, Fex M, Bryder D, Holmberg D, Sitnicka E, Cilio C, Prasad RB, Artner I. Loss of MafA and MafB expression promotes islet inflammation. Sci Rep 2019; 9:9074. [PMID: 31235823 PMCID: PMC6591483 DOI: 10.1038/s41598-019-45528-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022] Open
Abstract
Maf transcription factors are critical regulators of beta-cell function. We have previously shown that reduced MafA expression in human and mouse islets is associated with a pro-inflammatory gene signature. Here, we investigate if the loss of Maf transcription factors induced autoimmune processes in the pancreas. Transcriptomics analysis showed expression of pro-inflammatory as well as immune cell marker genes. However, clusters of CD4+ T and B220+ B cells were associated primarily with adult MafA−/−MafB+/−, but not MafA−/− islets. MafA expression was detected in the thymus, lymph nodes and bone marrow suggesting a novel role of MafA in regulating immune-cell function. Analysis of pancreatic lymph node cells showed activation of CD4+ T cells, but lack of CD8+ T cell activation which also coincided with an enrichment of naïve CD8+ T cells. Further analysis of T cell marker genes revealed a reduction of T cell receptor signaling gene expression in CD8, but not in CD4+ T cells, which was accompanied with a defect in early T cell receptor signaling in mutant CD8+ T cells. These results suggest that loss of MafA impairs both beta- and T cell function affecting the balance of peripheral immune responses against islet autoantigens, resulting in local inflammation in pancreatic islets.
Collapse
Affiliation(s)
- Tania Singh
- Stem Cell Center, Lund University, Klinikgatan 26, Lund, 22184, Sweden.,Lund University Diabetes Center, Jan Waldenströms gata 35, Malmö, 21428, Sweden
| | - Jesper K Colberg
- Stem Cell Center, Lund University, Klinikgatan 26, Lund, 22184, Sweden
| | - Luis Sarmiento
- Lund University Diabetes Center, Jan Waldenströms gata 35, Malmö, 21428, Sweden
| | - Patricia Chaves
- Stem Cell Center, Lund University, Klinikgatan 26, Lund, 22184, Sweden
| | - Lisbeth Hansen
- Lund University Diabetes Center, Jan Waldenströms gata 35, Malmö, 21428, Sweden
| | - Sara Bsharat
- Stem Cell Center, Lund University, Klinikgatan 26, Lund, 22184, Sweden.,Lund University Diabetes Center, Jan Waldenströms gata 35, Malmö, 21428, Sweden
| | - Luis R Cataldo
- Stem Cell Center, Lund University, Klinikgatan 26, Lund, 22184, Sweden.,Lund University Diabetes Center, Jan Waldenströms gata 35, Malmö, 21428, Sweden
| | | | - Malin Fex
- Lund University Diabetes Center, Jan Waldenströms gata 35, Malmö, 21428, Sweden
| | - David Bryder
- Stem Cell Center, Lund University, Klinikgatan 26, Lund, 22184, Sweden
| | - Dan Holmberg
- Lund University Diabetes Center, Jan Waldenströms gata 35, Malmö, 21428, Sweden
| | - Ewa Sitnicka
- Stem Cell Center, Lund University, Klinikgatan 26, Lund, 22184, Sweden
| | - Corrado Cilio
- Lund University Diabetes Center, Jan Waldenströms gata 35, Malmö, 21428, Sweden
| | - Rashmi B Prasad
- Lund University Diabetes Center, Jan Waldenströms gata 35, Malmö, 21428, Sweden
| | - Isabella Artner
- Stem Cell Center, Lund University, Klinikgatan 26, Lund, 22184, Sweden. .,Lund University Diabetes Center, Jan Waldenströms gata 35, Malmö, 21428, Sweden.
| |
Collapse
|
57
|
Yang Z, Shah K, Khodadadi-Jamayran A, Jiang H. Control of Hematopoietic Stem and Progenitor Cell Function through Epigenetic Regulation of Energy Metabolism and Genome Integrity. Stem Cell Reports 2019; 13:61-75. [PMID: 31231026 PMCID: PMC6627005 DOI: 10.1016/j.stemcr.2019.05.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/23/2022] Open
Abstract
It remains largely unclear how stem cells regulate bioenergetics and genome integrity to ensure tissue homeostasis. Here, our integrative gene analyses suggest that metabolic and genotoxic stresses may underlie the common functional defects of both fetal and adult hematopoietic stem and progenitor cells (HSPCs) upon loss of DPY30, an epigenetic modulator that facilitates H3K4 methylation. DPY30 directly regulates expression of several key glycolytic genes, and its loss in HSPCs critically impaired energy metabolism, including both glycolytic and mitochondrial pathways. We also found significant increase in DNA breaks as a result of impaired DNA repair upon DPY30 loss, and inhibition of DNA damage response partially rescued clonogenicity of the DPY30-deficient HSPCs. Moreover, CDK inhibitor p21 was upregulated in DPY30-deficient HSPCs, and p21 deletion alleviated their functional defect. These results demonstrate that epigenetic mechanisms by H3K4 methylation play a crucial role in HSPC function through control of energy metabolism and protecting genome integrity. DPY30-deficient fetal and adult HSCs are defective in maintenance and differentiation Glycolytic and oxidative metabolism are dysregulated in DPY30-deficient HSCs Increase in DNA damage response contributes to dysfunction of DPY30-deficient HSPCs P21 increase partially mediates dysfunction of DPY30-deficient HSPCs
Collapse
Affiliation(s)
- Zhenhua Yang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA.
| | - Kushani Shah
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Alireza Khodadadi-Jamayran
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Hao Jiang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA; Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 JPA, Pinn Hall Room 6017, Charlottesville, VA 22908, USA.
| |
Collapse
|
58
|
A Subset of Skin Macrophages Contributes to the Surveillance and Regeneration of Local Nerves. Immunity 2019; 50:1482-1497.e7. [DOI: 10.1016/j.immuni.2019.05.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/21/2019] [Accepted: 05/17/2019] [Indexed: 11/20/2022]
|
59
|
Jacome-Galarza CE, Percin GI, Muller JT, Mass E, Lazarov T, Eitler J, Rauner M, Yadav VK, Crozet L, Bohm M, Loyher PL, Karsenty G, Waskow C, Geissmann F. Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature 2019; 568:541-545. [PMID: 30971820 DOI: 10.1038/s41586-019-1105-7] [Citation(s) in RCA: 340] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 03/06/2019] [Indexed: 11/09/2022]
Abstract
Osteoclasts are multinucleated giant cells that resorb bone, ensuring development and continuous remodelling of the skeleton and the bone marrow haematopoietic niche. Defective osteoclast activity leads to osteopetrosis and bone marrow failure1-9, whereas excess activity can contribute to bone loss and osteoporosis10. Osteopetrosis can be partially treated by bone marrow transplantation in humans and mice11-18, consistent with a haematopoietic origin of osteoclasts13,16,19 and studies that suggest that they develop by fusion of monocytic precursors derived from haematopoietic stem cells in the presence of CSF1 and RANK ligand1,20. However, the developmental origin and lifespan of osteoclasts, and the mechanisms that ensure maintenance of osteoclast function throughout life in vivo remain largely unexplored. Here we report that osteoclasts that colonize fetal ossification centres originate from embryonic erythro-myeloid progenitors21,22. These erythro-myeloid progenitor-derived osteoclasts are required for normal bone development and tooth eruption. Yet, timely transfusion of haematopoietic-stem-cell-derived monocytic cells in newborn mice is sufficient to rescue bone development in early-onset autosomal recessive osteopetrosis. We also found that the postnatal maintenance of osteoclasts, bone mass and the bone marrow cavity involve iterative fusion of circulating blood monocytic cells with long-lived osteoclast syncytia. As a consequence, parabiosis or transfusion of monocytic cells results in long-term gene transfer in osteoclasts in the absence of haematopoietic-stem-cell chimerism, and can rescue an adult-onset osteopetrotic phenotype caused by cathepsin K deficiency23,24. In sum, our results identify the developmental origin of osteoclasts and a mechanism that controls their maintenance in bones after birth. These data suggest strategies to rescue osteoclast deficiency in osteopetrosis and to modulate osteoclast activity in vivo.
Collapse
Affiliation(s)
- Christian E Jacome-Galarza
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gulce I Percin
- Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute for Immunology, Dresden, Germany.,Regeneration in Hematopoiesis, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Faculty of Biological Sciences, Friedrich-Schiller University, Jena, Germany
| | - James T Muller
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elvira Mass
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Developmental Biology of the Innate Immune System, LIMES Institute, University of Bonn, Bonn, Germany
| | - Tomi Lazarov
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jiri Eitler
- Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute for Immunology, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III, Faculty of Medicine, Dresden, Germany
| | - Vijay K Yadav
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA
| | - Lucile Crozet
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mathieu Bohm
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pierre-Louis Loyher
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gerard Karsenty
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA
| | - Claudia Waskow
- Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute for Immunology, Dresden, Germany. .,Regeneration in Hematopoiesis, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Faculty of Biological Sciences, Friedrich-Schiller University, Jena, Germany. .,Department of Medicine III, Faculty of Medicine, Dresden, Germany.
| | - Frederic Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
60
|
Phenotypic differences in early outgrowth angiogenic cells based on in vitro cultivation. Cytotechnology 2019; 71:665-670. [PMID: 30756209 DOI: 10.1007/s10616-019-00305-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 02/07/2019] [Indexed: 10/27/2022] Open
Abstract
Bone marrow-derived early outgrowth cells play an important role in endothelial repair. In vitro isolation techniques have identified two distinct morphological early outgrowth cell populations, but it is still unknown whether they present some functional phenotypic differences. Accordingly, the aim of the present study was to determine whether there are phenotypic differences in cellular function between two putative early outgrowth cells in culture. Peripheral blood samples were collected from 18 healthy adults. Thereafter, mononuclear cells were isolated by Ficoll density-gradient centrifugation and plated on 6-well plates coated with human fibronectin. After 2 and 7 days, respectively, non-adherent cells (NAC) and adherent cells (AC) underwent functional assays in order to measure the migratory capacity (Boyden chamber), angiogenic growth factor release (ELISA) and apoptosis (TUNEL). Migration to both VEGF (517 ± 74 vs. 273 ± 74 AU) and SDF-1 (517 ± 68 vs. 232 ± 68 AU) were approximately twofold higher (P < 0.05) in the NAC when compared to AC. Release of angiogenic factors, granulocyte colony-stimulating and hepatocyte growth factor, were not different between cell types. Apoptotic response to staurosporine was significantly lower in NAC (20 ± 32 vs. 125 ± 32%). In summary, NAC and AC demonstrated functional phenotypic differences in migratory capacity and apoptotic susceptibility, which makes it difficult to compare these two early outgrowth cell populations in literature.
Collapse
|
61
|
Quijada P, Misra A, Velasquez LS, Burke RM, Lighthouse JK, Mickelsen DM, Dirkx RA, Small EM. Pre-existing fibroblasts of epicardial origin are the primary source of pathological fibrosis in cardiac ischemia and aging. J Mol Cell Cardiol 2019; 129:92-104. [PMID: 30771308 DOI: 10.1016/j.yjmcc.2019.01.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 01/11/2023]
Abstract
Serum response factor (SRF) and the SRF co-activators myocardin-related transcription factors (MRTFs) are essential for epicardium-derived progenitor cell (EPDC)-mobilization during heart development; however, the impact of developmental EPDC deficiencies on adult cardiac physiology has not been evaluated. Here, we utilize the Wilms Tumor-1 (Wt1)-Cre to delete Mrtfs or Srf in the epicardium, which reduced the number of EPDCs in the adult cardiac interstitium. Deficiencies in Wt1-lineage EPDCs prevented the development of cardiac fibrosis and diastolic dysfunction in aged mice. Mice lacking MRTF or SRF in EPDCs also displayed preservation of cardiac function following myocardial infarction partially due to the depletion of Wt1 lineage-derived cells in the infarct. Interestingly, depletion of Wt1-lineage EPDCs allows for the population of the infarct with a Wt1-negative cell lineage with a reduced fibrotic profile. Taken together, our study conclusively demonstrates the contribution of EPDCs to both ischemic cardiac remodeling and the development of diastolic dysfunction in old age, and reveals the existence of an alternative Wt1-negative source of resident fibroblasts that can populate the infarct.
