51
|
Schatten H, Sun QY. Posttranslationally modified tubulins and other cytoskeletal proteins: their role in gametogenesis, oocyte maturation, fertilization and Pre-implantation embryo development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 759:57-87. [PMID: 25030760 DOI: 10.1007/978-1-4939-0817-2_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The cytoskeleton, mainly consisting of microtubules, intermediate filaments and microfilaments, along with cytoskeleton associated and interconnecting proteins as well as the centrosome, plays enormously important roles in all stages of embryogenesis and undergoes significant changes to accommodate a diversity of cellular functions during gametogenesis, oocyte maturation, fertilization and pre-implantation embryo development. The varied functions of the cytoskeleton can be accomplished on many different levels, among which are a diversity of different posttranslational modifications (PTMs), chemical modifications that regulate activity, localization and interactions with other cellular molecules. PTMs of the cytoskeleton, including phosphorylation, glycosylation, ubiquitination, detyrosination/tyrosination, (poly)glutamylation and (poly)glycylation, acetylation, sumoylation, and palmitoylation, will be addressed in this chapter. Focus will be on (1) Microtubules, microtubule organizing centers (centrosomes), intermediate filaments, microfilaments and their PTMs; (2) Cytoskeletal functions and cytoskeletal PTMs during gametogenesis and oocyte maturation; and (3) Cytoskeletal functions and cytoskeletal PTMs during fertilization and pre-implantation embryo development.
Collapse
Affiliation(s)
- Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, 1600 E Rollins Street, Columbia, MO, 65211, USA,
| | | |
Collapse
|
52
|
Mark/Par-1 Marking the Polarity of Migrating Neurons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 800:97-111. [DOI: 10.1007/978-94-007-7687-6_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
53
|
Jeong AL, Lee S, Park JS, Han S, Jang CY, Lim JS, Lee MS, Yang Y. Cancerous inhibitor of protein phosphatase 2A (CIP2A) protein is involved in centrosome separation through the regulation of NIMA (never in mitosis gene A)-related kinase 2 (NEK2) protein activity. J Biol Chem 2013; 289:28-40. [PMID: 24214971 DOI: 10.1074/jbc.m113.507954] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cancerous inhibitor of protein phosphatase 2A (CIP2A) is overexpressed in most human cancers and has been described as being involved in the progression of several human malignancies via the inhibition of protein phosphatase 2A (PP2A) activity toward c-Myc. However, with the exception of this role, the cellular function of CIP2A remains poorly understood. On the basis of yeast two-hybrid and coimmunoprecipitation assays, we demonstrate here that NIMA (never in mitosis gene A)-related kinase 2 (NEK2) is a binding partner for CIP2A. CIP2A exhibited dynamic changes in distribution, including the cytoplasm and centrosome, depending on the cell cycle stage. When CIP2A was depleted, centrosome separation and the mitotic spindle dynamics were impaired, resulting in the activation of spindle assembly checkpoint signaling and, ultimately, extension of the cell division time. Our data imply that CIP2A strongly interacts with NEK2 during G2/M phase, thereby enhancing NEK2 kinase activity to facilitate centrosome separation in a PP1- and PP2A-independent manner. In conclusion, CIP2A is involved in cell cycle progression through centrosome separation and mitotic spindle dynamics.
Collapse
Affiliation(s)
- Ae Lee Jeong
- From the Research Center for Women's Disease, Department of Life Systems and
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Kumar A, Rajendran V, Sethumadhavan R, Purohit R. CEP proteins: the knights of centrosome dynasty. PROTOPLASMA 2013; 250:965-983. [PMID: 23456457 DOI: 10.1007/s00709-013-0488-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 02/12/2013] [Indexed: 06/01/2023]
Abstract
Centrosome forms the backbone of cell cycle progression mechanism. Recent debates have occurred regarding the essentiality of centrosome in cell cycle regulation. CEP family protein is the active component of centrosome and plays a vital role in centriole biogenesis and cell cycle progression control. A total of 31 proteins have been categorized into CEP family protein category and many more are under candidate evaluation. Furthermore, by the recent advancements in genomics and proteomics researches, several new CEP proteins have also been characterized. Here we have summarized the importance of CEP family proteins and their regulation mechanism involved in proper cell cycle progression. Further, we have reviewed the detailed molecular mechanism behind the associated pathological phenotypes and the possible therapeutic approaches. Proteins such as CEP57, CEP63, CEP152, CEP164, and CEP215 have been extensively studied with a detailed description of their molecular mechanisms, which are among the primary targets for drug discovery. Moreover, CEP27, CEP55, CEP70, CEP110, CEP120, CEP135, CEP192, CEP250, CEP290, and CEP350 also seem promising for future drug discovery approaches. Since the overview implicates that the overall researches on CEP proteins are not yet able to present significant details required for effective therapeutics development, thus, it is timely to discuss the importance of future investigations in this field.
Collapse
Affiliation(s)
- Ambuj Kumar
- Bioinformatics Division, School of Bio Sciences and Technology, Vellore Institute of Technology University, Vellore, 632014, Tamil Nadu, India
| | | | | | | |
Collapse
|
55
|
LRRC45 is a centrosome linker component required for centrosome cohesion. Cell Rep 2013; 4:1100-7. [PMID: 24035387 DOI: 10.1016/j.celrep.2013.08.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 06/24/2013] [Accepted: 08/01/2013] [Indexed: 01/05/2023] Open
Abstract
During interphase, centrosomes are connected by a proteinaceous linker between the proximal ends of the centrioles, which is important for the centrosomes to function as a single microtubule-organizing center. However, the composition and regulation of centrosomal linker remain largely unknown. Here, we show that LRRC45 is a centrosome linker that localizes at the proximal ends of the centrioles and forms fiber-like structures between them. Depletion of LRRC45 results in centrosome splitting during interphase. Moreover, LRRC45 interacts with both C-Nap1 and rootletin and is phosphorylated by Nek2A at S661 during mitosis. After phosphorylation, both LRRC45 centrosomal localization and fiber-like structures are significantly reduced, which subsequently leads to centrosome separation. Thus, LRRC45 is a critical component of the proteinaceous linker between two centrioles and is required for centrosome cohesion.
Collapse
|
56
|
DeVaul N, Wang R, Sperry AO. PPP1R42, a PP1 binding protein, regulates centrosome dynamics in ARPE-19 cells. Biol Cell 2013; 105:359-71. [PMID: 23718219 DOI: 10.1111/boc.201300019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 05/24/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND The centrosome is the primary site for microtubule nucleation in cells and orchestrates reorganisation of the microtubule cytoskeleton during the cell cycle. The activities of the centrosome must be closely aligned with progression of the cell cycle; misregulation of centrosome separation and duplication is a hallmark of cancer. In a subset of cells, including the developing spermatid, the centrosome becomes specialised to form the basal body thereby supporting growth of the axoneme in morphogenesis of cilia and flagella, structures critical for signalling and motility. Mammalian spermatogenesis is an excellent model system to investigate the transformations in cellular architecture that accompany these changes including formation of the flagellum. We have previously identified a leucine-rich repeat protein (PPP1R42) that contains a protein phosphatase-1 binding site and translocates from the apical nucleus to the centrosome at the base of the flagellum during spermiogenesis. In this manuscript, we examine localisation and function of PPP1R42 in a ciliated epithelial cell model as a first step in understanding the role of this protein in centrosome function and flagellar formation. RESULTS We demonstrate that PPP1R42 localises to the basal body in ARPE-19 retinal epithelial cells. Co-localisation and co-immunoprecipitation experiments further show that PPP1R42 interacts with γ-tubulin. Inhibition of PPP1R42 with small interfering RNAs causes accumulation of centrosomes indicating premature centrosome separation. Importantly, the activity of two signalling molecules that regulate centrosome separation, PP1 phosphatase and NEK2 kinase, changes when PPP1R42 is inhibited: PP1 activity is reduced with a corresponding increase in NEK2 activity. CONCLUSIONS We have identified a role for the PP1-binding protein, PPP1R42, in centrosome separation in ciliated ARPE-19 cells. Our finding that inhibition of PPP1R42 expression increases the number of centrosomes per cell is consistent with our model that PPP1R42 is a positive regulator of PP1. PPP1R42 depletion reduces the activity of PP1 leading to activation of NEK2, the kinase responsible for phosphorylation of centrosomal linker proteins promoting centrosome separation. This work identifies a new molecule localised to the centrosome and basal body with a role in the complex signalling network responsible for controlling centrosome activities.
Collapse
Affiliation(s)
- Nicole DeVaul
- Department of Anatomy and Cell Biology, East Carolina University, Brody School of Medicine, Greenville, NC, USA
| | | | | |
Collapse
|
57
|
Kumar A, Rajendran V, sethumadhavan R, Purohit R. Insight into Nek2A activity regulation and its pharmacological prospects. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2013. [DOI: 10.1016/j.ejmhg.2012.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
58
|
Conroy PC, Saladino C, Dantas TJ, Lalor P, Dockery P, Morrison CG. C-NAP1 and rootletin restrain DNA damage-induced centriole splitting and facilitate ciliogenesis. Cell Cycle 2013; 11:3769-78. [PMID: 23070519 DOI: 10.4161/cc.21986] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cilia are found on most human cells and exist as motile cilia or non-motile primary cilia. Primary cilia play sensory roles in transducing various extracellular signals, and defective ciliary functions are involved in a wide range of human diseases. Centrosomes are the principal microtubule-organizing centers of animal cells and contain two centrioles. We observed that DNA damage causes centriole splitting in non-transformed human cells, with isolated centrioles carrying the mother centriole markers CEP170 and ninein but not kizuna or cenexin. Loss of centriole cohesion through siRNA depletion of C-NAP1 or rootletin increased radiation-induced centriole splitting, with C-NAP1-depleted isolated centrioles losing mother markers. As the mother centriole forms the basal body in primary cilia, we tested whether centriole splitting affected ciliogenesis. While irradiated cells formed apparently normal primary cilia, most cilia arose from centriolar clusters, not from isolated centrioles. Furthermore, C-NAP1 or rootletin knockdown reduced primary cilium formation. Therefore, the centriole cohesion apparatus at the proximal end of centrioles may provide a target that can affect primary cilium formation as part of the DNA damage response.
