51
|
Freimuth N, Sauer M. Quantitatively Assessing Co-Localization of Golgi Proteins by Distance Analysis Using the DiAna Software. Methods Mol Biol 2022; 2557:263-274. [PMID: 36512221 DOI: 10.1007/978-1-0716-2639-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This method determines if two fluorescently labeled proteins are in close proximity to each other in situ. It is an alternative to commonly used co-localization assays and is based on measuring distances between pairs of objects representative of the two proteins. It makes use of a relatively recently developed ImageJ plugin called DiAna, which employs semi-automated object recognition and subsequent distance analysis of the recognized objects. The advantages of this method are that it is largely independent of the actual pixel intensity values, quite robust against background noise, and not reliant on arbitrarily set intensity threshold values. We present here a use case for the DiAna plugin in the context of plant cells with fluorescently labeled subcellular structures, such as proteins associated with the plant Golgi apparatus.
Collapse
Affiliation(s)
- Nina Freimuth
- Department of Plant Physiology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Michael Sauer
- Department of Plant Physiology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
52
|
Lin XW, Li FL, Wang S, Xie J, Pan QN, Wang P, Xu CH. A Novel Method Based on Multi-Molecular Infrared (MM-IR) AlexNet for Rapid Detection of Trace Harmful Substances in Flour. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02964-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
53
|
Impaired synaptic plasticity in an animal model of autism exhibiting early hippocampal GABAergic-BDNF/TrkB signaling alterations. iScience 2022; 26:105728. [PMID: 36582822 PMCID: PMC9793278 DOI: 10.1016/j.isci.2022.105728] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/25/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
In Neurodevelopmental Disorders, alterations of synaptic plasticity may trigger structural changes in neuronal circuits involved in cognitive functions. This hypothesis was tested in mice carrying the human R451C mutation of Nlgn3 gene (NLG3R451C KI), found in some families with autistic children. To this aim, the spike time dependent plasticity (STDP) protocol was applied to immature GABAergic Mossy Fibers (MF)-CA3 connections in hippocampal slices from NLG3R451C KI mice. These animals failed to exhibit STD-LTP, an effect that persisted in adulthood when these synapses became glutamatergic. Similar results were obtained in mice lacking the Nlgn3 gene (NLG3 KO mice), suggesting a loss of function. The loss of STD-LTP was associated with a premature shift of GABA from the depolarizing to the hyperpolarizing direction, a reduced BDNF availability and TrkB phosphorylation at potentiated synapses. These effects may constitute a general mechanism underlying cognitive deficits in those forms of Autism caused by synaptic dysfunctions.
Collapse
|
54
|
Guest K, Whalley T, Maillard JY, Artemiou A, Szomolay B, Webber MA. Responses of Salmonella biofilms to oxidizing biocides: Evidence of spatial clustering. Environ Microbiol 2022; 24:6426-6438. [PMID: 36300582 PMCID: PMC10099496 DOI: 10.1111/1462-2920.16263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/25/2022] [Indexed: 01/12/2023]
Abstract
The spatial organization of biofilm bacterial communities can be influenced by several factors, including growth conditions and challenge with antimicrobials. Differential survival of clusters of cells within biofilms has been observed. In this work, we present a variety of methods to identify, quantify and statistically analyse clusters of live cells from images of two Salmonella strains with differential biofilm forming capacity exposed to three oxidizing biocides. With a support vector machine approach, we showed spatial separation between the two strains, and, using statistical testing and high-performance computing (HPC), we determined conditions which possess an inherent cluster structure. Our results indicate that there is a relationship between biocide potency and inherent biofilm formation capacity with the tendency to select for spatial clusters of survivors. There was no relationship between positions of clusters of live or dead cells within stressed biofilms. This work identifies an approach to robustly quantify clusters of physiologically distinct cells within biofilms and suggests work to understand how clusters form and survive is needed. SIGNIFICANCE STATEMENT: Control of biofilm growth remains a major challenge and there is considerable uncertainty about how bacteria respond to disinfection within a biofilm and how clustering of cells impacts survival. We have developed a methodological approach to identify and statistically analyse clusters of surviving cells in biofilms after biocide challenge. This approach can be used to understand bacterial behaviour within biofilms under stress and is widely applicable.
Collapse
Affiliation(s)
- Kerry Guest
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | | | - Jean-Yves Maillard
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | | | | | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, UK.,Norwich Medical School, University of East Anglia, Norwich Research Park, UK
| |
Collapse
|
55
|
Chen D, Fu M, Chi L, Lin L, Cheng J, Xue W, Long C, Jiang W, Dong X, Sui J, Lin D, Lu J, Zhuo S, Liu S, Li G, Chen G, Yan J. Prognostic and predictive value of a pathomics signature in gastric cancer. Nat Commun 2022; 13:6903. [PMID: 36371443 PMCID: PMC9653436 DOI: 10.1038/s41467-022-34703-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
The current tumour-node-metastasis (TNM) staging system alone cannot provide adequate information for prognosis and adjuvant chemotherapy benefits in patients with gastric cancer (GC). Pathomics, which is based on the development of digital pathology, is an emerging field that might improve clinical management. Herein, we propose a pathomics signature (PSGC) that is derived from multiple pathomics features of haematoxylin and eosin-stained slides. We find that the PSGC is an independent predictor of prognosis. A nomogram incorporating the PSGC and TNM staging system shows significantly improved accuracy in predicting the prognosis compared to the TNM staging system alone. Moreover, in stage II and III GC patients with a low PSGC (but not in those with a high PSGC), satisfactory chemotherapy benefits are observed. Therefore, the PSGC could serve as a prognostic predictor in patients with GC and might be a potential predictive indicator for decision-making regarding adjuvant chemotherapy.
Collapse
Affiliation(s)
- Dexin Chen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, 510515, Guangzhou, P.R. China
- School of Science, Jimei University, 361021, Xiamen, P.R. China
| | - Meiting Fu
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, 510515, Guangzhou, P.R. China
| | - Liangjie Chi
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, 510515, Guangzhou, P.R. China
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Teaching Hospital of Fujian Medical University, 350001, Fuzhou, P.R. China
| | - Liyan Lin
- Department of Pathology, Fujian Key Laboratory of Translational Cancer Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, 350014, Fuzhou, P.R. China
| | - Jiaxin Cheng
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, 510515, Guangzhou, P.R. China
| | - Weisong Xue
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, 510515, Guangzhou, P.R. China
| | - Chenyan Long
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, 510515, Guangzhou, P.R. China
| | - Wei Jiang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, 510515, Guangzhou, P.R. China
| | - Xiaoyu Dong
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, 510515, Guangzhou, P.R. China
| | - Jian Sui
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, 510515, Guangzhou, P.R. China
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Teaching Hospital of Fujian Medical University, 350001, Fuzhou, P.R. China
| | - Dajia Lin
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, 510515, Guangzhou, P.R. China
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Teaching Hospital of Fujian Medical University, 350001, Fuzhou, P.R. China
| | - Jianping Lu
- Department of Pathology, Fujian Key Laboratory of Translational Cancer Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, 350014, Fuzhou, P.R. China
| | - Shuangmu Zhuo
- School of Science, Jimei University, 361021, Xiamen, P.R. China.
| | - Side Liu
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, 510515, Guangzhou, P.R. China.
| | - Guoxin Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, 510515, Guangzhou, P.R. China.
| | - Gang Chen
- Department of Pathology, Fujian Key Laboratory of Translational Cancer Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, 350014, Fuzhou, P.R. China.
| | - Jun Yan
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, 510515, Guangzhou, P.R. China.
| |
Collapse
|
56
|
Kriebisch BAK, Kriebisch CME, Bergmann AM, Wanzke C, Tena‐Solsona M, Boekhoven J. Tuning the Kinetic Trapping in Chemically Fueled Self‐Assembly**. CHEMSYSTEMSCHEM 2022. [DOI: 10.1002/syst.202200035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Brigitte A. K. Kriebisch
- School of Natural Science Department of Chemistry Technische Universität München Lichtenbergstraße 4 85748 Garching bei München Germany
| | - Christine M. E. Kriebisch
- School of Natural Science Department of Chemistry Technische Universität München Lichtenbergstraße 4 85748 Garching bei München Germany
| | - Alexander M. Bergmann
- School of Natural Science Department of Chemistry Technische Universität München Lichtenbergstraße 4 85748 Garching bei München Germany
| | - Caren Wanzke
- School of Natural Science Department of Chemistry Technische Universität München Lichtenbergstraße 4 85748 Garching bei München Germany
| | - Marta Tena‐Solsona
- School of Natural Science Department of Chemistry Technische Universität München Lichtenbergstraße 4 85748 Garching bei München Germany
| | - Job Boekhoven
- School of Natural Science Department of Chemistry Technische Universität München Lichtenbergstraße 4 85748 Garching bei München Germany
| |
Collapse
|
57
|
Moreno-Echeverri AM, Susnik E, Vanhecke D, Taladriz-Blanco P, Balog S, Petri-Fink A, Rothen-Rutishauser B. Pitfalls in methods to study colocalization of nanoparticles in mouse macrophage lysosomes. J Nanobiotechnology 2022; 20:464. [PMID: 36309696 PMCID: PMC9618187 DOI: 10.1186/s12951-022-01670-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/12/2022] [Indexed: 11/10/2022] Open
Abstract
Background In the field of nanoscience there is an increasing interest to follow dynamics of nanoparticles (NP) in cells with an emphasis on endo-lysosomal pathways and long-term NP fate. During our research on this topic, we encountered several pitfalls, which can bias the experimental outcome. We address some of these pitfalls and suggest possible solutions. The accuracy of fluorescence microscopy methods has an important role in obtaining insights into NP interactions with lysosomes at the single cell level including quantification of NP uptake in a specific cell type. Methods Here we use J774A.1 cells as a model for professional phagocytes. We expose them to fluorescently-labelled amorphous silica NP with different sizes and quantify the colocalization of fluorescently-labelled NP with lysosomes over time. We focus on confocal laser scanning microscopy (CLSM) to obtain 3D spatial information and follow live cell imaging to study NP colocalization with lysosomes. Results We evaluate different experimental parameters that can bias the colocalization coefficients (i.e., Pearson’s and Manders’), such as the interference of phenol red in the cell culture medium with the fluorescence intensity and image post-processing (effect of spatial resolution, optical slice thickness, pixel saturation and bit depth). Additionally, we determine the correlation coefficients for NP entering the lysosomes under four different experimental set-ups. First, we found out that not only Pearson’s, but also Manders’ correlation coefficient should be considered in lysosome-NP colocalization studies; second, there is a difference in NP colocalization when using NP of different sizes and fluorescence dyes and last, the correlation coefficients might change depending on live-cell and fixed-cell imaging set-up. Conclusions The results summarize detailed steps and recommendations for the experimental design, staining, sample preparation and imaging to improve the reproducibility of colocalization studies between the NP and lysosomes. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01670-9.
