51
|
Malikov V, Kashina A, Rodionov V. Cytoplasmic dynein nucleates microtubules to organize them into radial arrays in vivo. Mol Biol Cell 2004; 15:2742-9. [PMID: 15047865 PMCID: PMC420098 DOI: 10.1091/mbc.e03-10-0770] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Numerous evidence demonstrates that dynein is crucial for organization of microtubules (MTs) into radial arrays, but its exact function in this process is unclear. Here, we studied the role of cytoplasmic dynein in MT radial array formation in the absence of the centrosome. We found that dynein is a potent MT nucleator in vitro and that stimulation of dynein activity in cytoplasmic fragments of melanophores induces nucleation-dependent formation of MT radial array in the absence of the centrosome. This new property of dynein, in combination with its known role as an MT motor that is essential for MT array organization in the absence and presence of the centrosome, makes it a unique molecule whose activity is necessary and sufficient for the formation and maintenance of MT radial arrays in cells.
Collapse
Affiliation(s)
- Viacheslav Malikov
- Department of Physiology and Center for Biomedical Imaging Technology, University of Connecticut Health Center, Farmington, Connecticut 06032-1507, USA
| | | | | |
Collapse
|
52
|
Taskén K, Aandahl EM. Localized effects of cAMP mediated by distinct routes of protein kinase A. Physiol Rev 2004; 84:137-67. [PMID: 14715913 DOI: 10.1152/physrev.00021.2003] [Citation(s) in RCA: 583] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
More than 20% of the human genome encodes proteins involved in transmembrane and intracellular signaling pathways. The cAMP-protein kinase A (PKA) pathway is one of the most common and versatile signal pathways in eukaryotic cells and is involved in regulation of cellular functions in almost all tissues in mammals. Various extracellular signals converge on this signal pathway through ligand binding to G protein-coupled receptors, and the cAMP-PKA pathway is therefore tightly regulated at several levels to maintain specificity in the multitude of signal inputs. Ligand-induced changes in cAMP concentration vary in duration, amplitude, and extension into the cell, and cAMP microdomains are shaped by adenylyl cyclases that form cAMP as well as phosphodiesterases that degrade cAMP. Different PKA isozymes with distinct biochemical properties and cell-specific expression contribute to cell and organ specificity. A kinase anchoring proteins (AKAPs) target PKA to specific substrates and distinct subcellular compartments providing spatial and temporal specificity for mediation of biological effects channeled through the cAMP-PKA pathway. AKAPs also serve as scaffolding proteins that assemble PKA together with signal terminators such as phosphatases and cAMP-specific phosphodiesterases as well as components of other signaling pathways into multiprotein signaling complexes that serve as crossroads for different paths of cell signaling. Targeting of PKA and integration of a wide repertoire of proteins involved in signal transduction into complex signal networks further increase the specificity required for the precise regulation of numerous cellular and physiological processes.
Collapse
Affiliation(s)
- Kjetil Taskén
- The Biotechnology Centre of Oslo, University of Oslo, Norway.
| | | |
Collapse
|
53
|
Gehmlich K, Haren L, Merdes A. Cyclin B degradation leads to NuMA release from dynein/dynactin and from spindle poles. EMBO Rep 2004; 5:97-103. [PMID: 14710193 PMCID: PMC1298957 DOI: 10.1038/sj.embor.7400046] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2003] [Revised: 09/08/2003] [Accepted: 10/10/2003] [Indexed: 11/09/2022] Open
Abstract
The protein NuMA localizes to mitotic spindle poles where it contributes to the organization of microtubules. In this study, we demonstrate that NuMA loses its stable association with the spindle poles after anaphase onset. Using extracts from Xenopus laevis eggs, we show that NuMA is dephosphorylated in anaphase and released from dynein and dynactin. In the presence of a nondegradable form of cyclin B (Delta90), NuMA remains phosphorylated and associated with dynein and dynactin, and remains localized to stable spindle poles that fail to disassemble at the end of mitosis. Inhibition of NuMA or dynein allows completion of mitosis, despite inducing spindle pole abnormalities. We propose that NuMA functions early in mitosis during the formation of spindle poles, but is released from the spindle after anaphase, to allow spindle disassembly and remodelling of the microtubule network.
Collapse
Affiliation(s)
- Katja Gehmlich
- Wellcome Trust Centre for Cell Biology, ICMB, University of Edinburgh, Edinburgh EH9 3JR, UK
- Present address: Department of Cell Biology, University of Potsdam, Lennéstr. 7a, 14471 Potsdam, Germany
| | - Laurence Haren
- Wellcome Trust Centre for Cell Biology, ICMB, University of Edinburgh, Edinburgh EH9 3JR, UK
- Present address: CNRS-Pierre Fabre, 205 route de Narbonne, 31077 Toulouse, France
| | - Andreas Merdes
- Wellcome Trust Centre for Cell Biology, ICMB, University of Edinburgh, Edinburgh EH9 3JR, UK
| |
Collapse
|
54
|
Moreira PN, Robl JM, Collas P. Architectural defects in pronuclei of mouse nuclear transplant embryos. J Cell Sci 2003; 116:3713-20. [PMID: 12890757 DOI: 10.1242/jcs.00692] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reprogramming somatic nuclear function by transplantation of nuclei into recipient oocytes is associated with a morphological remodeling of the somatic nucleus. Successful cloning of animals by nuclear transplantation (NT) demonstrates that reprogramming somatic cell function is possible. However, low pregnancy rates and high frequencies of lethal abnormalities in animals born suggest that reprogramming is rarely complete. To address this issue, we tested the hypothesis that nuclear transplantation leads to nuclear remodeling deficiencies. We report the identification of several markers of morphological remodeling, or lack thereof, of mouse cumulus cell nuclei after transplantation into oocytes. Notably, nuclear transplant mouse embryos exhibit nuclear assembly of the differentiated cell-specific A-type lamins at the one-cell stage, as a result of misregulation of lamin A gene expression. The transplanted nuclei also display enhanced concentration of the nuclear matrix-associated protein NuMA as a result of translation from maternal mRNA and de novo transcription. The A-kinase anchoring protein 95 (AKAP95), a marker of the nuclear envelope-chromatin interface, is of somatic origin. Furthermore, greater resistance of AKAP95 and DNA to in situ extractions of one-cell stage NT embryos with non-ionic detergent, DNase, RNase and NaCl reflects an enhanced proportion of heterochromatin in these embryos. Passage through first embryonic mitosis does not rescue the defects detected in one-cell stage embryos. We propose that somatic nuclear reprogramming deficiencies by NT might emanate from, at least in part, failure to remodel the somatic nucleus morphologically into a functional embryonic nucleus.
Collapse
Affiliation(s)
- Pedro N Moreira
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | | | | |
Collapse
|
55
|
Schrader M, Thiemann M, Fahimi HD. Peroxisomal motility and interaction with microtubules. Microsc Res Tech 2003; 61:171-8. [PMID: 12740823 DOI: 10.1002/jemt.10326] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recent in vivo observations have revealed that peroxisomes are more dynamic and interactive than previously assumed. The growing recognition of the tubular and reticular morphology of peroxisomes in living cells, their association with microtubules, and the dynamic movements of peroxisomes in vivo and in vitro have inspired the query into the investigation of the cellular machinery that mediates such a complex behaviour. The characterisation of the underlying molecular components of this machinery is providing insight into the mechanisms regulating peroxisomal morphology and intracellular distribution.
Collapse
Affiliation(s)
- Michael Schrader
- Department of Cell Biology and Cell Pathology, Philipps University, 35037 Marburg, Germany.
| | | | | |
Collapse
|
56
|
Garrett S, Auer K, Compton DA, Kapoor TM. hTPX2 is required for normal spindle morphology and centrosome integrity during vertebrate cell division. Curr Biol 2002; 12:2055-9. [PMID: 12477396 DOI: 10.1016/s0960-9822(02)01277-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bipolar spindle formation is essential for the accurate segregation of genetic material during cell division. Although centrosomes influence the number of spindle poles during mitosis, motor and non-motor microtubule-associated proteins (MAPs) also play key roles in determining spindle morphology. TPX2 is a novel MAP also characterized in Xenopus cell-free extracts. To examine hTPX2 (human TPX2) function in human cells, we used siRNA to knock-down its expression and found that cells lacking hTPX2 arrest in mitosis with multipolar spindles. NuMA, gamma-tubulin, and centrin localize to each pole, and nocodazole treatment of cells lacking hTPX2 demonstrates that the localization of gamma-tubulin to multiple spindle poles requires intact microtubules. Furthermore, we show that the formation of monopolar microtubule arrays in human cell extracts does not require hTPX2, demonstrating that the mechanism by which hTPX2 promotes spindle bipolarity is independent of activities focusing microtubule minus ends at spindle poles. Finally, inhibition of the kinesin Eg5 in hTPX2-depleted cells leads to monopolar spindles, indicating that Eg5 function is necessary for multipolar spindle formation in the absence of hTPX2. Our observations reveal a structural role for hTPX2 in spindles and provide evidence for a balance between microtubule-based motor forces and structural spindle components.
