51
|
Ram BM, Ramakrishna G. Endoplasmic reticulum vacuolation and unfolded protein response leading to paraptosis like cell death in cyclosporine A treated cancer cervix cells is mediated by cyclophilin B inhibition. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2497-512. [DOI: 10.1016/j.bbamcr.2014.06.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 06/10/2014] [Accepted: 06/27/2014] [Indexed: 01/29/2023]
|
52
|
Jung CH, Lim JH, Lee K, Im H. An Endoplasmic Reticulum Cyclophilin Cpr5p Rescues Z-type α 1-Antitrypsin from Retarded Folding. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.9.2781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
53
|
Chou HC, Chan HL. Effect of glutathione reductase knockdown in response to UVB-induced oxidative stress in human lung adenocarcinoma. Proteome Sci 2014; 12:2. [PMID: 24405781 PMCID: PMC3905656 DOI: 10.1186/1477-5956-12-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 12/03/2013] [Indexed: 01/19/2023] Open
Abstract
Background Glutathione reductase (GR) plays a critical role in the maintenance of physiological redox status in cells. However, the comprehensive investigations of GR-modulated oxidative stress have not been reported. Methods In the present study, we cultured a human lung adenocarcinoma line CL1-0 and its GR-knockdown derivative CL1-0ΔGR to evaluate their differential responses to UVB-irradiation. Results We identified 18 proteins that showed significant changes under UVB-irradiation in CL1-0ΔGR cells rather than in CL1-0 cells. Several proteins involving protein folding, metabolism, protein biosynthesis and redox regulation showed significant changes in expression. Conclusions In summary, the current study used a comprehensive lung adenocarcinoma-based proteomic approach for the identification of GR-modulated protein expression in response to UVB-irradiation. To our knowledge, this is the first global proteomic analysis to investigate the role of GR under UVB-irradiation in mammalian cell model.
Collapse
Affiliation(s)
| | - Hong-Lin Chan
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
54
|
Choi JW, Schroeder MA, Sarkaria JN, Bram RJ. Cyclophilin B supports Myc and mutant p53-dependent survival of glioblastoma multiforme cells. Cancer Res 2013; 74:484-96. [PMID: 24272483 DOI: 10.1158/0008-5472.can-13-0771] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glioblastoma multiforme is an aggressive, treatment-refractory type of brain tumor for which effective therapeutic targets remain important to identify. Here, we report that cyclophilin B (CypB), a prolyl isomerase residing in the endoplasmic reticulum (ER), provides an essential survival signal in glioblastoma multiforme cells. Analysis of gene expression databases revealed that CypB is upregulated in many cases of malignant glioma. We found that suppression of CypB reduced cell proliferation and survival in human glioblastoma multiforme cells in vitro and in vivo. We also found that treatment with small molecule inhibitors of cyclophilins, including the approved drug cyclosporine, greatly reduced the viability of glioblastoma multiforme cells. Mechanistically, depletion or pharmacologic inhibition of CypB caused hyperactivation of the oncogenic RAS-mitogen-activated protein kinase pathway, induction of cellular senescence signals, and death resulting from loss of MYC, mutant p53, Chk1, and Janus-activated kinase/STAT3 signaling. Elevated reactive oxygen species, ER expansion, and abnormal unfolded protein responses in CypB-depleted glioblastoma multiforme cells indicated that CypB alleviates oxidative and ER stresses and coordinates stress adaptation responses. Enhanced cell survival and sustained expression of multiple oncogenic proteins downstream of CypB may thus contribute to the poor outcome of glioblastoma multiforme tumors. Our findings link chaperone-mediated protein folding in the ER to mechanisms underlying oncogenic transformation, and they make CypB an attractive and immediately targetable molecule for glioblastoma multiforme therapy.
Collapse
Affiliation(s)
- Jae Won Choi
- Authors' Affiliations: Departments of Immunology, Radiation Oncology, and Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | | | | | | |
Collapse
|
55
|
Jeong K, Kim H, Kim K, Kim SJ, Hahn BS, Jahng GH, Yoon KS, Kim SS, Ha J, Kang I, Choe W. Cyclophilin B is involved in p300-mediated degradation of CHOP in tumor cell adaptation to hypoxia. Cell Death Differ 2013; 21:438-50. [PMID: 24270407 DOI: 10.1038/cdd.2013.164] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 09/17/2013] [Accepted: 10/01/2013] [Indexed: 11/09/2022] Open
Abstract
The regulation of CCAAT/enhancer-binding protein-homologous protein (CHOP), an endoplasmic reticulum (ER) stress-response factor, is key to cellular survival. Hypoxia is a physiologically important stress that induces cell death in the context of the ER, especially in solid tumors. Although our previous studies have suggested that Cyclophilin B (CypB), a molecular chaperone, has a role in ER stress, currently, there is no direct information supporting its mechanism under hypoxia. Here, we demonstrate for the first time that CypB is associated with p300 E4 ligase, induces ubiquitination and regulates the proteasomal turnover of CHOP, one of the well-known pro-apoptotic molecules under hypoxia. Our findings show that CypB physically interacts with the N-terminal α-helix domain of CHOP under hypoxia and cooperates with p300 to modulate the ubiquitination of CHOP. We also show that CypB is transcriptionally induced through ATF6 under hypoxia. Collectively, these findings demonstrate that CypB prevents hypoxia-induced cell death through modulation of ubiquitin-mediated CHOP protein degradation, suggesting that CypB may have an important role in the tight regulation of CHOP under hypoxia.
Collapse
Affiliation(s)
- K Jeong
- Department of Biochemistry and Molecular Biology (BK21 project), Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - H Kim
- Department of Biochemistry and Molecular Biology (BK21 project), Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - K Kim
- Department of Biochemistry and Molecular Biology (BK21 project), Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - S-J Kim
- Neurodegeneration Control Research Center, School of Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - B-S Hahn
- Department of Genetic Engineering, Kyung Hee University, Seoul, Korea
| | - G-H Jahng
- Department of Radiology, Kyung Hee University Hospital-Gangdong, School of Medicine, Kyung Hee University, Seoul 134-727, Korea
| | - K-S Yoon
- Department of Biochemistry and Molecular Biology (BK21 project), Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - S S Kim
- Department of Biochemistry and Molecular Biology (BK21 project), Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - J Ha
- Department of Biochemistry and Molecular Biology (BK21 project), Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - I Kang
- Department of Biochemistry and Molecular Biology (BK21 project), Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - W Choe
- Department of Biochemistry and Molecular Biology (BK21 project), Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul 130-701, Korea
| |
Collapse
|
56
|
Carbonyl reductase 1 is an essential regulator of skeletal muscle differentiation and regeneration. Int J Biochem Cell Biol 2013; 45:1784-93. [DOI: 10.1016/j.biocel.2013.05.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/10/2013] [Accepted: 05/21/2013] [Indexed: 02/07/2023]
|
57
|
Landau G, Kodali VK, Malhotra JD, Kaufman RJ. Detection of Oxidative Damage in Response to Protein Misfolding in the Endoplasmic Reticulum. Methods Enzymol 2013; 526:231-50. [DOI: 10.1016/b978-0-12-405883-5.00014-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
58
|
Aminzadeh MA, Sato T, Vaziri ND. Participation of endoplasmic reticulum stress in the pathogenesis of spontaneous glomerulosclerosis--role of intra-renal angiotensin system. Transl Res 2012; 160:309-18. [PMID: 22683418 DOI: 10.1016/j.trsl.2012.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 02/11/2012] [Accepted: 03/09/2012] [Indexed: 01/13/2023]
Abstract
Endoplasmic reticulum (ER) is the site of synthesis, folding, assembly, and degradation of proteins. Disruption of ER function leads to ER stress, which is marked by accumulation of unfolded proteins in the ER lumen. Detection of unfolded proteins by the ER membrane receptors triggers the "unfolded protein response (UPR)" designed to restore ER function via activation of the adaptive/cytoprotective responses. Failure of UPR or persistent stress triggers activation of ER stress-mediated apoptotic pathway. Several in vivo and in vitro studies have demonstrated the association of ER stress with glomerular diseases. Imai rats develop progressive glomerulosclerosis (GS), which is associated with oxidative stress, inflammation and activation of intra-renal angiotensin system, and can be prevented by AT-1 receptor blockade (ARB). Since persistent oxidative and inflammatory stresses trigger ER stress-induced apoptosis and tissue injury, we hypothesized that kidneys in the Imai rats may exhibit failure of the adaptive and activation of the apoptotic ER stress responses, which could be prevented by ARB. To this end 10-week old Imai rats were randomized to untreated and ARB-treated groups and observed for 24 weeks. At age 34 weeks, untreated rats showed heavy proteinuria, azotemia, advanced GS, impaired ER stress adaptive/cytoprotective responses (depletion of UPR-mediating proteins), and activation of ER stress apoptotic responses. ARB treatment attenuated GS, suppressed intra-renal oxidative stress, restored ER-associated adaptive/cytoprotective system, and prevented the ER stress mediated apoptotic response in this model. Thus, progressive GS in Imai rats is accompanied by activation of ER stress-associated apoptosis, which can be prevented by ARB.
Collapse
Affiliation(s)
- Mohammad A Aminzadeh
- Division of Nephrology and Hypertension, University of California Irvine, Irvine, CA, USA
| | | | | |
Collapse
|
59
|
Suk K. Proteomic analysis of glioma chemoresistance. Curr Neuropharmacol 2012; 10:72-9. [PMID: 22942880 PMCID: PMC3286849 DOI: 10.2174/157015912799362733] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 06/09/2011] [Accepted: 06/24/2011] [Indexed: 12/16/2022] Open
Abstract
Malignant glioma is the most common and destructive form of primary brain tumor. Along with surgery and radiation, chemotherapy remains as the major treatment modality. The emergence of drug resistance, however, often leads to a therapeutic failure in the treatment of glioma, precluding long-term survival of the patients. A proteomic approach has recently been adapted for the mechanistic analysis of glioma drug resistance. The proteomic analysis of drug-resistant glioma led to the discovery of novel biomarkers that can be used for the prognosis of glioma as well as for monitoring the drug response or resistance of glioma. These proteomics-based biomarkers can also be a druggable target that one can exploit for successful glioma chemotherapy. In this review, recent reports on proteomic analysis of glioma from the perspective of chemoresistance are discussed with a focus on the proteome profiles of glioma cells that are resistant to the alkylating agent, 1, 3-bis (2-chloroethyl)-1-nitrosourea (BCNU), as a prime example. Among numerous proteins that were up- or down-regulated in drug-resistant glioma cells, lipocalin 2 (LCN2) and integrin β3 (ITGB3) were identified as key proteins that determine the survival and death of glioma cells. LCN2, ITGB3, and other proteins identified by proteomic analysis could be utilized to overcome glioma chemoresistance.
