51
|
Fic W, Juge F, Soret J, Tazi J. Eye development under the control of SRp55/B52-mediated alternative splicing of eyeless. PLoS One 2007; 2:e253. [PMID: 17327915 PMCID: PMC1803029 DOI: 10.1371/journal.pone.0000253] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 01/31/2007] [Indexed: 11/18/2022] Open
Abstract
The genetic programs specifying eye development are highly conserved during evolution and involve the vertebrate Pax-6 gene and its Drosophila melanogaster homolog eyeless (ey). Here we report that the SR protein B52/SRp55 controls a novel developmentally regulated splicing event of eyeless that is crucial for eye growth and specification in Drosophila. B52/SRp55 generates two isoforms of eyeless differing by an alternative exon encoding a 60-amino-acid insert at the beginning of the paired domain. The long isoform has impaired ability to trigger formation of ectopic eyes and to bind efficiently Eyeless target DNA sequences in vitro. When over-produced in the eye imaginal disc, this isoform induces a small eye phenotype, whereas the isoform lacking the alternative exon triggers eye over-growth and strong disorganization. Our results suggest that B52/SRp55 splicing activity is used during normal eye development to control eye organogenesis and size through regulation of eyeless alternative splicing.
Collapse
Affiliation(s)
- Weronika Fic
- Institut de Génétique Moléculaire de Montpellier (IGMM), UMR 5535, Université de Montpellier II, Centre National de Recherche Scientifique (CNRS), Montpellier, France
| | - François Juge
- Institut de Génétique Moléculaire de Montpellier (IGMM), UMR 5535, Université de Montpellier II, Centre National de Recherche Scientifique (CNRS), Montpellier, France
| | - Johann Soret
- Institut de Génétique Moléculaire de Montpellier (IGMM), UMR 5535, Université de Montpellier II, Centre National de Recherche Scientifique (CNRS), Montpellier, France
| | - Jamal Tazi
- Institut de Génétique Moléculaire de Montpellier (IGMM), UMR 5535, Université de Montpellier II, Centre National de Recherche Scientifique (CNRS), Montpellier, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
52
|
Sprecher SG, Reichert H, Hartenstein V. Gene expression patterns in primary neuronal clusters of the Drosophila embryonic brain. Gene Expr Patterns 2007; 7:584-95. [PMID: 17300994 PMCID: PMC3928073 DOI: 10.1016/j.modgep.2007.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 01/09/2007] [Accepted: 01/10/2007] [Indexed: 11/27/2022]
Abstract
The brain of Drosophila is formed by approximately 100 lineages, each lineage being derived from a stem cell-like neuroblast that segregates from the procephalic neurectoderm of the early embryo. A neuroblast map has been established in great detail for the early embryo, and a suite of molecular markers has been defined for all neuroblasts included in this map [Urbach, R., Technau, G.M. (2003a) Molecular markers for identified neuroblasts in the developing brain of Drosophila. Development 130, 3621-3637]. However, the expression of these markers was not followed into later embryonic or larval stages, mainly due to the fact that anatomical landmarks to which expression patterns could be related had not been defined. Such markers, in the form of stereotyped clusters of neurons whose axons project along cohesive bundles ("primary axon bundles" or "PABs") are now available [Younossi-Hartenstein, A., Nguyen, B., Shy, D., Hartenstein, V. 2006. Embryonic origin of the Drosophila brain neuropile. J. Comp. Neurol. 497, 981-998]. In the present study we have mapped the expression of molecular markers in relationship to primary neuronal clusters and their PABs. The markers we analyzed include many of the genes involved in patterning of the brain along the anteroposterior axis (cephalic gap genes, segment polarity genes) and dorso-ventral axis (columnar patterning genes), as well as genes expressed in the dorsal protocerebrum and visual system (early eye genes). Our analysis represents an important step along the way to identify neuronal lineages of the mature brain with genes expressed in the early embryo in discrete neuroblasts. Furthermore, the analysis helped us to reconstruct the morphogenetic movements that transform the two-dimensional neuroblast layer of the early embryo into the three-dimensional larval brain and provides the basis for deeper understanding of how the embryonic brain develops.
Collapse
|
53
|
Callaerts P, Clements J, Francis C, Hens K. Pax6 and eye development in Arthropoda. ARTHROPOD STRUCTURE & DEVELOPMENT 2006; 35:379-391. [PMID: 18089082 DOI: 10.1016/j.asd.2006.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2006] [Accepted: 08/16/2006] [Indexed: 05/25/2023]
Abstract
The arthropod compound eye is one of the three main types of eyes observed in the animal kingdom. Comparison of the eyes seen in Insecta, Crustacea, Myriapoda and Chelicerata reveals considerable variation in terms of overall cell number, cell positioning, and photoreceptor rhabdomeres, yet, molecular data suggest there may be unexpected similarities. We review here the role of Pax6 in eye development and evolution and the relationship of Pax6 with other retinal determination genes and signaling pathways. We then discuss how the study of changes in Pax6 primary structure, in the gene networks controlled by Pax6 and in the relationship of Pax6 with signaling pathways may contribute to our insight into the relative role of conserved molecular-genetic mechanisms and emergence of evolutionary novelty in shaping the ommatidial eyes seen in the Arthropoda.
Collapse
Affiliation(s)
- Patrick Callaerts
- Laboratory of Developmental Genetics, VIB-PRJ8, KULeuven, Center for Human Genetics, Onderwijs & Navorsing, Herestraat 49, bus 602, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
54
|
Friedrich M. Ancient mechanisms of visual sense organ development based on comparison of the gene networks controlling larval eye, ocellus, and compound eye specification in Drosophila. ARTHROPOD STRUCTURE & DEVELOPMENT 2006; 35:357-378. [PMID: 18089081 DOI: 10.1016/j.asd.2006.08.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 08/10/2006] [Indexed: 05/25/2023]
Abstract
Key mechanisms of development are strongly constrained, and hence often shared in the formation of highly diversified homologous organs. This diagnostic is applied to uncovering ancient gene activities in the control of visual sense organ development by comparing the gene networks, which regulate larval eye, ocellus and compound eye specification in Drosophila. The comparison reveals a suite of shared aspects that are likely to predate the diversification of arthropod visual sense organs and, consistent with this, have notable similarities in the developing vertebrate visual system: (I) Pax-6 genes participate in the patterning of primordia of complex visual organs. (II) Primordium determination and differentiation depends on formation of a transcription factor complex that contains the products of the selector genes Eyes absent and Sine oculis. (III) The TGF-beta signaling factor Decapentaplegic exerts transcriptional activation of eyes absent and sine oculis. (IV) Canonical Wnt signaling contributes to primordium patterning by repression of eyes absent and sine oculis. (V) Initiation of determination and differentiation is controlled by hedgehog signaling. (VI) Egfr signaling drives retinal cell fate specification. (VII) The proneural transcription factor atonal regulates photoreceptor specification. (VII) The zinc finger gene glass regulates photoreceptor specification and differentiation.
Collapse
Affiliation(s)
- Markus Friedrich
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| |
Collapse
|
55
|
Friedrich M. Continuity versus split and reconstitution: exploring the molecular developmental corollaries of insect eye primordium evolution. Dev Biol 2006; 299:310-29. [PMID: 16973149 DOI: 10.1016/j.ydbio.2006.08.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 07/31/2006] [Accepted: 08/12/2006] [Indexed: 10/24/2022]
Abstract
Holometabolous insects like Drosophila proceed through two phases of visual system development. The embryonic phase generates simple eyes of the larva. The postembryonic phase produces the adult specific compound eyes during late larval development and pupation. In primitive insects, by contrast, eye development persists seemingly continuously from embryogenesis through the end of postembryogenesis. Comparative literature suggests that the evolutionary transition from continuous to biphasic eye development occurred via transient developmental arrest. This review investigates how the developmental arrest model relates to the gene networks regulating larval and adult eye development in Drosophila, and embryonic compound eye development in primitive insects. Consistent with the developmental arrest model, the available data suggest that the determination of the anlage of the rudimentary Drosophila larval eye is homologous to the embryonic specification of the juvenile compound eye in directly developing insects while the Drosophila compound eye primordium is evolutionarily related to the yet little studied stem cell based postembryonic eye primordium of primitive insects.