Collapse
Affiliation(s)
- Pauline C Conroy
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | | | | | | | | | | |
Collapse
|
59
|
Hua SC, Chang TC, Chen HR, Lu CH, Liu YW, Chen SH, Yu HI, Chang YP, Lee YR. Reversine, a 2,6-disubstituted purine, as an anti-cancer agent in differentiated and undifferentiated thyroid cancer cells. Pharm Res 2012; 29:1990-2005. [PMID: 22477067 DOI: 10.1007/s11095-012-0727-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 02/27/2012] [Indexed: 12/22/2022]
Abstract
PURPOSE A novel and effective treatment is urgently needed to deal with the current treatment dilemma in incurable differentiated thyroid cancer (DTC), poorly differentiated thyroid cancer (PDTC) and anaplastic thyroid cancer (ATC). Reversine, a small synthetic purine analogue (2,6-disubstituted purine), has been shown to be effective in tumor suppression. METHODS We performed in vitro evaluation of anti-tumor effects of reversine on proliferation, cell cycle, and apoptosis in human PDTC, ATC, and follicular thyroid cancer cell lines, respectively. RESULTS Treatment of these three lines with reversine inhibited proliferation in a time- and dose-dependent manner. G2/M accumulation was demonstrated in cell cycle analysis. Reversine induced apoptosis in PDTC cells with caspase-3 and caspase-8 activation, but not caspase-9. Use of a pan-caspase inhibitor before treatment with reversine attenuated cell death. Reversine also showed in vivo growth inhibitory effects on ATC cells in a xenograft nude mice model. CONCLUSIONS Data demonstrated that reversine is effective in inhibiting the growth of thyroid cancer cells by cell cycle arrest or apoptosis, especially with the more aggressive ATC and PDTC. Apoptosis was induced by the mitochondria-independent pathway. Reversine is therefore worthy of further investigation in clinical therapeutics.
Collapse
Affiliation(s)
- Shih-Che Hua
- Division of Endocrinology & Metabolism, Department of Internal Medicine, Chiayi Christian Hospital, Chiayi, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Barr FA, Elliott PR, Gruneberg U. Protein phosphatases and the regulation of mitosis. J Cell Sci 2011; 124:2323-34. [PMID: 21709074 DOI: 10.1242/jcs.087106] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Dynamic control of protein phosphorylation is necessary for the regulation of many cellular processes, including mitosis and cytokinesis. Indeed, although the central role of protein kinases is widely appreciated and intensely studied, the importance of protein phosphatases is often overlooked. Recent studies, however, have highlighted the considerable role of protein phosphatases in both the spatial and temporal control of protein kinase activity, and the modulation of substrate phosphorylation. Here, we will focus on recent advances in our understanding of phosphatase structure, and the importance of phosphatase function in the control of mitotic spindle formation, chromosome architecture and cohesion, and cell division.
Collapse
Affiliation(s)
- Francis A Barr
- University of Liverpool, Cancer Research Centre, 200 London Road, Liverpool L3 9TA, UK.
| | | | | |
Collapse
|
61
|
Xie L, Kassner M, Munoz RM, Que QQ, Kiefer J, Zhao Y, Mousses S, Yin HH, Von Hoff DD, Han H. Kinome-wide siRNA screening identifies molecular targets mediating the sensitivity of pancreatic cancer cells to Aurora kinase inhibitors. Biochem Pharmacol 2011; 83:452-61. [PMID: 22100984 DOI: 10.1016/j.bcp.2011.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 10/29/2011] [Accepted: 11/04/2011] [Indexed: 01/05/2023]
Abstract
Aurora kinases are a family of mitotic kinases that play important roles in the tumorigenesis of a variety of cancers including pancreatic cancer. A number of Aurora kinase inhibitors (AKIs) are currently being tested in preclinical and clinical settings as anti-cancer therapies. However, the antitumor activity of AKIs in clinical trials has been modest. In order to improve the antitumor activity of AKIs in pancreatic cancer, we utilized a kinome focused RNAi screen to identify genes that, when silenced, would sensitize pancreatic cancer cells to AKI treatment. A total of 17 kinase genes were identified and confirmed as positive hits. One of the hits was the platelet-derived growth factor receptor, alpha polypeptide (PDGFRA), which has been shown to be overexpressed in pancreatic cancer cells and tumor tissues. Imatinib, a PDGFR inhibitor, significantly enhanced the anti-proliferative effect of ZM447439, an Aurora B specific inhibitor, and PHA-739358, a pan-Aurora kinase inhibitor. Further studies showed that imatinib augmented the induction of G2/M cell cycle arrest and apoptosis by PHA-739358. These findings indicate that PDGFRA is a potential mediator of AKI sensitivity in pancreatic cancer cells.
Collapse
Affiliation(s)
- Lifang Xie
- Clinical Translational Research Division, Translational Genomic Research Institute (TGen), 13208 E Shea Blvd, Scottsdale, AZ 85259, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Yamauchi Y, Boukari H, Banerjee I, Sbalzarini IF, Horvath P, Helenius A. Histone deacetylase 8 is required for centrosome cohesion and influenza A virus entry. PLoS Pathog 2011; 7:e1002316. [PMID: 22046129 PMCID: PMC3203190 DOI: 10.1371/journal.ppat.1002316] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 09/01/2011] [Indexed: 11/19/2022] Open
Abstract
Influenza A virus (IAV) enters host cells by endocytosis followed by acid-activated penetration from late endosomes (LEs). Using siRNA silencing, we found that histone deacetylase 8 (HDAC8), a cytoplasmic enzyme, efficiently promoted productive entry of IAV into tissue culture cells, whereas HDAC1 suppressed it. HDAC8 enhanced endocytosis, acidification, and penetration of the incoming virus. In contrast, HDAC1 inhibited acidification and penetration. The effects were connected with dramatic alterations in the organization of the microtubule system, and, as a consequence, a change in the behavior of LEs and lysosomes (LYs). Depletion of HDAC8 caused loss of centrosome-associated microtubules and loss of directed centripetal movement of LEs, dispersing LE/LYs to the cell periphery. For HDAC1, the picture was the opposite. To explain these changes, centrosome cohesion emerged as the critical factor. Depletion of HDAC8 caused centrosome splitting, which could also be induced by depleting a centriole-linker protein, rootletin. In both cases, IAV infection was inhibited. HDAC1 depletion reduced the splitting of centrosomes, and enhanced infection. The longer the distance between centrosomes, the lower the level of infection. HDAC8 depletion was also found to inhibit infection of Uukuniemi virus (a bunyavirus) suggesting common requirements among late penetrating enveloped viruses. The results established class I HDACs as powerful regulators of microtubule organization, centrosome function, endosome maturation, and infection by IAV and other late penetrating viruses.
Collapse
Affiliation(s)
- Yohei Yamauchi
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | | | | | - Ivo F. Sbalzarini
- Institute of Theoretical Computer Science and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| | - Peter Horvath
- Light Microscopy Center, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Ari Helenius
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
63
|
Schneider M, Lu W, Neumann S, Brachner A, Gotzmann J, Noegel AA, Karakesisoglou I. Molecular mechanisms of centrosome and cytoskeleton anchorage at the nuclear envelope. Cell Mol Life Sci 2011; 68:1593-610. [PMID: 20922455 PMCID: PMC11115004 DOI: 10.1007/s00018-010-0535-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 09/13/2010] [Accepted: 09/14/2010] [Indexed: 01/07/2023]
Abstract
Cell polarization is a fundamental process underpinning organismal development, and tissue homeostasis, which requires an orchestrated interplay of nuclear, cytoskeletal, and centrosomal structures. The underlying molecular mechanisms, however, still remain elusive. Here we report that kinesin-1/nesprin-2/SUN-domain macromolecular assemblies, spanning the entire nuclear envelope (NE), function in cell polarization by anchoring cytoskeletal structures to the nuclear lamina. Nesprin-2 forms complexes with the kinesin-1 motor protein apparatus by associating with and recruiting kinesin light chain 1 (KLC1) to the outer nuclear membrane. Similar to nesprin-2, KLC1 requires lamin A/C for proper NE localization. The depletion of nesprin-2 or KLC1, or the uncoupling of nesprin-2/SUN-domain protein associations impairs cell polarization during wounding and dislodges the centrosome from the NE. In addition nesprin-2 loss has profound effects on KLC1 levels, the cytoskeleton, and Golgi apparatus organization. Collectively these data show that NE-associated proteins are pivotal determinants of cell architecture and polarization.
Collapse
Affiliation(s)
- Maria Schneider
- School of Biological and Biomedical Sciences, University of Durham, Durham, DH1 3LE UK
- Center for Biochemistry, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Wenshu Lu
- School of Biological and Biomedical Sciences, University of Durham, Durham, DH1 3LE UK
| | - Sascha Neumann
- Center for Biochemistry, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Andreas Brachner
- Max F. Perutz Laboratories, Medical University of Vienna, 1030 Vienna, Austria
| | - Josef Gotzmann
- Max F. Perutz Laboratories, Medical University of Vienna, 1030 Vienna, Austria
| | - Angelika A. Noegel
- Center for Biochemistry, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | | |
Collapse
|
64
|
Giubettini M, Asteriti IA, Scrofani J, De Luca M, Lindon C, Lavia P, Guarguaglini G. Control of Aurora-A stability through interaction with TPX2. J Cell Sci 2011; 124:113-22. [PMID: 21147853 PMCID: PMC3001410 DOI: 10.1242/jcs.075457] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2010] [Indexed: 02/05/2023] Open
Abstract
The Aurora-A kinase has well-established roles in spindle assembly and function and is frequently overexpressed in tumours. Its abundance is cell cycle regulated, with a peak in G2 and M phases, followed by regulated proteolysis at the end of mitosis. The microtubule-binding protein TPX2 plays a major role in regulating the activity and localisation of Aurora-A in mitotic cells. Here, we report a novel regulatory role of TPX2 and show that it protects Aurora-A from degradation both in interphase and in mitosis in human cells. Specifically, Aurora-A levels decrease in G2 and prometaphase cells silenced for TPX2, whereas degradation of Aurora-A is impaired in telophase cells overexpressing the Aurora-A-binding region of TPX2. The decrease in Aurora-A in TPX2-silenced prometaphases requires proteasome activity and the Cdh1 activator of the APC/C ubiquitin ligase. Reintroducing either full-length TPX2, or the Aurora-A-binding region of TPX2, but not a truncated TPX2 mutant lacking the Aurora-A-interaction domain, restores Aurora-A levels in TPX2-silenced prometaphases. The control by TPX2 of Aurora-A stability is independent of its ability to activate Aurora-A and to localise it to the spindle. These results highlight a novel regulatory level impinging on Aurora-A and provide further evidence for the central role of TPX2 in regulation of Aurora-A.
