51
|
Lourenço SV, Kapas S, Williams DM, Leite K, Araújo VC. Expression patterns of integrins on pleomorphic adenoma and adenoid cystic carcinoma: study on specimens and in vitro investigation of the effects of extracellular matrix on the expression of these adhesion molecules. J Oral Pathol Med 2004; 33:574-80. [PMID: 15357679 DOI: 10.1111/j.1600-0714.2004.00239.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Pleomorphic adenoma (PA) and adenoid cystic carcinoma (ACC) are neoplasms of distinct behaviour, showing similar origin, cell components and marked presence of extracellular matrix (ECM). Interactions between cells and ECM are important in the biology of tumours, being partially mediated by integrins. This study investigated these interactions on PA and ACC using paraffin-embedded tissue and an in vitro model of these conditions. METHODS Expression of integrins in paraffin-embedded samples was assessed by immunohistochemistry. Cells from PA and ACC were characterized using immunofluorescence, and integrin patterns of expression were investigated on cells cultivated on different ECM proteins. RESULTS Luminal cells of both PA and ACC were more intensely positive for integrins than myoepithelial cells. In vitro studies revealed that PA cells expressed more integrins than ACC cells regardless the ECM protein present. CONCLUSIONS This study revealed particular patterns of integrin expression in both specimens and in vitro models of PA and ACC. This might prove useful for a better understanding of the biology of these lesions.
Collapse
Affiliation(s)
- S V Lourenço
- Instituto de Medicina Tropical de São Paulo and Department of Dermatology, Medical School of the University of São Paulo, São Paulo, SP, Brazil.
| | | | | | | | | |
Collapse
|
52
|
Eisen R, Ratcliffe DR, Ojakian GK. Modulation of epithelial tubule formation by Rho kinase. Am J Physiol Cell Physiol 2003; 286:C857-66. [PMID: 14644773 DOI: 10.1152/ajpcell.00246.2003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have developed a model system for studying integrin regulation of mammalian epithelial tubule formation. Application of collagen gel overlays to Madin-Darby canine kidney (MDCK) cells induced coordinated disassembly of junctional complexes that was accompanied by lamellipodia formation and cell rearrangement (termed epithelial remodeling). In this study, we present evidence that the Rho signal transduction pathway regulates epithelial remodeling and tubule formation. Incubation of MDCK cells with collagen gel overlays facilitated formation of migrating lamellipodia with membrane-associated actin. Inhibitors of myosin II and actin prevented lamellipodia formation, which suggests that actomyosin function was involved in regulation of epithelial remodeling. To determine this, changes in myosin II distribution, function, and phosphorylation were studied during epithelial tubule biogenesis. Myosin II colocalized with actin at the leading edge of lamellipodia thereby providing evidence that myosin is important in epithelial remodeling. This possibility is supported by observations that inhibition of Rho kinase, a regulator of myosin II function, alters formation of lamellipodia and results in attenuated epithelial tubule development. These data and those demonstrating myosin regulatory light-chain phosphorylation at the leading edge of lamellipodia strongly suggest that Rho kinase and myosin II are important modulators of epithelial remodeling. They support a hypothesis that the Rho signal transduction pathway plays a significant role in regulation of epithelial tubule formation.
Collapse
Affiliation(s)
- Randi Eisen
- Department of Anatomy and Cell Biology, Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | | |
Collapse
|
53
|
Cohen D, Müsch A. Apical surface formation in MDCK cells: regulation by the serine/threonine kinase EMK1. Methods 2003; 30:269-76. [PMID: 12798141 DOI: 10.1016/s1046-2023(03)00033-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
It has recently become evident that basic mechanisms for the establishment of cell polarity are conserved between epithelial and nonepithelial systems. The vast catalogue of known gene products involved in various aspects of invertebrate and yeast cell polarity provides a repertoire of candidate proteins that can be tested for their roles in the organization of mammalian epithelia. Here, we describe cell biological approaches to study the development and maintenance of cell polarity in Mardin-Darby canine kidney (MDCK) cells, an established mammalian model cell line for simple epithelia. The assays allowed us to characterize the Caenorhabditis elegans PAR-1 homologue EMK1 as a novel regulator of apical surface formation in epithelial cells.
Collapse
Affiliation(s)
- David Cohen
- M. Dyson Institute of Vision Research, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | |
Collapse
|
54
|
Matlin KS, Haus B, Zuk A. Integrins in epithelial cell polarity: using antibodies to analyze adhesive function and morphogenesis. Methods 2003; 30:235-46. [PMID: 12798138 DOI: 10.1016/s1046-2023(03)00030-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Epithelial cells polarize in response to cell-substratum and cell-cell adhesive interactions. Contacts between cells and proteins of the extracellular matrix are mediated by integrin receptors. Of the 24 recognized integrin heterodimers, epithelial cells typically express four or more distinct integrins, with the exact complement dependent on the tissue of origin. Investigation of the roles of integrins in epithelial cell polarization has depended on the use of function-blocking antibodies both to determine ligand specificity of individual integrins and to disrupt and redirect normal morphogenesis. In this article we describe techniques for employing function-blocking anti-integrin antibodies in adhesion assays of the polarized Madin-Darby canine kidney (MDCK) cell line and to demonstrate the involvement of beta1 integrins in collagen-induced tubulocyst formation. These techniques can be easily expanded to other antibodies and epithelial cell lines to characterize specific functions of individual integrins in epithelial morphogenesis.
Collapse
Affiliation(s)
- Karl S Matlin
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | | | | |
Collapse
|
55
|
Abstract
Signals from integrins are now known to play critical roles in virtually every aspect of the behavior of epithelial cells, including survival, proliferation, maintenance of polarity, secretory differentiation, and malignant transformation. The cells that line the conducting airways and alveoli of the lung, like most surface epithelia, simultaneously express multiple members of the integrin family, including several with broadly overlapping ligand binding specificities. Although multiple integrins on airway epithelial cells may support adhesion to the same ligands, the functional roles of each integrin that has been examined in detail are quite distinct. Findings from mice expressing null mutations of some of these integrins have identified roles for epithelial cells and epithelial integrins in lung development and in the regulation of lung inflammation, macrophage protease expression, pulmonary fibrosis, and the pulmonary edema that follows acute lung injury. Epithelial integrins are thus attractive targets for intervention in a number of common lung disorders.
Collapse
Affiliation(s)
- Dean Sheppard
- University of California, San Francisco, Box 0854, San Francisco, CA 94143-0854, USA.
| |
Collapse
|
56
|
O'Brien LE, Zegers MMP, Mostov KE. Opinion: Building epithelial architecture: insights from three-dimensional culture models. Nat Rev Mol Cell Biol 2002; 3:531-7. [PMID: 12094219 DOI: 10.1038/nrm859] [Citation(s) in RCA: 464] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
How do individual cells organize into multicellular tissues? Here, we propose that the morphogenetic behaviour of epithelial cells is guided by two distinct elements: an intrinsic differentiation programme that drives formation of a lumen-enclosing monolayer, and a growth factor-induced, transient de-differentiation that allows this monolayer to be remodelled.
Collapse
Affiliation(s)
- Lucy Erin O'Brien
- Department of Anatomy, and the Cardiovascular Research Institute, University of California, San Francisco, California 94143, USA
| | | | | |
Collapse
|
57
|
Hayashi K, Kawai-Hirai R, Ishikawa K, Takata K. Reversal of neuronal polarity characterized by conversion of dendrites into axons in neonatal rat cortical neurons in vitro. Neuroscience 2002; 110:7-17. [PMID: 11882368 DOI: 10.1016/s0306-4522(01)00592-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mechanisms for the establishment and maintenance of cell polarity in neurons are not well understood. Axon regeneration from dendrites has been reported after axotomy near the cell body in vivo. We report here in vitro a reversal of neuronal polarity characterized by the conversion of dendrites into axons. We isolated neurons from the neonatal rat cerebral cortex. Neurons that exhibited an apical dendrite with a length of >100 microm were monitored for 3 days in culture. In 66% of neurons examined, a new axon, as identified by reactivity with an antibody to dephosphorylated tau or by lack of reactivity with an antibody to the a and b isoforms of microtubule-associated protein 2, appeared to form from the tip of the original dendrite. Further analysis of such neurons revealed that the distal half of the original dendrite became positive for dephosphorylated tau or negative for microtubule-associated protein 2. Time-lapse video microscopy demonstrated the conversion of the original dendrite into an axon without dendritic retraction. Axon regeneration from dendritic tips required a significantly longer time than axon regeneration from minor processes. Our observations thus demonstrate in vitro a time-consuming reversal of neuronal polarity and the conversion of a dendritic cytoskeleton into an axonal one.
