51
|
Wise SB, Stock DW. bmp2b and bmp4 are dispensable for zebrafish tooth development. Dev Dyn 2011; 239:2534-46. [PMID: 21038444 DOI: 10.1002/dvdy.22411] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Bone morphogenetic protein (Bmp) signaling has been shown to play important roles in tooth development at virtually all stages from initiation to hard tissue formation. The specific ligands involved in these processes have not been directly tested by loss-of-function experiments, however. We used morpholino antisense oligonucleotides and mutant analysis in the zebrafish to reduce or eliminate the function of bmp2b and bmp4, two ligands known to be expressed in zebrafish teeth and whose mammalian orthologs are thought to play important roles in tooth development. Surprisingly, we found that elimination of function of these two genes singly and in combination did not prevent the formation of mature, attached teeth. The mostly likely explanation for this result is functional redundancy with other Bmp ligands, which may differ between the zebrafish and the mouse.
Collapse
Affiliation(s)
- Sarah B Wise
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309-0449, USA
| | | |
Collapse
|
52
|
Laux DW, Febbo JA, Roman BL. Dynamic analysis of BMP-responsive smad activity in live zebrafish embryos. Dev Dyn 2011; 240:682-94. [PMID: 21337466 PMCID: PMC4287217 DOI: 10.1002/dvdy.22558] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2010] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are critical players in development and disease, regulating such diverse processes as dorsoventral patterning, palate formation, and ossification. These ligands are classically considered to signal via BMP receptor-specific Smad proteins 1, 5, and 8. To determine the spatiotemporal pattern of Smad1/5/8 activity and thus canonical BMP signaling in the developing zebrafish embryo, we generated a transgenic line expressing EGFP under the control of a BMP-responsive element. EGFP is expressed in many established BMP signaling domains and is responsive to alterations in BMP type I receptor activity and smad1 and smad5 expression. This transgenic Smad1/5/8 reporter line will be useful for determining ligand and receptor requirements for specific domains of BMP activity, as well as for genetic and pharmacological screens aimed at identifying enhancers or suppressors of canonical BMP signaling.
Collapse
Affiliation(s)
- Derek W. Laux
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Jennifer A. Febbo
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Beth L. Roman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
53
|
Seebald JL, Szeto DP. Zebrafish eve1 regulates the lateral and ventral fates of mesodermal progenitor cells at the onset of gastrulation. Dev Biol 2011; 349:78-89. [DOI: 10.1016/j.ydbio.2010.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 10/01/2010] [Accepted: 10/05/2010] [Indexed: 12/13/2022]
|
54
|
Yao S, Qian M, Deng S, Xie L, Yang H, Xiao C, Zhang T, Xu H, Zhao X, Wei YQ, Mo X. Kzp controls canonical Wnt8 signaling to modulate dorsoventral patterning during zebrafish gastrulation. J Biol Chem 2010; 285:42086-96. [PMID: 20978132 DOI: 10.1074/jbc.m110.161554] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
During vertebrate embryonic development, the body axis formation requires the action of Wnt signals and their antagonists. Zygotic canonical wnt8 expression appears exclusively at the ventrolateral margin and mediates Wnt/β-catenin activities to promote posterior and ventral cell fate. However, the mechanisms involved in the initiation of zygotic wnt8 signals are poorly understood. Here, we identify a novel, maternally derived transcription factor, Kzp (Kaiso zinc finger-containing protein), as an important determinant for the initiation of zygotic Wnt signals in zebrafish. Kzp is a DNA-binding transcription factor that recognizes specific consensus DNA sequences, 5'-(t/a/g)t(a/t/g)nctgcca-3', through zinc fingers and controls the initiation of zygotic wnt8 expression by directly binding to the wnt8 promoter during zebrafish embryonic development. Depletion of Kzp strongly dorsalized embryos, which was characterized by the expansion of dorsal gene expression. Overexpression of Kzp caused posteriorization. These phenotypes were highly similar to ones induced by wnt8 depletion or overexpression and were rescued by alteration of wnt8 activity. Thus, our results provide the first insight into the mechanism involved in the initiation of zygotic canonical Wnt signals by a maternally derived transcription factor.
Collapse
Affiliation(s)
- Shaohua Yao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Bolouri H, Davidson EH. The gene regulatory network basis of the "community effect," and analysis of a sea urchin embryo example. Dev Biol 2010; 340:170-8. [PMID: 19523466 PMCID: PMC2854306 DOI: 10.1016/j.ydbio.2009.06.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 05/20/2009] [Accepted: 06/05/2009] [Indexed: 10/20/2022]
Abstract
The "Community Effect" denotes intra-territorial signaling amongst cells which constitute a particular tissue or embryonic progenitor field. The cells of the territory express the same transcriptional regulatory state, and the intra-territorial signaling is essential to maintenance of this specific regulatory state. The structure of the underlying gene regulatory network (GRN) subcircuitry explains the genomically wired mechanism by which community effect signaling is linked to the continuing transcriptional generation of the territorial regulatory state. A clear example is afforded by the oral ectoderm GRN of the sea urchin embryo where cis-regulatory evidence, experimental embryology, and network analysis combine to provide a complete picture. We review this example and consider less well known but similar cases in other developing systems where the same subcircuit GRN topology is present. To resolve mechanistic issues that arise in considering how community effect signaling could operate to produce its observed effects, we construct and analyze the behavior of a quantitative model of community effect signaling in the sea urchin embryo oral ectoderm. Community effect network topology could constitute part of the genomic regulatory code that defines transcriptional function in multicellular tissues composed of cells in contact, and hence may have arisen as a metazoan developmental strategy.
Collapse
Affiliation(s)
- Hamid Bolouri
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
56
|
Abstract
For more than a decade, the zebrafish has proven to be an excellent model organism to investigate the mechanisms of neurogenesis during development. The often cited advantages, namely external development, genetic, and optical accessibility, have permitted direct examination and experimental manipulations of neurogenesis during development. Recent studies have begun to investigate adult neurogenesis, taking advantage of its widespread occurrence in the mature zebrafish brain to investigate the mechanisms underlying neural stem cell maintenance and recruitment. Here we provide a comprehensive overview of the tools and techniques available to study neurogenesis in zebrafish both during development and in adulthood. As useful resources, we provide tables of available molecular markers, transgenic, and mutant lines. We further provide optimized protocols for studying neurogenesis in the adult zebrafish brain, including in situ hybridization, immunohistochemistry, in vivo lipofection and electroporation methods to deliver expression constructs, administration of bromodeoxyuridine (BrdU), and finally slice cultures. These currently available tools have put zebrafish on par with other model organisms used to investigate neurogenesis.
Collapse
Affiliation(s)
- Prisca Chapouton
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | | |
Collapse
|
57
|
Abstract
The zebrafish pronephric kidney provides a useful and relevant model of kidney development and function. It is composed of cell types common to all vertebrate kidneys and pronephric organogenesis is regulated by transcription factors that have highly conserved functions in mammalian kidney development. Pronephric nephrons are a good model of tubule segmentation and differentiation of epithelial cell types. The pronephric glomerulus provides a simple model to assay gene function in regulating cell structure and cell interactions that form the blood filtration apparatus. The relative simplicity of the pronephric kidney combined with the ease of genetic manipulation in zebrafish makes it well suited for mutation analysis and gene discovery, in vivo imaging, functional screens of candidate genes from other species, and cell isolation by FACS . In addition, the larval and adult zebrafish kidneys have emerged as systems to study kidney regeneration after injury. This chapter provides a review of pronephric structure and development as well as current methods to study the pronephros.
Collapse
|
58
|
|
59
|
|
60
|
BMP inhibition initiates neural induction via FGF signaling and Zic genes. Proc Natl Acad Sci U S A 2009; 106:17437-42. [PMID: 19805078 DOI: 10.1073/pnas.0906352106] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neural induction is the process that initiates nervous system development in vertebrates. Two distinct models have been put forward to describe this phenomenon in molecular terms. The default model states that ectoderm cells are fated to become neural in absence of instruction, and do so when bone morphogenetic protein (BMP) signals are abolished. A more recent view implicates a conserved role for FGF signaling that collaborates with BMP inhibition to allow neural fate specification. Using the Xenopus embryo, we obtained evidence that may unite the 2 views. We show that a dominant-negative R-Smad, Smad5-somitabun-unlike the other BMP inhibitors used previously-can trigger conversion of Xenopus epidermis into neural tissue in vivo. However, it does so only if FGF activity is uncompromised. We report that this activity may be encoded by FGF4, as its expression is activated upon BMP inhibition, and its knockdown suppresses endogenous, as well as ectopic, neural induction by Smad5-somitabun. Supporting the importance of FGF instructive activity, we report the isolation of 2 immediate early neural targets, zic3 and foxD5a. Conversely, we found that zic1 can be activated by BMP inhibition in the absence of translation. Finally, Zic1 and Zic3 are required together for definitive neural fate acquisition, both in ectopic and endogenous situations. We propose to merge the previous models into a unique one whereby neural induction is controlled by BMP inhibition, which activates directly, and, via FGF instructive activity, early neural regulators such as Zic genes.
