51
|
Ishii T, Omura M, Mombaerts P. Protocols for two- and three-color fluorescent RNA in situ hybridization of the main and accessory olfactory epithelia in mouse. ACTA ACUST UNITED AC 2005; 33:657-69. [PMID: 16217621 DOI: 10.1007/s11068-005-3334-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 02/16/2005] [Accepted: 02/28/2005] [Indexed: 10/25/2022]
Abstract
The main and accessory olfactory epithelia of the mouse are composed of many cell populations. Each sensory neuron is thought to express one allele of one of the approximately 1000 odorant or approximately 300 vomeronasal receptor genes. Sensory neurons die and are replaced by new neurons that differentiate from precursor cells throughout the lifetime of the individual. Neuronal replacement is asynchronous, resulting in the co-existence of cells at various stages of differentiation. Receptor gene diversity and ongoing neuronal differentiation produce complex mosaics of gene expression within these epithelia. Accurate description of gene expression patterns will facilitate the understanding of mechanisms of gene choice and differentiation. Here we report a detailed protocol for two- and three-color fluorescent RNA in situ hybridization (ISH) and its combination with immunohistochemistry, or detection of bromodeoxyuridine (BrdU)-incorporated DNA after labeling. The protocol is applied to cryosections of the main and accessory olfactory epithelia in mouse.
Collapse
|
52
|
Abstract
Gradients of axon guidance molecules have long been postulated to control the development of the organization of neural connections into topographic maps. We review progress in identifying molecules required for mapping and the mechanisms by which they act, focusing on the visual system, the predominant model for map development. The Eph family of receptor tyrosine kinases and their ligands, the ephrins, remain the only molecules that meet all criteria for graded topographic guidance molecules, although others fulfill some criteria. Recent reports further define their modes of action and new roles for them, including EphB/ephrin-B control of dorsal-ventral mapping, bidirectional signaling of EphAs/ephrin-As, bifunctional action of ephrins as attractants or repellents in a context-dependent manner, and complex interactions between multiple guidance molecules. In addition, spontaneous patterned neural activity has recently been shown to be required for map refinement during a brief critical period. We speculate on additional activities required for map development and suggest a synthesis of molecular and cellular mechanisms within the context of the complexities of map development.
Collapse
Affiliation(s)
- Todd McLaughlin
- Molecular Neurobiology Laboratory, The Salk Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
53
|
Merigo F, Mucignat-Caretta C, Zancanaro C. Timing of neuronal intermediate filament proteins expression in the mouse vomeronasal organ during pre- and postnatal development. An immunohistochemical study. Chem Senses 2005; 30:707-17. [PMID: 16179384 DOI: 10.1093/chemse/bji063] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Several types of intermediate filament proteins are expressed in developing and mature neurons; they cooperate with other cytoskeletal components to sustain neuronal function from early neurogenesis onward. In this work the timing of expression of nestin, peripherin, internexin, and the neuronal intermediate filament triplet [polypeptide subunits of low (NF-L), medium (NF-M), and high (NF-H) molecular weight] was investigated in the developing fetal and postnatal mouse vomeronasal organ (VNO) by means of immunohistochemistry. The results show that the sequence of expression of intermediate filament proteins is internexin, nestin, and NF-M in the developing vomeronasal sensory epithelium; internexin, peripherin, and NF-M in the developing vomeronasal nerve; and nestin, internexin and peripherin, NF-L, and NF-M in the nerve supply to accessory structures of the VNO. At sexual maturity (2 months) NF-M is only expressed in vomeronasal neurons and NF-M, NF-L and peripherin are expressed in extrinsic nerves supplying VNO structures. The differential distribution of intermediate filament proteins in the vomeronasal sensory epithelium and nerve is discussed in terms of the cell types present therein. It is concluded that several intermediate filament proteins are sequentially expressed during intrauterine development of the VNO neural structures in a different pattern according to the different components of the VNO.
Collapse
Affiliation(s)
- Flavia Merigo
- Section of Anatomy and Histology, Department of Morphological and Biomedical Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | | | | |
Collapse
|
54
|
Rashid T, Upton AL, Blentic A, Ciossek T, Knöll B, Thompson ID, Drescher U. Opposing gradients of ephrin-As and EphA7 in the superior colliculus are essential for topographic mapping in the mammalian visual system. Neuron 2005; 47:57-69. [PMID: 15996548 DOI: 10.1016/j.neuron.2005.05.030] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Revised: 01/27/2005] [Accepted: 05/26/2005] [Indexed: 11/22/2022]
Abstract
During development of the retinocollicular projection in mouse, retinal axons initially overshoot their future termination zones (TZs) in the superior colliculus (SC). The formation of TZs is initiated by interstitial branching at topographically appropriate positions. Ephrin-As are expressed in a decreasing posterior-to-anterior gradient in the SC, and they suppress branching posterior to future TZs. Here we investigate the role of an EphA7 gradient in the SC, which has the reverse orientation to the ephrin-A gradient. We find that in EphA7 mutant mice the retinocollicular map is disrupted, with nasal and temporal axons forming additional or extended TZs, respectively. In vitro, retinal axons are repelled from growing on EphA7-containing stripes. Our data support the idea that EphA7 is involved in suppressing branching anterior to future TZs. These findings suggest that opposing ephrin-A and EphA gradients are required for the proper development of the retinocollicular projection.
Collapse
Affiliation(s)
- Tahira Rashid
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Hospital Campus, London SE1 1UL, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
55
|
Honig MG, Camilli SJ, Surineni KM, Knight BK, Hardin HM. The contributions of BMP4, positive guidance cues, and repulsive molecules to cutaneous nerve formation in the chick hindlimb. Dev Biol 2005; 282:257-73. [PMID: 15936345 DOI: 10.1016/j.ydbio.2005.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 03/04/2005] [Accepted: 03/10/2005] [Indexed: 11/21/2022]
Abstract
Our previous surgical manipulations have shown that the target ectoderm is necessary for the initial formation of one of the major cutaneous nerves in the embryonic chick limb (Honig, M.G., Camilli, S.J., Xue, Q.S., 2004. Ectoderm removal prevents cutaneous nerve formation and perturbs sensory axon growth in the chick hindlimb. Dev. Biol. 266, 27-42.). Moreover, the target ectoderm is required during a critical time period, at approximately St. 24, when those axons are about to diverge from the hindlimb plexus. To elucidate the underlying mechanisms, here we examined the effects of removing the ectoderm at St. 24 on a variety of molecules expressed within the limb. We find that, while ectoderm removal is accompanied by changes in the expression of Lmx1, fibronectin, EphA7, cDermo-1, and in the complement of muscle cells, these changes do not account for the cutaneous nerve deficit. In contrast, an upregulation of PNA-binding sites and a downregulation of Bmp4 appear to be associated with this nerve deficit. Exogenous BMP4 reversed the effect of ectoderm removal on cutaneous nerve formation, but did not act as a chemoattractant. Our results suggest that BMP4, together with permissive and repulsive molecules that growing cutaneous axons encounter in the local environment and with signaling molecules, originating from and/or dependent on the ectoderm, work in concert to ensure proper cutaneous nerve formation.