Collapse
Affiliation(s)
- Markus Friedrich
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA.
| |
Collapse
|
56
|
Schlosser G. Induction and specification of cranial placodes. Dev Biol 2006; 294:303-51. [PMID: 16677629 DOI: 10.1016/j.ydbio.2006.03.009] [Citation(s) in RCA: 289] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 12/22/2005] [Accepted: 12/23/2005] [Indexed: 12/17/2022]
Abstract
Cranial placodes are specialized regions of the ectoderm, which give rise to various sensory ganglia and contribute to the pituitary gland and sensory organs of the vertebrate head. They include the adenohypophyseal, olfactory, lens, trigeminal, and profundal placodes, a series of epibranchial placodes, an otic placode, and a series of lateral line placodes. After a long period of neglect, recent years have seen a resurgence of interest in placode induction and specification. There is increasing evidence that all placodes despite their different developmental fates originate from a common panplacodal primordium around the neural plate. This common primordium is defined by the expression of transcription factors of the Six1/2, Six4/5, and Eya families, which later continue to be expressed in all placodes and appear to promote generic placodal properties such as proliferation, the capacity for morphogenetic movements, and neuronal differentiation. A large number of other transcription factors are expressed in subdomains of the panplacodal primordium and appear to contribute to the specification of particular subsets of placodes. This review first provides a brief overview of different cranial placodes and then synthesizes evidence for the common origin of all placodes from a panplacodal primordium. The role of various transcription factors for the development of the different placodes is addressed next, and it is discussed how individual placodes may be specified and compartmentalized within the panplacodal primordium. Finally, tissues and signals involved in placode induction are summarized with a special focus on induction of the panplacodal primordium itself (generic placode induction) and its relation to neural induction and neural crest induction. Integrating current data, new models of generic placode induction and of combinatorial placode specification are presented.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Brain Research Institute, AG Roth, University of Bremen, FB2, 28334 Bremen, Germany.
| |
Collapse
|
57
|
Ostrin EJ, Li Y, Hoffman K, Liu J, Wang K, Zhang L, Mardon G, Chen R. Genome-wide identification of direct targets of the Drosophila retinal determination protein Eyeless. Genome Res 2006; 16:466-76. [PMID: 16533912 PMCID: PMC1457028 DOI: 10.1101/gr.4673006] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The discovery of direct downstream targets of transcription factors (TFs) is necessary for understanding the genetic mechanisms underlying complex, highly regulated processes such as development. In this report, we have used a combinatorial strategy to conduct a genome-wide search for novel direct targets of Eyeless (Ey), a key transcription factor controlling early eye development in Drosophila. To overcome the lack of high-quality consensus binding site sequences, phylogenetic shadowing of known Ey binding sites in sine oculis (so) was used to construct a position weight matrix (PWM) of the Ey protein. This PWM was then used for in silico prediction of potential binding sites in the Drosophila melanogaster genome. To reduce the false positive rate, conservation of these potential binding sites was assessed by comparing the genomic sequences from seven Drosophila species. In parallel, microarray analysis of wild-type versus ectopic ey-expressing tissue, followed by microarray-based epistasis experiments in an atonal (ato) mutant background, identified 188 genes induced by ey. Intersection of in silico predicted conserved Ey binding sites with the candidate gene list produced through expression profiling yields a list of 20 putative ey-induced, eye-enriched, ato-independent, direct targets of Ey. The accuracy of this list of genes was confirmed using both in vitro and in vivo methods. Initial analysis reveals three genes, eyes absent, shifted, and Optix, as novel direct targets of Ey. These results suggest that the integrated strategy of computational biology, genomics, and genetics is a powerful approach to identify direct downstream targets for any transcription factor genome-wide.
Collapse
Affiliation(s)
| | - Yumei Li
- Molecular and Human Genetics
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Kristi Hoffman
- Pathology
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jing Liu
- Molecular and Human Genetics
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Keqing Wang
- Molecular and Human Genetics
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Li Zhang
- Department of Biostatistics, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Graeme Mardon
- Molecular and Human Genetics
- Ophthalmology
- Neuroscience
- Pathology
- Program in Developmental Biology
- Corresponding authors.E-mail ; fax (713) 798-5741.E-mail ; fax (713) 798-3359
| | - Rui Chen
- Molecular and Human Genetics
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Corresponding authors.E-mail ; fax (713) 798-5741.E-mail ; fax (713) 798-3359
| |
Collapse
|
58
|
Kenyon KL, Yang-Zhou D, Cai CQ, Tran S, Clouser C, Decene G, Ranade S, Pignoni F. Partner specificity is essential for proper function of the SIX-type homeodomain proteins Sine oculis and Optix during fly eye development. Dev Biol 2005; 286:158-68. [PMID: 16125693 DOI: 10.1016/j.ydbio.2005.07.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 07/11/2005] [Accepted: 07/15/2005] [Indexed: 11/18/2022]
Abstract
The development of the Drosophila visual system utilizes two members of the highly conserved Six-Homeobox family of transcription factor, Sine oculis and Optix. Although in vitro studies have detected differences in DNA-binding and interactions with some co-factors, questions remain as to what extent the activity for these two transcriptional regulators is redundant or specific in vivo. In this work, we show that the SoD mutation within the Six domain does not abolish DNA-protein interactions, but alters co-factor binding specificity to resemble that of Optix. A mutation in the same region of Optix alters its activity in vivo. We propose that the dominant mutant phenotype is primarily due to an alteration in binding properties of the Sine oculis protein and that distinct partner interactions is one important mechanism in determining significant functional differences between these highly conserved factors during eye development.
Collapse
Affiliation(s)
- Kristy L Kenyon
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Yao JG, Sun YH. Eyg and Ey Pax proteins act by distinct transcriptional mechanisms in Drosophila development. EMBO J 2005; 24:2602-12. [PMID: 15973436 PMCID: PMC1176454 DOI: 10.1038/sj.emboj.7600725] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Accepted: 06/02/2005] [Indexed: 11/09/2022] Open
Abstract
Drosophila has two pairs of Pax genes, ey/toy and eyg/toe, that play different functions during eye development. ey specifies eye fate, while eyg promotes cell proliferation. We have determined the molecular basis for the functional diversity of Eyg and Ey. Eyg and Ey act by distinct transcriptional mechanisms. They use different DNA-binding domains for target recognition. Most interestingly, Eyg acts exclusively as a repressor, whereas Ey is an activator. Several vertebrate Pax proteins are known to switch between activator and repressor activities, but none as repressors only. Eyg may be the first Pax protein as a dedicated repressor. Vertebrates produce a Pax6 isoform, Pax6-5a, differing from Pax6 in DNA-binding properties and functions and structurally similar to Eyg/Toe. We found that Pax6-5a acts as an activator like Ey, but has DNA-binding specificity like Eyg.
Collapse
Affiliation(s)
- Jih-Guang Yao
- Institute of Genetics, National Yang-Ming University, Shipai, Taipei, Taiwan, Republic of China
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China
| | - Y Henry Sun
- Institute of Genetics, National Yang-Ming University, Shipai, Taipei, Taiwan, Republic of China
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China. Tel.: +886 2 2789 9211; Fax: +886 2 2782 6085; E-mail:
| |
Collapse
|
60
|
Chen R, Mardon G. Keeping an eye on the fly genome. Dev Biol 2005; 282:285-93. [PMID: 15893305 DOI: 10.1016/j.ydbio.2005.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2004] [Revised: 04/08/2005] [Accepted: 04/12/2005] [Indexed: 11/16/2022]
Abstract
With its unique structure and dynamic development, the Drosophila eye has been a powerful genetic model system for studying molecular mechanisms of cell fate specification and differentiation. Hundreds of genes that function in a complex genetic network controlling this process have been identified during the past two decades. To further advance our understanding of the molecular mechanisms of eye development, it is increasingly important to place the current genetic pathway into a whole-genome perspective. Here, we review emerging technologies and strategies that will help to achieve this goal, including generation of a complete mutant set in Drosophila, genome-wide transcription factor target identification, and systematic studies of gene function aided by computational biology.