Collapse
Affiliation(s)
- Maria Giubettini
- Institute of Molecular Biology and Pathology, CNR, c/o Sapienza University of Rome, Via degli Apuli 4, 00185, Rome, Italy
| | - Italia A. Asteriti
- Institute of Molecular Biology and Pathology, CNR, c/o Sapienza University of Rome, Via degli Apuli 4, 00185, Rome, Italy
| | - Jacopo Scrofani
- Institute of Molecular Biology and Pathology, CNR, c/o Sapienza University of Rome, Via degli Apuli 4, 00185, Rome, Italy
| | - Maria De Luca
- Institute of Molecular Biology and Pathology, CNR, c/o Sapienza University of Rome, Via degli Apuli 4, 00185, Rome, Italy
- University of Cambridge, Department of Genetics, Downing Street, Cambridge, UK CB2 3EH
| | - Catherine Lindon
- University of Cambridge, Department of Genetics, Downing Street, Cambridge, UK CB2 3EH
| | - Patrizia Lavia
- Institute of Molecular Biology and Pathology, CNR, c/o Sapienza University of Rome, Via degli Apuli 4, 00185, Rome, Italy
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, CNR, c/o Sapienza University of Rome, Via degli Apuli 4, 00185, Rome, Italy
| |
Collapse
|
65
|
Hayward DG, Newbatt Y, Pickard L, Byrne E, Mao G, Burns S, Sahota NK, Workman P, Collins I, Aherne W, Fry AM. Identification by high-throughput screening of viridin analogs as biochemical and cell-based inhibitors of the cell cycle-regulated nek2 kinase. JOURNAL OF BIOMOLECULAR SCREENING 2010; 15:918-927. [PMID: 20664067 PMCID: PMC3947748 DOI: 10.1177/1087057110376537] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nek2 is a serine/threonine protein kinase that localizes to the centrosome and is implicated in mitotic regulation. Overexpression of Nek2 induces premature centrosome separation and nuclear defects indicative of mitotic errors, whereas depletion of Nek2 interferes with cell growth. As Nek2 expression is upregulated in a range of cancer cell lines and primary human tumors, inhibitors of Nek2 may have therapeutic value in cancer treatment. The authors used a radiometric proximity assay in a high-throughput screen to identify small-molecule inhibitors of Nek2 kinase activity. The assay was based on the measurement of the radiolabeled phosphorylated product of the kinase reaction brought into contact with the surface of wells of solid scintillant-coated microplates. Seventy nonaggregating hits were identified from approximately 73,000 compounds screened and included a number of toxoflavins and a series of viridin/wortmannin-like compounds. The viridin-like compounds were >70-fold selective for Nek2 over Nek6 and Nek7 and inhibited the growth of human tumor cell lines at concentrations consistent with their biochemical potencies. An automated mechanism-based microscopy assay in which centrosomes were visualized using pericentrin antibodies confirmed that 2 of the viridin inhibitors reduced centrosome separation in a human tumor cell line. The data presented show that pharmacological inhibition of Nek2 kinase results in the expected phenotype of disruption to centrosome function associated with growth inhibition and further supports Nek2 as a target for cancer drug discovery.
Collapse
Affiliation(s)
- Daniel G Hayward
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | - Yvette Newbatt
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Haddow Laboratories, 15 Cotswold Road, Sutton SM2 5NG, UK
| | - Lisa Pickard
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Haddow Laboratories, 15 Cotswold Road, Sutton SM2 5NG, UK
| | - Eilis Byrne
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | - Guojie Mao
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | - Samantha Burns
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Haddow Laboratories, 15 Cotswold Road, Sutton SM2 5NG, UK
| | - Navdeep K Sahota
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | - Paul Workman
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Haddow Laboratories, 15 Cotswold Road, Sutton SM2 5NG, UK
| | - Ian Collins
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Haddow Laboratories, 15 Cotswold Road, Sutton SM2 5NG, UK
| | - Wynne Aherne
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Haddow Laboratories, 15 Cotswold Road, Sutton SM2 5NG, UK
| | - Andrew M Fry
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| |
Collapse
|
66
|
Ahmed AA, Lu Z, Jennings NB, Etemadmoghadam D, Capalbo L, Jacamo RO, Barbosa-Morais N, Le XF, Australian Ovarian Cancer Study Group, Vivas-Mejia P, Lopez-Berestein G, Grandjean G, Bartholomeusz G, Liao W, Andreeff M, Bowtell D, Glover DM, Sood AK, Bast RC. SIK2 is a centrosome kinase required for bipolar mitotic spindle formation that provides a potential target for therapy in ovarian cancer. Cancer Cell 2010; 18:109-21. [PMID: 20708153 PMCID: PMC3954541 DOI: 10.1016/j.ccr.2010.06.018] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 05/02/2010] [Accepted: 07/02/2010] [Indexed: 01/30/2023]
Abstract
Regulators of mitosis have been successfully targeted to enhance response to taxane chemotherapy. Here, we show that the salt inducible kinase 2 (SIK2) localizes at the centrosome, plays a key role in the initiation of mitosis, and regulates the localization of the centrosome linker protein, C-Nap1, through S2392 phosphorylation. Interference with the known SIK2 inhibitor PKA induced SIK2-dependent centrosome splitting in interphase while SIK2 depletion blocked centrosome separation in mitosis, sensitizing ovarian cancers to paclitaxel in culture and in xenografts. Depletion of SIK2 also delayed G1/S transition and reduced AKT phosphorylation. Higher expression of SIK2 significantly correlated with poor survival in patients with high-grade serous ovarian cancers. We believe these data identify SIK2 as a plausible target for therapy in ovarian cancers.
Collapse
Affiliation(s)
- Ahmed Ashour Ahmed
- Department of Experimental Therapeutics, M.D. Anderson Cancer Center, University of Texas, Houston, 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Cunha-Ferreira I, Bento I, Bettencourt-Dias M. From zero to many: control of centriole number in development and disease. Traffic 2010; 10:482-98. [PMID: 19416494 DOI: 10.1111/j.1600-0854.2009.00905.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Centrioles are essential for the formation of microtubule-derived structures, including cilia, flagella and centrosomes. These structures are involved in a variety of functions, from cell motility to division. In most dividing animal cells, centriole formation is coupled to the chromosome cycle. However, this is not the case in certain specialized divisions, such as meiosis, and in some differentiating cells. For example, oocytes loose their centrioles upon differentiation, whereas multiciliated epithelial cells make several of those structures after they exit the cell cycle. Aberrations of centriole number are seen in many cancer cells. Recent studies began to shed light on the molecular control of centriole number, its variations in development, and how centriole number changes in human disease. Here we review the recent developments in this field.
Collapse
Affiliation(s)
- Inês Cunha-Ferreira
- Cell Cycle Regulation Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6P-2780-156 Oeiras, Portugal
| | | | | |
Collapse
|
68
|
RPL41, a small ribosomal peptide deregulated in tumors, is essential for mitosis and centrosome integrity. Neoplasia 2010; 12:284-93. [PMID: 20234822 DOI: 10.1593/neo.91610] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 12/08/2009] [Accepted: 12/09/2009] [Indexed: 11/18/2022]
Abstract
Ribosomal large subunit protein RPL41 is a basic (positively charged) peptide consisting of only 25 amino acids. An antisense-based functional screening revealed that the down-regulation of RPL41 led to an anchorage-independent growth of NIH3T3 cells in soft agar plates. RPL41 depletion with gene-specific small interfering RNA also resulted in malignant transformation of NIH3T3 cells including increased tumor growth in mice. RPL41 deletion was detected in 59% of tumor cell lines by fluorescence in situ hybridization analyses and RPL41 down-regulation in 75% of primary breast cancers by real-time quantitative reverse transcription-polymerase chain reaction. These studies suggest a tumor suppression role for RPL41. By mass spectrometry, RPL41 was associated with several cytoskeleton components including tubulin beta, gamma, and myosin IIA, which was confirmed by Western blot analysis on both cellular lysis and individually in vitro-expressed proteins. RPL41 also bound directly to polymerized tubulins. Cells overexpressing a GFP-RPL41 were resistant to nocodazole-induced microtubule depolymerization. A synthetic RPL41 induced cellular alpha-tubulin acetylation and G(2)/M cell cycle arrest. These results indicate a stabilizing role of RPL41 on microtubule. Microtubule spindles are essential for chromosome segregation during mitosis. Cells with RPL41 knock-down showed abnormal spindles, frequent failure of cytokinesis, and formation of polynuclear cells. In interphase cells, RPL41-depleted cells had premature splitting of centrosome. Our results provide evidence that RPL41 is a microtubule-associated protein essential for functional spindles and for the integrity of centrosome and that the abnormal mitosis and disrupted centrosome associated with the RPL41 down-regulation may be related to malignant transformation.
Collapse
|
69
|
Barr AR, Kilmartin JV, Gergely F. CDK5RAP2 functions in centrosome to spindle pole attachment and DNA damage response. ACTA ACUST UNITED AC 2010; 189:23-39. [PMID: 20368616 PMCID: PMC2854379 DOI: 10.1083/jcb.200912163] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two domains of centrosomal protein CDK5RAP2, CNN1 and CNN2, link centrosomes to mitotic spindle poles. CNN1 lacking centrosomes are unable to recruit pericentriolar matrix components that mediate attachment to spindle poles. The centrosomal protein, CDK5RAP2, is mutated in primary microcephaly, a neurodevelopmental disorder characterized by reduced brain size. The Drosophila melanogaster homologue of CDK5RAP2, centrosomin (Cnn), maintains the pericentriolar matrix (PCM) around centrioles during mitosis. In this study, we demonstrate a similar role for CDK5RAP2 in vertebrate cells. By disrupting two evolutionarily conserved domains of CDK5RAP2, CNN1 and CNN2, in the avian B cell line DT40, we find that both domains are essential for linking centrosomes to mitotic spindle poles. Although structurally intact, centrosomes lacking the CNN1 domain fail to recruit specific PCM components that mediate attachment to spindle poles. Furthermore, we show that the CNN1 domain enforces cohesion between parental centrioles during interphase and promotes efficient DNA damage–induced G2 cell cycle arrest. Because mitotic spindle positioning, asymmetric centrosome inheritance, and DNA damage signaling have all been implicated in cell fate determination during neurogenesis, our findings provide novel insight into how impaired CDK5RAP2 function could cause premature depletion of neural stem cells and thereby microcephaly.