Collapse
Affiliation(s)
- Pearl Quijada
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Adwiteeya Misra
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Department of Biomedical Engineering, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Lissette S Velasquez
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Ryan M Burke
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Janet K Lighthouse
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Deanne M Mickelsen
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Ronald A Dirkx
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Eric M Small
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Department of Biomedical Engineering, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
62
|
Percin GI, Eitler J, Kranz A, Fu J, Pollard JW, Naumann R, Waskow C. CSF1R regulates the dendritic cell pool size in adult mice via embryo-derived tissue-resident macrophages. Nat Commun 2018; 9:5279. [PMID: 30538245 PMCID: PMC6290072 DOI: 10.1038/s41467-018-07685-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/05/2018] [Indexed: 12/14/2022] Open
Abstract
Regulatory mechanisms controlling the pool size of spleen dendritic cells (DC) remain incompletely understood. DCs are continuously replenished from hematopoietic stem cells, and FLT3-mediated signals cell-intrinsically regulate homeostatic expansion of spleen DCs. Here we show that combining FLT3 and CSF1R-deficiencies results in specific and complete abrogation of spleen DCs in vivo. Spatiotemporally controlled CSF1R depletion reveals a cell-extrinsic and non-hematopoietic mechanism for DC pool size regulation. Lack of CSF1R-mediated signals impedes the differentiation of spleen macrophages of embryonic origin, and the resulted macrophage depletion during development or in adult mice results in loss of DCs. Moreover, embryo-derived macrophages are important for the physiologic regeneration of DC after activation-induced depletion in situ. In summary, we show that the differentiation of DC and their regeneration relies on ontogenetically distinct spleen macrophages, thereby providing a novel regulatory principle that may also be important for the differentiation of other hematopoietic cell types.
Collapse
Affiliation(s)
- Gulce Itir Percin
- Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute for Immunology, Fetscherstr. 74, 01307, Dresden, Germany
- Regeneration in Hematopoiesis, Leibniz-Institute on Aging - Fritz-Lipmann-Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Jiri Eitler
- Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute for Immunology, Fetscherstr. 74, 01307, Dresden, Germany
| | - Andrea Kranz
- Genomics, Biotechnology Center, TU Dresden, BioInnovationsZentrum, Tatzberg 47-49, 01307, Dresden, Germany
| | - Jun Fu
- Genomics, Biotechnology Center, TU Dresden, BioInnovationsZentrum, Tatzberg 47-49, 01307, Dresden, Germany
| | - Jeffrey W Pollard
- MRC and University of Edinburgh Centre for Reproductive Health, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
- Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road S, Edinburgh, EH16 4TJ, Scotland, UK
| | - Ronald Naumann
- Max Planck Institute of Molecular Cell Biology and Genetics, Transgenic Core Facility, Pfotenhauerstr. 108, 01307, Dresden, Germany
| | - Claudia Waskow
- Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute for Immunology, Fetscherstr. 74, 01307, Dresden, Germany.
- Regeneration in Hematopoiesis, Leibniz-Institute on Aging - Fritz-Lipmann-Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany.
- Department of Medicine III, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
- Faculty of Biological Sciences, Friedrich-Schiller University, Fürstengraben 1, 07743, Jena, Germany.
| |
Collapse
|
63
|
Chaves P, Zriwil A, Wittmann L, Boukarabila H, Peitzsch C, Jacobsen SEW, Sitnicka E. Loss of Canonical Notch Signaling Affects Multiple Steps in NK Cell Development in Mice. THE JOURNAL OF IMMUNOLOGY 2018; 201:3307-3319. [PMID: 30366956 DOI: 10.4049/jimmunol.1701675] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 09/27/2018] [Indexed: 11/19/2022]
Abstract
Within the hematopoietic system, the Notch pathway is critical for promoting thymic T cell development and suppressing the B and myeloid lineage fates; however, its impact on NK lymphopoiesis is less understood. To study the role of Notch during NK cell development in vivo, we investigated different NK cell compartments and function in Rbp-Jkfl/flVav-Cretg/+ mice, in which Rbp-Jk, the major transcriptional effector of canonical Notch signaling, was specifically deleted in all hematopoietic cells. Peripheral conventional cytotoxic NK cells in Rbp-Jk-deleted mice were significantly reduced and had an activated phenotype. Furthermore, the pool of early NK cell progenitors in the bone marrow was decreased, whereas immature NK cells were increased, leading to a block in NK cell maturation. These changes were cell intrinsic as the hematopoietic chimeras generated after transplantation of Rbp-Jk-deficient bone marrow cells had the same NK cell phenotype as the Rbp-Jk-deleted donor mice, whereas the wild-type competitors did not. The expression of several crucial NK cell regulatory pathways was significantly altered after Rbp-Jk deletion. Together, these results demonstrate the involvement of canonical Notch signaling in regulation of multiple stages of NK cell development.
Collapse
Affiliation(s)
- Patricia Chaves
- Lund Research Center for Stem Cell Biology and Cell Therapy, Lund University, 221 84 Lund, Sweden.,Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden
| | - Alya Zriwil
- Lund Research Center for Stem Cell Biology and Cell Therapy, Lund University, 221 84 Lund, Sweden.,Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden
| | - Lilian Wittmann
- Lund Research Center for Stem Cell Biology and Cell Therapy, Lund University, 221 84 Lund, Sweden.,Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden
| | - Hanane Boukarabila
- Haematopoietic Stem Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Claudia Peitzsch
- Lund Research Center for Stem Cell Biology and Cell Therapy, Lund University, 221 84 Lund, Sweden
| | - Sten Eirik W Jacobsen
- Haematopoietic Stem Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom.,MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom.,Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 141 86 Stockholm, Sweden; and.,Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Ewa Sitnicka
- Lund Research Center for Stem Cell Biology and Cell Therapy, Lund University, 221 84 Lund, Sweden; .,Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
64
|
Buxadé M, Huerga Encabo H, Riera-Borrull M, Quintana-Gallardo L, López-Cotarelo P, Tellechea M, Martínez-Martínez S, Redondo JM, Martín-Caballero J, Flores JM, Bosch E, Rodríguez-Fernández JL, Aramburu J, López-Rodríguez C. Macrophage-specific MHCII expression is regulated by a remote Ciita enhancer controlled by NFAT5. J Exp Med 2018; 215:2901-2918. [PMID: 30327417 PMCID: PMC6219740 DOI: 10.1084/jem.20180314] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/27/2018] [Accepted: 09/17/2018] [Indexed: 01/05/2023] Open
Abstract
NFAT5 regulates macrophage MHCII expression by controlling the transcription of its coactivator Ciita through a remote enhancer. This mechanism differs from those previously found in DCs and B lymphocytes and distinguishes macrophages from these APC lineages. MHCII in antigen-presenting cells (APCs) is a key regulator of adaptive immune responses. Expression of MHCII genes is controlled by the transcription coactivator CIITA, itself regulated through cell type–specific promoters. Here we show that the transcription factor NFAT5 is needed for expression of Ciita and MHCII in macrophages, but not in dendritic cells and other APCs. NFAT5-deficient macrophages showed defective activation of MHCII-dependent responses in CD4+ T lymphocytes and attenuated capacity to elicit graft rejection in vivo. Ultrasequencing analysis of NFAT5-immunoprecipitated chromatin uncovered an NFAT5-regulated region distally upstream of Ciita. This region was required for CIITA and hence MHCII expression, exhibited NFAT5-dependent characteristics of active enhancers such as H3K27 acetylation marks, and required NFAT5 to interact with Ciita myeloid promoter I. Our results uncover an NFAT5-regulated mechanism that maintains CIITA and MHCII expression in macrophages and thus modulates their T lymphocyte priming capacity.
Collapse
Affiliation(s)
- Maria Buxadé
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, and Barcelona Biomedical Research Park, Barcelona, Spain
| | - Hector Huerga Encabo
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, and Barcelona Biomedical Research Park, Barcelona, Spain
| | - Marta Riera-Borrull
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, and Barcelona Biomedical Research Park, Barcelona, Spain
| | - Lucía Quintana-Gallardo
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, and Barcelona Biomedical Research Park, Barcelona, Spain
| | - Pilar López-Cotarelo
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Mónica Tellechea
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, and Barcelona Biomedical Research Park, Barcelona, Spain
| | - Sara Martínez-Martínez
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Juan Miguel Redondo
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Juan Martín-Caballero
- Parc Cientific de Barcelona/Barcelona Biomedical Research Park Animal Facilities, Barcelona, Spain
| | - Juana María Flores
- Department of Animal Medicine and Surgery, School of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Elena Bosch
- Institute of Evolutionary Biology (Spanish National Research Council), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - José Luis Rodríguez-Fernández
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Jose Aramburu
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, and Barcelona Biomedical Research Park, Barcelona, Spain
| | - Cristina López-Rodríguez
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, and Barcelona Biomedical Research Park, Barcelona, Spain
| |
Collapse
|
65
|
Impaired tumor growth and angiogenesis in mice heterozygous for Vegfr2 (Flk1). Sci Rep 2018; 8:14724. [PMID: 30283071 PMCID: PMC6170482 DOI: 10.1038/s41598-018-33037-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 09/18/2018] [Indexed: 12/29/2022] Open
Abstract
VEGF signaling through its tyrosine kinase receptor, VEGFR2 (FLK1), is critical for tumor angiogenesis. Previous studies have identified a critical gene dosage effect of VegfA in embryonic development and vessel homeostasis, neovascularization, and tumor growth, and potent inhibitors of VEGFR2 have been used to treat a variety of cancers. Inhibition of FGFR signaling has also been considered as an antiangiogenic approach to treat a variety of cancers. Inhibition of VEGFR2 with neutralizing antibodies or with pharmacological inhibitors of the VEGFR tyrosine kinase domain has at least short-term efficacy with some cancers; however, also affects vessel homeostasis, leading to adverse complications. We investigate gene dosage effects of Vegfr2, Fgfr1, and Fgfr2 in three independent mouse models of tumorigenesis: two-stage skin chemical carcinogenesis, and sub-cutaneous transplantation of B16F0 melanoma and Lewis Lung Carcinoma (LLC). Mice heterozygous for Vegfr2 display profound defects in supporting tumor growth and angiogenesis. Unexpectedly, additional deletion of endothelial Fgfr1 and Fgfr2 in Vegfr2 heterozygous mice shows similar tumor growth and angiogenesis as the Vegfr2 heterozygous mice. Notably, hematopoietic deletion of two alleles of Vegfr2 had minimal impact on tumor growth, with little effect on angiogenesis, reinforcing the importance of endothelial Vegfr2 heterozygosity. These studies reveal previously unrecognized Vegfr2 gene dosage effects in tumor angiogenesis and a lack of synergy between VEGFR2 and endothelial FGFR1/2 signaling during tumor growth.
Collapse
|
66
|
Zriwil A, Böiers C, Kristiansen TA, Wittmann L, Yuan J, Nerlov C, Sitnicka E, Jacobsen SEW. Direct role of FLT3 in regulation of early lymphoid progenitors. Br J Haematol 2018; 183:588-600. [PMID: 30596405 PMCID: PMC6492191 DOI: 10.1111/bjh.15578] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/21/2018] [Indexed: 02/01/2023]
Abstract
Given that FLT3 expression is highly restricted on lymphoid progenitors, it is possible that the established role of FLT3 in the regulation of B and T lymphopoiesis reflects its high expression and role in regulation of lymphoid-primed multipotent progenitors (LMPPs) or common lymphoid progenitors (CLPs). We generated a Flt3 conditional knock-out (Flt3fl/fl) mouse model to address the direct role of FLT3 in regulation of lymphoid-restricted progenitors, subsequent to turning on Rag1 expression, as well as potentially ontogeny-specific roles in B and T lymphopoiesis. Our studies establish a prominent and direct role of FLT3, independently of the established role of FLT3 in regulation of LMPPs and CLPs, in regulation of fetal as well as adult early B cell progenitors, and the early thymic progenitors (ETPs) in adult mice but not in the fetus. Our findings highlight the potential benefit of targeting poor prognosis acute B-cell progenitor leukaemia and ETP leukaemia with recurrent FLT3 mutations using clinical FLT3 inhibitors.
Collapse
Affiliation(s)
- Alya Zriwil
- Lund Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden.,Division of Molecular Haematology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Charlotta Böiers
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Trine A Kristiansen
- Division of Molecular Haematology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Lilian Wittmann
- Lund Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden.,Division of Molecular Haematology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Joan Yuan
- Division of Molecular Haematology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Claus Nerlov
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Ewa Sitnicka
- Lund Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden.,Division of Molecular Haematology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sten E W Jacobsen
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Wallenberg Institute for Regenerative Medicine, Department of Cell and Molecular Biology, Center for Haematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
67
|
Korovina I, Neuwirth A, Sprott D, Weber S, Sardar Pasha SPB, Gercken B, Breier G, El-Armouche A, Deussen A, Karl MO, Wielockx B, Chavakis T, Klotzsche-von Ameln A. Hematopoietic hypoxia-inducible factor 2α deficiency ameliorates pathological retinal neovascularization via modulation of endothelial cell apoptosis. FASEB J 2018; 33:1758-1770. [PMID: 30156910 DOI: 10.1096/fj.201800430r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A hallmark of proliferative retinopathies, such as retinopathy of prematurity (ROP), is a pathological neovascularization orchestrated by hypoxia and the resulting hypoxia-inducible factor (HIF)-dependent response. We studied the role of Hif2α in hematopoietic cells for pathological retina neovascularization in the murine model of ROP, the oxygen-induced retinopathy (OIR) model. Hematopoietic-specific deficiency of Hif2α ameliorated pathological neovascularization in the OIR model, which was accompanied by enhanced endothelial cell apoptosis. That latter finding was associated with up-regulation of the apoptosis-inducer FasL in Hif2α-deficient microglia. Consistently, pharmacological inhibition of the FasL reversed the reduced pathological neovascularization from hematopoietic-specific Hif2α deficiency. Our study found that the hematopoietic cell Hif2α contributes to pathological retina angiogenesis. Our findings not only provide novel insights regarding the complex interplay between immune cells and endothelial cells in hypoxia-driven retina neovascularization but also may have therapeutic implications for proliferative retinopathies.-Korovina, I., Neuwirth, A., Sprott, D., Weber, S., Sardar Pasha, S. P. B., Gercken, B., Breier, G., El-Armouche, A., Deussen, A., Karl, M. O., Wielockx, B., Chavakis, T., Klotzsche-von Ameln, A. Hematopoietic hypoxia-inducible factor 2α deficiency ameliorates pathological retinal neovascularization via modulation of endothelial cell apoptosis.