Collapse
Affiliation(s)
- Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
61
|
Choi CY, Kim YH, Kim YO, Park SJ, Kim EA, Riemenschneider W, Gajewski K, Schulz RA, Kim Y. Phosphorylation by the DHIPK2 protein kinase modulates the corepressor activity of Groucho. J Biol Chem 2005; 280:21427-36. [PMID: 15802274 DOI: 10.1074/jbc.m500496200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Groucho function is essential for Drosophila development, acting as a corepressor for specific transcription factors that are downstream targets of various signaling pathways. Here we provide evidence that Groucho is phosphorylated by the DHIPK2 protein kinase. Phosphorylation modulates Groucho corepressor activity by attenuating its protein-protein interaction with a DNA-bound transcription factor. During eye development, DHIPK2 modifies Groucho activity, and eye phenotypes generated by overexpression of Groucho differ depending on its phosphorylation state. Moreover, analysis of nuclear extracts fractionated by column chromatography further shows that phospho-Groucho associates poorly with the corepressor complex, whereas the unphosphorylated form binds tightly. We propose that Groucho phosphorylation by DHIPK2 and its subsequent dissociation from the corepressor complex play a key role in relieving the transcriptional repression of target genes regulated by Groucho, thereby controlling cell fate determination during development.
Collapse
Affiliation(s)
- Cheol Yong Choi
- Laboratory Research program, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Roederer K, Cozy L, Anderson J, Kumar JP. Novel dominant-negative mutation within the six domain of the conserved eye specification gene sine oculis inhibits eye development in Drosophila. Dev Dyn 2005; 232:753-66. [PMID: 15704100 PMCID: PMC2737192 DOI: 10.1002/dvdy.20316] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The development of the compound eye of Drosophila is controlled, in part, by the concerted actions of several nuclear proteins that form an intricate regulatory system. One member of this network is sine oculis (so), the founding member of the Six gene family. Mutations within so affect the entire visual system, including the compound eye. The vertebrate homologs Six3 and Six6 also appear to play crucial roles in retinal formation. Mutations in Six3 inhibit retinal formation in chickens and fish, whereas those in Six6 are the underlying cause of bilateral anophthalmia in humans. Together, these phenotypes suggest a conserved role for the Six genes in eye development. In this report, we describe the effects of a dominant-negative mutation of sine oculis on the development of the compound eye of Drosophila. The mutation resides within the Six domain and may have implications for eye development and disease.
Collapse
Affiliation(s)
| | - Loralyn Cozy
- Department of Biology, Indiana University, Bloomington, Indiana
| | - Jason Anderson
- Department of Biology, Indiana University, Bloomington, Indiana
| | - Justin P. Kumar
- Department of Biology, Indiana University, Bloomington, Indiana
| |
Collapse
|
63
|
Streit A. Early development of the cranial sensory nervous system: from a common field to individual placodes. Dev Biol 2005; 276:1-15. [PMID: 15531360 DOI: 10.1016/j.ydbio.2004.08.037] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 08/20/2004] [Accepted: 08/23/2004] [Indexed: 01/12/2023]
Abstract
Sensory placodes are unique columnar epithelia with neurogenic potential that develop in the vertebrate head ectoderm next to the neural tube. They contribute to the paired sensory organs and the cranial sensory ganglia generating a wide variety of cell types ranging from lens fibres to sensory receptor cells and neurons. Although progress has been made in recent years to identify the molecular players that mediate placode specification, induction and patterning, the processes that initiate placode development are not well understood. One hypothesis suggests that all placode precursors arise from a common territory, the pre-placodal region, which is then subdivided to generate placodes of specific character. This model implies that their induction begins through molecular and cellular mechanisms common to all placodes. Embryological and molecular evidence suggests that placode induction is a multi-step process and that the molecular networks establishing the pre-placodal domain as well as the acquisition of placodal identity are surprisingly similar to those used in Drosophila to specify sensory structures.
Collapse
Affiliation(s)
- Andrea Streit
- Department of Craniofacial Development, King's College London, Guy's Campus, London SE1 9RT, UK.
| |
Collapse
|
64
|
Gehring WJ. New perspectives on eye development and the evolution of eyes and photoreceptors. ACTA ACUST UNITED AC 2005; 96:171-84. [PMID: 15653558 DOI: 10.1093/jhered/esi027] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Recent experiments on the genetic control of eye development have opened up a completely new perspective on eye evolution. The demonstration that targeted expression of one and the same master control gene, that is, Pax6 can induce the formation of ectopic eyes in both insects and vertebrates, necessitates a reconsideration of the dogma of a polyphyletic origin of the various eye types in all the animal phyla. The involvement of Pax6 and six1 and six3 genes, which encode highly conserved transcription factors, in the genetic control of eye development in organisms ranging from planarians to humans argues strongly for a monophyletic origin of the eye. Because transcription factors can control the expression of any target gene provided it contains the appropriate gene regulatory elements, the conservation of the genetic control of eye development by Pax6 among all bilaterian animals is not due to functional constraints but a consequence of its evolutionary history. The prototypic eyes postulated by Darwin to consist of two cells only, a photoreceptor and a pigment cell, were accidentally controlled by Pax6 and the subsequent evolution of the various eye types occurred by building onto this original genetic program. A hypothesis of intercalary evolution is proposed that assumes that the eye morphogenetic pathway is progressively modified by intercalation of genes between the master control genes on the top of the hierarchy and the structural genes like rhodopsin at the bottom. The recruitment of novel genes into the eye morphogenetic pathway can be due to at least two different genetic mechanisms, gene duplication and enhancer fusion.In tracing back the evolution of eyes beyond bilaterians, we find highly developed eyes in some box-jellyfish as well as in some Hydrozoans. In Hydrozoans the same orthologous six genes (six1 and six3) are required for eye regeneration as in planarians, and in the box jellyfish Tripedalia a pax B gene, which may be a precursor of Pax6, was found to be expressed in the eyes. In contrast to the adults, which have highly evolved eyes, the Planula larva of Tripedalia has single- celled photoreceptors similar to some unicellular protists. For the origin of photoreceptor cells in metazoa, I propose two hypotheses, one based on cellular differentiation and a more speculative one based on symbiosis. The former assumes that photoreceptor cells originated from a colonial protist in which all the cells were photosensitive and subsequent cellular differentiation to give rise to photoreceptor cells. The symbiont hypothesis, which I call the Russian doll model, assumes that photosensitivity arose first in photosynthetic cyanobacteria that were subsequently taken up into red algae as primary chloroplasts. The red algae in turn were taken up by dinoflagellates as secondary chloroplasts and in some species evolved into the most sophisticated eye organelles, as found, for example, in some dinoflagellates like Erythropsis and Warnovia, which lack chloroplasts. Because dinoflagellates are commonly found as symbionts in cnidarians, the dinoflagellates may have transferred their photoreceptor genes to cnidarians. In cnidarians such as Tripedalia the step from photoreceptor organelles to multicellular eyes has occurred. These two hypotheses, the cellular differentiation and the symbiont hypothesis, are not mutually exclusive and are the subject of further investigations.
Collapse
Affiliation(s)
- W J Gehring
- Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| |
Collapse
|
65
|
Sivak JM, West-Mays JA, Yee A, Williams T, Fini ME. Transcription Factors Pax6 and AP-2alpha Interact To Coordinate Corneal Epithelial Repair by Controlling Expression of Matrix Metalloproteinase Gelatinase B. Mol Cell Biol 2004; 24:245-57. [PMID: 14673159 PMCID: PMC303332 DOI: 10.1128/mcb.24.1.245-257.2004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pax6 is a paired box containing transcription factor that resides at the top of a genetic hierarchy controlling eye development. It continues to be expressed in tissues of the adult eye, but its role in this capacity is unclear. Pax6 is present in the adult corneal epithelium, and we showed that the amount of Pax6 is increased at the migrating front as the epithelium resurfaces the cornea after injury. We also showed that Pax6 controls activity of the transcriptional promoter for the matrix metalloproteinase, gelatinase B (gelB; MMP-9) in cell culture transfection studies. gelB expression is turned on at the migrating epithelial front in the cornea, and it coordinates and effects aspects of epithelial regeneration. We define here two positively acting Pax6 response elements in the gelB promoter. Pax6 binds directly to one of these sites through the paired DNA-binding domain. It binds the second site indirectly by interaction with AP-2alpha, a transcription factor that also exerts control over eye development. Pax6 control of gelB expression was examined in vivo by using a corneal reepithelialization model in mice heterozygous for a Pax6 paired-domain mutation (Sey(+/-)). A reduced Pax6 dosage in these mice resulted in a loss of gelB expression at the migrating epithelial front. This effect was correlated with an increase in inflammation and the rate of reepithelialization, a finding consistent with the phenotype of gelB knockout mice. Together, these data indicate that Pax6 controls activity of the gelB promoter through cooperative interactions with AP-2alpha and support an active role for Pax6 in maintenance and repair of the adult corneal epithelium.