Collapse
Affiliation(s)
- Marcia G Honig
- Department of Anatomy and Neurobiology, University of Tennessee College of Medicine, The Health Science Center, 855 Monroe Avenue, Memphis, TN 38163, USA.
| | | | | | | | | |
Collapse
|
56
|
Marquardt T, Shirasaki R, Ghosh S, Andrews SE, Carter N, Hunter T, Pfaff SL. Coexpressed EphA receptors and ephrin-A ligands mediate opposing actions on growth cone navigation from distinct membrane domains. Cell 2005; 121:127-39. [PMID: 15820684 DOI: 10.1016/j.cell.2005.01.020] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 11/22/2004] [Accepted: 01/19/2005] [Indexed: 10/25/2022]
Abstract
Contact-dependent signaling between membrane-linked ligands and receptors such as the ephrins and Eph receptor tyrosine kinases controls a wide range of developmental and pathological processes. Paradoxically, many cell types coexpress both ligands and receptors, raising the question of how specific signaling readouts are achieved under these conditions. Here, we studied the signaling activities exerted by coexpressed EphA receptors and GPI-linked ephrin-A ligands in spinal motor neuron growth cones. We demonstrate that coexpressed Eph and ephrin proteins segregate laterally into distinct membrane domains from which they signal opposing effects on the growth cone: EphAs direct growth cone collapse/repulsion and ephrin-As signal motor axon growth/attraction. This subcellular arrangement of Eph-ephrin proteins enables axons to discriminate between cis- versus trans-configurations of ligand/receptor proteins, thereby allowing the utilization of both Ephs and ephrins as functional guidance receptors within the same neuronal growth cone.
Collapse
Affiliation(s)
- Till Marquardt
- Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
57
|
YU TUNTZU, McINTYRE JEREMYC, BOSE SOMAC, HARDIN DEBRA, OWEN MICHAELC, McCLINTOCK TIMOTHYS. Differentially expressed transcripts from phenotypically identified olfactory sensory neurons. J Comp Neurol 2005; 483:251-62. [PMID: 15682396 PMCID: PMC2967457 DOI: 10.1002/cne.20429] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In comparing purified mouse olfactory sensory neurons (OSNs) with neighboring cells, we identified 54 differentially expressed transcripts. One-third of the transcripts encode proteins with no known function, but the others have functions that correlate with challenges faced by OSNs. The OSNs expressed a diversity of signaling protein genes, including stomatin (Epb7.2), S100A5, Ddit3, Sirt2, CD81, Sdc2, Omp, and Ptpla. The elaboration of dendrites, cilia, and axons that places OSNs in contact with diverse cell types and signals presumably also requires large investments in cytoskeletal-associated proteins, lipid biosynthesis, and energy production. Several of the genes encode proteins that participate in these biological processes, including ATP5g3, Ndufa9, Sqrdl, Mdh1, Got1, beta-2 tubulin, Capza1, Bin3, Tom1, Acl6, and similar to O-MACS. Three transcripts had restricted expression patterns. Similar to O-MACS and Gstm2 had zonally restricted expression patterns in OSNs and sustentacular cells but not in Bowman's glands, suggesting that zonality can be differentially regulated by cell type. The mosaic expression pattern of S100A5 in approximately 70% of OSNs predicts that it is coexpressed with a subset of odorant receptors. We captured four abundant transcripts, Cyp2a4, similar to Cyp2g1, Gstm2, and Cbr2, that encode xenobiotic metabolizing enzymes expressed by sustentacular cells or Bowman's glands, reinforcing the interpretation that clearance of xenobiotic compounds is a major function of these cells. Within the olfactory epithelium, Cbr2 is a new anatomical marker for sustentacular cells. We also discovered that Reg3g is a marker for respiratory epithelium.
Collapse
Affiliation(s)
| | | | | | | | | | - TIMOTHY S. McCLINTOCK
- Correspondence to: Timothy S. McClintock, Louis Boyarsky Professor of Physiology, Department of Physiology, University of Kentucky, 800 Rose St., Lexington, KY 40536-0298.
| |
Collapse
|
58
|
Martínez A, Soriano E. Functions of ephrin/Eph interactions in the development of the nervous system: emphasis on the hippocampal system. ACTA ACUST UNITED AC 2005; 49:211-26. [PMID: 16111551 DOI: 10.1016/j.brainresrev.2005.02.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Revised: 02/01/2005] [Accepted: 02/04/2005] [Indexed: 12/20/2022]
Abstract
Ephrins and their Eph receptors are membrane-anchored proteins that have key roles in the development of the Central Nervous System. The main characteristics of ephrin/Eph interactions are that their effect is mediated by cell-to-cell contacts and that they can propagate bidirectional signals downstream of the ligand-receptor complex. These characteristics make ephrins and Eph receptors critical cues in the regulation of migrating cells or axons, and in the establishment of tissue patterns and topographic maps in distinct regions of the developing brain. In addition, ephrins and Eph receptors regulate synapse formation and plasticity. These roles would be promoted by complementary gradual expression of receptors and ligands in the neurons involved. Although, historically, ephrins and Eph receptors have been considered as repulsion signals through barriers or gradients, new evidence indicates that they may be both inhibitory and permissive/active cues depending on expression levels. The expression of distinct ligands and receptors in the developing and mature hippocampus suggests that these proteins are involved in distinct processes during the development and maturation of the hippocampal region. In fact, recent studies have shown that ephrin/Eph signaling participates in the formation of the layer-specific patterns of hippocampal afferents, in synaptogenesis and in plasticity. Therefore, ephrin/Eph interactions should be considered a crucial system in the development and maturation of the brain regions, including the hippocampus.
Collapse
Affiliation(s)
- Albert Martínez
- Neuronal Development and Regeneration Group (S1-A1), Department of Cell Biology, University of Barcelona/Barcelona Science Park, Josep Samitier 1-5, Barcelona E-08028, Spain.
| | | |
Collapse
|
59
|
Holmberg J, Armulik A, Senti KA, Edoff K, Spalding K, Momma S, Cassidy R, Flanagan JG, Frisén J. Ephrin-A2 reverse signaling negatively regulates neural progenitor proliferation and neurogenesis. Genes Dev 2005; 19:462-71. [PMID: 15713841 PMCID: PMC548947 DOI: 10.1101/gad.326905] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The number of cells in an organ is regulated by mitogens and trophic factors that impinge on intrinsic determinants of proliferation and apoptosis. We here report the identification of an additional mechanism to control cell number in the brain: EphA7 induces ephrin-A2 reverse signaling, which negatively regulates neural progenitor cell proliferation. Cells in the neural stem cell niche in the adult brain proliferate more and have a shorter cell cycle in mice lacking ephrin-A2. The increased progenitor proliferation is accompanied by a higher number of cells in the olfactory bulb. Disrupting the interaction between ephrin-A2 and EphA7 in the adult brain of wild-type mice disinhibits proliferation and results in increased neurogenesis. The identification of ephrin-A2 and EphA7 as negative regulators of progenitor cell proliferation reveals a novel mechanism to control cell numbers in the brain.