Collapse
Affiliation(s)
- Sarah Garrett
- Laboratory of Chemistry and Cell Biology, Rockefeller University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
57
|
Dolan MF, Melnitsky H, Margulis L, Kolnicki R. Motility proteins and the origin of the nucleus. THE ANATOMICAL RECORD 2002; 268:290-301. [PMID: 12382325 DOI: 10.1002/ar.10161] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hypotheses on the origin of eukaryotic cells must account for the origin of the microtubular cytoskeletal structures (including the mitotic spindle, undulipodium/cilium (so-called flagellum) and other structures underlain by the 9(2)+2 microtubular axoneme) in addition to the membrane-bounded nucleus. Whereas bacteria with membrane-bounded nucleoids have been described, no precedent for mitotic, cytoskeletal, or axonemal microtubular structures are known in prokaryotes. Molecular phylogenetic analyses indicate that the cells of the earliest-branching lineages of eukaryotes contain the karyomastigont cytoskeletal system. These protist cells divide via an extranuclear spindle and a persistent nuclear membrane. We suggest that this association between the centriole/kinetosome axoneme (undulipodium) and the nucleus existed from the earliest stage of eukaryotic cell evolution. We interpret the karyomastigont to be a legacy of the symbiosis between thermoacidophilic archaebacteria and motile eubacteria from which the first eukaryote evolved. Mutually inconsistent hypotheses for the origin of the nucleus are reviewed and sequenced proteins of cell motility are discussed because of their potential value in resolving this problem. A correlation of fossil evidence with modern cell and microbiological studies leads us to the karyomastigont theory of the origin of the nucleus.
Collapse
Affiliation(s)
- Michael F Dolan
- Department of Geosciences, University of Massachusetts, Morrill Science Center, Amherst 01003, USA.
| | | | | | | |
Collapse
|
58
|
Abstract
Centrosomal dynactin is required for normal microtubule anchoring and/or focusing independently of dynein. Dynactin is present at centrosomes throughout interphase, but dynein accumulates only during S and G2 phases. Blocking dynein-based motility prevents recruitment of dynactin and dynein to centrosomes and destabilizes both centrosomes and the microtubule array, interfering with cell cycle progression during mitosis. Destabilization of the centrosomal pool of dynactin does not inhibit dynein-based motility or dynein recruitment to centrosomes, but instead causes abnormal G1 centriole separation and delayed entry into S phase. The correct balance of centrosome-associated dynactin subunits is apparently important for satisfaction of the cell cycle mechanism that monitors centrosome integrity before centrosome duplication and ultimately governs the G1 to S transition. Our results suggest that, in addition to functioning as a microtubule anchor, dynactin contributes to the recruitment of important cell cycle regulators to centrosomes.
Collapse
Affiliation(s)
- Nicholas J Quintyne
- Department of Biology, Johns Hopkins University, Charles & 34th Streets, Baltimore, MD 21218, USA
| | | |
Collapse
|
59
|
Marescalchi O, Zauli C, Scali V. Centrosome dynamics and inheritance in related sexual and parthenogenetic Bacillus (Insecta Phasmatodea). Mol Reprod Dev 2002; 63:89-95. [PMID: 12211065 DOI: 10.1002/mrd.10177] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In animals, some general features of centrosome dynamics and inheritance have been widely recognized. The most acknowledged model assigns to sperm the contribution of a centriole to the fertilized egg, which in turn provides the pericentriolar materials, including gamma-tubulin, recruiting them from the cytoplasm: the main zygote microtubule organizing center (MTOC) is thus reconstituted to organize first the spermaster and then the full first embryonic spindle. Obviously the model cannot apply to parthenogenetic systems, which actually rely on egg components alone. In stick insects of the Bacillus genus, the spindle of both somatic and germ cells is clearly anastral, therefore we have been investigating their centrosome in sexual and parthenogenetic taxa by analyzing its component dynamics and transmission through the use of monoclonal beta- and gamma-tubulin antibodies and transmission electron microscopy (TEM). It has been shown that in sexually reproducing species the spermatozoon does not contribute the centriole, so that the egg wholly provides the MTOC and the ensuing anastral spindle of the embryo: MTs appear to derive from pronuclear chromatin surroundings and no asters are observed. The parthenogenetic embryo development is the same as the sexual one if syngamy is excepted. The parthenogenetic mechanism realized by these panoistic insects appears to differ from that observed in the meroistic hymenopteran and drosophilid species, where the embryo spindle derives from asters formed in the egg cortex. In stick insects, the lack of sperm contribution to embryonic centrosome appears to be a major trait accounting for the widespread occurrence of facultative and obligate parthenogenesis within the order.
Collapse
|
60
|
Yvon AMC, Walker JW, Danowski B, Fagerstrom C, Khodjakov A, Wadsworth P. Centrosome reorientation in wound-edge cells is cell type specific. Mol Biol Cell 2002; 13:1871-80. [PMID: 12058055 PMCID: PMC117610 DOI: 10.1091/mbc.01-11-0539] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The reorientation of the microtubule organizing center during cell migration into a wound in the monolayer was directly observed in living wound-edge cells expressing gamma-tubulin tagged with green fluorescent protein. Our results demonstrate that in CHO cells, the centrosome reorients to a position in front of the nucleus, toward the wound edge, whereas in PtK cells, the centrosome lags behind the nucleus during migration into the wound. In CHO cells, the average rate of centrosome motion was faster than that of the nucleus; the converse was true in PtK cells. In both cell lines, centrosome motion was stochastic, with periods of rapid motion interspersed with periods of slower motion. Centrosome reorientation in CHO cells required dynamic microtubules and cytoplasmic dynein/dynactin activity and could be prevented by altering cell-to-cell or cell-to-substrate adhesion. Microtubule marking experiments using photoactivation of caged tubulin demonstrate that microtubules are transported in the direction of cell motility in both cell lines but that in PtK cells, microtubules move individually, whereas their movement is more coherent in CHO cells. Our data demonstrate that centrosome reorientation is not required for directed migration and that diverse cells use distinct mechanisms for remodeling the microtubule array during directed migration.
Collapse
Affiliation(s)
- Anne-Marie C Yvon
- Department of Biology and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01002, USA
| | | | | | | | | | | |
Collapse
|
61
|
Haren L, Merdes A. Direct binding of NuMA to tubulin is mediated by a novel sequence motif in the tail domain that bundles and stabilizes microtubules. J Cell Sci 2002; 115:1815-24. [PMID: 11956313 DOI: 10.1242/jcs.115.9.1815] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In mitosis, NuMA localises to spindle poles where it contributes to the formation and maintenance of focussed microtubule arrays. Previous work has shown that NuMA is transported to the poles by dynein and dynactin. So far, it is unclear how NuMA accumulates at the spindle poles following transport and how it remains associated throughout mitosis. We show here that NuMA can bind to microtubules independently of dynein/dynactin. We characterise a 100-residue domain located within the C-terminal tail of NuMA that mediates a direct interaction with tubulin in vitro and that is necessary for NuMA association with tubulin in vivo. Moreover, this domain induces bundling and stabilisation of microtubules when expressed in cultured cells and leads to formation of abnormal mitotic spindles with increased microtubule asters or multiple poles. Our results suggest that NuMA organises the poles by stable crosslinking of the microtubule fibers.