Collapse
Affiliation(s)
- K Hayashi
- Department of Cell Biology, Institute for Cellular and Moleculasr Regulation, Gunma University, 3-39-15 Showamachi, Maebashi, Gunma 371-8512, Japan.
| | | | | | | |
Collapse
|
58
|
Praetorius J, Spring KR. Specific lectins map the distribution of fibronectin and beta 1-integrin on living MDCK cells. Exp Cell Res 2002; 276:52-62. [PMID: 11978008 DOI: 10.1006/excr.2002.5516] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The expression and dynamics of bound fibronectin and the sialylated integral membrane protein, beta 1-integrin, were analyzed on the apical membrane of living MDCK cells. Fibronectin was identified by its specific binding of fluorescent peanut agglutinin and sialylated beta 1-integrin by its binding of Sambucus nigra agglutinin. Confocal epifluorescence microscopy and laser scanning cytometry determined the distribution and abundance of binding sites of the two fluorescently labeled lectins. Both fibronectin and beta 1-integrin were restricted to specific regions uniformly distributed over the entire apical surface. Apical-surface fibronectin binding varied much more between cells than did the expression of beta 1-integrin. Sialylated beta 1-integrin colocalized >92% with membrane microplicae while fibronectin was unrelated to these surface structures. This lack of colocalization of the proteins was confirmed by double-labeling experiments. From the maturation dependence of the fibronectin-binding capacity and the differences in protein turnover times, it was evident that fibronectin did not bind to sialylated beta 1-integrin. Furthermore, desialylation of beta 1-integrin uncovered additional fibronectin receptors on the apical membrane. We conclude that these lectins permit tracking of two membrane-associated glycoproteins in living cells and that fibronectin binds only to desialylated beta 1-integrin on MDCK cells.
Collapse
Affiliation(s)
- Jeppe Praetorius
- Section of Transport Physiology, Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung and Blood Institute, The National Institutes of Health, 10 Center Drive, Bldg. 10, Room 6N260, Bethesda, Maryland 20892-1603, USA
| | | |
Collapse
|
59
|
Chiu SJ, Jiang ST, Wang YK, Tang MJ. Hepatocyte growth factor upregulates alpha2beta1 integrin in Madin-Darby canine kidney cells: implications in tubulogenesis. J Biomed Sci 2002; 9:261-72. [PMID: 12065901 DOI: 10.1007/bf02256073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
It has been well established that hepatocyte growth factor (HGF) induces branching tubule formation of Madin-Darby canine kidney (MDCK) cells cultured in collagen gel. Tubulogenesis per se requires the involvement of cell proliferation, migration, focalization proteolysis, cell-cell interaction and differentiation. However, signaling pathways and proteins involved in HGF-induced tubulogenesis by MDCK cells have not been thoroughly studied. Because cell-matrix interactions play important roles in tubulogenesis, we analyzed whether HGF altered the expression of extracellular matrix receptor (alpha2, alpha3, beta1 and alphavbeta3 integrin). We found that among those proteins examined, alpha2beta1 integrin levels were enhanced by HGF. HGF-induced upregulation of alpha2beta1 integrin was mediated via upregulation of alpha2 integrin mRNA abundance. Cycloheximide blocked the HGF-induced increase in alpha2 integrin mRNA expression. To understand the signaling pathways leading to an HGF-induced increase in alpha2beta1 integrin levels, PD98059 (MEK1 inhibitor), LY294002 (PI3-kinase inhibitor), and GF109203X (PKC inhibitor) were used. We found that PD98059 blocked the HGF-induced increase in alpha2beta1 integrin expression. Furthermore, 5E8 (specific anti-alpha2beta1 integrin antibody) was employed to elucidate the potential role of HGF-induced upregulation of alpha2beta1 integrin in branching morphogenesis. 5E8 did not alter HGF-induced scattering effects but disrupted HGF-induced branching tubulogenesis in collagen gel via inhibition of cell-cell interactions and growth. Taken together, HGF upregulates alpha2beta1 integrin expression via an indirect pathway, the results of which contribute to the regulation of cell-cell interactions and cell growth during branching morphogenesis in collagen gel.
Collapse
Affiliation(s)
- Sue-Jean Chiu
- Department of Physiology, National Cheng Kung University Medical College, Tainan, Taiwan, ROC
| | | | | | | |
Collapse
|
60
|
Marsden M, DeSimone DW. Regulation of cell polarity, radial intercalation and epiboly inXenopus: novel roles for integrin and fibronectin. Development 2001; 128:3635-47. [PMID: 11566866 DOI: 10.1242/dev.128.18.3635] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fibronectin (FN) is reported to be important for early morphogenetic movements in a variety of vertebrate embryos, but the cellular basis for this requirement is unclear. We have used confocal and digital time-lapse microscopy to analyze cell behaviors in Xenopus gastrulae injected with monoclonal antibodies directed against the central cell-binding domain of fibronectin. Among the defects observed is a disruption of fibronectin matrix assembly, resulting in a failure of radial intercalation movements, which are required for blastocoel roof thinning and epiboly. We identified two phases of FN-dependent cellular rearrangements in the blastocoel roof. The first involves maintenance of early roof thinning in the animal cap, and the second is required for the initiation of radial intercalation movements in the marginal zone. A novel explant system was used to establish that radial intercalation in the blastocoel roof requires integrin-dependent contact of deep cells with fibronectin. Deep cell adhesion to fibronectin is sufficient to initiate intercalation behavior in cell layers some distance from the substrate. Expression of a dominant-negative β1 integrin construct in embryos results in localized depletion of the fibronectin matrix and thickening of the blastocoel roof. Lack of fibronectin fibrils in vivo is correlated with blastocoel roof thickening and a loss of deep cell polarity. The integrin-dependent binding of deep cells to fibronectin is sufficient to drive membrane localization of Dishevelled-GFP, suggesting that a convergence of integrin and Wnt signaling pathways acts to regulate radial intercalation in Xenopus embryos.
Collapse
Affiliation(s)
- M Marsden
- Department of Cell Biology, University of Virginia Health System, School of Medicine, PO Box 800732, Charlottesville, VA, 22908-0732, USA
| | | |
Collapse
|
61
|
Klinowska TC, Alexander CM, Georges-Labouesse E, Van der Neut R, Kreidberg JA, Jones CJ, Sonnenberg A, Streuli CH. Epithelial development and differentiation in the mammary gland is not dependent on alpha 3 or alpha 6 integrin subunits. Dev Biol 2001; 233:449-67. [PMID: 11336507 DOI: 10.1006/dbio.2001.0204] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the mammary gland, both laminin and integrins have been shown to be required for normal ductal morphogenesis during development in vivo, and for functional differentiation in culture models. Major integrin receptors for laminins in the mammary gland are alpha 3 beta 1, alpha 6 beta 1, and alpha 6 beta 4. However, the specific subunits that contribute to laminin-mediated mammary cell function and development have not been identified. In this study, we use a genetic approach to test the hypothesis that laminin-binding integrins are required for the function of the mammary gland in vivo. Rudiments of embryonic mammary gland were shown to develop in the absence of these integrin subunits. Postnatal development of the mammary gland was studied in integrin null tissue that had been transplanted into the mammary fat pads of syngeneic hosts. In mammary epithelium lacking alpha 6 integrin, the beta 4 subunit was not apparent and hemidesmosome formation was only rudimentary. However, despite this deficiency, normal ductal morphogenesis and branching of the mammary gland occurred and myoepithelial cells were distributed normally with respect to luminal cells. Mammary alveoli devoid of alpha 3 or alpha 6 integrin formed in pregnancy and were histologically and functionally identical to those in wild-type mammary gland. The tissue underwent full morphological differentiation, and the epithelial cells retained the ability to synthesize beta-casein. This work demonstrates that mammary tissue genetically lacking major laminin-binding integrin receptors is still able to develop and function.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/physiology
- Basement Membrane/ultrastructure
- Body Patterning/genetics
- Body Patterning/physiology
- Cell Differentiation
- Epithelium/embryology
- Epithelium/growth & development
- Epithelium/metabolism
- Female
- Hemidesmosomes/ultrastructure
- Integrin alpha3
- Integrin alpha6
- Integrin beta4
- Integrins/genetics
- Integrins/physiology
- Laminin/metabolism
- Mammary Glands, Animal/embryology
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/transplantation
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Electron
- Pregnancy
- Transplantation, Isogeneic
Collapse
Affiliation(s)
- T C Klinowska
- School of Biological Sciences, University of Manchester, 3.239 Stopford Building, Oxford Road, Manchester, M13 9PT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Ojakian GK, Ratcliffe DR, Schwimmer R. Integrin regulation of cell-cell adhesion during epithelial tubule formation. J Cell Sci 2001; 114:941-52. [PMID: 11181177 DOI: 10.1242/jcs.114.5.941] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The extracellular matrix plays an important role in regulation of epithelial development and organization. To determine more precisely the function of extracellular matrix in this process, the initial steps in collagen-mediated formation of epithelial tubules were studied using a model cell culture system. Previous studies have demonstrated that incubation of Madin-Darby canine kidney (MDCK) epithelial cells with a collagen gel overlay induces (beta)1 integrin-regulated epithelial remodeling accompanied by extensive cell rearrangements and formation of epithelial tubules. During epithelial remodeling there was extensive disruption of the epithelial junctional complex. Progressive opening of tight junctions was observed over 8 hours using transepithelial resistance measurements and immunofluorescence microscopy demonstrated that tight and adherens junction proteins were dispersed throughout the apical and basolateral membranes. Junction complex disruption allowed the formation of apical cell extensions and subsequent migration of selected cell sheets from the epithelial monolayer. Confocal microscopy demonstrated the presence of adherens junction (E-cadherin, (alpha)-catenin, (beta)-catenin, plakoglobin) and desmosomal (desmoplakin-1/2, plakoglobin) proteins on, and within, cell extensions demonstrating that cell junctions had undergone considerable disassembly. However, groups of cell extensions appeared to be associated by E-cadherin/catenin-mediated interactions. Association of E-cadherin/catenin complexes with the epithelial cytoskeleton was analyzed by differential detergent extraction. SDS-PAGE and immunoblot analysis demonstrated that adherens junction proteins were primarily cytoskeleton-associated in control cells. During integrin-regulated remodeling, there was a progressive reduction in the interaction of adherens junction proteins with the cytoskeleton suggesting that they play an important role in the maintenance of epithelial integrity. Since loss of transepithelial electrical resistance and disruption of junctional complexes were inhibited by an antifunctional integrin antibody, we propose that activation of integrin signaling pathways regulate junctional complex stability, cell-cell interactions and cell migration. These observations provide evidence that integrin-regulated MDCK epithelial tubule formation can serve as a model system for studying rearrangements of epithelial sheets which occur during development.