Collapse
|
58
|
Warren CJ, Yu S, Peters DK, Barbachano-Guerrero A, Yang Q, Burris BL, Worwa G, Huang IC, Wilkerson GK, Goldberg TL, Kuhn JH, Sawyer SL. Primate hemorrhagic fever-causing arteriviruses are poised for spillover to humans. Cell 2022; 185:3980-3991.e18. [PMID: 36182704 PMCID: PMC9588614 DOI: 10.1016/j.cell.2022.09.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/22/2022] [Accepted: 09/12/2022] [Indexed: 01/26/2023]
Abstract
Simian arteriviruses are endemic in some African primates and can cause fatal hemorrhagic fevers when they cross into primate hosts of new species. We find that CD163 acts as an intracellular receptor for simian hemorrhagic fever virus (SHFV; a simian arterivirus), a rare mode of virus entry that is shared with other hemorrhagic fever-causing viruses (e.g., Ebola and Lassa viruses). Further, SHFV enters and replicates in human monocytes, indicating full functionality of all of the human cellular proteins required for viral replication. Thus, simian arteriviruses in nature may not require major adaptations to the human host. Given that at least three distinct simian arteriviruses have caused fatal infections in captive macaques after host-switching, and that humans are immunologically naive to this family of viruses, development of serology tests for human surveillance should be a priority.
Collapse
Affiliation(s)
- Cody J Warren
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80303, USA
| | - Shuiqing Yu
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Douglas K Peters
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80303, USA
| | - Arturo Barbachano-Guerrero
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80303, USA
| | - Qing Yang
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80303, USA
| | - Bridget L Burris
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Gabriella Worwa
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - I-Chueh Huang
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Gregory K Wilkerson
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Tony L Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA.
| | - Sara L Sawyer
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80303, USA.
| |
Collapse
|
59
|
A High-Throughput Search for SFXN1 Physical Partners Led to the Identification of ATAD3, HSD10 and TIM50. BIOLOGY 2022; 11:biology11091298. [PMID: 36138777 PMCID: PMC9495560 DOI: 10.3390/biology11091298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/28/2022] [Indexed: 11/25/2022]
Abstract
Simple Summary Mitochondria are central players in cell fate and cell death. Indeed, mitochondrial dysfunction has been observed in many diseases, including neurodegenerative diseases. The activity of these organelles relies on numerous mitochondrial transporters, among which the sideroflexins have received little attention to date despite their emerging importance in human health. To better understand the cellular functions of these transporters and their associations with diseases, we herein investigated the molecular partners of one human sideroflexin, SFXN1. Several proteins capable of interacting with SFXN1 were identified, including ATAD3 and HSD10, two mitochondrial proteins linked to neuronal disorders. Abstract Sideroflexins (SFXN, SLC56) are a family of evolutionarily conserved mitochondrial carriers potentially involved in iron homeostasis. One member of the SFXN family is SFXN1, recently identified as a human mitochondrial serine transporter. However, little is known about the SFXN1 interactome, necessitating a high-throughput search to better characterize SFXN1 mitochondrial functions. Via co-immunoprecipitation followed by shotgun mass spectrometry (coIP-MS), we identified 96 putative SFXN1 interactors in the MCF7 human cell line. Our in silico analysis of the SFXN1 interactome highlights biological processes linked to mitochondrial organization, electron transport chains and transmembrane transport. Among the potential physical partners, ATAD3A and 17β-HSD10, two proteins associated with neurological disorders, were confirmed using different human cell lines. Nevertheless, further work will be needed to investigate the significance of these interactions.
Collapse
|
60
|
Tse WH, Higgins S, Patel D, Xing M, West AR, Labouta HI, Keijzer R. The maternal-fetal transfer of passive immunity as a mechanism of transplacental nanoparticle drug delivery for prenatal therapies. Biomater Sci 2022; 10:5243-5253. [PMID: 35912636 DOI: 10.1039/d2bm00293k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoparticles administered into the maternal circulation and across the placenta are a potential clinical therapy to treat congenital diseases. The mechanism by which nanoparticles can safely cross the placenta for targeted drug delivery to the fetus remains poorly understood. We demonstrate that the maternal-fetal transfer of passive immunity through the neonatal Fc Receptor (FcRn) can induce the transplacental transfer of chitosan nanoparticles modifed with IgG antibodies (414 ± 27 nm). The transfer of FITC-tagged IgG-modified chitosan nanoparticles was 2.8 times higher (p = 0.0264) compared to similarly-sized unmodified chitosan nanoparticles (375 ± 17 nm). Co-administration of free IgG competitively diminished the transplacental transfer of IgG-modified nanoparticles, yet unmodified nanoparticles remained unaffected. Colocalization of the FcRn and the IgG-modified chitosan nanoparticles were observed with confocal microscopy. Barrier function before and after nanoparticle administration remained intact as determined by TEER (75-79 Ω cm2) and immmunofluorescence of ZO-1 tight junction proteins. The results provide insight into the clinical applications of nanoparticles for prenatal therapies using the mechanism of the maternal-fetal transfer of passive immunity.
Collapse
Affiliation(s)
- Wai Hei Tse
- Departments of Surgery, Division of Pediatric Surgery and Pediatrics & Child Health, University of Manitoba, R3E 0W2, Manitoba, Canada. .,Children's Hospital Research Institute of Manitoba, Winnipeg, R3E 3P4, Manitoba, Canada.,Department of Physiology & Pathophysiology, University of Manitoba, R3E 0W2, Manitoba, Canada
| | - Sean Higgins
- Departments of Surgery, Division of Pediatric Surgery and Pediatrics & Child Health, University of Manitoba, R3E 0W2, Manitoba, Canada. .,Children's Hospital Research Institute of Manitoba, Winnipeg, R3E 3P4, Manitoba, Canada
| | - Daywin Patel
- Departments of Surgery, Division of Pediatric Surgery and Pediatrics & Child Health, University of Manitoba, R3E 0W2, Manitoba, Canada. .,Children's Hospital Research Institute of Manitoba, Winnipeg, R3E 3P4, Manitoba, Canada.,Department of Physiology & Pathophysiology, University of Manitoba, R3E 0W2, Manitoba, Canada
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, R3T 2N2, Manitoba, Canada
| | - Adrian R West
- Children's Hospital Research Institute of Manitoba, Winnipeg, R3E 3P4, Manitoba, Canada.,Department of Physiology & Pathophysiology, University of Manitoba, R3E 0W2, Manitoba, Canada
| | - Hagar I Labouta
- Children's Hospital Research Institute of Manitoba, Winnipeg, R3E 3P4, Manitoba, Canada.,Apotex Centre, College of Pharmacy, University of Manitoba, R3E 3T5, Manitoba, Canada
| | - Richard Keijzer
- Departments of Surgery, Division of Pediatric Surgery and Pediatrics & Child Health, University of Manitoba, R3E 0W2, Manitoba, Canada. .,Children's Hospital Research Institute of Manitoba, Winnipeg, R3E 3P4, Manitoba, Canada.,Department of Physiology & Pathophysiology, University of Manitoba, R3E 0W2, Manitoba, Canada
| |
Collapse
|
61
|
Kim OV, Litvinov RI, Mordakhanova ER, Bi E, Vagin O, Weisel JW. Contribution of septins to human platelet structure and function. iScience 2022; 25:104654. [PMID: 35832887 PMCID: PMC9272382 DOI: 10.1016/j.isci.2022.104654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 04/23/2022] [Accepted: 06/17/2022] [Indexed: 11/29/2022] Open
Abstract
Although septins have been well-studied in nucleated cells, their role in anucleate blood platelets remains obscure. Here, we elucidate the contribution of septins to human platelet structure and functionality. We show that Septin-2 and Septin-9 are predominantly distributed at the periphery of resting platelets and co-localize strongly with microtubules. Activation of platelets by thrombin causes clustering of septins and impairs their association with microtubules. Inhibition of septin dynamics with forchlorfenuron (FCF) reduces thrombin-induced densification of septins and lessens their colocalization with microtubules in resting and activated platelets. Exposure to FCF alters platelet shape, suggesting that septins stabilize platelet cytoskeleton. FCF suppresses platelet integrin αIIbβ3 activation, promotes phosphatidylserine exposure on activated platelets, and induces P-selectin expression on resting platelets, suggesting septin involvement in these processes. Inhibition of septin dynamics substantially reduces platelet contractility and abrogates their spreading on fibrinogen-coated surfaces. Overall, septins strongly contribute to platelet structure, activation and biomechanics.
Collapse
Affiliation(s)
- Oleg V. Kim
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rustem I. Litvinov
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elmira R. Mordakhanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Olga Vagin
- Department of Pediatrics, Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, CA, USA
| | - John W. Weisel
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
62
|
Vega-Lugo J, da Rocha-Azevedo B, Dasgupta A, Jaqaman K. Analysis of conditional colocalization relationships and hierarchies in three-color microscopy images. J Cell Biol 2022; 221:e202106129. [PMID: 35552363 PMCID: PMC9111757 DOI: 10.1083/jcb.202106129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 03/15/2022] [Accepted: 04/25/2022] [Indexed: 01/07/2023] Open
Abstract
Colocalization analysis of multicolor microscopy images is a cornerstone approach in cell biology. It provides information on the localization of molecules within subcellular compartments and allows the interrogation of known molecular interactions in their cellular context. However, almost all colocalization analyses are designed for two-color images, limiting the type of information that they reveal. Here, we describe an approach, termed "conditional colocalization analysis," for analyzing the colocalization relationships between three molecular entities in three-color microscopy images. Going beyond the question of whether colocalization is present or not, it addresses the question of whether the colocalization between two entities is influenced, positively or negatively, by their colocalization with a third entity. We benchmark the approach and showcase its application to investigate receptor-downstream adaptor colocalization relationships in the context of functionally relevant plasma membrane locations. The software for conditional colocalization analysis is available at https://github.com/kjaqaman/conditionalColoc.