Collapse
Affiliation(s)
- Jeremy M Sivak
- Evelyn F. and William L. McKnight Vision Research Center, Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|
66
|
Plaza S, De Jong DM, Gehring WJ, Miller DJ. DNA-binding characteristics of cnidarian Pax-C and Pax-B proteins in vivo and in vitro: no simple relationship with the Pax-6 and Pax-2/5/8 classes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2003; 299:26-35. [PMID: 14508814 DOI: 10.1002/jez.b.38] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cnidarians are the simplest animals in which distinct eyes are present. We have previously suggested that cnidarian Pax-Cam might represent a precursor of the Pax-6 class. Here we show that when expressed in Drosophila imaginal discs, Pax-Cam chimeric proteins containing the C-terminal region of EY were capable of eye induction and driving expression of a reporter gene under the control of a known EY target (the sine oculis gene). Whilst these results are consistent with a Pax-6-like function for Pax-Cam, in band shift experiments we were unable to distinguish the DNA-binding behaviour of the Pax-Cam Paired domain from that of a second Acropora Pax protein, Pax-Bam. The ability of a Pax-Bam/EY chimera to also induce eye formation in leg imaginal discs, together with the in vitro data, cast doubt on previously assumed direct relationships between cnidarian Pax genes and the Pax-6 and Pax-2/5/8 classes of bilateral animals.
Collapse
Affiliation(s)
- Serge Plaza
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
67
|
Lanjuin A, VanHoven MK, Bargmann CI, Thompson JK, Sengupta P. Otx/otd Homeobox Genes Specify Distinct Sensory Neuron Identities in C. elegans. Dev Cell 2003; 5:621-33. [PMID: 14536063 DOI: 10.1016/s1534-5807(03)00293-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanisms by which the diverse functional identities of neurons are generated are poorly understood. C. elegans responds to thermal and chemical stimuli using 12 types of sensory neurons. The Otx/otd homolog ttx-1 specifies the identities of the AFD thermosensory neurons. We show here that ceh-36 and ceh-37, the remaining two Otx-like genes in the C. elegans genome, specify the identities of AWC, ASE, and AWB chemosensory neurons, defining a role for this gene family in sensory neuron specification. All C. elegans Otx genes and rat Otx1 can substitute for ceh-37 and ceh-36, but only ceh-37 functionally substitutes for ttx-1. Functional substitution in the AWB neurons is mediated by activation of the same downstream target lim-4 by different Otx genes. Misexpression experiments indicate that although the specific identity adopted upon expression of an Otx gene may be constrained by the cellular context, individual Otx genes preferentially promote distinct neuronal identities.
Collapse
Affiliation(s)
- Anne Lanjuin
- Department of Biology and Volen Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | | | | | | | | |
Collapse
|
68
|
Wargelius A, Seo HC, Austbø L, Fjose A. Retinal expression of zebrafish six3.1 and its regulation by Pax6. Biochem Biophys Res Commun 2003; 309:475-81. [PMID: 12951074 DOI: 10.1016/j.bbrc.2003.07.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Homologues of the homeobox genes sine oculis (so) and eyeless (ey) are important regulators of eye development in both vertebrates and invertebrates. A Drosophila paralogue of so, optix, is an orthologue of the vertebrate Six3 gene family. Our analysis of zebrafish six3.1 demonstrated retinal expression in two separate cell layers and the ciliary marginal zone. This pattern is consistent with the observations of Six3 in other vertebrates and indicates functional conservation. We studied the 5(') flanking region of six3.1 and showed that separate enhancing elements are required for expression at different stages of eye development. This analysis also revealed specific binding of zebrafish Pax6.1 protein to an element required for six3.1 expression in ganglion cells. Furthermore, an enhancement of six3.1 transcription by Pax6.1 was observed by co-injection experiments. These results provide evidence for a direct regulatory interaction between vertebrate Pax6 and Six3 genes in eye development.
Collapse
Affiliation(s)
- Anna Wargelius
- Department of Molecular Biology, University of Bergen, P.O. Box 7800, N-5020 Bergen, Norway
| | | | | | | |
Collapse
|
69
|
Michaut L, Flister S, Neeb M, White KP, Certa U, Gehring WJ. Analysis of the eye developmental pathway in Drosophila using DNA microarrays. Proc Natl Acad Sci U S A 2003; 100:4024-9. [PMID: 12655063 PMCID: PMC153041 DOI: 10.1073/pnas.0630561100] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2003] [Indexed: 11/18/2022] Open
Abstract
Pax-6 genes encode evolutionarily conserved transcription factors capable of activating the gene-expression program required to build an eye. When ectopically expressed in Drosophila imaginal discs, Pax-6 genes induce the eye formation on the corresponding appendages of the adult fly. We used two different Drosophila full-genome DNA microarrays to compare gene expression in wild-type leg discs versus leg discs where eyeless, one of the two Drosophila Pax-6 genes, was ectopically expressed. We validated these data by analyzing the endogenous expression of selected genes in eye discs and identified 371 genes that are expressed in the eye imaginal discs and up-regulated when an eye morphogenetic field is ectopically induced in the leg discs. These genes mainly encode transcription factors involved in photoreceptor specification, signal transducers, cell adhesion molecules, and proteins involved in cell division. As expected, genes already known to act downstream of eyeless during eye development were identified, together with a group of genes that were not yet associated with eye formation.
Collapse
Affiliation(s)
- Lydia Michaut
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
70
|
Abstract
Pax6 is a transcription factor essential for the development of tissues including the eyes, central nervous system and endocrine glands of vertebrates and invertebrates. It regulates the expression of a broad range of molecules, including transcription factors, cell adhesion and short-range cell-cell signalling molecules, hormones and structural proteins. It has been implicated in a number of key biological processes including cell proliferation, migration, adhesion and signalling both in normal development and in oncogenesis. The mechanisms by which Pax6 regulates its downstream targets likely involve the use of different splice variants and interactions with multiple proteins, allowing it to generate different effects in different cells. Extrapolation to developmental transcription factors in general suggests that variation in the nature of individual factors is likely to contribute to the emergence of differences between tissues.
Collapse
Affiliation(s)
- T Ian Simpson
- Genes and Development Research Group, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | | |
Collapse
|
71
|
Ikeda K, Watanabe Y, Ohto H, Kawakami K. Molecular interaction and synergistic activation of a promoter by Six, Eya, and Dach proteins mediated through CREB binding protein. Mol Cell Biol 2002; 22:6759-66. [PMID: 12215533 PMCID: PMC134036 DOI: 10.1128/mcb.22.19.6759-6766.2002] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Drosophila sine oculis, eyes absent, and dachshund are essential for compound eye formation and form a gene network with direct protein interaction and genetic regulation. The vertebrate homologues of these genes, Six, Eya, and Dach, also form a similar genetic network during muscle formation. To elucidate the molecular mechanism underlying the network among Six, Eya, and Dach, we examined the molecular interactions among the encoded proteins. Eya interacted directly with Six but never with Dach. Dach transactivated a multimerized GAL4 reporter gene by coproduction of GAL4-Eya fusion proteins. Transactivation by Eya and Dach was repressed by overexpression of VP16 or E1A but not by E1A mutation, which is defective for CREB binding protein (CBP) binding. Recruitment of CBP to the immobilized chromatin DNA template was dependent on FLAG-Dach and GAL4-Eya3. These results indicate that CBP is a mediator of the interaction between Eya and Dach. Contrary to our expectations, Dach binds to chromatin DNA by itself, not being tethered by GAL4-Eya3. Dach also binds to naked DNA with lower affinity. The conserved DD1 domain is responsible for binding to DNA. Transactivation was also observed by coproduction of GAL4-Six, Eya, and Dach, indicating that Eya and Dach synergy is relevant when Eya is tethered to DNA through Six protein. Our results demonstrated that synergy is mediated through direct interaction of Six-Eya and through the interaction of Eya-Dach with CBP and explain the molecular basis for the genetic interactions among Six, Eya, and Dach. This work provides fundamental information on the role and the mechanism of action of this gene cassette in tissue differentiation and organogenesis.
