51
|
Zheng WW, Yang DT, Wang JX, Song QS, Gilbert LI, Zhao XF. Hsc70 binds to ultraspiracle resulting in the upregulation of 20-hydroxyecdsone-responsive genes in Helicoverpa armigera. Mol Cell Endocrinol 2010; 315:282-91. [PMID: 19897013 DOI: 10.1016/j.mce.2009.10.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 10/29/2009] [Accepted: 10/30/2009] [Indexed: 10/20/2022]
Abstract
To probe the specific functions of the chaperone protein Hsc70 in 20-hydroxyecdysone signaling, we report on the roles of the Hsc70 from Helicoverpa armigera. RT-PCR analysis revealed that the genes for HaEcRB1 and HaUSP1 were upregulated in 5th molting and metamorphic molting larvae, whereas HaHsc70 maintained a constitutive expression level throughout larval development. Silencing HaEcRB1, HaUSP1 or HaHsc70 by RNAi inhibited the expression of a set of 20E-responsive genes. Immunocytochemical assay demonstrated that HaHsc70 is located predominantly in the cytoplasm of unstimulated cells and partially translocated to the nucleus after stimulation by 20E. Knockdown of HaHsc70 by RNAi decreased the amount of both HaEcRB1 and HaUSP1 in the nucleus. HaHsc70 was capable of binding to HaUSP1 in pull-down assays. These data suggest that Hsc70 participates in the 20E signal transduction pathway via binding to USP1 and mediating the expression of EcRB1, USP1 and then a set of 20E-responsive genes.
Collapse
Affiliation(s)
- Wei-Wei Zheng
- School of Life Sciences, the Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, Shandong University, Shanda Road 27, Jinan 250100, Shandong, China
| | | | | | | | | | | |
Collapse
|
52
|
Jones D, Jones G, Teal P, Hammac C, Messmer L, Osborne K, Belgacem YH, Martin JR. Suppressed production of methyl farnesoid hormones yields developmental defects and lethality in Drosophila larvae. Gen Comp Endocrinol 2010; 165:244-54. [PMID: 19595690 PMCID: PMC3277837 DOI: 10.1016/j.ygcen.2009.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 06/22/2009] [Accepted: 07/03/2009] [Indexed: 10/20/2022]
Abstract
A long-unresolved question in the developmental biology of Drosophila melanogaster has been whether methyl farnesoid hormones secreted by the ring gland are necessary for larval maturation and metamorphosis. In this study, we have used RNAi techniques to inhibit 3-Hydroxy-3-Methylglutaryl CoA Reductase (HMGCR) expression selectively in the corpora allatal cells that produce the circulating farnesoid hormones. The developing larvae manifest a number of developmental, metabolic and morphogenetic derangements. These defects included the exhibition of an "ultraspiracle" death phenotype at the 1st to 2nd instar larval molt, similar to that exhibited by animals that are null for the farnesoid receptor ultraspiracle. The few larvae surviving past a second lethal period at the 2nd to 3rd instar larval molt, again with "ultraspiracle" phenotype, often became developmentally arrested after either attaining a misformed puparium or after formation of the white pupa. Survival past the "ultraspiracle" lethal phenotype could be rescued by dietary provision of an endogenous dedicated precursor to the three naturally secreted methyl farnesoid hormones. In addition to these developmental and morphogenetic defects, most larvae that survived to the late second instar exhibited a posterior-originating melanization of the tracheal system. These results support the hypothesis that larval methyl farnesoid hormones are necessary for larval survival and morphogenetic transformation through the larval and pupal metamorphic processes.
Collapse
Affiliation(s)
- Davy Jones
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40506
| | - Grace Jones
- Dept. of Biology, University of Kentucky, Lexington, KY 40506
| | - Peter Teal
- U.S. Department of Agriculture, Agricultural Research Service, Chemistry Research Unit, Gainesville, FL 32608, USA
| | - Courey Hammac
- Dept. of Biology, University of Kentucky, Lexington, KY 40506
| | - Lexa Messmer
- Dept. of Biology, University of Kentucky, Lexington, KY 40506
| | - Kara Osborne
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40506
| | - Yasser Hadj Belgacem
- Laboratoire de Neurobiologie Cellulaire et Moleculaire (NBCM) CNRS, UOR-9040, Gif-sur-Yvette Cedex, France
| | - Jean-Rene Martin
- Laboratoire de Neurobiologie Cellulaire et Moleculaire (NBCM) CNRS, UOR-9040, Gif-sur-Yvette Cedex, France
| |
Collapse
|
53
|
Ruff H, Tremmel C, Spindler-Barth M. Transcriptional activity of ecdysone receptor isoforms is regulated by modulation of receptor stability and interaction with Ab- and C-domains of the heterodimerization partner ultraspiracle. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2009; 72:154-171. [PMID: 19711356 DOI: 10.1002/arch.20309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The stability of ecdysone receptor (EcR) expressed in a heterologous system is regulated in an isoform-specific manner and modified by ligand and heterodimerization partner. Transcriptional activities of various receptor complexes with Usp and ligand as determined by reporter assays are the result of two effects: change in receptor concentration and altered transcriptional capability. Transcriptional activity of EcR-A is low when compared to EcR-B1 independent of the absence or presence of Ultraspiracle (Usp). Ligand increased the concentration of EcR-A, but had no effect on the transcriptional capability, in contrast to EcR-B1, which is not stabilized by hormone or Usp, but the transcriptional capability is enhanced by heterodimerization and ligand. Exchange of the AB-domain of Usp by the activation domain (AD) of Vp16 revealed that the N-terminus of Usp inhibited transcriptional activity only with EcR-B isoforms, whereas the hexapeptide in the AB-domain of wild type Usp adjacent to the C-domain of Usp harbours an activating function. Deletion of the C-domain of Usp did not affect the stability of the receptor complex, but reduced the transcriptional capability of heterodimers with all EcR-isoforms, indicating that the stability of the receptor, which is important for termination of the hormone signal transduction, is regulated in a cooperative manner by the AB-domains of EcR and Usp, and ligand. We show the active role of Usp in modulation of the transcriptional activity of the heterodimer in an isoform-specific manner by the inhibitory N-terminus, the activating hexapeptide in the AB-domain, and the C-domain of Usp.
Collapse
Affiliation(s)
- Heike Ruff
- Institute of General Zoology and Endocrinology, University of Ulm, Ulm, Germany
| | | | | |
Collapse
|
54
|
Abstract
The molting process in arthropods is regulated by steroid hormones acting via nuclear receptor proteins. The most common molting hormone is the ecdysteroid, 20-hydroxyecdysone. The receptors of 20-hydroxyecdysone have also been identified in many arthropod species, and the amino acid sequences determined. The functional molting hormone receptors consist of two members of the nuclear receptor superfamily, namely the ecdysone receptor and the ultraspiracle, although the ecdysone receptor may be functional, in some instances, without the ultraspiracle. Generally, the ecdysone receptor/ultraspiracle heterodimer binds to a number of ecdysone response elements, sequence motifs that reside in the promoter of various ecdysteroid-responsive genes. In the ensuing transcriptional induction, the ecdysone receptor/ultraspiracle complex binds to 20-hydroxyecdysone or to a cognate ligand that, in turn, leads to the release of a corepressor and the recruitment of coactivators. 3D structures of the ligand-binding domains of the ecdysone receptor and the ultraspiracle have been solved for a few insect species. Ecdysone agonists bind to ecdysone receptors specifically, and ligand-ecdysone receptor binding is enhanced in the presence of the ultraspiracle in insects. The basic mode of ecdysteroid receptor action is highly conserved, but substantial functional differences exist among the receptors of individual species. Even though the transcriptional effects are apparently similar for ecdysteroids and nonsteroidal compounds such as diacylhydrazines, the binding shapes are different between them. The compounds having the strongest binding affinity to receptors ordinarily have strong molting hormone activity. The ability of the ecdysone receptor/ultraspiracle complex to manifest the effects of small lipophilic agonists has led to their use as gene switches for medical and agricultural applications.
Collapse
Affiliation(s)
- Yoshiaki Nakagawa
- Division of Applied Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo-Ku, Kyoto 606-8502, Japan.
| | | |
Collapse
|
55
|
Chittaranjan S, McConechy M, Hou YCC, Freeman JD, DeVorkin L, Gorski SM. Steroid hormone control of cell death and cell survival: molecular insights using RNAi. PLoS Genet 2009; 5:e1000379. [PMID: 19214204 PMCID: PMC2632862 DOI: 10.1371/journal.pgen.1000379] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 01/12/2009] [Indexed: 11/30/2022] Open
Abstract
The insect steroid hormone ecdysone triggers programmed cell death of obsolete larval tissues during metamorphosis and provides a model system for understanding steroid hormone control of cell death and cell survival. Previous genome-wide expression studies of Drosophila larval salivary glands resulted in the identification of many genes associated with ecdysone-induced cell death and cell survival, but functional verification was lacking. In this study, we test functionally 460 of these genes using RNA interference in ecdysone-treated Drosophila l(2)mbn cells. Cell viability, cell morphology, cell proliferation, and apoptosis assays confirmed the effects of known genes and additionally resulted in the identification of six new pro-death related genes, including sorting nexin-like gene SH3PX1 and Sox box protein Sox14, and 18 new pro-survival genes. Identified genes were further characterized to determine their ecdysone dependency and potential function in cell death regulation. We found that the pro-survival function of five genes (Ras85D, Cp1, CG13784, CG32016, and CG33087), was dependent on ecdysone signaling. The TUNEL assay revealed an additional two genes (Kap-alpha3 and Smr) with an ecdysone-dependent cell survival function that was associated with reduced cell death. In vitro, Sox14 RNAi reduced the percentage of TUNEL-positive l(2)mbn cells (p<0.05) following ecdysone treatment, and Sox14 overexpression was sufficient to induce apoptosis. In vivo analyses of Sox14-RNAi animals revealed multiple phenotypes characteristic of aberrant or reduced ecdysone signaling, including defects in larval midgut and salivary gland destruction. These studies identify Sox14 as a positive regulator of ecdysone-mediated cell death and provide new insights into the molecular mechanisms underlying the ecdysone signaling network governing cell death and cell survival.