Collapse
Affiliation(s)
- Alexis R Barr
- Cancer Research UK Cambridge Research Institute, Cambridge CB2 0RE, England, UK
| | | | | |
Collapse
|
70
|
Matsuo K, Nishimura T, Hayakawa A, Ono Y, Takahashi M. Involvement of a centrosomal protein kendrin in the maintenance of centrosome cohesion by modulating Nek2A kinase activity. Biochem Biophys Res Commun 2010; 398:217-23. [PMID: 20599736 DOI: 10.1016/j.bbrc.2010.06.063] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 06/15/2010] [Indexed: 11/17/2022]
Abstract
Centrosome cycle is strictly coordinated with chromosome duplication cycle to ensure the faithful segregation of chromosomes. Centrosome duplication occurs from the beginning of S phase, and the duplicated centrosomes are held together by centrosome cohesion to function as a single microtubule organizing center during interphase. At late G2 phase centrosome cohesion is disassembled by Nek2A kinase-mediated phosphorylation and, as a consequence, centrosomes are split and constitute spindle poles in mitosis. It has been reported that depletion of a centrosomal protein kendrin (also named pericentrin) induces premature centrosome splitting in interphase, however, it remains unknown how kendrin contributes to the maintenance of centrosome cohesion. Here we show that kendrin associates with Nek2A kinase, which exhibits considerably low activity. Nek2A kinase activity is inhibited in vitro by addition of the Nek2A-binding region of kendrin in a dose-dependent manner. Furthermore, ectopic expression of the same region decreases the number of the cells with split centrosomes at late G2 phase. Taken together, these results suggest that kendrin anchors Nek2A and suppresses its kinase activity at the centrosomes, and thus, is involved in the mechanism to prevent premature centrosome splitting during interphase.
Collapse
Affiliation(s)
- Kazuhiko Matsuo
- Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | | | | | | | | |
Collapse
|
71
|
Gavet O, Pines J. Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. Dev Cell 2010; 18:533-43. [PMID: 20412769 PMCID: PMC3325599 DOI: 10.1016/j.devcel.2010.02.013] [Citation(s) in RCA: 652] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 01/29/2010] [Accepted: 02/25/2010] [Indexed: 12/21/2022]
Abstract
The CyclinB1-Cdk1 kinase is the catalytic activity at the heart of mitosis-promoting factor (MPF), yet fundamental questions concerning its role in mitosis remained unresolved. It is not known when and how rapidly CyclinB1-Cdk1 is activated in mammalian cells, nor how its activation coordinates the substantial changes in the cell at mitosis. Here, we have developed a FRET biosensor specific for CyclinB1-Cdk1 that enables us to assay its activity with very high temporal precision in living human cells. We show that CyclinB1-Cdk1 is inactive in G2 phase and activated at a set time before nuclear envelope breakdown, thereby initiating the events of prophase. CyclinB1-Cdk1 levels rise to their maximum extent over the course of approximately 30 min, and we demonstrate that different levels of CyclinB1-Cdk1 kinase activity trigger different mitotic events, thus revealing how the remarkable reorganization of the cell is coordinated at mitotic entry.
Collapse
Affiliation(s)
- Olivier Gavet
- The Gurdon Institute and Department of Zoology, Tennis Court Road, CB2 1QN Cambridge, UK.
| | | |
Collapse
|
72
|
Astrinidis A, Kim J, Kelly CM, Olofsson BA, Torabi B, Sorokina EM, Azizkhan-Clifford J. The transcription factor SP1 regulates centriole function and chromosomal stability through a functional interaction with the mammalian target of rapamycin/raptor complex. Genes Chromosomes Cancer 2010; 49:282-97. [PMID: 20013896 DOI: 10.1002/gcc.20739] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Specificity protein 1 (SP1) is an essential transcription factor implicated in the regulation of genes that control multiple cellular processes, including cell cycle, apoptosis, and DNA damage. Very few nontranscriptional roles for SP1 have been reported thus far. Using confocal microscopy and centrosome fractionation, we identified SP1 as a centrosomal protein. Sp1-deficient mouse embryonic fibroblasts and cells depleted of SP1 by RNAi have increased centrosome number associated with centriole splitting, decreased microtubule nucleation, chromosome misalignment, formation of multipolar mitotic spindles and micronuclei, and increased incidence of aneuploidy. Using mass spectrometry, we identified P70S6K, an effector of the mTOR/raptor (mTORC1) kinase complex, as a novel interacting protein of SP1. We found that SP1-deficient cells have increased phosphorylation of the P70S6K effector ribosomal protein S6, suggesting that SP1 participates in the regulation of the mTORC1/P70S6K/S6 signaling pathway. We previously reported that aberrant mTORC1 activation leads to supernumerary centrosomes, a phenotype rescued by the mTORC1 inhibitor rapamycin. Similarly, treatment with rapamycin rescued the multiple centrosome phenotype of SP1-deficient cells. Taken together, these data strongly support the hypothesis that SP1 is involved in the control of centrosome number via regulation of the mTORC1 pathway, and predict that loss of SP1 function can lead to aberrant centriole splitting, deregulated mTORC1 signaling, and aneuploidy, thereby contributing to malignant transformation.
Collapse
Affiliation(s)
- Aristotelis Astrinidis
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | | | | | | | | | | | | |
Collapse
|
73
|
Zhao L, Jin C, Chu Y, Varghese C, Hua S, Yan F, Miao Y, Liu J, Mann D, Ding X, Zhang J, Wang Z, Dou Z, Yao X. Dimerization of CPAP orchestrates centrosome cohesion plasticity. J Biol Chem 2009; 285:2488-97. [PMID: 19889632 DOI: 10.1074/jbc.m109.042614] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Centrosome cohesion and segregation are accurately regulated to prevent an aberrant separation of duplicated centrosomes and to ensure the correct formation of bipolar spindles by a tight coupling with cell cycle machinery. CPAP is a centrosome protein with five coiled-coil domains and plays an important role in the control of brain size in autosomal recessive primary microcephaly. Previous studies showed that CPAP interacts with tubulin and controls centriole length. Here, we reported that CPAP forms a homodimer during interphase, and the fifth coiled-coil domain of CPAP is required for its dimerization. Moreover, this self-interaction is required for maintaining centrosome cohesion and preventing the centrosome from splitting before the G(2)/M phase. Our biochemical studies show that CPAP forms homodimers in vivo. In addition, both monomeric and dimeric CPAP are required for accurate cell division, suggesting that the temporal dynamics of CPAP homodimerization is tightly regulated during the cell cycle. Significantly, our results provide evidence that CPAP is phosphorylated during mitosis, and this phosphorylation releases its intermolecular interaction. Taken together, these results suggest that cell cycle-regulated phosphorylation orchestrates the dynamics of CPAP molecular interaction and centrosome splitting to ensure genomic stability in cell division.
Collapse
Affiliation(s)
- Lingli Zhao
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology and Hefei National Laboratory for Physical Sciences at Nanoscale, Hefei 230027, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Ried T. Homage to Theodor Boveri (1862-1915): Boveri's theory of cancer as a disease of the chromosomes, and the landscape of genomic imbalances in human carcinomas. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2009; 50:593-601. [PMID: 19739242 DOI: 10.1002/em.20526] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|
75
|
Farina AR, Tacconelli A, Cappabianca L, Cea G, Panella S, Chioda A, Romanelli A, Pedone C, Gulino A, Mackay AR. The alternative TrkAIII splice variant targets the centrosome and promotes genetic instability. Mol Cell Biol 2009; 29:4812-30. [PMID: 19564412 PMCID: PMC2725721 DOI: 10.1128/mcb.00352-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 04/09/2009] [Accepted: 06/21/2009] [Indexed: 12/22/2022] Open
Abstract
The hypoxia-regulated alternative TrkAIII splice variant expressed by human neuroblastomas exhibits oncogenic potential, driven by in-frame exon 6 and 7 alternative splicing, leading to omission of the receptor extracellular immunoglobulin C(1) domain and several N-glycosylation sites. Here, we show that the TrkAIII oncogene promotes genetic instability by interacting with and exhibiting catalytic activity at the centrosome. This function depends upon intracellular TrkAIII accumulation and spontaneous interphase-restricted activation, in cytoplasmic tyrosine kinase (tk) domain orientation, predominantly within structures that closely associate with the fully assembled endoplasmic reticulum intermediate compartment and Golgi network. This facilitates TrkAIII tk-mediated binding of gamma-tubulin, which is regulated by endogenous protein tyrosine phosphatases and geldanamycin-sensitive interaction with Hsp90, paving the way for TrkAIII recruitment to the centrosome. At the centrosome, TrkAIII differentially phosphorylates several centrosome-associated components, increases centrosome interaction with polo kinase 4, and decreases centrosome interaction with separase, the net results of which are centrosome amplification and increased genetic instability. The data characterize TrkAIII as a novel internal membrane-associated centrosome kinase, unveiling an important alternative mechanism to "classical" cell surface oncogenic receptor tk signaling through which stress-regulated alternative TrkAIII splicing influences the oncogenic process.