Collapse
Affiliation(s)
- Laurence Haren
- Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3JR, UK
| | | |
Collapse
|
62
|
Compton DA. In vitro approaches for the study of molecular motors in aster formation. Methods Cell Biol 2002; 67:225-39. [PMID: 11550471 DOI: 10.1016/s0091-679x(01)67016-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- D A Compton
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| |
Collapse
|
63
|
Mack GJ, Compton DA. Analysis of mitotic microtubule-associated proteins using mass spectrometry identifies astrin, a spindle-associated protein. Proc Natl Acad Sci U S A 2001; 98:14434-9. [PMID: 11724960 PMCID: PMC64699 DOI: 10.1073/pnas.261371298] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2001] [Indexed: 01/16/2023] Open
Abstract
We purified microtubules from a mammalian mitotic extract and obtained an amino acid sequence from each microtubule-associated protein by using mass spectrometry. Most of these proteins are known spindle-associated components with essential functional roles in spindle organization. We generated antibodies against a protein identified in this collection and refer to it as astrin because of its association with astral microtubule arrays assembled in vitro. Astrin is approximately 134 kDa, and except for a large predicted coiled-coil domain in its C-terminal region it lacks any known functional motifs. Astrin associates with spindle microtubules as early as prophase where it concentrates at spindle poles. It localizes throughout the spindle in metaphase and anaphase and associates with midzone microtubules in anaphase and telophase. Astrin also localizes to kinetochores but only on those chromosomes that have congressed. Deletion analysis indicates that astrin's primary spindle-targeting domain is at the C terminus, although a secondary domain in the N terminus can target some of the protein to spindle poles. Thus, we have generated a comprehensive list of major mitotic microtubule-associated proteins, among which is astrin, a nonmotor spindle protein.
Collapse
Affiliation(s)
- G J Mack
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | |
Collapse
|
64
|
Rieder CL, Faruki S, Khodjakov A. The centrosome in vertebrates: more than a microtubule-organizing center. Trends Cell Biol 2001; 11:413-9. [PMID: 11567874 DOI: 10.1016/s0962-8924(01)02085-2] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The somatic cells of all higher animals contain a single minute organelle called the centrosome. For years, the functions of the centrosome were thought to revolve around its ability to nucleate and organize the various microtubule arrays seen in interphase and mitosis. But the centrosome is more than just a microtubule-organizing center. Recent work reveals that this organelle is essential for cell-cycle progression and that this requirement is independent of its ability to organize microtubules. Here, we review the various functions attributed to the centrosome and ask which are essential for the survival and reproduction of the cell, the organism, or both.
Collapse
Affiliation(s)
- C L Rieder
- Laboratory of Cell Regulation, Division of Molecular Medicine, Wadsworth Center, New York State Dept of Health, Albany, NY 12201-0509, USA.
| | | | | |
Collapse
|
65
|
Yvon AM, Gross DJ, Wadsworth P. Antagonistic forces generated by myosin II and cytoplasmic dynein regulate microtubule turnover, movement, and organization in interphase cells. Proc Natl Acad Sci U S A 2001; 98:8656-61. [PMID: 11438687 PMCID: PMC37491 DOI: 10.1073/pnas.141224198] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photoactivation of caged fluorescent tubulin was used mark the microtubule (MT) lattice and monitor MT behavior in interphase cells. A broadening of the photoactivated region occurred as MTs moved bidirectionally. MT movement was not inhibited when MT assembly was suppressed with nocodazole or Taxol; MT movement was suppressed by inhibition of myosin light chain kinase with ML7 or by a peptide inhibitor. Conversely, MT movement was increased after inhibition of cytoplasmic dynein with the antibody 70.1. In addition, the half-time for MT turnover was decreased in cells treated with ML7. These results demonstrate that myosin II and cytoplasmic dynein contribute to a balance of forces that regulates MT organization, movement, and turnover in interphase cells.
Collapse
Affiliation(s)
- A M Yvon
- Program in Molecular and Cellular Biology and Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | | | |
Collapse
|
66
|
Lee MJ, Gergely F, Jeffers K, Peak-Chew SY, Raff JW. Msps/XMAP215 interacts with the centrosomal protein D-TACC to regulate microtubule behaviour. Nat Cell Biol 2001; 3:643-9. [PMID: 11433296 DOI: 10.1038/35083033] [Citation(s) in RCA: 225] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The XMAP215/ch-TOG/Msps family of microtubule-associated proteins (MAPs) promote microtubule growth in vitro and are concentrated at centrosomes in vivo. We show here that Msps (mini-spindles protein) interacts with the centrosomal protein D-TACC, and that this interaction strongly influences microtubule behaviour in Drosophila embryos. If D-TACC levels are reduced, Msps does not concentrate at the centrosomes efficiently and the centrosomal microtubules appear to be destabilized. If D-TACC levels are increased, both D-TACC and Msps accumulate around the centrosomes/spindle poles, and the centrosomal microtubules appear to be stabilized. We show that the interaction between D-TACC and Msps is evolutionarily conserved. We propose that D-TACC and Msps normally cooperate to stabilize centrosomal microtubules by binding to their minus ends and binding to their plus ends as they grow out from the centrosome.
Collapse
Affiliation(s)
- M J Lee
- Department of Genetics, Wellcome/CRC Institute, Tennis Court Road, Cambridge CB2 1QR, UK
| | | | | | | | | |
Collapse
|
67
|
Wakefield JG, Bonaccorsi S, Gatti M. The drosophila protein asp is involved in microtubule organization during spindle formation and cytokinesis. J Cell Biol 2001; 153:637-48. [PMID: 11352927 PMCID: PMC2192390 DOI: 10.1083/jcb.153.4.637] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abnormal spindle (Asp) is a 220-kD microtubule-associated protein from Drosophila that has been suggested to be involved in microtubule nucleation from the centrosome. Here, we show that Asp is enriched at the poles of meiotic and mitotic spindles and localizes to the minus ends of central spindle microtubules. Localization to these structures is independent of a functional centrosome. Moreover, colchicine treatment disrupts Asp localization to the centrosome, indicating that Asp is not an integral centrosomal protein. In both meiotic and mitotic divisions of asp mutants, microtubule nucleation occurs from the centrosome, and γ-tubulin localizes correctly. However, spindle pole focusing and organization are severely affected. By examining cells that carry mutations both in asp and in asterless, a gene required for centrosome function, we have determined the role of Asp in the absence of centrosomes. Phenotypic analysis of these double mutants shows that Asp is required for the aggregation of microtubules into focused spindle poles, reinforcing the conclusion that its function at the spindle poles is independent of any putative role in microtubule nucleation. Our data also suggest that Asp has a role in the formation of the central spindle. The inability of asp mutants to correctly organize the central spindle leads to disruption of the contractile ring machinery and failure in cytokinesis.
Collapse
Affiliation(s)
- James G. Wakefield
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Genetica e Biologia Molecolare, Università di Roma “La Sapienza,” 00185 Rome, Italy
| | - Silvia Bonaccorsi
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Genetica e Biologia Molecolare, Università di Roma “La Sapienza,” 00185 Rome, Italy
| | - Maurizio Gatti
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Genetica e Biologia Molecolare, Università di Roma “La Sapienza,” 00185 Rome, Italy
| |
Collapse
|
68
|
Reilein AR, Rogers SL, Tuma MC, Gelfand VI. Regulation of molecular motor proteins. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 204:179-238. [PMID: 11243595 DOI: 10.1016/s0074-7696(01)04005-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Motor proteins in the kinesin, dynein, and myosin superfamilies are tightly regulated to perform multiple functions in the cell requiring force generation. Although motor proteins within families are diverse in sequence and structure, there are general mechanisms by which they are regulated. We first discuss the regulation of the subset of kinesin family members for which such information exists, and then address general mechanisms of kinesin family regulation. We review what is known about the regulation of axonemal and cytoplasmic dyneins. Recent work on cytoplasmic dynein has revealed the existence of multiple isoforms for each dynein chain, making the study of dynein regulation more complicated than previously realized. Finally, we discuss the regulation of myosins known to be involved in membrane trafficking. Myosins and kinesins may be evolutionarily related, and there are common themes of regulation between these two classes of motors.
Collapse
Affiliation(s)
- A R Reilein
- Department of Cell and Structural Biology, University of Illinois, Urbana-Champaign, Urbana 61801, USA
| | | | | | | |
Collapse
|
69
|
Khodjakov A, Rieder CL. Centrosomes enhance the fidelity of cytokinesis in vertebrates and are required for cell cycle progression. J Cell Biol 2001; 153:237-42. [PMID: 11285289 PMCID: PMC2185537 DOI: 10.1083/jcb.153.1.237] [Citation(s) in RCA: 272] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
When centrosomes are destroyed during prophase by laser microsurgery, vertebrate somatic cells form bipolar acentrosomal mitotic spindles (Khodjakov, A., R.W. Cole, B.R. Oakley, and C.L. Rieder. 2000. Curr. Biol. 10:59-67), but the fate of these cells is unknown. Here, we show that, although these cells lack the radial arrays of astral microtubules normally associated with each spindle pole, they undergo a normal anaphase and usually produce two acentrosomal daughter cells. Relative to controls, however, these cells exhibit a significantly higher (30-50%) failure rate in cytokinesis. This failure correlates with the inability of the spindle to properly reposition itself as the cell changes shape. Also, we destroyed just one centrosome during metaphase and followed the fate of the resultant acentrosomal and centrosomal daughter cells. Within 72 h, 100% of the centrosome-containing cells had either entered DNA synthesis or divided. By contrast, during this period, none of the acentrosomal cells had entered S phase. These data reveal that the primary role of the centrosome in somatic cells is not to form the spindle but instead to ensure cytokinesis and subsequent cell cycle progression.