Collapse
Affiliation(s)
- Keiko Ikeda
- Department of Biology, Jichi Medical School, Yakushiji, Minamikawachi, Kawachi, Tochigi, 329-0498, Japan
| | | | | | | |
Collapse
|
72
|
Bessa J, Gebelein B, Pichaud F, Casares F, Mann RS. Combinatorial control of Drosophila eye development by eyeless, homothorax, and teashirt. Genes Dev 2002; 16:2415-27. [PMID: 12231630 PMCID: PMC187435 DOI: 10.1101/gad.1009002] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In Drosophila, the development of the compound eye depends on the movement of a morphogenetic furrow (MF) from the posterior (P) to the anterior (A) of the eye imaginal disc. We define several subdomains along the A-P axis of the eye disc that express distinct combinations of transcription factors. One subdomain, anterior to the MF, expresses two homeobox genes, eyeless (ey) and homothorax (hth), and the zinc-finger gene teashirt (tsh). We provide evidence that this combination of transcription factors may function as a complex and that it plays at least two roles in eye development: it blocks the expression of later-acting transcription factors in the eye development cascade, and it promotes cell proliferation. A key step in the transition from an immature proliferative state to a committed state in eye development is the repression of hth by the BMP-4 homolog Decapentaplegic (Dpp).
Collapse
Affiliation(s)
- Jose Bessa
- Instituto de Biologia Molecular e Celular (IBMC), 4150-180 Porto, Portugal
| | | | | | | | | |
Collapse
|
73
|
Goudreau G, Petrou P, Reneker LW, Graw J, Löster J, Gruss P. Mutually regulated expression of Pax6 and Six3 and its implications for the Pax6 haploinsufficient lens phenotype. Proc Natl Acad Sci U S A 2002; 99:8719-24. [PMID: 12072567 PMCID: PMC124365 DOI: 10.1073/pnas.132195699] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2002] [Indexed: 11/18/2022] Open
Abstract
Pax6 is a key regulator of eye development in vertebrates and invertebrates, and heterozygous loss-of-function mutations of the mouse Pax6 gene result in the Small eye phenotype, in which a small lens is a constant feature. To provide an understanding of the mechanisms underlying this haploinsufficient phenotype, we evaluated in Pax6 heterozygous mice the effects of reduced Pax6 gene dosage on the activity of other transcription factors regulating eye formation. We found that Six3 expression was specifically reduced in lenses of Pax6 heterozygous mouse embryos. Interactions between orthologous genes from the Pax and Six families have been identified in Drosophila and vertebrate species, and we examined the control of Pax6 and Six3 gene expression in the developing mouse lens. Using in vitro and transgenic approaches, we found that either transcription factor binds regulatory sequences from the counterpart gene and that both genes mutually activate their expression. These studies define a functional relationship in the lens in which Six3 expression is dosage-dependent on Pax6 and where, conversely, Six3 activates Pax6. Accordingly, we show a rescue of the Pax6 haploinsufficient lens phenotype after lens-specific expression of Six3 in transgenic mice. This phenotypic rescue was accompanied by cell proliferation and activation of the platelet-derived growth factor alpha-R/cyclin D1 signaling pathway. Our findings thus provide a mechanism implicating gene regulatory interactions between Pax6 and Six3 in the tissue-specific defects found in Pax6 heterozygous mice.
Collapse
Affiliation(s)
- Guy Goudreau
- Department of Molecular Cell Biology, Max Planck Institute of Biophysical Chemistry, Am Fassberg, 37077 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
74
|
Li CM, Guo M, Borczuk A, Powell CA, Wei M, Thaker HM, Friedman R, Klein U, Tycko B. Gene expression in Wilms' tumor mimics the earliest committed stage in the metanephric mesenchymal-epithelial transition. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:2181-90. [PMID: 12057921 PMCID: PMC1850829 DOI: 10.1016/s0002-9440(10)61166-2] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Wilms' tumor (WT) has been considered a prototype for arrested cellular differentiation in cancer, but previous studies have relied on selected markers. We have now performed an unbiased survey of gene expression in WTs using oligonucleotide microarrays. Statistical criteria identified 357 genes as differentially expressed between WTs and fetal kidneys. This set contained 124 matches to genes on a microarray used by Stuart and colleagues (Stuart RO, Bush KT, Nigam SK: Changes in global gene expression patterns during development and maturation of the rat kidney. Proc Natl Acad Sci USA 2001, 98:5649-5654) to establish genes with stage-specific expression in the developing rat kidney. Mapping between the two data sets showed that WTs systematically overexpressed genes corresponding to the earliest stage of metanephric development, and underexpressed genes corresponding to later stages. Automated clustering identified a smaller group of 27 genes that were highly expressed in WTs compared to fetal kidney and heterologous tumor and normal tissues. This signature set was enriched in genes encoding transcription factors. Four of these, PAX2, EYA1, HBF2, and HOXA11, are essential for cell survival and proliferation in early metanephric development, whereas others, including SIX1, MOX1, and SALL2, are predicted to act at this stage. SIX1 and SALL2 proteins were expressed in the condensing mesenchyme in normal human fetal kidneys, but were absent (SIX1) or reduced (SALL2) in cells at other developmental stages. These data imply that the blastema in WTs has progressed to the committed stage in the mesenchymal-epithelial transition, where it is partially arrested in differentiation. The WT-signature set also contained the Wnt receptor FZD7, the tumor antigen PRAME, the imprinted gene NNAT and the metastasis-associated transcription factor E1AF.
Collapse
Affiliation(s)
- Chi-Ming Li
- Institute for Cancer Genetics, Columbia University, New York, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Wellik DM, Hawkes PJ, Capecchi MR. Hox11 paralogous genes are essential for metanephric kidney induction. Genes Dev 2002; 16:1423-32. [PMID: 12050119 PMCID: PMC186320 DOI: 10.1101/gad.993302] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The mammalian Hox complex is divided into four linkage groups containing 13 sets of paralogous genes. These paralogous genes have retained functional redundancy during evolution. For this reason, loss of only one or two Hox genes within a paralogous group often results in incompletely penetrant phenotypes which are difficult to interpret by molecular analysis. For example, mice individually mutant for Hoxa11 or Hoxd11 show no discernible kidney abnormalities. Hoxa11/Hoxd11 double mutants, however, demonstrate hypoplasia of the kidneys. As described in this study, removal of the last Hox11 paralogous member, Hoxc11, results in the complete loss of metanephric kidney induction. In these triple mutants, the metanephric blastema condenses, and expression of early patterning genes, Pax2 and Wt1, is unperturbed. Eya1 expression is also intact. Six2 expression, however, is absent, as is expression of the inducing growth factor, Gdnf. In the absence of Gdnf, ureteric bud formation is not initiated. Molecular analysis of this phenotype demonstrates that Hox11 control of early metanephric induction is accomplished by the interaction of Hox11 genes with the pax-eya-six regulatory cascade, a pathway that may be used by Hox genes more generally for the induction of multiple structures along the anteroposterior axis.