Collapse
|
76
|
Hong KU, Kim HJ, Kim HS, Seong YS, Hong KM, Bae CD, Park J. Cdk1-cyclin B1-mediated phosphorylation of tumor-associated microtubule-associated protein/cytoskeleton-associated protein 2 in mitosis. J Biol Chem 2009; 284:16501-16512. [PMID: 19369249 PMCID: PMC2713551 DOI: 10.1074/jbc.m900257200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 03/19/2009] [Indexed: 01/15/2023] Open
Abstract
During mitosis, establishment of structurally and functionally sound bipolar spindles is necessary for maintaining the fidelity of chromosome segregation. Tumor-associated microtubule-associated protein (TMAP), also known as cytoskeleton-associated protein 2 (CKAP2), is a mitotic spindle-associated protein whose level is frequently up-regulated in various malignancies. Previous reports have suggested that TMAP is a potential regulator of mitotic spindle assembly and dynamics and that it is required for chromosome segregation to occur properly. So far, there have been no reports on how its mitosis-related functions are regulated. Here, we report that TMAP is hyper-phosphorylated at the C terminus specifically during mitosis. At least four different residues (Thr-578, Thr-596, Thr-622, and Ser-627) were responsible for the mitosis-specific phosphorylation of TMAP. Among these, Thr-622 was specifically phosphorylated by Cdk1-cyclin B1 both in vitro and in vivo. Interestingly, compared with the wild type, a phosphorylation-deficient mutant form of TMAP, in which Thr-622 had been replaced with an alanine (T622A), induced a significant increase in the frequency of metaphase cells with abnormal bipolar spindles, which often displayed disorganized, asymmetrical, or narrow and elongated morphologies. Formation of these abnormal bipolar spindles subsequently resulted in misalignment of metaphase chromosomes and ultimately caused a delay in the entry into anaphase. Moreover, such defects resulting from the T622A mutation were associated with a decrease in the rate of protein turnover at spindle microtubules. These findings suggest that Cdk1-cyclin B1-mediated phosphorylation of TMAP is important for and contributes to proper regulation of microtubule dynamics and establishment of functional bipolar spindles during mitosis.
Collapse
Affiliation(s)
- Kyung Uk Hong
- From the Department of Molecular Cell Biology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 300 Chunchundong, Jangangu, Suwon 440-769
| | - Hyun-Jun Kim
- From the Department of Molecular Cell Biology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 300 Chunchundong, Jangangu, Suwon 440-769
| | - Hyo-Sil Kim
- From the Department of Molecular Cell Biology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 300 Chunchundong, Jangangu, Suwon 440-769
| | - Yeon-Sun Seong
- Department of Biochemistry, Dankook University College of Medicine, San 29, Ansuh-dong, Cheonan, Chungnam 330-714
| | - Kyeong-Man Hong
- Research Institute, National Cancer Center, Ilsandong-gu, Goyang-si 410-769, Korea
| | - Chang-Dae Bae
- From the Department of Molecular Cell Biology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 300 Chunchundong, Jangangu, Suwon 440-769.
| | - Joobae Park
- From the Department of Molecular Cell Biology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 300 Chunchundong, Jangangu, Suwon 440-769.
| |
Collapse
|
77
|
Reiner O, Sapir T. Polarity regulation in migrating neurons in the cortex. Mol Neurobiol 2009; 40:1-14. [PMID: 19330467 DOI: 10.1007/s12035-009-8065-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 03/12/2009] [Indexed: 12/25/2022]
Abstract
The formation of the cerebral cortex requires migration of billions of cells from their birth position to their final destination. A motile cell must have internal polarity in order to move in a specified direction. Locomotory polarity requires the coordinated polymerization of cytoskeletal elements such as microtubules and actin combined with regulated activities of the associated molecular motors. This review is focused on migrating neurons in the developing cerebral cortex, which need to attain internal polarity in order to reach their proper target. The position and dynamics of the centrosome plays an important function in this directed motility. We highlight recent interesting findings connecting polarity proteins with neuronal migration events regulated by the microtubule-associated molecular motor, cytoplasmic dynein.
Collapse
Affiliation(s)
- Orly Reiner
- Department of Molecular Genetics, The Weizmann Institute of Science, 76100 Rehovot, Israel.
| | | |
Collapse
|
78
|
Zineldeen DH, Shimada M, Niida H, Katsuno Y, Nakanishi M. Ptpcd-1 is a novel cell cycle related phosphatase that regulates centriole duplication and cytokinesis. Biochem Biophys Res Commun 2009; 380:460-6. [PMID: 19284988 DOI: 10.1016/j.bbrc.2009.01.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 01/15/2009] [Indexed: 11/19/2022]
Abstract
Proper progression of mitosis requires spatio-temporal regulation of protein phosphorylation by orchestrated activities of kinases and phosphatases. Although many kinases, such as Aurora kinases, polo-like kinases (Plks), and cyclin B-Cdk1 are relatively well characterized in the context of their physiological functions at mitosis and regulation of their enzymatic activities during mitotic progression, phosphatases involved are largely unknown. Here we identified a novel protein tyrosine phosphatase containing domain 1 (Ptpcd 1) as a mitotic phosphatase, which shares sequence homology to Cdc14. Immunofluorescence studies revealed that Ptpcd1 partially colocalized with gamma-tubulin, an archetypical centrosomal marker. Overexpression of this phosphatase prevented unscheduled centrosomal amplification in hydroxyurea arrested U2OS cells. Intriguingly, Ptpcd 1-associated and colocalized with polo-like kinase 1(Plk1). Hence, overexpression of Ptpcd1 rescued prometaphase arrest of Plk-1 depleted cells, but resulted in aberrant cytokinesis as did as Plk1 overexpression. These results suggested that Ptpcd1 is involved in centrosomal duplication and cytokinesis.
Collapse
Affiliation(s)
- Doaa H Zineldeen
- Department of Cell Biology and Biochemistry, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | | | | | | | | |
Collapse
|
79
|
Wang Y, Ji P, Liu J, Broaddus RR, Xue F, Zhang W. Centrosome-associated regulators of the G(2)/M checkpoint as targets for cancer therapy. Mol Cancer 2009; 8:8. [PMID: 19216791 PMCID: PMC2657106 DOI: 10.1186/1476-4598-8-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 02/13/2009] [Indexed: 01/04/2023] Open
Abstract
In eukaryotic cells, control mechanisms have developed that restrain cell-cycle transitions in response to stress. These regulatory pathways are termed cell-cycle checkpoints. The G(2)/M checkpoint prevents cells from entering mitosis when DNA is damaged in order to afford these cells an opportunity to repair the damaged DNA before propagating genetic defects to the daughter cells. If the damage is irreparable, checkpoint signaling might activate pathways that lead to apoptosis. Since alteration of cell-cycle control is a hallmark of tumorigenesis, cell-cycle regulators represent potential targets for therapy. The centrosome has recently come into focus as a critical cellular organelle that integrates G(2)/M checkpoint control and repairs signals in response to DNA damage. A growing number of G(2)/M checkpoint regulators have been found in the centrosome, suggesting that centrosome has an important role in G(2)/M checkpoint function. In this review, we discuss centrosome-associated regulators of the G(2)/M checkpoint, the dysregulation of this checkpoint in cancer, and potential candidate targets for cancer therapy.
Collapse
Affiliation(s)
- Yingmei Wang
- Tianjin General Hospital, Tianjin Medical University, Tianjin, PR China.
| | | | | | | | | | | |
Collapse
|
80
|
Wu J, Cho HP, Rhee DB, Johnson DK, Dunlap J, Liu Y, Wang Y. Cdc14B depletion leads to centriole amplification, and its overexpression prevents unscheduled centriole duplication. ACTA ACUST UNITED AC 2008; 181:475-83. [PMID: 18458157 PMCID: PMC2364701 DOI: 10.1083/jcb.200710127] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Centrosome duplication is tightly controlled in coordination with DNA replication. The molecular mechanism of centrosome duplication remains unclear. Previous studies found that a fraction of human proline-directed phosphatase Cdc14B associates with centrosomes. However, Cdc14B's involvement in centrosome cycle control has never been explored. Here, we show that depletion of Cdc14B by RNA interference leads to centriole amplification in both HeLa and normal human fibroblast BJ and MRC-5 cells. Induction of Cdc14B expression through a regulatable promoter significantly attenuates centriole amplification in prolonged S phase–arrested cells and proteasome inhibitor Z-L3VS–treated cells. This inhibitory function requires centriole-associated Cdc14B catalytic activity. Together, these results suggest a potential function for Cdc14B phosphatase in maintaining the fidelity of centrosome duplication cycle.
Collapse
Affiliation(s)
- Jun Wu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | | | | | | | | | | | |
Collapse
|
81
|
Abstract
Primarily known for its role as major microtubule organizing center, the centrosome is increasingly being recognized for its functional significance in key cell cycle regulating events. We are now at the beginning of understanding the centrosome’s functional complexities and its major impact on directing complex interactions and signal transduction cascades important for cell cycle regulation. The centrosome orchestrates entry into mitosis, anaphase onset, cytokinesis, G1/S transition, and monitors DNA damage. Recently, the centrosome has also been recognized as major docking station where regulatory complexes accumulate including kinases and phosphatases as well as numerous other cell cycle regulators that utilize the centrosome as platform to coordinate multiple cell cycle-specific functions. Vesicles that are translocated along microtubules to and away from centrosomes may also carry enzymes or substrates that use centrosomes as main docking station. The centrosome’s role in various diseases has been recognized and a wealth of data has been accumulated linking dysfunctional centrosomes to cancer, Alstrom syndrome, various neurological disorders, and others. Centrosome abnormalities and dysfunctions have been associated with several types of infertility. The present review highlights the centrosome’s significant roles in cell cycle events in somatic and reproductive cells and discusses centrosome abnormalities and implications in disease.
Collapse
Affiliation(s)
- Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, 1600 E Rollins Street, Columbia, MO 65211, USA.
| |
Collapse
|
82
|
Toyo-oka K, Mori D, Yano Y, Shiota M, Iwao H, Goto H, Inagaki M, Hiraiwa N, Muramatsu M, Wynshaw-Boris A, Yoshiki A, Hirotsune S. Protein phosphatase 4 catalytic subunit regulates Cdk1 activity and microtubule organization via NDEL1 dephosphorylation. ACTA ACUST UNITED AC 2008; 180:1133-47. [PMID: 18347064 PMCID: PMC2290842 DOI: 10.1083/jcb.200705148] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein phosphatase 4 catalytic subunit (PP4c) is a PP2A-related protein serine/threonine phosphatase with important functions in a variety of cellular processes, including microtubule (MT) growth/organization, apoptosis, and tumor necrosis factor signaling. In this study, we report that NDEL1 is a substrate of PP4c, and PP4c selectively dephosphorylates NDEL1 at Cdk1 sites. We also demonstrate that PP4c negatively regulates Cdk1 activity at the centrosome. Targeted disruption of PP4c reveals disorganization of MTs and disorganized MT array. Loss of PP4c leads to an unscheduled activation of Cdk1 in interphase, which results in the abnormal phosphorylation of NDEL1. In addition, abnormal NDEL1 phosphorylation facilitates excessive recruitment of katanin p60 to the centrosome, suggesting that MT defects may be attributed to katanin p60 in excess. Inhibition of Cdk1, NDEL1, or katanin p60 rescues the defective MT organization caused by PP4 inhibition. Our work uncovers a unique regulatory mechanism of MT organization by PP4c through its targets Cdk1 and NDEL1 via regulation of katanin p60 distribution.