Collapse
Affiliation(s)
- G K Ojakian
- Department of Anatomy and Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA.
| | | | | |
Collapse
|
63
|
Guignot J, Bernet-Camard MF, Poüs C, Plançon L, Le Bouguenec C, Servin AL. Polarized entry of uropathogenic Afa/Dr diffusely adhering Escherichia coli strain IH11128 into human epithelial cells: evidence for alpha5beta1 integrin recognition and subsequent internalization through a pathway involving caveolae and dynamic unstable microtubules. Infect Immun 2001; 69:1856-68. [PMID: 11179364 PMCID: PMC98093 DOI: 10.1128/iai.69.3.1856-1868.2001] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2000] [Accepted: 12/12/2000] [Indexed: 01/09/2023] Open
Abstract
Afa/Dr diffusely adhering Escherichia coli strain IH11128 bacteria basolaterally entered polarized epithelial cells by a CD55- and CD66e-independent mechanism through interaction with the alpha5beta1 integrin and a pathway involving caveolae and dynamic microtubules (MTs). IH11128 invasion within HeLa cells was dramatically decreased after the cells were treated with the cholesterol-extracting drug methyl-beta-cyclodextrin or the caveola-disrupting drug filipin. Disassembly of the dynamically unstable MT network by the compound 201-F resulted in a total abolition of IH11128 entry. In apically infected polarized fully differentiated Caco-2/TC7 cells, no IH11128 entry was observed. The entry of bacteria into apically IH11128-infected fully differentiated Caco-2/TC7 cells was greatly enhanced by treating cells with Ca2+-free medium supplemented with EGTA, a procedure that disrupts intercellular junctions and thus exposes the basolateral surface to bacteria. Basally infected fully differentiated polarized Caco-2/TC7 cells grown on inverted inserts mounted in chamber culture showed a highly significant level of intracellular IH11128 bacteria compared with cells subjected to the apical route of infection. No expression of CD55 and CD66e, the receptors for the Afa/Dr adhesins, was found at the basolateral domains of these cells. Consistent with the hypothesis that a cell-to-cell adhesion molecule acts as a receptor for polarized IH11128 entry, an antibody blockade using anti-alpha5beta1 integrin polyclonal antibody completely abolished bacterial entry. Experiments conducted with the laboratory strain E. coli K-12 EC901 carrying the recombinant plasmid pBJN406, which expresses Dr hemagglutinin, demonstrated that the dra operon is involved in polarized entry of IH11128 bacteria. Examined as a function of cell differentiation, the number of internalized bacteria decreased dramatically beyond cell confluency. Surviving intracellular IH11128 bacteria residing intracellularly had no effect on the functional differentiation of Caco-2/TC7 cells.
Collapse
Affiliation(s)
- J Guignot
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 510, France
| | | | | | | | | | | |
Collapse
|
64
|
Wegener J, Keese CR, Giaever I. Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Exp Cell Res 2000; 259:158-66. [PMID: 10942588 DOI: 10.1006/excr.2000.4919] [Citation(s) in RCA: 481] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This article describes the optimization of an experimental technique referred to as electric cell-substrate impedance sensing (ECIS) to monitor attachment and spreading of mammalian cells quantitatively and in real time. The method is based on measuring changes in AC impedance of small gold-film electrodes deposited on a culture dish and used as growth substrate. Based on experimental data and theoretical considerations we demonstrate that high-frequency capacitance measurements (f = 40 kHz) are most suited to follow the increasing surface coverage of the electrode due to cell spreading. The excellent time resolution of the method allowed an in-depth analysis of cell spreading kinetics under various experimental conditions. Using ECIS we studied the attachment and spreading of epithelial MDCK cells (strain II) on different protein coatings, and investigated the influence of divalent cations on spreading kinetics. We quantified the inhibitory effect of soluble peptides that mimic the recognition sequence of fibronectin and other extracellular matrix proteins (RGDS). We also applied the ECIS technique to monitor the detachment of confluent fibroblastic cell layers (WI38/VA-13) by means of these peptides.
Collapse
Affiliation(s)
- J Wegener
- School of Science, Rensselaer Polytechnic Institute, Troy, New York, 12180-3590, USA
| | | | | |
Collapse
|
65
|
Coraux C, Zahm JM, Puchelle E, Gaillard D. Beta(1)-integrins are involved in migration of human fetal tracheal epithelial cells and tubular morphogenesis. Am J Physiol Lung Cell Mol Physiol 2000; 279:L224-34. [PMID: 10926545 DOI: 10.1152/ajplung.2000.279.2.l224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Development of human fetal airways requires interaction of the respiratory epithelium and the extracellular matrix through integrins. Nevertheless, the specific roles of beta(1)-integrins during development and tubular morphogenesis are still unknown. To analyze beta(1)-integrin localization and influence during migration, we developed a model of human fetal tracheal explants growing on collagen and overlaid with a second layer of collagen to form a sandwich. In this configuration, cord and tubule formation proceeded normally but were inhibited by incubation with anti-beta(1)-integrin subunit antibodies. On a collagen matrix, beta(1)-integrins were immunolocalized on the entire plasma membrane of migrating epithelial cells and almost exclusively on the basal plasma membrane of nonmigratory epithelial cells. In a sandwich configuration, beta(1)-integrins became detectable in the cytoplasm of epithelial cells. Coating cultures with collagen transiently altered the morphology of migrating cells and their speed and direction of migration, whereas incubation with anti-beta(1)-integrin subunit antibodies irreversibly altered these parameters. These observations suggest that the matrix environment, by modulating beta(1)-integrin expression patterns, plays a key role during tubular morphogenesis of human fetal tracheal epithelium, principally by modulating epithelial cell migration.