Collapse
Affiliation(s)
- Johan Holmberg
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Gaillard S, Nasarre C, Gonthier B, Bagnard D. Mécanismes cellulaires et moléculaires de la croissance axonale. Rev Neurol (Paris) 2005; 161:153-72. [PMID: 15798515 DOI: 10.1016/s0035-3787(05)85019-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION During embryonic and post-natal development, numerous axonal connections are formed establishing a functional nervous system. Knowledge of the underlying molecular and cellular mechanisms controlling this phenomenon is improving. STATE OF THE ART In this review, we present the general principles of axon guidance together with the major families of guidance signals. This includes the tyrosine kinase receptors Eph and their ligands Ephrins, the netrins, the semaphorins, the slits and other major components of the extracellular matrix. These types of guidance signals share common functional properties leading to actin cytoskeleton remodelling. The direct or indirect interactions between the receptors of these guidance cues and actin modulators is the final step of the signalling cascade constituting the fundamental mechanism defining the orientation and extension of the axonal growth cone. These factors are involved in the formation of many, if not all, axonal projections for which they act as repulsive (inhibitory) or attractive (promoting) signals. PERSPECTIVES the knowledge of these mechanisms is particularly interesting since the inhibition of axonal outgrowth is considered to be one of the major obstacles to nerve regeneration in the central nervous system. Indeed, most of the guidance signals expressed during brain development are up-regulated in lesion sites where they contribute to the lack of nerve re-growth. Here, we present the nature of the mechanical barrier, the so called glial scar, and we describe the major inhibitory molecules preventing axonal extension. CONCLUSION the comprehension of the molecular mechanisms involved in axon growth and guidance represents a major advance towards the definition of novel therapeutic strategies improving nerve regeneration. The path to the clinical application of these molecular factors remains long. Nevertheless, the next decade will undoubtedly provide challenging data that will modify the current therapeutic approaches.
Collapse
Affiliation(s)
- S Gaillard
- INSERM U575, Physiopathologie du Système Nerveux, Groupe de Physiologie Moléculaire de la Régénération Nerveuse, 67084 Strasbourg
| | | | | | | |
Collapse
|
61
|
Abstract
Blood vessels and nerves are structured in architecturally similar organ systems and show functional relationships. Indeed, vascular and neuronal cells are guided in their journey throughout the body by the same attractive and repulsive factors that respectively activate and inhibit the function of integrin-adhesive receptors.
Collapse
Affiliation(s)
- Guido Serini
- Division of Molecular Angiogenesis, Institute for Cancer Research and Treatment, Department of Oncological Sciences, University of Torino School of Medicine, 10060 Candiolo (TO), Italy.
| | | |
Collapse
|
62
|
Abstract
The human brain assembles an incredible network of over a billion neurons. Understanding how these connections form during development in order for the brain to function properly is a fundamental question in biology. Much of this wiring takes place during embryonic development. Neurons are generated in the ventricular zone, migrate out, and begin to differentiate. However, neurons are often born in locations some distance from the target cells with which they will ultimately form connections. To form connections, neurons project long axons tipped with a specialized sensing device called a growth cone. The growing axons interact directly with molecules within the environment through which they grow. In order to find their targets, axonal growth cones use guidance molecules that can either attract or repel them. Understanding what these guidance cues are, where they are expressed, and how the growth cone is able to transduce their signal in a directionally specific manner is essential to understanding how the functional brain is constructed. In this chapter, we review what is known about the mechanisms involved in axonal guidance. We discuss how the growth cone is able to sense and respond to its environment and how it is guided by pioneering cells and axons. As examples, we discuss current models for the development of the spinal cord, the cerebral cortex, and the visual and olfactory systems.
Collapse
Affiliation(s)
- Céline Plachez
- Department of Anatomy and Neurobiology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
63
|
O'Leary DDM, McLaughlin T. Mechanisms of retinotopic map development: Ephs, ephrins, and spontaneous correlated retinal activity. PROGRESS IN BRAIN RESEARCH 2005; 147:43-65. [PMID: 15581697 DOI: 10.1016/s0079-6123(04)47005-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This chapter summarizes mechanisms that control the development of retinotopic maps in the brain, focusing on work from our laboratory using as models the projection of retinal ganglion cells (RGCs) to the chick optic tectum (OT) or rodent superior colliculus (SC). The formation of a retinotopic map involves the establishment of an initial, very coarse map that subsequently undergoes large-scale remodeling to generate a refined map. All arbors are formed by interstitial branches that form in a topographically biased manner along RGC axons that overshoot their correct termination zone (TZ) along the anterior-posterior (A-P) axis of the OT/SC. The interstitial branches exhibit directed growth along the lateral-medial (L-M) axis of the OT/SC to position the branch at the topographically correct location, where it arborizes to form the TZ. EphA receptors and ephrin-A ligands control in part RGC axon mapping along the A-P axis by inhibiting branching and arborization posterior to the correct TZ. Ephrin-B1 acts bifunctionally through EphB forward signaling to direct branches along the L-M axis of the OT/SC to their topographically correct site. Computational modeling indicates that multiple graded activities are required along each axis to generate a retinotopic map, and makes several predictions, including: the progressive addition of ephrin-As within the OT/SC, due to its expression on RGC axon branches and arbors, is required to increase topographic specificity in branching and arborization as well as eliminate the initial axon overshoot, and that interactions amongst RGC axons that resemble correlated neural activity are required to drive retinotopic refinement. Analyses of mutant mice that lack early spontaneous retinal waves that correlate activity amongst neighboring RGCs, confirm this modeling prediction and show that correlated activity during an early brief critical period is required to drive the large-scale remodeling of the initially topographically coarse projection into a refined one. In summary, multiple graded guidance molecules, retinal waves and correlated spontaneous RGC activity cooperate to generate retinotopic maps.
Collapse
Affiliation(s)
- Dennis D M O'Leary
- Molecular Neurobiology Laboratory, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
64
|
Poliakov A, Cotrina M, Wilkinson DG. Diverse roles of eph receptors and ephrins in the regulation of cell migration and tissue assembly. Dev Cell 2004; 7:465-80. [PMID: 15469835 DOI: 10.1016/j.devcel.2004.09.006] [Citation(s) in RCA: 341] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Eph receptor tyrosine kinases and ephrins have key roles in regulation of the migration and adhesion of cells required to form and stabilize patterns of cell organization during development. Activation of Eph receptors or ephrins can lead either to cell repulsion or to cell adhesion and invasion, and recent work has found that cells can switch between these distinct responses. This review will discuss biochemical mechanisms and developmental roles of the diverse cell responses controlled by Eph receptors and ephrins.
Collapse
Affiliation(s)
- Alexei Poliakov
- Division of Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | | | | |
Collapse
|
65
|
Peeters PJ, Baker A, Goris I, Daneels G, Verhasselt P, Luyten WHML, Geysen JJGH, Kass SU, Moechars DWE. Sensory deficits in mice hypomorphic for a mammalian homologue of unc-53. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 150:89-101. [PMID: 15158073 DOI: 10.1016/j.devbrainres.2004.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/20/2004] [Indexed: 10/26/2022]
Abstract
The migration of cells and the extension of cellular processes along pathways to their defined destinations are crucial in the development of higher organisms. Caenorhabditis elegans unc-53 plays an important role in cell migration and the outgrowth of cellular processes such as axons. To gain further insight into the biological function of unc53H2, a recently identified mammalian homologue of unc-53, we have generated mice carrying a mutation of unc53H2 and provide evidence that unc53H2 is involved in neuronal development and, more specifically, the development of different sensory systems. The unc53H2 hypomorphic mouse showed a general impaired acuity of several sensory systems (olfactory, auditory, visual and pain sensation) which in case of the visual system was corroborated by the morphological observation of hypoplasia of the optic nerve. We hypothesize that in analogy with its C. elegans homologue, unc53H2 may play a role in the processes of cellular outgrowth and migration.