Collapse
Affiliation(s)
| | - Melissa McConechy
- The Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Ying-Chen Claire Hou
- The Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - J. Douglas Freeman
- The Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Lindsay DeVorkin
- The Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Sharon M. Gorski
- The Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
56
|
Bernardi F, Romani P, Tzertzinis G, Gargiulo G, Cavaliere V. EcR-B1 and Usp nuclear hormone receptors regulate expression of the VM32E eggshell gene during Drosophila oogenesis. Dev Biol 2009; 328:541-51. [PMID: 19389369 DOI: 10.1016/j.ydbio.2009.01.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 12/30/2008] [Accepted: 01/10/2009] [Indexed: 11/25/2022]
Abstract
Ecdysone signaling plays key roles in Drosophila oogenesis, as its activity is required at multiple steps during egg chamber maturation. Recently, its involvement has been reported on eggshell production by controlling chorion gene transcription and amplification. Here, we present evidence that ecdysone signaling also controls the expression of the eggshell gene VM32E, whose product is a component of vitelline membrane and endochorion layers. Specifically blocking the function of the different Ecdysone receptor (EcR) isoforms we demonstrate that EcR-B1 is responsible for ecdysone-mediated VM32E transcriptional regulation. Moreover, we show that the EcR partner Ultraspiracle (Usp) is also necessary for VM32E expression. By analyzing the activity of specific VM32E regulatory regions in usp(2) clones we identify the promoter region mediating ecdysone-dependent VM32E expression. By in vitro binding assay and site-directed mutagenesis we demonstrate that this region contains a Usp binding site necessary for VM32E regulation. Our results further support the crucial role of ecdysone signaling in controlling transcription of eggshell structural genes and suggest that the heterodimeric complex EcR-B1/Usp mediates the ecdysone-dependent VM32E transcriptional activation in the main body follicle cells.
Collapse
Affiliation(s)
- Fabio Bernardi
- Dipartimento di Biologia Evoluzionistica Sperimentale, Università di Bologna, Bologna, Italy
| | | | | | | | | |
Collapse
|
57
|
Davis MM, Yang P, Chen L, O'Keefe SL, Hodgetts RB. The orphan nuclear receptor DHR38 influences transcription of the DOPA decarboxylase gene in epidermal and neural tissues of Drosophila melanogaster. Genome 2008; 50:1049-60. [PMID: 18059550 DOI: 10.1139/g07-084] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The DOPA decarboxylase gene (Ddc) belongs to the "early-late" class of ecdysone-inducible genes in Drosophila melanogaster. Its expression is up-regulated in epidermal tissues by the ecdysone receptor acting through a response element, EcRE. In this paper, we show that another member of the nuclear receptor superfamily, DHR38, may act as a repressor of epidermal Ddc while inducing Ddc expression in neuronal cells. DHR38 does not behave as a classical co-repressor of the ecdysone receptor though, since the site through which DHR38 acts is distinct from the EcRE. Ectopic expression of a Dhr38 cDNA from a heat-shock promoter completely repressed transcription from the endogenous Ddc promoter and from an intact reporter construct in the hypoderm and in imaginal discs. Ectopic DHR38 had no effect on the transcription of a reporter driven by a Ddc fragment missing the DHR38 binding site. Neither reporter expression nor endogenous Ddc transcript levels were affected in a Dhr38 mutant background. Because most mutant organisms pupariate apparently normally and many of these survive to eclose, we believe that some functional redundancy exists within the Dhr38 regulatory network operating in epidermal tissues. In contrast to its apparent repressor function in epidermal tissues, DHR38 may act as a positive regulator of neural Ddc expression. Ectopic expression of DHR38 throughout the CNS induced as much as a 20-fold increase in Ddc transcripts in the set of neurons in which DDC normally appears.
Collapse
Affiliation(s)
- Monica M Davis
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | | | | | | | | |
Collapse
|
58
|
Costantino BFB, Bricker DK, Alexandre K, Shen K, Merriam JR, Antoniewski C, Callender JL, Henrich VC, Presente A, Andres AJ. A novel ecdysone receptor mediates steroid-regulated developmental events during the mid-third instar of Drosophila. PLoS Genet 2008; 4:e1000102. [PMID: 18566664 PMCID: PMC2413497 DOI: 10.1371/journal.pgen.1000102] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 05/20/2008] [Indexed: 11/18/2022] Open
Abstract
The larval salivary gland of Drosophila melanogaster synthesizes and secretes glue glycoproteins that cement developing animals to a solid surface during metamorphosis. The steroid hormone 20-hydroxyecdysone (20E) is an essential signaling molecule that modulates most of the physiological functions of the larval gland. At the end of larval development, it is known that 20E--signaling through a nuclear receptor heterodimer consisting of EcR and USP--induces the early and late puffing cascade of the polytene chromosomes and causes the exocytosis of stored glue granules into the lumen of the gland. It has also been reported that an earlier pulse of hormone induces the temporally and spatially specific transcriptional activation of the glue genes; however, the receptor responsible for triggering this response has not been characterized. Here we show that the coordinated expression of the glue genes midway through the third instar is mediated by 20E acting to induce genes of the Broad Complex (BRC) through a receptor that is not an EcR/USP heterodimer. This result is novel because it demonstrates for the first time that at least some 20E-mediated, mid-larval, developmental responses are controlled by an uncharacterized receptor that does not contain an RXR-like component.
Collapse
Affiliation(s)
- Benjamin F. B. Costantino
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Daniel K. Bricker
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Kelly Alexandre
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Kate Shen
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - John R. Merriam
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | | | - Jenna L. Callender
- Center for Biotechnology, Genomics, and Health Research, University of North Carolina Greensboro, Greensboro, North Carolina, United States of America
| | - Vincent C. Henrich
- Center for Biotechnology, Genomics, and Health Research, University of North Carolina Greensboro, Greensboro, North Carolina, United States of America
| | - Asaf Presente
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Andrew J. Andres
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| |
Collapse
|
59
|
Riddiford LM. Juvenile hormone action: a 2007 perspective. JOURNAL OF INSECT PHYSIOLOGY 2008; 54:895-901. [PMID: 18355835 DOI: 10.1016/j.jinsphys.2008.01.014] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Revised: 01/28/2008] [Accepted: 01/31/2008] [Indexed: 05/26/2023]
Abstract
Juvenile hormone (JH) is a key hormone in regulation of the insect's life history, both in maintaining the larval state during molts and in directing reproductive maturation. This short review highlights the recent papers of the past year that lend new insight into the role of this hormone in the larva and the mechanisms whereby it achieves this role.
Collapse
Affiliation(s)
- Lynn M Riddiford
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| |
Collapse
|
60
|
Horigane M, Ogihara K, Nakajima Y, Taylor D. Isolation and expression of the retinoid X receptor from last instar nymphs and adult females of the soft tick Ornithodoros moubata (Acari: Argasidae). Gen Comp Endocrinol 2008; 156:298-311. [PMID: 18342313 DOI: 10.1016/j.ygcen.2008.01.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 12/20/2007] [Accepted: 01/29/2008] [Indexed: 11/30/2022]
Abstract
Retinoid X receptors (RXR) exist broadly from invertebrates to vertebrates, and play essential roles in physiological processes of these organisms. In arthropods, RXRs form a complex with the ecdysteroid receptor (EcR) and ecdysteroids to mediate the regulation of ecdysis and reproduction. Compared to EcR, RXR and its homologue ultraspiracle (USP) are much less well understood. Therefore, we identified RXR of the soft tick Ornithodoros moubata (OmRXR) and used real-time PCR to examine the expression of OmRXR. This is the first report of RXR from a soft tick. OmRXR showed higher homology to hard tick, crustacean and vertebrate RXRs than insect RXRs and USPs. OmRXR expression was observed during molting in the last instar nymphs coinciding with EcR expression and increases in ecdysteroid titers. Tick vitellogenesis normally occurs soon after engorgement and OmRXR expression coinciding with EcR expression and ecdysteroid titers in engorged females occurred before vitellogenin (Vg) synthesis and egg maturation. The ecdysteroid/EcR/RXR complex appears to be important in the regulation of molting and vitellogenesis of soft ticks.
Collapse
Affiliation(s)
- Mari Horigane
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | |
Collapse
|
61
|
Equilibrium analysis of the DNA binding domain of the ultraspiracle protein interaction with the response element from the hsp27 gene promoter--the application of molecular beacon technology. J Fluoresc 2007; 18:1-10. [PMID: 18049881 DOI: 10.1007/s10895-007-0285-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Accepted: 11/12/2007] [Indexed: 10/22/2022]
Abstract
Ecdysteroids initiate molting and metamorphosis in insects via a receptor which belongs to the superfamily of nuclear receptors. The ecdysone receptor consists of two proteins: the ecdysone receptor (EcR) and the ultraspiracle (Usp). The EcR-Usp dimer conducts transcription through a hsp27(pal) response element. Usp acts as an anchor orienting the whole complex on the DNA. The molecular beacon methodology was applied to detect the sequence-specific DNA of a natural hsp27 (pal) or mutated protein interaction with the DNA binding domain from the Usp. The dissociation constant, K(d), of the UspDBD-hsp27 (pal) complex was determined to be 1.42+/-0.48 nM, whereas K(d) for UspDBD(DeltaA)-hsp27(pal) was 6.6+/-0.5 nM. Mutation of Val-71 for Ala blocks formation of the protein-DNA complex in contrast to Glu-19 mutation for Ala for which K(d)=4.31+/-1.01 nM. The results obtained with the molecular beacon technology are related to those obtained by fluorescence anisotropy titrations.