Collapse
Affiliation(s)
- Irina Korovina
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ales Neuwirth
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - David Sprott
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Silvio Weber
- Institute of Pharmacology and Toxicology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Sheik Pran Babu Sardar Pasha
- Deutsche Forschungsgemeinschaft (DFG) Center for Regenerative Therapies, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Bettina Gercken
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Georg Breier
- Medical Biology, Department of Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ali El-Armouche
- Institute of Pharmacology and Toxicology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Andreas Deussen
- Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Mike O Karl
- Deutsche Forschungsgemeinschaft (DFG) Center for Regenerative Therapies, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany.,German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Ben Wielockx
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Deutsche Forschungsgemeinschaft (DFG) Center for Regenerative Therapies, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Anne Klotzsche-von Ameln
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
68
|
Hayashi Y, Zhang Y, Yokota A, Yan X, Liu J, Choi K, Li B, Sashida G, Peng Y, Xu Z, Huang R, Zhang L, Freudiger GM, Wang J, Dong Y, Zhou Y, Wang J, Wu L, Bu J, Chen A, Zhao X, Sun X, Chetal K, Olsson A, Watanabe M, Romick-Rosendale LE, Harada H, Shih LY, Tse W, Bridges JP, Caligiuri MA, Huang T, Zheng Y, Witte DP, Wang QF, Qu CK, Salomonis N, Grimes HL, Nimer SD, Xiao Z, Huang G. Pathobiological Pseudohypoxia as a Putative Mechanism Underlying Myelodysplastic Syndromes. Cancer Discov 2018; 8:1438-1457. [PMID: 30139811 DOI: 10.1158/2159-8290.cd-17-1203] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 06/26/2018] [Accepted: 08/20/2018] [Indexed: 11/16/2022]
Abstract
Myelodysplastic syndromes (MDS) are heterogeneous hematopoietic disorders that are incurable with conventional therapy. Their incidence is increasing with global population aging. Although many genetic, epigenetic, splicing, and metabolic aberrations have been identified in patients with MDS, their clinical features are quite similar. Here, we show that hypoxia-independent activation of hypoxia-inducible factor 1α (HIF1A) signaling is both necessary and sufficient to induce dysplastic and cytopenic MDS phenotypes. The HIF1A transcriptional signature is generally activated in MDS patient bone marrow stem/progenitors. Major MDS-associated mutations (Dnmt3a, Tet2, Asxl1, Runx1, and Mll1) activate the HIF1A signature. Although inducible activation of HIF1A signaling in hematopoietic cells is sufficient to induce MDS phenotypes, both genetic and chemical inhibition of HIF1A signaling rescues MDS phenotypes in a mouse model of MDS. These findings reveal HIF1A as a central pathobiologic mediator of MDS and as an effective therapeutic target for a broad spectrum of patients with MDS.Significance: We showed that dysregulation of HIF1A signaling could generate the clinically relevant diversity of MDS phenotypes by functioning as a signaling funnel for MDS driver mutations. This could resolve the disconnection between genotypes and phenotypes and provide a new clue as to how a variety of driver mutations cause common MDS phenotypes. Cancer Discov; 8(11); 1438-57. ©2018 AACR. See related commentary by Chen and Steidl, p. 1355 This article is highlighted in the In This Issue feature, p. 1333.
Collapse
Affiliation(s)
- Yoshihiro Hayashi
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Yue Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Asumi Yokota
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Xiaomei Yan
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jinqin Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Kwangmin Choi
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Bing Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Goro Sashida
- International Research Center for Medical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Yanyan Peng
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Zefeng Xu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Rui Huang
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lulu Zhang
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - George M Freudiger
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jingya Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yunzhu Dong
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Yile Zhou
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jieyu Wang
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lingyun Wu
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Hematology, Sixth Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Jiachen Bu
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Aili Chen
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Xinghui Zhao
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Xiujuan Sun
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Kashish Chetal
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Andre Olsson
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Miki Watanabe
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lindsey E Romick-Rosendale
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Hironori Harada
- Laboratory of Oncology, School of Life Science, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Lee-Yung Shih
- Department of Hematology and Oncology, Chang Gung Memorial Hospital-Linkou and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - William Tse
- James Graham Brown Cancer Center, University of Louisville Hospital, Louisville, Kentucky
| | - James P Bridges
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Yi Zheng
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - David P Witte
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Qian-Fei Wang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Cheng-Kui Qu
- Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, Georgia
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - H Leighton Grimes
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Zhijian Xiao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| | - Gang Huang
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio. .,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
69
|
Kiers D, Wielockx B, Peters E, van Eijk LT, Gerretsen J, John A, Janssen E, Groeneveld R, Peters M, Damen L, Meneses AM, Krüger A, Langereis JD, Zomer AL, Blackburn MR, Joosten LA, Netea MG, Riksen NP, van der Hoeven JG, Scheffer GJ, Eltzschig HK, Pickkers P, Kox M. Short-Term Hypoxia Dampens Inflammation in vivo via Enhanced Adenosine Release and Adenosine 2B Receptor Stimulation. EBioMedicine 2018; 33:144-156. [PMID: 29983349 PMCID: PMC6085583 DOI: 10.1016/j.ebiom.2018.06.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 01/18/2023] Open
Abstract
Hypoxia and inflammation are closely intertwined phenomena. Critically ill patients often suffer from systemic inflammatory conditions and concurrently experience short-lived hypoxia. We evaluated the effects of short-term hypoxia on systemic inflammation, and show that it potently attenuates pro-inflammatory cytokine responses during murine endotoxemia. These effects are independent of hypoxia-inducible factors (HIFs), but involve augmented adenosine levels, in turn resulting in an adenosine 2B receptor-mediated post-transcriptional increase of interleukin (IL)-10 production. We translated our findings to humans using the experimental endotoxemia model, where short-term hypoxia resulted in enhanced plasma concentrations of adenosine, augmentation of endotoxin-induced circulating IL-10 levels, and concurrent attenuation of the pro-inflammatory cytokine response. Again, HIFs were shown not to be involved. Taken together, we demonstrate that short-term hypoxia dampens the systemic pro-inflammatory cytokine response through enhanced purinergic signaling in mice and men. These effects may contribute to outcome and provide leads for immunomodulatory treatment strategies for critically ill patients.
Collapse
Affiliation(s)
- Dorien Kiers
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Anesthesiology, Radboud University Medical Centre, Nijmegen, the Netherlands; Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ben Wielockx
- Heisenberg Research Group, Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Esther Peters
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lucas T van Eijk
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jelle Gerretsen
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Aaron John
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Emmy Janssen
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rianne Groeneveld
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mara Peters
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lars Damen
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ana M Meneses
- Heisenberg Research Group, Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Anja Krüger
- Heisenberg Research Group, Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Jeroen D Langereis
- Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Aldert L Zomer
- Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Center, Nijmegen, the Netherlands; Centre for Molecular and Biomolecular Informatics (CMBI) Bacterial Genomics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Michael R Blackburn
- Department of Biochemistry & Molecular Biology, McGovern Medical School, University of Texas, USA
| | - Leo A Joosten
- Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Mihai G Netea
- Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Niels P Riksen
- Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Johannes G van der Hoeven
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Gert-Jan Scheffer
- Department of Anesthesiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Holger K Eltzschig
- Center for Perioperative Medicine, Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center, Houston, USA
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Matthijs Kox
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
70
|
Schmidt K, Zhang Q, Tasdogan A, Petzold A, Dahl A, Arneth BM, Slany R, Fehling HJ, Kranz A, Stewart AF, Anastassiadis K. The H3K4 methyltransferase Setd1b is essential for hematopoietic stem and progenitor cell homeostasis in mice. eLife 2018; 7:27157. [PMID: 29916805 PMCID: PMC6025962 DOI: 10.7554/elife.27157] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/08/2018] [Indexed: 12/11/2022] Open
Abstract
Hematopoietic stem cells require MLL1, which is one of six Set1/Trithorax-type histone 3 lysine 4 (H3K4) methyltransferases in mammals and clinically the most important leukemia gene. Here, we add to emerging evidence that all six H3K4 methyltransferases play essential roles in the hematopoietic system by showing that conditional mutagenesis of Setd1b in adult mice provoked aberrant homeostasis of hematopoietic stem and progenitor cells (HSPCs). Using both ubiquitous and hematopoietic-specific deletion strategies, the loss of Setd1b resulted in peripheral thrombo- and lymphocytopenia, multilineage dysplasia, myeloid-biased extramedullary hematopoiesis in the spleen, and lethality. By transplantation experiments and expression profiling, we determined that Setd1b is autonomously required in the hematopoietic lineages where it regulates key lineage specification components, including Cebpa, Gata1, and Klf1. Altogether, these data imply that the Set1/Trithorax-type epigenetic machinery sustains different aspects of hematopoiesis and constitutes a second framework additional to the transcription factor hierarchy of hematopoietic homeostasis.
Collapse
Affiliation(s)
- Kerstin Schmidt
- Stem Cell Engineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Qinyu Zhang
- Genomics, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Alpaslan Tasdogan
- Institute of Immunology, University Hospital Ulm, Ulm, Germany.,Department of Dermatology, University Hospital Ulm, Ulm, Germany
| | - Andreas Petzold
- Deep Sequencing Group, DFG - Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Andreas Dahl
- Deep Sequencing Group, DFG - Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Borros M Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities Giessen and Marburg, Giessen, Germany
| | - Robert Slany
- Department of Genetics, Friedrich Alexander Universität Erlangen, Erlangen, Germany
| | | | - Andrea Kranz
- Genomics, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | | | | |
Collapse
|
71
|
SETD1A protects HSCs from activation-induced functional decline in vivo. Blood 2018; 131:1311-1324. [DOI: 10.1182/blood-2017-09-806844] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 01/10/2018] [Indexed: 12/13/2022] Open
Abstract
Key Points
SETD1A regulates DNA damage signaling and repair in HSCs and hematopoietic precursors in the absence of reactive oxygen species accumulation. SETD1A is important for the survival of mice after inflammation-induced HSC activation in situ.
Collapse
|
72
|
Pesaresi M, Bonilla-Pons SA, Simonte G, Sanges D, Di Vicino U, Cosma MP. Endogenous Mobilization of Bone-Marrow Cells Into the Murine Retina Induces Fusion-Mediated Reprogramming of Müller Glia Cells. EBioMedicine 2018. [PMID: 29525572 PMCID: PMC5952225 DOI: 10.1016/j.ebiom.2018.02.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Müller glial cells (MGCs) represent the most plastic cell type found in the retina. Following injury, zebrafish and avian MGCs can efficiently re-enter the cell cycle, proliferate and generate new functional neurons. The regenerative potential of mammalian MGCs, however, is very limited. Here, we showed that N-methyl-d-aspartate (NMDA) damage stimulates murine MGCs to re-enter the cell cycle and de-differentiate back to a progenitor-like stage. These events are dependent on the recruitment of endogenous bone marrow cells (BMCs), which, in turn, is regulated by the stromal cell-derived factor 1 (SDF1)-C-X-C motif chemokine receptor type 4 (CXCR4) pathway. BMCs mobilized into the damaged retina can fuse with resident MGCs, and the resulting hybrids undergo reprogramming followed by re-differentiation into cells expressing markers of ganglion and amacrine neurons. Our findings constitute an important proof-of-principle that mammalian MGCs retain their regenerative potential, and that such potential can be activated via cell fusion with recruited BMCs. In this perspective, our study could contribute to the development of therapeutic strategies based on the enhancement of mammalian endogenous repair capabilities. Endogenous bone marrow cells migrate into NMDA-damaged murine retinae and fuse with retinal Müller glial cells (MGCs). MGCs can be reprogrammed to retinal progenitors to then differentiate into ganglion and amacrine neurons. Modulation of the SDF1/CXCR4 pathway regulates BMC migration, BMC-MGC fusion, and MGC reprogramming.
Retinal degeneration is present in a large and heterogeneous group of debilitating diseases, often not curable. Cell therapy represents an interesting approach to regenerate injured retinal tissue. However, it comes with some hurdles in terms of engraftment and differentiation of the transplanted cells. Here, we reported that murine Müller glia cells can be converted into retinal neurons after fusion with endogenous bone marrow cells. The efficiency of this mechanism can be enhanced by perturbation of the SDF1/CXCR4 signaling pathway. Our study provides an important proof-of-principle that the limited endogenous regeneration capability of mammals can be enhanced by modulation of specific signaling pathways.