Collapse
Affiliation(s)
- Pieter J Peeters
- Johnson & Johnson Pharmaceutical Research and Development, A Division of Janssen Pharmaceutica N.V., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Noren NK, Pasquale EB. Eph receptor–ephrin bidirectional signals that target Ras and Rho proteins. Cell Signal 2004; 16:655-66. [PMID: 15093606 DOI: 10.1016/j.cellsig.2003.10.006] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Revised: 10/27/2003] [Accepted: 10/28/2003] [Indexed: 01/13/2023]
Abstract
The ability of cells to respond to their surrounding environment and relay signals to the cell interior is essential for numerous processes during the development and maintenance of tissues. Eph receptors and their membrane-bound ligands, the ephrins, are unique in the receptor tyrosine kinase family in that their signaling is bidirectional, through both the receptor and the ligand. Eph receptors and ephrins are essential for a variety of biological processes, and play a particularly important role in regulating cell shape and cell movement. Recent data have linked Eph receptor-ephrin signaling complexes to the Ras and Rho families of small molecular weight GTPases and also to heterotrimeric G proteins. Understanding the signaling networks involved is an important step to understand the molecular basis for normal and defective cell-cell communication through Eph receptors and ephrins.
Collapse
Affiliation(s)
- Nicole K Noren
- Neurobiology Program, Neurobiology Cancer Center, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
67
|
Schwarting GA, Raitcheva D, Crandall JE, Burkhardt C, Püschel AW. Semaphorin 3A-mediated axon guidance regulates convergence and targeting of P2 odorant receptor axons. Eur J Neurosci 2004; 19:1800-10. [PMID: 15078553 DOI: 10.1111/j.1460-9568.2004.03304.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Semaphorins are known to play an important role in axon guidance of vertebrate olfactory sensory neurons to their targets in specific glomeruli of the olfactory bulb (OB). However, it is not clear how semaphorin-mediated guidance contributes to a systematic hierarchy of cues that govern the organization of this system. Because of the putative role that odorant receptor molecules such as P2 could play in establishing appropriate glomerular destinations for growing olfactory axons, we have also determined the spatial organization of P2 glomeruli in semaphorin 3A (Sema3A) mutant mice. First, in the postnatal OB of control and Sema3A(-/-) mice, we analysed the trajectories of olfactory axons that express the Sema3A receptor, neuropilin-1 (npn-1) and the positions of npn-1(+) glomeruli. Sema3A at the ventral OB midline guides npn-1(+) axons to targets in the lateral and medial OB. Absence of Sema3A permits many npn-1 axons to terminate aberrantly in the rostral and ventral OB. Second, in Sema3A(-/-) mice, many P2 axons are abnormally distributed throughout the ventral OB nerve layer and converge in atypical locations compared with littermate controls where P2 axons converge on stereotypically located lateral and medial glomeruli. In addition to their radically altered spatial distribution, P2 glomeruli in Sema3A(-/-) mice are significantly smaller and more numerous than in heterozygote littermates. These data show that Sema3A is an important repulsive olfactory guidance cue that establishes restricted npn-1(+) subcompartments in the olfactory bulb. Furthermore, Sema3A plays a key role in the convergence of axons expressing the odorant receptor P2 onto their appropriate targets.
Collapse
|
68
|
Yates PA, Holub AD, McLaughlin T, Sejnowski TJ, O'Leary DDM. Computational modeling of retinotopic map development to define contributions of EphA-ephrinA gradients, axon-axon interactions, and patterned activity. ACTA ACUST UNITED AC 2004; 59:95-113. [PMID: 15007830 PMCID: PMC2927824 DOI: 10.1002/neu.10341] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The topographic projection of retinal ganglion cell (RGC) axons to mouse superior colliculus (SC) or chick optic tectum (OT) is formed in three phases: RGC axons overshoot their termination zone (TZ); they exhibit interstitial branching along the axon that is topographically biased for the correct location of their future TZ; and branches arborize preferentially at the TZ and the initial exuberant projection refines through axon and branch elimination to generate a precise retinotopic map. We present a computational model of map development that demonstrates that the countergradients of EphAs and ephrinAs in retina and the OT/SC and bidirectional repellent signaling between RGC axons and OT/SC cells are sufficient to direct an initial topographic bias in RGC axon branching. Our model also suggests that a proposed repellent action of EphAs/ephrinAs present on RGC branches and arbors added to that of EphAs/ephrinAs expressed by OT/SC cells is required to progressively restrict branching and arborization to topographically correct locations and eliminate axon overshoot. Simulations show that this molecular framework alone can develop considerable topographic order and refinement, including axon elimination, a feature not programmed into the model. Generating a refined map with a condensed TZ as in vivo requires an additional parameter that enhances branch formation along an RGC axon near sites that it has a higher branch density, and resembles an assumed role for patterned neural activity. The same computational model generates the phenotypes reported in ephrinA deficient mice and Isl2-EphA3 knockin mice. This modeling suggests that gradients of counter-repellents can establish a substantial degree of topographic order in the OT/SC, and that repellents present on RGC axon branches and arbors make a substantial contribution to map refinement. However, competitive interactions between RGC axons that enhance the probability of continued local branching are required to generate precise retinotopy.
Collapse
Affiliation(s)
- Paul A Yates
- Molecular Neurobiology Laboratory, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
69
|
Himanen JP, Chumley MJ, Lackmann M, Li C, Barton WA, Jeffrey PD, Vearing C, Geleick D, Feldheim DA, Boyd AW, Henkemeyer M, Nikolov DB. Repelling class discrimination: ephrin-A5 binds to and activates EphB2 receptor signaling. Nat Neurosci 2004; 7:501-9. [PMID: 15107857 DOI: 10.1038/nn1237] [Citation(s) in RCA: 347] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Accepted: 03/26/2004] [Indexed: 11/09/2022]
Abstract
The interactions between Eph receptor tyrosine kinases and their ephrin ligands regulate cell migration and axon pathfinding. The EphA receptors are generally thought to become activated by ephrin-A ligands, whereas the EphB receptors interact with ephrin-B ligands. Here we show that two of the most widely studied of these molecules, EphB2 and ephrin-A5, which have never been described to interact with each other, do in fact bind one another with high affinity. Exposure of EphB2-expressing cells to ephrin-A5 leads to receptor clustering, autophosphorylation and initiation of downstream signaling. Ephrin-A5 induces EphB2-mediated growth cone collapse and neurite retraction in a model system. We further show, using X-ray crystallography, that the ephrin-A5-EphB2 complex is a heterodimer and is architecturally distinct from the tetrameric EphB2-ephrin-B2 structure. The structural data reveal the molecular basis for EphB2-ephrin-A5 signaling and provide a framework for understanding the complexities of functional interactions and crosstalk between A- and B-subclass Eph receptors and ephrins.
Collapse
Affiliation(s)
- Juha-Pekka Himanen
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Bolz J, Uziel D, Mühlfriedel S, Güllmar A, Peuckert C, Zarbalis K, Wurst W, Torii M, Levitt P. Multiple roles of ephrins during the formation of thalamocortical projections: Maps and more. ACTA ACUST UNITED AC 2004; 59:82-94. [PMID: 15007829 DOI: 10.1002/neu.10346] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The functional architecture of the cerebral cortex is based on intrinsic connections that precisely link neurons from distinct cortical laminae as well as layer-specific afferent and efferent projections. Experimental strategies using in vitro assays originally developed by Friedrich Bonhoeffer have suggested that positional cues confined to individual layers regulate the assembly of local cortical circuits and the formation of thalamocortical projections. One of these wiring molecules is ephrinA5, a ligand for Eph receptor tyrosine kinases. EphrinA5 and Eph receptors exhibit highly dynamic expression patterns in distinct regions of the cortex and thalamus during early and late stages of thalamocortical and cortical circuit formation. In vitro assays suggest that ephrinA5 is a multifunctional wiring molecule for different populations of cortical and thalamic axons. Additionally, the expression patterns of ephrinA5 during cortical development are consistent with this molecule regulating, in alternative ways, specific components of thalamic and cortical connectivity. To test this directly, the organization of thalamocortical projections was examined in mice lacking ephrinA5 gene expression. The anatomical studies in ephrinA5 knockout animals revealed a miswiring of limbic thalamic projections and changes in neocortical circuits that were predicted from the expression pattern and the in vitro analysis of ephrinA5 function.