Collapse
Affiliation(s)
- Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, Kyungpook National University School of Medicine, Daegu, Korea
| |
Collapse
|
60
|
Jang M, Kim Y, Won H, Lim S, K R J, Dashdorj A, Min YH, Kim SY, Shokat KM, Ha J, Kim SS. Carbonyl reductase 1 offers a novel therapeutic target to enhance leukemia treatment by arsenic trioxide. Cancer Res 2012; 72:4214-24. [PMID: 22719067 DOI: 10.1158/0008-5472.can-12-1110] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Arsenic trioxide (As2O3) is used, in current practice, as an effective chemotherapeutic agent for acute promyelocytic leukemia (APL). However, the side effects and relatively low efficacy of As2O3 in treating other leukemias have limited its wider use in therapeutic applications. In the present study, we found that the expression of carbonyl reductase 1 (CBR1) affects the resistance to As2O3 in leukemias, including APL; As2O3 upregulated CBR1 expression at the transcriptional level by stimulating the activity of the transcription factor activator protein-1. Moreover, CBR1 overexpression was sufficient to protect cells against As2O3 through modulation of the generation of reactive oxygen species, whereas the attenuation of CBR1 was sufficient to sensitize cells to As2O3. A combination treatment with the specific CBR1 inhibitor hydroxy-PP-Me remarkably increased As2O3-induced apoptotic cell death compared with As2O3 alone, both in vitro and in vivo. These results were confirmed in primary cultured human acute and chronic myeloid leukemia cells, with no significant cell death observed in normal leukocytes. Taken together, our findings indicate that CBR1 contributes to the low efficacy of As2O3 and, therefore, is a rational target for the development of combination chemotherapy with As2O3 in diverse leukemias including APL.
Collapse
Affiliation(s)
- Miran Jang
- Department of Biochemistry and Molecular Biology (BK21 project), Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Jansen G, Määttänen P, Denisov AY, Scarffe L, Schade B, Balghi H, Dejgaard K, Chen LY, Muller WJ, Gehring K, Thomas DY. An interaction map of endoplasmic reticulum chaperones and foldases. Mol Cell Proteomics 2012; 11:710-23. [PMID: 22665516 DOI: 10.1074/mcp.m111.016550] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chaperones and foldases in the endoplasmic reticulum (ER) ensure correct protein folding. Extensive protein-protein interaction maps have defined the organization and function of many cellular complexes, but ER complexes are under-represented. Consequently, chaperone and foldase networks in the ER are largely uncharacterized. Using complementary ER-specific methods, we have mapped interactions between ER-lumenal chaperones and foldases and describe their organization in multiprotein complexes. We identify new functional chaperone modules, including interactions between protein-disulfide isomerases and peptidyl-prolyl cis-trans-isomerases. We have examined in detail a novel ERp72-cyclophilin B complex that enhances the rate of folding of immunoglobulin G. Deletion analysis and NMR reveal a conserved surface of cyclophilin B that interacts with polyacidic stretches of ERp72 and GRp94. Mutagenesis within this highly charged surface region abrogates interactions with its chaperone partners and reveals a new mechanism of ER protein-protein interaction. This ability of cyclophilin B to interact with different partners using the same molecular surface suggests that ER-chaperone/foldase partnerships may switch depending on the needs of different substrates, illustrating the flexibility of multichaperone complexes of the ER folding machinery.
Collapse
Affiliation(s)
- Gregor Jansen
- Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Release of overexpressed CypB activates ERK signaling through CD147 binding for hepatoma cell resistance to oxidative stress. Apoptosis 2012; 17:784-96. [DOI: 10.1007/s10495-012-0730-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
63
|
Dube H, Selwood D, Malouitre S, Capano M, Simone M, Crompton M. A mitochondrial-targeted cyclosporin A with high binding affinity for cyclophilin D yields improved cytoprotection of cardiomyocytes. Biochem J 2012; 441:901-7. [PMID: 22035570 PMCID: PMC3260541 DOI: 10.1042/bj20111301] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 10/26/2011] [Accepted: 10/28/2011] [Indexed: 01/11/2023]
Abstract
Mitochondrial CyP-D (cyclophilin-D) catalyses formation of the PT (permeability transition) pore, a key lesion in the pathogenesis of I/R (ischaemia/reperfusion) injury. There is evidence [Malouitre, Dube, Selwood and Crompton (2010) Biochem. J. 425, 137-148] that cytoprotection by the CyP inhibitor CsA (cyclosporin A) is improved by selective targeting to mitochondria. To investigate this further, we have developed an improved mtCsA (mitochondrial-targeted CsA) by modifying the spacer linking the CsA to the TPP+ (triphenylphosphonium) (mitochondrial-targeting) cation. The new mtCsA exhibits an 18-fold increase in binding affinity for CyP-D over the prototype and a 12-fold increase in potency of inhibition of the PT in isolated mitochondria, owing to a marked decrease in non-specific binding. The cytoprotective capacity was assessed in isolated rat cardiomyocytes subjected to transient glucose and oxygen deprivation (pseudo-I/R). The new mtCsA was maximally effective at lower concentrations than CsA (3-15 nM compared with 50-100 nM) and yielded improved cytoprotection for up to 3 h following the pseudo-ischaemic insult (near complete compared with 40%). These data indicate the potential value of selective CyP-D inhibition in cytoprotection.
Collapse
Key Words
- cyclophilin d (cyp-d)
- cyclosporin
- ischaemia
- mitochondrial targeting
- reperfusion injury (ri)
- triphenylphosphonium (tpp+)
- csa, cyclosporin a
- cyp, cyclophilin
- dcm, dichloromethane
- dmf, dimethylformamide
- esi, electrospray ionization
- fmoc, fluoren-9-ylmethoxycarbonyl
- hatu, 2-(7-aza-1h-benzotriazole-1-yl-1)-1,3,3-tetramethyluronium hexafluorophosphate
- i/r, ischaemia/reperfusion
- lc, liquid chromatography
- mtcsa, mitochondrial-targeted csa
- ppiase, peptidylprolyl cis–trans-isomerase
- pt, permeability transition
- pybop, benzotriazol-1-yl-tris-pyrrolidinophosphonium hexafluorophosphate
- ri, reperfusion injury
- smbz-csa, [sarcosine-3(4-methylbenzoate)]-csa
- thf, tetrahydrofuran
- tof, time-of-flight
- tpp+, triphenylphosphonium
Collapse
Affiliation(s)
- Henry Dube
- *Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, U.K
| | - David Selwood
- *Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, U.K
| | - Sylvanie Malouitre
- †Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Michela Capano
- †Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Michela I. Simone
- *Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, U.K
| | - Martin Crompton
- †Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
64
|
Won H, Lim S, Jang M, Kim Y, Rashid MA, Jyothi KR, Dashdorj A, Kang I, Ha J, Kim SS, Ha H. Peroxiredoxin-2 upregulated by NF-κB attenuates oxidative stress during the differentiation of muscle-derived C2C12 cells. Antioxid Redox Signal 2012; 16:245-61. [PMID: 21902453 DOI: 10.1089/ars.2011.3952] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIM Many studies have reported that the generation of reactive oxygen species (ROS) increases during the differentiation of muscle-derived C2C12 cells. Peroxiredoxin-2 (Prx-2) is an abundant mammalian enzyme that protects against oxidative stress. However, the role of Prx-2 in muscle differentiation has not been investigated. RESULTS In this study, we demonstrated that Prx-2 expression increases during muscle differentiation and regeneration in response to exogenous H(2)O(2). This increase occurs only in myoblast cell lines because no increase in Prx-2 expression was observed in the NIH3T3, MEF, Chang, or HEK293 cell lines. The antioxidants, N-acetyl L-cysteine (NAC) and 4,5-dihydroxy-1,3-benzenedisulfonic acid (Tiron), both suppressed myogenesis and Prx-2 expression. Moreover, Prx-2 was upregulated at the transcriptional level by NF-κB during the differentiation of muscle-derived C2C12 cells. We also found that inhibition of phosphatidylinositol 3-kinase (PI3K) blocks NF-κB activation and suppresses Prx-2 expression. Interestingly, Prx-2 knockdown increased the expression levels of other antioxidant enzymes, including all of the other Prx family member, thioredoxin-1 (Trx-1) and catalase, but also enhanced the accumulation of endogenous ROS during muscle differentiation. INNOVATION In this study, we demonstrated for the first time that Prx-2 is unregulated during the muscle differentiation and regeneration. CONCLUSION Prx-2 is upregulated via the PI3K/NF-κB pathway and attenuates oxidative stress during muscle differentiation and regeneration.