Collapse
Affiliation(s)
- Kazuhito Toyo-oka
- Department of Genetic Disease Research and 2Department of Pharmacology, Osaka City University Graduate School of Medicine, Osaka 545-8586, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Bahmanyar S, Kaplan DD, DeLuca JG, Giddings TH, O’Toole ET, Winey M, Salmon ED, Casey PJ, Nelson WJ, Barth AI. beta-Catenin is a Nek2 substrate involved in centrosome separation. Genes Dev 2008; 22:91-105. [PMID: 18086858 PMCID: PMC2151018 DOI: 10.1101/gad.1596308] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 11/02/2007] [Indexed: 11/25/2022]
Abstract
beta-Catenin plays important roles in cell adhesion and gene transcription, and has been shown recently to be essential for the establishment of a bipolar mitotic spindle. Here we show that beta-catenin is a component of interphase centrosomes and that stabilization of beta-catenin, mimicking mutations found in cancers, induces centrosome splitting. Centrosomes are held together by a dynamic linker regulated by Nek2 kinase and its substrates C-Nap1 (centrosomal Nek2-associated protein 1) and Rootletin. We show that beta-catenin binds to and is phosphorylated by Nek2, and is in a complex with Rootletin. In interphase, beta-catenin colocalizes with Rootletin between C-Nap1 puncta at the proximal end of centrioles, and this localization is dependent on C-Nap1 and Rootletin. In mitosis, when Nek2 activity increases, beta-catenin localizes to centrosomes at spindle poles independent of Rootletin. Increased Nek2 activity disrupts the interaction of Rootletin with centrosomes and results in binding of beta-catenin to Rootletin-independent sites on centrosomes, an event that is required for centrosome separation. These results identify beta-catenin as a component of the intercentrosomal linker and define a new function for beta-catenin as a key regulator of mitotic centrosome separation.
Collapse
Affiliation(s)
- Shirin Bahmanyar
- Departments of Biological Sciences, and Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, USA
| | - Daniel D. Kaplan
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
- Department of Developmental Biology, and Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jennifer G. DeLuca
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Thomas H. Giddings
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - Eileen T. O’Toole
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - Mark Winey
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - Edward D. Salmon
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Patrick J. Casey
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - W. James Nelson
- Departments of Biological Sciences, and Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, USA
| | - Angela I.M. Barth
- Departments of Biological Sciences, and Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
84
|
Abstract
Chromosome instability, which is equated to mitotic defects and consequential chromosome segregation errors, provides a formidable basis for the acquisition of further malignant phenotypes during tumour progression. Centrosomes have a crucial role in the formation of bipolar mitotic spindles, which are essential for accurate chromosome segregation. Mutations of certain oncogenic and tumour-suppressor proteins directly induce chromosome instability by disrupting the normal function and numeral integrity of centrosomes. How these proteins control centrosome duplication and function, and how their mutational activation and/or inactivation results in numeral and functional centrosome abnormalities, is discussed in this Review.
Collapse
Affiliation(s)
- Kenji Fukasawa
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA.
| |
Collapse
|
85
|
Graser S, Stierhof YD, Nigg EA. Cep68 and Cep215 (Cdk5rap2) are required for centrosome cohesion. J Cell Sci 2007; 120:4321-31. [PMID: 18042621 DOI: 10.1242/jcs.020248] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The centrosome duplicates during the cell cycle but functions as a single microtubule-organising centre until shortly before mitosis. This raises the question of how centrosome cohesion is maintained throughout interphase. One dynamic model proposes that parental centrioles are held together through centriole-associated, entangling filaments. Central to this model are C-Nap1, a putative centriolar docking protein and rootletin, a fibrous component. Here we identify two novel proteins, Cep68 and Cep215, as required for centrosome cohesion. Similar to rootletin, Cep68 decorates fibres emanating from the proximal ends of centrioles and dissociates from centrosomes during mitosis. Furthermore, Cep68 and rootletin depend both on each other and on C-Nap1 for centriole association. Unlike rootletin, overexpression of Cep68 does not induce extensive fibre formation, but Cep68 is readily recruited to ectopic rootletin fibres. These data suggest that Cep68 cooperates with rootletin and C-Nap1 in centrosome cohesion. By contrast, Cep215 associates with centrosomes throughout the cell cycle and does not appear to interact with Cep68, rootletin or C-Nap1. Instead, our data suggest that Cep215 functionally interacts with pericentrin, suggesting that both proteins influence centrosome cohesion through an indirect mechanism related to cytoskeletal dynamics.
Collapse
Affiliation(s)
- Susanne Graser
- Max-Planck-Institute for Biochemistry, Department of Cell Biology, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | | | |
Collapse
|
86
|
Kasbek C, Yang CH, Yusof AM, Chapman HM, Winey M, Fisk HA. Preventing the degradation of mps1 at centrosomes is sufficient to cause centrosome reduplication in human cells. Mol Biol Cell 2007; 18:4457-69. [PMID: 17804818 PMCID: PMC2043537 DOI: 10.1091/mbc.e07-03-0283] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Supernumerary centrosomes promote the assembly of abnormal mitotic spindles in many human tumors. In human cells, overexpression of the cyclin-dependent kinase (Cdk)2 partner cyclin A during a prolonged S phase produces extra centrosomes, called centrosome reduplication. Cdk2 activity protects the Mps1 protein kinase from proteasome-mediated degradation, and we demonstrate here that Mps1 mediates cyclin A-dependent centrosome reduplication. Overexpression of cyclin A or a brief proteasome inhibition increases the centrosomal levels of Mps1, whereas depletion of Cdk2 leads to the proteasome-dependent loss of Mps1 from centrosomes only. When a Cdk2 phosphorylation site within Mps1 (T468) is mutated to alanine, Mps1 cannot accumulate at centrosomes or participate in centrosome duplication. In contrast, phosphomimetic mutations at T468 or deletion of the region surrounding T468 prevent the proteasome-dependent removal of Mps1 from centrosomes in the absence of Cdk2 activity. Moreover, cyclin A-dependent centrosome reduplication requires Mps1, and these stabilizing Mps1 mutations cause centrosome reduplication, bypassing cyclin A. Together, our data demonstrate that the region surrounding T468 contains a motif that regulates the accumulation of Mps1 at centrosomes. We suggest that phosphorylation of T468 attenuates the degradation of Mps1 at centrosomes and that preventing this degradation is necessary and sufficient to cause centrosome reduplication in human cells.
Collapse
Affiliation(s)
- Christopher Kasbek
- *Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210-1292; and
| | - Ching-Hui Yang
- *Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210-1292; and
| | - Adlina Mohd Yusof
- *Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210-1292; and
| | - Heather M. Chapman
- *Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210-1292; and
| | - Mark Winey
- Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Harold A. Fisk
- *Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210-1292; and
| |
Collapse
|
87
|
Bettencourt-Dias M, Glover DM. Centrosome biogenesis and function: centrosomics brings new understanding. Nat Rev Mol Cell Biol 2007; 8:451-63. [PMID: 17505520 DOI: 10.1038/nrm2180] [Citation(s) in RCA: 415] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Centrosomes, which were first described in the late 19th century, are found in most animal cells and undergo duplication once every cell cycle so that their number remains stable, like the genetic material of a cell. However, their function and regulation have remained elusive and controversial. Only recently has some understanding of these fundamental aspects of centrosome function and biogenesis been gained through the concerted application of genomics and proteomics, which we term 'centrosomics'. The identification of new molecules has highlighted the evolutionary conservation of centrosome function and provided a conceptual framework for understanding centrosome behaviour and how it can go awry in human disease.
Collapse
Affiliation(s)
- Mónica Bettencourt-Dias
- Instituto Gulbenkian de Ciência, Cell Cycle Regulation Laboratory, Rua da Quinta Grande, 6, P-2780-156 Oeiras, Portugal.
| | | |
Collapse
|
88
|
Busch C, Barton O, Morgenstern E, Götz C, Günther J, Noll A, Montenarh M. The G2/M checkpoint phosphatase cdc25C is located within centrosomes. Int J Biochem Cell Biol 2007; 39:1707-13. [PMID: 17548228 DOI: 10.1016/j.biocel.2007.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 04/19/2007] [Accepted: 04/19/2007] [Indexed: 11/18/2022]
Abstract
cdc25C is a phosphatase which regulates the activity of the mitosis promoting factor cyclin B/cdk1 by dephosphorylation, thus triggering G(2)/M transition. The activity and the sub-cellular localisation of cdc25C are regulated by phosphorylation. It is well accepted that cdc25C has to enter the nucleus to activate the cyclin B/cdk1 complex at G(2)/M transition. Here, we will show that cdc25C is located in the cytoplasm at defined dense structures, which according to immunofluorescence analysis, electron microscopy as well as biochemical subfractionation, are proven to be the centrosomes. Since cyclin B and cdk1 are also located at the centrosomes, this subfraction of cdc25C might participate in the control of the onset of mitosis suggesting a further role for cdc25C at the centrosomes.