Collapse
Affiliation(s)
- Martina Pesaresi
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sergi A Bonilla-Pons
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.; Universitat de Barcelona (UB), Barcelona, Spain
| | - Giacoma Simonte
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Daniela Sanges
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Umberto Di Vicino
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Maria Pia Cosma
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.; ICREA, Barcelona, Spain..
| |
Collapse
|
73
|
Li J, Prins D, Park HJ, Grinfeld J, Gonzalez-Arias C, Loughran S, Dovey OM, Klampfl T, Bennett C, Hamilton TL, Pask DC, Sneade R, Williams M, Aungier J, Ghevaert C, Vassiliou GS, Kent DG, Green AR. Mutant calreticulin knockin mice develop thrombocytosis and myelofibrosis without a stem cell self-renewal advantage. Blood 2018; 131:649-661. [PMID: 29282219 DOI: 10.1182/blood-2017-09-806356] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/15/2017] [Indexed: 02/02/2023] Open
Abstract
Somatic mutations in the endoplasmic reticulum chaperone calreticulin (CALR) are detected in approximately 40% of patients with essential thrombocythemia (ET) and primary myelofibrosis (PMF). Multiple different mutations have been reported, but all result in a +1-bp frameshift and generate a novel protein C terminus. In this study, we generated a conditional mouse knockin model of the most common CALR mutation, a 52-bp deletion. The mutant novel human C-terminal sequence is integrated into the otherwise intact mouse CALR gene and results in mutant CALR expression under the control of the endogenous mouse locus. CALRdel/+ mice develop a transplantable ET-like disease with marked thrombocytosis, which is associated with increased and morphologically abnormal megakaryocytes and increased numbers of phenotypically defined hematopoietic stem cells (HSCs). Homozygous CALRdel/del mice developed extreme thrombocytosis accompanied by features of MF, including leukocytosis, reduced hematocrit, splenomegaly, and increased bone marrow reticulin. CALRdel/+ HSCs were more proliferative in vitro, but neither CALRdel/+ nor CALRdel/del displayed a competitive transplantation advantage in primary or secondary recipient mice. These results demonstrate the consequences of heterozygous and homozygous CALR mutations and provide a powerful model for dissecting the pathogenesis of CALR-mutant ET and PMF.
Collapse
Affiliation(s)
- Juan Li
- Cambridge Institute for Medical Research and Wellcome Trust/Medical Research Council Stem Cell Institute and
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Daniel Prins
- Cambridge Institute for Medical Research and Wellcome Trust/Medical Research Council Stem Cell Institute and
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Hyun Jung Park
- Cambridge Institute for Medical Research and Wellcome Trust/Medical Research Council Stem Cell Institute and
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Jacob Grinfeld
- Cambridge Institute for Medical Research and Wellcome Trust/Medical Research Council Stem Cell Institute and
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Carlos Gonzalez-Arias
- Cambridge Institute for Medical Research and Wellcome Trust/Medical Research Council Stem Cell Institute and
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Stephen Loughran
- Cambridge Institute for Medical Research and Wellcome Trust/Medical Research Council Stem Cell Institute and
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Oliver M Dovey
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom; and
| | - Thorsten Klampfl
- Cambridge Institute for Medical Research and Wellcome Trust/Medical Research Council Stem Cell Institute and
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Cavan Bennett
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge, United Kingdom
| | - Tina L Hamilton
- Cambridge Institute for Medical Research and Wellcome Trust/Medical Research Council Stem Cell Institute and
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Dean C Pask
- Cambridge Institute for Medical Research and Wellcome Trust/Medical Research Council Stem Cell Institute and
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Rachel Sneade
- Cambridge Institute for Medical Research and Wellcome Trust/Medical Research Council Stem Cell Institute and
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Matthew Williams
- Cambridge Institute for Medical Research and Wellcome Trust/Medical Research Council Stem Cell Institute and
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Juliet Aungier
- Cambridge Institute for Medical Research and Wellcome Trust/Medical Research Council Stem Cell Institute and
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Cedric Ghevaert
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge, United Kingdom
| | - George S Vassiliou
- Department of Haematology, Addenbrooke's Hospital, Cambridge, United Kingdom
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom; and
| | - David G Kent
- Cambridge Institute for Medical Research and Wellcome Trust/Medical Research Council Stem Cell Institute and
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Anthony R Green
- Cambridge Institute for Medical Research and Wellcome Trust/Medical Research Council Stem Cell Institute and
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
74
|
Absence of ERK5/MAPK7 delays tumorigenesis in Atm-/- mice. Oncotarget 2018; 7:74435-74447. [PMID: 27793024 PMCID: PMC5342677 DOI: 10.18632/oncotarget.12908] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 10/13/2016] [Indexed: 01/08/2023] Open
Abstract
Ataxia-telangiectasia mutated (ATM) is a cell cycle checkpoint kinase that upon activation by DNA damage leads to cell cycle arrest and DNA repair or apoptosis. The absence of Atm or the occurrence of loss-of-function mutations in Atm predisposes to tumorigenesis. MAPK7 has been implicated in numerous types of cancer with pro-survival and pro-growth roles in tumor cells, but its functional relation with tumor suppressors is not clear. In this study, we show that absence of MAPK7 delays death due to spontaneous tumor development in Atm−/− mice. Compared with Atm−/− thymocytes, Mapk7−/−Atm−/− thymocytes exhibited an improved response to DNA damage (increased phosphorylation of H2AX) and a restored apoptotic response after treatment of mice with ionizing radiation. These findings define an antagonistic function of ATM and MAPK7 in the thymocyte response to DNA damage, and suggest that the lack of MAPK7 inhibits thymic lymphoma growth in Atm−/− mice by partially restoring the DNA damage response in thymocytes.
Collapse
|
75
|
Bird IM, Kim SH, Schweppe DK, Caetano-Lopes J, Robling AG, Charles JF, Gygi SP, Warman ML, Smits PJ. The skeletal phenotype of achondrogenesis type 1A is caused exclusively by cartilage defects. Development 2018; 145:dev.156588. [PMID: 29180569 PMCID: PMC5825869 DOI: 10.1242/dev.156588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/16/2017] [Indexed: 12/12/2022]
Abstract
Inactivating mutations in the ubiquitously expressed membrane trafficking component GMAP-210 (encoded by Trip11) cause achondrogenesis type 1A (ACG1A). ACG1A is surprisingly tissue specific, mainly affecting cartilage development. Bone development is also abnormal, but as chondrogenesis and osteogenesis are closely coupled, this could be a secondary consequence of the cartilage defect. A possible explanation for the tissue specificity of ACG1A is that cartilage and bone are highly secretory tissues with a high use of the membrane trafficking machinery. The perinatal lethality of ACG1A prevents investigating this hypothesis. We therefore generated mice with conditional Trip11 knockout alleles and inactivated Trip11 in chondrocytes, osteoblasts, osteoclasts and pancreas acinar cells, all highly secretory cell types. We discovered that the ACG1A skeletal phenotype is solely due to absence of GMAP-210 in chondrocytes. Mice lacking GMAP-210 in osteoblasts, osteoclasts and acinar cells were normal. When we inactivated Trip11 in primary chondrocyte cultures, GMAP-210 deficiency affected trafficking of a subset of chondrocyte-expressed proteins rather than globally impairing membrane trafficking. Thus, GMAP-210 is essential for trafficking specific cargoes in chondrocytes but is dispensable in other highly secretory cells. Summary: Conditional inactivation of the cis-Golgin GMAP-210 reveals that the skeletal phenotype in achondrogenesis type-1A, which is caused by mutations in GMAP-210, is solely due to impaired protein trafficking by chondrocytes.
Collapse
Affiliation(s)
- Ian M Bird
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, MA 02115, USA
| | - Susie H Kim
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, MA 02115, USA
| | - Devin K Schweppe
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joana Caetano-Lopes
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, MA 02115, USA
| | - Alexander G Robling
- Department of Anatomy and Cell Biology, Indiana University, Indianapolis, IN 46202, USA
| | - Julia F Charles
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew L Warman
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Patrick J Smits
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
76
|
Pedone E, Olteanu VA, Marucci L, Muñoz-Martin MI, Youssef SA, de Bruin A, Cosma MP. Modeling Dynamics and Function of Bone Marrow Cells in Mouse Liver Regeneration. Cell Rep 2017; 18:107-121. [PMID: 28052241 PMCID: PMC5236012 DOI: 10.1016/j.celrep.2016.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/15/2016] [Accepted: 12/01/2016] [Indexed: 12/13/2022] Open
Abstract
In rodents and humans, the liver can efficiently restore its mass after hepatectomy. This is largely attributed to the proliferation and cell cycle re-entry of hepatocytes. On the other hand, bone marrow cells (BMCs) migrate into the liver after resection. Here, we find that a block of BMC recruitment into the liver severely impairs its regeneration after the surgery. Mobilized hematopoietic stem and progenitor cells (HSPCs) in the resected liver can fuse with hepatocytes, and the hybrids proliferate earlier than the hepatocytes. Genetic ablation of the hybrids severely impairs hepatocyte proliferation and liver mass regeneration. Mathematical modeling reveals a key role of bone marrow (BM)-derived hybrids to drive proliferation in the regeneration process, and predicts regeneration efficiency in experimentally non-testable conditions. In conclusion, BM-derived hybrids are essential to trigger efficient liver regeneration after hepatectomy. Bone marrow cell migration after liver hepatectomy is key for liver regeneration Migrated bone marrow cells fuse with hepatocytes Hybrids are essential for liver regeneration Mathematical modeling unveils the hybrid function for liver regeneration
Collapse
Affiliation(s)
- Elisa Pedone
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain
| | - Vlad-Aris Olteanu
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK
| | - Lucia Marucci
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain; Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK.
| | - Maria Isabel Muñoz-Martin
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain
| | - Sameh A Youssef
- Dutch Molecular Pathology Center, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, the Netherlands; Department of Pathology, Alexandria Veterinary College, University of Alexandria-Egypt, 21612 Alexandria, Egypt
| | - Alain de Bruin
- Dutch Molecular Pathology Center, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, the Netherlands; University Medical Center Groningen, Department of Pediatrics, University of Groningen, 9713 Groningen, the Netherlands
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
77
|
Peng H, Kasada A, Ueno M, Hoshii T, Tadokoro Y, Nomura N, Ito C, Takase Y, Vu HT, Kobayashi M, Xiao B, Worley PF, Hirao A. Distinct roles of Rheb and Raptor in activating mTOR complex 1 for the self-renewal of hematopoietic stem cells. Biochem Biophys Res Commun 2017; 495:1129-1135. [PMID: 29175333 DOI: 10.1016/j.bbrc.2017.11.140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 11/20/2017] [Indexed: 02/05/2023]
Abstract
The mammalian target of rapamycin (mTOR) complex 1 (mTORC1) senses a cell's energy status and environmental levels of nutrients and growth factors. In response, mTORC1 mediates signaling that controls protein translation and cellular metabolism. Although mTORC1 plays a critical role in hematopoiesis, it remains unclear which upstream stimuli regulate mTORC1 activity in the context of hematopoietic stem cells (HSC) maintenance in vivo. In this study, we investigated the function of Rheb, a critical regulator of mTORC1 activity controlled by the PI3K-AKT-TSC axis, both in HSC maintenance in mice at steady-state and in HSC-derived hematopoiesis post-transplantation. In contrast to the severe hematopoietic dysfunction caused by Raptor deletion, which completely inactivates mTORC1, Rheb deficiency in adult mice did not show remarkable hematopoietic failure. Lack of Rheb caused abnormalities in myeloid cells but did not have impact on hematopoietic regeneration in mice subjected to injury by irradiation. As previously reported, Rheb deficiency resulted in defective HSC-derived hematopoiesis post-transplantation. However, while Raptor is essential for HSC competitiveness in vivo, Rheb is dispensable for HSC maintenance under physiological conditions, indicating that the PI3K-AKT-TSC pathway does not contribute to mTORC1 activity for sustaining HSC self-renewal activity at steady-state. Thus, the various regulatory elements that impinge upstream of mTORC1 activation pathways are differentially required for HSC homeostasis in vivo.