Collapse
|
62
|
Shi L, Lin S, Grinberg Y, Beck Y, Grozinger CM, Robinson GE, Lee T. Roles of Drosophila Kruppel-homolog 1 in neuronal morphogenesis. Dev Neurobiol 2007; 67:1614-26. [PMID: 17562531 DOI: 10.1002/dneu.20537] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The molecular mechanisms underlying remodeling of neural networks remain largely unknown. In Drosophila, widespread neural remodeling occurs during metamorphosis, and is regulated by ecdysone. Kruppel-homolog 1 (Kr-h1) is a zinc finger transcription factor known to play a role in orchestrating ecdysone-regulated transcriptional pathways and, furthermore, implicated in governing axon morphogenesis. Interestingly, in honey bee workers, neural expression of the Apis mellifera homolog of Kr-h1 is enhanced during their transition to foraging behavior when there is increased neurite outgrowth, branching, and synapse formation. Here, we assessed the role(s) of KR-H1 in Drosophila neuronal remodeling and morphology. We characterized the effect of Kr-h1 expression on neuronal morphology through Drosophila larval, pupal, and adult stages. Increased expression of Kr-h1 led to reduced branching in individual neurons and gross morphological changes in the mushroom bodies (MBs), while knocking down Kr-h1 did not produce any obvious changes in neural morphology. Drosophila Kr-h1 is normally expressed when MB neurons do not undergo active morphogenesis, suggesting that it may play a role in inhibiting morphogenesis. Further, loss of endogenous KR-H1 enhanced the neuronal morphogenesis that is otherwise delayed due to defective TGF-beta signaling. However, loss of KR-H1 alone did not affect neuronal morphogenesis. In addition, Kr-h1 expression remains strongly linked to ecdysone-regulated pathways: Kr-h1 expression is regulated by usp, which dimerizes to the ecdysone receptor, and Kr-h1 expression is essential for proper patterning of the ecdysone receptor isoforms in the late larval central nervous system. Thus, although KR-H1 has a potential for modulating neuronal morphogenesis, it appears physiologically involved in coordinating general ecdysone signaling.
Collapse
Affiliation(s)
- Lei Shi
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | |
Collapse
|
63
|
Horigane M, Ogihara K, Nakajima Y, Shinoda T, Taylor D. Cloning and expression of the ecdysteroid receptor during ecdysis and reproduction in females of the soft tick, Ornithodoros moubata (Acari: Argasidae). INSECT MOLECULAR BIOLOGY 2007; 16:601-12. [PMID: 17894558 DOI: 10.1111/j.1365-2583.2007.00754.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Molecular mechanisms of ecdysteroid regulation in development and reproduction have been thoroughly investigated in Diptera and Lepidoptera, but few studies report the molecular actions of ecdysteroids in hemimetabolous insects and more primitive arthropods. Ecdysteroids appear to be the main hormones regulating development and vitellogenesis in ticks. An ecdysteroid receptor that showed high homology with EcRs of other arthropods was isolated from Ornithodoros moubata (OmEcRA). OmEcR expression patterns coincided with ecdysteroid titres in the haemolymph during moulting and vitellogenesis and differed between mated and virgin females. Therefore, OmEcR appears to mediate the regulation of moulting and vitellogenesis by ecdysteroids in O. moubata females as seen in other arthropods.
Collapse
Affiliation(s)
- M Horigane
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
64
|
Jones D, Jones G. Farnesoid secretions of dipteran ring glands: what we do know and what we can know. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 37:771-98. [PMID: 17628277 DOI: 10.1016/j.ibmb.2007.05.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 05/15/2007] [Accepted: 05/16/2007] [Indexed: 05/16/2023]
Abstract
Harnessing of the Drosophila genetic system toward ascertaining the molecular endocrinology of higher dipteran (cyclorrhaphan) larval development has been a goal for over 70 years, beginning with the data left to us by pioneer researchers from the classical endocrine era. The results of their experiments evidence numerous ring gland activities that are parsimoniously explained as arising from secretions of the larval corpora allatal cells. Utilization of those data toward an understanding of molecular endocrinology of cyclorrhaphan metamorphosis has not yet achieved its hoped for fruition, in part due to a perceived difficulty in identifying larval targets of the molecule "methyl epoxyfarnesoate" (=juvenile hormone III). However, as is reviewed here, it is important to maintain a conceptual distinction between "the target of JH III"Versus "the target(s) of products secreted by the larval corpora allatal cells of ring glands." Recent advances have been made on the identity, regulation and reception of ring gland farnesoid products. When these advances are evaluated together with the above data from the classical endocrine era, there is a new opportunity to frame experimental hypotheses so as to discern underlying mechanisms on cyclorrhaphan larval-pupal metamorphosis that have been heretofore intractable. This paper reconsiders a number of evidenced physiological targets of secretions of corpora allatal cells of the larval ring gland, and places them in the context of more recent biochemical and molecular advances in the field.
Collapse
Affiliation(s)
- Davy Jones
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40506, USA.
| | | |
Collapse
|
65
|
Crain DA, Eriksen M, Iguchi T, Jobling S, Laufer H, LeBlanc GA, Guillette LJ. An ecological assessment of bisphenol-A: Evidence from comparative biology. Reprod Toxicol 2007; 24:225-39. [PMID: 17604601 DOI: 10.1016/j.reprotox.2007.05.008] [Citation(s) in RCA: 356] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 05/09/2007] [Accepted: 05/11/2007] [Indexed: 11/16/2022]
Abstract
This review assesses the effects of environmental concentrations of bisphenol-A (BPA) on wildlife. Water concentrations of BPA vary tremendously due to proximity to point and non-point sources, but reported concentrations in stream/river water samples are less than 21 microg/L, and concentrations in landfill leacheate are less than 17.2mg/L. Extensive evidence indicates that BPA induces feminization during gonadal ontogeny of fishes, reptiles, and birds, but in all cases the amount of BPA necessary to cause such ontogenetic disruption exceeds concentrations in the environment. Extensive evidence also exists that adult exposure to environmental concentrations of BPA is detrimental to spermatogenetic endpoints and stimulates vitellogenin synthesis in model species of fish. Most of the reported effects of BPA on vertebrate wildlife species can be attributed to BPA acting as an estrogen receptor agonist, but mechanisms of disruption in invertebrates are less certain. A comparison of measured BPA environmental concentrations with chronic values suggests that no significant margin of safety exists for the protection of aquatic communities against the toxicity of BPA. Further studies should examine the most vulnerable vertebrate and invertebrate species.
Collapse
Affiliation(s)
- D Andrew Crain
- Department of Biology, Maryville College, 502 E. Lamar Alexander Parkway, Maryville, TN 37804-5907, USA.
| | | | | | | | | | | | | |
Collapse
|
66
|
Bouzaiene M, Angers A, Anctil M. Immunohistochemical localization of a retinoic acid-like receptor in nerve cells of two colonial anthozoans (Cnidaria). Tissue Cell 2007; 39:123-30. [PMID: 17376496 DOI: 10.1016/j.tice.2007.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Retinoic acid is known to induce vertebrate stem cells to differentiate into a variety of cell types, including neurons. Although retinoic acid was reported to affect morphogenetic pattern specification in the hydrozoan Hydractinia (Müller, W.A., 1984. Retinoids and pattern formation in a hydroid. J. Embryol. Exp. Morph. 81, 253-271) and a retinoid RXR receptor was cloned in the jellyfish Tripedalia (Kostrouch, Z., Kostrouchova, M., Love, W., Jannini, E., Piatigorsky, J., Rall, J.E., 1998. Retinoic acid X receptor in the diploblast, Tripedalia cystophora. Proc. Natl. Acad. Sci. U.S.A. 95, 13442-13447), the cellular targets of retinoids were not investigated. We used Western immunoblotting and immunohistochemistry to investigate the presence and cellular distribution of a RXR-like receptor in the sea pansy Renilla koellikeri and in the staghorn coral Acropora millepora (Cnidaria, Anthozoa). Western blots revealed a 64 kDa protein from a sea pansy extract in a band that co-migrated with a RXR protein from the rat brain. Using antibodies raised against an epitope of human alpha RXR, we visualized putative ectodermal sensory cells in the polyp column of the adult sea pansy. Immunoreactivity was absent in staghorn coral larvae but present in the polyp column of adult colonies in the form of clusters of neuron-like cells in the basiectoderm near the ectoderm-mesoglea interface. These observations suggest that a RXR-like receptor is involved in epithelial nerve cell specification in adult anthozoans and that this role is conserved throughout evolution.
Collapse
Affiliation(s)
- M Bouzaiene
- Département de Sciences Biologiques, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7
| | | | | |
Collapse
|
67
|
Beatty J, Fauth T, Callender JL, Spindler-Barth M, Henrich VC. Analysis of transcriptional activity mediated by Drosophila melanogaster ecdysone receptor isoforms in a heterologous cell culture system. INSECT MOLECULAR BIOLOGY 2006; 15:785-95. [PMID: 17201771 DOI: 10.1111/j.1365-2583.2006.00683.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Ecdysteroid regulation of gene transcription in Drosophila melanogaster and other insects is mediated by a heterodimer comprised of Ultraspiracle (USP) and one of three ecdysone receptor (EcR) isoforms (A, B1 and B2). This study revealed that the EcR/USP heterodimer displays isoform-specific capabilities. EcRB1 is normally induced with a form of USP that is missing its DNA-binding domain (DBD), although potentiation by juvenile hormone (JH) III is reduced. The EcRA and B2 isoforms, however, display almost no response to ecdysteroids with the DBD(-) USP. A mutation, K497E, in the shared ligand-binding domain of the EcR isoforms caused elevated EcRB2-specific affinity for a canonical ecdysone response element. The effects of directed modification and mutagenesis offer a strategy for developing hypotheses and considerations for studying in vivo function.
Collapse
Affiliation(s)
- J Beatty
- Center for Biotechnology, Genomics and Health Research, University of North Carolina-Greensboro, Greensboro, NC 27402-6170, USA
| | | | | | | | | |
Collapse
|
68
|
Martín D, Maestro O, Cruz J, Mané-Padrós D, Bellés X. RNAi studies reveal a conserved role for RXR in molting in the cockroach Blattella germanica. JOURNAL OF INSECT PHYSIOLOGY 2006; 52:410-6. [PMID: 16427073 DOI: 10.1016/j.jinsphys.2005.12.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 11/28/2005] [Accepted: 12/05/2005] [Indexed: 05/06/2023]
Abstract
Ecdysteroids play a major role during developmental growth in insects. The more active form of these hormones, 20-hydroxyecdysone (20E), acts upon binding to its heterodimeric receptor, formed by the two nuclear receptors, EcR and RXR/USP. Functional characterization of USP has been exclusively conducted on the holometabolous insect Drosophila melanogaster. However, it has been impossible to extend such analysis to primitive-hemimetabolous insects since species of this group are not amenable to genetic analysis. The development of methodologies based on gene silencing using RNA interference (RNAi) after treatment with double-stranded RNA (dsRNA) in vivo has resolved such limitations. In this paper, we show that injection of dsRNA into the haemocoel of nymphs and adults of the cockroach Blattella germanica can be used to silence gene function in vivo. In our initial attempt to test RNAi techniques, we halted the expression of the adult-specific vitellogenin gene. We then used the same technique to silence the expression of the B. germanica RXR/USP (BgRXR) gene in vivo during the last nymphal instar. BgRXR knockdown nymphs progressed through the instar correctly but they arrested development at the end of the stage and were unable to molt into adults. The results described herein suggest that RXR/USP function, in relation to molting, is conserved across the insect Class.