Collapse
Affiliation(s)
- C Coraux
- Institut National de la Santé et de la Recherche Médicale Unité 514, Institut Fédératif de Recherche 53, Université de Reims Champagne-Ardenne, Centre Hospitalier Universitaire Maison Blanche, 51092 Reims Cedex, France
| | | | | | | |
Collapse
|
66
|
Lubman RL, Zhang XL, Zheng J, Ocampo L, Lopez MZ, Veeraraghavan S, Zabski SM, Danto SI, Borok Z. Integrin alpha(3)-subunit expression modulates alveolar epithelial cell monolayer formation. Am J Physiol Lung Cell Mol Physiol 2000; 279:L183-93. [PMID: 10893217 DOI: 10.1152/ajplung.2000.279.1.l183] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated expression of the alpha(3)-integrin subunit by rat alveolar epithelial cells (AECs) grown in primary culture as well as the effects of monoclonal antibodies with blocking activity against the alpha(3)-integrin subunit on AEC monolayer formation. alpha(3)-Integrin subunit mRNA and protein were detectable in AECs on day 1 and increased with time in culture. alpha(3)- and beta(1)-integrin subunits coprecipitated in immunoprecipitation experiments with alpha(3)- and beta(1)-subunit-specific antibodies, consistent with their association as the alpha(3)beta(1)-integrin receptor at the cell membrane. Treatment with blocking anti-alpha(3) monoclonal antibody from day 0 delayed development of transepithelial resistance, reduced transepithelial resistance through day 5 compared with that in untreated AECs, and resulted in large subconfluent patches in monolayers viewed by scanning electron microscopy on day 3. These data indicate that alpha(3)- and beta(1)-integrin subunits are expressed in AEC monolayers where they form the heterodimeric alpha(3)beta(1)-integrin receptor at the cell membrane. Blockade of the alpha(3)-integrin subunit inhibits formation of confluent AEC monolayers. We conclude that the alpha(3)-integrin subunit modulates formation of AEC monolayers by virtue of the key role of the alpha(3)beta(1)-integrin receptor in AEC adhesion.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Blotting, Northern
- Blotting, Western
- Cell Adhesion/drug effects
- Cell Nucleus/ultrastructure
- Cells, Cultured
- Epithelial Cells/physiology
- Epithelial Cells/ultrastructure
- Fluorescent Antibody Technique
- Integrin alpha3
- Integrins/immunology
- Integrins/metabolism
- Integrins/physiology
- Male
- Microscopy, Electron, Scanning
- Precipitin Tests
- Pulmonary Alveoli/cytology
- Pulmonary Alveoli/physiology
- Pulmonary Alveoli/ultrastructure
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- R L Lubman
- Division of Pulmonary and Critical Care Medicine and Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, California 90033, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Abstract
It has been known for more than twenty years that changes in glial coverage of magnocellular neurones in the hypothalamo-neurohypophysial system accompany activation of those neurones. This led to the so-called 'glial retraction hypothesis.' However, until recently, little has been established as to how this structural plasticity of astrocytes develops. This paper will explore a number of hypotheses and supporting data concerning these changes.
Collapse
Affiliation(s)
- A K Salm
- Department of Anatomy, West Virginia University School of Medicine, Morgantown 26506-9128, USA.
| |
Collapse
|
68
|
Salm AK, Bobak JB. Dehydration-associated changes in the ventral glial limitans subjacent to the supraoptic nucleus include a reduction in the extent of the basal lamina but not astrocytic process shrinkage. Exp Neurol 1999; 160:425-32. [PMID: 10619559 DOI: 10.1006/exnr.1999.7211] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In these studies we have investigated factors that might account for two previous observations of the ventral glial limitans subjacent to the supraoptic nucleus (SON-VGL) of dehydrated rats: (1) a reversible reduction in the thickness of the SON-VGL, and (2) a reversible reorientation of VGL astrocytes. Since components of the basal lamina influence both cell viability and polarity, we used electron microscopic sterology to determine the volume fraction of basal lamina in the SON-VGL. We further made extensive measurements of astrocytic process thickness to determine if cellular shrinkage is a factor in the thinning of the SON-VGL. While we found no evidence for changes in the thickness of astrocytic processes, there was a significant and reversible reduction in the extent of the basal lamina. These data suggest that the thinning of the VGL is due to complex biochemical events and is not merely an epiphenomenon of dehydration.
Collapse
Affiliation(s)
- A K Salm
- Department of Anatomy, West Virginia University School of Medicine, Morgantown 26506-9128, USA
| | | |
Collapse
|
69
|
Abstract
The fine structure of the tight junctions between sinus endothelial cells of the rat spleen and the permeability of such sinus endothelial cells were examined by transmission electron microscopy, using freeze-fracture, triton extraction, and lanthanum-tracer techniques. In freeze-fracture replicas, the segmented strands and grooves of the tight junctions were frequently observed on the basolateral surfaces of the sinus endothelial cells irrespective of the location of the ring fiber. There were one or two wavy-strands or grooves which were, for the most part, oriented parallel to the long cell axis thus forming networks at places. In addition, some strands or grooves were discontinuous while some networks of the junctional strands were not closed. These strands also occasionally lacked intramembranous particles in the tight junctions. The junctional strands run apicobasically at certain sites. In the vertical sections of the sinus endothelial cells treated with lanthanum nitrate, although no tight junctions were observed wherever the endothelial cells were apposed, most of them were situated on the basal part of the lateral surfaces of the adjacent endothelial cells. Several fusions of the junctional membranes were observed in a vertical section of the lateral surfaces of the adjacent endothelial cells. The intercellular spaces of the adjacent endothelial cells except for the fusion of the junctional membranes, were electron dense and the infiltration of lanthanum nitrate was found not to be interrupted by these tight junctions. Based on these observations, the molecular 'fence' and paracellular 'gate' functions of the tight junctions in the sinus endothelial cells are discussed.
Collapse
Affiliation(s)
- K Uehara
- Department of Anatomy, School of Medicine, Fukuoka University, Japan.
| | | |
Collapse
|
70
|
Abstract
Galectins are galactoside-binding lectins. In the mesonephros of the chick embryo, the 16-kDa galectin is abundant in the glomerular and tubular basement membranes where it colocalizes with fibronectin and laminin. To test whether galectin-glycoprotein interactions could play a role in mesonephric development, the effects of the galectin hapten inhibitors thiodigalactoside (TDG) and lactose on the differentiation of the cultured mesonephros were investigated. When compared to control saccharide-free or maltose-treated cultures, mesonephroi cultured in the presence of TDG and lactose exhibited defects in tissue organization. These included a distorted tubule shape, pseudo-stratification of the tubular epithelium, and detachment of glomerular podocytes from the basement membrane. The presence of molecular differentiation markers in the developing mesonephros was investigated. In vivo, expression of the epithelial-specific cell adhesion molecule E-cadherin is restricted to differentiated tubular epithelial cells, whereas the intermediate filament protein vimentin is present in mesonephrogenic mesenchyme and is undetectable in tubular epithelial cells. In mesonephroi cultured in the absence of sugars or in the presence of maltose, the expression pattern of these two marker molecules resembles that found in the mesonephros in vivo. In contrast, in the mesonephroi cultured in the presence of TDG and lactose, the epithelial tubular cells expressing E-cadherin also express vimentin. Re-expression of vimentin in the tubular epithelial cells could indicate a partial reversal to a mesenchymal phenotype. Results suggest that galectin-glycoprotein interactions in the basement membrane are important in the maintenance of the renal epithelial phenotype. Dev Dyn 1999;215:248-263.
Collapse
Affiliation(s)
- K M Murphy
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
71
|
Altieri P, Caridi G, Chiesa V, Ponzoni M, Ghiggeri GM. N-(4-hydroxyphenyl) retinamide inhibits cystogenesis by polycystic epithelial cell lines in vitro. Life Sci 1999; 64:PL259-65. [PMID: 10374933 DOI: 10.1016/s0024-3205(99)00155-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Primary tubular epithelial cells develop spherical monolayered cysts when cultured in collagenI matrix, a model that has been used to study the mechanism of cystogenesis. In an attempt to block cystogenesis, we have evaluated the effect of N-(4-hydroxyphenyl) retinamide (HPR), a synthetic derivative of retinoic acid, on both formation and growth of cysts in a human model of polycystic kidney cells. Number, dimension and submicroscopical characteristics of cysts were evaluated after 2 and 4 weeks from treatment with HPR. A marked inhibitory effect of HPR on cystogenesis was found at concentration of 1 microM, while a complete block was observed at concentration between 5 and 10 microM. Furthermore, treatment with HPR of already formed cysts resulted in their disruption. HPR at 10 microM also induced apoptosis of several tubular epithelial cell models suggesting a correlation between the two phenomena. Taken together these observations demonstrate that HPR blocks cystogenesis by polycystic kidney cells "in vitro" and that it also reverts the fate of already formed cysts. Apoptosis may be the mechanism which mediates the inhibitory effect on cystogenesis in this model.