Collapse
Affiliation(s)
- A Khodjakov
- Laboratory of Cell Regulation, Division of Molecular Medicine, Wadsworth Center, New York State Department of Health, Albany, New York 12201, USA.
| | | |
Collapse
|
70
|
Abstract
Chromosome segregation during mitosis and meiosis is driven by a complex superstructure called the spindle. Microtubules are the primary structural component of spindles, and spindle assembly and function are intimately linked to the intrinsic dynamics of microtubules. This review summarizes spindle structure and highlights recent findings regarding the mechanisms and molecules involved in organizing microtubules into spindles. In addition, mechanisms for chromosome movement and segregation are discussed.
Collapse
Affiliation(s)
- D A Compton
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
| |
Collapse
|
71
|
Li Q, Hansen D, Killilea A, Joshi HC, Palazzo RE, Balczon R. Kendrin/pericentrin-B, a centrosome protein with homology to pericentrin that complexes with PCM-1. J Cell Sci 2001; 114:797-809. [PMID: 11171385 DOI: 10.1242/jcs.114.4.797] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The centrosome is responsible for nucleating microtubules and performing other cellular roles. To define the organization of the centrosome more completely, a human anti-centrosome serum was used to screen a human cDNA library, and a cDNA encoding a >350 kDa centrosome protein was identified. Sequence analyses revealed that this novel centrosome protein contains two coiled-coil domains bounded by non-coiled regions. The N-terminal region of the protein, named pericentrin-B, shares 61% identity (75% similarity) with pericentrin, suggesting an evolutionary relationship between these proteins. Antibodies against pericentrin-B stain centrosomes at all stages of the cell cycle, and pericentrin-B remains associated with centrosomes following microtubule depolymerization. Immunodepletion of neither pericentrin-B nor PCM-1 from cellular extracts inhibited the ability of salt-stripped centrosomes to recover microtubule nucleation potential, demonstrating that neither protein plays a key role in microtubule nucleation processes. Moreover, the binding of both PCM-1 and pericentrin-B with salt-stripped centrosomes required intact microtubules, demonstrating that the association of PCM-1 and pericentrin-B with centrosomes is a late event in the centrosome maturation process. Finally, pericentrin-B and PCM-1 coimmunoprecipitate, suggesting that PCM-1 and pericentrin-B form a functional complex in cells. This observation may help to explain the generation of anti-centrosome autoantibodies in certain autoimmune patients and may be important for centrosome function.
Collapse
Affiliation(s)
- Q Li
- Department of Anatomy and Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
72
|
Gordon MB, Howard L, Compton DA. Chromosome movement in mitosis requires microtubule anchorage at spindle poles. J Cell Biol 2001; 152:425-34. [PMID: 11157972 PMCID: PMC2196006 DOI: 10.1083/jcb.152.3.425] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2000] [Accepted: 12/08/2000] [Indexed: 11/22/2022] Open
Abstract
Anchorage of microtubule minus ends at spindle poles has been proposed to bear the load of poleward forces exerted by kinetochore-associated motors so that chromosomes move toward the poles rather than the poles toward the chromosomes. To test this hypothesis, we monitored chromosome movement during mitosis after perturbation of nuclear mitotic apparatus protein (NuMA) and the human homologue of the KIN C motor family (HSET), two noncentrosomal proteins involved in spindle pole organization in animal cells. Perturbation of NuMA alone disrupts spindle pole organization and delays anaphase onset, but does not alter the velocity of oscillatory chromosome movement in prometaphase. Perturbation of HSET alone increases the duration of prometaphase, but does not alter the velocity of chromosome movement in prometaphase or anaphase. In contrast, simultaneous perturbation of both HSET and NuMA severely suppresses directed chromosome movement in prometaphase. Chromosomes coalesce near the center of these cells on bi-oriented spindles that lack organized poles. Immunofluorescence and electron microscopy verify microtubule attachment to sister kinetochores, but this attachment fails to generate proper tension across sister kinetochores. These results demonstrate that anchorage of microtubule minus ends at spindle poles mediated by overlapping mechanisms involving both NuMA and HSET is essential for chromosome movement during mitosis.
Collapse
Affiliation(s)
- Michael B. Gordon
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755
| | - Louisa Howard
- Rippel Electron Microscope Facility, Dartmouth College, Hanover, New Hampshire 03755
| | - Duane A. Compton
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755
| |
Collapse
|
73
|
Gergely F, Karlsson C, Still I, Cowell J, Kilmartin J, Raff JW. The TACC domain identifies a family of centrosomal proteins that can interact with microtubules. Proc Natl Acad Sci U S A 2000; 97:14352-7. [PMID: 11121038 PMCID: PMC18922 DOI: 10.1073/pnas.97.26.14352] [Citation(s) in RCA: 221] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We recently showed that the Drosophila transforming acidic coiled-coil (D-TACC) protein is located in the centrosome, interacts with microtubules, and is required for mitosis in the Drosophila embryo. There are three known human TACC proteins that share a conserved, C-terminal, coiled-coil region with D-TACC. These proteins have all been implicated in cancer, but their normal functions are unknown. We show that all three human TACC proteins are concentrated at centrosomes, but with very different characteristics: TACC1 is weakly concentrated at centrosomes during mitosis; TACC2 is strongly concentrated at centrosomes throughout the cell cycle; and TACC3 is strongly concentrated in a more diffuse region around centrosomes during mitosis. When the C-terminal TACC domain is overexpressed in HeLa cells, it forms large polymers in the cytoplasm that can interact with both microtubules and tubulin. The full-length TACC proteins form similar polymers when overexpressed, but their interaction with microtubules and tubulin is regulated during the cell cycle. At least one of the human TACC proteins appears to increase the number and/or stability of centrosomal microtubules when overexpressed during mitosis. Thus, the TACC domain identifies a family of centrosomal proteins that can interact with microtubules. This may explain the link between the TACC genes and cancer.
Collapse
Affiliation(s)
- F Gergely
- Wellcome/Cancer Research Campaign Institute and Department of Genetics, Tennis Court Road, Cambridge CB2 1QR, United Kingdom
| | | | | | | | | | | |
Collapse
|
74
|
Zimmerman W, Doxsey SJ. Construction of Centrosomes and Spindle Poles by Molecular Motor-Driven Assembly of Protein Particles. Traffic 2000. [DOI: 10.1034/j.1600-0854.2000.011202.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
75
|
Affiliation(s)
- R Heald
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| |
Collapse
|
76
|
Abstract
Recent biochemical studies of the AAA ATPase, katanin, provide a foundation for understanding how microtubules might be severed along their length. These in vitro studies are complemented by a series of recent reports of direct in vivo observation of microtubule breakage, which indicate that the in vitro phenomenon of catalysed microtubule severing is likely to be physiological. There is also new evidence that microtubule severing by katanin is important for the production of non-centrosomal microtubules in cells such as neurons and epithelial cells. Although it has been difficult to establish the role of katanin in mitosis, new genetic evidence indicates that a katanin-like protein, MEI-1, plays an essential role in meiosis in C. elegans. Finally, new proteins involved in the severing of axonemal microtubules have been discovered in the deflagellation system of Chlamydomonas.
Collapse
Affiliation(s)
- L Quarmby
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada V5A 1S6.
| |
Collapse
|
77
|
Abstract
TPX2, the targeting protein for Xenopus kinesin-like protein 2 (Xklp2), was identified as a microtubule-associated protein that mediates the binding of the COOH-terminal domain of Xklp2 to microtubules (Wittmann, T., H. Boleti, C. Antony, E. Karsenti, and I. Vernos. 1998. J. Cell Biol. 143:673-685). Here, we report the cloning and functional characterization of Xenopus TPX2. TPX2 is a novel, basic 82.4-kD protein that is phosphorylated during mitosis in a microtubule-dependent way. TPX2 is nuclear during interphase and becomes localized to spindle poles in mitosis. Spindle pole localization of TPX2 requires the activity of the dynein-dynactin complex. In late anaphase TPX2 becomes relocalized from the spindle poles to the midbody. TPX2 is highly homologous to a human protein of unknown function and thus defines a new family of vertebrate spindle pole components. We investigated the function of TPX2 using spindle assembly in Xenopus egg extracts. Immunodepletion of TPX2 from mitotic egg extracts resulted in bipolar structures with disintegrating poles and a decreased microtubule density. Addition of an excess of TPX2 to spindle assembly reactions gave rise to monopolar structures with abnormally enlarged poles. We conclude that, in addition to its function in targeting Xklp2 to microtubule minus ends during mitosis, TPX2 also participates in the organization of spindle poles.