Collapse
Affiliation(s)
- Hyeran Won
- Department of Biochemistry and Molecular Biology (BK21 project), Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Liu GL, Yu F, Dai DZ, Zhang GL, Zhang C, Dai Y. Endoplasmic reticulum stress mediating downregulated StAR and 3-beta-HSD and low plasma testosterone caused by hypoxia is attenuated by CPU86017-RS and nifedipine. J Biomed Sci 2012; 19:4. [PMID: 22226148 PMCID: PMC3276427 DOI: 10.1186/1423-0127-19-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 01/08/2012] [Indexed: 11/26/2022] Open
Abstract
Background Hypoxia exposure initiates low serum testosterone levels that could be attributed to downregulated androgen biosynthesizing genes such as StAR (steroidogenic acute regulatory protein) and 3-beta-HSD (3-beta-hydroxysteroid dehydrogenase) in the testis. It was hypothesized that these abnormalities in the testis by hypoxia are associated with oxidative stress and an increase in chaperones of endoplasmic reticulum stress (ER stress) and ER stress could be modulated by a reduction in calcium influx. Therefore, we verify that if an application of CPU86017-RS (simplified as RS, a derivative to berberine) could alleviate the ER stress and depressed gene expressions of StAR and 3-beta-HSD, and low plasma testosterone in hypoxic rats, these were compared with those of nifedipine. Methods Adult male Sprague-Dawley rats were randomly divided into control, hypoxia for 28 days, and hypoxia treated (mg/kg, p.o.) during the last 14 days with nifedipine (Nif, 10) and three doses of RS (20, 40, 80), and normal rats treated with RS isomer (80). Serum testosterone (T) and luteinizing hormone (LH) were measured. The testicular expressions of biomarkers including StAR, 3-beta-HSD, immunoglobulin heavy chain binding protein (Bip), double-strand RNA-activated protein kinase-like ER kinase (PERK) and pro-apoptotic transcription factor C/EBP homologous protein (CHOP) were measured. Results In hypoxic rats, serum testosterone levels decreased and mRNA and protein expressions of the testosterone biosynthesis related genes, StAR and 3-beta-HSD were downregulated. These changes were linked to an increase in oxidants and upregulated ER stress chaperones: Bip, PERK, CHOP and distorted histological structure of the seminiferous tubules in the testis. These abnormalities were attenuated significantly by CPU86017-RS and nifedipine. Conclusion Downregulated StAR and 3-beta-HSD significantly contribute to low testosterone in hypoxic rats and is associated with ER stress which mediates testis damage caused by oxygen deprivation. CPU86017-RS is potential in ameliorating hypoxia-induced testicular injuries, possibly by its calcium antagonist effects on the testis.
Collapse
Affiliation(s)
- Gui-Lai Liu
- Faculty of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | | | | | | | | | | |
Collapse
|
66
|
Kim Y, Jang M, Lim S, Won H, Yoon KS, Park JH, Kim HJ, Kim BH, Park WS, Ha J, Kim SS. Role of cyclophilin B in tumorigenesis and cisplatin resistance in hepatocellular carcinoma in humans. Hepatology 2011; 54:1661-1678. [PMID: 21748762 DOI: 10.1002/hep.24539] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED Cyclophilin B (CypB) performs diverse roles in living cells, but its role in hepatocellular carcinoma (HCC) is largely unclear. To reveal its role in HCC, we investigated the induction of CypB under hypoxia and its functions in tumor cells in vitro and in vivo. Here, we demonstrated that hypoxia-inducible factor 1α (HIF-1α) induces CypB under hypoxia. Interestingly, CypB protected tumor cells, even p53-defective HCC cells, against hypoxia- and cisplatin-induced apoptosis. Furthermore, it regulated the effects of HIF-1α, including those in angiogenesis and glucose metabolism, via a positive feedback loop with HIF-1α. The tumorigenic and chemoresistant effects of CypB were confirmed in vivo using a xenograft model. Finally, we showed that CypB is overexpressed in 78% and 91% of the human HCC and colon cancer tissues, respectively, and its overexpression in these cancers reduced patient survival. CONCLUSIONS These results indicate that CypB induced by hypoxia stimulates the survival of HCC via a positive feedback loop with HIF-1α, indicating that CypB is a novel candidate target for developing chemotherapeutic agents against HCC and colon cancer.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cisplatin/pharmacology
- Colonic Neoplasms/metabolism
- Colonic Neoplasms/pathology
- Cyclophilins/genetics
- Cyclophilins/metabolism
- Drug Resistance, Neoplasm/physiology
- Female
- Hep G2 Cells
- Humans
- Hydrogen Peroxide/pharmacology
- Hypoxia/pathology
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Oxidants/pharmacology
- Promoter Regions, Genetic/physiology
- STAT3 Transcription Factor/metabolism
- Vascular Endothelial Growth Factor A/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yeonghwan Kim
- Department of Biochemistry and Molecular Biology (BK21 project), Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Cyclosporine A suppresses immunoglobulin G biosynthesis via inhibition of cyclophilin B in murine hybridomas and B cells. Int Immunopharmacol 2011; 12:42-9. [PMID: 22032839 DOI: 10.1016/j.intimp.2011.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/09/2011] [Accepted: 10/11/2011] [Indexed: 12/20/2022]
Abstract
Immunoglubulin G (IgG) is a major isotype of antibody, which is predominantly involved in immune response. The complete tetramer is needed to fold and assemble in endoplasmic reticulum (ER) prior to secretion from cells. Protein quality control guided by ER chaperons is most essential for full biological activity. Cyclophilin B (CypB) was initially identified as a high-affinity binding protein for the immunosuppressive drug Cyclosporine A (CsA). CsA suppresses organ rejection by halting productions of pro-inflammatory molecules in T cell and abolishes the enzymatic property of CypB that accelerates the folding of proteins by catalysing the isomerization of peptidyl-proline bonds in ER. Here, we reported that CsA significantly inhibited IgG biosynthesis at posttranslational level in antibody secreting cells. Moreover, CsA stimulated the extracellular secretion of CypB and induced ROS generation, leading to expressions of ER stress markers. In addition, the absence of intracellular CypB impaired the formation of ER multiprotein complex, which is most important for resisting ER stress. Interestingly, CsA interrupted IgG folding via occupying the PPIase domain of CypB in ER. Eventually, unfolded IgG is degraded via Herp-dependent ERAD pathway. Furthermore, IgG biosynthesis was really abrogated by inhibition of CypB in primary B cells. We established for the first time the immunosuppressive effect of CsA on B cells. Conclusively, the combined results of the current study suggest that CypB is a pivotal molecule for IgG biosynthesis in ER quality control.
Collapse
|
68
|
Oh Y, Kim EY, Kim Y, Jin J, Jin BK, Jahng GH, Jung MH, Park C, Kang I, Ha J, Choe W. Neuroprotective effects of overexpressed cyclophilin B against Aβ-induced neurotoxicity in PC12 cells. Free Radic Biol Med 2011; 51:905-20. [PMID: 21683784 DOI: 10.1016/j.freeradbiomed.2011.05.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 05/16/2011] [Accepted: 05/24/2011] [Indexed: 11/28/2022]
Abstract
Accumulated amyloid-β (Aβ) is a well-known cause of neuronal apoptosis in Alzheimer disease and functions in part by generating oxidative stress. Our previous work suggested that cyclophilin B (CypB) protects against endoplasmic reticulum (ER) stress. Therefore, in this study we examined the ability of CypB to protect against Aβ toxicity. CypB is present in the neurons of rat and mouse brains, and treating neural cells with Aβ(25-35) mediates apoptotic cell death. Aβ(25-35)-induced neuronal toxicity was inhibited by the overexpression of CypB as measured by cell viability, apoptotic morphology, sub-G1 cell population, intracellular reactive oxygen species accumulation, activated caspase-3, PARP cleavage, Bcl-2 proteins, mitogen-activated protein kinase (MAPK) activation, and phosphoinositide 3-kinase (PI-3-K) activation. CypB/R95A PPIase mutants did not reduce Aβ(25-35) toxicity. We showed that Aβ(25-35)-induced apoptosis is more severe in a CypB knockdown model, confirming that CypB protects against Aβ(25-35)-induced toxicity. Consequently, these findings suggest that CypB may protect against Aβ toxicity by its antioxidant properties, by regulating MAPK and PI-3-K signaling, and through the ER stress pathway.
Collapse
Affiliation(s)
- Yoojung Oh
- Medical Science and Engineering Research Center for Bioreaction to Reactive Oxygen Species, Biomedical Science Institute (BK-21), Kyung Hee University, Seoul 134-727, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Lee S, Tak E, Lee J, Rashid MA, Murphy MP, Ha J, Kim SS. Mitochondrial H2O2 generated from electron transport chain complex I stimulates muscle differentiation. Cell Res 2011; 21:817-34. [PMID: 21445095 PMCID: PMC3203677 DOI: 10.1038/cr.2011.55] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 08/02/2010] [Accepted: 10/20/2010] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial reactive oxygen species (mROS) have been considered detrimental to cells. However, their physiological roles as signaling mediators have not been thoroughly explored. Here, we investigated whether mROS generated from mitochondrial electron transport chain (mETC) complex I stimulated muscle differentiation. Our results showed that the quantity of mROS was increased and that manganese superoxide dismutase (MnSOD) was induced via NF-κB activation during muscle differentiation. Mitochondria-targeted antioxidants (MitoQ and MitoTEMPOL) and mitochondria-targeted catalase decreased mROS quantity and suppressed muscle differentiation without affecting the amount of ATP. Mitochondrial alterations, including the induction of mitochondrial transcription factor A and an increase in the number and size of mitochondria, and functional activations were observed during muscle differentiation. In particular, increased expression levels of mETC complex I subunits and a higher activity of complex I than other complexes were observed. Rotenone, an inhibitor of mETC complex I, decreased the mitochondrial NADH/NAD(+) ratio and mROS levels during muscle differentiation. The inhibition of complex I using small interfering RNAs and rotenone reduced mROS levels, suppressed muscle differentiation, and depleted ATP levels with a concomitant increase in glycolysis. From these results, we conclude that complex I-derived O(2)·(-), produced through reverse electron transport due to enhanced metabolism and a high activity of complex I, was dismutated into H(2)O(2) by MnSOD induced via NF-κB activation and that the dismutated mH(2)O(2) stimulated muscle differentiation as a signaling messenger.