Collapse
Affiliation(s)
- P Altieri
- Department of Nephrology, Giannina Gaslini Institute, Genoa, Italy
| | | | | | | | | |
Collapse
|
72
|
White SR, Dorscheid DR, Rabe KF, Wojcik KR, Hamann KJ. Role of very late adhesion integrins in mediating repair of human airway epithelial cell monolayers after mechanical injury. Am J Respir Cell Mol Biol 1999; 20:787-96. [PMID: 10101012 DOI: 10.1165/ajrcmb.20.4.3318] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Repair of the airway epithelium after injury requires that processes such as adhesion and cell migration occur in a defined order. Both of these processes depend on interactions between extracellular matrix (ECM) proteins and appropriate integrins. To study these interactions, we examined monolayer wound repair in a cultured human airway epithelial cell line, 16HBE14o-. Wounds created in confluent monolayers grown on either collagen-IV, laminin-1, or laminin-2 matrix closed quickly in response to 15 ng/ml epidermal growth factor (EGF). Concurrent treatment of cells grown on each matrix protein with EGF and a monoclonal antibody (mAb) to beta1-integrin inhibited wound closure. Treatment with a mAb to alpha2-, alpha3-, and alpha6-integrin blocked wound repair in monolayers grown on collagen-IV but did not do so in monolayers grown either on laminin-1 or laminin-2. Inhibition was not due to cell detachment or apoptosis. These data demonstrate that integrins expressed by airway epithelial cells mediate wound closure on different constitutive ECM proteins. These data suggest that beta1-integrin subunit function is required to permit migration and spreading of epithelial cells, and that alpha-integrin subunits alone do not mediate migration of epithelial cells grown on either laminin-1 or laminin-2. These differences may become important if the matrix protein composition of airway basement membrane changes in disease states such as asthma.
Collapse
Affiliation(s)
- S R White
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, Division of Biological Sciences, University of Chicago, Chicago, Illinois, USA.
| | | | | | | | | |
Collapse
|
73
|
Slade MJ, Coope RC, Gomm JJ, Coombes RC. The human mammary gland basement membrane is integral to the polarity of luminal epithelial cells. Exp Cell Res 1999; 247:267-78. [PMID: 10047469 DOI: 10.1006/excr.1998.4340] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We show that myoepithelial cell basement membrane derived E3 and E8 domains of laminin-1 are capable of polarizing luminal epithelial cells with regard to epithelial membrane antigen localization. This event is dependent on the alpha6 integrin and results in aggregation and phosphorylation of the tyrosine residues of the focal adhesion kinase complex. We also demonstrate that uncultured normal luminal epithelial cells synthesize normal levels of beta and gamma laminin chains and reduced levels of alpha chains mRNA in common with malignant epithelial cells. In contrast normal myoepithelial cells synthesize all three constituent chains of laminin-1. Therefore in breast cancer the absence of myoepithelial cells could result in a lack of laminin alpha chains which may contribute to loss of polarity of malignant epithelial cells.
Collapse
Affiliation(s)
- M J Slade
- Department of Cancer Medicine, Imperial College School of Medicine, Charing Cross Campus, St. Dunstan's Road, London, W6 8RP, England.
| | | | | | | |
Collapse
|
74
|
Yeaman C, Grindstaff KK, Nelson WJ. New perspectives on mechanisms involved in generating epithelial cell polarity. Physiol Rev 1999; 79:73-98. [PMID: 9922368 DOI: 10.1152/physrev.1999.79.1.73] [Citation(s) in RCA: 407] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Polarized epithelial cells form barriers that separate biological compartments and regulate homeostasis by controlling ion and solute transport between those compartments. Receptors, ion transporters and channels, signal transduction proteins, and cytoskeletal proteins are organized into functionally and structurally distinct domains of the cell surface, termed apical and basolateral, that face these different compartments. This review is about mechanisms involved in the establishment and maintenance of cell polarity. Previous reports and reviews have adopted a Golgi-centric view of how epithelial cell polarity is established, in which the sorting of apical and basolateral membrane proteins in the Golgi complex is a specialized process in polarized cells, and the generation of cell surface polarity is a direct consequence of this process. Here, we argue that events at the cell surface are fundamental to the generation of cell polarity. We propose that the establishment of structural asymmetry in the plasma membrane is the first, critical event, and subsequently, this asymmetry is reinforced and maintained by delivery of proteins that were constitutively sorted in the Golgi. We propose a hierarchy of stages for establishing cell polarity.
Collapse
Affiliation(s)
- C Yeaman
- Department of Molecular and Cellular Physiology, Beckman Center for Molecular and Genetic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | | | | |
Collapse
|
75
|
Gut A, Balda MS, Matter K. The cytoplasmic domains of a beta1 integrin mediate polarization in Madin-Darby canine kidney cells by selective basolateral stabilization. J Biol Chem 1998; 273:29381-8. [PMID: 9792639 DOI: 10.1074/jbc.273.45.29381] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In Madin-Darby canine kidney cells, newly synthesized apical and basolateral membrane proteins are generally transported directly to their respective cell surface domain due to targeting determinants that mediate sorting in the Golgi complex. In several basolateral membrane proteins, these targeting determinants reside in the cytoplasmic domains. We show here that basolateral expression of the human alpha5beta1 integrin in stably transfected Madin-Darby canine kidney cells is also mediated by the cytoplasmic domains. Distinct regions in both cytoplasmic domains were found to be sufficient to mediate basolateral expression independently from one another. Unexpectedly, newly synthesized wild-type alpha5beta1 and basolaterally expressed chimeras containing the cytoplasmic domain of either alpha5 or beta1 were integrated into both cell surface domains, preferentially apically, during biosynthesis. The apical pools of wild-type integrin and chimeric subunits were found to become quickly degraded, whereas the basolateral pools were stabilized. Thus, the cytoplasmic domains of the alpha5beta1 integrin are independently sufficient to mediate sorting by selective basolateral stabilization.
Collapse
Affiliation(s)
- A Gut
- Department of Cell Biology, University of Geneva, 1211 Geneva, Switzerland
| | | | | |
Collapse
|
76
|
Altieri P, Zegarra Moran O, Galietta LJ, Tarelli LT, Sessa A, Ghiggeri GM. Transforming growth factor beta blocks cystogenesis by MDCK epithelium in vitro by enhancing the paracellular flux: implication of collagen V. J Cell Physiol 1998; 177:214-23. [PMID: 9766518 DOI: 10.1002/(sici)1097-4652(199811)177:2<214::aid-jcp3>3.0.co;2-q] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Transforming growth factor beta (TGFbeta) determines a nearly complete inhibition of cystogenesis by MDCK cells grown in collagen I-enriched matrices in vitro. In order to elucidate the mechanism implicated in this phenomenon, we performed a series of experiments aimed at discovering a relevant role of extracellular matrix. TGFbeta (2 ng/ml) played a marked stimulatory effect on the expression of extracellular matrix by MDCK with a selective effect on collagen V (three to fourfold increase of protein and mRNA) and in parallel inhibited cystogenesis by 95%. Cotreatment with TGFbeta and anti-collagen V antibodies restored a normal cystogenesis. In analogy, when MDCK cells were grown in three-dimensional matrices containing collagen I and minor (10%) amounts of collagen V, cystogenesis was once again inhibited by 95%. To characterize the molecular mechanism activated by TGFbeta and collagen V, we looked at the electrophysiological characteristics of MDCK monolayers and found a drastic fall of transepithelial electrical resistance (TER) in both conditions. In parallel with the decrease in TER, TGFbeta and collagen V also induced the leakage of two high molecular weight tracers, i.e., [3H]-inulin and 150 kD FITC-Dextran, suggesting a perturbation of the paracellular permeability. Finally, TGFbeta at the relevant concentration did not stimulate apoptosis in our cellular model, as judged by propidium iodide staining and by in situ end labeling of DNA fragments. These observations suggest that TGFbeta inhibits cystogenesis by MDCK cells in vitro by altering the collagenic composition of the three-dimensional milieu where MDCK cells grow and form cysts. The molecular mechanism responsible for inhibition of cystogenesis is the increase of paracellular flux which overcomes the active transport of solutes and water inside cysts.
Collapse
Affiliation(s)
- P Altieri
- Section of Nephrology, G. Gaslini Children Hospital, Genoa, Italy
| | | | | | | | | | | |
Collapse
|
77
|
Abstract
Several different approaches suggest that basement-membrane assembly is important for epithelial development. Basement membranes contain isoforms of collagen IV, proteoglycans, and noncollagenous glycoproteins such as the laminins and nidogens. The expression and role of laminins for epithelial morphogenesis is reviewed. Laminins are large heterotrimeric proteins composed of alpha, beta, and gamma chains. Many major epithelial laminins and their receptors have been identified recently, and the extracellular protein-protein interactions that drive basement-membrane assembly are beginning to be understood. Three laminin alpha-chains are typically made by epithelial, alpha 1, alpha 3, and alpha 5. Three major epithelial heterotrimers can at present be distinguished--laminin-1 (alpha 1 beta 1 gamma 1), laminin-5 (alpha 3 beta 3 gamma 2), and laminin-10 (alpha 5 beta 1 gamma 1)--but other heterotrimers may exist in epithelia. Laminins containing either alpha 1 or alpha 3 chains are largely limited to epithelia, whereas the alpha 5 is also found in endothelial and muscle basement membranes, particularly in the adult. Some epithelial cell types express several laminin alpha-chains, so it is relevant to test how the different laminins affect epithelial cells. Laminins interact with integrin type of receptors on the cell surface, but binding to other proteins has also recently been demonstrated. Two important recent discoveries are the identification of dystroglycan as a major laminin receptor in muscle and epithelia, and nidogen as a high-affinity laminin-binding protein important for basement-membrane assembly. Antibody perturbation experiments suggest that these protein-protein interactions are important for epithelial morphogenesis.