Collapse
Affiliation(s)
- Hui Peng
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Atsuo Kasada
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Masaya Ueno
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Takayuki Hoshii
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Yuko Tadokoro
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Naho Nomura
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Chiaki Ito
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Yusuke Takase
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Ha Thi Vu
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Masahiko Kobayashi
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Bo Xiao
- Laboratory of Developmental Neurobiology & Metabolism, State Key Laboratory of Bio-Therapy, West-China Hospital, Sichuan University, Chengdu 610041, China
| | - Paul F Worley
- Departments of Neuroscience and Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Atsushi Hirao
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| |
Collapse
|
78
|
Kim JH, Grosbart M, Anand R, Wyman C, Cejka P, Petrini JHJ. The Mre11-Nbs1 Interface Is Essential for Viability and Tumor Suppression. Cell Rep 2017; 18:496-507. [PMID: 28076792 DOI: 10.1016/j.celrep.2016.12.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 11/04/2016] [Accepted: 12/12/2016] [Indexed: 02/02/2023] Open
Abstract
The Mre11 complex (Mre11, Rad50, and Nbs1) is integral to both DNA repair and ataxia telangiectasia mutated (ATM)-dependent DNA damage signaling. All three Mre11 complex components are essential for viability at the cellular and organismal levels. To delineate essential and non-essential Mre11 complex functions that are mediated by Nbs1, we used TALEN-based genome editing to derive Nbs1 mutant mice (Nbs1mid mice), which harbor mutations in the Mre11 interaction domain of Nbs1. Nbs1mid alleles that abolished interaction were incompatible with viability. Conversely, a 108-amino-acid Nbs1 fragment comprising the Mre11 interface was sufficient to rescue viability and ATM activation in cultured cells and support differentiation of hematopoietic cells in vivo. These data indicate that the essential role of Nbs1 is via its interaction with Mre11 and that most of the Nbs1 protein is dispensable for Mre11 complex functions and suggest that Mre11 and Rad50 directly activate ATM.
Collapse
Affiliation(s)
- Jun Hyun Kim
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Malgorzata Grosbart
- Department of Molecular Genetics, Erasmus University Medical Center, 3000 Rotterdam, the Netherlands; Department of Radiation Oncology, Erasmus University Medical Center, 3000 Rotterdam, the Netherlands
| | - Roopesh Anand
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Claire Wyman
- Department of Molecular Genetics, Erasmus University Medical Center, 3000 Rotterdam, the Netherlands; Department of Radiation Oncology, Erasmus University Medical Center, 3000 Rotterdam, the Netherlands
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - John H J Petrini
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA.
| |
Collapse
|
79
|
Tellechea M, Buxadé M, Tejedor S, Aramburu J, López-Rodríguez C. NFAT5-Regulated Macrophage Polarization Supports the Proinflammatory Function of Macrophages and T Lymphocytes. THE JOURNAL OF IMMUNOLOGY 2017; 200:305-315. [PMID: 29150563 DOI: 10.4049/jimmunol.1601942] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 10/17/2017] [Indexed: 02/07/2023]
Abstract
Macrophages are exquisite sensors of tissue homeostasis that can rapidly switch between pro- and anti-inflammatory or regulatory modes to respond to perturbations in their microenvironment. This functional plasticity involves a precise orchestration of gene expression patterns whose transcriptional regulators have not been fully characterized. We had previously identified the transcription factor NFAT5 as an activator of TLR-induced responses, and in this study we explore its contribution to macrophage functions in different polarization settings. We found that both in classically and alternatively polarized macrophages, NFAT5 enhanced functions associated with a proinflammatory profile such as bactericidal capacity and the ability to promote Th1 polarization over Th2 responses. In this regard, NFAT5 upregulated the Th1-stimulatory cytokine IL-12 in classically activated macrophages, whereas in alternatively polarized ones it enhanced the expression of the pro-Th1 mediators Fizz-1 and arginase 1, indicating that it could promote proinflammatory readiness by regulating independent genes in differently polarized macrophages. Finally, adoptive transfer assays in vivo revealed a reduced antitumor capacity in NFAT5-deficient macrophages against syngeneic Lewis lung carcinoma and ID8 ovarian carcinoma cells, a defect that in the ID8 model was associated with a reduced accumulation of effector CD8 T cells at the tumor site. Altogether, detailed analysis of the effect of NFAT5 in pro- and anti-inflammatory macrophages uncovered its ability to regulate distinct genes under both polarization modes and revealed its predominant role in promoting proinflammatory macrophage functions.
Collapse
Affiliation(s)
- Mónica Tellechea
- Immunology Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, 08003 Barcelona, Spain
| | - Maria Buxadé
- Immunology Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, 08003 Barcelona, Spain
| | - Sonia Tejedor
- Immunology Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, 08003 Barcelona, Spain
| | - Jose Aramburu
- Immunology Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, 08003 Barcelona, Spain
| | - Cristina López-Rodríguez
- Immunology Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, 08003 Barcelona, Spain
| |
Collapse
|
80
|
Loughran SJ, Comoglio F, Hamey FK, Giustacchini A, Errami Y, Earp E, Göttgens B, Jacobsen SEW, Mead AJ, Hendrich B, Green AR. Mbd3/NuRD controls lymphoid cell fate and inhibits tumorigenesis by repressing a B cell transcriptional program. J Exp Med 2017; 214:3085-3104. [PMID: 28899870 PMCID: PMC5626393 DOI: 10.1084/jem.20161827] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 07/04/2017] [Accepted: 07/25/2017] [Indexed: 02/02/2023] Open
Abstract
Differentiation of lineage-committed cells from multipotent progenitors requires the establishment of accessible chromatin at lineage-specific transcriptional enhancers and promoters, which is mediated by pioneer transcription factors that recruit activating chromatin remodeling complexes. Here we show that the Mbd3/nucleosome remodeling and deacetylation (NuRD) chromatin remodeling complex opposes this transcriptional pioneering during B cell programming of multipotent lymphoid progenitors by restricting chromatin accessibility at B cell enhancers and promoters. Mbd3/NuRD-deficient lymphoid progenitors therefore prematurely activate a B cell transcriptional program and are biased toward overproduction of pro-B cells at the expense of T cell progenitors. The striking reduction in early thymic T cell progenitors results in compensatory hyperproliferation of immature thymocytes and development of T cell lymphoma. Our results reveal that Mbd3/NuRD can regulate multilineage differentiation by constraining the activation of dormant lineage-specific enhancers and promoters. In this way, Mbd3/NuRD protects the multipotency of lymphoid progenitors, preventing B cell-programming transcription factors from prematurely enacting lineage commitment. Mbd3/NuRD therefore controls the fate of lymphoid progenitors, ensuring appropriate production of lineage-committed progeny and suppressing tumor formation.
Collapse
Affiliation(s)
- Stephen J Loughran
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, England, UK
- Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, England, UK
| | - Federico Comoglio
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, England, UK
- Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, England, UK
| | - Fiona K Hamey
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, England, UK
- Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, England, UK
| | - Alice Giustacchini
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, England, UK
| | - Youssef Errami
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, England, UK
- Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, England, UK
| | - Eleanor Earp
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, England, UK
- Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, England, UK
| | - Berthold Göttgens
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, England, UK
- Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, England, UK
| | - Sten Eirik W Jacobsen
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, England, UK
- Wallenberg Institute for Regenerative Medicine, Department of Cell and Molecular Biology and Department of Medicine Huddinge, Karolinska Institutet and Center for Hematology and Regenerative Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Adam J Mead
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, England, UK
| | - Brian Hendrich
- Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, England, UK
- Department of Biochemistry, University of Cambridge, Cambridge, England, UK
| | - Anthony R Green
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, England, UK
- Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, England, UK
| |
Collapse
|
81
|
Ganuza M, Hall T, Finkelstein D, Chabot A, Kang G, McKinney-Freeman S. Lifelong haematopoiesis is established by hundreds of precursors throughout mammalian ontogeny. Nat Cell Biol 2017; 19:1153-1163. [PMID: 28920953 PMCID: PMC5705075 DOI: 10.1038/ncb3607] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/09/2017] [Indexed: 12/17/2022]
Abstract
Current dogma asserts that mammalian lifelong blood production is established by a small number of blood progenitors. However, this model is based on assays that require the disruption, transplantation and/or culture of embryonic tissues. Here, we used the sample-to-sample variance of a multicoloured lineage trace reporter to assess the frequency of emerging lifelong blood progenitors while avoiding the disruption, culture or transplantation of embryos. We find that approximately 719 Flk1+ mesodermal precursors, 633 VE-cadherin+ endothelial precursors and 545 Vav1+ nascent blood stem and progenitor cells emerge to establish the haematopoietic system at embryonic days (E)7-E8.5, E8.5-E11.5 and E11.5-E14.5, respectively. We also determined that the spatio-temporal recruitment of endothelial blood precursors begins at E8.5 and ends by E10.5, and that many c-Kit+ clusters of newly specified blood progenitors in the aorta are polyclonal in origin. Our work illuminates the dynamics of the developing mammalian blood system during homeostasis.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Cadherins/genetics
- Cadherins/metabolism
- Cell Differentiation
- Cell Lineage
- Cell Tracking/methods
- Cells, Cultured
- Coculture Techniques
- Endothelial Cells/metabolism
- Endothelial Cells/transplantation
- Gene Expression Regulation, Developmental
- Genotype
- Gestational Age
- Hematopoiesis
- Hematopoietic Stem Cell Transplantation
- Hematopoietic Stem Cells/metabolism
- Integrases/genetics
- Integrases/metabolism
- Linear Models
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Mice, Inbred C57BL
- Mice, Transgenic
- Microscopy, Fluorescence
- Models, Biological
- Phenotype
- Proto-Oncogene Proteins c-kit/genetics
- Proto-Oncogene Proteins c-kit/metabolism
- Proto-Oncogene Proteins c-vav/genetics
- Proto-Oncogene Proteins c-vav/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Signal Transduction
- Time Factors
- Vascular Endothelial Growth Factor Receptor-2/genetics
- Vascular Endothelial Growth Factor Receptor-2/metabolism
Collapse
Affiliation(s)
- Miguel Ganuza
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | - Trent Hall
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | - Ashley Chabot
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | - Guolian Kang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | | |
Collapse
|
82
|
Rohban R, Prietl B, Pieber TR. Crosstalk between Stem and Progenitor Cellular Mediators with Special Emphasis on Vasculogenesis. Transfus Med Hemother 2017. [PMID: 28626368 DOI: 10.1159/000477677] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The cellular components and molecular processes of signaling during vasculogenesis have been investigated for decades. Considerable efforts have been made to unravel regulatory mechanisms of vasculogenesis through crosstalk between vasculogenic playmakers located in the vascular niche, namely hematopoietic stem cells, endothelial progenitor cells, and mesenchymal stem and progenitor cells. Recent studies have increased the knowledge about signaling events within vascular microenvironment that leads to vasculogenesis. Findings from these recent studies indicate the impact of cellular crosstalk through signaling pathways such as vascular endothelial growth factor signaling, wingless and Notch signaling in vasculogenesis and vascular development. In this review, we highlight the signaling signature between stem and progenitor cellular mediators during vasculogenesis. We further focus on hematopoietic stem cell-endothelial progenitor cell crosstalk during vasculogenesis and discuss their potential implications and benefits for therapeutic interventions and regenerative therapy.