Collapse
|
61
|
Marques SR, Yelon D. Differential requirement for BMP signaling in atrial and ventricular lineages establishes cardiac chamber proportionality. Dev Biol 2009; 328:472-82. [PMID: 19232521 PMCID: PMC2709526 DOI: 10.1016/j.ydbio.2009.02.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 02/04/2009] [Accepted: 02/06/2009] [Indexed: 11/23/2022]
Abstract
The function of an organ relies upon the proper relative proportions of its individual operational components. For example, effective embryonic circulation requires the appropriate relative sizes of each of the distinct pumps created by the atrial and ventricular cardiac chambers. Although the differences between atrial and ventricular cardiomyocytes are well established, little is known about the mechanisms regulating production of proportional numbers of each cell type. We find that mutation of the zebrafish type I BMP receptor gene alk8 causes reduction of atrial size without affecting the ventricle. Loss of atrial tissue is evident in the lateral mesoderm prior to heart tube formation and results from the inhibition of BMP signaling during cardiac progenitor specification stages. Comparison of the effects of decreased and increased BMP signaling further demonstrates that atrial cardiomyocyte production correlates with levels of BMP signaling while ventricular cardiomyocyte production is less susceptible to manipulation of BMP signaling. Additionally, mosaic analysis provides evidence for a cell-autonomous requirement for BMP signaling during cardiomyocyte formation and chamber fate assignment. Together, our studies uncover a new role for BMP signaling in the regulation of chamber size, supporting a model in which differential reception of cardiac inductive signals establishes chamber proportion.
Collapse
Affiliation(s)
- Sara R. Marques
- Developmental Genetics Program and Department of Cell Biology, Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016 USA
- Graduate Program in Areas of Basic and Applied Biology, Universidade do Porto, 4050-465 Porto, Portugal
| | - Deborah Yelon
- Developmental Genetics Program and Department of Cell Biology, Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016 USA
| |
Collapse
|
62
|
Hammond KL, Loynes HE, Mowbray C, Runke G, Hammerschmidt M, Mullins MC, Hildreth V, Chaudhry B, Whitfield TT. A late role for bmp2b in the morphogenesis of semicircular canal ducts in the zebrafish inner ear. PLoS One 2009; 4:e4368. [PMID: 19190757 PMCID: PMC2629815 DOI: 10.1371/journal.pone.0004368] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 12/18/2008] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The Bone Morphogenetic Protein (BMP) genes bmp2 and bmp4 are expressed in highly conserved patterns in the developing vertebrate inner ear. It has, however, proved difficult to elucidate the function of BMPs during ear development as mutations in these genes cause early embryonic lethality. Previous studies using conditional approaches in mouse and chicken have shown that Bmp4 has a role in semicircular canal and crista development, but there is currently no direct evidence for the role of Bmp2 in the developing inner ear. METHODOLOGY/PRINCIPAL FINDINGS We have used an RNA rescue strategy to test the role of bmp2b in the zebrafish inner ear directly. Injection of bmp2b or smad5 mRNA into homozygous mutant swirl (bmp2b(-/-)) embryos rescues the early patterning defects in these mutants and the fish survive to adulthood. As injected RNA will only last, at most, for the first few days of embryogenesis, all later development occurs in the absence of bmp2b function. Although rescued swirl adult fish are viable, they have balance defects suggestive of vestibular dysfunction. Analysis of the inner ears of these fish reveals a total absence of semicircular canal ducts, structures involved in the detection of angular motion. All other regions of the ear, including the ampullae and cristae, are present and appear normal. Early stages of otic development in rescued swirl embryos are also normal. CONCLUSIONS/SIGNIFICANCE Our findings demonstrate a critical late role for bmp2b in the morphogenesis of semicircular canals in the zebrafish inner ear. This is the first demonstration of a developmental role for any gene during post-embryonic stages of otic morphogenesis in the zebrafish. Despite differences in the early stages of semicircular canal formation between zebrafish and amniotes, the role of Bmp2 in semicircular canal duct outgrowth is likely to be conserved between different vertebrate species.
Collapse
Affiliation(s)
- Katherine L. Hammond
- MRC Centre for Developmental and Biomedical Genetics and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Helen E. Loynes
- MRC Centre for Developmental and Biomedical Genetics and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Catriona Mowbray
- MRC Centre for Developmental and Biomedical Genetics and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Greg Runke
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | | | - Mary C. Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Victoria Hildreth
- Institute of Human Genetics, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Bill Chaudhry
- Institute of Human Genetics, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Tanya T. Whitfield
- MRC Centre for Developmental and Biomedical Genetics and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
63
|
McReynolds LJ, Tucker J, Mullins MC, Evans T. Regulation of hematopoiesis by the BMP signaling pathway in adult zebrafish. Exp Hematol 2008; 36:1604-1615. [PMID: 18973974 PMCID: PMC2602881 DOI: 10.1016/j.exphem.2008.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Revised: 08/12/2008] [Accepted: 08/21/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The zebrafish is an established model system for studying the embryonic emergence of tissues and organs, including the hematopoietic system. We hypothesized that key signaling pathways controlling embryonic hematopoiesis continue to be important in the adult, and we sought to develop approaches to test this in zebrafish, focused on the bone morphogenetic protein (BMP) signaling pathway. Functions for this pathway in adult hematopoiesis have been challenging to probe in other models. MATERIALS AND METHODS Several approaches tested the function of BMP signaling during adult zebrafish hematopoiesis. First, we evaluated steady-state hematopoiesis in adult fish that are heterozygous for mutant alleles of Smad5, or are homozygous for mutant alleles, and rescued to adulthood by injection of RNA encoding Smad5. Second, we tested the relative ability of smad5 mutant fish to recover from hemolytic anemia. Third, we generated a transgenic line that targets the expression of a dominant-negative BMP receptor to adult-stage Gata1+ progenitor cells. RESULTS Adult fish with a strong mutant smad5 allele are anemic at steady state and, in addition, respond to hemolytic anemia with kinetics that are altered compared to wild-type fish. Fish expressing a mutant BMP receptor in early Gata1+ definitive progenitors generate excessive eosinophils. CONCLUSIONS Our study provides proof of principle that regulation of adult hematopoiesis can be studied in zebrafish by altering specific pathways. We show that the BMP signaling pathway is relevant for adult hematopoiesis to maintain steady state erythropoiesis, control the erythropoietic response following stress anemia, and to generate normal numbers of eosinophils.
Collapse
Affiliation(s)
- Lisa J. McReynolds
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Jennifer Tucker
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Mary C. Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Todd Evans
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
64
|
Chan TM, Longabaugh W, Bolouri H, Chen HL, Tseng WF, Chao CH, Jang TH, Lin YI, Hung SC, Wang HD, Yuh CH. Developmental gene regulatory networks in the zebrafish embryo. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1789:279-98. [PMID: 18992377 DOI: 10.1016/j.bbagrm.2008.09.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Revised: 08/21/2008] [Accepted: 09/22/2008] [Indexed: 01/12/2023]
Abstract
The genomic developmental program operates mainly through the regulated expression of genes encoding transcription factors and signaling pathways. Complex networks of regulatory genetic interactions control developmental cell specification and fates. Development in the zebrafish, Danio rerio, has been studied extensively and large amounts of experimental data, including information on spatial and temporal gene expression patterns, are available. A wide variety of maternal and zygotic regulatory factors and signaling pathways have been discovered in zebrafish, and these provide a useful starting point for reconstructing the gene regulatory networks (GRNs) underlying development. In this review, we describe in detail the genetic regulatory subcircuits responsible for dorsoanterior-ventroposterior patterning and endoderm formation. We describe a number of regulatory motifs, which appear to act as the functional building blocks of the GRNs. Different positive feedback loops drive the ventral and dorsal specification processes. Mutual exclusivity in dorsal-ventral polarity in zebrafish is governed by intra-cellular cross-inhibiting GRN motifs, including vent/dharma and tll1/chordin. The dorsal-ventral axis seems to be determined by competition between two maternally driven positive-feedback loops (one operating on Dharma, the other on Bmp). This is the first systematic approach aimed at developing an integrated model of the GRNs underlying zebrafish development. Comparison of GRNs' organizational motifs between different species will provide insights into developmental specification and its evolution. The online version of the zebrafish GRNs can be found at http://www.zebrafishGRNs.org.