Collapse
Affiliation(s)
- Jesus Vega-Lugo
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX
| | | | | | - Khuloud Jaqaman
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
63
|
Lin H, Tang M, Ji C, Girardi P, Cvetojevic G, Chen D, Koren SA, Johnson GVW. BAG3 Regulation of RAB35 Mediates the Endosomal Sorting Complexes Required for Transport/Endolysosome Pathway and Tau Clearance. Biol Psychiatry 2022; 92:10-24. [PMID: 35000752 PMCID: PMC9085972 DOI: 10.1016/j.biopsych.2021.10.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/12/2021] [Accepted: 10/27/2021] [Indexed: 11/02/2022]
Abstract
BACKGROUND Declining proteostasis with aging contributes to increased susceptibility to neurodegenerative diseases, including Alzheimer's disease (AD). Emerging studies implicate impairment of the endosome-lysosome pathway as a significant factor in the pathogenesis of these diseases. Previously, we demonstrated that BAG3 regulates phosphorylated tau clearance. However, we did not fully define how BAG3 regulates endogenous tau proteostasis, especially in the early stages of disease progression. METHODS Mass spectrometric analyses were performed to identify neuronal BAG3 interactors. Multiple biochemical assays were used to investigate the BAG3-HSP70-TBC1D10B (EPI64B)-RAB35-HRS regulatory networks. Live-cell imaging was used to study the dynamics of the endosomal pathway. Immunohistochemistry and immunoblotting were performed in human AD brains and in P301S tau transgenic mice with BAG3 overexpressed. RESULTS The primary group of neuronal BAG3 interactors identified are involved in the endocytic pathway. Among them were key regulators of small GTPases, such as the RAB35 GTPase-activating protein TBC1D10B. We demonstrated that a BAG3-HSP70-TBC1D10B complex attenuates the ability of TBC1D10B to inactivate RAB35. Thus, BAG3 interacts with TBC1D10B to support the activation of RAB35 and recruitment of HRS, initiating endosomal sorting complex required for transport-mediated endosomal tau clearance. Furthermore, TBC1D10B shows significantly less colocalization with BAG3 in AD brains than in age-matched controls. Overexpression of BAG3 in P301S tau transgenic mice increased the colocalization of phosphorylated tau with the endosomal sorting complex required for transport III protein CHMP2B and reduced the levels of the mutant human tau. CONCLUSIONS We identified a novel BAG3-TBC1D10B-RAB35 regulatory axis that modulates endosomal sorting complex required for transport-dependent protein degradation machinery and tau clearance. Dysregulation of BAG3 could contribute to the pathogenesis of AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gail V. W. Johnson
- Correspondence should be addressed to: Gail V.W. Johnson, PhD, Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14642, , +1-585-276-3740 (voice)
| |
Collapse
|
64
|
Rodríguez-López P, Rodríguez-Herrera JJ, López Cabo M. Architectural Features and Resistance to Food-Grade Disinfectants in Listeria monocytogenes- Pseudomonas spp. Dual-Species Biofilms. Front Microbiol 2022; 13:917964. [PMID: 35756028 PMCID: PMC9218357 DOI: 10.3389/fmicb.2022.917964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes is considered a foodborne pathogen of serious concern capable of forming multispecies biofilms with other bacterial species, such as Pseudomonas spp., adhered onto stainless steel (SS) surfaces. In an attempt to link the biofilms' morphology and resistance to biocides, dual-species biofilms of L. monocytogenes, in co-culture with either Pseudomonas aeruginosa, Pseudomonas fluorescens, or Pseudomonas putida, were assayed to ascertain their morphological characteristics and resistance toward benzalkonium chloride (BAC) and neutral electrolyzed water (NEW). Epifluorescence microscopy analysis revealed that each dual-species biofilm was distributed differently over the SS surface and that these differences were attributable to the presence of Pseudomonas spp. Confocal laser scanning microscopy (CLSM) assays demonstrated that despite these differences in distribution, all biofilms had similar maximum thicknesses. Along with this, colocalization analyses showed a strong trend of L. monocytogenes to share location within the biofilm with all Pseudomonas assayed whilst the latter distributed throughout the surface independently of the presence of L. monocytogenes, a fact that was especially evident in those biofilms in which cell clusters were present. Finally, a modified Gompertz equation was used to fit biofilms' BAC and NEW dose-response data. Outcomes demonstrated that L. monocytogenes was less susceptible to BAC when co-cultured with P. aeruginosa or P. fluorescens, whereas susceptibility to NEW was reduced in all three dual-species biofilms, which can be attributable to both the mechanism of action of the biocide and the architectural features of each biofilm. Therefore, the results herein provided can be used to optimize already existing and develop novel target-specific sanitation treatments based on the mechanism of action of the biocide and the biofilms' species composition and structure.
Collapse
Affiliation(s)
- Pedro Rodríguez-López
- Laboratory of Microbiology and Technology of Marine Products (MICROTEC), Instituto de Investigacións Mariñas (IIM-CSIC), Vigo, Spain
| | | | | |
Collapse
|
65
|
Cuny AP, Schlottmann FP, Ewald JC, Pelet S, Schmoller KM. Live cell microscopy: From image to insight. BIOPHYSICS REVIEWS 2022; 3:021302. [PMID: 38505412 PMCID: PMC10903399 DOI: 10.1063/5.0082799] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/18/2022] [Indexed: 03/21/2024]
Abstract
Live-cell microscopy is a powerful tool that can reveal cellular behavior as well as the underlying molecular processes. A key advantage of microscopy is that by visualizing biological processes, it can provide direct insights. Nevertheless, live-cell imaging can be technically challenging and prone to artifacts. For a successful experiment, many careful decisions are required at all steps from hardware selection to downstream image analysis. Facing these questions can be particularly intimidating due to the requirement for expertise in multiple disciplines, ranging from optics, biophysics, and programming to cell biology. In this review, we aim to summarize the key points that need to be considered when setting up and analyzing a live-cell imaging experiment. While we put a particular focus on yeast, many of the concepts discussed are applicable also to other organisms. In addition, we discuss reporting and data sharing strategies that we think are critical to improve reproducibility in the field.
Collapse
Affiliation(s)
| | - Fabian P. Schlottmann
- Interfaculty Institute of Cell Biology, University of Tuebingen, 72076 Tuebingen, Germany
| | - Jennifer C. Ewald
- Interfaculty Institute of Cell Biology, University of Tuebingen, 72076 Tuebingen, Germany
| | - Serge Pelet
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | | |
Collapse
|
66
|
de Buhr N, Baumann T, Werlein C, Fingerhut L, Imker R, Meurer M, Götz F, Bronzlik P, Kühnel MP, Jonigk DD, Ernst J, Leotescu A, Gabriel MM, Worthmann H, Lichtinghagen R, Tiede A, von Köckritz-Blickwede M, Falk CS, Weissenborn K, Schuppner R, Grosse GM. Insights Into Immunothrombotic Mechanisms in Acute Stroke due to Vaccine-Induced Immune Thrombotic Thrombocytopenia. Front Immunol 2022; 13:879157. [PMID: 35619694 PMCID: PMC9128407 DOI: 10.3389/fimmu.2022.879157] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/11/2022] [Indexed: 12/29/2022] Open
Abstract
During the COVID-19 pandemic, vaccination is the most important countermeasure. Pharmacovigilance concerns however emerged with very rare, but potentially disastrous thrombotic complications following vaccination with ChAdOx1. Platelet factor-4 antibody mediated vaccine-induced immune thrombotic thrombocytopenia (VITT) was described as an underlying mechanism of these thrombotic events. Recent work moreover suggests that mechanisms of immunothrombosis including neutrophil extracellular trap (NET) formation might be critical for thrombogenesis during VITT. In this study, we investigated blood and thrombus specimens of a female patient who suffered severe stroke due to VITT after vaccination with ChAdOx1 in comparison to 13 control stroke patients with similar clinical characteristics. We analyzed cerebral thrombi using histological examination, staining of complement factors, NET-markers, DNase and LL-37. In blood samples at the hyper-acute phase of stroke and 7 days later, we determined cell-free DNA, myeloperoxidase-histone complexes, DNase activity, myeloperoxidase activity, LL-37 and inflammatory cytokines. NET markers were identified in thrombi of all patients. Interestingly, the thrombus of the VITT-patient exclusively revealed complement factors and high amounts of DNase and LL-37. High DNase activity was also measured in blood, implying a disturbed NET-regulation. Furthermore, serum of the VITT-patient inhibited reactive oxygen species-dependent NET-release by phorbol-myristate-acetate to a lesser degree compared to controls, indicating either less efficient NET-inhibition or enhanced NET-induction in the blood of the VITT-patient. Additionally, the changes in specific cytokines over time were emphasized in the VITT-patient as well. In conclusion, insufficient resolution of NETs, e.g. by endogenous DNases or protection of NETs against degradation by embedded factors like the antimicrobial peptide LL-37 might thus be an important factor in the pathology of VITT besides increased NET-formation. On the basis of these findings, we discuss the potential implications of the mechanisms of disturbed NETs-degradation for diagnostic and therapeutic approaches in VITT-related thrombogenesis, other auto-immune disorders and beyond.
Collapse
Affiliation(s)
- Nicole de Buhr
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Tristan Baumann
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | | | - Leonie Fingerhut
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany.,Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Rabea Imker
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Marita Meurer
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Friedrich Götz
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Paul Bronzlik
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Mark P Kühnel
- Institute of Pathology, Hannover Medical School, Hannover, Germany.,Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Danny D Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany.,Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Johanna Ernst
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Andrei Leotescu
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Maria M Gabriel
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Hans Worthmann
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Ralf Lichtinghagen
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Andreas Tiede
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Maren von Köckritz-Blickwede
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Christine S Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | | | - Ramona Schuppner
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Gerrit M Grosse
- Department of Neurology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
67
|
Bachmann M, Skripka A, Weißenbruch K, Wehrle-Haller B, Bastmeyer M. Phosphorylated paxillin and phosphorylated FAK constitute subregions within focal adhesions. J Cell Sci 2022; 135:275040. [PMID: 35343568 DOI: 10.1242/jcs.258764] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 03/17/2022] [Indexed: 11/20/2022] Open
Abstract
Integrin-mediated adhesions are convergence points of multiple signaling pathways. Their inner structure and their diverse functions can be studied with super-resolution microscopy. Here, we examined the spatial organization within focal adhesion by analyzing several adhesion proteins with structured illumination microscopy (SIM). We found that phosphorylated paxillin (pPax) and phosphorylated focal adhesion kinase (pFAK) form spot-like, spatially defined clusters within adhesions in several cell lines and confirmed these findings with additional super-resolution techniques. These clusters showed a more regular separation from each other compared to more randomly distributed labels of general FAK or paxillin. Mutational analysis indicated that the active (open) FAK conformation is a prerequisite for the pattern formation of pFAK. Live-cell super-resolution imaging revealed that organization in clusters is preserved over time for FAK constructs; however, distance between clusters is dynamic for FAK, while paxillin is more stable. Combined, these data introduce spatial clusters of pPax and pFAK as substructures in adhesions and highlight the relevance of paxillin-FAK binding for establishing a regular substructure in focal adhesions.