Collapse
Affiliation(s)
- Rokhsareh Rohban
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria.,Center for Medical Research (ZMF), Medical University of Graz, Graz, Austria
| | - Barbara Prietl
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria.,Competence Center for Biomarker Research in Medicine, CBmed, Graz, Austria
| | - Thomas R Pieber
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria.,Competence Center for Biomarker Research in Medicine, CBmed, Graz, Austria.,HEALTH-Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft m.b.H, Graz, Austria
| |
Collapse
|
83
|
Van Welden S, De Vos M, Wielockx B, Tavernier SJ, Dullaers M, Neyt S, Descamps B, Devisscher L, Devriese S, Van den Bossche L, Holvoet T, Baeyens A, Correale C, D'Alessio S, Vanhove C, De Vos F, Verhasselt B, Breier G, Lambrecht BN, Janssens S, Carmeliet P, Danese S, Elewaut D, Laukens D, Hindryckx P. Haematopoietic prolyl hydroxylase-1 deficiency promotes M2 macrophage polarization and is both necessary and sufficient to protect against experimental colitis. J Pathol 2017; 241:547-558. [PMID: 27981571 DOI: 10.1002/path.4861] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 11/21/2016] [Accepted: 12/06/2016] [Indexed: 12/17/2022]
Abstract
Prolyl hydroxylase domain-containing proteins (PHDs) regulate the adaptation of cells to hypoxia. Pan-hydroxylase inhibition is protective in experimental colitis, in which PHD1 plays a prominent role. However, it is currently unknown how PHD1 targeting regulates this protection and which cell type(s) are involved. Here, we demonstrated that Phd1 deletion in endothelial and haematopoietic cells (Phd1f/f Tie2:cre) protected mice from dextran sulphate sodium (DSS)-induced colitis, with reduced epithelial erosions, immune cell infiltration, and colonic microvascular dysfunction, whereas the response of Phd2f/+ Tie2:cre and Phd3f/f Tie2:cre mice to DSS was similar to that of their littermate controls. Using bone marrow chimeras and cell-specific cre mice, we demonstrated that ablation of Phd1 in haematopoietic cells but not in endothelial cells was both necessary and sufficient to inhibit experimental colitis. This effect relied, at least in part, on skewing of Phd1-deficient bone marrow-derived macrophages towards an anti-inflammatory M2 phenotype. These cells showed an attenuated nuclear factor-κB-dependent response to lipopolysaccharide (LPS), which in turn diminished endothelial chemokine expression. In addition, Phd1 deficiency in dendritic cells significantly reduced interleukin-1β production in response to LPS. Taken together, our results further support the development of selective PHD1 inhibitors for ulcerative colitis, and identify haematopoietic cells as their primary target. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Martine De Vos
- Department of Gastroenterology, Ghent University, Ghent, Belgium
| | - Ben Wielockx
- Heisenberg Research Group, Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Simon J Tavernier
- Department of Internal Medicine, Ghent University, Ghent, Belgium.,Inflammation Research Centre VIB, Zwijnaarde, Belgium
| | - Melissa Dullaers
- Inflammation Research Centre VIB, Zwijnaarde, Belgium.,Department of Pulmonary Medicine, Ghent University, Ghent, Belgium
| | - Sara Neyt
- Laboratory of Radiopharmacy, Ghent University, Ghent, Belgium
| | - Benedicte Descamps
- Infinity Imaging Laboratory (iMinds Medical IT-IBiTech-MEDISIP), Ghent University, Ghent, Belgium
| | | | - Sarah Devriese
- Department of Gastroenterology, Ghent University, Ghent, Belgium
| | | | - Tom Holvoet
- Department of Gastroenterology, Ghent University, Ghent, Belgium
| | - Ann Baeyens
- Department of Clinical Chemistry, Microbiology, and Immunology, Ghent University, Ghent, Belgium
| | - Carmen Correale
- IBD Centre, Department of Gastroenterology, Humanitas Clinical and Research Centre, Rozzano, Italy
| | - Silvia D'Alessio
- IBD Centre, Department of Gastroenterology, Humanitas Clinical and Research Centre, Rozzano, Italy
| | - Christian Vanhove
- Infinity Imaging Laboratory (iMinds Medical IT-IBiTech-MEDISIP), Ghent University, Ghent, Belgium
| | - Filip De Vos
- Laboratory of Radiopharmacy, Ghent University, Ghent, Belgium
| | - Bruno Verhasselt
- Department of Clinical Chemistry, Microbiology, and Immunology, Ghent University, Ghent, Belgium
| | - Georg Breier
- Division of Medical Biology, Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Bart N Lambrecht
- Department of Internal Medicine, Ghent University, Ghent, Belgium.,Inflammation Research Centre VIB, Zwijnaarde, Belgium
| | - Sophie Janssens
- Department of Internal Medicine, Ghent University, Ghent, Belgium.,Inflammation Research Centre VIB, Zwijnaarde, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular metabolism, Vesalius Research Centre, KU Leuven, VIB, Leuven, Belgium
| | - Silvio Danese
- IBD Centre, Department of Gastroenterology, Humanitas Clinical and Research Centre, Rozzano, Italy
| | - Dirk Elewaut
- Inflammation Research Centre VIB, Zwijnaarde, Belgium.,Department of Rheumatology, Ghent University, Ghent, Belgium
| | - Debby Laukens
- Department of Gastroenterology, Ghent University, Ghent, Belgium
| | - Pieter Hindryckx
- Department of Gastroenterology, Ghent University, Ghent, Belgium
| |
Collapse
|
84
|
Mice with a deficiency in CLEC-2 are protected against deep vein thrombosis. Blood 2017; 129:2013-2020. [PMID: 28104688 DOI: 10.1182/blood-2016-09-742999] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/11/2017] [Indexed: 12/26/2022] Open
Abstract
Deep vein thrombosis (DVT) with its major complication, pulmonary embolism, is a global health problem. Mechanisms of DVT remain incompletely understood. Platelets play a role in DVT, but the impact of specific platelet receptors remains unclear. Platelet C-type lectin-like receptor 2 (CLEC-2) is known to maintain the physiological state of blood vasculature under inflammatory conditions. DVT is a thromboinflammatory disorder developing largely as sterile inflammation in the vessel wall. We hypothesized therefore that CLEC-2 might play a role in DVT. Here, using a murine DVT model of inferior vena cava (IVC) stenosis, we demonstrate that mice with general inducible deletion of CLEC-2 or platelet-specific deficiency in CLEC-2 are protected against DVT. No phenotype in the complete stasis model was observed. Transfusion of wild-type platelets into platelet-specific CLEC-2 knockout mice restored thrombosis. Deficiency in CLEC-2 as well as inhibition of podoplanin, a ligand of CLEC-2, was associated with reduced platelet accumulation at the IVC wall after 6 hours of stenosis. Podoplanin was expressed in the IVC wall, where it was localized in the vicinity of the abluminal side of the endothelium. The level of podoplanin in the IVC increased after 48 hours of stenosis to a substantially higher extent in mice with a thrombus vs those without a thrombus. Treatment of animals with an anti-podoplanin neutralizing antibody resulted in development of smaller thrombi. Thus, we propose a novel mechanism of DVT, whereby CLEC-2 and upregulation of podoplanin expression in the venous wall trigger thrombus formation.
Collapse
|
85
|
Runx Family Genes in Tissue Stem Cell Dynamics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:117-138. [PMID: 28299655 DOI: 10.1007/978-981-10-3233-2_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Runx family genes play important roles in development and cancer, largely via their regulation of tissue stem cell behavior. Their involvement in two organs, blood and skin, is well documented. This review summarizes currently known Runx functions in the stem cells of these tissues. The fundamental core mechanism(s) mediated by Runx proteins has been sought; however, it appears that there does not exist one single common machinery that governs both tissue stem cells. Instead, Runx family genes employ multiple spatiotemporal mechanisms in regulating individual tissue stem cell populations. Such specific Runx requirements have been unveiled by a series of cell type-, developmental stage- or age-specific gene targeting studies in mice. Observations from these experiments revealed that the regulation of stem cells by Runx family genes turned out to be far more complex than previously thought. For instance, although it has been reported that Runx1 is required for the endothelial-to-hematopoietic cell transition (EHT) but not thereafter, recent studies clearly demonstrated that Runx1 is also needed during the period subsequent to EHT, namely at perinatal stage. In addition, Runx1 ablation in the embryonic skin mesenchyme eventually leads to complete loss of hair follicle stem cells (HFSCs) in the adult epithelium, suggesting that Runx1 facilitates the specification of skin epithelial stem cells in a cell extrinsic manner. Further in-depth investigation into how Runx family genes are involved in stem cell regulation is warranted.
Collapse
|
86
|
Histone acetyltransferase activity of MOF is required for adult but not early fetal hematopoiesis in mice. Blood 2016; 129:48-59. [PMID: 27827827 DOI: 10.1182/blood-2016-05-714568] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/16/2016] [Indexed: 12/26/2022] Open
Abstract
K(lysine) acetyltransferase 8 (KAT8, also known as MOF) mediates the acetylation of histone H4 at lysine 16 (H4K16ac) and is crucial for murine embryogenesis. Lysine acetyltransferases have been shown to regulate various stages of normal hematopoiesis. However, the function of MOF in hematopoietic stem cell (HSC) development has not yet been elucidated. We set out to study the role of MOF in general hematopoiesis by using a Vav1-cre-induced conditional murine Mof knockout system and found that MOF is critical for hematopoietic cell maintenance and HSC engraftment capacity in adult hematopoiesis. Rescue experiments with a MOF histone acetyltransferase domain mutant illustrated the requirement for MOF acetyltransferase activity in the clonogenic capacity of HSCs and progenitors. In stark contrast, fetal steady-state hematopoiesis at embryonic day (E) 14.5 was not affected by homozygous Mof deletion despite dramatic loss of global H4K16ac. Hematopoietic defects start manifesting in late gestation at E17.5. The discovery that MOF and its H4K16ac activity are required for adult but not early and midgestational hematopoiesis supports the notion that multiple chromatin regulators may be crucial for hematopoiesis at varying stages of development. MOF is therefore a developmental-stage-specific chromatin regulator found to be essential for adult but not early fetal hematopoiesis.
Collapse
|
87
|
Dong L, Yu WM, Zheng H, Loh ML, Bunting ST, Pauly M, Huang G, Zhou M, Broxmeyer HE, Scadden DT, Qu CK. Leukaemogenic effects of Ptpn11 activating mutations in the stem cell microenvironment. Nature 2016; 539:304-308. [PMID: 27783593 DOI: 10.1038/nature20131] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 09/29/2016] [Indexed: 12/18/2022]
Abstract
Germline activating mutations of the protein tyrosine phosphatase SHP2 (encoded by PTPN11), a positive regulator of the RAS signalling pathway, are found in 50% of patients with Noonan syndrome. These patients have an increased risk of developing leukaemia, especially juvenile myelomonocytic leukaemia (JMML), a childhood myeloproliferative neoplasm (MPN). Previous studies have demonstrated that mutations in Ptpn11 induce a JMML-like MPN through cell-autonomous mechanisms that are dependent on Shp2 catalytic activity. However, the effect of these mutations in the bone marrow microenvironment remains unclear. Here we report that Ptpn11 activating mutations in the mouse bone marrow microenvironment promote the development and progression of MPN through profound detrimental effects on haematopoietic stem cells (HSCs). Ptpn11 mutations in mesenchymal stem/progenitor cells and osteoprogenitors, but not in differentiated osteoblasts or endothelial cells, cause excessive production of the CC chemokine CCL3 (also known as MIP-1α), which recruits monocytes to the area in which HSCs also reside. Consequently, HSCs are hyperactivated by interleukin-1β and possibly other proinflammatory cytokines produced by monocytes, leading to exacerbated MPN and to donor-cell-derived MPN following stem cell transplantation. Remarkably, administration of CCL3 receptor antagonists effectively reverses MPN development induced by the Ptpn11-mutated bone marrow microenvironment. This study reveals the critical contribution of Ptpn11 mutations in the bone marrow microenvironment to leukaemogenesis and identifies CCL3 as a potential therapeutic target for controlling leukaemic progression in Noonan syndrome and for improving stem cell transplantation therapy in Noonan-syndrome-associated leukaemias.
Collapse
Affiliation(s)
- Lei Dong
- Department of Pediatrics, Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Wen-Mei Yu
- Department of Pediatrics, Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Hong Zheng
- Department of Pediatrics, Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Mignon L Loh
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of California at San Francisco, San Francisco, California 94122, USA
| | - Silvia T Bunting
- Department of Pathology, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia 30322, USA
| | - Melinda Pauly
- Department of Pediatrics, Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Gang Huang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, Ohio 45229, USA
| | - Muxiang Zhou
- Department of Pediatrics, Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - David T Scadden
- Center for Regenerative Medicine and MGH Cancer Center, Massachusetts General Hospital, Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Boston, Massachusetts 02114, USA
| | - Cheng-Kui Qu
- Department of Pediatrics, Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
88
|
Elgueta R, Tse D, Deharvengt SJ, Luciano MR, Carriere C, Noelle RJ, Stan RV. Endothelial Plasmalemma Vesicle-Associated Protein Regulates the Homeostasis of Splenic Immature B Cells and B-1 B Cells. THE JOURNAL OF IMMUNOLOGY 2016; 197:3970-3981. [PMID: 27742829 DOI: 10.4049/jimmunol.1501859] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/18/2016] [Indexed: 12/18/2022]
Abstract
Plasmalemma vesicle-associated protein (Plvap) is an endothelial protein with roles in endothelial diaphragm formation and maintenance of basal vascular permeability. At the same time, Plvap has roles in immunity by facilitating leukocyte diapedesis at inflammatory sites and controlling peripheral lymph node morphogenesis and the entry of soluble Ags into lymph node conduits. Based on its postulated role in diapedesis, we have investigated the role of Plvap in hematopoiesis and show that deletion of Plvap results in a dramatic decrease of IgM+IgDlo B cells in both the spleen and the peritoneal cavity. Tissue-specific deletion of Plvap demonstrates that the defect is B cell extrinsic, because B cell and pan-hematopoietic Plvap deletion has no effect on IgM+IgDlo B cell numbers. Endothelial-specific deletion of Plvap in the embryo or at adult stage recapitulates the full Plvap knockout phenotype, whereas endothelial-specific reconstitution of Plvap under the Chd5 promoter rescues the IgM+IgDlo B cell phenotype. Taken together, these results show that Plvap expression in endothelial cells is important in the maintenance of IgM+ B cells in the spleen and peritoneal cavity.