Collapse
Affiliation(s)
- Tzu-Min Chan
- Division of Molecular and Genomic Medicine, National Health Research Institute, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Shawi M, Serluca FC. Identification of a BMP7 homolog in zebrafish expressed in developing organ systems. Gene Expr Patterns 2008; 8:369-375. [PMID: 18602348 DOI: 10.1016/j.gep.2008.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 05/20/2008] [Accepted: 05/21/2008] [Indexed: 11/29/2022]
Abstract
The Bone morphogenetic proteins (BMPs) act in many key regulatory processes during development, including dorsoventral axis specification and organ development and are part of a conserved signal pathway. Specifically, BMP7 is a vital signaling molecule for normal development in the mammalian system. The zebrafish mutant snailhouse (snh) was originally isolated as being strongly dorsalized and the mutation was determined to lie within the bmp7 gene. We report here the cloning and expression of a second bmp7 homolog, which we term bmp7b. Sequence alignments show that bmp7b is more closely related to human, mouse and non-mammalian BMP7 than is snh. We further show that bmp7b is strongly expressed in developing organ systems such as the eyes, the ears, the pronephric kidney and the gastrointestinal system.
Collapse
Affiliation(s)
- May Shawi
- Developmental and Molecular Pathways, The Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | |
Collapse
|
66
|
Dodou E, Barald KF, Postlethwait JH. Ventralized zebrafish embryo rescue by overexpression of Zic2a. Zebrafish 2008; 1:239-56. [PMID: 18248235 DOI: 10.1089/zeb.2004.1.239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The neuroectoderm arises during gastrulation as a population of undifferentiated proliferating neuroepithelial cells. As development continues, neuroepithelial cells leave the cell cycle and differentiate into neurons and glia of the functioning central nervous system. What processes establish the spatial distribution of proliferating neuroepithelial cells? To investigate this question, zic2a was isolated from zebrafish, a homolog of the Drosophila pair-rule gene odd-paired, which is involved in nervous system patterning. At shield stage, zic2a was expressed in the zebrafish organizer and the blastoderm margin, and became restricted to the axial mesoderm in mid-gastrula. Expression of zic2a appeared in the prospective neuroectoderm during gastrulation, and later demarcated the presumptive forebrain. This expression pattern suggests that zic2a may function early in the organizer and later in the neural plate to demarcate the population of proliferating neuroectoderm. Consistent with a function for zic2a in transducing signals from the organizer, overexpression of zic2a resulted in an expansion of proliferating neuroectoderm. Furthermore, zic2a overexpression rescued the ventralized phenotype of chordino mutant embryos, which lack a functional chordin gene. Early expression of zic2 in the zebrafish organizer, and the phenotype resulting from overexpression, show a role for zic2a downstream of chordin or other secreted organizer proteins in establishing the initial size of the population of neuroectoderm cells.
Collapse
Affiliation(s)
- Evdokia Dodou
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403, USA
| | | | | |
Collapse
|
67
|
Meinhardt H. Models of Biological Pattern Formation: From Elementary Steps to the Organization of Embryonic Axes. Curr Top Dev Biol 2008; 81:1-63. [DOI: 10.1016/s0070-2153(07)81001-5] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
68
|
Tucker JA, Mintzer KA, Mullins MC. The BMP signaling gradient patterns dorsoventral tissues in a temporally progressive manner along the anteroposterior axis. Dev Cell 2008; 14:108-19. [PMID: 18194657 PMCID: PMC2266782 DOI: 10.1016/j.devcel.2007.11.004] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 09/21/2007] [Accepted: 11/09/2007] [Indexed: 12/24/2022]
Abstract
Patterning of the vertebrate anteroposterior (AP) axis proceeds temporally from anterior to posterior. How dorsoventral (DV) axial patterning relates to AP temporal patterning is unknown. We examined the temporal activity of BMP signaling in patterning ventrolateral cell fates along the AP axis, using transgenes that rapidly turn "off" or "on" BMP signaling. We show that BMP signaling patterns rostral DV cell fates at the onset of gastrulation, whereas progressively more caudal DV cell fates are patterned at progressively later intervals during gastrulation. Increased BMP signal duration is not required to pattern more caudal DV cell fates; rather, distinct temporal intervals of signaling are required. This progressive action is regulated downstream of, or in parallel to, BMP signal transduction at the level of Smad1/5 phosphorylation. We propose that a temporal cue regulates a cell's competence to respond to BMP signaling, allowing the acquisition of a cell's DV and AP identity simultaneously.
Collapse
Affiliation(s)
- Jennifer A Tucker
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA
| | | | | |
Collapse
|
69
|
Nakamura Y, Weidinger G, Liang JO, Aquilina-Beck A, Tamai K, Moon RT, Warman ML. The CCN family member Wisp3, mutant in progressive pseudorheumatoid dysplasia, modulates BMP and Wnt signaling. J Clin Invest 2007; 117:3075-86. [PMID: 17823661 PMCID: PMC1964511 DOI: 10.1172/jci32001] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 06/20/2007] [Indexed: 02/04/2023] Open
Abstract
In humans, loss-of-function mutations in the gene encoding Wnt1 inducible signaling pathway protein 3 (WISP3) cause the autosomal-recessive skeletal disorder progressive pseudorheumatoid dysplasia (PPD). However, in mice there is no apparent phenotype caused by Wisp3 deficiency or overexpression. Consequently, the in vivo activities of Wisp3 have remained elusive. We cloned the zebrafish ortholog of Wisp3 and investigated its biologic activity in vivo using gain-of-function and loss-of-function approaches. Overexpression of zebrafish Wisp3 protein inhibited bone morphogenetic protein (BMP) and Wnt signaling in developing zebrafish. Conditioned medium-containing zebrafish and human Wisp3 also inhibited BMP and Wnt signaling in mammalian cells by binding to BMP ligand and to the Wnt coreceptors low-density lipoprotein receptor-related protein 6 (LRP6) and Frizzled, respectively. Wisp3 proteins containing disease-causing amino acid substitutions found in patients with PPD had reduced activity in these assays. Morpholino-mediated inhibition of zebrafish Wisp3 protein expression in developing zebrafish affected pharyngeal cartilage size and shape. These data provide a biologic assay for Wisp3, reveal a role for Wisp3 during zebrafish cartilage development, and suggest that dysregulation of BMP and/or Wnt signaling contributes to cartilage failure in humans with PPD.
Collapse
Affiliation(s)
- Yukio Nakamura
- Howard Hughes Medical Institute, Department of Genetics, and Center for Human Genetics, Case School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
Howard Hughes Medical Institute, Department of Pharmacology, and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington, USA.
Departments of Genetics and Biology, Case Western Reserve University, Cleveland, Ohio, USA.
Division of Neuroscience, Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gilbert Weidinger
- Howard Hughes Medical Institute, Department of Genetics, and Center for Human Genetics, Case School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
Howard Hughes Medical Institute, Department of Pharmacology, and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington, USA.
Departments of Genetics and Biology, Case Western Reserve University, Cleveland, Ohio, USA.
Division of Neuroscience, Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer O. Liang
- Howard Hughes Medical Institute, Department of Genetics, and Center for Human Genetics, Case School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
Howard Hughes Medical Institute, Department of Pharmacology, and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington, USA.
Departments of Genetics and Biology, Case Western Reserve University, Cleveland, Ohio, USA.
Division of Neuroscience, Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Allisan Aquilina-Beck
- Howard Hughes Medical Institute, Department of Genetics, and Center for Human Genetics, Case School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
Howard Hughes Medical Institute, Department of Pharmacology, and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington, USA.
Departments of Genetics and Biology, Case Western Reserve University, Cleveland, Ohio, USA.
Division of Neuroscience, Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Keiko Tamai
- Howard Hughes Medical Institute, Department of Genetics, and Center for Human Genetics, Case School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
Howard Hughes Medical Institute, Department of Pharmacology, and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington, USA.
Departments of Genetics and Biology, Case Western Reserve University, Cleveland, Ohio, USA.