Collapse
Affiliation(s)
- Torsten Wittmann
- Cell Biology and Cell Biophysics Program, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - Matthias Wilm
- Biochemical Instrumentation Program, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - Eric Karsenti
- Cell Biology and Cell Biophysics Program, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - Isabelle Vernos
- Cell Biology and Cell Biophysics Program, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| |
Collapse
|
78
|
Smirnova EA, Reddy AS, Bowser J, Bajer AS. Minus end-directed kinesin-like motor protein, Kcbp, localizes to anaphase spindle poles in Haemanthus endosperm. CELL MOTILITY AND THE CYTOSKELETON 2000; 41:271-80. [PMID: 9829781 DOI: 10.1002/(sici)1097-0169(1998)41:3<271::aid-cm8>3.0.co;2-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Microtubule-based motor proteins assemble and reorganize acentrosomal mitotic and meiotic spindles in animal cells. The functions of motor proteins in acentrosomal plant spindles are unknown. The cellulosic cell wall and relative small size of most plant cells precludes accurate detection of the spatial distribution of motors in mitosis. Large cell size and absence of a cellulosic cell wall in Haemanthus endosperm make these cells ideally suited for studies of the spatial distribution of motor proteins during cell division. Immunolocalization of a kinesin-like calmodulin-binding protein (KCBP) in Haemanthus endosperm revealed its mitotic distribution. KCBP appears first in association with the prophase spindle. Highly concentrated within the cores of individual kinetochore fibers, KCBP decorates microtubules of kinetochore-fibers through metaphase. By mid-anaphase (when a barrel-shaped spindle becomes convergent), the protein redistributes and accumulates at the spindle polar regions. In telophase, KCBP relocates toward the phragmoplast and cell plate. These data suggest a role for KCBP in anaphase spindle microtubule convergence, which assures coherence of kinetochore-fibers within each sister chromosome group. Increasing coherence of kinetochore-fibers prevents splitting within each sister chromosome group and formation of multinucleated cells.
Collapse
Affiliation(s)
- E A Smirnova
- Biology Faculty, Moscow State University, Moscow, Russia
| | | | | | | |
Collapse
|
79
|
Carabatsos MJ, Combelles CM, Messinger SM, Albertini DF. Sorting and reorganization of centrosomes during oocyte maturation in the mouse. Microsc Res Tech 2000; 49:435-44. [PMID: 10842370 DOI: 10.1002/(sici)1097-0029(20000601)49:5<435::aid-jemt5>3.0.co;2-h] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In animal oocytes, the centrosome exists as an acentriolar aggregate of centrosomal material that is regulated in a dynamic manner throughout the process of meiotic maturation. Recently, it has been demonstrated that in female meiotic systems spindle assembly is likely regulated by chromosomal and microtubule/microtubule-associated influences. The purpose of this study was to analyze the distribution of the integral centrosomal protein, pericentrin, during the course of meiotic maturation. The function of the centrosome during meiotic progression was evaluated by exposing oocytes to pharmacological agents that perturb cytoplasmic homeostasis (cycloheximide, nocodazole, cytochalasin D, taxol, and vanadate). Pericentrin was localized to the spindle poles during metaphase of meiosis-I as O- and C-shaped structures. At anaphase, these structures fragment, become displaced from the spindle poles, and associate with the lateral spindle margin. The metaphase spindle at meiosis-II had incomplete pericentrin rings at both spindle poles. Vanadate treatment, a known inhibitor of dynein-ATPase, resulted in meiotic arrest, constriction of the spindle pole, and an aggregation of pericentrin at the spindle poles. After taxol exposure, pericentrin incorporation into both spindle poles and cytoplasmic centrosomes was increased. Treatment of oocytes with cycloheximide, nocodazole, and cytochalasin D, influenced early events associated with chromosome capture and spindle assembly and altered the number and distribution of cytoplasmic centrosomes. Thus, although pericentrin incorporation is not required for meiotic spindle formation, the dynamic reorganization of pericentrin and changes in centrosome microtubule nucleating capacity are involved in critical cell cycle transitions during meiotic maturation.
Collapse
Affiliation(s)
- M J Carabatsos
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Department of Anatomy and Cell Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | |
Collapse
|
80
|
Fry AM, Descombes P, Twomey C, Bacchieri R, Nigg EA. The NIMA-related kinase X-Nek2B is required for efficient assembly of the zygotic centrosome in Xenopus laevis. J Cell Sci 2000; 113 ( Pt 11):1973-84. [PMID: 10806108 DOI: 10.1242/jcs.113.11.1973] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nek2 is a mammalian cell cycle-regulated serine/threonine kinase that belongs to the family of proteins related to NIMA of Aspergillus nidulans. Functional studies in diverse species have implicated NIMA-related kinases in G(2)/M progression, chromatin condensation and centrosome regulation. To directly address the requirements for vertebrate Nek2 kinases in these cell cycle processes, we have turned to the biochemically-tractable system provided by Xenopus laevis egg extracts. Following isolation of a Xenopus homologue of Nek2, called X-Nek2B, we found that X-Nek2B abundance and activity remained constant through the first mitotic cycle implying a fundamental difference in Nek2 regulation between embryonic and somatic cell cycles. Removal of X-Nek2B from extracts did not disturb either entry into mitosis or the accompanying condensation of chromosomes providing no support for a requirement for Nek2 in these processes at least in embryonic cells. In contrast, X-Nek2B localized to centrosomes of adult Xenopus cells and was rapidly recruited to the basal body of Xenopus sperm following incubation in egg extracts. Recruitment led to phosphorylation of the X-Nek2B kinase. Most importantly, depletion of X-Nek2B from extracts significantly delayed both the assembly of microtubule asters and the recruitment of gamma-tubulin to the basal body. Hence, these studies demonstrate that X-Nek2B is required for efficient assembly of a functional zygotic centrosome and highlight the possibility of multiple roles for vertebrate Nek2 kinases in the centrosome cycle.
Collapse
Affiliation(s)
- A M Fry
- Department of Biochemistry, University of Leicester, Adrian Building, University Road, Leicester LE1 7RH, UK.
| | | | | | | | | |
Collapse
|
81
|
Abstract
Nuclear mitotic apparatus protein, NuMA, is an abundant 240 kDa protein with microtubule (MT) binding capacity via its carboxyl terminal region. Structurally, it has been shown to be a double-strand coiled-coil that has a high potential to form filamentous polymers. During interphase, NuMA locates within the nucleus but rapidly redistributes to the separating centrosomes during early mitosis. Xenopus NuMA associates with MT minus end-directed motor cytoplasmic dynein and its motility-activating complex dynactin at mitotic centrosomal regions. This NuMA-motor complex binds the free ends of MTs, converging and tethering spindle MT ends to the poles. A similar scenario appears to be true in higher vertebrates as well. As a mitotic centrosomal component, NuMA is essential for the organization and stabilization of spindle poles from early mitosis until at least the onset of anaphase. The cell cycle-dependent distribution and function of NuMA is regulated by phosphorylation and dephosphorylation, and p34/CDC2 activity is important to the mitotic role of NuMA. This review summarizes data about the structural features and mitotic function of NuMA with particular emphasis on the newly discovered NuMA-motor complex in spindle organization. Furthermore, NuMA may represent a large group of proteins whose mitotic function is sequestered in the nucleus during interphase.