Collapse
Affiliation(s)
- Michael Bachmann
- Department for Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.,Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Artiom Skripka
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Kai Weißenbruch
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Bernhard Wehrle-Haller
- Department for Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Martin Bastmeyer
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
68
|
Di Tomaso MV, Vázquez Alberdi L, Olsson D, Cancela S, Fernández A, Rosillo JC, Reyes Ábalos AL, Álvarez Zabaleta M, Calero M, Kun A. Colocalization Analysis of Peripheral Myelin Protein-22 and Lamin-B1 in the Schwann Cell Nuclei of Wt and TrJ Mice. Biomolecules 2022; 12:456. [PMID: 35327648 PMCID: PMC8946543 DOI: 10.3390/biom12030456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/05/2022] [Accepted: 03/12/2022] [Indexed: 12/19/2022] Open
Abstract
Myelination of the peripheral nervous system requires Schwann cells (SC) differentiation into the myelinating phenotype. The peripheral myelin protein-22 (PMP22) is an integral membrane glycoprotein, expressed in SC. It was initially described as a growth arrest-specific (gas3) gene product, up-regulated by serum starvation. PMP22 mutations were pathognomonic for human hereditary peripheral neuropathies, including the Charcot-Marie-Tooth disease (CMT). Trembler-J (TrJ) is a heterozygous mouse model carrying the same pmp22 point mutation as a CMT1E variant. Mutations in lamina genes have been related to a type of peripheral (CMT2B1) or central (autosomal dominant leukodystrophy) neuropathy. We explore the presence of PMP22 and Lamin B1 in Wt and TrJ SC nuclei of sciatic nerves and the colocalization of PMP22 concerning the silent heterochromatin (HC: DAPI-dark counterstaining), the transcriptionally active euchromatin (EC), and the nuclear lamina (H3K4m3 and Lamin B1 immunostaining, respectively). The results revealed that the number of TrJ SC nuclei in sciatic nerves was greater, and the SC volumes were smaller than those of Wt. The myelin protein PMP22 and Lamin B1 were detected in Wt and TrJ SC nuclei and predominantly in peripheral nuclear regions. The level of PMP22 was higher, and those of Lamin B1 lower in TrJ than in Wt mice. The level of PMP22 was higher, and those of Lamin B1 lower in TrJ than in Wt mice. PMP22 colocalized more with Lamin B1 and with the transcriptionally competent EC, than the silent HC with differences between Wt and TrJ genotypes. The results are discussed regarding the probable nuclear role of PMP22 and the relationship with TrJ neuropathy.
Collapse
Affiliation(s)
- María Vittoria Di Tomaso
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay; (D.O.); (S.C.); (A.L.R.Á.); (M.Á.Z.)
| | - Lucía Vázquez Alberdi
- Laboratorio de Biología Celular del Sistema Nervioso Periférico, Departamento de Proteínas y Ácidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay;
| | - Daniela Olsson
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay; (D.O.); (S.C.); (A.L.R.Á.); (M.Á.Z.)
| | - Saira Cancela
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay; (D.O.); (S.C.); (A.L.R.Á.); (M.Á.Z.)
| | - Anabel Fernández
- Laboratorio de Neurobiología Comparada, Departamento de Neurociencias Integrativas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay; (A.F.); (J.C.R.)
| | - Juan Carlos Rosillo
- Laboratorio de Neurobiología Comparada, Departamento de Neurociencias Integrativas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay; (A.F.); (J.C.R.)
| | - Ana Laura Reyes Ábalos
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay; (D.O.); (S.C.); (A.L.R.Á.); (M.Á.Z.)
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Magdalena Álvarez Zabaleta
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay; (D.O.); (S.C.); (A.L.R.Á.); (M.Á.Z.)
| | - Miguel Calero
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Unidad de Microscopía Electrónica de Barrido, Universidad de la República, Montevideo 11400, Uruguay
| | - Alejandra Kun
- Laboratorio de Biología Celular del Sistema Nervioso Periférico, Departamento de Proteínas y Ácidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay;
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Unidad de Encefalopatías Espongiformes (UFIEC), 28029 Madrid, Spain;
| |
Collapse
|
69
|
Swift LH, Colarusso P. Fluorescence Microscopy: A Field Guide for Biologists. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2440:3-39. [PMID: 35218530 DOI: 10.1007/978-1-0716-2051-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Optical microscopy is a tool for observing objects, and features within objects, that are not visible to the unaided eye. In the life sciences, fluorescence microscopy has been widely adopted because it allows us to selectively observe molecules, organelles, and cells at multiple levels of organization. Fluorescence microscopy encompasses numerous techniques and applications that share a specialized technical language and concepts that can create barriers for researchers who are new to this area. Our goal is to meet the needs of researchers new to fluorescence microscopy, by introducing the essential concepts and mindset required to navigate and apply this powerful technology to the laboratory.
Collapse
Affiliation(s)
- Lucy H Swift
- Department of Physiology and Pharmacology, Live Cell Imaging Laboratory, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Pina Colarusso
- Department of Physiology and Pharmacology, Live Cell Imaging Laboratory, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
70
|
The C. elegans TspanC8 tetraspanin TSP-14 exhibits isoform-specific localization and function. PLoS Genet 2022; 18:e1009936. [PMID: 35089916 PMCID: PMC8827444 DOI: 10.1371/journal.pgen.1009936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/09/2022] [Accepted: 01/10/2022] [Indexed: 11/19/2022] Open
Abstract
Tetraspanin proteins are a unique family of highly conserved four-pass transmembrane proteins in metazoans. While much is known about their biochemical properties, the in vivo functions and distribution patterns of different tetraspanin proteins are less understood. Previous studies have shown that two paralogous tetraspanins that belong to the TspanC8 subfamily, TSP-12 and TSP-14, function redundantly to promote both Notch signaling and bone morphogenetic protein (BMP) signaling in C. elegans. TSP-14 has two isoforms, TSP-14A and TSP-14B, where TSP-14B has an additional 24 amino acids at its N-terminus compared to TSP-14A. By generating isoform specific knock-ins and knock-outs using CRISPR, we found that TSP-14A and TSP-14B share distinct as well as overlapping expression patterns and functions. While TSP-14A functions redundantly with TSP-12 to regulate body size and embryonic and vulva development, TSP-14B primarily functions redundantly with TSP-12 to regulate postembryonic mesoderm development. Importantly, TSP-14A and TSP-14B exhibit distinct subcellular localization patterns. TSP-14A is localized apically and on early and late endosomes. TSP-14B is localized to the basolateral cell membrane. We further identified a di-leucine motif within the N-terminal 24 amino acids of TSP-14B that serves as a basolateral membrane targeting sequence, and showed that the basolateral membrane localization of TSP-14B is important for its function. Our work highlights the diverse and intricate functions of TspanC8 tetraspanins in C. elegans, and demonstrates the importance of dissecting the functions of these important proteins in an intact living organism. Tetraspanin proteins are a unique family of highly conserved four-pass transmembrane proteins in higher eukaryotes. Abnormal expression of certain tetraspanins is associated with various types of diseases, including cancer. Understanding the functions of different tetraspanin proteins in vivo is crucial in deciphering the link between tetraspanins and their associated disease states. We have previously identified two tetraspanins, TSP-12 and TSP-14, that share redundant functions in regulating multiple aspects of C. elegans development. Here we show that TSP-14 has two protein isoforms. Using CRISPR knock-in and knock-out technology, we have found that the two isoforms share unique, as well as overlapping expression patterns and functions. Furthermore, they exhibit distinct subcellular localization patterns. Our work highlights the diverse and intricate functions of tetraspanin proteins in a living multicellular organism, and demonstrates that protein isoforms are another mechanism C. elegans uses to increase the diversity and versatility of its proteome.
Collapse
|
71
|
Colin L, Martin-Arevalillo R, Bovio S, Bauer A, Vernoux T, Caillaud MC, Landrein B, Jaillais Y. Imaging the living plant cell: From probes to quantification. THE PLANT CELL 2022; 34:247-272. [PMID: 34586412 PMCID: PMC8774089 DOI: 10.1093/plcell/koab237] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/20/2021] [Indexed: 05/20/2023]
Abstract
At the center of cell biology is our ability to image the cell and its various components, either in isolation or within an organism. Given its importance, biological imaging has emerged as a field of its own, which is inherently highly interdisciplinary. Indeed, biologists rely on physicists and engineers to build new microscopes and imaging techniques, chemists to develop better imaging probes, and mathematicians and computer scientists for image analysis and quantification. Live imaging collectively involves all the techniques aimed at imaging live samples. It is a rapidly evolving field, with countless new techniques, probes, and dyes being continuously developed. Some of these new methods or reagents are readily amenable to image plant samples, while others are not and require specific modifications for the plant field. Here, we review some recent advances in live imaging of plant cells. In particular, we discuss the solutions that plant biologists use to live image membrane-bound organelles, cytoskeleton components, hormones, and the mechanical properties of cells or tissues. We not only consider the imaging techniques per se, but also how the construction of new fluorescent probes and analysis pipelines are driving the field of plant cell biology.
Collapse
Affiliation(s)
- Leia Colin
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Raquel Martin-Arevalillo
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Simone Bovio
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
- LYMIC-PLATIM imaging and microscopy core facility, Univ Lyon, SFR Biosciences, ENS de Lyon, Inserm US8, CNRS UMS3444, UCBL-50 Avenue Tony Garnier, 69007 Lyon, France
| | - Amélie Bauer
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Marie-Cecile Caillaud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Benoit Landrein
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| |
Collapse
|
72
|
Connected function of PRAF/RLD and GNOM in membrane trafficking controls intrinsic cell polarity in plants. Nat Commun 2022; 13:7. [PMID: 35013279 PMCID: PMC8748900 DOI: 10.1038/s41467-021-27748-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Cell polarity is a fundamental feature underlying cell morphogenesis and organismal development. In the Arabidopsis stomatal lineage, the polarity protein BASL controls stomatal asymmetric cell division. However, the cellular machinery by which this intrinsic polarity site is established remains unknown. Here, we identify the PRAF/RLD proteins as BASL physical partners and mutating four PRAF members leads to defects in BASL polarization. Members of PRAF proteins are polarized in stomatal lineage cells in a BASL-dependent manner. Developmental defects of the praf mutants phenocopy those of the gnom mutants. GNOM is an activator of the conserved Arf GTPases and plays important roles in membrane trafficking. We further find PRAF physically interacts with GNOM in vitro and in vivo. Thus, we propose that the positive feedback of BASL and PRAF at the plasma membrane and the connected function of PRAF and GNOM in endosomal trafficking establish intrinsic cell polarity in the Arabidopsis stomatal lineage.