Division of Neuroscience, Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Randall T. Moon
- Howard Hughes Medical Institute, Department of Genetics, and Center for Human Genetics, Case School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
Howard Hughes Medical Institute, Department of Pharmacology, and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington, USA.
Departments of Genetics and Biology, Case Western Reserve University, Cleveland, Ohio, USA.
Division of Neuroscience, Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew L. Warman
- Howard Hughes Medical Institute, Department of Genetics, and Center for Human Genetics, Case School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
Howard Hughes Medical Institute, Department of Pharmacology, and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington, USA.
Departments of Genetics and Biology, Case Western Reserve University, Cleveland, Ohio, USA.
Division of Neuroscience, Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
70
|
McReynolds LJ, Gupta S, Figueroa ME, Mullins MC, Evans T. Smad1 and Smad5 differentially regulate embryonic hematopoiesis. Blood 2007; 110:3881-90. [PMID: 17761518 PMCID: PMC2200801 DOI: 10.1182/blood-2007-04-085753] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The bone morphogenetic protein (BMP) signaling pathway regulates multiple steps of hematopoiesis, mediated through receptor-regulated Smads, including Smad1 and Smad5. Here, we use loss-of-function approaches in zebrafish to compare the roles of Smad1 and Smad5 during embryonic hematopoiesis. We show that knockdown of Smad1 or Smad5 generates distinct and even opposite hematopoietic phenotypes. Embryos depleted for Smad1 have an increased number of primitive erythrocytes, but fail to produce mature embryonic macrophages. In contrast, Smad5-depleted embryos are defective in primitive erythropoiesis, yet have normal numbers of macrophages. Loss of either Smad1 or Smad5 causes a failure in the generation of definitive hematopoietic progenitors. To investigate the mechanism behind these phenotypes, we used rescue experiments and found that Smad5 is unable to rescue the Smad1 loss-of-function phenotype, indicating that the 2 highly related proteins have inherently distinct activities. Microarray experiments revealed that the 2 proteins redundantly regulate the key initiators of the hemato-vascular program, including scl, lmo2, and gfi1. However, each also regulates a remarkably distinct genetic program, with Smad5 uniquely regulating the BMP signaling pathway itself. Our results suggest that specificity of BMP signaling output, with respect to hematopoiesis, can be explained by differential functions of Smad1 and Smad5.
Collapse
Affiliation(s)
- Lisa J McReynolds
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
71
|
Gouttenoire J, Valcourt U, Bougault C, Aubert-Foucher E, Arnaud E, Giraud L, Mallein-Gerin F. Knockdown of the intraflagellar transport protein IFT46 stimulates selective gene expression in mouse chondrocytes and affects early development in zebrafish. J Biol Chem 2007; 282:30960-73. [PMID: 17720815 DOI: 10.1074/jbc.m705730200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) act as multifunctional regulators in morphogenesis during development. In particular they play a determinant role in the formation of cartilage molds and their replacement by bone during endochondral ossification. In cell culture, BMP-2 favors chondrogenic expression and promotes hypertrophic maturation of chondrocytes. In mouse chondrocytes we have identified a BMP-2-sensitive gene encoding a protein of 301 amino acids. This protein, named mIFT46, is the mouse ortholog of recently identified Caenorhabditis elegans and Chlamydomonas reinhardtii intraflagellar transport (IFT) proteins. After generation of a polyclonal antibody against mIFT46, we showed for the first time that the endogenous protein is located in the primary cilium of chondrocytes. We also found that mIFT46 is preferentially expressed in early hypertrophic chondrocytes located in the growth plate. Additionally, mIFT46 knockdown by small interfering RNA oligonucleotides in cultured chondrocytes specifically stimulated the expression of several genes related to skeletogenesis. Furthermore, Northern blotting analysis indicated that mIFT46 is also expressed before chondrogenesis in embryonic mouse development, suggesting that the role of mIFT46 might not be restricted to cartilage. To explore the role of IFT46 during early development, we injected antisense morpholino oligonucleotides in Danio rerio embryos to reduce zebrafish IFT46 protein (zIFT46) synthesis. Dramatic defects in embryonic development such as a dorsalization and a tail duplication were observed. Thus our results taken together indicate that the ciliary protein IFT46 has a specific function in chondrocytes and is also essential for normal development of vertebrates.
Collapse
Affiliation(s)
- Jérôme Gouttenoire
- Université de Lyon, Lyon, F-69003, Université Lyon 1, CNRS UMR5086, Institut de Biologie et Chimie des Protéines, IFR 128 BioSciences Gerland-Lyon Sud, 7 passage du Vercors, Lyon F-69367, France
| | | | | | | | | | | | | |
Collapse
|
72
|
Abstract
Bone morphogenetic proteins (BMPs) are known to be widely involved in various biological processes. Many of the members of the BMP family, as well as related factors, receptors and molecules in the BMP signaling pathway, have been isolated, but their precise functions are still unclear. In addition to the 'classical' model organism Xenopus, zebrafish, Danio rerio, is now considered to be a suitable model organism to study the roles of the BMP signaling pathway during embryogenesis. Mutagenesis screens have identified a number of mutants in the pathway. Although they do not cover the entire members of the BMP signaling cascade that are currently known, they serve as a powerful tool to broaden our understanding of BMP functions, in combination with other experimental techniques.
Collapse
Affiliation(s)
- Mariko Kondo
- Department of Biological Sciences, The University of Tokyo, Japan.
| |
Collapse
|
73
|
Chocron S, Verhoeven MC, Rentzsch F, Hammerschmidt M, Bakkers J. Zebrafish Bmp4 regulates left-right asymmetry at two distinct developmental time points. Dev Biol 2007; 305:577-88. [PMID: 17395172 DOI: 10.1016/j.ydbio.2007.03.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 02/21/2007] [Accepted: 03/01/2007] [Indexed: 11/19/2022]
Abstract
Left-right (LR) asymmetry is regulated by early asymmetric signals within the embryo. Even though the role of the bone morphogenetic protein (BMP) pathway in this process has been reported extensively in various model organisms, opposing models for the mechanism by which BMP signaling operates still prevail. Here we show that in zebrafish embryos there are two distinct phases during LR patterning in which BMP signaling is required. Using transgenic lines that ectopically express either noggin3 or bmp2b, we show a requirement for BMP signaling during early segmentation to repress southpaw expression in the right lateral plate mesoderm and regulate both visceral and heart laterality. A second phase was identified during late segmentation, when BMP signaling is required in the left lateral plate mesoderm to regulate left-sided gene expression and heart laterality. Using morpholino knock down experiments, we identified Bmp4 as the ligand responsible for both phases of BMP signaling. In addition, we detected bmp4 expression in Kupffer's vesicle and show that restricted knock down of bmp4 in this structure results in LR patterning defects. The identification of these two distinct and opposing activities of BMP signaling provides new insight into how BMP signaling can regulate LR patterning.
Collapse
Affiliation(s)
- Sonja Chocron
- Cardiac Development and Genetics Group, Hubrecht Laboratory, Uppsalalaan 8, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
74
|
von der Hardt S, Bakkers J, Inbal A, Carvalho L, Solnica-Krezel L, Heisenberg CP, Hammerschmidt M. The Bmp gradient of the zebrafish gastrula guides migrating lateral cells by regulating cell-cell adhesion. Curr Biol 2007; 17:475-87. [PMID: 17331724 DOI: 10.1016/j.cub.2007.02.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 01/23/2007] [Accepted: 02/07/2007] [Indexed: 11/16/2022]
Abstract
BACKGROUND Bone morphogenetic proteins (Bmps) are required for the specification of ventrolateral cell fates during embryonic dorsoventral patterning and for proper convergence and extension gastrulation movements, but the mechanisms underlying the latter role remained elusive. RESULTS Via bead implantations, we show that the Bmp gradient determines the direction of lateral mesodermal cell migration during dorsal convergence in the zebrafish gastrula. This effect is independent of its role during dorsoventral patterning and of noncanonical Wnt signaling. However, it requires Bmp signal transduction through Alk8 and Smad5 to negatively regulate Ca(2+)/Cadherin-dependent cell-cell adhesiveness. In vivo, converging mesodermal cells form lamellipodia that attach to adjacent cells. Bmp signaling diminishes the Cadherin-dependent stability of such contact points, thereby abrogating subsequent cell displacement during lamellipodial retraction. CONCLUSIONS We propose that the ventral-to-dorsal Bmp gradient has an instructive role to establish a reverse gradient of cell-cell adhesiveness, thereby defining different migratory zones and directing lamellipodia-driven cell migrations during dorsal convergence in lateral regions of the zebrafish gastrula.