Collapse
Affiliation(s)
- Corinna Busch
- Medizinische Biochemie und Molekularbiologie, Universität des Saarlandes, Gebäude 44, 66424 Homburg, Germany
| | | | | | | | | | | | | |
Collapse
|
89
|
Rellos P, Ivins FJ, Baxter JE, Pike A, Nott TJ, Parkinson DM, Das S, Howell S, Fedorov O, Shen QY, Fry AM, Knapp S, Smerdon SJ. Structure and regulation of the human Nek2 centrosomal kinase. J Biol Chem 2007; 282:6833-42. [PMID: 17197699 DOI: 10.1074/jbc.m609721200] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dimeric Ser/Thr kinase Nek2 regulates centrosome cohesion and separation through phosphorylation of structural components of the centrosome, and aberrant regulation of Nek2 activity can lead to aneuploid defects characteristic of cancer cells. Mutational analysis of autophosphorylation sites within the kinase domain identified by mass spectrometry shows a complex pattern of positive and negative regulatory effects on kinase activity that are correlated with effects on centrosomal splitting efficiency in vivo. The 2.2-A resolution x-ray structure of the Nek2 kinase domain in complex with a pyrrole-indolinone inhibitor reveals an inhibitory helical motif within the activation loop. This helix presents a steric barrier to formation of the active enzyme and generates a surface that may be exploitable in the design of specific inhibitors that selectively target the inactive state. Comparison of this "auto-inhibitory" conformation with similar arrangements in cyclin-dependent kinase 2 and epidermal growth factor receptor kinase suggests a role for dimerization-dependent allosteric regulation that combines with autophosphorylation and protein phosphatase 1c phosphatase activity to generate the precise spatial and temporal control required for Nek2 function in centrosomal maturation.
Collapse
Affiliation(s)
- Peter Rellos
- Structural Genomics Consortium, Botnar Research Centre, University of Oxford, Oxford OX3 7LD, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Mi J, Guo C, Brautigan DL, Larner JM. Protein phosphatase-1alpha regulates centrosome splitting through Nek2. Cancer Res 2007; 67:1082-9. [PMID: 17283141 DOI: 10.1158/0008-5472.can-06-3071] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
ATM is a central mediator of the cellular response to the DNA damage produced by ionizing radiation. We recently showed that protein phosphatase 1 (PP1) is activated by ATM. Because Nek2 is activated by autophosphorylation, and because its dephosphorylation is catalyzed by PP1, we asked if the radiation damage signal to Nek2 was mediated by PP1. Overexpression of Nek2 induces premature centrosome splitting probably by phosphorylating centrosome cohesion proteins C-Nap1 and Rootletin. In this study, we show isoform specificity of PP1 binding and regulation of Nek2. Although both PP1alpha and PP1gamma coimmunoprecipitated with Nek2, only PP1alpha regulated Nek2 function. Ionizing radiation inhibited Nek2 activity, and this response was dependent on ATM and on PP1 binding to Nek2 and coincident with Thr(320) dephosphorylation of PP1. Radiation-induced inhibition of centrosome splitting was abrogated in cells expressing Nek2 mutated in the PP1-binding motif outside the kinase domain. Conversely, cells depleted of PP1alpha by small interfering RNA showed enhanced centrosome splitting and loss of radiation-induced inhibition of centrosome splitting. The identification of a PP1-specific isoform mediating a checkpoint response opens up the possibility of selectively targeting phosphatases as novel radiation sensitizers.
Collapse
Affiliation(s)
- Jun Mi
- Department of Radiation Oncology, University of Virginia Health System, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
91
|
Flores-Delgado G, Liu CWY, Sposto R, Berndt N. A limited screen for protein interactions reveals new roles for protein phosphatase 1 in cell cycle control and apoptosis. J Proteome Res 2007; 6:1165-75. [PMID: 17274640 DOI: 10.1021/pr060504h] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein phosphatase 1 (PP1) catalytic subunits typically combine with other proteins that modulate their activity, direct them to distinct substrates, or serve as substrates for PP1. More than 50 PP1-interacting proteins (PIPs) have been identified so far. Given there are approximately 10 000 phosphoproteins in mammals, many PIPs remain to be discovered. We have used arrays containing 100 carefully selected antibodies to identify novel PIPs that are important in cell proliferation and cell survival in murine fetal lung epithelial cells and human A549 lung cancer cells. The antibody arrays identified 31 potential novel PIPs and 11 of 17 well-known PIPs included as controls, suggesting a sensitivity of at least 65%. A majority of the interactions between PP1 and putative PIPs were isoform- or cell type-specific. We confirmed by co-immunoprecipitation that 9 of these proteins associate with PP1: APAF-1, Bax, E-cadherin, HSP-70, Id2, p19Skp1, p53, PCNA, and PTEN. We examined two of these interactions in greater detail in A549 cells. Exposure to nicotine enhanced association of PP1 with Bax (and Bad), but also induced inhibitory phosphorylation of PP1. In addition to p19Skp1, PP1alpha antibodies also coprecipitated cullin 1, suggesting that PP1alpha is associated with the SCF1 complex. This interaction was only detectable during the G1/S transition and S phase. Forced loss of PP1 function decreased the levels of p27Kip1, a well-known SCF1 substrate, suggesting that PP1 may rescue proteins from ubiquitin/proteasome-mediated destruction. Both of these novel interactions are consistent with PP1 facilitating cell cycle arrest and/or apoptosis.
Collapse
Affiliation(s)
- Guillermo Flores-Delgado
- Division Of Hematology/Oncology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, 4650 Sunset Boulevard, Los Angeles, California 90027, USA
| | | | | | | |
Collapse
|
92
|
Salisbury JL. A mechanistic view on the evolutionary origin for centrin-based control of centriole duplication. J Cell Physiol 2007; 213:420-8. [PMID: 17694534 DOI: 10.1002/jcp.21226] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mounting evidence implicates the protein centrin as a key regulator of centriole duplication, yet it remains to be determined just how centrin functions in this process. Recent studies suggest that centrin exerts both spatial and temporal control over centriole duplication through its role as a component of centriole precursor structures and through periodic cell-cycle specific changes in its abundance. Here, an overview of centrin and its role in centrosome dynamics is presented. Finally, a speculative model for just how centrin may operate to control centriole duplication is proposed with the intention to stimulate future advances in this area. This model provides an evolutionary basis for the preservation of essential features of the yeast spindle pole body (SPB) with the origin of the complex structure of the mammalian centriole.
Collapse
Affiliation(s)
- Jeffrey L Salisbury
- Department of Biochemistry and Molecular Biology, Tumor Biology Program, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
93
|
Abstract
Recent years have seen a revival of interest in the possible contribution of centrosomes to the development of human cancers. The underlying hypothesis, formulated almost 100 years ago (Boveri T. The origin of malignant tumors; Baltimore, MD: Williams and Wilkins, 1929.), states that numerical and/or structural centrosome abnormalities will cause chromosome [corrected] missegregation. In addition, centrosome abnormalities are expected to affect cell shape, polarity, and motility. Thus, deregulation of centrosome number and function may foster both chromosomal instability and loss of tissue architecture--2 of the most common phenotypes associated with solid human tumors. In support of the role of centrosome deregulation in tumorigenesis, centrosome aberrations have been observed in early, premalignant lesions. Moreover, they are frequent in many different types of common tumors and their prominence often correlates with poor clinical outcome. This review addresses the origins of centrosome aberrations in human tumors as well as the expected impact of centrosome aberrations on cell fate and tumor development.
Collapse
Affiliation(s)
- Erich A Nigg
- Department of Cell Biology, Max-Planck-Institute for Biochemistry, Martinsried, Germany
| |
Collapse
|
94
|
Davidge JA, Chambers E, Dickinson HA, Towers K, Ginger ML, McKean PG, Gull K. Trypanosome IFT mutants provide insight into the motor location for mobility of the flagella connector and flagellar membrane formation. J Cell Sci 2006; 119:3935-43. [PMID: 16954145 DOI: 10.1242/jcs.03203] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The flagella connector (FC) of procyclic trypanosomes is a mobile, transmembrane junction important in providing cytotactic morphogenetic information to the daughter cell. Quantitative analyses of FC positioning along the old flagellum, involving direct observations and use of the MPM2 anti-phosphoprotein monoclonal reveals a ;stop point' is reached on the old flagellum which correlates well with the initiation of basal body migration and kinetoplast segregation. This demonstrates further complexities of the FC and its movement in morphogenetic events in trypanosomes than have hitherto been described. We used intraflagellar transport RNAi mutants to ablate the formation of a new flagellum. Intriguingly the FC could still move, indicating that a motor function beyond the new flagellum is sufficient to move it. When such a FC moves, it drags a sleeve of new flagellar membrane out of the flagellar pocket. This axoneme-less flagellar membrane maintains appropriate developmental relationships to the cell body including following the correct helical path and being connected to the internal cytoskeleton by macula adherens junctions. Movement of the FC in the apparent absence of intraflagellar transport raises the possibility of a new form of motility within a eukaryotic flagellum.
Collapse
Affiliation(s)
- Jacqueline A Davidge
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | | | | | | | | | | | | |
Collapse
|
95
|
Koffa MD, Casanova CM, Santarella R, Köcher T, Wilm M, Mattaj IW. HURP is part of a Ran-dependent complex involved in spindle formation. Curr Biol 2006; 16:743-54. [PMID: 16631581 DOI: 10.1016/j.cub.2006.03.056] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Revised: 03/12/2006] [Accepted: 03/15/2006] [Indexed: 12/26/2022]
Abstract
BACKGROUND GTP-loaded Ran induces the assembly of microtubules into aster-like and spindle-like structures in Xenopus egg extract. The microtubule-associated protein (MAP), TPX2, can mediate Ran's role in aster formation, but factors responsible for the transition from aster-like to spindle-like structures have not been described. RESULTS Here we identify a complex that is required for the conversion of aster-like to spindle-like structures. The complex consists of two characterized MAPs (TPX2, XMAP215), a plus end-directed motor (Eg5), a mitotic kinase (Aurora A), and HURP, a protein associated with hepatocellular carcinoma. Formation and function of the complex is dependent on Aurora A activity. HURP protein was further characterized and shown to bind microtubules and affect their organization both in vitro and in vivo. In egg extract, anti-HURP antibodies disrupt the formation of both Ran-dependent and chromatin and centrosome-induced spindles. HURP is also required for the proper formation and function of mitotic spindles in HeLa cells. CONCLUSIONS HURP is a new and essential component of the mitotic apparatus. HURP acts as part of a multicomponent complex that affects the growth or stability of spindle MTs and is required for spindle MT organization.