Collapse
Affiliation(s)
- Seonmin Lee
- Department of Biochemistry and Molecular Biology, Medical Science and Engineering Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute (BK-21), School of Medicine, Kyung Hee University, #1, Hoegi-dong, Dongdaemoon-gu, Seoul 130-701, Korea
| | - Eunyoung Tak
- Department of Biochemistry and Molecular Biology, Medical Science and Engineering Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute (BK-21), School of Medicine, Kyung Hee University, #1, Hoegi-dong, Dongdaemoon-gu, Seoul 130-701, Korea
| | - Jisun Lee
- Department of Biochemistry and Molecular Biology, Medical Science and Engineering Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute (BK-21), School of Medicine, Kyung Hee University, #1, Hoegi-dong, Dongdaemoon-gu, Seoul 130-701, Korea
| | - MA Rashid
- Department of Biochemistry and Molecular Biology, Medical Science and Engineering Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute (BK-21), School of Medicine, Kyung Hee University, #1, Hoegi-dong, Dongdaemoon-gu, Seoul 130-701, Korea
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, UK
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, Medical Science and Engineering Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute (BK-21), School of Medicine, Kyung Hee University, #1, Hoegi-dong, Dongdaemoon-gu, Seoul 130-701, Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, Medical Science and Engineering Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute (BK-21), School of Medicine, Kyung Hee University, #1, Hoegi-dong, Dongdaemoon-gu, Seoul 130-701, Korea
| |
Collapse
|
70
|
Fearon P, Lonsdale-Eccles AA, Ross OK, Todd C, Sinha A, Allain F, Reynolds NJ. Keratinocyte secretion of cyclophilin B via the constitutive pathway is regulated through its cyclosporin-binding site. J Invest Dermatol 2011; 131:1085-94. [PMID: 21270823 PMCID: PMC3182837 DOI: 10.1038/jid.2010.415] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 10/15/2010] [Accepted: 11/16/2010] [Indexed: 11/08/2022]
Abstract
Cyclophilin B (CypB) is an endoplasmic reticulum (ER)-resident member of the cyclophilin family of proteins that bind cyclosporin A (CsA). We report that as in other cell types, CypB trafficked from the ER and was secreted by keratinocytes into the media in response to CsA. Concentrations as low as 1 pM of CsA induced secretion of CypB. Using brefeldin A, we showed that CypB is secreted from keratinocytes via the constitutive secretory pathway. We defined that substitution of tryptophan residue 128 in the CsA-binding site of CypB with alanine resulted in dissociation of CypB(W128A)-green fluorescent protein (GFP) from the ER. Photobleaching studies revealed a significant reduction in the diffusible mobility of CypB(W128A)-GFP compared with CypB(WT)-GFP, consistent with redistribution of CypB(W128A)-GFP into secretory vesicles disconnected from the ER/Golgi network. Furthermore, CsA significantly decreased the mobility of CypB(WT)-GFP but not CypB(W128A)-GFP. These studies demonstrate that therapeutically relevant concentrations of CsA regulate secretion of CypB by keratinocytes, and that a key residue within the CsA-binding site of CypB controls retention of CypB within the ER and regulates entry into the secretory pathway. As keratinocytes express CypB receptors (CD147) and CypB exhibits chemotactic properties, these data have implications for the therapeutic effects of CsA in inflammatory skin disease.
Collapse
Affiliation(s)
- Paula Fearon
- Dermatological Sciences, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - Ann A Lonsdale-Eccles
- Dermatological Sciences, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - O Kehinde Ross
- Dermatological Sciences, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - Carole Todd
- Dermatological Sciences, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - Aparna Sinha
- Dermatological Sciences, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - Fabrice Allain
- Unité de Glycobiologie Structurale et Fonctionnelle, Unité Mixte de Recherche No. 8576 du CNRS, Institut de Recherche Fédératif No. 118, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq Cedex, France
| | - Nick J Reynolds
- Dermatological Sciences, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
71
|
Korfei M, Schmitt S, Ruppert C, Henneke I, Markart P, Loeh B, Mahavadi P, Wygrecka M, Klepetko W, Fink L, Bonniaud P, Preissner KT, Lochnit G, Schaefer L, Seeger W, Guenther A. Comparative proteomic analysis of lung tissue from patients with idiopathic pulmonary fibrosis (IPF) and lung transplant donor lungs. J Proteome Res 2011; 10:2185-205. [PMID: 21319792 DOI: 10.1021/pr1009355] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal disease for which no effective therapy exists to date. To identify the molecular mechanisms underlying IPF, we performed comparative proteome analysis of lung tissue from patients with sporadic IPF (n = 14) and human donor lungs (controls, n = 10) using two-dimensional gel electrophoresis and MALDI-TOF-MS. Eighty-nine differentially expressed proteins were identified, from which 51 were up-regulated and 38 down-regulated in IPF. Increased expression of markers for the unfolded protein response (UPR), heat-shock proteins, and DNA damage stress markers indicated a chronic cell stress-response in IPF lungs. By means of immunohistochemistry, induction of UPR markers was encountered in type-II alveolar epithelial cells of IPF but not of control lungs. In contrast, up-regulation of heat-shock protein 27 (Hsp27) was exclusively observed in proliferating bronchiolar basal cells and associated with aberrant re-epithelialization at the bronchiolo-alveolar junctions. Among the down-regulated proteins in IPF were antioxidants, members of the annexin family, and structural epithelial proteins. In summary, our results indicate that IPF is characterized by epithelial cell injury, apoptosis, and aberrant epithelial proliferation.
Collapse
Affiliation(s)
- Martina Korfei
- University of Giessen Lung Center, Department of Internal Medicine II, Klinikstrasse 36, Justus-Liebig-University Giessen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Wang H, Zhang Y, Wang T, You H, Jia J. N-methyl-4-isoleucine cyclosporine attenuates CCl -induced liver fibrosis in rats by interacting with cyclophilin B and D. J Gastroenterol Hepatol 2011; 26:558-67. [PMID: 21332552 DOI: 10.1111/j.1440-1746.2010.06406.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM N-methyl-4-isoleucine cyclosporine (NIM811), a new analogue of cyclosporine A, can inhibit collagen deposition in vitro and reduce liver necrosis in a bile-duct-ligation animal model. However, whether NIM811 effects on CCl(4) -induced rat liver fibrosis, and the related mechanism has not been determined. METHODS A liver fibrosis model was induced in Wistar rats using CCl(4) for 6 weeks. Meanwhile, two different doses of NIM811 (low-dose 10 mg/kg and high-dose 20 mg/kg) were given to the CCl(4) -treated rats. Liver fibrosis was then evaluated according to histopathological scoring and liver hydroxyproline content. Serum alanine aminotransferase, aspartate aminotransferase and albumin levels, expression of matrix metalloproteinase-13, tissue inhibitor of metalloproteinase-1, α-smooth muscle actin and cyclophilin B and D in liver tissue were determined. Cyclophilin B and D were also studied in an hepatic stellate cell line. RESULTS Hydroxyproline content was decreased in both NIM811 groups compared with the model (P < 0.05). Liver necrosis and fibrosis were also attenuated in the NIM811 groups. NIM811 suppressed the expression of tissue inhibitor of metalloproteinase-1, transforming growth factor beta mRNA and α-smooth muscle actin protein in liver tissue. Expression of cyclophilin B in the fibrosis model was increased compared with the normal group (P < 0.05), and was decreased significantly in the low-dose NIM811 treatment group (P < 0.05), which indicated that cyclophilin B might have a profibrotic effect. In vitro studies revealed that cyclophilin B and/or D knockout were associated with collagen inhibition. CONCLUSIONS NIM811 attenuates liver fibrosis in a CCl(4)-induced rat liver fibrosis model, which may be related to binding with cyclophilin B and D.
Collapse
Affiliation(s)
- Hui Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | | | | | | | | |
Collapse
|
73
|
Tak E, Lee S, Lee J, Rashid MA, Kim YW, Park JH, Park WS, Shokat KM, Ha J, Kim SS. Human carbonyl reductase 1 upregulated by hypoxia renders resistance to apoptosis in hepatocellular carcinoma cells. J Hepatol 2011; 54:328-339. [PMID: 21056497 DOI: 10.1016/j.jhep.2010.06.045] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 06/21/2010] [Accepted: 06/22/2010] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS Human carbonyl reductase1 (CBR1) has been reported to protect cells against lipid peroxidation. Since human hepatocellular carcinoma (HCC) cells are under oxidative stress in hypoxic conditions, we tested if CBR1 is upregulated by hypoxia inducible factor (HIF)-1α, helps tumor growth under hypoxia, and renders chemoresistance to cisplatin and doxorubicin in HCC. METHODS Luciferase, EMSA, and chromatin immunoprecipitation (ChIP) assays were performed to analyze whether HIF-1α transactivates CBR1 promoter. CBR1 overexpression, siRNA, and inhibitors were used to study the role of CBR1 in tumor survival under hypoxia and chemoresistance to cisplatin and doxorubicin in HCC. FACS and Western blot analysis for oxidative stress markers were performed to measure ROS. Immunohistochemistry (IHC) was performed to analyze CBR1 expression in 78 cases of HCC and 123 cases of colon cancer tissues. RESULTS The CBR1 promoter was activated by HIF-1α. CBR1 overexpression enhanced cell survival by decreasing oxidative stress under hypoxia, cisplatin, and doxorubicin treatment. CBR1-siRNA increased apoptosis via increasing oxidative stress. Combinational therapy of CBR1 inhibitors with cisplatin or doxorubicin enhanced cell death in HCC cells. IHC showed CBR1 overexpression in 56 (72%) out of 78 HCC and 88 (72%) out of 123 colon cancer cases. CONCLUSIONS Overexpressed CBR1 by HIF-1α plays important roles in tumor growth under hypoxia and chemoresistance to anticancer drugs. The inhibition of CBR1 by specific inhibitors enhances anticancer drug efficacy in HCC. Therefore, we concluded that CBR1 is a good molecular target for the development of anticancer drugs for HCC patients.