Collapse
|
75
|
Liu A, Niswander LA. Bone morphogenetic protein signalling and vertebrate nervous system development. Nat Rev Neurosci 2007; 6:945-54. [PMID: 16340955 DOI: 10.1038/nrn1805] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Transforming growth factor-beta (TGFbeta) signalling, particularly signalling from the bone morphogenetic protein (BMP) members of this protein family, is crucial for the development of both the central and peripheral nervous systems in vertebrates. Experimental embryology and genetics performed in a range of organisms are providing insights into how BMPs establish the neural tissue and control the types and numbers of neurons formed. These studies also highlight the interactions between different developmental signals that are necessary to form a functional nervous system. The challenges ahead will be to uncover functions of TGFbeta signalling in later stages of CNS development, as well as to determine possible associations with neurological diseases.
Collapse
Affiliation(s)
- Aimin Liu
- Department of Pediatrics, Section of Developmental Biology, University of Colorado at Denver and Health Sciences Center, 12800 East 19th Avenue, Mailstop 8322, P.O. Box 6511, Aurora, Colorado 80045, USA
| | | |
Collapse
|
76
|
Connors SA, Tucker JA, Mullins MC. Temporal and spatial action of Tolloid (Mini fin) and Chordin to pattern tail tissues. Dev Biol 2006; 293:191-202. [PMID: 16530746 DOI: 10.1016/j.ydbio.2006.01.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 01/05/2006] [Accepted: 01/30/2006] [Indexed: 11/28/2022]
Abstract
In vertebrates, a bone morphogenetic protein (BMP) signaling pathway patterns all ventral cell fates along the embryonic axis. BMP activity is positively regulated by Tolloid, a metalloprotease, that can eliminate the activity of the BMP antagonist Chordin. A tolloid mutant in zebrafish, mini fin (mfn), exhibits a specific loss of ventral tail tissues. Here, we investigate the spatial and temporal requirements for Tolloid (Mfn) in dorsoventral patterning of the tail. Through chimeric analyses, we found that Tolloid (Mfn) functions cell non-autonomously in the ventral-most vegetal cells of the gastrula or their derivatives. We generated a tolloid transgene under the control of the inducible hsp70 promoter and demonstrate that tolloid (mfn) is first required at the completion of gastrulation. Although tolloid is expressed during gastrulation and dorsally and ventrally within the tail bud, our results indicate that Tolloid (Mfn) acts specifically in the ventral tail bud during a approximately 4 h period extending from the completion of gastrulation to early somitogenesis stages to regulate BMP signaling. Examination of the temporal requirements of Chordin activity by overexpression of the hsp70-tolloid transgene indicates that Chordin is required both during and after gastrulation for proper patterning of the tail, contrasting Tld's requirement only during post-gastrula stages. We hypothesize that the gastrula role of Chordin in tail patterning is to generate the proper size domains of cells to enter the ventral and dorsal tail bud, whereas post-gastrula Chordin activity patterns the derivatives of the tail bud. Thus, fine modulation of BMP signaling levels through the negative and positive actions of Chordin and Tolloid, respectively, patterns tail tissues.
Collapse
Affiliation(s)
- Stephanie A Connors
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, 1211 BRBII, 421 Curie Blvd., Philadelphia, PA 19104-6058, USA
| | | | | |
Collapse
|
77
|
Kinna G, Kolle G, Carter A, Key B, Lieschke GJ, Perkins A, Little MH. Knockdown of zebrafish crim1 results in a bent tail phenotype with defects in somite and vascular development. Mech Dev 2006; 123:277-87. [PMID: 16524703 DOI: 10.1016/j.mod.2006.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 01/15/2006] [Accepted: 01/20/2006] [Indexed: 11/26/2022]
Abstract
The Crim1 gene encodes a transmembrane protein containing six cysteine-rich repeats similar to those found in the BMP antagonist, chordin (chd). To investigate its physiological role, zebrafish crim1 was cloned and shown to be both maternally and zygotically expressed during zebrafish development in sites including the vasculature, intermediate cell mass, notochord, and otic vesicle. Bent or hooked tails with U-shaped somites were observed in 85% of morphants from 12 hpf. This was accompanied by a loss of muscle pioneer cells. While morpholino knockdown of crim1 showed some evidence of ventralisation, including expansion of the intermediate cell mass (ICM), reduction in head size bent tails and disruption to the somites and notochord, this did not mimic the classically ventralised phenotype, as assessed by the pattern of expression of the dorsal markers chordin, otx2 and the ventral markers eve1, pax2.1, tal1 and gata1 between 75% epiboly and six-somites. From 24 hpf, morphants displayed an expansion of the ventral mesoderm-derived ICM, as evidenced by expansion of tal1, lmo2 and crim1 itself. Analysis of the crim1 morphant phenotype in Tg(fli:EGFP) fish showed a clear reduction in the endothelial cells forming the intersegmental vessels and a loss of the dorsal longitudinal anastomotic vessel (DLAV). Hence, the primary role of zebrafish crim1 is likely to be the regulation of somitic and vascular development.
Collapse
Affiliation(s)
- Genevieve Kinna
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
78
|
Muraoka O, Shimizu T, Yabe T, Nojima H, Bae YK, Hashimoto H, Hibi M. Sizzled controls dorso-ventral polarity by repressing cleavage of the Chordin protein. Nat Cell Biol 2006; 8:329-38. [PMID: 16518392 DOI: 10.1038/ncb1379] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Accepted: 02/13/2006] [Indexed: 01/01/2023]
Abstract
The Bone morphogenetic protein (Bmp) signalling gradient has a major function in the formation of the dorso-ventral axis. The zebrafish ventralized mutant, ogon, encodes Secreted Frizzled (Sizzled). sizzled is ventrally expressed in a Bmp-dependent manner and is required for the suppression of Bmp signalling on the ventral side of zebrafish embryos. However, it remains unclear how Sizzled inhibits Bmp signalling and controls ventro-lateral cell fate. We found that Sizzled stabilizes Chordin, a Bmp antagonist, by binding and inhibiting the Tolloid-family metalloproteinase, Bmp1a, which cleaves and inactivates Chordin. The cysteine-rich domain of Sizzled is required for inhibition of Bmp1a activity. Loss of both Bmp1a and Tolloid-like1 (Tll1; another Tolloid-family metalloproteinase) function leads to a complete suppression and reversal of the ogon mutant phenotype. These results indicate that Sizzled represses the activities of Tolloid-family proteins, thereby creating the Chordin-Bmp activity gradient along the dorso-ventral axis. Here, we describe a previously unrecognized role for a secreted Frizzled-related protein.
Collapse
Affiliation(s)
- Osamu Muraoka
- Laboratory for Vertebrate Axis Formation, Center for Developmental Biology, RIKEN, 2-2-3 Minatojima-minamimachi, Chuo-ku Kobe, Hyogo 650-0047, Japan
| | | | | | | | | | | | | |
Collapse
|
79
|
Abstract
The basic vertebrate body plan of the zebrafish embryo is established in the first 10 hours of development. This period is characterized by the formation of the anterior-posterior and dorsal-ventral axes, the development of the three germ layers, the specification of organ progenitors, and the complex morphogenetic movements of cells. During the past 10 years a combination of genetic, embryological, and molecular analyses has provided detailed insights into the mechanisms underlying this process. Maternal determinants control the expression of transcription factors and the location of signaling centers that pattern the blastula and gastrula. Bmp, Nodal, FGF, canonical Wnt, and retinoic acid signals generate positional information that leads to the restricted expression of transcription factors that control cell type specification. Noncanonical Wnt signaling is required for the morphogenetic movements during gastrulation. We review how the coordinated interplay of these molecules determines the fate and movement of embryonic cells.