Collapse
|
73
|
Scherer KM, Mascheroni L, Carnell GW, Wunderlich LCS, Makarchuk S, Brockhoff M, Mela I, Fernandez-Villegas A, Barysevich M, Stewart H, Suau Sans M, George CL, Lamb JR, Kaminski-Schierle GS, Heeney JL, Kaminski CF. SARS-CoV-2 nucleocapsid protein adheres to replication organelles before viral assembly at the Golgi/ERGIC and lysosome-mediated egress. SCIENCE ADVANCES 2022; 8:eabl4895. [PMID: 34995113 PMCID: PMC10954198 DOI: 10.1126/sciadv.abl4895] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Despite being the target of extensive research efforts due to the COVID-19 (coronavirus disease 2019) pandemic, relatively little is known about the dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication within cells. We investigate and characterize the tightly orchestrated virus assembly by visualizing the spatiotemporal dynamics of the four structural SARS-CoV-2 proteins at high resolution. The nucleoprotein is expressed first and accumulates around folded endoplasmic reticulum (ER) membranes in convoluted layers that contain viral RNA replication foci. We find that, of the three transmembrane proteins, the membrane protein appears at the Golgi apparatus/ER-to-Golgi intermediate compartment before the spike and envelope proteins. Relocation of a lysosome marker toward the assembly compartment and its detection in transport vesicles of viral proteins confirm an important role of lysosomes in SARS-CoV-2 egress. These data provide insights into the spatiotemporal regulation of SARS-CoV-2 assembly and refine the current understanding of SARS-CoV-2 replication.
Collapse
Affiliation(s)
- Katharina M. Scherer
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Luca Mascheroni
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - George W. Carnell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Lucia C. S. Wunderlich
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | | | - Marius Brockhoff
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Ioanna Mela
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Ana Fernandez-Villegas
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Max Barysevich
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Hazel Stewart
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Maria Suau Sans
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Jacob R. Lamb
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | | | - Jonathan L. Heeney
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Clemens F. Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| |
Collapse
|
74
|
Marfavi A, Yeo JH, Leslie KG, New EJ, Rendina LM. New boron-based coumarin fluorophores for bioimaging applications
†. Aust J Chem 2022. [DOI: 10.1071/ch21320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
75
|
Dierolf JG, Watson AJ, Betts DH. 3D Immunofluorescent Image Colocalization Quantification in Mouse Epiblast Stem Cells. Methods Mol Biol 2022; 2490:69-79. [PMID: 35486240 DOI: 10.1007/978-1-0716-2281-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This chapter details 3D morphological topography of colony architecture optimization and nuclear protein localization by co-immunofluorescent confocal microscopy analysis. Colocalization assessment of nuclear and cytoplasmic cell regions is detailed to demonstrate nuclear and cytoplasmic localization in mEpiSCs by confocal microscopy and orthogonal colocalization assessment. Protein colocalization within mESCs, mEpiLCs, and mEpiSCs can be efficiently completed using these optimized protocols.
Collapse
Affiliation(s)
- Joshua G Dierolf
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Andrew J Watson
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
- Department of Obstetrics and Gynecology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
- The Children's Health Research Institute (CHRI), Lawson Health Research Institute, London, ON, Canada
| | - Dean H Betts
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.
- Department of Obstetrics and Gynecology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.
- The Children's Health Research Institute (CHRI), Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
76
|
Abdullah CS, Aishwarya R, Alam S, Remex NS, Morshed M, Nitu S, Miriyala S, Panchatcharam M, Hartman B, King J, Alfrad Nobel Bhuiyan M, Traylor J, Kevil CG, Orr AW, Bhuiyan MS. The molecular role of Sigmar1 in regulating mitochondrial function through mitochondrial localization in cardiomyocytes. Mitochondrion 2022; 62:159-175. [PMID: 34902622 PMCID: PMC8790786 DOI: 10.1016/j.mito.2021.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 01/03/2023]
Abstract
Sigmar1 is a widely expressed molecular chaperone protein in mammalian cell systems. Accumulating research demonstrated the cardioprotective roles of pharmacologic Sigmar1 activation by ligands in preclinical rodent models of cardiac injury. Extensive biochemical and immuno-electron microscopic research demonstrated Sigmar1's sub-cellular localization largely depends on cell and organ types. Despite comprehensive studies, Sigmar1's direct molecular role in cardiomyocytes remains elusive. In the present study, we determined Sigmar1's subcellular localization, transmembrane topology, and function using complementary microscopy, biochemical, and functional assays in cardiomyocytes. Quantum dots in transmission electron microscopy showed Sigmar1 labeled quantum dots on the mitochondrial membranes, lysosomes, and sarcoplasmic reticulum-mitochondrial interface. Subcellular fractionation of heart cell lysates confirmed Sigmar1's localization in purified mitochondria fraction and lysosome fraction. Immunocytochemistry confirmed Sigmar1 colocalization with mitochondrial proteins in isolated adult mouse cardiomyocytes. Sigmar1's mitochondrial localization was further confirmed by Sigmar1 colocalization with Mito-Tracker in isolated mouse heart mitochondria. A series of biochemical experiments, including alkaline extraction and proteinase K treatment of purified heart mitochondria, demonstrated Sigmar1 as an integral mitochondrial membrane protein. Sigmar1's structural requirement for mitochondrial localization was determined by expressing FLAG-tagged Sigmar1 fragments in cells. Full-length Sigmar1 and Sigmar1's C terminal-deletion fragments were able to localize to the mitochondrial membrane, whereas N-terminal deletion fragment was unable to incorporate into the mitochondria. Finally, functional assays using extracellular flux analyzer and high-resolution respirometry showed Sigmar1 siRNA knockdown significantly altered mitochondrial respiration in cardiomyocytes. Overall, we found that Sigmar1 localizes to mitochondrial membranes and is indispensable for maintaining mitochondrial respiratory homeostasis in cardiomyocytes.
Collapse
Affiliation(s)
- Chowdhury S Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Richa Aishwarya
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Shafiul Alam
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Naznin Sultana Remex
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Mahboob Morshed
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Sadia Nitu
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Sumitra Miriyala
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Manikandan Panchatcharam
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Brandon Hartman
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Judy King
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | | | - James Traylor
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Christopher G Kevil
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - A Wayne Orr
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Md Shenuarin Bhuiyan
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA.
| |
Collapse
|
77
|
Chen M, Sun T, Zhong Y, Zhou X, Zhang J. A Highly Sensitive Fluorescent Akt Biosensor Reveals Lysosome-Selective Regulation of Lipid Second Messengers and Kinase Activity. ACS CENTRAL SCIENCE 2021; 7:2009-2020. [PMID: 34963894 PMCID: PMC8704034 DOI: 10.1021/acscentsci.1c00919] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 06/14/2023]
Abstract
The serine/threonine protein kinase Akt regulates a wide range of cellular functions via phosphorylation of various substrates distributed throughout the cell, including at the plasma membrane and endomembrane compartments. Disruption of compartmentalized Akt signaling underlies the pathology of many diseases such as cancer and diabetes. However, the specific spatial organization of Akt activity and the underlying regulatory mechanisms, particularly the mechanism controlling its activity at the lysosome, are not clearly understood. We developed a highly sensitive excitation-ratiometric Akt activity reporter (ExRai-AktAR2), enabling the capture of minute changes in Akt activity dynamics at subcellular compartments. In conjunction with super-resolution expansion microscopy, we found that growth factor stimulation leads to increased colocalization of Akt with lysosomes and accumulation of lysosomal Akt activity. We further showed that 3-phosphoinositides (3-PIs) accumulate on the lysosomal surface, in a manner dependent on dynamin-mediated endocytosis. Importantly, lysosomal 3-PIs are needed for growth-factor-induced activities of Akt and mechanistic target of rapamycin complex 1 (mTORC1) on the lysosomal surface, as targeted depletion of 3-PIs has detrimental effects. Thus, 3-PIs, a class of critical lipid second messengers that are typically found in the plasma membrane, unexpectedly accumulate on the lysosomal membrane in response to growth factor stimulation, to direct the multifaceted kinase Akt to organize lysosome-specific signaling.
Collapse
Affiliation(s)
- Mingyuan Chen
- Department
of Bioengineering, University of California,
San Diego, 9500 Gilman
Drive, La Jolla, California 92093, United States
| | - Tengqian Sun
- Department
of Pharmacology, University of California,
San Diego, 9500 Gilman
Drive, La Jolla, California 92093, United States
| | - Yanghao Zhong
- Department
of Pharmacology, University of California,
San Diego, 9500 Gilman
Drive, La Jolla, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Xin Zhou
- Department
of Pharmacology, University of California,
San Diego, 9500 Gilman
Drive, La Jolla, California 92093, United States
| | - Jin Zhang
- Department
of Bioengineering, University of California,
San Diego, 9500 Gilman
Drive, La Jolla, California 92093, United States
- Department
of Pharmacology, University of California,
San Diego, 9500 Gilman
Drive, La Jolla, California 92093, United States
- Department
of Chemistry & Biochemistry, University
of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
78
|
McGlone ER, Manchanda Y, Jones B, Pickford P, Inoue A, Carling D, Bloom SR, Tan T, Tomas A. Receptor Activity-Modifying Protein 2 (RAMP2) alters glucagon receptor trafficking in hepatocytes with functional effects on receptor signalling. Mol Metab 2021; 53:101296. [PMID: 34271220 PMCID: PMC8363841 DOI: 10.1016/j.molmet.2021.101296] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES Receptor Activity-Modifying Protein 2 (RAMP2) is a chaperone protein which allosterically binds to and interacts with the glucagon receptor (GCGR). The aims of this study were to investigate the effects of RAMP2 on GCGR trafficking and signalling in the liver, where glucagon (GCG) is important for carbohydrate and lipid metabolism. METHODS Subcellular localisation of GCGR in the presence and absence of RAMP2 was investigated using confocal microscopy, trafficking and radioligand binding assays in human embryonic kidney (HEK293T) and human hepatoma (Huh7) cells. Mouse embryonic fibroblasts (MEFs) lacking the Wiskott-Aldrich Syndrome protein and scar homologue (WASH) complex and the trafficking inhibitor monensin were used to investigate the effect of halted recycling of internalised proteins on GCGR subcellular localisation and signalling in the absence of RAMP2. NanoBiT complementation and cyclic AMP assays were used to study the functional effect of RAMP2 on the recruitment and activation of GCGR signalling mediators. Response to hepatic RAMP2 upregulation in lean and obese adult mice using a bespoke adeno-associated viral vector was also studied. RESULTS GCGR is predominantly localised at the plasma membrane in the absence of RAMP2 and exhibits remarkably slow internalisation in response to agonist stimulation. Rapid intracellular accumulation of GCG-stimulated GCGR in cells lacking the WASH complex or in the presence of monensin indicates that activated GCGR undergoes continuous cycles of internalisation and recycling, despite apparent GCGR plasma membrane localisation up to 40 min post-stimulation. Co-expression of RAMP2 induces GCGR internalisation both basally and in response to agonist stimulation. The intracellular retention of GCGR in the presence of RAMP2 confers a bias away from β-arrestin-2 recruitment coupled with increased activation of Gαs proteins at endosomes. This is associated with increased short-term efficacy for glucagon-stimulated cAMP production, although long-term signalling is dampened by increased receptor lysosomal targeting for degradation. Despite these signalling effects, only a minor disturbance of carbohydrate metabolism was observed in mice with upregulated hepatic RAMP2. CONCLUSIONS By retaining GCGR intracellularly, RAMP2 alters the spatiotemporal pattern of GCGR signalling. Further exploration of the effects of RAMP2 on GCGR in vivo is warranted.