Collapse
Affiliation(s)
- David Martín
- Departament de Fisiologia i Biodiversitat Molecular, Institut de Biologia Molecular de Barcelona (CID, CSIC), Jordi Girona 18, 08034 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
69
|
Börner J, Puschmann T, Duch C. A steroid hormone affects sodium channel expression in Manduca central neurons. Cell Tissue Res 2006; 325:175-87. [PMID: 16525830 DOI: 10.1007/s00441-006-0175-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Accepted: 01/17/2006] [Indexed: 12/13/2022]
Abstract
Neuronal differentiation is characterized by stereotypical sequences of membrane channel and receptor acquisition. This is regulated by the coordinated interactions of a variety of developmental mechanisms, one of which is the control by steroid hormones. We have used the metamorphosis of the holometabolous insect, Manduca sexta, as a model to study effects of 20-hydroxyecdysone on the maturation of thoracic neuron membrane channel expression. To test for direct hormone action, neurons were dissociated into primary cell culture on the first day of pupal life. In situ hybridization demonstrated that the amount of expression of the acetylcholine receptor alpha subunit, MARA1, was not affected by 20-hydroxyecdysone. Immunocytochemistry with an antibody directed against the SP19 segment of voltage-gated sodium channels revealed no effect of 20-hydroxyecdysone treatment during the first 6 days in culture. SP19 sodium channel protein was evenly distributed along all neurites. In contrast, after 8 days in culture, 20-hydroxyecdysone increased the amount of SP19 protein expression and strongly affected its distribution in differentiating neurons. In the presence of 20-hydroxyecdysone, patches of high densities of SP19 sodium channel protein were found in growth cones close to the base of filopodia. This is a further step toward unraveling the blend of membrane proteins under the control of steroids during the development of the central nervous system of postembryonic Manduca. Our results, taken together with previous studies, indicate that 20-hydroxyecdysone does not affect the expression of potassium membrane current or of the nicotinic acetylcholine receptor but instead regulates the amplitude of the calcium membrane current and the amount and distribution of SP19 sodium channel protein.
Collapse
Affiliation(s)
- J Börner
- Institute of Biology/Neurobiology, Free University of Berlin, Koenigin-Luise Strasse 28-23, 14195 Berlin, Germany
| | | | | |
Collapse
|
70
|
Flatt T, Tu MP, Tatar M. Hormonal pleiotropy and the juvenile hormone regulation of Drosophila development and life history. Bioessays 2005; 27:999-1010. [PMID: 16163709 DOI: 10.1002/bies.20290] [Citation(s) in RCA: 345] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Understanding how traits are integrated at the organismal level remains a fundamental problem at the interface of developmental and evolutionary biology. Hormones, regulatory signaling molecules that coordinate multiple developmental and physiological processes, are major determinants underlying phenotypic integration. The probably best example for this is the lipid-like juvenile hormone (JH) in insects. Here we review the manifold effects of JH, the most versatile animal hormone, with an emphasis on the fruit fly Drosophila melanogaster, an organism amenable to both genetics and endocrinology. JH affects a remarkable number of processes and traits in Drosophila development and life history, including metamorphosis, behavior, reproduction, diapause, stress resistance and aging. While many molecular details underlying JH signaling remain unknown, we argue that studying "hormonal pleiotropy" offers intriguing insights into phenotypic integration and the mechanisms underlying life history evolution. In particular, we illustrate the role of JH as a key mediator of life history trade-offs.
Collapse
Affiliation(s)
- Thomas Flatt
- Division of Biology and Medicine, Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.
| | | | | |
Collapse
|
71
|
Wilson TG, Yerushalmi Y, Donnell DM, Restifo LL. Interaction between hormonal signaling pathways in Drosophila melanogaster as revealed by genetic interaction between methoprene-tolerant and broad-complex. Genetics 2005; 172:253-64. [PMID: 16204218 PMCID: PMC1456152 DOI: 10.1534/genetics.105.046631] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Juvenile hormone (JH) regulates insect development by a poorly understood mechanism. Application of JH agonist insecticides to Drosophila melanogaster during the ecdysone-driven onset of metamorphosis results in lethality and specific morphogenetic defects, some of which resemble those in mutants of the ecdysone-regulated Broad-Complex (BR-C). The Methoprene-tolerant (Met) bHLH-PAS gene mediates JH action, and Met mutations protect against the lethality and defects. To explore relationships among these two genes and JH, double mutants were constructed between Met alleles and alleles of each of the BR-C complementation groups: broad (br), reduced bristles on palpus (rbp), and 2Bc. Defects in viability and oogenesis were consistently more severe in rbp Met or br Met double mutants than would be expected if these genes act independently. Additionally, complementation between BR-C mutant alleles often failed when MET was absent. Patterns of BRC protein accumulation during metamorphosis revealed essentially no difference between wild-type and Met-null individuals. JH agonist treatment did not block accumulation of BRC proteins. We propose that MET and BRC interact to control transcription of one or more downstream effector genes, which can be disrupted either by mutations in Met or BR-C or by application of JH/JH agonist, which alters MET interaction with BRC.
Collapse
Affiliation(s)
- Thomas G Wilson
- Department of Entomology, Ohio State University, Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
72
|
Neubueser D, Warren JT, Gilbert LI, Cohen SM. molting defective is required for ecdysone biosynthesis. Dev Biol 2005; 280:362-72. [PMID: 15882578 DOI: 10.1016/j.ydbio.2005.01.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 01/18/2005] [Accepted: 01/19/2005] [Indexed: 11/17/2022]
Abstract
20-hydroxyecdysone was discovered as the major biologically active insect steroid hormone half a century ago, yet much remains to be learned about its biosynthesis and its activities. 20-hydroxyecdysone controls many biological processes, including progression between larval stages, entry to pupariation and metamorphosis. A number of genes required for 20-hydroxyecdysone production have been identified, including those encoding enzymes that mediate four of the late steps of biosynthesis. A second smaller group of low ecdysone mutants do not encode enzymes. Here, we report identification of one such gene, which we call molting defective, on the basis of its lethal phenotype. molting defective encodes a nuclear zinc finger protein required for ecdysone biosynthesis.
Collapse
|
73
|
Abstract
Nuclear receptors are ancient ligand-regulated transcription factors that control key metabolic and developmental pathways. The fruitfly Drosophila melanogaster has only 18 nuclear-receptor genes - far fewer than any other genetic model organism and representing all 6 subfamilies of vertebrate receptors. These unique attributes establish the fly as an ideal system for studying the regulation and function of nuclear receptors during development. Here, we review recent breakthroughs in our understanding of D. melanogaster nuclear receptors, and interpret these results in light of findings from their evolutionarily conserved vertebrate homologues.
Collapse
Affiliation(s)
- Kirst King-Jones
- Howard Hughes Medical Institute, Department of Human Genetics, University of Utah School of Medicine, 15 North 2030 East, Room 5100, Salt Lake City, Utah 84112-5331, USA.
| | | |
Collapse
|
74
|
Siaussat D, Bozzolan F, Queguiner I, Porcheron P, Debernard S. Cell cycle profiles of EcR, USP, HR3 and B cyclin mRNAs associated to 20E-induced G2 arrest of Plodia interpunctella imaginal wing cells. INSECT MOLECULAR BIOLOGY 2005; 14:151-161. [PMID: 15796748 DOI: 10.1111/j.1365-2583.2004.00540.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Using the IAL-PID2 cell line established from pupally committed imaginal wing discs of Plodia interpunctella, we have investigated the dynamics of cellular and molecular events involved in the G2/M arrest. We have first cloned a cDNA sequence named PIUSP-2 that likely encodes a homologue of the Ultraspiracle-2 isoform of Manduca sexta. When the IAL-PID2 cells were exposed to a 8 h 20E treatment applied at different times of the cell cycle, an optimal period of sensitivity of cells to 20E, in inducing G2 arrest, was determined at the S/G2 transition. Using cDNA probes specifically designed from Plodia B cyclin (PcycB), ecdysone receptor B1-isoform (PIEcR-B1) and HR3 transcription factor (PHR3), we provide evidence that the 20E-induced G2 arrest was correlated to a high induction of PHR3, PIEcR-B1, PIUSP-2 mRNAs at the S/G2 transition and a decrease in PcycB mRNA level at the end of G2 phase.
Collapse
Affiliation(s)
- D Siaussat
- Laboratoire de Physiologie Cellulaire des Invertébrés, Université Pierre et Marie Curie, Paris, France.
| | | | | | | | | |
Collapse
|
75
|
Consoulas C, Levine RB, Restifo LL. The steroid hormone-regulated geneBroad Complex is required for dendritic growth of motoneurons during metamorphosis ofDrosophila. J Comp Neurol 2005; 485:321-37. [PMID: 15803508 DOI: 10.1002/cne.20499] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Dendrites are subject to subtle modifications as well as extensive remodeling during the assembly and maturation of neural circuits in a wide variety of organisms. During metamorphosis, Drosophila flight motoneurons MN1-MN4 undergo dendritic regression, followed by regrowth, whereas MN5 differentiates de novo (Consoulas et al. [2002] J. Neurosci. 22:4906-4917). Many cellular changes during metamorphosis are triggered and orchestrated by the steroid hormone 20-hydroxyecdysone, which initiates a cascade of coordinated gene expression. Broad Complex (BRC), a primary response gene in the ecdysone cascade, encodes a family of transcription factors (BRC-Z1-Z4) that are essential for metamorphic reorganization of the central nervous system (CNS). Using neuron-filling techniques that reveal cellular morphology with very high resolution, we tested the hypothesis that BRC is required for metamorphic development of MN1-MN5. Through a combination of loss-of-function mutant analyses, genetic mapping, and transgenic rescue experiments, we found that 2Bc function, mediated by BRC-Z3, is required selectively for motoneuron dendritic regrowth (MN1-MN4) and de novo outgrowth (MN5), as well as for soma expansion of MN5. In contrast, larval development and dendritic regression of MN1-MN4 are BRC-independent. Surprisingly, BRC proteins are not expressed in the motoneurons, suggesting that BRC-Z3 exerts its effect in a non-cell-autonomous manner. The 2Bc mutants display no gross defects in overall thoracic CNS structure, or in peripheral structures such as target muscles or sensory neurons. Candidates for mediating the effect of BRC-Z3 on dendritic growth of MN1-MN5 include their synaptic inputs and non-neuronal CNS cells that interact with them through direct contact or diffusible factors.