Collapse
Affiliation(s)
- Eunyoung Tak
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Kambara H, Tani H, Mori Y, Abe T, Katoh H, Fukuhara T, Taguwa S, Moriishi K, Matsuura Y. Involvement of cyclophilin B in the replication of Japanese encephalitis virus. Virology 2011; 412:211-9. [PMID: 21281954 DOI: 10.1016/j.virol.2011.01.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 12/19/2010] [Accepted: 01/07/2011] [Indexed: 01/31/2023]
Abstract
Japanese encephalitis virus (JEV) is a mosquito-borne RNA virus that belongs to the Flaviviridae family. In this study, we have examined the effect of cyclosporin A (CsA) on the propagation of JEV. CsA exhibited potent anti-JEV activity in various mammalian cell lines through the inhibition of CypB. The propagation of JEV was impaired in the CypB-knockdown cells and this reduction was cancelled by the expression of wild-type but not of peptidylprolyl cis-trans isomerase (PPIase)-deficient CypB, indicating that PPIase activity of CypB is critical for JEV propagation. Infection of pseudotype viruses bearing JEV envelope proteins was not impaired by the knockdown of CypB, suggesting that CypB participates in the replication but not in the entry of JEV. CypB was colocalized and immunoprecipitated with JEV NS4A in infected cells. These results suggest that CypB plays a crucial role in the replication of JEV through an interaction with NS4A.
Collapse
Affiliation(s)
- Hiroto Kambara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Cyclosporin A induces the unfolded protein response in keratinocytes. Arch Dermatol Res 2011; 303:481-9. [PMID: 21221615 DOI: 10.1007/s00403-010-1099-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 08/31/2010] [Accepted: 11/22/2010] [Indexed: 10/18/2022]
Abstract
Psoriasis vulgaris is a chronic inflammatory disorder of the skin, in which activation of keratinocytes and crosstalk between keratinocytes and T cells or dendritic cells are considered to be involved in the pathogenesis of psoriasis vulgaris. Cyclosporin (Cy) A, an immunomodulator, has been used for the treatment of psoriasis vulgaris, but the mechanism of its action on keratinocytes has not been well elucidated as its function on T cells is well known. Previous study indicated that the expression of the unfolded protein response (UPR) markers, GRP78/Bip and HRD1 were poorly expressed in psoriasis vulgaris. To investigate if the UPR in keratinocytes is involved in the pathogenesis of psoriasis vulgaris we assessed immunocytochemistry of normal human skin and psoriatic lesions, quantitative PCR of keratinocyte cell line (HaCaT) treated with TGFβ. Moreover, to elucidate how CyA effects on the UPR in keratinocytes, we set out quantitative PCR and western blotting, HaCaT and squamous cell carcinoma cell lines (HSC-1) treated with CyA and CyA analog, cyclosporin D. Furthermore, the siRNA-mediated knockdown effect of cyclophilin (Cyp) A, Cyp B and Cyp C on HaCaT cells were also examined. As a result, the UPR was downregulated in keratinocytes from psoriatic lesions, characterized by immunocytochemical staining of GRP78/Bip, CHOP/GADD153, HRD1 and C/EBPβ. TGFβ induced UPR markers in HaCaT cells. CyA treatment and siRNA-mediated knockdown of Cyp B induced the UPR in HaCaT cells or HSC-1 cells. Altogether, we demonstrate that in psoriasis vulgaris CyA or reduction in Cyp B by RNA interference might induce the UPR in keratinocytes.
Collapse
|
76
|
Lim S, Rashid MA, Jang M, Kim Y, Won H, Lee J, Woo JT, Kim YS, Murphy MP, Ali L, Ha J, Kim SS. Mitochondria-targeted Antioxidants Protect Pancreatic β-cells against Oxidative Stress and Improve Insulin Secretion in Glucotoxicity and Glucolipotoxicity. Cell Physiol Biochem 2011; 28:873-86. [DOI: 10.1159/000335802] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2011] [Indexed: 01/11/2023] Open
|
77
|
Kozlov G, Bastos-Aristizabal S, Määttänen P, Rosenauer A, Zheng F, Killikelly A, Trempe JF, Thomas DY, Gehring K. Structural basis of cyclophilin B binding by the calnexin/calreticulin P-domain. J Biol Chem 2010; 285:35551-7. [PMID: 20801878 PMCID: PMC2975179 DOI: 10.1074/jbc.m110.160101] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/15/2010] [Indexed: 11/06/2022] Open
Abstract
Little is known about how chaperones in the endoplasmic reticulum are organized into complexes to assist in the proper folding of secreted proteins. One notable exception is the complex of ERp57 and calnexin that functions as part the calnexin cycle to direct disulfide bond formation in N-glycoproteins. Here, we report three new complexes composed of the peptidyl prolyl cis-trans-isomerase cyclophilin B and any of the lectin chaperones: calnexin, calreticulin, or calmegin. The 1.7 Å crystal structure of cyclophilin with the proline-rich P-domain of calmegin reveals that binding is mediated by the same surface that binds ERp57. We used NMR titrations and mutagenesis to measure low micromolar binding of cyclophilin to all three lectin chaperones and identify essential interfacial residues. The immunosuppressant cyclosporin A did not affect complex formation, confirming the functional independence of the P-domain binding and proline isomerization sites of cyclophilin. Our results reveal the P-domain functions as a unique protein-protein interaction domain and implicate a peptidyl prolyl isomerase as a new element in the calnexin cycle.
Collapse
Affiliation(s)
- Guennadi Kozlov
- From the Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Sara Bastos-Aristizabal
- From the Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Pekka Määttänen
- From the Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Angelika Rosenauer
- From the Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Fenglin Zheng
- From the Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montréal, Québec H3G 0B1, Canada
| | - April Killikelly
- From the Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Jean-François Trempe
- From the Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montréal, Québec H3G 0B1, Canada
| | - David Y. Thomas
- From the Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Kalle Gehring
- From the Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montréal, Québec H3G 0B1, Canada
| |
Collapse
|
78
|
Suñé G, Sarró E, Puigmulé M, López-Hellín J, Zufferey M, Pertel T, Luban J, Meseguer A. Cyclophilin B interacts with sodium-potassium ATPase and is required for pump activity in proximal tubule cells of the kidney. PLoS One 2010; 5:e13930. [PMID: 21085665 PMCID: PMC2978098 DOI: 10.1371/journal.pone.0013930] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 10/12/2010] [Indexed: 01/07/2023] Open
Abstract
Cyclophilins (Cyps), the intracellular receptors for Cyclosporine A (CsA), are responsible for peptidyl-prolyl cis-trans isomerisation and for chaperoning several membrane proteins. Those functions are inhibited upon CsA binding. Albeit its great benefits as immunosuppressant, the use of CsA has been limited by undesirable nephrotoxic effects, including sodium retention, hypertension, hyperkalemia, interstial fibrosis and progressive renal failure in transplant recipients. In this report, we focused on the identification of novel CypB-interacting proteins to understand the role of CypB in kidney function and, in turn, to gain further insight into the molecular mechanisms of CsA-induced toxicity. By means of yeast two-hybrid screens with human kidney cDNA, we discovered a novel interaction between CypB and the membrane Na/K-ATPase β1 subunit protein (Na/K-β1) that was confirmed by pull-down, co-immunoprecipitation and confocal microscopy, in proximal tubule-derived HK-2 cells. The Na/K-ATPase pump, a key plasma membrane transporter, is responsible for maintenance of electrical Na+ and K+ gradients across the membrane. We showed that CypB silencing produced similar effects on Na/K-ATPase activity than CsA treatment in HK-2 cells. It was also observed an enrichment of both alpha and beta subunits in the ER, what suggested a possible failure on the maturation and routing of the pump from this compartment towards the plasma membrane. These data indicate that CypB through its interaction with Na/K-β1 might regulate maturation and trafficking of the pump through the secretory pathway, offering new insights into the relationship between cyclophilins and the nephrotoxic effects of CsA.
Collapse
Affiliation(s)
- Guillermo Suñé
- Fisiopatología Renal, Centre d'Investigacions en Bioquímica i Biologia Molecular (CIBBIM), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Eduard Sarró
- Fisiopatología Renal, Centre d'Investigacions en Bioquímica i Biologia Molecular (CIBBIM), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Marta Puigmulé
- Fisiopatología Renal, Centre d'Investigacions en Bioquímica i Biologia Molecular (CIBBIM), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Joan López-Hellín
- Fisiopatología Renal, Centre d'Investigacions en Bioquímica i Biologia Molecular (CIBBIM), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Madeleine Zufferey
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Thomas Pertel
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Jeremy Luban
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Anna Meseguer
- Fisiopatología Renal, Centre d'Investigacions en Bioquímica i Biologia Molecular (CIBBIM), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Departament de Bioquimica i Biologia Molecular, Facultat de Medicina, Universitat Autónoma de Barcelona, Barcelona, Spain
| |
Collapse
|
79
|
LoGuidice A, Ramirez-Alcantara V, Proli A, Gavillet B, Boelsterli UA. Pharmacologic targeting or genetic deletion of mitochondrial cyclophilin D protects from NSAID-induced small intestinal ulceration in mice. Toxicol Sci 2010; 118:276-85. [PMID: 20668000 DOI: 10.1093/toxsci/kfq226] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Small intestinal ulceration is a frequent and potentially serious condition associated with nonselective cyclooxygenase 1/2 inhibitors (nonsteroidal anti-inflammatory drugs, NSAIDs) including diclofenac (DCF). An initial topical effect involving mitochondria has been implicated in the pathogenesis, but the exact mechanisms of NSAID-induced enteropathy are unknown. We aimed at investigating whether DCF caused enterocyte demise via the mitochondrial permeability transition (mPT) and whether inhibition of critical mPT regulators might protect the mucosa from DCF injury. Cultured enterocytes (IEC-6) exposed to DCF readily underwent mPT-mediated cell death. We then targeted mitochondrial cyclophilin D (CypD), a key regulator of the mPT, in a mouse model of NSAID enteropathy. C57BL/6J mice were treated with an ulcerogenic dose of DCF (60 mg/kg, ip), followed (+ 1 h) by a non-cholestatic dose (10 mg/kg, ip) of the CypD inhibitor, cyclosporin A (CsA). CsA greatly reduced the extent of small intestinal ulceration. To avoid potential calcineurin-mediated effects, we used the non-immunosuppressive cyclosporin analog, D-MeAla(3)-EtVal(4)-cyclosporin (Debio 025). Debio 025 similarly protected the mucosa from DCF injury. To exclude drug-drug interactions, we exposed mice genetically deficient in mitochondrial CypD (peptidyl-prolyl cis-trans isomerase F [Ppif(-/-)]) to DCF. Ppif-null mice were largely protected from the ulcerogenic effects of DCF, whereas their wild-type littermates developed typical enteropathy. Enterocyte injury was preceded by upregulation of the proapoptotic transcription factor C/EBP homologous protein (Chop). Chop-null mice were refractory to DCF enteropathy, suggesting a critical role of endoplasmic reticulum stress induced by DCF. In conclusion, mitochondrial CypD plays a key role in NSAID-induced enteropathy, lending itself as a potentially new therapeutic target for cytoprotective intervention.