Collapse
Affiliation(s)
- Emma Rose McGlone
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Yusman Manchanda
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Ben Jones
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Phil Pickford
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - David Carling
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Stephen R Bloom
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Tricia Tan
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
79
|
The Retinoblastoma Tumor Suppressor Is Required for the NUP98-HOXA9-Induced Aberrant Nuclear Envelope Phenotype. Cells 2021; 10:cells10112851. [PMID: 34831074 PMCID: PMC8616146 DOI: 10.3390/cells10112851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
Chromosomal translocations involving the nucleoporin NUP98 gene are recurrently identified in leukemia; yet, the cellular defects accompanying NUP98 fusion proteins are poorly characterized. NUP98 fusions cause changes in nuclear and nuclear envelope (NE) organization, in particular, in the nuclear lamina and the lamina associated polypeptide 2α (LAP2α), a regulator of the tumor suppressor retinoblastoma protein (RB). We demonstrate that, for NUP98-HOXA9 (NHA9), the best-studied NUP98 fusion protein, its effect(s) on nuclear architecture largely depend(s) on RB. Morphological alterations caused by the expression of NHA9 are largely diminished in the absence of RB, both in human cells expressing the human papillomavirus 16 E7 protein and in mouse embryonic fibroblasts lacking RB. We further show that NHA9 expression associates with distinct histone modification. Moreover, the pattern of trimethylation of histone H3 lysine-27 is affected by NHA9, again in an RB-dependent manner. Our results pinpoint to an unexpected interplay between NUP98 fusion proteins and RB, which may contribute to leukemogenesis.
Collapse
|
80
|
Vignoli B, Sansevero G, Sasi M, Rimondini R, Blum R, Bonaldo V, Biasini E, Santi S, Berardi N, Lu B, Canossa M. Astrocytic microdomains from mouse cortex gain molecular control over long-term information storage and memory retention. Commun Biol 2021; 4:1152. [PMID: 34611268 PMCID: PMC8492720 DOI: 10.1038/s42003-021-02678-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 09/15/2021] [Indexed: 12/23/2022] Open
Abstract
Memory consolidation requires astrocytic microdomains for protein recycling; but whether this lays a mechanistic foundation for long-term information storage remains enigmatic. Here we demonstrate that persistent synaptic strengthening invited astrocytic microdomains to convert initially internalized (pro)-brain-derived neurotrophic factor (proBDNF) into active prodomain (BDNFpro) and mature BDNF (mBDNF) for synaptic re-use. While mBDNF activates TrkB, we uncovered a previously unsuspected function for the cleaved BDNFpro, which increases TrkB/SorCS2 receptor complex at post-synaptic sites. Astrocytic BDNFpro release reinforced TrkB phosphorylation to sustain long-term synaptic potentiation and to retain memory in the novel object recognition behavioral test. Thus, the switch from one inactive state to a multi-functional one of the proBDNF provides post-synaptic changes that survive the initial activation. This molecular asset confines local information storage in astrocytic microdomains to selectively support memory circuits. Beatrice Vignoli et al. examine potential molecular mechanisms of long-term storage information in mice. Their results suggest that astrocytes may help convert neuronal BDNF precursor into active prodomain and mature forms to enhance post-synaptic signaling and memory, providing further insight into the development of memory circuits.
Collapse
Affiliation(s)
- Beatrice Vignoli
- Department of Physics, University of Trento, 38123, Povo (TN), Italy. .,Department of Cellular Computational and Integrative Biology (CIBIO), University of Trento, 38123, Povo (TN), Italy.
| | - Gabriele Sansevero
- Neuroscience Institute, National Research Council (IN-CNR), 56100, Pisa, Italy
| | - Manju Sasi
- Institute of Clinical Neurobiology and Department of Neurology, University Hospital Würzburg, 97078, Würzburg, Germany
| | - Roberto Rimondini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126, Bologna, Italy
| | - Robert Blum
- Institute of Clinical Neurobiology and Department of Neurology, University Hospital Würzburg, 97078, Würzburg, Germany
| | - Valerio Bonaldo
- Department of Cellular Computational and Integrative Biology (CIBIO), University of Trento, 38123, Povo (TN), Italy
| | - Emiliano Biasini
- Department of Cellular Computational and Integrative Biology (CIBIO), University of Trento, 38123, Povo (TN), Italy
| | - Spartaco Santi
- Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", National Research Council of Italy, 40136, Bologna, Italy.,IRCCS, Istituto Ortopedico Rizzoli, 40136, Bologna, Italy
| | - Nicoletta Berardi
- Department of Neuroscience, Psychology, Drug Research, Child Health (NEUROFARBA), University of Florence, 50100, Florence, Italy
| | - Bai Lu
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
| | - Marco Canossa
- Department of Cellular Computational and Integrative Biology (CIBIO), University of Trento, 38123, Povo (TN), Italy.
| |
Collapse
|
81
|
Bahl V, Chaddha K, Mian SY, Holder AA, Knuepfer E, Gaur D. Genetic disruption of Plasmodium falciparum Merozoite surface antigen 180 (PfMSA180) suggests an essential role during parasite egress from erythrocytes. Sci Rep 2021; 11:19183. [PMID: 34584166 PMCID: PMC8479079 DOI: 10.1038/s41598-021-98707-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Plasmodium falciparum, the parasite responsible for severe malaria, develops within erythrocytes. Merozoite invasion and subsequent egress of intraerythrocytic parasites are essential for this erythrocytic cycle, parasite survival and pathogenesis. In the present study, we report the essential role of a novel protein, P. falciparum Merozoite Surface Antigen 180 (PfMSA180), which is conserved across Plasmodium species and recently shown to be associated with the P. vivax merozoite surface. Here, we studied MSA180 expression, processing, localization and function in P. falciparum blood stages. Initially we examined its role in invasion, a process mediated by multiple ligand-receptor interactions and an attractive step for targeting with inhibitory antibodies through the development of a malaria vaccine. Using antibodies specific for different regions of PfMSA180, together with a parasite containing a conditional pfmsa180-gene knockout generated using CRISPR/Cas9 and DiCre recombinase technology, we demonstrate that this protein is unlikely to play a crucial role in erythrocyte invasion. However, deletion of the pfmsa180 gene resulted in a severe egress defect, preventing schizont rupture and blocking the erythrocytic cycle. Our study highlights an essential role of PfMSA180 in parasite egress, which could be targeted through the development of a novel malaria intervention strategy.
Collapse
Affiliation(s)
- Vanndita Bahl
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Kritika Chaddha
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Syed Yusuf Mian
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anthony A Holder
- Malaria Parasitology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Ellen Knuepfer
- Malaria Parasitology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK. .,The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Hertfordshire, UK.
| | - Deepak Gaur
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
82
|
De Santis I, Lorenzini L, Moretti M, Martella E, Lucarelli E, Calzà L, Bevilacqua A. Co-Density Distribution Maps for Advanced Molecule Colocalization and Co-Distribution Analysis. SENSORS (BASEL, SWITZERLAND) 2021; 21:6385. [PMID: 34640704 PMCID: PMC8513075 DOI: 10.3390/s21196385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 01/19/2023]
Abstract
Cellular and subcellular spatial colocalization of structures and molecules in biological specimens is an important indicator of their co-compartmentalization and interaction. Presently, colocalization in biomedical images is addressed with visual inspection and quantified by co-occurrence and correlation coefficients. However, such measures alone cannot capture the complexity of the interactions, which does not limit itself to signal intensity. On top of the previously developed density distribution maps (DDMs), here, we present a method for advancing current colocalization analysis by introducing co-density distribution maps (cDDMs), which, uniquely, provide information about molecules absolute and relative position and local abundance. We exemplify the benefits of our method by developing cDDMs-integrated pipelines for the analysis of molecules pairs co-distribution in three different real-case image datasets. First, cDDMs are shown to be indicators of colocalization and degree, able to increase the reliability of correlation coefficients currently used to detect the presence of colocalization. In addition, they provide a simultaneously visual and quantitative support, which opens for new investigation paths and biomedical considerations. Finally, thanks to the coDDMaker software we developed, cDDMs become an enabling tool for the quasi real time monitoring of experiments and a potential improvement for a large number of biomedical studies.
Collapse
Affiliation(s)
- Ilaria De Santis
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum—University of Bologna, I-40138 Bologna, Italy;
- Interdepartmental Center Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), Alma Mater Studiorum—University of Bologna, I-40126 Bologna, Italy
| | - Luca Lorenzini
- Department of Veterinary Medical Sciences (DIMEVET), Alma Mater Studiorum—University of Bologna, I-40064 Ozzano Emilia, Italy;
| | - Marzia Moretti
- Iret Foundation, I-40064 Ozzano Emilia, Italy; (M.M.); (L.C.)
| | - Elisa Martella
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), I-40129 Bologna, Italy;
| | - Enrico Lucarelli
- Regenerative Therapies in Oncology, IRCCS Istituto Ortopedico Rizzoli, I-40136 Bologna, Italy;
| | - Laura Calzà
- Iret Foundation, I-40064 Ozzano Emilia, Italy; (M.M.); (L.C.)