Collapse
Affiliation(s)
- Deneen M Wellik
- Department of Human Genetics and Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City 84112-5331, USA
| | | | | |
Collapse
|
76
|
Singh S, Mishra R, Arango NA, Deng JM, Behringer RR, Saunders GF. Iris hypoplasia in mice that lack the alternatively spliced Pax6(5a) isoform. Proc Natl Acad Sci U S A 2002; 99:6812-5. [PMID: 11983873 PMCID: PMC124485 DOI: 10.1073/pnas.102691299] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PAX6 is an evolutionarily conserved transcription factor that plays a critical role in vertebrate and invertebrate eye formation. Heterozygous null mutations in the PAX6 gene result in aniridia in humans and a distinct small eye syndrome in rodents. Vertebrates primarily express two alternatively spliced isoforms of Pax6 that differ by the presence or absence of exon 5a (e5A) that encodes an additional 14 aa residues within the paired domain. The e5a-containing isoform, PAX6(5a), is specific to and conserved in vertebrates. To determine the role of PAX6(5a), we have generated mice that lack e5a of the Pax6 gene. Unlike Pax6 null mice that exhibit anopthalmia with central nervous system defects and lethality, 5a isoform-null mice have iris hypoplasia and defects in the cornea, lens, and retina. Although invertebrates have structures that respond to light intensity and act to restrict light exposure of the eyes, a significant and distinct feature of the vertebrate eye is its ability to regulate the amount of incoming light through contractile pupils. This feature of the eye not only allows vertebrates to see in various light conditions but also enhances image resolution. The requirement of the 5a isoform in iris formation suggests that the evolution of this isoform contributed to advanced features of the vertebrate eye.
Collapse
Affiliation(s)
- Sanjaya Singh
- Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
77
|
Chauhan BK, Reed NA, Zhang W, Duncan MK, Kilimann MW, Cvekl A. Identification of genes downstream of Pax6 in the mouse lens using cDNA microarrays. J Biol Chem 2002; 277:11539-48. [PMID: 11790784 DOI: 10.1074/jbc.m110531200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pax6 is a transcription factor that regulates the development of the visual, olfactory, and central nervous systems, pituitary, and pancreas. Pax6 is required for induction, growth, and maintenance of the lens; however, few direct Pax6 target genes are known. This study was designed to identify batteries of differentially expressed genes in three related systems: 8-week old Pax6 heterozygous lenses, 8-week old Pax6 heterozygous eyes, and transgenic lenses overexpressing PAX6(5a), using high throughput cDNA microarrays containing about 9700 genes. Initially, we obtained almost 400 differentially expressed genes in lenses from mice heterozygous for a Pax6 deletion, suggesting that Pax6 haploinsufficiency causes global changes in the lens transcriptome. Comparisons between the three sets of analyses revealed that paralemmin, molybdopterin synthase sulfurylase, Tel6 oncogene (ETV6), a cleavage-specific factor (Cpsf1) and tangerin A were abnormally expressed in all three experimental models. Semiquantitative reverse transcription (RT)-PCR analysis confirmed that all five of these genes were differentially expressed in Pax-6 heterozygous and Pax6(5a) transgenic lenses. Western blotting and immunohistochemistry demonstrated that paralemmin is found at high levels in the adult lens and confirmed its down-regulation in the Pax6(5a)-transgenic lenses. Collectively, our data provide insights into the genetic programs regulated by Pax6 in the lens.
Collapse
Affiliation(s)
- Bharesh K Chauhan
- Department of Ophthalmology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
78
|
Curtiss J, Halder G, Mlodzik M. Selector and signalling molecules cooperate in organ patterning. Nat Cell Biol 2002; 4:E48-51. [PMID: 11875444 DOI: 10.1038/ncb0302-e48] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cell signalling is essential for a plethora of inductive interactions during organogenesis. Surprisingly, only a few different classes of signalling molecules mediate many inductive interactions, and these molecules are used reiteratively during development. This raises the question of how generic signals can trigger tissue-specific responses. Recent studies in Drosophila melanogaster indicate that signalling molecules cooperate with selector genes to specify particular body parts and organ types. Selector and signalling inputs are integrated at the level of cis-regulatory elements, where direct binding of both selector proteins and signal transducers is required to activate tissue-specific enhancer elements of target genes. Such enhancers include autoregulatory enhancers of the selector genes themselves, which drive the refinement of expression patterns of selector genes.
Collapse
Affiliation(s)
- Jennifer Curtiss
- Department of Molecular, Cell and Developmental Biology, Mt. Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029, USA
| | | | | |
Collapse
|
79
|
Affiliation(s)
- Jessica Treisman
- Skirball Institute for Biomolecular Medicine, Developmental Genetics Program, Cell Biology Department, New York University Medical Center, 540 First Avenue, New York, NY 10016, USA.
| | | |
Collapse
|
80
|
Onuma Y, Takahashi S, Asashima M, Kurata S, Gehring WJ. Conservation of Pax 6 function and upstream activation by Notch signaling in eye development of frogs and flies. Proc Natl Acad Sci U S A 2002; 99:2020-5. [PMID: 11842182 PMCID: PMC122312 DOI: 10.1073/pnas.022626999] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2001] [Indexed: 11/18/2022] Open
Abstract
Loss of Pax 6 function leads to an eyeless phenotype in both mammals and insects, and ectopic expression of both the Drosophila and the mouse gene leads to the induction of ectopic eyes in Drosophila, which suggested to us that Pax 6 might be a universal master control gene for eye morphogenesis. Here, we report the reciprocal experiment in which the RNAs of the Drosophila Pax 6 homologs, eyeless and twin of eyeless, are transferred into a vertebrate embryo; i.e., early Xenopus embryos at the 2- and 16-cell stages. In both cases, ectopic eye structures are formed. To understand the genetic program specifying eye morphogenesis, we have analyzed the regulatory mechanisms of Pax 6 expression that initiates eye development. Previously, we have demonstrated that Notch signaling regulates the expression of eyeless and twin of eyeless in Drosophila. Here, we show that in Xenopus, activation of Notch signaling also induces eye-related gene expression, including Pax 6, in isolated animal caps. In Xenopus embryos, the activation of Notch signaling causes eye duplications and proximal eye defects, which are also induced by overexpression of eyeless and twin of eyeless. These findings indicate that the gene regulatory cascade is similar in vertebrates and invertebrates.
Collapse
Affiliation(s)
- Yasuko Onuma
- Department of Life Sciences, Core Research for Evolution Science and Technology Project, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | | | | | | | | |
Collapse
|
81
|
Abstract
The near-catholic conservation of paired box gene 6 (Pax6) and its supporting cast of retinal determination genes throughout the animal kingdom has sparked a scientific war over the evolutionary origins of the eye. The battle pits those who support a polyphyletic history for the eye against those who argue for a common ancestor for all 'seeing' animals. Recent papers have shed light on how eyes in both vertebrates and invertebrates are patterned. New insights into the roles that signal-transduction cascades might have in determining the Drosophila melanogaster eye indicate that, like many developmental processes, eye specification is an inductive process.
Collapse
Affiliation(s)
- J P Kumar
- Department of Cell Biology, Emory University School of Medicine, 1648 Pierce Drive, Atlanta, Georgia 30033, USA.
| |
Collapse
|
82
|
Dozier C, Kagoshima H, Niklaus G, Cassata G, Bürglin TR. The Caenorhabditis elegans Six/sine oculis class homeobox gene ceh-32 is required for head morphogenesis. Dev Biol 2001; 236:289-303. [PMID: 11476572 DOI: 10.1006/dbio.2001.0325] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Caenorhabditis elegans has four members of the Six/sine oculis class of homeobox genes, ceh-32, ceh-33, ceh-34, and ceh-35. Proteins encoded by this gene family are transcription factors sharing two conserved domains, the homeodomain and the Six/sine oculis domain, both involved in DNA binding. ceh-32 expression was detected during embryogenesis in hypodermal and neuronal precursor cells and later in descendants of these cells as well as in gonadal sheath cells. RNAi inactivation studies suggest that ceh-32 plays a role in head morphogenesis, like vab-3, the C. elegans Pax-6 orthologue. ceh-32 and vab-3 are coexpressed in head hypodermal cells and ceh-32 mRNA levels are reduced in vab-3 mutants. Moreover, ectopic expression of VAB-3 in transgenic worms is able to induce ceh-32 ectopically. In addition, we demonstrate that VAB-3 is able to bind directly to the ceh-32 upstream regulatory region in vitro and to activate reporter gene transcription in a yeast one-hybrid system. Our results suggest that VAB-3 acts upstream of ceh-32 during head morphogenesis and directly induces ceh-32. Thus, ceh-32 appears to be the first target gene of VAB-3 identified so far.