Collapse
Affiliation(s)
- Amanda LoGuidice
- Department of Pharmaceutical Sciences, University of Connecticut School of Pharmacy, Storrs, Connecticut 06269, USA
| | | | | | | | | |
Collapse
|
80
|
Abstract
Cyclophilins (Cyps) belong to a group of proteins that have peptidyl-prolyl cis–trans isomerase (PPIase) and molecular chaperone activities. Originally, Cyps were identified as the intracellular receptors for the immunosuppressive drug cyclosporin A. Cyps are found in all prokaryotes and eukaryotes, and have been structurally conserved throughout evolution, implying their importance in cellular function. There are seven major Cyp isoforms in humans. CypA is up-regulated in many human cancers, and there is a strong correlation between over-expression of the CYPA gene and malignant transformation in some cancers. Moreover, CypA is directly under the transcriptional control of two critical transcription factors for cancer development: p53 and hypoxia inducible factor-1α. This review discusses the general biological functions of Cyps under a variety of stress conditions, and the importance and diverse roles of over-expression of CYP genes in human cancers, with a particular emphasis on CYPA. These oncogenic properties suggest that CypA is a promising target for cancer therapy.
Collapse
Affiliation(s)
- J Lee
- Department of Biomedical Laboratory Science, Dongseo University, Busan, Republic of Korea
| | - SS Kim
- Department of Biochemistry and Molecular Biology, Medical Science and Engineering Research Centre for Bioreaction to Reactive Oxygen Species (BK-21) and Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
81
|
Cyclosporine A-sensitive, cyclophilin B-dependent endoplasmic reticulum-associated degradation. PLoS One 2010; 5. [PMID: 20927389 PMCID: PMC2946916 DOI: 10.1371/journal.pone.0013008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 09/01/2010] [Indexed: 01/25/2023] Open
Abstract
Peptidyl-prolyl cis/trans isomerases (PPIs) catalyze cis/trans isomerization of peptide bonds preceding proline residues. The involvement of PPI family members in protein refolding has been established in test tube experiments. Surprisingly, however, no data is available on the involvement of endoplasmic reticulum (ER)-resident members of the PPI family in protein folding, quality control or disposal in the living cell. Here we report that the immunosuppressive drug cyclosporine A (CsA) selectively inhibits the degradation of a subset of misfolded proteins generated in the ER. We identify cyclophilin B (CyPB) as the ER-resident target of CsA that catalytically enhances disposal from the ER of ERAD-LS substrates containing cis proline residues. Our manuscript presents the first evidence for enzymatic involvement of a PPI in protein quality control in the ER of living cells.
Collapse
|
82
|
Lee J, Kim SS. Current implications of cyclophilins in human cancers. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:97. [PMID: 20637127 PMCID: PMC2912272 DOI: 10.1186/1756-9966-29-97] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 07/19/2010] [Indexed: 12/28/2022]
Affiliation(s)
- Jinhwa Lee
- Department of Biomedical Laboratory Science, Dongseo University, Busan 617-716, Korea
| | | |
Collapse
|
83
|
Kim IS, Kim HY, Shin SY, Kim YS, Lee DH, Park KM, Yoon HS. A cyclophilin A CPR1 overexpression enhances stress acquisition in Saccharomyces cerevisiae. Mol Cells 2010; 29:567-74. [PMID: 20496120 DOI: 10.1007/s10059-010-0071-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 02/23/2010] [Accepted: 02/25/2010] [Indexed: 11/25/2022] Open
Abstract
Cyclophilins are conserved cis-trans peptidyl-prolyl isomerase that are implicated in protein folding and function as molecular chaperones. We found the expression of cyclophilin A, Cpr1, changes in response to exposure to yeast Saccharomyces cerevisiae to abiotic stress conditions. The effect of Cpr1 overexpression in stress responses was therefore examined. The CPR1 gene was cloned to the yeast expression vector pVTU260 under regulation of an endogenous alcohol dehydrogenase (ADH) promoter. The overexpression of Cpr1 drastically increased cell viability of yeast in the presence of stress inducers, such as cadmium, cobalt, copper, hydrogen peroxide, tert-butyl hydroperoxide (t-BOOH), and sodium dodecyl sulfate (SDS). The Cpr1 expression also enhanced the cell rescue program resulting in a variety of antioxidant enzymes including thioredoxin system (particularly, thioredoxin peroxidase), metabolic enzymes (glucose-6-phosphate dehydrogenase and glyceraldehyde-3-phosphate dehydrogenase), and molecular chaperones (Hsp104, Hsp90, Hsp60 and Hsp42). Thus, our study illustrates the importance of Cpr1 as a molecular chaperone that improves cellular stress responses through collaborative relationships with other proteins when yeast cells are exposed to adverse conditions, and it also premises the improvement of yeast strains.
Collapse
Affiliation(s)
- Il-Sup Kim
- Department of Biology, Kyungpook National University, Daegu, 702-701, Korea
| | | | | | | | | | | | | |
Collapse
|
84
|
Dowd WW, Renshaw GMC, Cech JJ, Kültz D. Compensatory proteome adjustments imply tissue-specific structural and metabolic reorganization following episodic hypoxia or anoxia in the epaulette shark (Hemiscyllium ocellatum). Physiol Genomics 2010; 42:93-114. [PMID: 20371547 PMCID: PMC2888556 DOI: 10.1152/physiolgenomics.00176.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 04/05/2010] [Indexed: 12/31/2022] Open
Abstract
The epaulette shark (Hemiscyllium ocellatum) represents an ancestral vertebrate model of episodic hypoxia and anoxia tolerance at tropical temperatures. We used two-dimensional gel electrophoresis and mass spectrometry-based proteomics approaches, combined with a suite of physiological measures, to characterize this species' responses to 1) one episode of anoxia plus normoxic recovery, 2) one episode of severe hypoxia plus recovery, or 3) two episodes of severe hypoxia plus recovery. We examined these responses in the cerebellum and rectal gland, two tissues with high ATP requirements. Sharks maintained plasma ionic homeostasis following all treatments, and activities of Na(+)/K(+)-ATPase and caspase 3/7 in both tissues were unchanged. Oxygen lack and reoxygenation elicited subtle adjustments in the proteome. Hypoxia led to more extensive proteome responses than anoxia in both tissues. The cerebellum and rectal gland exhibited treatment-specific responses to oxygen limitation consistent with one or more of several strategies: 1) neurotransmitter and receptor downregulation in cerebellum to prevent excitotoxicity, 2) cytoskeletal/membrane reorganization, 3) metabolic reorganization and more efficient intracellular energy shuttling that are more consistent with sustained ATP turnover than with long-term metabolic depression, 4) detoxification of metabolic byproducts and oxidative stress in light of continued metabolic activity, particularly following hypoxia in rectal gland, and 5) activation of prosurvival signaling. We hypothesize that neuronal morphological changes facilitate prolonged protection from excitotoxicity via dendritic spine remodeling in cerebellum (i.e., synaptic structural plasticity). These results recapitulate several highly conserved themes in the anoxia and hypoxia tolerance, preconditioning, and oxidative stress literature in a single system. In addition, several of the identified pathways and proteins suggest potentially novel mechanisms for enhancing anoxia or hypoxia tolerance in vertebrates. Overall, our data show that episodic hypoxic or anoxic exposure and recovery in the epaulette shark amplifies a constitutive suite of compensatory mechanisms that further prepares them for subsequent insults.
Collapse
Affiliation(s)
- W Wesley Dowd
- Department of Animal Science, University of California, Davis, California, USA
| | | | | | | |
Collapse
|
85
|
Fang F, Zheng J, Galbaugh TL, Fiorillo AA, Hjort EE, Zeng X, Clevenger CV. Cyclophilin B as a co-regulator of prolactin-induced gene expression and function in breast cancer cells. J Mol Endocrinol 2010; 44:319-29. [PMID: 20237142 PMCID: PMC2965652 DOI: 10.1677/jme-09-0140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The effects of prolactin (PRL) during the pathogenesis of breast cancer are mediated in part though Stat5 activity enhanced by its interaction with its transcriptional inducer, the prolyl isomerase cyclophilin B (CypB). We have demonstrated that knockdown of CypB decreases cell growth, proliferation, and migration, and CypB expression is associated with malignant progression of breast cancer. In this study, we examined the effect of CypB knockdown on PRL signaling in breast cancer cells. CypB knockdown with two independent siRNAs was shown to impair PRL-induced reporter expression in breast cancer cell line. cDNA microarray analysis was performed on these cells to assess the effect of CypB reduction, and revealed a significant decrease in PRL-induced endogenous gene expression in two breast cancer cell lines. Parallel functional assays revealed corresponding alterations of both anchorage-independent cell growth and cell motility of breast cancer cells. Our results demonstrate that CypB expression levels significantly modulate PRL-induced function in breast cancer cells ultimately resulting in enhanced levels of PRL-responsive gene expression, cell growth, and migration. Given the increasingly appreciated role of PRL in the pathogenesis of breast cancer, the actions of CypB detailed here are of biological significance.