Collapse
Affiliation(s)
- Alexander F Schier
- Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, NY 10016-6497, USA.
| | | |
Collapse
|
80
|
Zapata A, Diez B, Cejalvo T, Gutiérrez-de Frías C, Cortés A. Ontogeny of the immune system of fish. FISH & SHELLFISH IMMUNOLOGY 2006; 20:126-36. [PMID: 15939627 DOI: 10.1016/j.fsi.2004.09.005] [Citation(s) in RCA: 395] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Accepted: 09/03/2004] [Indexed: 05/02/2023]
Abstract
Information on the ontogeny of the fish immune system is largely restricted to a few species of teleosts (e.g., rainbow trout, catfish, zebrafish, sea bass) and has previously focused on morphological features. However, basic questions including the identification of the first lympho-hematopoietic sites, the origin of T- and B-lymphocytes and the acquisition of full immunological capacities remain to be resolved. We review these three main topics with special emphasis on recent results obtained from the zebrafish, a new experimental model particularly suitable for study of the ontogeny of the immune system because of its rapid development and easy manipulation. This species also provides an easy way of creating mutations that can be detected by various types of screens. In some teleosts (i.e., angelfish) the first blood cells are formed in the yolk sac. In others, such as zebrafish, the first hematopoietic site is an intraembryonic locus, the intermediate cell mass (ICM), whereas in both killifish and rainbow trout the first blood cells appear for a short time in the yolk sac but later the ICM becomes the main hematopoietic area. Erythrocytes and macrophages are the first blood cells to be identified in zebrafish embryos. They occur in the ICM, the duct of Cuvier and the peripheral circulation. Between 24 and 30 hour post-fertilization (hpf) at a temperature of 28 degrees C a few myeloblasts and myelocytes appear between the yolk sac and the body walls, and the ventral region of the tail of 1-2 day-old zebrafish also contains developing blood cells. The thymus, kidney and spleen are the major lymphoid organs of teleosts. The thymus is the first organ to become lymphoid, although earlier the kidney can contain hematopoietic precursors but not lymphocytes. In freshwater, but not in marine, teleosts the spleen is the last organ to acquire that condition. We and other authors have demonstrated an early expression of Rag-1 in the zebrafish thymus that correlates well with the morphological identification of lymphoid cells. On the other hand, the origins and time of appearance of B lymphocytes in teleosts are a matter of discussion and recent results are summarized here. The functioning rather than the mere morphological evidence of lymphocytes determines when the full immunocompetence in fish is attained. Information on the histogenesis of fish lymphoid organs can also be obtained by analysing zebrafish mutants with defects in the development of immune progenitors and/or in the maturation of non-lymphoid stromal elements of the lymphoid organs. The main characteristics of some of these mutants will also be described.
Collapse
Affiliation(s)
- A Zapata
- Department of Cell Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain.
| | | | | | | | | |
Collapse
|
81
|
Wijgerde M, Karp S, McMahon J, McMahon AP. Noggin antagonism of BMP4 signaling controls development of the axial skeleton in the mouse. Dev Biol 2005; 286:149-57. [PMID: 16122729 DOI: 10.1016/j.ydbio.2005.07.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 06/30/2005] [Accepted: 07/17/2005] [Indexed: 02/01/2023]
Abstract
The interaction between bone morphogenetic proteins (BMPs) and their antagonist, Noggin, is critical for normal development. Noggin null mice die at birth with a severely malformed skeleton that is postulated to reflect the activity of unopposed BMP signaling. However, the widespread expression and redundancy of different BMPs have made it difficult to identify a specific role for individual BMPs during mammalian skeletal morphogenesis. Here, we report the effects of modifying Bmp4 dosage on the skeletal development of Noggin mutant mice. The reduction of Bmp4 dosage results in an extensive rescue of the axial skeleton of Noggin mutant embryos. In contrast, the appendicular skeletal phenotype of Noggin mutants was unchanged. Analysis of molecular markers of somite formation and somite patterning suggests that the loss of Noggin results in the formation of small mispatterned somites. Mis-specification and growth retardation rather than cell death most likely account for the subsequent reduction or loss of axial skeletal structures. The severe Noggin phenotype correlates with Bmp4-dependent ectopic expression of Bmp4 in the paraxial mesoderm consistent with Noggin antagonizing an auto-inductive feed-forward mechanism. Thus, specific interactions between Bmp4 and Noggin in the early embryo are critical for establishment and patterning of the somite and subsequent axial skeletal morphogenesis.
Collapse
Affiliation(s)
- Mark Wijgerde
- Department of Molecular and Cellular Biology, The Biolabs, 16 Divinity Avenue, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
82
|
Abstract
Common signaling pathways such as those for Wnts and BMPs are used many times during embryogenesis. During the development of the neural crest, Wnt and BMP signals are used repeatedly at different stages to influence initial induction, segregation from the neuroepithelium and cell fate determination. This review considers how specificity is generated within the neural crest for these reiterated signals, discussing examples of how the outcomes of signaling events are modulated by context.
Collapse
Affiliation(s)
- David W Raible
- University of Washington, Department of Biological Structure, HSB G-514, Seattle, WA 98195-7420, USA.
| | | |
Collapse
|
83
|
Marom K, Levy V, Pillemer G, Fainsod A. Temporal analysis of the early BMP functions identifies distinct anti-organizer and mesoderm patterning phases. Dev Biol 2005; 282:442-54. [PMID: 15950609 DOI: 10.1016/j.ydbio.2005.03.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Revised: 01/30/2005] [Accepted: 03/15/2005] [Indexed: 10/25/2022]
Abstract
BMP signaling performs multiple important roles during early embryogenesis. Signaling through the BMP pathway is mediated by different BMP ligands expressed in partially overlapping temporal and spatial patterns. Assignment of different BMP-dependent activities to the individual ligands has relied on the patterns of expression of the various BMP genes. Temporal analysis of BMP signaling prior to and during gastrulation was performed using glucocorticoid-controlled Smad proteins. Overexpression of the BMP-specific Smad1 and Smad5 revealed that suppression of Spemann's organizer formation in Xenopus embryos can only take place by activating the BMP pathway prior to the onset of gastrulation. Blocking BMP signaling with the inhibitory Smad, Smad6, results in dorsalized embryos or secondary axis induction, only when activated up to early gastrula stages. BMP2 efficiently represses organizer-specific transcription from the midblastula transition onwards while BMP4 is unable to prevent the early activation of organizer-specific genes. Manipulation of the BMP pathway during mid/late gastrula affects mesodermal patterning with no external phenotypic effects. These observations suggest that the malformations resulting from inhibition or promotion of organizer formation, ventralized or dorsalized, respectively, are the result of a very early BMP function, through its antagonism of organizer formation. This function is apparently fulfilled by BMP2 and only at its latest phase by BMP4. Subsequently, BMP functions in the patterning of the mesoderm with no apparent phenotypic effects.
Collapse
Affiliation(s)
- Karen Marom
- Department of Cellular Biochemistry and Human Genetics, Faculty of Medicine, Hebrew University, POB 12272, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
84
|
Shimizu T, Bae YK, Muraoka O, Hibi M. Interaction of Wnt and caudal-related genes in zebrafish posterior body formation. Dev Biol 2005; 279:125-41. [PMID: 15708563 DOI: 10.1016/j.ydbio.2004.12.007] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2004] [Revised: 12/02/2004] [Accepted: 12/07/2004] [Indexed: 12/12/2022]
Abstract
Although Wnt signaling plays an important role in body patterning during early vertebrate embryogenesis, the mechanisms by which Wnts control the individual processes of body patterning are largely unknown. In zebrafish, wnt3a and wnt8 are expressed in overlapping domains in the blastoderm margin and later in the tailbud. The combined inhibition of Wnt3a and Wnt8 by antisense morpholino oligonucleotides led to anteriorization of the neuroectoderm, expansion of the dorsal organizer, and loss of the posterior body structure-a more severe phenotype than with inhibition of each Wnt alone-indicating a redundant role for Wnt3a and Wnt8. The ventrally expressed homeobox genes vox, vent, and ved mediated Wnt3a/Wnt8 signaling to restrict the organizer domain. Of posterior body-formation genes, expression of the caudal-related cdx1a and cdx4/kugelig, but not bmps or cyclops, was strongly reduced in the wnt3a/wnt8 morphant embryos. Like the wnt3a/wnt8 morphant embryos, cdx1a/cdx4 morphant embryos displayed complete loss of the tail structure, suggesting that Cdx1a and Cdx4 mediate Wnt-dependent posterior body formation. We also found that cdx1a and cdx4 expression is dependent on Fgf signaling. hoxa9a and hoxb7a expression was down-regulated in the wnt3a/wnt8 and cdx1a/cdx4 morphant embryos, and in embryos with defects in Fgf signaling. Fgf signaling was required for Cdx-mediated hoxa9a expression. Both the wnt3a/wnt8 and cdx1a/cdx4 morphant embryos failed to promote somitogenesis during mid-segmentation. These data indicate that the cdx genes mediate Wnt signaling and play essential roles in the morphogenesis of the posterior body in zebrafish.