Collapse
Affiliation(s)
- Raul Elgueta
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756.,Department of Immune Regulation and Intervention, Medical Research Council Centre for Transplantation, King's College London, Guy's Hospital, London, SE1 9RT, United Kingdom
| | - Dan Tse
- Department of Pathology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Sophie J Deharvengt
- Department of Pathology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Marcus R Luciano
- Department of Pathology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Catherine Carriere
- Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756; and
| | - Randolph J Noelle
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756; .,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756; and
| | - Radu V Stan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756; .,Department of Pathology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756.,Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| |
Collapse
|
89
|
Rauner M, Franke K, Murray M, Singh RP, Hiram-Bab S, Platzbecker U, Gassmann M, Socolovsky M, Neumann D, Gabet Y, Chavakis T, Hofbauer LC, Wielockx B. Increased EPO Levels Are Associated With Bone Loss in Mice Lacking PHD2 in EPO-Producing Cells. J Bone Miner Res 2016; 31:1877-1887. [PMID: 27082941 DOI: 10.1002/jbmr.2857] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 03/28/2016] [Accepted: 04/12/2016] [Indexed: 12/25/2022]
Abstract
The main oxygen sensor hypoxia inducible factor (HIF) prolyl hydroxylase 2 (PHD2) is a critical regulator of tissue homeostasis during erythropoiesis, hematopoietic stem cell maintenance, and wound healing. Recent studies point toward a role for the PHD2-erythropoietin (EPO) axis in the modulation of bone remodeling, even though the studies produced conflicting results. Here, we used a number of mouse strains deficient of PHD2 in different cell types to address the role of PHD2 and its downstream targets HIF-1α and HIF-2α in bone remodeling. Mice deficient for PHD2 in several cell lineages, including EPO-producing cells, osteoblasts, and hematopoietic cells (CD68:cre-PHD2f/f ) displayed a severe reduction of bone density at the distal femur as well as the vertebral body due to impaired bone formation but not bone resorption. Importantly, using osteoblast-specific (Osx:cre-PHD2f/f ) and osteoclast-specific PHD2 knock-out mice (Vav:cre- PHD2f/f ), we show that this effect is independent of the loss of PHD2 in osteoblast and osteoclasts. Using different in vivo and in vitro approaches, we show here that this bone phenotype, including the suppression of bone formation, is directly linked to the stabilization of the α-subunit of HIF-2, and possibly to the subsequent moderate induction of serum EPO, which directly influenced the differentiation and mineralization of osteoblast progenitors resulting in lower bone density. Taken together, our data identify the PHD2:HIF-2α:EPO axis as a so far unknown regulator of osteohematology by controlling bone homeostasis. Further, these data suggest that patients treated with PHD inhibitors or EPO should be monitored with respect to their bone status. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Martina Rauner
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Kristin Franke
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, Dresden, Germany.,Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Marta Murray
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, Dresden, Germany.,Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Rashim Pal Singh
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, Dresden, Germany.,Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Sahar Hiram-Bab
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Uwe Platzbecker
- Department of Medicine I, Technische Universität Dresden, Dresden, Germany
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zürich, Zürich, Switzerland.,Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| | - Merav Socolovsky
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA.,Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA
| | - Drorit Neumann
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Yankel Gabet
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, Dresden, Germany.,Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Ben Wielockx
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, Dresden, Germany. .,Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany. .,Center for Regenerative Therapies Dresden, Dresden, Germany.
| |
Collapse
|
90
|
Angulo-Ibáñez M, Rovira-Clavé X, Granados-Jaén A, Downs B, Kim YC, Wang SM, Reina M, Espel E. Erk5 contributes to maintaining the balance of cellular nucleotide levels and erythropoiesis. Cell Cycle 2016; 14:3864-76. [PMID: 26697837 DOI: 10.1080/15384101.2015.1120914] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
An adequate supply of nucleotides is essential for accurate DNA replication, and inappropriate deoxyribonucleotide triphosphate (dNTP) concentrations can lead to replication stress, a common source of DNA damage, genomic instability and tumourigenesis. Here, we provide evidence that Erk5 is necessary for correct nucleotide supply during erythroid development. Mice with Erk5 knockout in the haematopoietic lineage showed impaired erythroid development in bone marrow, accompanied by altered dNTP levels and increased DNA mutagenesis in erythroid progenitors as detected by exome sequencing. Moreover, Erk5-depleted leukemic Jurkat cells presented a marked sensitivity to thymidine-induced S phase stalling, as evidenced by increased H2AX phosphorylation and apoptosis. The increase in thymidine sensitivity correlated with a higher dTTP/dCTP ratio. These results indicate that Erk5 is necessary to maintain the balance of nucleotide levels, thus preventing dNTP misincorporation and DNA damage in proliferative erythroid progenitors and leukemic Jurkat T cells.
Collapse
Affiliation(s)
- Maria Angulo-Ibáñez
- a Department of Cell Biology ; Celltec-UB; Facultat de Biologia; Universitat de Barcelona ; Barcelona , Spain
| | - Xavier Rovira-Clavé
- a Department of Cell Biology ; Celltec-UB; Facultat de Biologia; Universitat de Barcelona ; Barcelona , Spain
| | - Alba Granados-Jaén
- a Department of Cell Biology ; Celltec-UB; Facultat de Biologia; Universitat de Barcelona ; Barcelona , Spain
| | - Bradley Downs
- b University of Nebraska Medical Center; Nebraska Medical Center ; Omaha , NE USA
| | - Yeong C Kim
- b University of Nebraska Medical Center; Nebraska Medical Center ; Omaha , NE USA
| | - San Ming Wang
- b University of Nebraska Medical Center; Nebraska Medical Center ; Omaha , NE USA
| | - Manuel Reina
- a Department of Cell Biology ; Celltec-UB; Facultat de Biologia; Universitat de Barcelona ; Barcelona , Spain
| | - Enric Espel
- a Department of Cell Biology ; Celltec-UB; Facultat de Biologia; Universitat de Barcelona ; Barcelona , Spain.,c Department of Physiology and Immunology ; Facultat de Biologia; Universitat de Barcelona ; Barcelona ; Spain
| |
Collapse
|
91
|
The ubiquitin ligase Huwe1 regulates the maintenance and lymphoid commitment of hematopoietic stem cells. Nat Immunol 2016; 17:1312-1321. [PMID: 27668798 PMCID: PMC5117833 DOI: 10.1038/ni.3559] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 08/17/2016] [Indexed: 02/07/2023]
Abstract
Hematopoietic stem cells (HSCs) are dormant in the bone marrow and can be activated in response to diverse stresses to replenish all blood cell types. Here we identify the ubiquitin ligase Huwe1 as a crucial regulator of HSC functions via its post-translational control of N-myc. We found Huwe1 to be essential for HSC self-renewal, quiescence and lymphoid fate specification. Using a novel fluorescent fusion allele (MycnM), we observed that N-myc expression was restricted to the most immature, multipotent stem and progenitor populations. N-myc was upregulated in response to stress or upon loss of Huwe1, leading to increased proliferation and stem cell exhaustion. Mycn depletion reversed most of these phenotypes in vivo, suggesting that the attenuation of N-myc by Huwe1 is essential to reestablish homeostasis following stress.
Collapse
|
92
|
Benesic A, Leitl A, Gerbes AL. Monocyte-derived hepatocyte-like cells for causality assessment of idiosyncratic drug-induced liver injury. Gut 2016; 65:1555-63. [PMID: 26045135 DOI: 10.1136/gutjnl-2015-309528] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/08/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Idiosyncratic drug-induced liver injury (iDILI) is a frequent cause of acute liver injury and a serious problem in late stage drug-development. Its diagnosis is one of the most challenging in hepatology, since it is done by exclusion and relies on expert opinion. Until now no reliable in vitro test exists to support the diagnosis of iDILI. In some instances it is impossible to determine the causative drug in polymedicated patients. AIM To investigate if monocyte-derived hepatocyte-like (MH) cells might be a tool supporting clinical judgment for iDILI diagnosis and causality assessment. METHODS This prospective study included 54 patients with acute liver injury and intake of at least one drug. Thirty-one patients were diagnosed with iDILI based on causality likelihood. MH cells were generated from every patient and in vitro toxicity of the respective drugs was assessed by lactate-dehydrogenase release. The results from MH cells and RUCAM, the most widely used scoring system as methods to support clinical judgement were compared. RESULTS MH cells showed enhanced toxicity in 29 of the 31 patients with iDILI, similar to RUCAM score. MH cells exhibited negative results in the 23 non-DILI cases, whereas RUCAM indicated possible iDILI in six cases. Analysis of the comedications also showed superior specificity of MH cells. No MH cell toxicity of the drugs showing toxicity in patients with iDILI was observed in MH cells of healthy donors. CONCLUSIONS In this pilot study in vitro testing using MH cells derived from patients with acute liver injury was able to identify patients with iDILI with an excellent sensitivity and a higher specificity than RUCAM, the most widely used current causality assessment score. Therefore, MH cells could be useful to identify the causative drugs even in polymedicated patients by adding objective data to causality assessment. TRIAL REGISTRATION NUMBER NCT02353455.
Collapse
Affiliation(s)
- Andreas Benesic
- Liver Center Munich, Department of Internal Medicine II, University Hospital Munich, Campus Grosshadern, Munich, Germany MetaHeps GmbH, Planegg/Martinsried, Germany
| | - Alexandra Leitl
- Liver Center Munich, Department of Internal Medicine II, University Hospital Munich, Campus Grosshadern, Munich, Germany
| | - Alexander L Gerbes
- Liver Center Munich, Department of Internal Medicine II, University Hospital Munich, Campus Grosshadern, Munich, Germany
| |
Collapse
|
93
|
Aranda-Orgilles B, Saldaña-Meyer R, Wang E, Trompouki E, Fassl A, Lau S, Mullenders J, Rocha PP, Raviram R, Guillamot M, Sánchez-Díaz M, Wang K, Kayembe C, Zhang N, Amoasii L, Choudhuri A, Skok JA, Schober M, Reinberg D, Sicinski P, Schrewe H, Tsirigos A, Zon LI, Aifantis I. MED12 Regulates HSC-Specific Enhancers Independently of Mediator Kinase Activity to Control Hematopoiesis. Cell Stem Cell 2016; 19:784-799. [PMID: 27570068 DOI: 10.1016/j.stem.2016.08.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/25/2016] [Accepted: 08/02/2016] [Indexed: 12/11/2022]
Abstract
Hematopoietic-specific transcription factors require coactivators to communicate with the general transcription machinery and establish transcriptional programs that maintain hematopoietic stem cell (HSC) self-renewal, promote differentiation, and prevent malignant transformation. Mediator is a large coactivator complex that bridges enhancer-localized transcription factors with promoters, but little is known about Mediator function in adult stem cell self-renewal and differentiation. We show that MED12, a member of the Mediator kinase module, is an essential regulator of HSC homeostasis, as in vivo deletion of Med12 causes rapid bone marrow aplasia leading to acute lethality. Deleting other members of the Mediator kinase module does not affect HSC function, suggesting kinase-independent roles of MED12. MED12 deletion destabilizes P300 binding at lineage-specific enhancers, resulting in H3K27Ac depletion, enhancer de-activation, and consequent loss of HSC stemness signatures. As MED12 mutations have been described recently in blood malignancies, alterations in MED12-dependent enhancer regulation may control both physiological and malignant hematopoiesis.
Collapse
Affiliation(s)
- Beatriz Aranda-Orgilles
- Department of Pathology, Laura & Isaac Perlmutter Cancer Center, and The Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Ricardo Saldaña-Meyer
- Howard Hughes Medical Institute and Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Eric Wang
- Department of Pathology, Laura & Isaac Perlmutter Cancer Center, and The Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Eirini Trompouki
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Anne Fassl
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Stephanie Lau
- Department of Pathology, Laura & Isaac Perlmutter Cancer Center, and The Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Jasper Mullenders
- Department of Pathology, Laura & Isaac Perlmutter Cancer Center, and The Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Pedro P Rocha
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Ramya Raviram
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - María Guillamot
- Department of Pathology, Laura & Isaac Perlmutter Cancer Center, and The Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - María Sánchez-Díaz
- Department of Pathology, Laura & Isaac Perlmutter Cancer Center, and The Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Kun Wang
- Department of Pathology, Laura & Isaac Perlmutter Cancer Center, and The Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Clarisse Kayembe
- Department of Pathology, Laura & Isaac Perlmutter Cancer Center, and The Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Nan Zhang
- Department of Pathology, Laura & Isaac Perlmutter Cancer Center, and The Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Leonela Amoasii
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Avik Choudhuri
- Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Jane A Skok
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Markus Schober
- The Ronald O. Perelman Department of Dermatology and Department of Cell Biology, The Helen L. and Martin S. Kimmel Center for Stem Cell Biology, Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Danny Reinberg
- Howard Hughes Medical Institute and Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Heinrich Schrewe
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Aristotelis Tsirigos
- Department of Pathology, Laura & Isaac Perlmutter Cancer Center, and The Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA; Center for Health Informatics and Bioinformatics, NYU School of Medicine, New York, NY 10016, USA
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Iannis Aifantis
- Department of Pathology, Laura & Isaac Perlmutter Cancer Center, and The Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
94
|
Wang W, Org T, Montel-Hagen A, Pioli PD, Duan D, Israely E, Malkin D, Su T, Flach J, Kurdistani SK, Schiestl RH, Mikkola HKA. MEF2C protects bone marrow B-lymphoid progenitors during stress haematopoiesis. Nat Commun 2016; 7:12376. [PMID: 27507714 PMCID: PMC4987520 DOI: 10.1038/ncomms12376] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 06/27/2016] [Indexed: 12/19/2022] Open
Abstract
DNA double strand break (DSB) repair is critical for generation of B-cell receptors, which are pre-requisite for B-cell progenitor survival. However, the transcription factors that promote DSB repair in B cells are not known. Here we show that MEF2C enhances the expression of DNA repair and recombination factors in B-cell progenitors, promoting DSB repair, V(D)J recombination and cell survival. Although Mef2c-deficient mice maintain relatively intact peripheral B-lymphoid cellularity during homeostasis, they exhibit poor B-lymphoid recovery after sub-lethal irradiation and 5-fluorouracil injection. MEF2C binds active regulatory regions with high-chromatin accessibility in DNA repair and V(D)J genes in both mouse B-cell progenitors and human B lymphoblasts. Loss of Mef2c in pre-B cells reduces chromatin accessibility in multiple regulatory regions of the MEF2C-activated genes. MEF2C therefore protects B lymphopoiesis during stress by ensuring proper expression of genes that encode DNA repair and B-cell factors.