Collapse
Affiliation(s)
- C Zeng
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
82
|
Young A, Dictenberg JB, Purohit A, Tuft R, Doxsey SJ. Cytoplasmic dynein-mediated assembly of pericentrin and gamma tubulin onto centrosomes. Mol Biol Cell 2000; 11:2047-56. [PMID: 10848628 PMCID: PMC14902 DOI: 10.1091/mbc.11.6.2047] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Centrosome assembly is important for mitotic spindle formation and if defective may contribute to genomic instability in cancer. Here we show that in somatic cells centrosome assembly of two proteins involved in microtubule nucleation, pericentrin and gamma tubulin, is inhibited in the absence of microtubules. A more potent inhibitory effect on centrosome assembly of these proteins is observed after specific disruption of the microtubule motor cytoplasmic dynein by microinjection of dynein antibodies or by overexpression of the dynamitin subunit of the dynein binding complex dynactin. Consistent with these observations is the ability of pericentrin to cosediment with taxol-stabilized microtubules in a dynein- and dynactin-dependent manner. Centrosomes in cells with reduced levels of pericentrin and gamma tubulin have a diminished capacity to nucleate microtubules. In living cells expressing a green fluorescent protein-pericentrin fusion protein, green fluorescent protein particles containing endogenous pericentrin and gamma tubulin move along microtubules at speeds of dynein and dock at centrosomes. In Xenopus extracts where gamma tubulin assembly onto centrioles can occur without microtubules, we find that assembly is enhanced in the presence of microtubules and inhibited by dynein antibodies. From these studies we conclude that pericentrin and gamma tubulin are novel dynein cargoes that can be transported to centrosomes on microtubules and whose assembly contributes to microtubule nucleation.
Collapse
Affiliation(s)
- A Young
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | |
Collapse
|
83
|
Dionne MA, Sanchez A, Compton DA. ch-TOGp is required for microtubule aster formation in a mammalian mitotic extract. J Biol Chem 2000; 275:12346-52. [PMID: 10766876 DOI: 10.1074/jbc.275.16.12346] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microtubules induced to polymerize with taxol in a mammalian mitotic extract organize into aster-like arrays in a centrosome-independent process that is driven by microtubule motors and structural proteins. These microtubule asters accurately reflect the noncentrosomal aspects of mitotic spindle pole formation. We show here that colonic-hepatic tumor-overexpressed gene (ch-TOGp) is an abundant component of these asters. We have prepared ch-TOGp-specific antibodies and show by immunodepletion that ch-TOGp is required for microtubule aster assembly. Microtubule polymerization is severely inhibited in the absence of ch-TOGp, and silver stain analysis of the ch-TOGp immunoprecipitate indicates that it is not present in a preformed complex and is the only protein removed from the extract during immunodepletion. Furthermore, the reduction in microtubule polymerization efficiency in the absence of ch-TOGp is dependent on ATP. These results demonstrate that ch-TOGp is a major constituent of microtubule asters assembled in a mammalian mitotic extract and that it is required for robust microtubule polymerization in an ATP-dependent manner in this system even though taxol is present. These data, coupled with biochemical and genetic data derived from analysis of ch-TOGp-related proteins in other organisms, indicate that ch-TOGp is a key factor regulating microtubule dynamics during mitosis.
Collapse
Affiliation(s)
- M A Dionne
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|
84
|
Paluh JL, Nogales E, Oakley BR, McDonald K, Pidoux AL, Cande WZ. A mutation in gamma-tubulin alters microtubule dynamics and organization and is synthetically lethal with the kinesin-like protein pkl1p. Mol Biol Cell 2000; 11:1225-39. [PMID: 10749926 PMCID: PMC14843 DOI: 10.1091/mbc.11.4.1225] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mitotic segregation of chromosomes requires spindle pole functions for microtubule nucleation, minus end organization, and regulation of dynamics. gamma-Tubulin is essential for nucleation, and we now extend its role to these latter processes. We have characterized a mutation in gamma-tubulin that results in cold-sensitive mitotic arrest with an elongated bipolar spindle but impaired anaphase A. At 30 degrees C cytoplasmic microtubule arrays are abnormal and bundle into single larger arrays. Three-dimensional time-lapse video microscopy reveals that microtubule dynamics are altered. Localization of the mutant gamma-tubulin is like the wild-type protein. Prediction of gamma-tubulin structure indicates that non-alpha/beta-tubulin protein-protein interactions could be affected. The kinesin-like protein (klp) Pkl1p localizes to the spindle poles and spindle and is essential for viability of the gamma-tubulin mutant and in multicopy for normal cell morphology at 30 degrees C. Localization and function of Pkl1p in the mutant appear unaltered, consistent with a redundant function for this protein in wild type. Our data indicate a broader role for gamma-tubulin at spindle poles in regulating aspects of microtubule dynamics and organization. We propose that Pkl1p rescues an impaired function of gamma-tubulin that involves non-tubulin protein-protein interactions, presumably with a second motor, MAP, or MTOC component.
Collapse
Affiliation(s)
- J L Paluh
- Department of Molecular Biology, University of California, Berkeley, California 94720-3200, USA.
| | | | | | | | | | | |
Collapse
|
85
|
Warner AK, Sloboda RD. C-terminal domain of the mitotic apparatus protein p62 targets the protein to the nucleolus during interphase. CELL MOTILITY AND THE CYTOSKELETON 2000; 44:68-80. [PMID: 10470020 DOI: 10.1002/(sici)1097-0169(199909)44:1<68::aid-cm6>3.0.co;2-l] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mitotic apparatuses from sea urchin embryos contain a protein (p62), previously shown to be required for mitotic progression. This protein localizes to the mitotic apparatus during cell division in urchin embryos and mammalian tissue culture cells. We show here by immunofluorescence that p62 is localized to the nucleus of mammalian cells during interphase and is highly concentrated in nucleoli. In addition, a fusion protein composed of full-length p62 and green fluorescent protein also localizes to nucleoli when expressed in COS-7 cells in culture. Analysis of the primary sequence of p62 reveals three distinct domains of the protein based on amino acid charge distribution: the acidic N-terminal domain, the basic C-terminal domain, and the central, M-domain, which contains alternating subdomains of clusters of acidic and basic residues. To identify the domain important for nucleolar localization during interphase, specific domains of p62 alone, or in combination with each other or with beta-galactosidase were fused to green fluorescent protein. Following confirmation of the fusion constructs by sequence analysis, the constructs were expressed in mammalian cells, expression was confirmed by immunoblotting, and the fusion proteins were localized via fluorescence microscopy. The data demonstrate that the C-terminal domain of p62 is both necessary and sufficient for the nuclear localization and nucleolar binding of p62 that is observed during interphase.
Collapse
Affiliation(s)
- A K Warner
- Department of Biological Sciences, 6044 Gilman Laboratory, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
86
|
Sylvester AW. Division decisions and the spatial regulation of cytokinesis. CURRENT OPINION IN PLANT BIOLOGY 2000; 3:58-66. [PMID: 10679454 DOI: 10.1016/s1369-5266(99)00042-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cytokinesis in plant cells in accomplished when a membranous cell plate is guided to a pre-established division site. The orientation of the new wall establishes the starting position of a cell in a growing tissue, but the impact of this position on future development varies. Recently, proteins have been identified that participate in forming, stabilizing and guiding the cell plate to the correct division site. Mutations that affect cytokinesis with varying impacts on plant development are providing information about the mechanics of cytokinesis and also about how the division site is selected.
Collapse
Affiliation(s)
- A W Sylvester
- Department of Botany, PO Box 3165, University of Wyoming, Laramie, 82071-3165, USA.
| |
Collapse
|
87
|
Abstract
BACKGROUND In cells lacking centrosomes, the microtubule-organizing activity of the centrosome is substituted for by the combined action of chromatin and molecular motors. The question of whether a centrosome-independent pathway for spindle formation exists in vertebrate somatic cells, which always contain centrosomes, remains unanswered, however. By a combination of labeling with green fluorescent protein (GFP) and laser microsurgery we have been able to selectively destroy centrosomes in living mammalian cells as they enter mitosis. RESULTS We have established a mammalian cell line in which the boundaries of the centrosome are defined by the constitutive expression of gamma-tubulin-GFP. This feature allows us to use laser microsurgery to selectively destroy the centrosomes in living cells. Here we show that this method can be used to reproducibly ablate the centrosome as a functional entity, and that after destruction the microtubules associated with the ablated centrosome disassemble. Depolymerization-repolymerization experiments reveal that microtubules form in acentrosomal cells randomly within the cytoplasm. When both centrosomes are destroyed during prophase these cells form a functional bipolar spindle. Surprisingly, when just one centrosome is destroyed, bipolar spindles are also formed that contain one centrosomal and one acentrosomal pole. Both the polar regions in these spindles are well focused and contain the nuclear structural protein NuMA. The acentrosomal pole lacks pericentrin, gamma-tubulin, and centrioles, however. CONCLUSIONS These results reveal, for the first time, that somatic cells can use a centrosome-independent pathway for spindle formation that is normally masked by the presence of the centrosome. Furthermore, this mechanism is strong enough to drive bipolar spindle assembly even in the presence of a single functional centrosome.