Collapse
Affiliation(s)
- Takashi Shimizu
- Laboratory for Vertebrate Axis Formation, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan
| | | | | | | |
Collapse
|
85
|
Londin ER, Niemiec J, Sirotkin HI. Chordin, FGF signaling, and mesodermal factors cooperate in zebrafish neural induction. Dev Biol 2005; 279:1-19. [PMID: 15708554 DOI: 10.1016/j.ydbio.2004.11.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 11/04/2004] [Accepted: 11/09/2004] [Indexed: 12/13/2022]
Abstract
The ectoderm gives rise to both neural tissue and epidermis. In vertebrates, specification of the neural plate requires repression of bone morphogenetic protein (BMP) signaling in the dorsal ectoderm. The extracellular BMP antagonist Chordin and other signals from the dorsal mesoderm play important roles in this process. We utilized zebrafish mutant combinations that disrupt Chordin and mesoderm formation to reveal additional signals that contribute to the establishment of the neural domain. We demonstrate that fibroblast growth factor (FGF) signaling accounts for the additional activity in neural specification. Impeding FGF signaling results in a shift of ectodermal markers from neural to epidermal. However, following inhibition of FGF signaling, expression of anterior neural markers recovers in a Nodal-dependent fashion. Simultaneously blocking, Chordin, mesoderm formation, and FGF signaling eliminates neural marker expression during gastrula stages. We observed that FGF signaling is required for chordin expression but that it also acts via other mechanisms to repress BMP transcription during late blastula stages. Activation of FGF signaling was also able to repress BMP transcription in the absence of protein synthesis. Our results support a model in which specification of anterior neural tissue requires early FGF-mediated repression of BMP transcript levels and later activities of Chordin and mesodermal factors.
Collapse
Affiliation(s)
- Eric R Londin
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | |
Collapse
|
86
|
Hernandez-Lagunas L, Choi IF, Kaji T, Simpson P, Hershey C, Zhou Y, Zon L, Mercola M, Artinger KB. Zebrafish narrowminded disrupts the transcription factor prdm1 and is required for neural crest and sensory neuron specification. Dev Biol 2005; 278:347-57. [PMID: 15680355 PMCID: PMC4028833 DOI: 10.1016/j.ydbio.2004.11.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Revised: 11/09/2004] [Accepted: 11/09/2004] [Indexed: 11/22/2022]
Abstract
Specification of both neural crest cells and Rohon-Beard (RB) sensory neurons involves a complex series of interactions between the neural and non-neural ectoderm. The molecular mechanisms directing this process are not well understood. The zebrafish narrowminded (nrd) mutation is unique, since it is one of two mutations in which defects are observed in both cell populations: it leads to a complete absence of RB neurons and a reduction in neural crest cells and their derivatives. Here, we show that nrd is a mutation in prdm1, a SET/zinc-finger domain transcription factor. A Morpholino-mediated depletion of prdm1 phenocopies the nrd mutation, and conversely overexpression of prdm1 mRNA rescues the nrd RB sensory neuron and neural crest phenotype. prdm1 is expressed at the border of the neural plate within the domain where neural crest cells and RB sensory neurons form. Analysis of prdm1 function by overexpression indicates that prdm1 functions to promote the cell fate specification of both neural crest cells and RB sensory neurons, most likely as a downstream effector of the BMP signaling pathway.
Collapse
Affiliation(s)
- Laura Hernandez-Lagunas
- Department of Craniofacial Biology, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | - Irene F. Choi
- Department of Craniofacial Biology, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | - Takao Kaji
- Department of Craniofacial Biology, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | - Peter Simpson
- Department of Craniofacial Biology, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | - Candice Hershey
- Howard Hughes Medical Institute/Childrens Hospital, Division of Hematology/Oncology, Boston, MA, USA
| | - Yi Zhou
- Howard Hughes Medical Institute/Childrens Hospital, Division of Hematology/Oncology, Boston, MA, USA
| | - Len Zon
- Howard Hughes Medical Institute/Childrens Hospital, Division of Hematology/Oncology, Boston, MA, USA
| | - Mark Mercola
- Stem Cell and Regeneration Program, The Burnham Institute, La Jolla, CA, USA
| | - Kristin Bruk Artinger
- Department of Craniofacial Biology, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| |
Collapse
|
87
|
Gilardelli CN, Pozzoli O, Sordino P, Matassi G, Cotelli F. Functional and hierarchical interactions among zebrafish vox/vent homeobox genes. Dev Dyn 2004; 230:494-508. [PMID: 15188434 DOI: 10.1002/dvdy.20073] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The vertebrate Vox/Vent family of transcription factors plays a crucial role in the establishment of the dorsoventral (DV) axis, by repressing organizer genes such as bozozok/dharma, goosecoid, and chordino. In Danio rerio (zebrafish), members of the vox/vent gene family (vox/vega1, vent/vega2, and ved) are thought to share expression patterns and functional properties. Bringing novel insights in the differential activity of the zebrafish vox/vent genes, we propose a critical role for the ved gene in DV patterning of vertebrate embryos. ved is not only expressed as a maternal gene, but it also appears to function as a repressor of dorsal factors involved in organizer formation. At early- and mid-gastrula stage, ved appears to be finely controlled by antagonist crosstalks in a complex regulatory network, involving gradients of bone morphogenetic protein (BMP) activity, dorsal factors, and vox/vent family members. We show that ved transcripts are ventrally restricted by BMP factors such as bmp2b, bmp7, smad5, and alk8, and by dorsal factors (chd and gsc). Alteration of ved expression in both vox and vent deletion mutants and vox and vent mRNAs-injected embryos, suggests that vox and vent function downstream of BMP signaling to negatively regulate ved expression. This inhibitory role is emphasized by a vox and vent redundant activity, compared with single gene effects.
Collapse
|
88
|
Kawakami A, Fukazawa T, Takeda H. Early fin primordia of zebrafish larvae regenerate by a similar growth control mechanism with adult regeneration. Dev Dyn 2004; 231:693-9. [PMID: 15499559 DOI: 10.1002/dvdy.20181] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Some vertebrate species, including urodele amphibians and teleost fish, have the remarkable ability of regenerating lost body parts. Regeneration studies have been focused on adult tissues, because it is unclear whether or not the repairs of injured tissues during early developmental stages have the same molecular base as that of adult regeneration. Here, we present evidence that a similar cellular and molecular mechanism to adult regeneration operates in the repair process of early zebrafish fin primordia, which are composed of epithelial and mesenchymal cells. We show that larval fin repair occurs through the formation of wound epithelium and blastema-like proliferating cells. Cell proliferation is first induced in the distal-most region and propagates to more proximal regions, as in adult regeneration. We also show that fibroblast growth factor signaling helps induce cell division. Our results suggest that the regeneration machinery directing cell proliferation in response to injury may exist from the early developmental stages.
Collapse
Affiliation(s)
- Atsushi Kawakami
- Department of Biological Science, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | | | | |
Collapse
|
89
|
Lowery LA, Sive H. Strategies of vertebrate neurulation and a re-evaluation of teleost neural tube formation. Mech Dev 2004; 121:1189-97. [PMID: 15327780 DOI: 10.1016/j.mod.2004.04.022] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Revised: 04/27/2004] [Accepted: 04/28/2004] [Indexed: 12/01/2022]
Abstract
The vertebrate neural tube develops by two distinct mechanisms. Anteriorly, in the brain and future trunk (cervicothoracic) region, 'primary neurulation' occurs, where an epithelial sheet rolls or bends into a tube. Posteriorly, in the future lumbar and tail region, the neural tube forms by 'secondary neurulation', where a mesenchymal cell population condenses to form a solid rod that undergoes transformation to an epithelial tube. Teleost neurulation has been described as different from that of other vertebrates. This is principally because the teleost trunk neural tube initially forms a solid rod (the neural keel) that later develops a lumen. This process has also been termed secondary neurulation. However, this description is not accurate since the teleost neural tube derives from an epithelial sheet that folds. This best fits the description of primary neurulation. It has also been suggested that teleost neurulation is primitive, however, both primary and secondary neurulation are found in groups with a more ancient origin than the teleosts. The similarity between neurulation in teleosts and other vertebrates indicates that this group includes viable models (such as the zebrafish) for understanding human neural tube development.