Collapse
Affiliation(s)
- M Ekblom
- Department of Animal Physiology, Uppsala University, Sweden
| | | | | | | | | |
Collapse
|
78
|
Zuk A, Bonventre JV, Brown D, Matlin KS. Polarity, integrin, and extracellular matrix dynamics in the postischemic rat kidney. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C711-31. [PMID: 9730955 DOI: 10.1152/ajpcell.1998.275.3.c711] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acute renal failure (ARF) as a consequence of ischemic injury is a common disease affecting 5% of the hospitalized population. Despite the fact that mortality from ARF is high, there has been little improvement in survival rates over the last 40 years. The pathogenesis of ARF may be related to substantial changes in cell-cell and cell-extracellular matrix interactions mediated by beta1-integrins. On the basis of in vitro and in vivo studies, reorganization of beta1-integrins from basal to apical surfaces of injured tubular epithelia has been suggested to facilitate epithelial detachment, contributing to tubular obstruction and backleak of glomerular filtrate. In this study, we examine integrin and extracellular matrix dynamics during epithelial injury and repair using an in vivo rat model of unilateral ischemia. We find that, soon after reperfusion, beta1-integrins newly appear on lateral borders in epithelial cells of the S3 segment but are not on the apical surface. At later times, as further injury and regeneration coordinately occur, epithelia adherent to the basement membrane localize beta1 predominantly to basal surfaces even while the polarity of other marker proteins is lost. At the same time, amorphous material consisting of depolarized exfoliated cells fills the luminal space. Notably, beta1-integrins are not detected on exfoliated cells. A novel finding is the presence of fibronectin, a glycoprotein of plasma and the renal interstitium, in tubular spaces of the distal nephron and to a lesser extent S3 segments. These results indicate that beta1-integrins dramatically change their distribution during ischemic injury and epithelial repair, possibly contributing to cell exfoliation initially and to epithelial regeneration at later stages. Together with the appearance of large amounts of fibronectin in tubular lumens, these alterations may play a significant role in the pathophysiology of ARF.
Collapse
Affiliation(s)
- A Zuk
- Renal Unit, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | | | | |
Collapse
|
79
|
Calí G, Retta SF, Negri R, Damiano I, Gentile R, Tarone G, Nitsch L, Garbi C. Beta1B integrin interferes with matrix assembly but not with confluent monolayer polarity, and alters some morphogenetic properties of FRT epithelial cells. Eur J Cell Biol 1998; 75:107-17. [PMID: 9548368 DOI: 10.1016/s0171-9335(98)80053-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Beta1B is a beta1 integrin splice variant that differs from the ubiquitous beta1A in the terminal portion of the cytosolic tail. The expression of this variant in CHO cells results in reduced fibroblast adhesion and motility (Balzac, E et al., J. Cell Biol. 127, 557-565 (1994)). We have evaluated the phenotypic changes induced by the expression of beta1B in the FRT epithelial cell line. Stable transfectants of FRT cells expressing beta1B or beta1A human integrins were obtained. The transfected integrins associated with the endogenous alpha subunits and were delivered to the plasma membrane. Beta1B expressing cells attached less efficiently and spread less on fibronectin, laminin or type IV collagen coated dishes. A great reduction of fibronectin fibrils associated to the basal membrane of non-confluent beta1B transfected cells was observed. This was paralleled by the disappearance of microfilament bundles and loss of basally located focal adhesions. On the contrary, upon beta1A transfection, a higher amount of fibronectin fibrils, together with microfilament bundles and focal adhesions, was observed. Expression of beta1B did not significantly modify the ability to manifest the polarized phenotype when cells were grown to confluence on filters in two-chamber-systems. Beta1B-transfected cells showed reduced motile properties when embedded as aggregates in type I collagen gels. Moreover, formation of polarized cysts in suspension culture was impaired. The results show that beta1B, by interfering with focal adhesion organization, microfilament and fibronectin assembly, cell spreading and migration, affects some morphogenetic properties of FRT epithelial cells.
Collapse
Affiliation(s)
- G Calí
- Centro di Endocrinologia ed Oncologia Sperimentale del CNR - Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università degli Studi di Napoli Federico II, Italy
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Yan Z, Chen M, Perucho M, Friedman E. Oncogenic Ki-ras but not oncogenic Ha-ras blocks integrin beta1-chain maturation in colon epithelial cells. J Biol Chem 1997; 272:30928-36. [PMID: 9388239 DOI: 10.1074/jbc.272.49.30928] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Human colorectal tumors commonly contain mutations in Ki-ras but rarely, if ever, in Ha-ras. The selectivity for Ki-ras mutations in this tumor was explored using the HD6-4 colon epithelial cell line which contains no ras mutations. After adhesion to an extracellular matrix, HD6-4 cells polarize into columnar goblet cells with distinct apical and basal regions. Stable HD6-4 transfectants were made with mini-gene constructs of the oncogenic cellular Ki-ras4BG12V gene, the oncogenic Ha-rasG12V gene, or mini-gene constructs of wild-type Ki-ras4B as a control. Ki-ras mutations, but not Ha-ras mutations, disrupted colon epithelial cell apicobasal polarity and adhesion to collagen I and laminin. Three Ha-ras transfectants and three Ki-ras transfectants exhibited Ras proteins expressing the Val-12 mutation by Western blotting with pan-rasG12V antibody. Only wild-type Ki-ras transfectant cells and oncogenic Ha-ras transfectant cells synthesized the mature, fully glycosylated forms of beta1 integrin. Instead of the mature integrin beta1-chain, a faster migrating beta1-chain intermediate was detected on the cell surface and in the cytoplasm of the oncogenic Ki-ras transfectants. Expression of the oncogenic Ki-ras gene caused the altered beta1 integrin maturation because phosphorothiolated antisense oligonucleotides to Ki-ras reduced expression of both the mutant Ki-Ras protein and the aberrant integrin beta1-chain and increased expression of the mature integrin beta1-chain. Altered glycosylation generated the new beta1 integrin form since integrin core beta1-chain proteins of the same molecular weight were yielded in Ki-ras, Ha-ras, and control transfectants after removal of sugar residues with endoglycosidase F or following tunicamycin treatment to inhibit glycosylation. The selective effect of oncogenic Ki-ras on beta1 integrin glycosylation was not due to selective activation of mitogen-activated protein kinases because both mutated Ki- and Ha-ras genes activated this pathway and increased cell proliferation. Since blocking the glycosylation of integrin beta1-chain inhibited the adherence, polarization, and subsequent differentiation of colon epithelial cells, the selective effects of the oncogenic cellular Ki-ras gene on integrin beta1-chain glycosylation may account, at least in part, for the selection of Ki-ras mutations in human colon tumors.