Collapse
Affiliation(s)
- Jürgen Bolz
- Universität Jena, Institut für Allgemeine Zoologie und Tierphysiologie, Erberstrasse 1, 07743 Jena, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Xu B, Li S, Brown A, Gerlai R, Fahnestock M, Racine RJ. EphA/ephrin-A interactions regulate epileptogenesis and activity-dependent axonal sprouting in adult rats. Mol Cell Neurosci 2004; 24:984-99. [PMID: 14697663 DOI: 10.1016/j.mcn.2003.08.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Eph family of tyrosine kinase receptors and their ligands, ephrins, are distributed in gradients and serve as molecular guidance cues for axonal patterning during neuronal development. Most of these molecules are also expressed in mature brain. Thus, we examine here the potential roles of such molecules in plasticity and activity-dependent mossy fiber sprouting of adult CNS. We show that the ligand ephrin-A3 and the receptor EphA5 are expressed in complementary gradients in the adult rat mossy fiber system. Using the kindling model, we demonstrate that exogenous immunoadhesins that affect the interaction of endogenous EphA receptors and ephrin-A ligands modulate the development of kindling, one type of long-term plasticity, in mature rat brain. These immunoadhesins, combined with epileptogenic stimulations, alter both the extent and the pattern of collateral axonal sprouting in the mossy fiber pathway. Our results suggest that EphA receptors and ephrin-A ligands modify neuronal plasticity and may serve as spatial cues that modulate the development and pattern of activation-dependent axonal growth in adult CNS.
Collapse
Affiliation(s)
- B Xu
- Department of Psychology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | | | | | | | | | | |
Collapse
|
72
|
Gauthier LR, Robbins SM. Ephrin signaling: One raft to rule them all? One raft to sort them? One raft to spread their call and in signaling bind them? Life Sci 2004; 74:207-16. [PMID: 14607248 DOI: 10.1016/j.lfs.2003.09.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The Eph receptor tyrosine kinases (RTK) and their membrane-bound ligands, the ephrins, mediate cell-contact-dependent signaling events that control multiple aspects of metazoan embryonic development. The ephrins and their receptors regulate cell movement that is essential for forming and stabilizing the spatial organization of tissues and cell types. This includes the guidance of migrating cells or neuronal growth cones to specific targets. Although the biological responses mediated by the ephrin-Eph system were thought to be imparted by the Eph receptor via 'classical' RTK signaling pathways, there is now accumulating evidence that the ephrins are not merely ligands but have biological activity independent of the kinase activity of their cognate Eph receptor. This activity is commonly referred to as 'reverse' or 'bi-directional' signaling. Furthermore, ephrin-mediated signaling is restricted to specific membrane microdomains known as 'lipid rafts', which we believe imparts specificity to the extracellular signal. This review highlights the current data to support a role for lipid rafts in regulating aspects of ephrin-mediated signaling.
Collapse
Affiliation(s)
- Laura R Gauthier
- Department of Oncology, University of Calgary, T2N-4N1, Calgary, Alberta, Canada
| | | |
Collapse
|
73
|
Abstract
Eph receptors and ephrins have captured the interest of the developmental biology community in recent years for their pleiotropic functions during embryogenesis. Loss-of-function studies using various animal models have demonstrated the involvement of Ephs and ephrins in many aspects of embryogenesis including segmentation, neural crest cells migration, angiogenesis, and axon guidance. An essential property of this signaling pathway is the ability of both Ephs and ephrins to behave as receptors or ligands and their consequent cell autonomous and nonautonomous mode of action. While many reports did not discriminate between Eph autonomous signaling (forward) and ephrin autonomous signaling (reverse), recent genetic and in vivo studies have shown that both forward and reverse signaling play important roles during embryogenesis.
Collapse
Affiliation(s)
- Alice Davy
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | |
Collapse
|
74
|
Vaidya A, Pniak A, Lemke G, Brown A. EphA3 null mutants do not demonstrate motor axon guidance defects. Mol Cell Biol 2003; 23:8092-8. [PMID: 14585969 PMCID: PMC262425 DOI: 10.1128/mcb.23.22.8092-8098.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Motor axon projections are topographically ordered. Medial motor column axons project to axial muscles, whereas lateral motor column axons project to limb muscles and, along the rostrocaudal axis of the animal, the more rostral motor neuron pools project to more rostral muscle targets. We have shown that EphA3 is specifically expressed in the developing medial motor column and have postulated that EphA3 might be responsible for directing their axons to axial muscle targets. This hypothesis was supported by our demonstration that EphA3 can direct retinal ganglion cell axon targeting and by studies of ephrin-A5(-/-) mutants that show that EphA receptor signaling controls the topographic innervation of the acromiotrapezius. To test the role of EphA3 in motor axon guidance, we generated an EphA3 null mutant. Retrograde labeling studies in EphA3(-/-) embryos and adults indicate that, contrary to our predictions, EphA3 is not necessary to direct motor axons to axial muscle targets. Our results also demonstrate that ephrin A5's ability to direct topographic innervation of the acromiotrapezius must be mediated through EphA receptors other than, or in addition to, EphA3.
Collapse
MESH Headings
- Animals
- Axons/physiology
- Ephrin-A5/physiology
- Female
- Gene Expression Regulation, Developmental
- Hand Strength/physiology
- In Situ Hybridization
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Motor Neurons/physiology
- Pregnancy
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, EphA3/deficiency
- Receptor, EphA3/genetics
- Receptor, EphA3/physiology
- Receptor, EphA4/genetics
- Receptor, EphA4/physiology
- Spinal Cord/cytology
- Spinal Cord/embryology
Collapse
Affiliation(s)
- Ashish Vaidya
- Stem Cell Biology and Regenerative Medicine and Biotherapeutics Research Groups, The Robarts Research Institute, University of Western Ontario, 100 Perth Drive, London, Ontario N6A 5K8, Canada
| | | | | | | |
Collapse
|
75
|
Cutforth T, Moring L, Mendelsohn M, Nemes A, Shah NM, Kim MM, Frisén J, Axel R. Axonal ephrin-As and odorant receptors: coordinate determination of the olfactory sensory map. Cell 2003; 114:311-22. [PMID: 12914696 DOI: 10.1016/s0092-8674(03)00568-3] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Olfactory sensory neurons expressing a given odorant receptor (OR) project with precision to specific glomeruli in the olfactory bulb, generating a topographic map. In this study, we demonstrate that neurons expressing different ORs express different levels of ephrin-A protein on their axons. Moreover, alterations in the level of ephrin-A alter the glomerular map. Deletion of the ephrin-A5 and ephrin-A3 genes posteriorizes the glomerular locations for neurons expressing either the P2 or SR1 receptor, whereas overexpression of ephrin-A5 in P2 neurons results in an anterior shift in their glomeruli. Thus the ephrin-As are differentially expressed in distinct subpopulations of neurons and are likely to participate, along with the ORs, as one of a complement of guidance receptors governing the targeting of like axons to precise locations in the olfactory bulb.