Collapse
Affiliation(s)
- Laura Anne Lowery
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | |
Collapse
|
90
|
Kishimoto Y, Koshida S, Furutani-Seiki M, Kondoh H. Zebrafish maternal-effect mutations causing cytokinesis defect without affecting mitosis or equatorial vasa deposition. Mech Dev 2004; 121:79-89. [PMID: 14706702 DOI: 10.1016/j.mod.2003.10.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Maternal-effect genes play essential roles in early embryogenesis particularly before activation of the zygotic genes. A genetic screen for mutations affecting such maternal-effect genes was carried out employing an F3 screen strategy, identifying six recessive mutations out of 60 mutagenized genomes. Three of the mutations (acytokinesis mutations: ackkt5, ackkt62 and ackkt119) caused absence of cell cleavage in the embryos derived from homozygous females regardless of the paternal genotype, without affecting nuclear divisions. These embryos are defective in generating contractile rings, ackkt62 mutation abolishing reactions to organize cortical F-actin, while other mutations causing abortive contractile ring-like structures at ectopic sites. Defect of contractile ring formation in the affected embryos leads to the absence of microtubule arrays at the prospective cleavage plane. Thus, these mutations reveal the sequence of events associated with cytokinesis, in particular, the cortical actin dynamics. It is remarkable that in all acytokinetic embryos, daughter nuclei after mitosis are arranged in spatially normal positions, and maternal vasa mRNAs accumulate in the prospective planes of the first and second cell cleavages in the total absence of cytokinesis. This indicates that the basic cell architectures of early embryos are largely established by the autonomous activities of the mitotic apparatus, without much dependence on the cell cleavage machinery.
Collapse
Affiliation(s)
- Yasuyuki Kishimoto
- Kondoh Differentiation Signaling Project (ERATO), Japan Science and Technology Corporation, 14 Yoshida-Kawaramachi, Sakyouku, Kyoto 606-8305, Japan.
| | | | | | | |
Collapse
|
91
|
Rohde LA, Oates AC, Ho RK. A crucial interaction between embryonic red blood cell progenitors and paraxial mesoderm revealed in spadetail embryos. Dev Cell 2004; 7:251-62. [PMID: 15296721 PMCID: PMC2801434 DOI: 10.1016/j.devcel.2004.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Revised: 07/07/2004] [Accepted: 07/08/2004] [Indexed: 10/26/2022]
Abstract
Zebrafish embryonic red blood cells (RBCs) develop in trunk intermediate mesoderm (IM), and early macrophages develop in the head, suggesting that local microenvironmental cues regulate differentiation of these two blood lineages. spadetail (spt) mutant embryos, which lack trunk paraxial mesoderm (PM) due to a cell-autonomous defect in tbx16, fail to produce embryonic RBCs but retain head macrophage development. In spt mutants, initial hematopoietic gene expression is absent in trunk IM, although endothelial and pronephric expression is retained, suggesting that early blood progenitor development is specifically disrupted. Using cell transplantation, we reveal that spt is required cell autonomously for early hematopoietic gene expression in trunk IM. Further, we uncover an interaction between embryonic trunk PM and blood progenitors that is essential for RBC development. Importantly, our data identify a hematopoietic microenvironment that allows embryonic RBC production in the zebrafish.
Collapse
Affiliation(s)
- Laurel A Rohde
- Department of Organismal Biology and Anatomy, University of Chicago, IL 60637 USA.
| | | | | |
Collapse
|
92
|
Halloran MC, Berndt JD. Current progress in neural crest cell motility and migration and future prospects for the zebrafish model system. Dev Dyn 2004; 228:497-513. [PMID: 14579388 DOI: 10.1002/dvdy.10374] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The neural crest is a unique population of cells that contributes to the formation of diverse cell types, including craniofacial cartilage, peripheral neurons, the cardiac outflow tract, and pigment cells. Neural crest cells (NCCs) are specified within the neuroepithelium, undergo an epithelial-to-mesenchymal transition, and migrate to target destinations throughout the embryo. Here, we review current understanding of two steps in NCC development, both of which involve NCC motility. The first is NCC delamination from the neuroepithelium and the changes in cell adhesion and the cytoskeleton necessary for the initiation of migration. The second is NCC migration and the signals that guide NCCs along specific migratory pathways. We illustrate the strength of the zebrafish, Danio rerio, as a model organism to study NCC motility. The zebrafish is particularly well suited for the study of neural crest motility because of the ability to combine genetic manipulation with live imaging of migrating NCCs.
Collapse
Affiliation(s)
- Mary C Halloran
- Departments of Zoology and Anatomy and Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
93
|
Abstract
All processes that occur before the activation of the zygotic genome at the midblastula transition are driven by maternal products, which are produced during oogenesis and stored in the mature oocyte. Upon egg activation and fertilization, these maternal factors initiate developmental cascades that carry out the embryonic developmental program. Even after the initiation of zygotic gene expression, perduring maternal products continue performing essential functions, either together with other maternal factors or through interactions with newly expressed zygotic products. Advances in zebrafish research have placed this organism in a unique position to contribute to a detailed understanding of the role of maternal factors in early vertebrate development. This review summarizes our knowledge on the processes involved in the production and redistribution of maternal factors during zebrafish oogenesis and early development, as well as our understanding of the function of these factors in axis formation, germ layer and germ cell specification, and other early embryonic processes.
Collapse
Affiliation(s)
- Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin, USA.
| |
Collapse
|
94
|
Niehrs C. Regionally specific induction by the Spemann-Mangold organizer. Nat Rev Genet 2004; 5:425-34. [PMID: 15153995 DOI: 10.1038/nrg1347] [Citation(s) in RCA: 225] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Christof Niehrs
- Division of Molecular Embryology, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
95
|
Affiliation(s)
- Hans Meinhardt
- Max-Planck-Institut für Entwicklungsbiologie, Spemannstrasse 35, D-72076 Tuebingen, Germany.
| |
Collapse
|
96
|
Affiliation(s)
- Iain A Drummond
- Department of Medicine, Harvard Medical School and Renal Unit, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
97
|
Stuckenholz C, Ulanch PE, Bahary N. From guts to brains: using zebrafish genetics to understand the innards of organogenesis. Curr Top Dev Biol 2004; 65:47-82. [PMID: 15642379 DOI: 10.1016/s0070-2153(04)65002-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Carsten Stuckenholz
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA
| | | | | |
Collapse
|
98
|
Affiliation(s)
- R Craig Albertson
- Department of Cytokine Biology, The Forsyth Institute and Department of Oral and Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
99
|
Martyn U, Schulte-Merker S. The ventralized ogon mutant phenotype is caused by a mutation in the zebrafish homologue of Sizzled, a secreted Frizzled-related protein. Dev Biol 2003; 260:58-67. [PMID: 12885555 DOI: 10.1016/s0012-1606(03)00221-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The BMP signaling pathway plays a key role during dorsoventral pattern formation of vertebrate embryos. In zebrafish, all cloned mutants affecting this process are deficient in members of the BMP pathway. In a search for factors differentially expressed in swirl/bmp2b mutants compared with wild type, we isolated zebrafish Sizzled, a member of the secreted Frizzled-related protein family and putative Wnt inhibitor. The knockdown of sizzled using antisense morpholino phenocopied the ventralized mutant ogon (formerly also known as mercedes and short tail). By sequencing and rescue experiments, we demonstrate that ogon encodes sizzled. Overexpression of sizzled, resulting in strongly dorsalized phenotypes, and the expression domains of sizzled in wild type embryos, localized in the ventral side during gastrulation and restricted to the posterior end during segmentation stages, correlate with its role in dorsoventral patterning. The expanded expression domain of sizzled in ogon and chordino together with its downregulation in swirl suggests a BMP2b-dependent negative autoregulation of sizzled. Indicating a novel role for a secreted Frizzled-related protein, we show that, in addition to the BMP pathway, a component of the Wnt signaling pathway is required for dorsoventral pattern formation in zebrafish.
Collapse
Affiliation(s)
- Ulrike Martyn
- Exelixis Deutschland GmbH, Spemannstrasse 35, 72076 Tübingen, Germany
| | | |
Collapse
|
100
|
Abstract
The kidney can be thought of as the pairing of two tubes: an epithelial tube (the nephron), carrying filtered blood and engaged in ion and water transport; and endothelial tubes (the blood vessels), delivering blood and carrying away recovered solute. The development of the nephron presents several interesting questions. How does an epithelial tube form and how is it patterned into functionally distinct components and segments? What guides the interaction between the vasculature and kidney epithelia? How are epithelial cell shape and lumen diameter maintained, and what goes wrong when kidney tubules balloon into cysts? Here, I outline the progress that has been made in answering these questions using the zebrafish pronephros as a simple, accessible model of nephron development.
Collapse
Affiliation(s)
- Iain Drummond
- Department of Medicine, Harvard Medical School and Renal Unit, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA.
| |
Collapse
|