Collapse
Affiliation(s)
- Z Yan
- State University of New York Health Science Center, Department of Pathology, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
81
|
Caplan MJ, Rodriguez‐Boulan E. Epithelial Cell Polarity: Challenges and Methodologies. Compr Physiol 1997. [DOI: 10.1002/cphy.cp140117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
82
|
Yan Z, Deng X, Chen M, Xu Y, Ahram M, Sloane BF, Friedman E. Oncogenic c-Ki-ras but not oncogenic c-Ha-ras up-regulates CEA expression and disrupts basolateral polarity in colon epithelial cells. J Biol Chem 1997; 272:27902-7. [PMID: 9346938 DOI: 10.1074/jbc.272.44.27902] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Colon carcinomas commonly contain mutations in Ki-ras4B, but very rarely in Ha-ras, suggesting that different Ras isoforms may have distinct functions in colon epithelial cell biology. In an earlier study we had demonstrated that oncogenic Ki-ras4BVal-12, but not oncogenic Ha-rasVal-12, blocks the apicobasal polarization of colon epithelial cells by preventing normal glycosylation of the integrin beta1 chain of the collagen receptor. As a result, only the Ki-ras mutated cells exhibited altered cell to substratum attachment, whereas mutation of either Ras isoform activated mitogen-activated protein kinases. We have now asked whether intercellular adhesion proteins implicated in establishing basolateral polarity in colon epithelial cells are modulated by oncogenic Ki-Ras4BVal-12 proteins but not oncogenic Ha-RasVal-12 proteins. The embryonic adhesion protein carcinoembryonic antigen (CEA) was up-regulated on the mRNA and protein levels in each of three stable Ki-rasVal-12 transfectant lines but in none of three stable Ha-rasVal-12 transfectant lines. The elevated protein levels of CEA in Ki-ras4BVal-12 transfectant cells were decreased by blocking expression of Ki-ras4BVal-12 with antisense oligonucleotides. N-cadherin levels were decreased in only the Ki-ras transfectants, whereas E-cadherin levels were unchanged. Immunohistochemical analysis demonstrated that Ki-ras4BVal-12 transfectant cells did not polarize into cells with discrete apical and basal regions and so could not restrict expression of CEA to the apical region. These unpolarized cells displayed elevated levels of CEA all along their surface membrane where CEA mediated random, multilayered associations of tumor cells. This aggregation was both calcium-independent and blocked by Fab' fragments of anti-CEA monoclonal antibody col-1. Trafficking of the lysosomal cysteine protease cathepsin B may also be altered when cell polarity cannot be established. Ki-ras4BVal-12 transfectant cells expressed 2-fold elevated protein levels of the lysosomal cysteine protease cathepsin B but did not up-regulate cathepsin B mRNA expression. One function of oncogenic c-Ki-Ras proteins in colon cancer progression may be to up-regulate CEA and thus to prevent the lateral adhesion of adjacent colon epithelial cells that normally form a monolayer in vivo.
Collapse
Affiliation(s)
- Z Yan
- Department of Pathology, State University of New York Health Science Center, Syracuse, New York 13210-2399, USA
| | | | | | | | | | | | | |
Collapse
|
83
|
Abstract
Our understanding of epithelial development in Drosophila has been greatly improved in recent years. Two key regulators of epithelial polarity, Crumbs and DE-cadherin, have been studied at the genetic and molecular levels and a number of additional genes are being analyzed that contribute to the differentiation of epithelial cell structure. Epithelial architecture has a profound influence on morphogenetic movements, patterning and cell-type determination. The combination of embryological and genetic/molecular tools in Drosophila will help us to elucidate the complex events that determine epithelial cell structure and how they relate to morphogenesis and other developmental processes.
Collapse
Affiliation(s)
- U Tepass
- Department of Zoology, University of Toronto, Ontario, Canada.
| |
Collapse
|
84
|
Weaver VM, Petersen OW, Wang F, Larabell CA, Briand P, Damsky C, Bissell MJ. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol 1997; 137:231-45. [PMID: 9105051 PMCID: PMC2139858 DOI: 10.1083/jcb.137.1.231] [Citation(s) in RCA: 1109] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/1996] [Revised: 01/10/1997] [Indexed: 02/04/2023] Open
Abstract
In a recently developed human breast cancer model, treatment of tumor cells in a 3-dimensional culture with inhibitory beta1-integrin antibody or its Fab fragments led to a striking morphological and functional reversion to a normal phenotype. A stimulatory beta1-integrin antibody proved to be ineffective. The newly formed reverted acini re-assembled a basement membrane and re-established E-cadherin-catenin complexes, and re-organized their cytoskeletons. At the same time they downregulated cyclin D1, upregulated p21(cip,wat-1), and stopped growing. Tumor cells treated with the same antibody and injected into nude mice had significantly reduced number and size of tumors in nude mice. The tissue distribution of other integrins was also normalized, suggesting the existence of intimate interactions between the different integrin pathways as well as adherens junctions. On the other hand, nonmalignant cells when treated with either alpha6 or beta4 function altering antibodies continued to grow, and had disorganized colony morphologies resembling the untreated tumor colonies. This shows a significant role of the alpha6/beta4 heterodimer in directing polarity and tissue structure. The observed phenotypes were reversible when the cells were disassociated and the antibodies removed. Our results illustrate that the extracellular matrix and its receptors dictate the phenotype of mammary epithelial cells, and thus in this model system the tissue phenotype is dominant over the cellular genotype.
Collapse
Affiliation(s)
- V M Weaver
- Ernest Orlando Lawrence Berkeley National Laboratory, California 94720, USA
| | | | | | | | | | | | | |
Collapse
|
85
|
Lo SH, Yu QC, Degenstein L, Chen LB, Fuchs E. Progressive kidney degeneration in mice lacking tensin. J Biophys Biochem Cytol 1997; 136:1349-61. [PMID: 9087448 PMCID: PMC2132507 DOI: 10.1083/jcb.136.6.1349] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Tensin is a focal adhesion phosphoprotein that binds to F-actin and contains a functional Src homology 2 domain. To explore the biological functions of tensin, we cloned the mouse tensin gene, determined its program of expression, and used gene targeting to generate mice lacking tensin. Even though tensin is expressed in many different tissues during embryogenesis, tensin null mice developed normally and appeared healthy postnatally for at least several months. Over time, -/- mice became frail because of abnormalities in their kidneys, an organ that expresses high levels of tensin. Mice with overt signs of weakness exhibited signs of renal failure and possessed multiple large cysts in the proximal kidney tubules, but even in tensin null mice with normal blood analysis, cysts were prevalent. Ultrastructurally, noncystic areas showed typical cell-matrix junctions that readily labeled with antibodies against other focal adhesion molecules. In abnormal regions, cell-matrix junctions were disrupted and tubule cells lacked polarity. Taken together, our data imply that, in the kidney, loss of tensin leads to a weakening, rather than a severing, of focal adhesion. All other tissues appeared normal, suggesting that, in most cases, tensin's diverse functions are redundant and may be compensated for by other focal adhesion proteins.
Collapse
Affiliation(s)
- S H Lo
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
86
|
Koller E, Ranscht B. Differential targeting of T- and N-cadherin in polarized epithelial cells. J Biol Chem 1996; 271:30061-7. [PMID: 8939953 DOI: 10.1074/jbc.271.47.30061] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To test whether glycosyl phosphatidylinositol-linked T-cadherin is a component of cell junctions like classical cadherins, we have examined its distribution and targeting in polarized epithelial cells. In vivo, T-cadherin was detected on the apical cell surface of the chick intestinal epithelium. In cultures of transfected Madin-Darby canine kidney cells, T-cadherin was also expressed apically, whereas classical N-cadherin resided basolaterally. Both cadherins were directly targeted to their respective membrane domains. Mutant proteins were expressed in Madin-Darby canine kidney cells to identify the regions responsible for differential cadherin localization. NDeltacyt, an N-cadherin cytoplasmic domain deletion mutant, was stably distributed basolaterally. This mutant was transported to both the apical and basolateral membrane compartments, followed by preferential removal from the apical surface. T-NDeltacyt, a T-cadherin mutant with the N-cadherin cytoplasmic domain deletion, was localized basolaterally, whereas N-TGPI, a GPI-anchored N-cadherin mutant, resided at the apical domain. The T-cadherin carboxyl-terminal 76 amino acids contain the apical targeting signal and include the signal for GPI anchor attachment. Basolateral localization of N-cadherin is achieved through targeting signals in the cytoplasmic domain. Thus, GPI-linked T-cadherin is not a component of cell junctions, consistent with a function as a recognition rather than a cell adhesion molecule.
Collapse
Affiliation(s)
- E Koller
- The Burnham Institute, La Jolla Cancer Research Center, La Jolla, California 92307, USA.
| | | |
Collapse
|
87
|
Abstract
The integrin family was originally described as a family of adhesion receptors, utilized by cells for attachment to and migration across components of the extracellular matrix. Epithelial cells in adult tissues are generally stationary cells, but these cells nevertheless express several different integrins. This review will discuss the evidence that integrins on epithelial cells are also likely to function as signaling molecules, allowing these cells to detect attachment or detachment, and changes in the local composition of ligands. Signals initiated by integrins appear to modulate epithelial cell differentiation, proliferation, survival, and gene expression. Because the local concentration of integrin ligands is altered by injury, inflammation, and remodeling, signals initiated through integrins are likely to play important roles in the responses of epithelial cells to each of these processes.