Collapse
Affiliation(s)
- A Khodjakov
- Division of Molecular Medicine, New York State Department of Health, Department of Biomedical Sciences, Wadsworth Center, State University of New York, Albany, 12201-0509, 12222, USA.
| | | | | | | |
Collapse
|
88
|
Gergely F, Kidd D, Jeffers K, Wakefield JG, Raff JW. D-TACC: a novel centrosomal protein required for normal spindle function in the early Drosophila embryo. EMBO J 2000; 19:241-52. [PMID: 10637228 PMCID: PMC305558 DOI: 10.1093/emboj/19.2.241] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/1999] [Revised: 11/10/1999] [Accepted: 11/11/1999] [Indexed: 11/14/2022] Open
Abstract
We identify Drosophila TACC (D-TACC) as a novel protein that is concentrated at centrosomes and interacts with microtubules. We show that D-TACC is essential for normal spindle function in the early embryo; if D-TACC function is perturbed by mutation or antibody injection, the microtubules emanating from centrosomes in embryos are short and chromosomes often fail to segregate properly. The C-terminal region of D-TACC interacts, possibly indirectly, with microtubules, and can target a heterologous fusion protein to centrosomes and microtubules in embryos. This C-terminal region is related to the mammalian transforming, acidic, coiled-coil-containing (TACC) family of proteins. The function of the TACC proteins is unknown, but the genes encoding the known TACC proteins are all associated with genomic regions that are rearranged in certain cancers. We show that at least one of the mammalian TACC proteins appears to be associated with centrosomes and microtubules in human cells. We propose that this conserved C-terminal 'TACC domain' defines a new family of microtubule-interacting proteins.
Collapse
Affiliation(s)
- F Gergely
- Wellcome/CRC Institute and Department of Genetics, Tennis Court Road, Cambridge CB2 1QR, UK
| | | | | | | | | |
Collapse
|
89
|
Lingle WL, Salisbury JL. Altered centrosome structure is associated with abnormal mitoses in human breast tumors. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 155:1941-51. [PMID: 10595924 PMCID: PMC1866918 DOI: 10.1016/s0002-9440(10)65513-7] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Centrosomes are the major microtubule organizing center in mammalian cells and establish the spindle poles during mitosis. Centrosome defects have been implicated in disease and tumor progression and have been associated with nullizygosity of the p53 tumor suppressor gene. In the present ultrastructural analysis of 31 human breast tumors, we found that centrosomes of most tumors had significant alterations compared to centrosomes of normal breast tissue. These alterations in included 1) supernumerary centrioles, 2) excess pericentriolar material, 3) disrupted centriole barrel structure, 4) unincorporated microtubule complexes, 5) centrioles of unusual length, 6) centrioles functioning as ciliary basal bodies, and 7) mispositioned centrosomes. These alterations are associated with changes in cell polarity, changes in cell and tissue differentiation, and chromosome missegregation through multipolar mitoses. Significantly, the presence of excess pericentriolar material was associated with the highest frequency of abnormal mitoses. Centrosome abnormalities may confer a mutator phenotype to tumors, occasionally yielding cells with a selective advantage that emerge and thrive, thus leading the tumor to a more aggressive state.
Collapse
Affiliation(s)
- W L Lingle
- Tumor Biology Program, Mayo Foundation, Rochester, Minnesota 55905, USA.
| | | |
Collapse
|
90
|
Mountain V, Simerly C, Howard L, Ando A, Schatten G, Compton DA. The kinesin-related protein, HSET, opposes the activity of Eg5 and cross-links microtubules in the mammalian mitotic spindle. J Cell Biol 1999; 147:351-66. [PMID: 10525540 PMCID: PMC2174226 DOI: 10.1083/jcb.147.2.351] [Citation(s) in RCA: 264] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/1999] [Accepted: 09/07/1999] [Indexed: 11/22/2022] Open
Abstract
We have prepared antibodies specific for HSET, the human homologue of the KAR3 family of minus end-directed motors. Immuno-EM with these antibodies indicates that HSET frequently localizes between microtubules within the mammalian metaphase spindle consistent with a microtubule cross-linking function. Microinjection experiments show that HSET activity is essential for meiotic spindle organization in murine oocytes and taxol-induced aster assembly in cultured cells. However, inhibition of HSET did not affect mitotic spindle architecture or function in cultured cells, indicating that centrosomes mask the role of HSET during mitosis. We also show that (acentrosomal) microtubule asters fail to assemble in vitro without HSET activity, but simultaneous inhibition of HSET and Eg5, a plus end-directed motor, redresses the balance of forces acting on microtubules and restores aster organization. In vivo, centrosomes fail to separate and monopolar spindles assemble without Eg5 activity. Simultaneous inhibition of HSET and Eg5 restores centrosome separation and, in some cases, bipolar spindle formation. Thus, through microtubule cross-linking and oppositely oriented motor activity, HSET and Eg5 participate in spindle assembly and promote spindle bipolarity, although the activity of HSET is not essential for spindle assembly and function in cultured cells because of centrosomes.
Collapse
Affiliation(s)
- Vicki Mountain
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755
| | - Calvin Simerly
- Departments of Cell-Developmental Biology, Obstetrics-Gynecology, and Oregon Regional Primate Research Center, Oregon Health Sciences University, Beaverton, Oregon 97006
| | - Louisa Howard
- Rippel Electron Microscope Facility, Dartmouth College, Hanover, New Hampshire 03755
| | - Asako Ando
- Department of Genetic Information, Division of Molecular Life Science, University School of Medicine, Bohseidai, Isehara, Kanagawa 259-1193, Japan
| | - Gerald Schatten
- Departments of Cell-Developmental Biology, Obstetrics-Gynecology, and Oregon Regional Primate Research Center, Oregon Health Sciences University, Beaverton, Oregon 97006
| | - Duane A. Compton
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755
| |
Collapse
|
91
|
Quintyne N, Gill S, Eckley D, Crego C, Compton D, Schroer T. Dynactin is required for microtubule anchoring at centrosomes. J Cell Biol 1999; 147:321-34. [PMID: 10525538 PMCID: PMC2174233 DOI: 10.1083/jcb.147.2.321] [Citation(s) in RCA: 286] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/1999] [Accepted: 09/10/1999] [Indexed: 11/22/2022] Open
Abstract
The multiprotein complex, dynactin, is an integral part of the cytoplasmic dynein motor and is required for dynein-based motility in vitro and in vivo. In living cells, perturbation of the dynein-dynactin interaction profoundly blocks mitotic spindle assembly, and inhibition or depletion of dynein or dynactin from meiotic or mitotic cell extracts prevents microtubules from focusing into spindles. In interphase cells, perturbation of the dynein-dynactin complex is correlated with an inhibition of ER-to-Golgi movement and reorganization of the Golgi apparatus and the endosome-lysosome system, but the effects on microtubule organization have not previously been defined. To explore this question, we overexpressed a variety of dynactin subunits in cultured fibroblasts. Subunits implicated in dynein binding have effects on both microtubule organization and centrosome integrity. Microtubules are reorganized into unfocused arrays. The pericentriolar components, gamma tubulin and dynactin, are lost from centrosomes, but pericentrin localization persists. Microtubule nucleation from centrosomes proceeds relatively normally, but microtubules become disorganized soon thereafter. Overexpression of some, but not all, dynactin subunits also affects endomembrane localization. These data indicate that dynein and dynactin play important roles in microtubule organization at centrosomes in fibroblastic cells and provide new insights into dynactin-cargo interactions.