Collapse
Affiliation(s)
- Christos Consoulas
- ARL Division of Neurobiology, University of Arizona, Tucson, Arizona 85721, USA.
| | | | | |
Collapse
|
76
|
Berger EM, Dubrovsky EB. Juvenile hormone molecular actions and interactions during development of Drosophila melanogaster. VITAMINS AND HORMONES 2005; 73:175-215. [PMID: 16399411 DOI: 10.1016/s0083-6729(05)73006-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Edward M Berger
- Department Of Biology, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
77
|
Maki A, Sawatsubashi S, Ito S, Shirode Y, Suzuki E, Zhao Y, Yamagata K, Kouzmenko A, Takeyama KI, Kato S. Juvenile hormones antagonize ecdysone actions through co-repressor recruitment to EcR/USP heterodimers. Biochem Biophys Res Commun 2004; 320:262-7. [PMID: 15207730 DOI: 10.1016/j.bbrc.2004.05.156] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Indexed: 11/28/2022]
Abstract
Insect development is controlled by the combined actions of ecdysteroid and juvenile hormones. Transcriptional control by ecdysteroid hormones is mediated via two nuclear receptor superfamily members, ecdysone receptor (EcR) and its heterodimeric partner, ultraspiracle (USP). Although the ecdysteroid hormone 20-hydroxyecdysone acts as an EcR ligand and activates transcription through EcR/USP heterodimers, the activity of juvenile hormones, such as Juvenile hormone III (JH III), and methoprenic acid (MA) via USP remains unclear. Here, we demonstrate that juvenile hormones act as USP ligands and exhibit suppressive effects on ecdysone-dependent EcR transactivation. JH III- and MA-bound USP markedly repressed ecdysone-dependent EcR transactivation through shifting of the USP ligand-binding domain alpha-helix 12 without affecting EcR/USP heterodimerization or DNA binding. Moreover, transcriptional repression by USP ligands was attenuated by a histone deacetylation inhibitor. Our results suggested that juvenile hormones serve as USP ligands that antagonize EcR-mediated ecdysone actions through the recruitment of histone deacetylase complexes.
Collapse
Affiliation(s)
- Akio Maki
- The Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Hiruma K, Riddiford LM. Differential control of MHR3 promoter activity by isoforms of the ecdysone receptor and inhibitory effects of E75A and MHR3. Dev Biol 2004; 272:510-21. [PMID: 15282165 DOI: 10.1016/j.ydbio.2004.04.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Revised: 04/22/2004] [Accepted: 04/26/2004] [Indexed: 11/17/2022]
Abstract
MHR3 is an ecdysone-inducible transcription factor whose expression in both Manduca sexta epidermis and the Manduca GV1 cell line is induced by 20-hydroxyecdysone (20E) in vitro. There are four putative ecdysone response elements (EcRE) in the 2.6-kb flanking region of the MHR3 promoter. The most proximal, EcRE1, is necessary for activation of the promoter by 20E in the GV1 cells because the mutation of EcRE1 caused the loss of responsiveness to 20E. Previous studies showed that EcR-B1/USP-1 bound only to EcRE1 and high levels of this complex increased the 20E-induced activation, whereas the presence of high USP-2 prevented this increased activation. When we expressed EcR-A alone or in combination with USP-1 under the control of Autographa californica baculovirus promoter (pIE1hr), the activation of the 2.6-kb promoter by 20E was reduced by about 50%. Moreover, when EcR-A was expressed together with both EcR-B1 and USP-1, it reduced the normal activation caused by EcR-B1 and USP-1 by 50%. Gel mobility shift assays showed no binding of EcR-A/USP-1 to EcRE1. The presence of EcR-A, however, reduced the binding of EcR-B1/USP-1 by about 50%. These findings suggest that EcR-A competes with EcR-B1 for binding of USP-1, leading to a decline in activity of the promoter. In addition, E75A, another ecdysone-induced transcription factor, and MHR3 itself suppressed MHR3 promoter activity by binding to the monomeric response element (MRE2). Therefore, MHR3 can be down-regulated both by itself and by E75A.
Collapse
Affiliation(s)
- Kiyoshi Hiruma
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | | |
Collapse
|
79
|
Dubrovsky EB, Dubrovskaya VA, Berger EM. Hormonal regulation and functional role of Drosophila E75A orphan nuclear receptor in the juvenile hormone signaling pathway. Dev Biol 2004; 268:258-70. [PMID: 15063166 DOI: 10.1016/j.ydbio.2004.01.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Revised: 01/05/2004] [Accepted: 01/09/2004] [Indexed: 10/26/2022]
Abstract
Ecdysone and juvenile hormone (JH) are important regulators of insect growth and development. While ecdysone initiates a transition from one developmental stage to another, JH determines the nature of the transition. How these two hormones interact at the molecular level is not known. Here we report the JH inducibility of the E75A nuclear receptor encoded by the E75 early ecdysone-inducible gene. In Drosophila S2 cells, E75A transcription is specifically activated by JH at concentrations well within the physiological range found in larvae and adults. The induction is rapid and does not require a concurrent protein synthesis, and thus represents a primary hormone response. Consistent with JH regulation, E75A mRNA levels are reduced in ovaries of apterous(4) mutant adults defective in JH secretion. Expression is rescued by topical methoprene application. We further provide evidence that ectopic E75A is sufficient to perform several functions in the JH signaling pathway. First, it can down-regulate its own transcription. Second, E75A can potentiate the JH inducibility of a secondary response gene, JhI-21. Finally, in the presence of JH, E75A can repress ecdysone activation of early genes including Broad-Complex. Based on these data, we propose a model for the role of E75A in the ecdysone-JH regulatory interplay.
Collapse
|
80
|
Wu X, Hopkins PM, Palli SR, Durica DS. Crustacean retinoid-X receptor isoforms: distinctive DNA binding and receptor-receptor interaction with a cognate ecdysteroid receptor. Mol Cell Endocrinol 2004; 218:21-38. [PMID: 15130508 DOI: 10.1016/j.mce.2003.12.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Revised: 12/17/2003] [Accepted: 12/22/2003] [Indexed: 11/23/2022]
Abstract
We have identified cDNA clones that encode homologs of the ecdysteroid receptor (EcR) and retinoid-X receptor (RXR)/USP classes of nuclear receptors from the fiddler crab Uca pugilator (UpEcR and UpRXR). Several UpRXR cDNA splicing variants were found in coding regions that could potentially influence function. A five-amino acid (aa) insertion/deletion is located in the "T" box in the hinge region. Another 33-aa insertion/deletion is found inside the ligand-binding domain (LBD), between helix 1 and helix 3. Ribonuclease protection assays (RPA) showed that four UpRXR transcripts [UpRXR(+5+33), UpRXR(-5+33), UpRXR(+5-33) and UpRXR(-5-33)] were present in regenerating limb buds. UpRXR(-5+33) was the most abundant transcript present in regenerating limb buds in both early blastema and late premolt growth stages. Expression vectors for these UpRXR variants and UpEcR were constructed, and the proteins expressed in E. coli and in vitro expression systems. The expressed crab nuclear receptors were then characterized by electrophoretic mobility shift assay (EMSA) and glutathione S-transferase (GST) pull down experiments. EMSA results showed that UpEcR/UpRXR(-5+33) heterocomplexes bound with a series of hormone response elements (HREs) including eip28/29, IRper-1, DR-4, and IRhsp-1 with appreciable affinity. Competition EMSA also showed that the affinity decreased as sequence composition deviated from a perfect consensus element. Binding to IRper-1 HREs occurred only if the heterodimer partner UpRXR contained the 33-aa LBD insertion. UpRXR lacking both the 5-aa and 33-aa insertion bound to a DR-1G HRE in the absence of UpEcR. The results of GST-pull down experiments showed that UpEcR interacted only with UpRXR variants containing the 33-aa insertion, and not with those lacking the 33-aa insertion. These in vitro receptor protein-DNA and receptor protein-protein interactions occurred in the absence of hormone (20-hydroxyecdysone and 9-cis retinoid acid, 9-cis RA). Transactivation studies using a hybrid UpEcR ligand-binding domain construct and UpRXR (+/-33) ligand-binding domain constructs also showed that the 33-aa insertion was indispensable in mediating ecdysteroid stimulated transactivation.
Collapse
Affiliation(s)
- Xiaohui Wu
- Department of Zoology, University of Oklahoma, Norman, OK 73019, USA
| | | | | | | |
Collapse
|
81
|
Shea C, Hough D, Xiao J, Tzertzinis G, Maina CV. An rxr/usp homolog from the parasitic nematode, Dirofilaria immitis. Gene 2004; 324:171-82. [PMID: 14693382 DOI: 10.1016/j.gene.2003.09.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Filarial parasites are responsible for several serious human diseases with symptoms such as lymphoedema, elephantiasis, and blindness. An understanding of how these parasites pass through developmental checkpoints may suggest potential targets for intervention. A useful model system for the study of the human parasites is the closely related nematode Dirofilaria immitis, the causative agent of dog heartworm disease. In D. immitis, molting from the third to the fourth larval stage can be induced in vitro by the insect molting hormone, 20-hydroxyecdysone, suggesting that this, or some related steroid, may play a similar role in the development of D. immitis. The holoreceptor of 20-hydroxyecdysone consists of two nuclear receptors (NRs) ecdysone receptor (EcR) and ultraspiracle (USP), USP being the insect orthologue of the vertebrate RXR. We have identified a D. immitis rxr/usp, Di-rxr-1 (NR2B4). Di-RXR-1 can bind in vitro to EcR and DHR38, both known insect USP partners. Like, USP, it activates transcription in Drosophila Schneider S2 cells in a 20-hydroxyecdysone-dependent manner, via its interaction with the endogenous EcR protein. By Northern blot analysis, Di-rxr-1 mRNA is detected in adult females, but not in males. This is the first characterization of a nematode rxr/usp.