Collapse
Affiliation(s)
- C Dozier
- Division of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
83
|
Punzo C, Kurata S, Gehring WJ. The eyeless homeodomain is dispensable for eye development in Drosophila. Genes Dev 2001; 15:1716-23. [PMID: 11445545 PMCID: PMC312731 DOI: 10.1101/gad.196401] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Pax-6 genes, known to be essential for eye development, encode an evolutionarily conserved transcription factor with two DNA-binding domains. To corroborate the contribution of each DNA-binding domain to eye formation, we generated truncated forms of the Drosophila Pax-6 gene eyeless and tested their capacity to rescue the ey(2) mutant. Surprisingly, EY deleted of the homeodomain rescued the ey(2) mutant and triggered ectopic eyes morphogenesis. In contrast, EY lacking the paired domain failed to rescue the ey(2) mutant, led to truncation of appendages, and repressed Distal-less when misexpressed. This result suggests distinct functions mediated differentially by the two DNA-binding domains of eyeless.
Collapse
Affiliation(s)
- C Punzo
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | |
Collapse
|
84
|
Lagutin O, Zhu CC, Furuta Y, Rowitch DH, McMahon AP, Oliver G. Six3 promotes the formation of ectopic optic vesicle-like structures in mouse embryos. Dev Dyn 2001; 221:342-9. [PMID: 11458394 DOI: 10.1002/dvdy.1148] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A few years ago, three novel murine homeobox genes closely related to the Drosophila sine oculis (so) gene (Six1-3) were isolated and were all included in the Six/so gene family. Because of its early expression in the developing eye field, Six3 was initially thought to be the functional ortholog of the Drosophila so gene. This hypothesis was further supported by the demonstration that ectopic Six3 expression in medaka fish (Oryzias latipes) promotes the formation of ectopic lens and retina tissue. Here, we show that similar to Drosophila, where the eyeless/Pax6 gene regulates the eye-specific expression of so, Six3 expression in the murine lens placodal ectoderm is also controlled by Pax6. We also show that ectopic Six3 expression promotes the formation of ectopic optic vesicle-like structures in the hindbrain-midbrain region of developing mouse embryos.
Collapse
Affiliation(s)
- O Lagutin
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | |
Collapse
|
85
|
Chang YC, Penoyer LA, Kwon-Chung KJ. The second STE12 homologue of Cryptococcus neoformans is MATa-specific and plays an important role in virulence. Proc Natl Acad Sci U S A 2001; 98:3258-63. [PMID: 11248066 PMCID: PMC30641 DOI: 10.1073/pnas.061031998] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cryptococcus neoformans STE12alpha, a homologue of Saccharomyces cerevisiae STE12, exists only in MATalpha strains. We identified another STE12 homologue, STE12a, which is MATa specific. As in the case with Deltaste12alpha, the mating efficiency for Deltaste12a was reduced significantly. The Deltaste12a strains surprisingly still mated with Deltaste12alpha strains. In MATalpha strains, STE12a functionally complemented STE12alpha for mating efficacy, haploid fruiting, and regulation of capsule size in the mouse brain. Furthermore, when STE12a was replaced with two copies of STE12alpha, the resulting MATa strain produced hyphae on filament agar. STE12a regulates mRNA levels of several genes that are important for virulence including CNLAC1 and CAP genes. STE12a also modulates enzyme activities of phospholipase and superoxide dismutase. Importantly, deletion of STE12a markedly reduced the virulence in mice, as is the case with STE12alpha. Brain smears of mice infected with the Deltaste12a strain showed yeast cells with a considerable reduction in capsule size compared with those infected with STE12a strains. When the disrupted locus of ste12a was replaced with a wild-type STE12a gene, both in vivo and in vitro mutant phenotypes were reversed. These results suggest that STE12a and STE12alpha have similar functions, and that the mating type of the cells influences the alleles to exert their biological effects. C. neoformans, thus, is the first fungal species that contains a mating-type-specific STE12 homologue in each mating type. Our results demonstrate that mating-type-specific genes are not only important for saprobic reproduction but also play an important role for survival of the organism in host tissue.
Collapse
Affiliation(s)
- Y C Chang
- Laboratory of Clinical Investigation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
86
|
Wawersik S, Purcell P, Maas RL. Pax6 and the genetic control of early eye development. Results Probl Cell Differ 2001; 31:15-36. [PMID: 10929399 DOI: 10.1007/978-3-540-46826-4_2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- S Wawersik
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
87
|
Gehring WJ. The genetic control of eye development and its implications for the evolution of the various eye-types. ZOOLOGY 2001; 104:171-83. [PMID: 16351831 DOI: 10.1078/0944-2006-00022] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- W J Gehring
- Biozentrum, University of Basel, Switzerland.
| |
Collapse
|
88
|
Kawakami K, Sato S, Ozaki H, Ikeda K. Six family genes--structure and function as transcription factors and their roles in development. Bioessays 2000; 22:616-26. [PMID: 10878574 DOI: 10.1002/1521-1878(200007)22:7<616::aid-bies4>3.0.co;2-r] [Citation(s) in RCA: 289] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The members of the Six gene family were identified as homologues of Drosophila sine oculis which is essential for compound-eye formation. The Six proteins are characterized by the Six domain and the Six-type homeodomain, both of which are essential for specific DNA binding and for cooperative interactions with Eya proteins. Mammals possess six Six genes which can be subdivided into three subclasses, and mutations of Six genes have been identified in human genetic disorders. Characterization of Six genes from various animal phyla revealed the antiquity of this gene family and roles of its members in several different developmental contexts. Some members retain conserved roles as components of the Pax-Six-Eya-Dach regulatory network, which may have been established in the common ancestor of all bilaterians as a toolbox controlling cell proliferation and cell movement during embryogenesis. Gene duplications and cis-regulatory changes may have provided a basis for diverse functions of Six genes in different animal lineages.
Collapse
Affiliation(s)
- K Kawakami
- Department of Biology, Jichi Medical School, Tochigi, Japan.
| | | | | | | |
Collapse
|
89
|
Martini SR, Roman G, Meuser S, Mardon G, Davis RL. The retinal determination gene, dachshund, is required for mushroom body cell differentiation. Development 2000; 127:2663-72. [PMID: 10821764 DOI: 10.1242/dev.127.12.2663] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The dachshund gene of Drosophila encodes a putative transcriptional regulator required for eye and leg development. We show here that dachshund is also required for normal brain development. The mushroom bodies of dachshund mutants exhibit a marked reduction in the number of (α) lobe axons, a disorganization of axons extending into horizontal lobes, and aberrant projections into brain areas normally unoccupied by mushroom body processes. The phenotypes become pronounced during pupariation, suggesting that dachshund function is required during this period. GAL4-mediated expression of dachshund in the mushroom bodies rescues the mushroom body phenotypes. Moreover, dachshund mutant mushroom body clones in an otherwise wild-type brain exhibit the phenotypes, indicating an autonomous role for dachshund. Although eyeless, like dachshund, is preferentially expressed in the mushroom body and is genetically upstream of dachshund for eye development, no interaction of these genes was detected for mushroom body development. Thus, dachshund functions in the developing mushroom body neurons to ensure their proper differentiation.