- Department of Pharmacy and BioTechnology (FaBiT), Alma Mater Studiorum—University of Bologna, I-40127 Bologna, Italy
| | - Alessandro Bevilacqua
- Advanced Research Center on Electronic Systems (ARCES) for Information and Communication Technologies “E. De Castro”, Alma Mater Studiorum—University of Bologna, I-40125 Bologna, Italy
- Department of Computer Science and Engineering (DISI), Alma Mater Studiorum—University of Bologna, I-40136 Bologna, Italy
| |
Collapse
|
83
|
Nucleation landscape of biomolecular condensates. Nature 2021; 599:503-506. [PMID: 34552246 DOI: 10.1038/s41586-021-03905-5] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 08/12/2021] [Indexed: 11/08/2022]
Abstract
All structures within living cells must form at the right time and place. This includes condensates such as the nucleolus, Cajal bodies and stress granules, which form via liquid-liquid phase separation of biomolecules, particularly proteins enriched in intrinsically disordered regions (IDRs)1,2. In non-living systems, the initial stages of nucleated phase separation arise when thermal fluctuations overcome an energy barrier due to surface tension. This phenomenon can be modelled by classical nucleation theory (CNT), which describes how the rate of droplet nucleation depends on the degree of supersaturation, whereas the location at which droplets appear is controlled by interfacial heterogeneities3,4. However, it remains unknown whether this framework applies in living cells, owing to the multicomponent and highly complex nature of the intracellular environment, including the presence of diverse IDRs, whose specificity of biomolecular interactions is unclear5-8. Here we show that despite this complexity, nucleation in living cells occurs through a physical process similar to that in inanimate materials, but the efficacy of nucleation sites can be tuned by their biomolecular features. By quantitatively characterizing the nucleation kinetics of endogenous and biomimetic condensates in living cells, we find that key features of condensate nucleation can be quantitatively understood through a CNT-like theoretical framework. Nucleation rates can be substantially enhanced by compatible biomolecular (IDR) seeds, and the kinetics of cellular processes can impact condensate nucleation rates and specificity of location. This quantitative framework sheds light on the intracellular nucleation landscape, and paves the way for engineering synthetic condensates precisely positioned in space and time.
Collapse
|
84
|
Swinkels M, Atiq F, Bürgisser PE, Slotman JA, Houtsmuller AB, de Heus C, Klumperman J, Leebeek FWG, Voorberg J, Jansen AJG, Bierings R. Quantitative 3D microscopy highlights altered von Willebrand factor α-granule storage in patients with von Willebrand disease with distinct pathogenic mechanisms. Res Pract Thromb Haemost 2021; 5:e12595. [PMID: 34532631 PMCID: PMC8440947 DOI: 10.1002/rth2.12595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Platelets play a key role in hemostasis through plug formation and secretion of their granule contents at sites of endothelial injury. Defects in von Willebrand factor (VWF), a platelet α-granule protein, are implicated in von Willebrand disease (VWD), and may lead to defective platelet adhesion and/or aggregation. Studying VWF quantity and subcellular localization may help us better understand the pathophysiology of VWD. OBJECTIVE Quantitative analysis of the platelet α-granule compartment and VWF storage in healthy individuals and VWD patients. PATIENTS/METHODS Structured illumination microscopy (SIM) was used to study VWF content and organization in platelets of healthy individuals and patients with VWD in combination with established techniques. RESULTS SIM capably quantified clear morphological and granular changes in platelets stimulated with proteinase-activated receptor 1 (PAR-1) activating peptide and revealed a large intra- and interdonor variability in VWF-positive object numbers within healthy resting platelets, similar to variation in secreted protein acidic and rich in cysteine (SPARC). We subsequently characterized VWD platelets to identify changes in the α-granule compartment of patients with different VWF defects, and were able to stratify two patients with type 3 VWD rising from different pathological mechanisms. We further analyzed VWF storage in α-granules of a patient with homozygous p.C1190R using electron microscopy and found discrepant VWF levels and different degrees of multimerization in platelets of patients with heterozygous p.C1190 in comparison to VWF in plasma. CONCLUSIONS Our findings highlight the utility of quantitative imaging approaches in assessing platelet granule content, which may help to better understand VWF storage in α-granules and to gain new insights in the etiology of VWD.
Collapse
Affiliation(s)
- Maurice Swinkels
- Department of HematologyErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Ferdows Atiq
- Department of HematologyErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Petra E. Bürgisser
- Department of HematologyErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Johan A. Slotman
- Department of PathologyOptical Imaging CenterErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Adriaan B. Houtsmuller
- Department of PathologyOptical Imaging CenterErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Cilia de Heus
- Department of Cell BiologyUniversity Medical CenterUtrechtThe Netherlands
| | - Judith Klumperman
- Department of Cell BiologyUniversity Medical CenterUtrechtThe Netherlands
| | - Frank W. G. Leebeek
- Department of HematologyErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Jan Voorberg
- Molecular and Cellular HemostasisSanquin Research and Landsteiner LaboratoryAmsterdam University Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
- Experimental Vascular MedicineAmsterdam University Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Arend Jan Gerard Jansen
- Department of HematologyErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Ruben Bierings
- Department of HematologyErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| |
Collapse
|
85
|
Karakas B, Aka Y, Giray A, Temel SG, Acikbas U, Basaga H, Gul O, Kutuk O. Mitochondrial estrogen receptors alter mitochondrial priming and response to endocrine therapy in breast cancer cells. Cell Death Discov 2021; 7:189. [PMID: 34294688 PMCID: PMC8298581 DOI: 10.1038/s41420-021-00573-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 06/04/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
Breast cancer is the most common cancer with a high rate of mortality and morbidity among women worldwide. Estrogen receptor status is an important prognostic factor and endocrine therapy is the choice of first-line treatment in ER-positive breast cancer. However, most tumors develop resistance to endocrine therapy. Here we demonstrate that BH3 profiling technology, in particular, dynamic BH3 profiling can predict the response to endocrine therapy agents as well as the development of acquired resistance in breast cancer cells independent of estrogen receptor status. Immunofluorescence analysis and subcellular fractionation experiments revealed distinct ER-α and ER-β subcellular localization patterns in breast cancer cells, including mitochondrial localization of both receptor subtypes. shRNA-mediated depletion of ER-β in breast cancer cells led to resistance to endocrine therapy agents and selective reconstitution of ER-β in mitochondria restored sensitivity. Notably, mitochondria-targeted ER-α did not restore sensitivity, even conferred further resistance to endocrine therapy agents. In addition, expressing mitochondria-targeted ER-β in breast cancer cells resulted in decreased mitochondrial respiration alongside increased total ROS and mitochondrial superoxide production. Furthermore, our data demonstrated that mitochondrial ER-β can be successfully targeted by the selective ER-β agonist Erteberel. Thus, our findings provide novel findings on mitochondrial estrogen signaling in breast cancer cells and suggest the implementation of the dynamic BH3 technique as a tool to predict acquired endocrine therapy resistance.
Collapse
Affiliation(s)
- Bahriye Karakas
- Sabanci University, Molecular Biology, Genetics and Bioengineering Program, Istanbul, Turkey
| | - Yeliz Aka
- Baskent University School of Medicine, Dept. of Immunology, Adana Dr. Turgut Noyan Medical and Research Center, Adana, Turkey
| | - Asli Giray
- Department of Genetics and Bioengineering, Alanya Alaaddin Keykubat University, Alanya, Turkey
| | - Sehime Gulsun Temel
- Bursa Uludag University, Faculty of Medicine, Department of Histology and Embryology, Bursa, Turkey
- Bursa Uludag University, Faculty of Medicine, Department of Medical Genetics, Bursa, Turkey
- Bursa Uludag University, Institute of Health Sciences, Department of Translational Medicine, Bursa, Turkey
| | - Ufuk Acikbas
- Baskent University School of Medicine, Dept. of Immunology, Adana Dr. Turgut Noyan Medical and Research Center, Adana, Turkey
| | - Huveyda Basaga
- Sabanci University, Molecular Biology, Genetics and Bioengineering Program, Istanbul, Turkey
| | - Ozgur Gul
- Bilgi University, Department of Genetics and Bioengineering, Istanbul, Turkey
| | - Ozgur Kutuk
- Baskent University School of Medicine, Dept. of Immunology, Adana Dr. Turgut Noyan Medical and Research Center, Adana, Turkey.
| |
Collapse
|
86
|
Figueiredo AB, de Oliveira E Castro RA, Nogueira-Paiva NC, Moreira F, Gonçalves FQ, Soares RP, Castro-Borges W, Silva GG, Cunha RA, Gonçalves T, Afonso LCC. Clustering of adenosine A 2B receptors with ectonucleotidases in caveolin-rich lipid rafts underlies immunomodulation by Leishmania amazonensis. FASEB J 2021; 35:e21509. [PMID: 33813781 DOI: 10.1096/fj.202002396rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/12/2021] [Accepted: 02/22/2021] [Indexed: 11/11/2022]
Abstract
Extracellular adenosine plays important roles in modulating the immune responses. We have previously demonstrated that infection of dendritic cells (DC) by Leishmania amazonensis leads to increased expression of CD39 and CD73 and to the selective activation of the low affinity A2B receptors (A2B R), which contributes to DC inhibition, without involvement of the high affinity A2A R. To understand this apparent paradox, we now characterized the alterations of both adenosine receptors in infected cells. With this aim, bone marrow-derived DC from C57BL/6J mice were infected with metacyclic promastigotes of L. amazonensis. Fluorescence microscopy revealed that L. amazonensis infection stimulates the recruitment of A2B R, but not of A2A R, to the surface of infected DC, without altering the amount of mRNA or the total A2B R density, an effect dependent on lipophosphoglycan (LPG). Log-phase promastigotes or axenic amastigotes of L. amazonensis do not stimulate A2B R recruitment. A2B R clusters are localized in caveolin-rich lipid rafts and the disruption of these membrane domains impairs A2B R recruitment and activation. More importantly, our results show that A2B R co-localize with CD39 and CD73 forming a "purinergic cluster" that allows for the production of extracellular adenosine in close proximity with these receptors. We conclude that A2B R activation by locally produced adenosine constitutes an elegant and powerful evasion mechanism used by L. amazonensis to down-modulate the DC activation.
Collapse
Affiliation(s)
- Amanda Braga Figueiredo
- Laboratório de Imunoparasitologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Renata Alves de Oliveira E Castro
- Laboratório de Imunoparasitologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Nívia Carolina Nogueira-Paiva
- Laboratório Multiusuário de Microscopia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Filipa Moreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | - William Castro-Borges
- Laboratório de Enzimologia e Proteômica, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Gustavo Gonçalves Silva
- Laboratório de Enzimologia e Proteômica, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Rodrigo Antunes Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Teresa Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Luís Carlos Crocco Afonso
- Laboratório de Imunoparasitologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
87
|
Machida N, Takahashi D, Ueno Y, Nakama Y, Gubeli RJ, Bertoldo D, Harata M. Modulating dynamics and function of nuclear actin with synthetic bicyclic peptides. J Biochem 2021; 169:295-302. [PMID: 33169153 DOI: 10.1093/jb/mvaa130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022] Open
Abstract
Actin exists in monomeric globular (G-) and polymerized filamentous (F-) forms and the dynamics of its polymerization/depolymerization are tightly regulated in both the cytoplasm and the nucleus. Various essential functions of nuclear actin have been identified including regulation of gene expression and involvement in the repair of DNA double-strand breaks (DSB). Small G-actin-binding molecules affect F-actin formation and can be utilized for analysis and manipulation of actin in living cells. However, these G-actin-binding molecules are obtained by extraction from natural sources or through complex chemical synthesis procedures, and therefore, the generation of their derivatives for analytical tools is underdeveloped. In addition, their effects on nuclear actin cannot be separately evaluated from those on cytoplasmic actin. Previously, we have generated synthetic bicyclic peptides, consisting of two macrocyclic rings, which bind to G-actin but not to F-actin. Here, we describe the introduction of these bicyclic peptides into living cells. Furthermore, by conjugation to a nuclear localization signal (NLS), the bicyclic peptides accumulated in the nucleus. The NLS-bicyclic peptides repress the formation of nuclear F-actin, and impair transcriptional regulation and DSB repair. These observations highlight a potential role for NLS-linked bicyclic peptides in the manipulation of dynamics and functions of nuclear actin.