Collapse
Affiliation(s)
- D Sheppard
- Lung Biology Center, University of California, San Francisco, USA
| |
Collapse
|
88
|
Zuk A, Matlin KS. Apical beta 1 integrin in polarized MDCK cells mediates tubulocyst formation in response to type I collagen overlay. J Cell Sci 1996; 109 ( Pt 7):1875-89. [PMID: 8832410 DOI: 10.1242/jcs.109.7.1875] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A number of epithelia form tubulocysts in vitro when overlaid with type I collagen gel. Because collagen receptors are generally believed to be expressed on the basolateral domain, the mechanism by which collagen elicits this morphogenetic response from the apical surface is unclear. To investigate the role of beta 1 integrins, the major receptor family for collagen, in this process, we overlaid polarized monolayers of MDCK II cells grown on permeable supports with type I collagen gel and correlated integrin polarity with the polarity of other apical and basolateral membrane markers during tubulocyst formation. Polarized monolayers of one clone of MDCK II cells, referred to as Heidelberg MDCK, initially respond to collagen overlay by stratifying; within 48 hours, lumena develop between the cell layers giving rise to tubulocysts. Tight junctions remain intact during tubulocyst formation because transepithelial electrical resistance does not significantly change. Major alterations are observed, however, in the expression and localization of apical and basolateral membrane markers. beta 1 integrins are necessary for tubulocyst morphogenesis because a function-blocking antibody administered to the apical pole of the cells completely inhibits the formation of these structures. To determine how apical-cell collagen interactions elicit tubulocyst formation, we examined whether beta 1 integrins are mobilized to apical plasma membranes in response to collagen overlay. We found that in the absence of collagen, polarized monolayers of Heidelberg MDCK cells endogenously express on apical plasma membranes a small pool of the beta 1 family, including alpha 2 beta 1 and alpha 3 beta 1. Collagen overlay does not mobilize additional beta 1 integrins to apical domains. If beta 1 integrins are not already apically expressed, as in the C6 MDCK cell line (Schoenenberger et al. (1994) J. Cell Biol. 107, 527–541), beta 1 integrins are not directed apically and tubulocysts do not develop in response to collagen. Thus, interaction of beta 1 integrin pre-existing on apical plasma membranes of polarized epithelia with type I collagen gel is the mechanism by which apical application of collagen elicits the formation of tubulocysts. Depolarized integrins on apical plasma membranes of polarized epithelia may be relevant to the pathogenesis of disease and injury.
Collapse
Affiliation(s)
- A Zuk
- Renal Unit, Massachusetts General Hospital, Charlestown, USA
| | | |
Collapse
|
89
|
|
90
|
Abstract
The non-polar human adenocarcinoma cells (HT29) when grown as monolayers or aggregates, have no tight junctions and no brush border. When these cells are treated with forskolin (15-100 microM) or cholera toxin (1 nM) intercellular lumina appear between the cells and about 30% of the cells facing the medium or the lumina are fully covered with a brush border. Aggregates embedded in collagen type I and treated with forskolin form a brush border only on cells facing the intercellular lumina. Monolayers of the polar human colon adenocarcinoma cell line Caco-2 express spontaneously tight junctions and a brush border in all the cells. When grown in aggregates the inner cells lose their polarity and only the cells facing the medium are polar. This polarity was not found when the aggregates were embedded in collagen gels. Aggregates embedded in collagen and treated with forskolin form bubble-like structures with a single layer of polar cells facing a central lumen. The data indicate that cell polarity is probably controlled by both internal factors such as cAMP and external factors such as cell-cell and cell-substratum molecules.
Collapse
Affiliation(s)
- I Ophir
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | | | | |
Collapse
|
91
|
Saelman EU, Keely PJ, Santoro SA. Loss of MDCK cell alpha 2 beta 1 integrin expression results in reduced cyst formation, failure of hepatocyte growth factor/scatter factor-induced branching morphogenesis, and increased apoptosis. J Cell Sci 1995; 108 ( Pt 11):3531-40. [PMID: 8586664 DOI: 10.1242/jcs.108.11.3531] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cellular interactions with collagen in a model of kidney tubulogenesis were investigated using Madin-Darby canine kidney (MDCK) cells in an in vitro morphogenetic system. MDCK cells adhered to collagen types I and IV in a Mg(2+)-dependent manner, typical of the alpha 2 beta 1 integrin. Collagen-Sepharose affinity chromatography and immunoblotting demonstrated the presence and collagen binding activity of the alpha 2 beta 1 integrin on MDCK cells. To assess the function of alpha 2 beta 1 integrin, MDCK cells were transfected with a plasmid pRSV alpha 2′ which allowed the expression of alpha 2-integrin subunit antisense RNA. Three G418-resistant clones showing reduced adhesion to collagen, stable genomic integration of the antisense construct, decreased alpha 2-integrin subunit mRNA and decreased alpha 2-integrin subunit protein expression were selected for analysis in morphogenetic experiments. MDCK cells and plasmid-only control transfectants, cultured in three-dimensional collagen type I gels, showed normal cyst formation, whereas the antisense RNA transfectants showed increased apoptosis and formed small rudimentary cysts. Stimulation with hepatocyte growth factor/scatter factor-containing 3T3 fibroblast-conditioned medium or recombinant hepatocyte growth factor/scatter factor resulted in extensive branching of the preformed control cysts whereas the surviving small cysts formed by antisense expressing cells increased in size but failed to elongate and branch upon stimulation. We conclude that alpha 2 beta 1 integrin collagen interactions play a crucial role in the hepatocyte growth factor/scatter factor-induced tubulogenesis and branching morphogenesis of MDCK cells in collagen gels as well as an important role in cell survival.
Collapse
Affiliation(s)
- E U Saelman
- Department of Pathology, Washington University School of Medicine, St Louis, MO 63110-1093, USA
| | | | | |
Collapse
|
92
|
Affiliation(s)
- S Eaton
- Cell Biology Programme, European Molecular Biology Laboratory, Heidelberg, Federal Republic of Germany
| | | |
Collapse
|
93
|
Opas M. Cellular adhesiveness, contractility, and traction: stick, grip, and slip control. Biochem Cell Biol 1995; 73:311-6. [PMID: 8703404 DOI: 10.1139/o95-039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Translocation of cells over solid substrata depends on generation of motive force, in crawling tissue cells, brought about by regulated contractility of intracellular actomyosin. Intracellular contractile machinery has a direct, structural connection to the cell surface. Hence, regulated adhesiveness of the cell surface provides a mechanism whereby a cell can fine tune the extent of tractional forces that are necessary for effective translocation. Cells are able to control adhesiveness of surfaces (stick), contractility (grip), and the extent of traction exerted on the substratum (slip). Here, I discuss several aspects of local (subcellular) regulation of adhesiveness and contractility and speculate on how cells, given a choice of the substratum, decide on how and where to apply traction.
Collapse
Affiliation(s)
- M Opas
- Department of Anatomy and Cell Biology, University of Toronto, Canada
| |
Collapse
|
94
|
Schwimmer R, Ojakian GK. The alpha 2 beta 1 integrin regulates collagen-mediated MDCK epithelial membrane remodeling and tubule formation. J Cell Sci 1995; 108 ( Pt 6):2487-98. [PMID: 7673363 DOI: 10.1242/jcs.108.6.2487] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have demonstrated that incubation of MDCK cell epithelial cysts in collagen gel induced a reversal in cell surface polarity that was regulated by beta 1 integrins. Further experiments were done to identify the specific collagen binding integrin involved by applying collagen gel overlays to the apical membrane of subconfluent MDCK monolayers. Cell surface levels of the apical membrane glycoprotein gp135 were monitored by ELISA to quantitate the extent of collagen-mediated membrane remodeling. After an 8 hour incubation with collagen, there was a 35% reduction in gp135 while the cell surface levels of the alpha 2, alpha 3 and beta 1 integrin subunits were not affected. Immunofluorescence microscopy confirmed the loss of gp135 from selected regions of the apical cell surface while the alpha 2 and beta 1 integrin subunits were distributed in small clusters over the entire apical membrane in both control and collagen-treated monolayers. Collagen-mediated loss of gp135 was inhibited by monoclonal antibodies which recognize either the alpha 2 or beta 1 integrin subunits but not by a monoclonal antibody against the alpha 6 beta 1 integrin. These results demonstrated that remodeling of the apical membrane had occurred, allowing the selective retention of beta 1 integrins but not gp135. They were supported by the observation that collagen-mediated loss of apical membrane microvilli was inhibited by the monoclonal antibody against the alpha 2 integrin subunit. Incubation of confluent monolayers with collagen gel induced the formation of polarized epithelial tubules within 16 hours. Epithelial tubule biogenesis was completely inhibited by monoclonal antibodies against either the alpha 2 or beta 1 integrin subunits, providing strong evidence that the alpha 2 beta 1 integrin is essential for collagen-mediated epithelial membrane remodeling and tubule formation.
Collapse
Affiliation(s)
- R Schwimmer
- Department of Anatomy and Cell Biology, State University of New York Health Science Center, Brooklyn 11203, USA
| | | |
Collapse
|