Collapse
Affiliation(s)
- Tyler Cutforth
- Howard Hughes Medical Institute and Center for Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Oland LA, Pott WM, Howard CT, Inlow M, Buckingham J. A diffusible signal attracts olfactory sensory axons toward their target in the developing brain of the moth. JOURNAL OF NEUROBIOLOGY 2003; 56:24-40. [PMID: 12767030 DOI: 10.1002/neu.10210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The signals that olfactory receptor axons use to navigate to their target in the CNS are still not well understood. In the moth Manduca sexta, the primary olfactory pathway develops postembryonically, and the receptor axons navigate from an experimentally accessible sensory epithelium to the brain along a pathway long enough for detailed study of regions in which axon behavior changes. The current experiments ask whether diffusible factors contribute to receptor axon guidance. Explants were made from the antennal receptor epithelium and co-cultured in a collagen gel matrix with slices of various regions of the brain. Receptor axons were attracted toward the central regions of the brain, including the protocerebrum and antennal lobe. Receptor axons growing into a slice of the most proximal region of the antennal nerve, where axon sorting normally occurs, showed no directional preference. When the antennal lobe was included in the slice, the receptor axons entering the sorting region grew directly toward the antennal lobe. Taken together with the previous in vivo experiments, the current results suggest that an attractive diffusible factor can serve as one cue to direct misrouted olfactory receptor axons toward the medial regions of the brain, where local cues guide them to the antennal lobe. They also suggest that under normal circumstances, in which the receptor axons follow a pre-existing pupal nerve to the antennal lobe, the diffusible factor emanating from the lobe acts in parallel and at short range to maintain the fidelity of the path into the antennal lobe.
Collapse
Affiliation(s)
- Lynne A Oland
- Arizona Research Laboratories Division of Neurobiology, University of Arizona, P.O. Box 210077, Tucson, Arizona 85721-0077, USA.
| | | | | | | | | |
Collapse
|
77
|
Palmer A, Klein R. Multiple roles of ephrins in morphogenesis, neuronal networking, and brain function. Genes Dev 2003; 17:1429-50. [PMID: 12815065 DOI: 10.1101/gad.1093703] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Amparo Palmer
- Max-Planck Institute of Neurobiology, Department of Molecular Neurobiology, D-82152 Martinsried, Germany.
| | | |
Collapse
|
78
|
Abstract
This study provides evidence that treatment with preclustered ephrin A5-Fc results in a substantial increase in the stability of the p110 gamma PI-3 kinase associated with EphA8, thereby enhancing PI-3 kinase activity and cell migration on a fibronectin substrate. In contrast, co-expression of a lipid kinase-inactive p110 gamma mutant together with EphA8 inhibits ligand-stimulated PI-3 kinase activity and cell migration on a fibronectin substrate, suggesting that the mutant has a dominant negative effect against the endogenous p110 gamma PI-3 kinase. Significantly, the tyrosine kinase activity of EphA8 is not important for either of these processes. Taken together, our results demonstrate that the stimulation of cell migration on a fibronectin substrate by the EphA8 receptor depends on the p110 gamma PI-3 kinase but is independent of a tyrosine kinase activity.
Collapse
Affiliation(s)
- Changkyu Gu
- Institute of Natural Science, Sookmyung Women's University, 53-12 Chungpa-Dong 2-Ka, Yongsan-Ku, Seoul 140-742, South Korea
| | | |
Collapse
|
79
|
Abstract
Levels of expression of mRNAs encoding the different Ephs and ephrins were measured by semi-quantitative reverse-transcription polymerase chain reaction in developing mouse whole inner ears, and in dissected fractions of the neonatal mouse inner ear. Nineteen of the 24 known Ephs and ephrins were surveyed. The results showed that between embryonic age (E) 11.5 days and E12.5, levels increased 10-300 times per unit of tissue. In neonatal mice, the fraction containing combined organ of Corti and spiral ganglion showed relatively strong expression of EphA4, EphB3, ephrin-A3, ephrin-B2 and ephrin-B3. In the lateral wall, EphA4, ephrin-A3 and ephrin-B2 were strongly expressed, while ephrin-A3 was particularly strongly expressed in utricular and saccular sensory epithelia. The results suggest that the Ephs and ephrins are likely to play a part in the differentiation of the structures of the inner ear, and show which Ephs and ephrins are most likely to play important roles in the different structures.
Collapse
Affiliation(s)
- James O Pickles
- Vision Touch and Hearing Research Centre, School of Biomedical Sciences, University of Queensland, 4072, Brisbane, Qld, Australia.
| |
Collapse
|
80
|
Abstract
Axons are guided along specific pathways by attractive and repulsive cues in the extracellular environment. Genetic and biochemical studies have led to the identification of highly conserved families of guidance molecules, including netrins, Slits, semaphorins, and ephrins. Guidance cues steer axons by regulating cytoskeletal dynamics in the growth cone through signaling pathways that are still only poorly understood. Elaborate regulatory mechanisms ensure that a given cue elicits the right response from the right axons at the right time but is otherwise ignored. With such regulatory mechanisms in place, a relatively small number of guidance factors can be used to generate intricate patterns of neuronal wiring.
Collapse
Affiliation(s)
- Barry J Dickson
- Research Institute of Molecular Pathology, Dr. Bohr-gasse 7, A-1030 Vienna, Austria.
| |
Collapse
|
81
|
Nakamoto M, Bergemann AD. Diverse roles for the Eph family of receptor tyrosine kinases in carcinogenesis. Microsc Res Tech 2002; 59:58-67. [PMID: 12242697 DOI: 10.1002/jemt.10177] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The Eph family of receptor tyrosine kinases and their cell-presented ligands, the ephrins, are frequently overexpressed in a wide variety of cancers, including breast, small-cell lung and gastrointestinal cancers, melanomas, and neuroblastomas. In particular, one Eph family member, EphA2, is overexpressed in many cancers, including 40% of breast cancers. EphA2 can also transform breast epithelial cells in vitro to display properties commonly associated with the development of metastasis. Remarkably, the oncogenic properties of EphA2 contravene traditional dogma with regard to the oncogenic properties of a growth factor and its receptor tyrosine kinase: while stimulation of EphA2 by its ligand (ephrin-A1) results in EphA2 autophosphorylation, the stimulation reverses the oncogenic transformation. As will be discussed in this review, the apparent dependence of oncogenicity on the dephosphorylated state of EphA2 most probably reflects the unique nature of Eph signaling. In particular, oncogenecity may depend on the capacity of unactivated EphA2 to interact with a variety of signaling molecules. As well as acting in oncogenic transformation, a growing body of evidence supports the importance of the concerted actions of ephrins and Eph molecules in tumor angiogenesis. Genetic studies, using targeted mutagenesis in mice, reveal that ephrin-B1, ephrin-B2, and EphB4 are essential for the normal morphogenesis of the embryonic vasculature into a sophisticated network of arteries, veins, and capillaries. Initial studies indicate that these molecules are also angiogenic in tumors, and as such represent important new targets for the development of chemotherapeutic treatments.