Collapse
Affiliation(s)
- Cathy Shea
- New England Biolabs, 32 Tozer Road, Beverly, MA 01915, USA
| | | | | | | | | |
Collapse
|
82
|
Hayward DC, Dhadialla TS, Zhou S, Kuiper MJ, Ball EE, Wyatt GR, Walker VK. Ligand specificity and developmental expression of RXR and ecdysone receptor in the migratory locust. JOURNAL OF INSECT PHYSIOLOGY 2003; 49:1135-1144. [PMID: 14624885 DOI: 10.1016/j.jinsphys.2003.08.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The ecdysone receptor(1), which is a heterodimer of EcR and the retinoic acid receptor (RXR) homolog, Ultraspiracle (USP), has been well studied in the evolutionarily advanced and derived insects, the flies and moths. It is less well characterized in more primitive insect orders such as the Orthoptera, which include the grasshoppers and locusts. Following our previous isolation from Locusta migratoria (Lm) of a shorter RXR isoform (now called LmRXR-S), the isolation of a second, longer isoform (LmRXR-L) that appears to have characteristics of a ligand-modulated nuclear receptor is reported here. Transcripts for both isoforms, as well as LmEcR, were detected in embryos and in females during oocyte maturation. After expression in E. coli, both LmRXR-S and LmRXR-L form heterodimers with recombinant LmEcR in vitro which bind the active ecdysteroid, ponasterone A. Binding was only weakly competed for by ecdysone agonists that are known to be toxic to more advanced insects, suggesting functionally significant divergence in EcR ligand binding domains. In contrast, the DNA binding domain of LmEcR is less divergent and a protein complex, presumably LmEcR/LmRXR, that bound the ecdysone response element, IR-1, was detected in locust nuclear extracts. Because of reports of juvenile hormone (JH III) binding to Drosophila USP and the observed in silico RXR-like ligand-binding site in LmRXR-L, the recombinant proteins were also tested for binding to JH III. Neither LmRXR isoform, alone or in combination with LmEcR, bound JH III at nanomolar concentrations.
Collapse
MESH Headings
- Amino Acid Sequence
- Animal Migration
- Animals
- Binding, Competitive
- Cell Nucleus/metabolism
- Ecdysterone/analogs & derivatives
- Ecdysterone/metabolism
- Female
- Grasshoppers/growth & development
- Grasshoppers/metabolism
- Models, Molecular
- Molecular Sequence Data
- Protein Isoforms
- Radioligand Assay
- Receptors, Retinoic Acid/chemistry
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/isolation & purification
- Receptors, Retinoic Acid/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/isolation & purification
- Receptors, Steroid/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Response Elements/genetics
- Retinoid X Receptors
- Sequence Alignment
- Sequence Homology, Amino Acid
- Sesquiterpenes/metabolism
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Transcription Factors/isolation & purification
- Transcription Factors/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- David C Hayward
- Molecular Genetics and Evolution Group and Centre for the Molecular Genetics of Development, Research School of Biological Sciences, Australian National University, P.O. Box 475, Canberra, ACT 2601, Australia
| | | | | | | | | | | | | |
Collapse
|
83
|
Henrich VC, Burns E, Yelverton DP, Christensen E, Weinberger C. Juvenile hormone potentiates ecdysone receptor-dependent transcription in a mammalian cell culture system. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:1239-1247. [PMID: 14599496 DOI: 10.1016/j.ibmb.2003.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Insect development is guided by the combined actions of ecdysteroids and juvenile hormones (JHs). The transcriptional effects of ecdysteroids are mediated by a protein complex consisting of the ecdysone receptor (EcR) and its heterodimeric partner, Ultraspiracle (USP), but a corresponding JH receptor has not been defined conclusively. Given that the EcR ligand binding domain (LBD) is similar to that of the JH-responsive rat farnesoid-X-activated receptor (FXR), we sought to define experimental conditions under which EcR-dependent transcription could be promoted by JH. Chinese hamster ovary (CHO) cells were transfected with a plasmid carrying an ecdysteroid-inducible reporter gene, a second plasmid expressing one of the three amino-terminal variants of Drosophila EcR or an EcR chimera, and a third plasmid expressing either the mouse retinoid X receptor (RXR), or its insect orthologue, USP. Each of the EcR variants responded to the synthetic ecdysteroid, muristerone A (murA), but a maximal response to 20-hydroxyecdysone (20E) was achieved only for specific EcR combinations with its heterodimeric partner. Notably, the Drosophila EcR isoforms were responsive to 20E only when paired with USP, and only EcRB2 activity was further potentiated by JHIII in the presence of 20E. EcR chimeras that fuse the activator domains from VP16 or the glucocorticoid receptor to the Drosophila EcR DNA-binding and ligand-binding domains were responsive to ecdysteroids. Again, the effects of JHIII and 20E were associated with specific partners of the chimeric EcRs. In all experiments, the LBD of EcR proved to be the prerequisite component for potentiation by JHIII, and in this conformation may resemble the FXR LBD. Our results indicate that EcR responsiveness is influenced by the heterodimeric partner and that both the N-terminal domain of EcR and the particular ecdysteroid affect JHIII potentiation.
Collapse
Affiliation(s)
- Vincent C Henrich
- Department of Biology, 312 Eberhart Building, University of North Carolina-Greensoboro, Greensboro, NC 27402, USA.
| | | | | | | | | |
Collapse
|
84
|
Song Q, Sun X, Jin XY. 20E-regulated USP expression and phosphorylation in Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:1211-1218. [PMID: 14599493 DOI: 10.1016/j.ibmb.2003.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The developmental profiles of ultraspiracle protein (USP) in the tissues of Drosophila melanogaster were investigated using a USP specific monoclonal antibody (mAb) as a probe. Western blot analysis revealed four USP mAb reactive bands (p46, p48, p54 and p56), each with tissue- and stage-specific expression patterns. The p54 and p56 were expressed in nearly all larval and prepupal tissues tested with fluctuations in abundance. However, the p46 and p48 were detected exclusively in the midgut of prepupae and shown to be the proteolytic products of p54 and p56. A lambda protein phosphatase assay demonstrated that the p56 is the phosphorylated form of p54. The expression and phosphorylation of the p54 USP is regulated by 20E. Protein kinase consensus recognition sequence analysis revealed 10 putative phosphorylation sites in Drosophila USP, with seven sites for protein kinase C (PKC) and three sites for casein kinase II (CKII). The fact that seven out of 10 putative phosphorylation sites reside in the ligand- and DNA-binding domains suggests that phosphorylation may play important role in regulating USP function. Identification of the in vivo USP phosphorylation sites and signal transduction pathways that regulate the specific USP phosphorylation is currently underway.
Collapse
Affiliation(s)
- Q Song
- Department of Entomology, University of Missouri, 1-87 Agriculture Building, Columbia, MO 65211, USA.
| | | | | |
Collapse
|
85
|
Baker KD, Shewchuk LM, Kozlova T, Makishima M, Hassell A, Wisely B, Caravella JA, Lambert MH, Reinking JL, Krause H, Thummel CS, Willson TM, Mangelsdorf DJ. The Drosophila orphan nuclear receptor DHR38 mediates an atypical ecdysteroid signaling pathway. Cell 2003; 113:731-42. [PMID: 12809604 DOI: 10.1016/s0092-8674(03)00420-3] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ecdysteroid pulses trigger the major developmental transitions during the Drosophila life cycle. These hormonal responses are thought to be mediated by the ecdysteroid receptor (EcR) and its heterodimeric partner Ultraspiracle (USP). We provide evidence for a second ecdysteroid signaling pathway mediated by DHR38, the Drosophila ortholog of the mammalian NGFI-B subfamily of orphan nuclear receptors. DHR38 also heterodimerizes with USP, and this complex responds to a distinct class of ecdysteroids in a manner that is independent of EcR. This response is unusual in that it does not involve direct binding of ecdysteroids to either DHR38 or USP. X-ray crystallographic analysis of DHR38 reveals the absence of both a classic ligand binding pocket and coactivator binding site, features that seem to be common to all NGFI-B subfamily members. Taken together, these data reveal the existence of a separate structural class of nuclear receptors that is conserved from fly to humans.
Collapse
Affiliation(s)
- Keith D Baker
- Howard Hughes Medical Institute and Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Rymarczyk G, Grad I, Rusek A, Oświecimska-Rusin K, Niedziela-Majka A, Kochman M, Ozyhar A. Purification of Drosophila melanogaster ultraspiracle protein and analysis of its A/B region-dependent dimerization behavior in vitro. Biol Chem 2003; 384:59-69. [PMID: 12674500 DOI: 10.1515/bc.2003.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Two members of the nuclear receptor superfamily, EcR (ecdysteroid receptor protein) and Usp (Ultraspiracle), heterodimerize to form a functional receptor for the steroid hormone 20-hydroxyecdysone and thus enable it to coordinate morphogenetic events during insect metamorphosis. N-terminally His-tagged Usp was overexpressed in E. coli cells as a non-truncated protein and purified to homogeneity in two chromatographic steps. It was demonstrated that the recombinant receptor specifically binds the ecdysone response element of the hsp27 gene promoter (hsp27EcRE). Moreover, a highly synergistically formed heterodimeric complex with the DNA-binding domain of EcR was observed on hsp27EcRE, but not on the native Usp response element from the chorion s15 gene promoter. Recombinant Usp forms homodimers and homotetramers in the absence of DNA, as judged from gel filtration and chemical crosslinking experiments. Truncation of its N-terminal A/B region changes molecular characteristics of Usp, considerably weakening its oligomerization potential under the same experimental conditions. This contrasts with the results obtained previously for the similarly truncated RXR--a vertebrate homolog of Usp.