Collapse
Affiliation(s)
- S R Martini
- Departments of Molecular and Human Genetics, Molecular and Cellular Biology, Pathology, Psychiatry and Behavioral Sciences and Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza 77030, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
90
|
Singh S, Stellrecht CM, Tang HK, Saunders GF. Modulation of PAX6 homeodomain function by the paired domain. J Biol Chem 2000; 275:17306-13. [PMID: 10747901 DOI: 10.1074/jbc.m000359200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PAX6 is required for proper development of the eye, central nervous system, and nose. PAX6 has two DNA binding domains, a glycine-rich region that links the two DNA binding domains, and a transactivation domain. There is evidence that the different DNA binding domains of PAX6 have different target genes. However, it is not clear if the two DNA binding domains function independently. We have studied the effect of structural changes in the paired domain on the function of PAX6 mediated through its homeodomain. The R26G and I87R mutations have been reported in different human patients with clinically different phenotypes and are in the N- and the C-terminal halves of the paired domain, respectively. Surprisingly, we found that the I87R mutant protein not only lost the transactivation function but also failed to bind DNA by either of its DNA binding domains. In contrast, the R26G mutant protein lost DNA binding through its paired domain but had greater DNA binding and transactivation than wild-type PAX6 on homeodomain binding sites. Like R26G, the 5a isoform showed higher DNA binding than wild-type PAX6. This study demonstrates that the two subdomains of the paired domain influence the function of the homeodomain differentially and also provides an explanation for the difference in phenotypes associated with these mutations.
Collapse
Affiliation(s)
- S Singh
- Department of Biochemistry and Molecular Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
91
|
Seimiya M, Gehring WJ. The Drosophila homeobox gene optix is capable of inducing ectopic eyes by an eyeless-independent mechanism. Development 2000; 127:1879-86. [PMID: 10751176 DOI: 10.1242/dev.127.9.1879] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
optix is a new member of the Six/so gene family from Drosophila that contains both a six domain and a homeodomain. Because of its high amino acid sequence similarity with the mouse Six3 gene, optix is considered to be the orthologous gene from Drosophila rather than sine oculis, as previously believed. optix expression was detected in the eye, wing and haltere imaginal discs. Ectopic expression of optix leads to the formation of ectopic eyes suggesting that optix has important functions in eye development. Although optix and sine oculis belong to the same gene family (Six/so) and share a high degree of amino acid sequence identity, there are a number of factors which suggest that their developmental roles are different: (1) the expression patterns of optix and sine oculis are clearly distinct; (2) sine oculis acts downstream of eyeless, whereas optix is expressed independently of eyeless; (3) sine oculis functions synergistically with eyes absent in eye development whereas optix does not; (4) ectopic expression of optix alone, but not of sine oculis can induce ectopic eyes in the antennal disc. These results suggest that optix is involved in eye morphogenesis by an eyeless-independent mechanism.
Collapse
Affiliation(s)
- M Seimiya
- Biozentrum University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | |
Collapse
|
92
|
Pineda D, Gonzalez J, Callaerts P, Ikeo K, Gehring WJ, Salo E. Searching for the prototypic eye genetic network: Sine oculis is essential for eye regeneration in planarians. Proc Natl Acad Sci U S A 2000; 97:4525-9. [PMID: 10781056 PMCID: PMC18268 DOI: 10.1073/pnas.97.9.4525] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have identified a sine oculis gene in the planarian Girardia tigrina (Platyhelminthes; Turbellaria; Tricladida). The planarian sine oculis gene (Gtso) encodes a protein with a sine oculis (Six) domain and a homeodomain that shares significant sequence similarity with so proteins assigned to the Six-2 gene family. Gtso is expressed as a single transcript in both regenerating and fully developed eyes. Whole-mount in situ hybridization studies show exclusive expression in photoreceptor cells. Loss of function of Gtso by RNA interference during planarian regeneration inhibits eye regeneration completely. Gtso is also essential for maintenance of the differentiated state of photoreceptor cells. These results, combined with the previously demonstrated expression of Pax-6 in planarian eyes, suggest that the same basic gene regulatory circuit required for eye development in Drosophila and mouse is used in the prototypic eye spots of platyhelminthes and, therefore, is truly conserved during evolution.
Collapse
Affiliation(s)
- D Pineda
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
93
|
Curtiss J, Mlodzik M. Morphogenetic furrow initiation and progression during eye development in Drosophila: the roles of decapentaplegic, hedgehog and eyes absent. Development 2000; 127:1325-36. [PMID: 10683184 DOI: 10.1242/dev.127.6.1325] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Drosophila signaling factor decapentaplegic (dpp) mediates the effects of hedgehog (hh) in tissue patterning by regulating the expression of tissue-specific genes. In the eye disc, the transcription factors eyeless (ey), eyes absent (eya), sine oculis (so) and dachshund (dac) participate with these signaling molecules in a complex regulatory network that results in the initiation of eye development. Our analysis of functional relationships in the early eye disc indicates that hh and dpp play no role in regulating ey, but are required for eya, so and dac expression. We show that restoring expression of eya in loss-of-function dpp mutant backgrounds is sufficient to induce so and dac expression and to rescue eye development. Thus, once expressed, eya can carry out its functions in the absence of dpp. These experiments indicate that dpp functions downstream of or in parallel with ey, but upstream of eya, so and dac. Additional control is provided by a feedback loop that maintains expression of eya and so and includes dpp. The fact that exogenous overexpression of ey, eya, so and dac interferes with wild-type eye development demonstrates the importance of such a complicated mechanism for maintaining proper levels of these factors during early eye development. Whereas initiation of eye development fails in either Hh or Dpp signaling mutants, the subsequent progression of the morphogenetic furrow is only slowed down. However, we find that clones that are simultaneously mutant for Hh and Dpp signaling components completely block furrow progression and eye differentiation, suggesting that Hh and Dpp serve partially redundant functions in this process. Interestingly, furrow-associated expression of eya, so and dac is not affected by double mutant tissue, suggesting that some other factor(s) regulates their expression during furrow progression.
Collapse
Affiliation(s)
- J Curtiss
- Developmental Biology Programme, EMBL, Meyerhofstrasse 1, Germany
| | | |
Collapse
|
94
|
Kurusu M, Nagao T, Walldorf U, Flister S, Gehring WJ, Furukubo-Tokunaga K. Genetic control of development of the mushroom bodies, the associative learning centers in the Drosophila brain, by the eyeless, twin of eyeless, and Dachshund genes. Proc Natl Acad Sci U S A 2000; 97:2140-4. [PMID: 10681433 PMCID: PMC15767 DOI: 10.1073/pnas.040564497] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mushroom bodies (MBs) are the centers for olfactory associative learning and elementary cognitive functions in the Drosophila brain. By high-resolution neuroanatomy, we show that eyeless (ey), twin of eyeless, and dachshund (dac), which are implicated in eye development, also are expressed in the developing MBs. Mutations of ey completely disrupted the MB neuropils, and a null mutation of dac resulted in marked disruption and aberrant axonal projections. Genetic analyses demonstrated that, whereas ey and dac synergistically control the structural development of the MBs, the two genes are regulated independently in the course of MB development. These data argue for a distinct combinatorial code of regulatory genes for MBs as compared with eye development and suggest conserved roles of Pax6 homologs in the genetic programs of the olfactory learning centers of complex brains.
Collapse
Affiliation(s)
- M Kurusu
- Institute of Biological Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | | | | | | | | | | |
Collapse
|
95
|
Conway Morris S. Hopeless monsters. Trends Ecol Evol 1999. [DOI: 10.1016/s0169-5347(99)01705-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
96
|
Abstract
Holoprosencephaly (HPE) is the most common developmental defect of the forebrain in humans. Several distinct human genes for holoprosencephaly have now been identified. They include Sonic hedgehog (SHH), ZIC2, and SIX3. Many additional genes involved in forebrain development are rapidly being cloned and characterized in model vertebrate organisms. These include Patched (Ptc), Smoothened (Smo), cubitus interuptus (ci)/Gli, wingless (wg/Wnt, decapentaplegic (dpp)/BMP, Hedgehog interacting protein (Hip), nodal, Smads, One-eyed pinhead (Oep), and TG-Interacting Factor (TGIF). However, further analysis is needed before their roles in HPE can be established. Here we present an overview of the presently known genes causing human holoprosencephaly and describe candidate genes involved in forebrain development identified in other systems. A model is discussed for how these genes may interact within and between several different signaling pathways to direct the formation of the forebrain.
Collapse
Affiliation(s)
- D E Wallis
- Departments of Pediatrics, Genetics, and Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104-4399, USA
| | | |
Collapse
|