Collapse
Affiliation(s)
- Masaru Nakamoto
- Department of Neurosciences/NC30, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
82
|
Hynds DL, Snow DM. A semi-automated image analysis method to quantify neurite preference/axon guidance on a patterned substratum. J Neurosci Methods 2002; 121:53-64. [PMID: 12393161 DOI: 10.1016/s0165-0270(02)00231-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Axon outgrowth and guidance are differentially promoted or inhibited by specific extracellular matrix (ECM) molecules. The effects of these molecules can be examined by culturing neuronal explants on patterned substrata consisting of alternating stripes adsorbed with the molecules of interest. While outgrowth on substrata adsorbed with homogenous molecules can be reliably quantified, current methods of quantifying neurite preference on patterned substrata are subjective, labor intensive, and overall less reliable. Here, we present a quick, semi-automated, lowly subjective macro-based method to quantify the effects of a change in substratum on axon extension and guidance. We plated chick dorsal root ganglion explants on a substratum consisting of alternating stripes of laminin-1 (outgrowth supportive) and chondroitin sulfate proteoglycans (CSPGs, outgrowth inhibitory). We evaluated neurite preference for laminin or CSPG-coated regions by measuring total neurite area, and produced an inhibition index. The quantitative data confirmed previous qualitative data showing that increasing concentrations of CSPGs induced increases in inhibition. The methods presented here: (1) require less stringent image capture criteria; (2) are quicker; (3) are less subjective compared to previously described methods; and (4) are versatile in that they can be used to assay neurite preference for any substratum-bound molecules in living or fixed cultures.
Collapse
Affiliation(s)
- DiAnna L Hynds
- Department of Anatomy and Neurobiology, University of Kentucky, MN 238 UKMC, 800 Rose Street, Lexington, KY 40536-0298, USA.
| | | |
Collapse
|
83
|
Shimoyama M, Matsuoka H, Nagata A, Iwata N, Tamekane A, Okamura A, Gomyo H, Ito M, Jishage KI, Kamada N, Suzuki H, Tetsuo Noda T, Matsui T. Developmental expression of EphB6 in the thymus: lessons from EphB6 knockout mice. Biochem Biophys Res Commun 2002; 298:87-94. [PMID: 12379224 DOI: 10.1016/s0006-291x(02)02399-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A member of the largest family of receptor protein kinases, EphB6, lacks its intrinsic kinase activity, but it is expressed in normal human tissues. To investigate the physiological function of EphB6, we generated EphB6 deficient mice. EphB6(-/-) mice developed normally, revealed no abnormality in general appearance, and were fertile. Although a developmental increase of EphB6 in the fetal thymus was confirmed, T-cell development in various lymphoid organs of EphB6(-/-) mice was comparable to those of EphB6(+/+). Even in fetal thymus organ cultures, any developmental differences of EphB6(-/-) and EphB6(+/+) thymocytes were undetectable. The different binding characteristics to ephrin-Fc proteins between EphB6(-/-) and EphB6(+/+) thymocytes demonstrated that ephrin-B2 is the unique ligand for EphB6 among eight known ephrins. While EphB6 was a dominant receptor that binds to ephrin-B2 in adult thymocytes, fetal ones also expressed another EphB that binds to ephrin-B2. Overlapping expression of the EphB subfamily in the fetal thymus might compensate for the loss of EphB6 during the thymic development.
Collapse
Affiliation(s)
- Manabu Shimoyama
- Division of Hematology/Oncology, Department of Medicine, Kobe University School of Medicine, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
St John JA, Pasquale EB, Key B. EphA receptors and ephrin-A ligands exhibit highly regulated spatial and temporal expression patterns in the developing olfactory system. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 138:1-14. [PMID: 12234653 DOI: 10.1016/s0165-3806(02)00454-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The spatiotemporal expression patterns of the chemorepulsive EphA receptors, EphA4 and EphA7, and three ephrins-A2, A4 and A5, were examined in the developing rat primary olfactory system. Unlike the visual system that has simple and stable gradients of Ephs and ephrins, the olfactory system demonstrates complex spatiotemporal expression patterns of these molecules. Using immunohistochemistry, we demonstrate that expression of these molecules is dynamic and tightly regulated both within and between different cell types. We reveal restricted targeting of these proteins within subcellular compartments of some neurons. EphA4, ephrin-A2 and ephrin-A5 were expressed by primary olfactory axons during the embryonic formation of the olfactory nerve. There were no gradients in expression along the rostrocaudal or ventrodorsal axes in the nasal cavity and olfactory bulb. However, during the early neonatal period, axons expressing different levels of ephrin-A5 sorted out and terminated in a subpopulation of glomeruli that were mosaically dispersed throughout the bulb. The expression of EphA4 and ephrin-A2 was dramatically down-regulated on all axons during the early neonatal period of glomerular formation. The uniform co-expression of receptors and ligands before glomerular formation suggests they play a generic role in axon-axon interactions in the olfactory nerve and nerve fibre layer. In contrast, loss of EphA4 from axons during glomerular formation may facilitate the interaction of ephrin-A5 with Eph receptors on target cells in the bulb. While EphA4, EphA5 and EphA7 are not mosaically expressed by bulbar neurons, other Eph receptors may have expression patterns complementary to the ephrin-A5-positive subpopulation of glomeruli.
Collapse
Affiliation(s)
- James A St John
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, The University of Queensland, 4072, Brisbane, Australia.
| | | | | |
Collapse
|
85
|
Mann F, Ray S, Harris W, Holt C. Topographic mapping in dorsoventral axis of the Xenopus retinotectal system depends on signaling through ephrin-B ligands. Neuron 2002; 35:461-73. [PMID: 12165469 DOI: 10.1016/s0896-6273(02)00786-9] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Ephrin-B and EphB are distributed in matching dorsoventral gradients in the embryonic Xenopus visual system with retinal axons bearing high levels of ligand (dorsal) projecting to tectal regions with high receptor expression (ventral). In vitro stripe assays show that dorsal retinal axons prefer to grow on EphB receptor stripes supporting an attractive guidance mechanism. In vivo disruption of EphB/ephrin-B function by application of exogenous EphB or expression of dominant-negative ephrin-B ligand in dorsal retinal axons causes these axons to shift dorsally in the tectum, while misexpression of wild-type ephrin-B in ventral axons causes them to shift ventrally. These dorsoventral targeting errors are consistent with the hypothesis that an attractive mechanism that requires ephrin-B cytoplasmic domain is critical for retinotectal mapping in this axis.
Collapse
Affiliation(s)
- Fanny Mann
- Department of Anatomy, University of Cambridge, Downing Street, Cambridge CB2 3DY, United Kingdom.
| | | | | | | |
Collapse
|
86
|
Eberhart J, Swartz ME, Koblar SA, Pasquale EB, Krull CE. EphA4 constitutes a population-specific guidance cue for motor neurons. Dev Biol 2002; 247:89-101. [PMID: 12074554 DOI: 10.1006/dbio.2002.0695] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Motor neurons in the ventral neural tube project axons specifically to their target muscles in the periphery. Although many of the transcription factors that specify motor neuron cell fates have been characterized, less is understood about the mechanisms that guide motor axons to their correct targets. We show that ectopic expression of EphA4 receptor tyrosine kinase alters the trajectories of a specific population of motor axons in the avian hindlimb. Most motor neurons in the medial portion of the lateral motor column (LMC) extend their axons aberrantly in the dorsal nerve trunk at the level of the crural plexus, in the presence of ectopic EphA4. This misrouting of motor axons is not accompanied by alterations in motor neuron identity, settling patterns in the neural tube, or the fasciculation of spinal nerves. However, ectopic EphA4 axons do make errors in pathway selection during sorting in the plexus at the base of the hindlimb. These results suggest that EphA4 in motor neurons acts as a population-specific guidance cue to control the dorsal trajectory of their axons in the hindlimb.