Collapse
Affiliation(s)
- N.J. Quintyne
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218
| | - S.R. Gill
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218
| | - D.M. Eckley
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218
| | - C.L. Crego
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218
| | - D.A. Compton
- Department of Biochemistry, Dartmouth School of Medicine, Hanover, New Hampshire 03755
| | - T.A. Schroer
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218
| |
Collapse
|
92
|
Eckley DM, Gill SR, Melkonian KA, Bingham JB, Goodson HV, Heuser JE, Schroer TA. Analysis of dynactin subcomplexes reveals a novel actin-related protein associated with the arp1 minifilament pointed end. J Cell Biol 1999; 147:307-20. [PMID: 10525537 PMCID: PMC2174220 DOI: 10.1083/jcb.147.2.307] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The multisubunit protein, dynactin, is a critical component of the cytoplasmic dynein motor machinery. Dynactin contains two distinct structural domains: a projecting sidearm that interacts with dynein and an actin-like minifilament backbone that is thought to bind cargo. Here, we use biochemical, ultrastructural, and molecular cloning techniques to obtain a comprehensive picture of dynactin composition and structure. Treatment of purified dynactin with recombinant dynamitin yields two assemblies: the actin-related protein, Arp1, minifilament and the p150(Glued) sidearm. Both contain dynamitin. Treatment of dynactin with the chaotropic salt, potassium iodide, completely depolymerizes the Arp1 minifilament to reveal multiple protein complexes that contain the remaining dynactin subunits. The shoulder/sidearm complex contains p150(Glued), dynamitin, and p24 subunits and is ultrastructurally similar to dynactin's flexible projecting sidearm. The dynactin shoulder complex, which contains dynamitin and p24, is an elongated, flexible assembly that may link the shoulder/sidearm complex to the Arp1 minifilament. Pointed-end complex contains p62, p27, and p25 subunits, plus a novel actin-related protein, Arp11. p62, p27, and p25 contain predicted cargo-binding motifs, while the Arp11 sequence suggests a pointed-end capping activity. These isolated dynactin subdomains will be useful tools for further analysis of dynactin assembly and function.
Collapse
Affiliation(s)
- D. Mark Eckley
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Steven R. Gill
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Karin A. Melkonian
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218
| | - James B. Bingham
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Holly V. Goodson
- Department of Cell Biology, University of Geneva, 12000 Geneva, Switzerland
| | - John E. Heuser
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, Missouri 63130
| | - Trina A. Schroer
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218
| |
Collapse
|
93
|
Vaizel-Ohayon D, Schejter ED. Mutations in centrosomin reveal requirements for centrosomal function during early Drosophila embryogenesis. Curr Biol 1999; 9:889-98. [PMID: 10469591 DOI: 10.1016/s0960-9822(99)80393-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Although centrosomes serve as the primary organizing centers for the microtubule-based cytoskeleton in animal cells, various studies question the requirements for these organelles during the formation of microtubule arrays and execution of microtubule-dependent processes. Using a genetic approach to interfere with centrosomal function, we present an assessment of this issue, in the context of early embryogenesis of the fruit fly Drosophila melanogaster. RESULTS We identified mutant alleles of the centrosomin (cnn) locus, which encodes a core component of centrosomes in Drosophila. The cnn mutant flies were viable but sterile. The normal course of early embryonic development was arrested in all progeny of cnn mutant females. Our analysis identified a failure to form functional centrosomes and spindle poles as the primary mutant phenotype of cnn embryos. Various aspects of early development that are dependent on cytoskeletal control were disrupted in cnn mutant embryos. In particular, structural rearrangements of cortical microfilaments were strongly dependent on proper centrosomal function. CONCLUSIONS Centrosomin is an essential core component of early embryonic centrosomes in Drosophila. Microtubule-dependent events of early embryogenesis display differential requirements for centrosomal function.
Collapse
Affiliation(s)
- D Vaizel-Ohayon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | | |
Collapse
|
94
|
Palazzo RE, Vaisberg EA, Weiss DG, Kuznetsov SA, Steffen W. Dynein is required for spindle assembly in cytoplasmic extracts of Spisula solidissima oocytes. J Cell Sci 1999; 112 ( Pt 9):1291-302. [PMID: 10194408 DOI: 10.1242/jcs.112.9.1291] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Meiosis I spindle assembly is induced in lysate-extract mixtures prepared from clam (Spisula solidissima) oocytes. Unactivated lysate prepared from unactivated oocytes contain nuclei (germinal vesicles, GVs) which house condensed chromosomes. Treatment of unactivated lysate with clarified activated extract prepared from oocytes induced to complete meiosis by treatment with KCl induces GV breakdown (GVBD) and assembly of monopolar, bipolar, and multipolar aster-chromosome complexes. The process of in vitro meiosis I spindle assembly involves the assembly of microtubule asters and the association of these asters with the surfaces of the GVs, followed by GVBD and spindle assembly. Monoclonal antibody m74-1, known to react specifically with the N terminus of the intermediate chain of cytoplasmic dynein, recognizes Spisula oocyte dynein and inhibits in vitro meiosis I spindle assembly. Control antibody has no affect on spindle assembly. A similar inhibitory effect on spindle assembly was observed in the presence of orthovanadate, a known inhibitor of dynein ATPase activity. Neither m74-1 nor orthovanadate has any obvious affect on GVBD or aster formation. We propose that dynein function is required for the association of chromosomes with astral microtubules during in vitro meiosis I spindle assembly in these lysate-extract mixtures. However, we conclude that dynein function is not required for centrosome assembly and maturation or for centrosome-dependent aster formation.
Collapse
Affiliation(s)
- R E Palazzo
- The Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA.
| | | | | | | | | |
Collapse
|
95
|
Abstract
A number of accessory proteins capable of stabilizing or destabilizing microtubule polymers in dividing cells have been identified recently. Many of these accessory proteins are modified and regulated by cell-cycle-dependent phosphorylation. Through this regulation, microtubule dynamics are modified to generate rapid microtubule turnover during mitosis. In general, although some microtubule-stabilizing proteins are inactivated at entry into mitosis, a critical balance between microtubule stabilizers and destabilizers is necessary for assembly of the mitotic spindle.
Collapse
Affiliation(s)
- L Cassimeris
- Department of Biological Sciences 111 Research Drive Lehigh University Bethlehem PA 18015 USA.
| |
Collapse
|
96
|
Abstract
Actin and microtubules represent complex polymer systems that play essential roles during many cellular processes including chromosome segregation, cytokinesis and motility. The dynamic nature of actin and microtubules together with their regulation by a myriad of proteins makes their study both fascinating and challenging. Over the past few years there has been an increasing move towards development of in vitro systems to facilitate the elucidation of the molecular basis of actin and microtubule dependent cell processes. This review focuses on some of the recent developments using in vitro assays to dissect the cellular role of the actin and microtubule cytoskeleton.
Collapse
Affiliation(s)
- V Moreau
- Cell Biology Program European Molecular Biology Laboratory Meyerhofstrasse 1 D-69117 Heidelberg Germany
| | | |
Collapse
|
97
|
Abstract
Assembly of mitotic and meiotic spindles into an elliptical bipolar shape is an example of morphogenetic processes that involve local chromosomal regulation of microtubule dynamics for proper spatial microtubule assembly. Global microtubule dynamics during the cell cycle and local microtubule dynamics during spindle assembly are regulated by a balance between microtubule stabilizing and destabilizing factors. How a chromosome-induced phosphorylation gradient may be generated and modulate spindle microtubule assembly through balanced regulation of the activity of microtubule-associated proteins and Stathmin/Op 18 is analyzed.
Collapse
Affiliation(s)
- S S Andersen
- University of California, San Diego, La Jolla, CA92093-0357, USA.
| |
Collapse
|
98
|
Inoue S, Yoder OC, Turgeon BG, Aist JR. A cytoplasmic dynein required for mitotic aster formation in vivo. J Cell Sci 1998; 111 ( Pt 17):2607-14. [PMID: 9701559 DOI: 10.1242/jcs.111.17.2607] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An astral pulling force helps to elongate the mitotic spindle in the filamentous ascomycete, Nectria haematococca. Evidence is mounting that dynein is required for the formation of mitotic spindles and asters. Obviously, this would be an important mitotic function of dynein, since it would be a prerequisite for astral force to be applied to a spindle pole. Missing from the evidence for such a role of dynein in aster formation, however, has been a dynein mutant lacking mitotic asters. To determine whether or not cytoplasmic dynein is involved in mitotic aster formation in N. haematococca, a dynein-deficient mutant was made. Immunocytochemistry visualized few or no mitotic astral microtubules in the mutant cells, and studies of living cells confirmed the veracity of this result by revealing the absence of mitotic aster functions in vivo: intra-astral motility of membranous organelles was not apparent; the rate and extent of spindle elongation during anaphase B were reduced; and spindle pole body separation almost stopped when the anaphase B spindle in the mutant was cut by a laser microbeam, demonstrating unequivocally that no astral pulling force was present. These unique results not only provide a demonstration that cytoplasmic dynein is required for the formation of mitotic asters in N. haematococca; they also represent the first report of mitotic phenotypes in a dynein mutant of any filamentous fungus and the first cytoplasmic dynein mutant of any organism whose mitotic phenotypes demonstrate the requirement of cytoplasmic dynein for aster formation in vivo.
Collapse
Affiliation(s)
- S Inoue
- Department of Plant Pathology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|