Collapse
Affiliation(s)
- Feng Fang
- Department of Pathology Division of Rheumatology Division of Hematology/Oncology, Robert H Lurie Comprehensive Cancer Center, Northwestern University, Lurie 4-107, 303 East Superior Street, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | |
Collapse
|
86
|
Safavi-Hemami H, Bulaj G, Olivera BM, Williamson NA, Purcell AW. Identification of Conus peptidylprolyl cis-trans isomerases (PPIases) and assessment of their role in the oxidative folding of conotoxins. J Biol Chem 2010; 285:12735-46. [PMID: 20147296 PMCID: PMC2857115 DOI: 10.1074/jbc.m109.078691] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Revised: 02/09/2010] [Indexed: 11/06/2022] Open
Abstract
Peptidylprolyl cis-trans isomerases (PPIases) are ubiquitous proteins that catalyze the cis-trans isomerization of prolines. A number of proteins, such as Drosophila rhodopsin and the human immunodeficiency viral protein HIV-1 Gag, have been identified as endogenous substrates for PPIases. However, very little is known about the interaction of PPIases with small, disulfide-rich peptides. Marine cone snails synthesize a wide array of cysteine-rich peptides, called conotoxins, many of which contain one or more prolines or hydroxyprolines. To identify whether PPIase-associated cis-trans isomerization of these residues affects the oxidative folding of conotoxins, we identified, sequenced, and expressed three functionally active isoforms of PPIase from the venom gland of Conus novaehollandiae, and we characterized their ability to facilitate oxidative folding of conotoxins in vitro. Three conotoxins, namely mu-GIIIA, mu-SIIIA, and omega-MVIIC, derived from two distinct toxin gene families were assayed. Conus PPIase significantly increased the rate of appearance of the native form of mu-GIIIA, a peptide containing three hydroxyprolines. In contrast, the presence of PPIase had no effect on the folding of mu-SIIIA and omega-MVIIC, peptides containing no or one proline residue, respectively. We further showed that an endoplasmic reticulum-resident PPIase isoform facilitated folding of mu-GIIIA more efficiently than two cytosolic isoforms. This is the first study to demonstrate PPIase-assisted folding of conotoxins, small disulfide-rich peptides with unique structural properties.
Collapse
Affiliation(s)
- Helena Safavi-Hemami
- From the
Department of Biochemistry and Molecular Biology, The Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 3010 Victoria, Australia and
| | | | | | - Nicholas A. Williamson
- From the
Department of Biochemistry and Molecular Biology, The Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 3010 Victoria, Australia and
| | - Anthony W. Purcell
- From the
Department of Biochemistry and Molecular Biology, The Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 3010 Victoria, Australia and
| |
Collapse
|
87
|
Role of cyclophilin a during oncogenesis. Arch Pharm Res 2010; 33:181-7. [PMID: 20195816 DOI: 10.1007/s12272-010-0200-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 01/04/2010] [Indexed: 02/02/2023]
Abstract
Cyclophilins (Cyps) are ubiquitously expressed proteins that are evolutionarily conserved. CypA is the most abundant among the Cyps and is expressed in the cytosol. With its chaperone and PPIase activities, CypA contributes to the maintenance of correct conformation of nascent or denatured proteins and also provides protection against environmental insults. Also, its expression is induced in response to a wide variety of stressors including cancer. Upregulation of CypA in small cell lung cancer, pancreatic cancer, breast cancer, colorectal cancer, squamous cell carcinoma and melanoma has been reported. In some cancers a correlation between CypA overexpression and malignant transformation has been established. While molecular partners of CypA that promote cancer development are yet to be discovered, various mechanisms have been proposed to account for the cytoprotective functions of CypA during cancer development. CypA may promote the survival of cells under the stressful condition of cancer. CypA may well be essential for maintaining the conformation of oncogenic proteins, signalling proteins for cell proliferation, antiapoptotic components, transcription factors, or cell motility regulatory proteins. Antioxidant effects of CypA, which have been suggested by some researchers, may also become critical to reactive oxygen species (ROS) creating an oncogenetic environment. Developing new CypA inhibitors for therapeutics has been surmised from the cytoprotective functions of CypA and its overexpression in many cancer types. Therefore, CypA can be further investigated as a useful tool for early diagnosis, treatment and prevention of human cancers.
Collapse
|
88
|
Rosado JA, Pariente JA, Salido GM, Redondo PC. SERCA2b activity is regulated by cyclophilins in human platelets. Arterioscler Thromb Vasc Biol 2010; 30:419-25. [PMID: 20139366 DOI: 10.1161/atvbaha.109.194530] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The role of cyclophilins (chaperones that are widely expressed in different cell types, including human platelets) was explored in sarcoendoplasmic calcium (Ca(2+)) adenosine triphosphatase (SERCA) activity. METHODS AND RESULTS Cyclophilin inhibition by cyclosporin A (CsA) evoked a time- and concentration-dependent reduction of Ca(2+) uptake by SERCA2b. However, other Ca(2+)-adenosine triphosphatases expressed in platelets, such as SERCA3 and plasma membrane Ca(2+) adenosine triphophatase, remained unaltered after CsA treatment. Cypermethrin, a non-CsA-related calcineurin inhibitor, did not alter SERCA2b activity. Furthermore, SERCA2b was affected by other CsA analogues, which do not interfere with calcineurin, such as PKF-211-811-NX5 (NIM811) and sanglifehrin A. Inhibition of the immunophilin family members using FK506 (tacrolimus) did not alter SERCA2b ability to sequester Ca(2+) into the dense tubular system. Coimmunoprecipitation experiments confirmed that cyclophilin A associates with SERCA2b and stromal interaction molecule-1 in resting platelets. This interaction is attenuated by the physiological agonist thrombin but enhanced by treatment with CsA or sanglifehrin A. CONCLUSIONS Cyclophilin A is a regulator of SERCA2b in human platelets.
Collapse
Affiliation(s)
- Juan A Rosado
- Department of Physiology, University of Extremadura, Avd. Universidad s/n, Cáceres 10071, Spain
| | | | | | | |
Collapse
|
89
|
Tang J, Liu L, Huang X, Li Y, Chen Y, Chen J. Proteomic analysis ofTrichoderma atroviridemycelia stressed by organophosphate pesticide dichlorvos. Can J Microbiol 2010; 56:121-7. [DOI: 10.1139/w09-110] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The proteomic approach is a powerful tool to study microbial response to environmental stress. To evaluate the responses of Trichoderma spp. to the organophosphate pesticide dichlorvos, mycelia of Trichoderma atroviride T23 were exposed to dichlorvos at concentrations of 0, 100, 300, 500, and 1000 µg/mL, respectively. Changes in protein expression were investigated using two-dimensional sodium dodecyl sulfate – polyacrylamide gel electrophoresis. Sixteen protein spots were differentially expressed. They were identified by MALDI–TOF/TOF MS and were found to be linked to energy metabolism, transport, signal transduction, and stress tolerance. Among stress-related proteins, glutathione peroxidase-like protein (GPX), 1,4-benzoquinone reductase, and HEX1 were upregulated by and cyclophilin A induced by 1000 µg/mL dichlorvos when compared with the control. These proteins were considered to be associated with fungal adaptation to adverse conditions. The results will help us to understand molecular mechanisms through which Trichoderma responds to organophosphate pesticides.
Collapse
Affiliation(s)
- Jun Tang
- Department of Resources and Environmental Sciences, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, P.R. China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, P.R. China
- School of Life Science, Fuyang Normal University, Fuyang 236041, P.R. China
- Physical and Chemical Laboratory, Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518055, P.R. China
| | - Lixing Liu
- Department of Resources and Environmental Sciences, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, P.R. China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, P.R. China
- School of Life Science, Fuyang Normal University, Fuyang 236041, P.R. China
- Physical and Chemical Laboratory, Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518055, P.R. China
| | - Xiuli Huang
- Department of Resources and Environmental Sciences, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, P.R. China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, P.R. China
- School of Life Science, Fuyang Normal University, Fuyang 236041, P.R. China
- Physical and Chemical Laboratory, Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518055, P.R. China
| | - Yingying Li
- Department of Resources and Environmental Sciences, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, P.R. China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, P.R. China
- School of Life Science, Fuyang Normal University, Fuyang 236041, P.R. China
- Physical and Chemical Laboratory, Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518055, P.R. China
| | - Yunpeng Chen
- Department of Resources and Environmental Sciences, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, P.R. China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, P.R. China
- School of Life Science, Fuyang Normal University, Fuyang 236041, P.R. China
- Physical and Chemical Laboratory, Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518055, P.R. China
| | - Jie Chen
- Department of Resources and Environmental Sciences, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, P.R. China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, P.R. China
- School of Life Science, Fuyang Normal University, Fuyang 236041, P.R. China
- Physical and Chemical Laboratory, Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518055, P.R. China
| |
Collapse
|
90
|
Morot-Gaudry-Talarmain Y. Physical and functional interactions of cyclophilin B with neuronal actin and peroxiredoxin-1 are modified by oxidative stress. Free Radic Biol Med 2009; 47:1715-30. [PMID: 19766713 DOI: 10.1016/j.freeradbiomed.2009.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 08/26/2009] [Accepted: 09/14/2009] [Indexed: 12/29/2022]
Abstract
Presynaptic actin was identified as a new Torpedo cyclophilin B partner captured in pull-down experiments and by coimmunoprecipitation. The cyclophilin B-actin pull-down interaction was insensitive to the blockade of peptidyl cis/trans prolyl isomerase and calcineurin activities and to the latrunculin A- and jasplakinolide-mediated perturbation of F-actin polymerization. Conversely, it was reduced by ATP and stimulated by a low Cu(2+) treatment of synaptosomes and by acrolydan-conjugated cyclophilin B. This Cu(2+)-induced stress, in parallel, stimulates the formation of GSH adducts with cysteines of synaptosomal actin followed by its deglutathionylation and its dimerization in the presence of higher Cu(2+) concentrations. The reversibility of the thiol processing of actin occurred in the same range of Cu(2+) concentrations that mediated a stronger cyclophilin B-actin interaction, suggesting cyclophilin B participation in antioxidant processes. Among 2-Cys-peroxiredoxin isoforms, mainly peroxiredoxin-1 was found in cell bodies and nerve endings. Functionally, both Torpedo and human peroxiredoxin-1 were activated in vitro by Torpedo cyclophilin B. Moreover, cyclophilin B, like thioredoxins, maintained an H(2)O(2)-dependent peroxidase activity of peroxiredoxin-1 in the presence of dithiothreitol. Thus, the monocysteinic Torpedo cyclophilin B is able to sustain peroxiredoxin-1 activity and might be involved in the presynaptic defense against oxidative stress affecting G-actin posttranslational changes and its redox signaling in nerve ending compartments.