Collapse
Affiliation(s)
- J Eberhart
- Biological Sciences, University of Missouri, Columbia 65211, USA
| | | | | | | | | |
Collapse
|
87
|
Kullander K, Klein R. Mechanisms and functions of Eph and ephrin signalling. Nat Rev Mol Cell Biol 2002; 3:475-86. [PMID: 12094214 DOI: 10.1038/nrm856] [Citation(s) in RCA: 889] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Klas Kullander
- AstraZeneca Transgenics & Comparative Genomics, S-431 83 Mölndal, Sweden.
| | | |
Collapse
|
88
|
Abstract
Eph receptors and their membrane-anchored ephrin ligands are thought to orchestrate cell movements by transducing bidirectional tyrosine-kinase-mediated signals into both cells expressing the receptors and cells expressing the ligands. Whether the resulting event is repulsion of an axonal growth cone, directing the orderly segmentation of hindbrain rhombomere cells or controlling angiogenic remodelling, such elaborate and diverse cell movements require intricate changes in the actin cytoskeleton, as well as precise regulation of cellular adhesion. Recent work by several groups has begun to link ephrin reverse signals to intracellular pathways that regulate actin dynamics and might help to explain how these ligands function as receptors to direct cell movement, adhesion and de-adhesion events.
Collapse
Affiliation(s)
- Chad A Cowan
- Center for Developmental Biology, Kent Waldrep Foundation Center for Basic Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, TX 75390-9133, USA.
| | | |
Collapse
|
89
|
Abstract
The ephrins and their Eph receptors have emerged as repulsive cues for growing axons during the past decade. Since then, great effort has been made to understand the significance and mechanisms of Eph-mediated repulsion. More recently, it has become clear that ephrins perform in many more developmental processes than the repulsion-dependent establishment of topography in the nervous system. As numerous studies suggest functions more akin to adhesion or attraction than to repulsion, increasing attention is now being paid to the intracellular mechanisms that might explain this duality.
Collapse
Affiliation(s)
- Johan Holmberg
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | | |
Collapse
|
90
|
Cloutier JF, Giger RJ, Koentges G, Dulac C, Kolodkin AL, Ginty DD. Neuropilin-2 mediates axonal fasciculation, zonal segregation, but not axonal convergence, of primary accessory olfactory neurons. Neuron 2002; 33:877-92. [PMID: 11906695 DOI: 10.1016/s0896-6273(02)00635-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The mechanisms that underlie axonal pathfinding of vomeronasal neurons from the vomeronasal organ (VNO) in the periphery to select glomeruli in the accessory olfactory bulb (AOB) are not well understood. Neuropilin-2, a receptor for secreted semaphorins, is expressed in V1R- and V3R-expressing, but not V2R-expressing, postnatal vomeronasal neurons. Analysis of the vomeronasal nerve in neuropilin-2 (npn-2) mutant mice reveals pathfinding defects at multiple choice points. Vomeronasal sensory axons are severely defasciculated and a subset innervates the main olfactory bulb (MOB). While most axons of V1R-expressing neurons reach the AOB and converge into distinct glomeruli in stereotypic locations, they are no longer restricted to their normal anterior AOB target zone. Thus, Npn-2 and candidate pheromone receptors play distinct and complementary roles in promoting the wiring and patterning of sensory neurons in the accessory olfactory system.
Collapse
Affiliation(s)
- Jean François Cloutier
- Department of Neuroscience, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
91
|
Abstract
The Eph family of receptor tyrosine kinases and their 'ligands', the ephrins, have been implicated in a large number of developmental processes, such as boundary formation, cell migration, axon guidance and vasculogenesis. A characteristic of the EphB subclass is that both EphBs and transmembrane-anchored ephrin-Bs function as receptors and as ligands, a phenomenon commonly described as 'bi-directional signalling'. Here we review recent data indicating that EphA receptors and glycosylphosphatidylinositol (GPI)-anchored ephrin-As can also mediate bi-directional signalling. Moreover, characterization of the expression of ephrin-As on axons of the retinotectal and vomeronasal projections suggests that the EphA subfamily is involved in both repulsive and attractive guidance mechanisms during establishment of neuronal connections.
Collapse
Affiliation(s)
- Bernd Knöll
- MRC Centre for Developmental Neurobiology, King's College London, 4th Floor, New Hunt's House, London, UK
| | | |
Collapse
|
92
|
Elowe S, Holland SJ, Kulkarni S, Pawson T. Downregulation of the Ras-mitogen-activated protein kinase pathway by the EphB2 receptor tyrosine kinase is required for ephrin-induced neurite retraction. Mol Cell Biol 2001; 21:7429-41. [PMID: 11585923 PMCID: PMC99915 DOI: 10.1128/mcb.21.21.7429-7441.2001] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of the EphB2 receptor tyrosine kinase by clustered ephrin-B1 induces growth cone collapse and neurite retraction in differentiated NG108 neuronal cells. We have investigated the cytoplasmic signaling events associated with EphB2-induced cytoskeletal reorganization in these neuronal cells. We find that unlike other receptor tyrosine kinases, EphB2 induces a pronounced downregulation of GTP-bound Ras and consequently of the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway. A similar inhibition of the Ras-MAPK pathway was observed on stimulation of endogenous EphB2 in COS-1 cells. Inactivation of Ras, induced by ephrin B1 stimulation of NG108 neuronal cells, requires EphB2 tyrosine kinase activity and is blocked by a truncated form of p120-Ras GTPase-activating protein (p120-RasGAP), suggesting that EphB2 signals through the SH2 domain protein p120-RasGAP to inhibit the Ras-MAPK pathway. Suppression of Ras activity appears functionally important, since expression of a constitutively active variant of Ras impaired the ability of EphB2 to induce neurite retraction. In addition, EphB2 attenuated the elevation in ERK activation induced by attachment of NG108 cells to fibronectin, indicating that the EphB2 receptor can modulate integrin signaling to the Ras GTPase. These results suggest that a primary function of EphB2, a member of the most populous family of receptor tyrosine kinases, is to inactivate the Ras-MAPK pathway in a fashion that contributes to cytoskeletal reorganization and adhesion responses in neuronal growth cones.
Collapse
Affiliation(s)
- S Elowe
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | | | | | |
Collapse
|
93
|
Knöll B, Isenmann S, Kilic E, Walkenhorst J, Engel S, Wehinger J, Bähr M, Drescher U. Graded expression patterns of ephrin-As in the superior colliculus after lesion of the adult mouse optic nerve. Mech Dev 2001; 106:119-27. [PMID: 11472840 DOI: 10.1016/s0925-4773(01)00431-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The idea has been put forward that molecules and mechanisms acting during development are re-used during regeneration in the adult, for example in response to traumatic injury in order to re-establish the functional integrity of neuronal circuits. Members of the Eph family of receptor tyrosine kinases and their 'ligands', the ephrins, play a prominent role during development of the retinocollicular projection in rodents, where EphA receptors and ephrin-As are expressed in gradients in both the retina and the superior colliculi (SC). We were interested in investigating whether EphA family members are also expressed or re-expressed in the adult after optic nerve lesion, since the presence of axon guidance information is an important prerequisite for a topographically appropriate re-connection by retinal ganglion cell (RGC) axons. This analysis was encouraged by results showing that RGC axons do not exert guidance preferences in response to membranes from adult unlesioned SC, but in response to membranes from the adult deafferented SC. We found a graded expression pattern of ephrin-As in the SC both before and after deafferentation, which was remarkably similar to those found during development. EphA receptor levels were reduced in the SC after deafferentation and the expression patterns of the EphB family were not changed. In particular, the presence of a graded ephrin-A expression in the deafferented SC suggests that - if robust regeneration of RGC axons can be achieved - topographic guidance information as a likely requirement for a functionally successful re-establishment of the retinocollicular projection is available.
Collapse
Affiliation(s)
- B Knöll
- Department of Physical Biology, Max-Planck-Institute for Developmental Biology, Spemannstrasse 35, 72076, Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|