Collapse
Affiliation(s)
- Grzegorz Rymarczyk
- Institute of Organic Chemistry, Biochemistry and Biotechnology, Division of Biochemistry, Wrocław University of Technology, Wybrzeze Wyspiańskiego 27, 50-370 Wrocław, Poland
| | | | | | | | | | | | | |
Collapse
|
87
|
Lee CY, Cooksey BAK, Baehrecke EH. Steroid regulation of midgut cell death during Drosophila development. Dev Biol 2002; 250:101-11. [PMID: 12297099 DOI: 10.1006/dbio.2002.0784] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Steroid hormones trigger dynamic tissue changes during animal development by activating cell proliferation, cell differentiation, and cell death. Here we characterize steroid regulation of changes in midgut structure during the onset of Drosophila metamorphosis. Following an increase in the steroid 20-hydroxyecdysone (ecdysone) at the end of larval development, future adult midgut epithelium is formed, and the larval midgut is rapidly destroyed. Mutations in the steroid-regulated genes BR-C and E93 differentially impact larval midgut cell death but do not affect the formation of adult midgut epithelia. In contrast, mutations in the ecdysone-regulated E74A and E74B genes do not appear to perturb midgut development during metamorphosis. Larval midgut cells possess vacuoles that contain cellular organelles, indicating that these cells die by autophagy. While mutations in the BR-C, E74, and E93 genes do not impact DNA degradation during this cell death, mutations in BR-C inhibit destruction of larval midgut structures, including the proventriculus and gastric caeca, and E93 mutants exhibit decreased formation of autophagic vacuoles. Dying midguts express the rpr, hid, ark, dronc, and crq cell death genes, suggesting that the core cell death machinery is involved in larval midgut cell death. The transcription of rpr, hid, and crq are altered in BR-C mutants, and E93 mutants possess altered transcription of the caspase dronc, providing a mechanism for the disruption of midgut cell death in these mutant animals. These studies indicate that ecdysone triggers a two-step hierarchy composed of steroid-induced regulatory genes and apoptosis genes that, in turn, regulate the autophagic death of midgut cells during development.
Collapse
Affiliation(s)
- Cheng-Yu Lee
- Center for Biosystems Research, University of Maryland Biotechnology Institute, University of Maryland, College Park, Maryland 20742, USA
| | | | | |
Collapse
|
88
|
Chen L, Reece C, O'Keefe SL, Hawryluk GWL, Engstrom MM, Hodgetts RB. Induction of the early-late Ddc gene during Drosophila metamorphosis by the ecdysone receptor. Mech Dev 2002; 114:95-107. [PMID: 12175493 DOI: 10.1016/s0925-4773(02)00064-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During Drosophila metamorphosis, the 'early-late' genes constitute a unique class regulated by the steroid hormone 20-hydroxyecdysone. Their induction is comprised of both a primary and a secondary response to ecdysone. Previous work has suggested that the epidermal expression of the dopa decarboxylase gene (Ddc) is likely that of a typical early-late gene. Accumulation of the Ddc transcript is rapidly initiated in the absence of protein synthesis, which implies that the ecdysone receptor plays a direct role in induction. However, full Ddc expression requires the participation of one of the transcription factors encoded by the Broad-Complex. In this paper, we characterize an ecdysone response element (EcRE) that contributes to the primary response. Using gel mobility shift assays and transgenic assays, we identified a single functional EcRE, located at position -97 to -83 bp relative to the transcription initiation site. This is the first report of an EcRE associated with an early-late gene in Drosophila. Competition experiments indicated that the affinity of the Ddc EcRE for the ecdysone receptor complex was at least four-fold less than that of the canonical EcRE of the hsp27 gene. Using in vitro mutagenesis, we determined that the reduced affinity of the EcRE resided at two positions where the nucleotides differed from those found in the canonical sequence. The ecdysone receptor, acting through this EcRE, releases Ddc from a silencing mechanism, whose cis-acting domain we have mapped to the 5'-upstream region between -2067 and -1427 bp. Deletion of this repressive element resulted in precocious expression of Ddc in both epidermis and imaginal discs. Thus, epidermal Ddc induction at pupariation is under the control of an extended genomic region that contains both positive and negative regulatory elements.
Collapse
Affiliation(s)
- Li Chen
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | | | | | | | | | | |
Collapse
|
89
|
Hirai M, Shinoda T, Kamimura M, Tomita S, Shiotsuki T. Bombyx mori orphan receptor, BmHR78: cDNA cloning, testis abundant expression and putative dimerization partner for Bombyx ultraspiracle. Mol Cell Endocrinol 2002; 189:201-11. [PMID: 12039078 DOI: 10.1016/s0303-7207(01)00604-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We have identified a novel member of the nuclear receptor superfamily from the silkworm Bombyx mori, and named it as BmHR78, the B. mori hormone receptor. The DNA binding domain of BmHR78 shows high similarities to those of Tenebrio molitor hormone receptor 78, Drosophila hormone receptor 78, and mammalian testicular receptor 2, whereas the ligand binding domain is not well conserved. Northern blot analysis showed that BmHR78 gene was most abundantly expressed in the testis. From the fourth to fifth instar, BmHR78 gene was constantly expressed in the testis. In the anterior silk gland, the level of BmHR78 gene expression was developmentally changed. From day 10.0 to 11.0 in the fifth instar, another BmHR78 transcript with the smaller size appeared. Ultraspiracle (USP) isoform also appeared at the same stages in this tissue. BmHR78 forms not only a homodimer, but also a heterodimer with USP in a yeast two hybrid assay. The direct interaction between BmHR78 and USP was confirmed by pull down assay. Deletion mutant analysis showed that BmHR78 interacts with USP via the ninth heptad repeat in helix ten of the E region. This repeat is well conserved in RXR and its heterodimer partners, and shown to be an interface for their dimerization. In insect, only the ecdysone receptor and hormone receptor 38 are known thus far to dimerize with USP. Thus, BmHR78 is a third dimerization partner for USP and may modulate the molecular action of USP, including the ecdysone signal cascades.
Collapse
Affiliation(s)
- Makoto Hirai
- Department of Development and Differentiation, National Institute of Agrobiological Science, 1-2 Owashi, Tsukuba, 305-8634, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
90
|
Durica DS, Wu X, Anilkumar G, Hopkins PM, Chung ACK. Characterization of crab EcR and RXR homologs and expression during limb regeneration and oocyte maturation. Mol Cell Endocrinol 2002; 189:59-76. [PMID: 12039065 DOI: 10.1016/s0303-7207(01)00740-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here complete coding sequences for the Uca pugilator homologs of the ecdysteroid (UpEcR) and retinoid-X receptors (UpRXR). Library screenings recovered cDNA clones containing a unique amino terminal open-reading frame (A/B domain) for each gene, most similar to insect B1 EcR and USP1/RXR isoforms. Splicing variants in the UpRXR ligand-binding domain were also identified, in a region critical for folding of Drosophila and lepidopteran USP. UpEcR and UpRXR proteins were able to associate, and both are required for binding to an ecdysteroid HRE; these interactions were not hormone-dependent. Ribonuclease protection assays (RPA) were conducted using A/B domain and 'common' (C or E) domain probes on RNA isolated from various stages of regenerating limb buds and ovaries. For several of the limb bud and ovarian stages examined, the relative level of A/B domain sequence protected was significantly less than common domain suggesting alternative amino terminal isoforms other than those isolated through cloning. This is the first report of UpEcR and UpRXR transcription during ovarian maturation, implicating the ovary as a potential target for hormonal control in Crustacea.
Collapse
Affiliation(s)
- David S Durica
- Department of Zoology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA.
| | | | | | | | | |
Collapse
|
91
|
Abstract
Characterization of the heterochronic genes has provided a strong foundation for understanding the molecular mechanisms of developmental timing in C. elegans. In apparent contrast, studies of developmental timing in Drosophila have demonstrated a central role for gene cascades triggered by the steroid hormone ecdysone. In this review, I survey the molecular mechanisms of developmental timing in C. elegans and Drosophila and outline how common regulatory pathways are beginning to emerge.
Collapse
Affiliation(s)
- C S Thummel
- Howard Hughes Medical Institute, Department of Human Genetics, University of Utah, Salt Lake City 84112, USA.
| |
Collapse
|
92
|
Hannan GN, Hill RJ. LcUSP, an ultraspiracle gene from the sheep blowfly, Lucilia cuprina: cDNA cloning, developmental expression of RNA and confirmation of function. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2001; 31:771-781. [PMID: 11378412 DOI: 10.1016/s0965-1748(00)00182-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A DNA sequence corresponding to most of the DNA-binding domain of a Lucilia cuprina ultraspiracle protein (LcUSP) was amplified by PCR from genomic DNA and cloned. This cloned fragment was used to screen a L. cuprina cDNA library and to isolate a full-length LcUSP encoding sequence within a 3800-bp cDNA clone. The conceptually translated amino acid sequence of this open reading frame (467 amino acids) was used in alignment comparisons and phylogenetic analyses to reveal that LcUSP most closely resembles DmUSP relative to other known insect nuclear hormone receptors. An antisense RNA probe specific for the 5' end of Lcusp was used in ribonuclease protection assays to detect significant levels of Lcusp RNA throughout L. cuprina development. Highest levels were detected in embryos, late third instar larvae, pupae and adult females. This pattern parallels the pattern of expression observed for Dmusp RNAs during Drosophila melanogaster development. Finally, the LcUSP sequence was engineered for expression in mammalian cells and we now report that the cloned LcUSP is functional in vivo and can act as a partner for a chimeric L. cuprina ecdysone receptor to form an ecdysteroid-dependent transcription factor in mammalian cells.
Collapse
Affiliation(s)
- G N Hannan
- CSIRO Molecular Science, Sydney Laboratory, PO Box 184, North Ryde, NSW 2113, Australia.
| | | |
Collapse
|
93
|
Fantappie MR, Freebern WJ, Osman A, LaDuca J, Niles EG, LoVerde PT. Evaluation of Schistosoma mansoni retinoid X receptor (SmRXR1 and SmRXR2) activity and tissue distribution. Mol Biochem Parasitol 2001; 115:87-99. [PMID: 11377743 DOI: 10.1016/s0166-6851(01)00274-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recently, we reported the identification of cDNA's encoding retinoid X receptor (RXR) homologues in Schistosoma mansoni. RXRs are known to be involved in the regulation of genes important for homeostasis and development. Previous studies indicated that SmRXR1 plays a role in the regulation of the female-specific gene, p14. Herein, we report that SmRXR2 also binds to cis-elements present in the p14 upstream region when evaluated in yeast reporter strains. SmRXR2 shows a pattern of recognition of cis-sequences present in the p14 gene upstream region different than SmRXR1. However, the SmRXR2 C (DNA binding) domain binds promiscuously in electrophoretic mobility shift assays to cis-elements of the p14 upstream region. The SmRXRs differ in their ability to activate transcription. The N-terminal A/B domain of SmRXR1 is necessary and sufficient for autonomous transcription activation function (AF) in yeast. SmRXR2 does not exhibit an equivalent autonomous AF. SmRXR1 and SmRXR2 fail to dimerize when investigated both in the yeast two-hybrid system and in immunoprecipitation experiments. In situ hybridization experiments using paraffin sections of adult worms demonstrate that SmRXR1 and SmRXR2 exhibit both common and unique cell type distribution which indicates that SmRXR1 and SmRXR2 both play a role in regulating gene expression in certain cells, yet each plays a distinct role in modulating the expression of genes in other cell types. Both SmRXR1 and SmRXR2 localize to vitelline cells. These studies provide a solid basis for improving our understanding of RXRs and their importance in female-specific gene regulation.