Collapse
|
96
|
Paulsen MT, Starks AM, Derheimer FA, Hanasoge S, Li L, Dixon JE, Ljungman M. The p53-targeting human phosphatase hCdc14A interacts with the Cdk1/cyclin B complex and is differentially expressed in human cancers. Mol Cancer 2006; 5:25. [PMID: 16784539 PMCID: PMC1524803 DOI: 10.1186/1476-4598-5-25] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 06/19/2006] [Indexed: 11/16/2022] Open
Abstract
Background The evolutionary conserved cyclin-dependent kinase phosphatase hCdc14A has been shown to play potential roles in the regulation of mitotic exit and in the centrosome duplication cycle. We have recently shown that hCdc14A also can interact with the tumor suppressor p53 both in vitro and in vivo and specifically dephosphorylates the ser315 site of p53 in vitro. In this study we developed antibodies against hCdc14A to investigate the expression and regulation of hCdc14A in human tissues and cancer cells. Results We show that hCdc14A is differentially expressed in human tissues and in 75 cancer cell lines examined. Treatments with the histone deacetylase inhibitor TSA, the demethylating agent 5-aza-2'-deoxycytodine or the proteasome inhibitor MG132 significantly induced expression of hCdc14A in cell lines expressing low or undetectable levels of hCdc14A. There was a strong bias for low expression of hCdc14A in cancer cell lines harboring wild-type p53, suggesting that high Cdc14A expression is not compatible with wild-type p53 expression. We present evidence for a role for hCdc14A in the dephosphorylation of the ser315 site of p53 in vivo and that hCdc14A forms a complex with Cdk1/cyclin B during interphase but not during mitosis. Conclusion Our results that hCdc14A is differentially expressed in human cancer cells and that hCdc14A can interact with both p53 and the Cdk1/cyclin B complex may implicate that dysregulation of hCdc14A expression may play a role in carcinogenesis.
Collapse
Affiliation(s)
- Michelle T Paulsen
- Department of Radiation Oncology, Division of Radiation & Cancer Biology, University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adrienne M Starks
- Department of Radiation Oncology, Division of Radiation & Cancer Biology, University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Frederick A Derheimer
- Department of Radiation Oncology, Division of Radiation & Cancer Biology, University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sheela Hanasoge
- Department of Radiation Oncology, Division of Radiation & Cancer Biology, University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Liwu Li
- Department of Biology, Virginia Tech, Blacksburg, VA 24061-0406, USA
| | - Jack E Dixon
- Departments of Pharmacology, Cellular & Molecular Medicine and Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA 92093-0636, USA
| | - Mats Ljungman
- Department of Radiation Oncology, Division of Radiation & Cancer Biology, University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
97
|
Fletcher L, Muschel RJ. The centrosome and the DNA damage induced checkpoint. Cancer Lett 2006; 243:1-8. [PMID: 16764987 DOI: 10.1016/j.canlet.2006.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Accepted: 01/11/2006] [Indexed: 01/08/2023]
Abstract
The centrosome, the microtubule-organizing center of the cell, acts as a localization point, where signaling molecules are able to interact. Many kinases and phosphatases critical for regulation of DNA damage signaling pathways localize to the centrosome. This review will discuss the possible involvement of the centrosome in mediating DNA damage checkpoint control, in particular the effect of DNA damage signaling pathways involved in initiation or maintenance of cell cycle arrest on the centrosome. The mechanisms that lead to centrosome abnormalities such as centrosome hyperamplification and multipolarity in response to DNA damage will also be addressed.
Collapse
Affiliation(s)
- Lynda Fletcher
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | |
Collapse
|
98
|
Petretti C, Savoian M, Montembault E, Glover DM, Prigent C, Giet R. The PITSLRE/CDK11p58 protein kinase promotes centrosome maturation and bipolar spindle formation. EMBO Rep 2006; 7:418-24. [PMID: 16462731 PMCID: PMC1456919 DOI: 10.1038/sj.embor.7400639] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Revised: 01/04/2006] [Accepted: 01/05/2006] [Indexed: 11/08/2022] Open
Abstract
The CDK11 (cyclin-dependent kinase 11) gene has an internal ribosome entry site (IRES), allowing the expression of two protein kinases. The longer 110-kDa isoform is expressed at constant levels during the cell cycle and the shorter 58-kDa isoform is expressed only during G2 and M phases. By means of RNA interference (RNAi), we show that the CDK11 gene is required for mitotic spindle formation. CDK11 RNAi leads to mitotic checkpoint activation. Mitotic cells are arrested with short or monopolar spindles. gamma-Tubulin as well as Plk1 and Aurora A protein kinase levels are greatly reduced at centrosomes, resulting in microtubule nucleation defects. We show that the mitotic CDK11(p58) isoform, but not the CDK11(p110) isoform, associates with mitotic centrosomes and rescues the phenotypes resulting from CDK11 RNAi. This work demonstrates for the first time the role of CDK11(p58) in centrosome maturation and bipolar spindle morphogenesis.
Collapse
Affiliation(s)
- Clotilde Petretti
- CNRS UMR 6061 Université de Rennes I, Equipe Labellisée Ligue Nationale Contre le Cancer, IFR140 GFAS, Faculté de Médecine, 2 av. Pr. Léon Bernard, 35043 Rennes, France
| | - Matthew Savoian
- Department of Genetics, Cancer Research UK, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Emilie Montembault
- CNRS UMR 6061 Université de Rennes I, Equipe Labellisée Ligue Nationale Contre le Cancer, IFR140 GFAS, Faculté de Médecine, 2 av. Pr. Léon Bernard, 35043 Rennes, France
| | - David M Glover
- Department of Genetics, Cancer Research UK, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Claude Prigent
- CNRS UMR 6061 Université de Rennes I, Equipe Labellisée Ligue Nationale Contre le Cancer, IFR140 GFAS, Faculté de Médecine, 2 av. Pr. Léon Bernard, 35043 Rennes, France
| | - Régis Giet
- CNRS UMR 6061 Université de Rennes I, Equipe Labellisée Ligue Nationale Contre le Cancer, IFR140 GFAS, Faculté de Médecine, 2 av. Pr. Léon Bernard, 35043 Rennes, France
| |
Collapse
|
99
|
Lingle WL, Lukasiewicz K, Salisbury JL. Deregulation of the centrosome cycle and the origin of chromosomal instability in cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 570:393-421. [PMID: 18727509 DOI: 10.1007/1-4020-3764-3_14] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although we have begun to tap into the mechanisms behind Boveri's initial observation that supernumerary centrosomes cause chromosome missegregation in sea urchin eggs, there is still much left to discover with regard to chromosomal instability in cancer. Many of the molecular players involved in regulation of the centrosome and cell cycles, and the coupling of the two cycles to produce a bipolar mitotic spindle have been identified. One theme that has become apparent is that cross talk and interrelatedness of the pathways serve to provide redundant mechanisms to maintain genomic integrity. In spite of this, cells occasionally fall prey to insults that initiate and maintain the chromosomal instability that results in viable malignant tumours. Deregulation of centrosome structure is an integral aspect of the origin of chromosomal instability in many cancers. There are numerous routes to centrosome amplification including: environmental insults such as ionising radiation and exposure to estrogen (Li et al., 2005); failure of cytokinesis; and activating mutations in key regulators of centrosome structure and function. There are two models for initiation of centrosome amplification (Figure 2). In the first, centrosome duplication and chromosome replication remain coupled and cells enter G2 with 4N chromosomes and duplicated centrosomes. However, these cells may fail to complete mitosis, and thus reenter G1 as tetraploid cells with amplified centrosomes. In the second, the centrosome cycle is uncoupled from chromosome replication and cells go through one or more rounds of centriole/centrosome duplication in the absence of chromosome replication. If these cells then go through chromosome replication accompanied by another round of centrosome duplication, cells complete G2 with 4N chromosomes and more than 2 centrosomes, and therefore are predisposed to generate multipolar mitotic spindles. Fragmentation of centrosomes due to ionising radiation is a variation of the second model. Once centrosome amplification is present, even in a diploid cell, that cell has the potential to yield viable aneuploid progeny. The telophase cell in Figure 3C illustrates this scenario. In a normal telophase configuration, the total number of chromosomes is 92 (resulting from the segregation of 46 pairs of chromatids), with each daughter nucleus containing 46 individual chromosomes. Based on the number of kinetochore signals present, the lower nucleus in Figure 3C has approximately 28 chromosomes, and the elongate upper nucleus has approximately 60, for a total of 88. Due to superimposition of kinetochores in this maximum projection image, 88 is an underestimate of the actual number of kinetochores and is not significantly different from the expected total of 92. A cell resulting from the lower nucleus with only around 28 chromosomes would probably not be viable, much as Boveri's experiments indicated. However, the upper nucleus with at least 60 chromosomes could be viable. This cell would enter G1 as hypotriploid (69 chromosomes = triploid) with 2 centrosomes. During S and G2, the centrosomes and chromosomes would double, and the following mitosis could be tetrapolar with a 6N chromosome content. When centrosome amplification is accompanied by permissive lapses in cell cycle checkpoints, the potential for malignant growth is present. These lapses could result from specific genetic mutations and amplifications, epigenetic gene silencing, or from massive chromosomal instability caused by the centrosome amplification. Centrosome amplification, therefore, can serve to exacerbate and/or generate genetic instabilities associated with cancers.
Collapse
Affiliation(s)
- Wilma L Lingle
- Mayo Clinic College of Medicine, Mayo Clinic Foundation, Mayo Clinic Cancer Center, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
100
|
Abstract
Centrosomes are dynamic organelles involved in many aspects of cell function and growth. Centrosomes act as microtubule organizing centers, and provide a site for concerted regulation of cell cycle progression. While there is diversity in microtubule organizing center structure among eukaryotes, many centrosome components, such as centrin, are conserved. Experimental analysis has provided an outline to describe centrosome duplication, and numerous centrosome components have been identified. Even so, more work is needed to provide a detailed understanding of the interactions between centrosome components and their roles in centrosome function and duplication. Precise duplication of centrosomes once during each cell cycle ensures proper mitotic spindle formation and chromosome segregation. Defects in centrosome duplication or function are linked to human diseases including cancer. Here we provide a multifaceted look at centrosomes with a detailed summary of the centrosome cycle.
Collapse
|