Collapse
Affiliation(s)
- Yvette Morot-Gaudry-Talarmain
- Laboratoire de Neurobiologie Cellulaire et Moléculaire-UPR9040, CNRS, Institut de Neurobiologie Alfred Fessard-FRC2118, Gif sur Yvette, F-91198, France.
| |
Collapse
|
91
|
Malouitre S, Dube H, Selwood D, Crompton M. Mitochondrial targeting of cyclosporin A enables selective inhibition of cyclophilin-D and enhanced cytoprotection after glucose and oxygen deprivation. Biochem J 2009; 425:137-48. [PMID: 19832699 PMCID: PMC2860807 DOI: 10.1042/bj20090332] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 10/02/2009] [Accepted: 10/15/2009] [Indexed: 12/24/2022]
Abstract
CsA (cyclosporin A) is a hydrophobic undecapeptide that inhibits CyPs (cyclophilins), a family of PPIases (peptidylprolyl cis-trans isomerases). In some experimental models, CsA offers partial protection against lethal cell injury brought about by transient ischaemia; this is believed to reflect inhibition of CyP-D, a mitochondrial isoform that facilitates formation of the permeability transition pore in the mitochondrial inner membrane. To evaluate this further, we have targeted CsA to mitochondria so that it becomes selective for CyP-D in cells. This was achieved by conjugating the inhibitor to the lipophilic triphenylphosphonium cation, enabling its accumulation in mitochondria due to the inner membrane potential. In a cell-free system and in B50 neuroblastoma cells the novel reagent (but not CsA itself) preferentially inhibited CyP-D over extramitochondrial CyP-A. In hippocampal neurons, mitochondrial targeting markedly enhanced the capacity of CsA to prevent cell necrosis brought about by oxygen and glucose deprivation, but largely abolished its capacity to inhibit glutamate-induced cell death. It is concluded that CyP-D has a major pathogenic role in 'energy failure', but not in glutamate excitotoxicity, where cytoprotection primarily reflects CsA interaction with extramitochondrial CyPs and calcineurin. Moreover, the therapeutic potential of CsA against ischaemia/reperfusion injuries not involving glutamate may be improved by mitochondrial targeting.
Collapse
Key Words
- cyclophilin (cyp)
- cyclosporin a (csa)
- glutamate toxicity
- hippocampal neuron
- ischaemia
- necrosis
- csa, cyclosporin a
- cyp, cyclophilin
- cyp-d+, cell line overexpressing cyp-d
- dcm, dichloromethane
- dmem, dulbecco's minimal essential medium
- dmf, dimethylformamide
- esi–ms, electrospray ionization ms
- fbs, fetal bovine serum
- fmoc, fluoren-9-ylmethoxycarbonyl
- hbss, hanks balanced salt solution
- i/r, ischaemia/reperfusion
- lda, lithium diisopropylamide
- l-name, ng-nitro-l-arginine-methyl ester
- mtcsa, mitochondrially targeted csa
- nba, neurobasal a
- nbqx, 2,3-dihydro-6-nitro-7-sulfamoylbenzoquinoxaline
- nmda, n-methyl-d-aspartate
- ogd, oxygen and glucose deprivation
- ppiase, peptidylprolyl cis–trans isomerase
- pt, permeability transition
- pybop, benzotriazol-1-yl-tris-pyrrolidinophosphonium hexafluorophosphate
- smbz-csa, [sarcosine-3(4-methylbenzoate)]-csa
- thf, tetrahydrofuran
- tmre, tetramethylrhodamine ethyl ester
- tpp+, triphenylphosphonium
Collapse
Affiliation(s)
- Sylvanie Malouitre
- *Research Department of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Henry Dube
- †Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, U.K
| | - David Selwood
- †Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, U.K
| | - Martin Crompton
- *Research Department of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
92
|
Santos CXC, Tanaka LY, Wosniak J, Laurindo FRM. Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxid Redox Signal 2009; 11:2409-27. [PMID: 19388824 DOI: 10.1089/ars.2009.2625] [Citation(s) in RCA: 426] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cellular mechanisms governing redox homeostasis likely involve their integration with other stresses. Endoplasmic reticulum (ER) stress triggers complex adaptive or proapoptotic signaling defined as the unfolded protein response (UPR), involved in several pathophysiological processes. Since protein folding is highly redox-dependent, convergence between ER stress and oxidative stress has attracted interest. Evidence suggests that ROS production and oxidative stress are not only coincidental to ER stress, but are integral UPR components, being triggered by distinct types of ER stressors and contributing to support proapoptotic, as well as proadaptive UPR signaling. Thus, ROS generation can be upstream or downstream UPR targets and may display a UPR-specific plus a nonspecific component. Enzymatic mechanisms of ROS generation during UPR include: (a) Multiple thiol-disulfide exchanges involving ER oxidoreductases including flavooxidase Ero1 and protein disulfide isomerase (PDI); (b) Mitochondrial electron transport; (c) Nox4 NADPH oxidase complex, particularly Nox4. Understanding the roles of such mechanisms and how they interconnect with the UPR requires more investigation. Integration among such ROS sources may depend on Ca(2+) levels, ROS themselves, and PDI, which associates with NADPH oxidase and regulates its function. Oxidative stress may frequently integrate with a background of ER stress/UPR in several diseases; here we discuss a focus in the vascular system.
Collapse
Affiliation(s)
- Célio X C Santos
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, CEP 05403-000, São Paulo, Brazil
| | | | | | | |
Collapse
|
93
|
Bellecave P, Gouttenoire J, Gajer M, Brass V, Koutsoudakis G, Blum HE, Bartenschlager R, Nassal M, Moradpour D. Hepatitis B and C virus coinfection: a novel model system reveals the absence of direct viral interference. Hepatology 2009; 50:46-55. [PMID: 19333911 DOI: 10.1002/hep.22951] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
UNLABELLED Coinfection with hepatitis B virus (HBV) and hepatitis C virus (HCV) has been associated with severe liver disease and frequent progression to cirrhosis and hepatocellular carcinoma. Clinical evidence suggests reciprocal replicative suppression of the two viruses, or viral interference. However, interactions between HBV and HCV have been difficult to study due to the lack of appropriate model systems. We have established a novel model system to investigate interactions between HBV and HCV. Stable Huh-7 cell lines inducibly replicating HBV were transfected with selectable HCV replicons or infected with cell culture-derived HCV. In this system, both viruses were found to replicate in the same cell without overt interference. Specific inhibition of one virus did not affect the replication and gene expression of the other. Furthermore, cells harboring replicating HBV could be infected with cell culture-derived HCV, arguing against superinfection exclusion. Finally, cells harboring replicating HBV supported efficient production of infectious HCV. CONCLUSION HBV and HCV can replicate in the same cell without evidence for direct interference in vitro. Therefore, the viral interference observed in coinfected patients is probably due to indirect mechanisms mediated by innate and/or adaptive host immune responses. These findings provide new insights into the pathogenesis of HBV-HCV coinfection and may contribute to its clinical management in the future.
Collapse
Affiliation(s)
- Pantxika Bellecave
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Chigurupati S, Wei Z, Belal C, Vandermey M, Kyriazis GA, Arumugam TV, Chan SL. The homocysteine-inducible endoplasmic reticulum stress protein counteracts calcium store depletion and induction of CCAAT enhancer-binding protein homologous protein in a neurotoxin model of Parkinson disease. J Biol Chem 2009; 284:18323-33. [PMID: 19447887 DOI: 10.1074/jbc.m109.020891] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The endoplasmic reticulum (ER) is a key organelle regulating intracellular Ca(2+) homeostasis. Oxidants and mitochondria-derived free radicals can target ER-based Ca(2+) regulatory proteins and cause uncontrolled Ca(2+) release that may contribute to protracted ER stress and apoptosis. Several ER stress proteins have been suggested to counteract the deregulation of ER Ca(2+) homeostasis and ER stress. Here we showed that knockdown of Herp, an ubiquitin-like domain containing ER stress protein, renders PC12 and MN9D cells vulnerable to 1-methyl-4-phenylpyridinium-induced cytotoxic cell death by a mechanism involving up-regulation of CHOP expression and ER Ca(2+) depletion. Conversely, Herp overexpression confers protection by blocking 1-methyl-4-phenylpyridinium-induced CHOP up-regulation, ER Ca(2+) store depletion, and mitochondrial Ca(2+) accumulation in a manner dependent on a functional ubiquitin-proteasomal protein degradation pathway. Deletion of the ubiquitin-like domain of Herp or treatment with a proteasomal inhibitor abolished the central function of Herp in ER Ca(2+) homeostasis. Thus, elucidating the underlying molecular mechanism(s) whereby Herp counteracts Ca(2+) disturbances will provide insights into the molecular cascade of cell death in dopaminergic neurons and may uncover novel therapeutic strategies to prevent and ameliorate Parkinson disease progression.
Collapse
Affiliation(s)
- Srinivasulu Chigurupati
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32816, USA
| | | | | | | | | | | | | |
Collapse
|