Collapse
Affiliation(s)
- M R Fantappie
- Department of Microbiology, School of Medicine and Biomedical Sciences, 138 Farber Hall, State University of New York, 14214, Buffalo, NY, USA
| | | | | | | | | | | |
Collapse
|
94
|
Abstract
Apoptosis and autophagy are morphologically distinct forms of programmed cell death. While autophagy occurs during the development of diverse organisms and has been implicated in tumorigenesis, little is known about the molecular mechanisms that regulate this type of cell death. Here we show that steroid-activated programmed cell death of Drosophila salivary glands occurs by autophagy. Expression of p35 prevents DNA fragmentation and partially inhibits changes in the cytosol and plasma membranes of dying salivary glands, suggesting that caspases are involved in autophagy. The steroid-regulated BR-C, E74A and E93 genes are required for salivary gland cell death. BR-C and E74A mutant salivary glands exhibit vacuole and plasma membrane breakdown, but E93 mutant salivary glands fail to exhibit these changes, indicating that E93 regulates early autophagic events. Expression of E93 in embryos is sufficient to induce cell death with many characteristics of apoptosis, but requires the H99 genetic interval that contains the rpr, hid and grim proapoptotic genes to induce nuclear changes diagnostic of apoptosis. In contrast, E93 expression is sufficient to induce the removal of cells by phagocytes in the absence of the H99 genes. These studies indicate that apoptosis and autophagy utilize some common regulatory mechanisms.
Collapse
Affiliation(s)
- C Y Lee
- Center for Agricultural Biotechnology, University of Maryland Biotechnology Institute, College Park, Maryland 20742, USA
| | | |
Collapse
|
95
|
Biyasheva A, Do TV, Lu Y, Vaskova M, Andres AJ. Glue secretion in the Drosophila salivary gland: a model for steroid-regulated exocytosis. Dev Biol 2001; 231:234-51. [PMID: 11180965 DOI: 10.1006/dbio.2000.0126] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Small hydrophobic hormones like steroids control many tissue-specific physiological responses in higher organisms. Hormone response is characterized by changes in gene expression, but the molecular details connecting target-gene transcription to the physiology of responding cells remain elusive. The salivary glands of Drosophila provide an ideal model system to investigate gaps in our knowledge, because exposure to the steroid 20-hydroxyecdysone (20E) leads to a robust regulated secretion of glue granules after a stereotypical pattern of puffs (activated 20E-regulated genes) forms on the polytene chromosomes. Here, we describe a convenient bioassay for glue secretion and use it to analyze mutants in components of the puffing hierarchy. We show that 20E mediates secretion through the EcR/USP receptor, and two early-gene products, the rbp(+) function of BR-C and the Ca2+ binding protein E63-1, are involved. Furthermore, we demonstrate that 20E treatment of salivary glands leads to Ca2+ elevations by a genomic mechanism and that elevated Ca2+ levels are required for ectopically produced E63-1 to drive secretion. The results presented establish a connection between 20E exposure and changes in Ca2+ levels that are mediated by Ca2+ effector proteins, and thus establish a mechanistic framework for future studies.
Collapse
Affiliation(s)
- A Biyasheva
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Chicago, Illinois 60611-3093, USA
| | | | | | | | | |
Collapse
|
96
|
Riddiford LM, Cherbas P, Truman JW. Ecdysone receptors and their biological actions. VITAMINS AND HORMONES 2001; 60:1-73. [PMID: 11037621 DOI: 10.1016/s0083-6729(00)60016-x] [Citation(s) in RCA: 383] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- L M Riddiford
- Department of Zoology, University of Washington, Seattle 98195-1800, USA
| | | | | |
Collapse
|
97
|
Clayton GM, Peak-Chew SY, Evans RM, Schwabe JW. The structure of the ultraspiracle ligand-binding domain reveals a nuclear receptor locked in an inactive conformation. Proc Natl Acad Sci U S A 2001; 98:1549-54. [PMID: 11171988 PMCID: PMC29294 DOI: 10.1073/pnas.98.4.1549] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Ultraspiracle (USP) is the invertebrate homologue of the mammalian retinoid X receptor (RXR). RXR plays a uniquely important role in differentiation, development, and homeostasis through its ability to serve as a heterodimeric partner to many other nuclear receptors. RXR is able to influence the activity of its partner receptors through the action of the ligand 9-cis retinoic acid. In contrast to RXR, USP has no known high-affinity ligand and is thought to be a silent component in the heterodimeric complex with partner receptors such as the ecdysone receptor. Here we report the 2.4-A crystal structure of the USP ligand-binding domain. The structure shows that a conserved sequence motif found in dipteran and lepidopteran USPs, but not in mammalian RXRs, serves to lock USP in an inactive conformation. It also shows that USP has a large hydrophobic cavity, implying that there is almost certainly a natural ligand for USP. This cavity is larger than that seen previously for most other nuclear receptors. Intriguingly, this cavity has partial occupancy by a bound lipid, which is likely to resemble the natural ligand for USP.
Collapse
Affiliation(s)
- G M Clayton
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 2QH, United Kingdom
| | | | | | | |
Collapse
|
98
|
Brennan CA, Li TR, Bender M, Hsiung F, Moses K. Broad-complex, but not ecdysone receptor, is required for progression of the morphogenetic furrow in the Drosophila eye. Development 2001; 128:1-11. [PMID: 11092806 DOI: 10.1242/dev.128.1.1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The progression of the morphogenetic furrow in the developing Drosophila eye is an early metamorphic, ecdysteroid-dependent event. Although Ecdysone receptor-encoded nuclear receptor isoforms are the only known ecdysteroid receptors, we show that the Ecdysone receptor gene is not required for furrow function. DHR78, which encodes another candidate ecdysteroid receptor, is also not required. In contrast, zinc finger-containing isoforms encoded by the early ecdysone response gene Broad-complex regulate furrow progression and photoreceptor specification. br-encoded Broad-complex subfunctions are required for furrow progression and proper R8 specification, and are antagonized by other subfunctions of Broad-complex. There is a switch from Broad complex Z2 to Z1 zinc-finger isoform expression at the furrow which requires Z2 expression and responds to Hedgehog signals. These results suggest that a novel hormone transduction hierarchy involving an uncharacterized receptor operates in the eye disc.
Collapse
Affiliation(s)
- C A Brennan
- Sloan-Kettering Institute, Box 193, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
99
|
Lee T, Marticke S, Sung C, Robinow S, Luo L. Cell-autonomous requirement of the USP/EcR-B ecdysone receptor for mushroom body neuronal remodeling in Drosophila. Neuron 2000; 28:807-18. [PMID: 11163268 DOI: 10.1016/s0896-6273(00)00155-0] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Neuronal process remodeling occurs widely in the construction of both invertebrate and vertebrate nervous systems. During Drosophila metamorphosis, gamma neurons of the mushroom bodies (MBs), the center for olfactory learning in insects, undergo pruning of larval-specific dendrites and axons followed by outgrowth of adult-specific processes. To elucidate the underlying molecular mechanisms, we conducted a genetic mosaic screen and identified one ultraspiracle (usp) allele defective in larval process pruning. Consistent with the notion that USP forms a heterodimer with the ecdysone receptor (EcR), we found that the EcR-B1 isoform is specifically expressed in the MB gamma neurons, and is required for the pruning of larval processes. Surprisingly, most identified primary EcR/USP targets are dispensable for MB neuronal remodeling. Our study demonstrates cell-autonomous roles for EcR/USP in controlling neuronal remodeling, potentially through novel downstream targets.
Collapse
Affiliation(s)
- T Lee
- Department of Biological Sciences, Stanford University, Stanford, CA 94305,
| | | | | | | | | |
Collapse
|
100
|
Yamada M, Murata T, Hirose S, Lavorgna G, Suzuki E, Ueda H. Temporally restricted expression of transcription factor betaFTZ-F1: significance for embryogenesis, molting and metamorphosis in Drosophila melanogaster. Development 2000; 127:5083-92. [PMID: 11060234 DOI: 10.1242/dev.127.23.5083] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
FTZ-F1, a member of the nuclear receptor superfamily, has been implicated in the activation of the segmentation gene fushi tarazu during early embryogenesis of Drosophila melanogaster. We found that an isoform of FTZ-F1, betaFTZ-F1, is expressed in the nuclei of almost all tissues slightly before the first and second larval ecdysis and before pupation. Severely affected ftz-f1 mutants display an embryonic lethal phenotype, but can be rescued by ectopic expression of betaFTZ-F1 during the period of endogenous betaFTZ-F1 expression in the wild type. The resulting larvae are not able to molt, but this activity is rescued again by forced expression of betaFTZ-F1, allowing progression to the next larval instar stage. On the other hand, premature expression of betaFTZ-F1 in wild-type larvae at mid-first instar or mid-second instar stages causes defects in the molting process. Sensitive periods were found to be around the time of peak ecdysteroid levels and slightly before the start of endogenous betaFTZ-F1 expression. A hypomorphic ftz-f1 mutant that arrests in the prepupal stage can also be rescued by ectopic, time-specific expression of betaFTZ-F1. Failure of salivary gland histolysis, one of the phenotypes of the ftz-f1 mutant, is rescued by forced expression of the ftz-f1 downstream gene BR-C during the late prepupal period. These results suggest that betaFTZ-F1 regulates genes associated with ecdysis and metamorphosis, and that the exact timing of its action in the ecdysone-induced gene cascade is important for proper development.
Collapse
Affiliation(s)
- M Yamada
- Department of Genetics, The Graduate University for Advanced Studies, and Department of Developmental Genetics, National Institute of Genetics, Mishima, Shizuoka-ken 411-8540, Japan
| | | | | | | | | | | |
Collapse
|