Collapse
Affiliation(s)
- Wenyuan Wang
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California 90095, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California 90095, USA.,Molecular Biology Institute, UCLA, Los Angeles, California 90095, USA
| | - Tonis Org
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California 90095, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California 90095, USA.,Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | - Amélie Montel-Hagen
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California 90095, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California 90095, USA
| | - Peter D Pioli
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California 90095, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California 90095, USA
| | - Dan Duan
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California 90095, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California 90095, USA
| | - Edo Israely
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California 90095, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California 90095, USA
| | - Daniel Malkin
- Department of Molecular Toxicology, UCLA, Los Angeles, California 90095, USA.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90095, USA
| | - Trent Su
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Johanna Flach
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California 94143, USA
| | - Siavash K Kurdistani
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Robert H Schiestl
- Department of Molecular Toxicology, UCLA, Los Angeles, California 90095, USA.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90095, USA
| | - Hanna K A Mikkola
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California 90095, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California 90095, USA.,Molecular Biology Institute, UCLA, Los Angeles, California 90095, USA.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90095, USA
| |
Collapse
|
95
|
Wang Z, Medrzycki M, Bunting ST, Bunting KD. Stat5-deficient hematopoiesis is permissive for Myc-induced B-cell leukemogenesis. Oncotarget 2016; 6:28961-72. [PMID: 26338970 PMCID: PMC4745704 DOI: 10.18632/oncotarget.5009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/12/2015] [Indexed: 11/28/2022] Open
Abstract
Despite being an attractive molecular target for both lymphoid and myeloid leukemias characterized by activated tyrosine kinases, the molecular and physiological consequences of reduced signal transducer and activator of transcription-5 (Stat5) during leukemogenesis are not well known. Stat5 is a critical regulator of mouse hematopoietic stem cell (HSC) self-renewal and is essential for normal lymphocyte development. We report that pan-hematopoietic deletion in viable adult Vav1-Cre conditional knockout mice as well as Stat5abnull/null fetal liver transplant chimeras generated HSCs with reduced expression of quiescence regulating genes (Tie2, Mpl, Slamf1, Spi1, Cited2) and increased expression of B-cell development genes (Satb1, Dntt, Btla, Flk2). Using a classical murine B-cell acute lymphoblastic leukemia (B-ALL) model, we demonstrate that these HSCs were also poised to produce a burst of B-cell precursors upon expression of Bcl-2 combined with oncogenic Myc. This strong selective advantage for leukemic transformation in the background of Stat5 deficient hematopoiesis was permissive for faster initiation of Myc-induced transformation to B-ALL. However, once established, the B-ALL progression in secondary transplant recipients was Stat5-independent. Overall, these studies suggest that Stat5 can play multiple important roles that not only preserve the HSC compartment but can limit accumulation of potential pre-leukemic lymphoid populations.
Collapse
Affiliation(s)
- Zhengqi Wang
- Department of Pediatrics, Division of Hematology-Oncology-BMT, Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Emory University, Atlanta GA, USA
| | - Magdalena Medrzycki
- Department of Pediatrics, Division of Hematology-Oncology-BMT, Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Emory University, Atlanta GA, USA
| | - Silvia T Bunting
- Department of Pathology, Children's Healthcare of Atlanta, Atlanta GA, USA
| | - Kevin D Bunting
- Department of Pediatrics, Division of Hematology-Oncology-BMT, Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Emory University, Atlanta GA, USA
| |
Collapse
|
96
|
Sanges D, Simonte G, Di Vicino U, Romo N, Pinilla I, Nicolás M, Cosma MP. Reprogramming Müller glia via in vivo cell fusion regenerates murine photoreceptors. J Clin Invest 2016; 126:3104-16. [PMID: 27427986 DOI: 10.1172/jci85193] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 05/24/2016] [Indexed: 12/17/2022] Open
Abstract
Vision impairments and blindness caused by retinitis pigmentosa result from severe neurodegeneration that leads to a loss of photoreceptors, the specialized light-sensitive neurons that enable vision. Although the mammalian nervous system is unable to replace neurons lost due to degeneration, therapeutic approaches to reprogram resident glial cells to replace retinal neurons have been proposed. Here, we demonstrate that retinal Müller glia can be reprogrammed in vivo into retinal precursors that then differentiate into photoreceptors. We transplanted hematopoietic stem and progenitor cells (HSPCs) into retinas affected by photoreceptor degeneration and observed spontaneous cell fusion events between Müller glia and the transplanted cells. Activation of Wnt signaling in the transplanted HSPCs enhanced survival and proliferation of Müller-HSPC hybrids as well as their reprogramming into intermediate photoreceptor precursors. This suggests that Wnt signaling drives the reprogrammed cells toward a photoreceptor progenitor fate. Finally, Müller-HSPC hybrids differentiated into photoreceptors. Transplantation of HSPCs with activated Wnt functionally rescued the retinal degeneration phenotype in rd10 mice, a model for inherited retinitis pigmentosa. Together, these results suggest that photoreceptors can be generated by reprogramming Müller glia and that this approach may have potential as a strategy for reversing retinal degeneration.
Collapse
|
97
|
Mll-AF4 Confers Enhanced Self-Renewal and Lymphoid Potential during a Restricted Window in Development. Cell Rep 2016; 16:1039-1054. [PMID: 27396339 PMCID: PMC4967476 DOI: 10.1016/j.celrep.2016.06.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/27/2016] [Accepted: 06/09/2016] [Indexed: 01/15/2023] Open
Abstract
MLL-AF4+ infant B cell acute lymphoblastic leukemia is characterized by an early onset and dismal survival. It initiates before birth, and very little is known about the early stages of the disease’s development. Using a conditional Mll-AF4-expressing mouse model in which fusion expression is targeted to the earliest definitive hematopoietic cells generated in the mouse embryo, we demonstrate that Mll-AF4 imparts enhanced B lymphoid potential and increases repopulation and self-renewal capacity during a putative pre-leukemic state. This occurs between embryonic days 12 and 14 and manifests itself most strongly in the lymphoid-primed multipotent progenitor population, thus pointing to a window of opportunity and a potential cell of origin. However, this state alone is insufficient to generate disease, with the mice succumbing to B cell lymphomas only after a long latency. Future analysis of the molecular details of this pre-leukemic state will shed light on additional events required for progression to acute leukemia. Mll-AF4 confers enhanced B cell potential and causes an expansion of pro-B cells Mll-AF4 increases self-renewal potential Mll-AF4 exerts its effects in a restricted developmental window The LMPP is a potential cell of origin for Mll-AF4-associated disease
Collapse
|
98
|
Perez-Cunningham J, Boyer SW, Landon M, Forsberg EC. Hematopoietic stem cell-specific GFP-expressing transgenic mice generated by genetic excision of a pan-hematopoietic reporter gene. Exp Hematol 2016; 44:755-764.e1. [PMID: 27185381 DOI: 10.1016/j.exphem.2016.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 04/11/2016] [Accepted: 05/03/2016] [Indexed: 11/24/2022]
Abstract
Selective labeling of specific cell types by expression of green fluorescent protein (GFP) within the hematopoietic system would have great utility in identifying, localizing, and tracking different cell populations in flow cytometry, microscopy, lineage tracing, and transplantation assays. In this report, we describe the generation and characterization of a new transgenic mouse line with specific GFP labeling of all nucleated hematopoietic cells and platelets. This new "Vav-GFP" mouse line labels the vast majority of hematopoietic cells with GFP during both embryonic development and adulthood, with particularly high expression in hematopoietic stem and progenitor cells (HSPCs). With the exception of transient labeling of fetal endothelial cells, GFP expression is highly selective for hematopoietic cells and persists in donor-derived progeny after transplantation of HSPCs. Finally, we also demonstrate that the loxP-flanked reporter allows for specific GFP labeling of different hematopoietic cell subsets when crossed to various Cre reporter lines. By crossing Vav-GFP mice to Flk2-Cre mice, we obtained robust and highly selective GFP expression in hematopoietic stem cells (HSCs). These data describe a new mouse model capable of directing GFP labeling exclusively of hematopoietic cells or exclusively of HSCs.
Collapse
Affiliation(s)
- Jessica Perez-Cunningham
- Department of Biomolecular Engineering, Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA
| | - Scott W Boyer
- Department of Biomolecular Engineering, Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA
| | - Mark Landon
- Department of Biomolecular Engineering, Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA
| | - E Camilla Forsberg
- Department of Biomolecular Engineering, Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA.
| |
Collapse
|
99
|
Gekas C, D'Altri T, Aligué R, González J, Espinosa L, Bigas A. β-Catenin is required for T-cell leukemia initiation and MYC transcription downstream of Notch1. Leukemia 2016; 30:2002-2010. [PMID: 27125305 DOI: 10.1038/leu.2016.106] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 12/30/2022]
Abstract
Notch activation is instrumental in the development of most T-cell acute lymphoblastic leukemia (T-ALL) cases, yet Notch mutations alone are not sufficient to recapitulate the full human disease in animal models. We here found that Notch1 activation at the fetal liver (FL) stage expanded the hematopoietic progenitor population and conferred it transplantable leukemic-initiating capacity. However, leukemogenesis and leukemic-initiating cell capacity induced by Notch1 was critically dependent on the levels of β-Catenin in both FL and adult bone marrow contexts. In addition, inhibition of β-Catenin compromised survival and proliferation of human T-ALL cell lines carrying activated Notch1. By transcriptome analyses, we identified the MYC pathway as a crucial element downstream of β-Catenin in these T-ALL cells and demonstrate that the MYC 3' enhancer required β-Catenin and Notch1 recruitment to induce transcription. Finally, PKF115-584 treatment prevented and partially reverted leukemogenesis induced by active Notch1.
Collapse
Affiliation(s)
- C Gekas
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - T D'Altri
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - R Aligué
- Department of Cell Biology, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - J González
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - L Espinosa
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - A Bigas
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| |
Collapse
|
100
|
Damnernsawad A, Kong G, Wen Z, Liu Y, Rajagopalan A, You X, Wang J, Zhou Y, Ranheim EA, Luo HR, Chang Q, Zhang J. Kras is Required for Adult Hematopoiesis. Stem Cells 2016; 34:1859-71. [PMID: 26972179 DOI: 10.1002/stem.2355] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/15/2016] [Indexed: 12/21/2022]
Abstract
Previous studies indicate that Kras is dispensable for fetal liver hematopoiesis, but its role in adult hematopoiesis remains unclear. Here, we generated a Kras conditional knockout allele to address this question. Deletion of Kras in adult bone marrow (BM) is mediated by Vav-Cre or inducible Mx1-Cre. We find that loss of Kras leads to greatly reduced thrombopoietin (TPO) signaling in hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs), while stem cell factor-evoked ERK1/2 activation is not affected. The compromised TPO signaling is associated with reduced long term- and intermediate-term HSC compartments and a bias toward myeloid differentiation in MPPs. Although granulocyte macrophage colony-stimulating factor (GM-CSF)-evoked ERK1/2 activation is only moderately decreased in Kras(-/-) myeloid progenitors, it is blunted in neutrophils and neutrophil survival is significantly reduced in vitro. At 9-12 months old, Kras conditional knockout mice develop profound hematopoietic defects, including splenomegaly, an expanded neutrophil compartment, and reduced B cell number. In a serial transplantation assay, the reconstitution potential of Kras(-/-) BM cells is greatly compromised, which is attributable to defects in the self-renewal of Kras(-/-) HSCs and defects in differentiated hematopoietic cells. Our results demonstrate that Kras is a major regulator of TPO and GM-CSF signaling in specific populations of hematopoietic cells and its function is required for adult hematopoiesis. Stem Cells 2016;34:1859-1871.
Collapse
Affiliation(s)
- Alisa Damnernsawad
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Wisconsin, USA
| | - Guangyao Kong
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Wisconsin, USA
| | - Zhi Wen
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Wisconsin, USA
| | - Yangang Liu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Wisconsin, USA
| | - Adhithi Rajagopalan
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Xiaona You
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Wisconsin, USA
| | - Jinyong Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Wisconsin, USA
| | - Yun Zhou
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Wisconsin, USA
| | - Erik A Ranheim
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Hongbo R Luo
- Department of Pathology, Harvard Medical School and Boston Children's Hospital, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Qiang Chang
- Department of Medical Genetics and Department of Neurology, Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jing Zhang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Wisconsin, USA
| |
Collapse
|