Collapse
Affiliation(s)
- Nanako Machida
- Laboratory of Molecular Biology, Division of Life Science, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Daisuke Takahashi
- Laboratory of Molecular Biology, Division of Life Science, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Yuya Ueno
- Laboratory of Molecular Biology, Division of Life Science, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Yoshihiro Nakama
- Laboratory of Molecular Biology, Division of Life Science, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Raphael J Gubeli
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Davide Bertoldo
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Masahiko Harata
- Laboratory of Molecular Biology, Division of Life Science, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-0845, Japan
| |
Collapse
|
88
|
Prabhakara C, Godbole R, Sil P, Jahnavi S, Gulzar SEJ, van Zanten TS, Sheth D, Subhash N, Chandra A, Shivaraj A, Panikulam P, U I, Nuthakki VK, Puthiyapurayil TP, Ahmed R, Najar AH, Lingamallu SM, Das S, Mahajan B, Vemula P, Bharate SB, Singh PP, Vishwakarma R, Guha A, Sundaramurthy V, Mayor S. Strategies to target SARS-CoV-2 entry and infection using dual mechanisms of inhibition by acidification inhibitors. PLoS Pathog 2021; 17:e1009706. [PMID: 34252168 PMCID: PMC8297935 DOI: 10.1371/journal.ppat.1009706] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/22/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022] Open
Abstract
Many viruses utilize the host endo-lysosomal network for infection. Tracing the endocytic itinerary of SARS-CoV-2 can provide insights into viral trafficking and aid in designing new therapeutic strategies. Here, we demonstrate that the receptor binding domain (RBD) of SARS-CoV-2 spike protein is internalized via the pH-dependent CLIC/GEEC (CG) endocytic pathway in human gastric-adenocarcinoma (AGS) cells expressing undetectable levels of ACE2. Ectopic expression of ACE2 (AGS-ACE2) results in RBD traffic via both CG and clathrin-mediated endocytosis. Endosomal acidification inhibitors like BafilomycinA1 and NH4Cl, which inhibit the CG pathway, reduce the uptake of RBD and impede Spike-pseudoviral infection in both AGS and AGS-ACE2 cells. The inhibition by BafilomycinA1 was found to be distinct from Chloroquine which neither affects RBD uptake nor alters endosomal pH, yet attenuates Spike-pseudovirus entry. By screening a subset of FDA-approved inhibitors for functionality similar to BafilomycinA1, we identified Niclosamide as a SARS-CoV-2 entry inhibitor. Further validation using a clinical isolate of SARS-CoV-2 in AGS-ACE2 and Vero cells confirmed its antiviral effect. We propose that Niclosamide, and other drugs which neutralize endosomal pH as well as inhibit the endocytic uptake, could provide broader applicability in subverting infection of viruses entering host cells via a pH-dependent endocytic pathway.
Collapse
Affiliation(s)
| | - Rashmi Godbole
- National Centre for Biological Sciences (TIFR), Bengaluru, India
- University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, India
| | - Parijat Sil
- National Centre for Biological Sciences (TIFR), Bengaluru, India
| | - Sowmya Jahnavi
- National Centre for Biological Sciences (TIFR), Bengaluru, India
| | - Shah-e-Jahan Gulzar
- National Centre for Biological Sciences (TIFR), Bengaluru, India
- SASTRA University, Thanjavur, India
| | | | - Dhruv Sheth
- National Centre for Biological Sciences (TIFR), Bengaluru, India
| | - Neeraja Subhash
- National Centre for Biological Sciences (TIFR), Bengaluru, India
- SASTRA University, Thanjavur, India
| | - Anchal Chandra
- National Centre for Biological Sciences (TIFR), Bengaluru, India
| | | | | | - Ibrahim U
- National Centre for Biological Sciences (TIFR), Bengaluru, India
| | | | | | - Riyaz Ahmed
- CSIR—Indian Institute of Integrative Medicine, Jammu, India
| | | | - Sai Manoz Lingamallu
- Institute for Stem Cell Science and Regenerative Medicine (inSTEM), Bengaluru, India
- Manipal Academy of Higher Education (MAHE), Madhav Nagar, Manipal, Karnataka, India
| | - Snigdhadev Das
- National Centre for Biological Sciences (TIFR), Bengaluru, India
| | | | - Praveen Vemula
- Institute for Stem Cell Science and Regenerative Medicine (inSTEM), Bengaluru, India
| | | | | | | | - Arjun Guha
- Institute for Stem Cell Science and Regenerative Medicine (inSTEM), Bengaluru, India
| | | | - Satyajit Mayor
- National Centre for Biological Sciences (TIFR), Bengaluru, India
| |
Collapse
|
89
|
Dierolf JG, Watson AJ, Betts DH. Differential localization patterns of pyruvate kinase isoforms in murine naïve, formative, and primed pluripotent states. Exp Cell Res 2021; 405:112714. [PMID: 34181938 DOI: 10.1016/j.yexcr.2021.112714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/17/2021] [Accepted: 06/22/2021] [Indexed: 12/28/2022]
Abstract
Mouse embryonic stem cells (mESCs) and mouse epiblast stem cells (mEpiSCs) represent opposite ends of the pluripotency continuum, referred to as naïve and primed pluripotent states, respectively. These divergent pluripotent states differ in several ways, including growth factor requirements, transcription factor expression, DNA methylation patterns, and metabolic profiles. Naïve cells employ both glycolysis and oxidative phosphorylation (OXPHOS), whereas primed cells preferentially utilize aerobic glycolysis, a trait shared with cancer cells referred to as the Warburg Effect. Until recently, metabolism has been regarded as a by-product of cell fate, however, evidence now supports metabolism as being a driver of stem cell state and fate decisions. Pyruvate kinase muscle isoforms (PKM1 and PKM2) are important for generating and maintaining pluripotent stem cells (PSCs) and mediating the Warburg Effect. Both isoforms catalyze the final, rate limiting step of glycolysis, generating adenosine triphosphate and pyruvate, however, the precise role(s) of PKM1/2 in naïve and primed pluripotency is not well understood. The primary objective of this study was to characterize the cellular expression and localization patterns of PKM1 and PKM2 in mESCs, chemically transitioned epiblast-like cells (mEpiLCs) representing formative pluripotency, and mEpiSCs using immunoblotting and confocal microscopy. The results indicate that PKM1 and PKM2 are not only localized to the cytoplasm, but also accumulate in differential subnuclear regions of mESC, mEpiLCs, and mEpiSCs as determined by a quantitative confocal microscopy employing orthogonal projections and airyscan processing. Importantly, we discovered that the subnuclear localization of PKM1/2 changes during the transition from mESCs, mEpiLCs, and mEpiSCs. Finally, we have comprehensively validated the appropriateness and power of the Pearson's correlation coefficient and Manders's overlap coefficient for assessing nuclear and cytoplasmic protein colocalization in PSCs by immunofluorescence confocal microscopy. We propose that nuclear PKM1/2 may assist with distinct pluripotency state maintenance and lineage priming by non-canonical mechanisms. These results advance our understanding of the overall mechanisms controlling naïve, formative, and primed pluripotency.
Collapse
Affiliation(s)
- Joshua G Dierolf
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada
| | - Andrew J Watson
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada; Department of Obstetrics and Gynecology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada; The Children's Health Research Institute (CHRI), Lawson Health Research Institute, London, Canada
| | - Dean H Betts
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada; Department of Obstetrics and Gynecology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada; The Children's Health Research Institute (CHRI), Lawson Health Research Institute, London, Canada.
| |
Collapse
|
90
|
Ferrera-González J, Francés-Soriano L, Estébanez N, Navarro-Raga E, González-Béjar M, Pérez-Prieto J. NIR laser scanning microscopy for photophysical characterization of upconversion nanoparticles and nanohybrids. NANOSCALE 2021; 13:10067-10080. [PMID: 34042932 DOI: 10.1039/d1nr00389e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photophysical characterization of upconversion nanoparticles (UCNPs) and nanohybrids (UCNHs) is more challenging than that of down-conversion nanomaterials. Moreover, it is still difficult to gain knowledge about the homogeneity of the sample and colocalization of emissive chromophores and nanoparticles in nanohybrids. Near infrared laser scanning microscopy (NIR-LSM) is a well-known and useful imaging technique, which enables excitation in the NIR region and has been extensively applied to optical fluorescence imaging of organic fluorophores and nanomaterials, such as quantum dots, which exhibit a short-lived emission. NIR-LSM has recently been used to determine the empirical emission lifetime of UCNPs, thus extending its application range to nanomaterials with a long lifetime emission. Here, we review our previous findings and include new measurements and samples to fully address the potential of this technique. NIR-LSM has proved to be extraordinarily useful not only for photophysical characterization of UCNHs consisting of UCNPs capped with a fluorophore to easily visualize the occurrence of the resonance energy transfer process between the UCNH constituents and their homogeneity, but also to assess the colocalization of the fluorophore and the UCNP in the UCNH; all this information can be acquired on the micro-/nano-meter scale by just taking one image.
Collapse
Affiliation(s)
- Juan Ferrera-González
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, University of Valencia, C/Catedrático José Beltrán, 2, Paterna, Valencia 46980, Spain.
| | - Laura Francés-Soriano
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, University of Valencia, C/Catedrático José Beltrán, 2, Paterna, Valencia 46980, Spain. and nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivité et Analyse), Université de Rouen Normandie, CNRS, INSA, 76821 Mont-Saint-Aignan Cedex, France
| | - Nestor Estébanez
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, University of Valencia, C/Catedrático José Beltrán, 2, Paterna, Valencia 46980, Spain.
| | - Enrique Navarro-Raga
- Servicio Central de Soporte a la Investigación Experimental (SCSIE). University of Valencia, Burjassot, Valencia 46100, Spain
| | - María González-Béjar
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, University of Valencia, C/Catedrático José Beltrán, 2, Paterna, Valencia 46980, Spain.
| | - Julia Pérez-Prieto
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, University of Valencia, C/Catedrático José Beltrán, 2, Paterna, Valencia 46980, Spain.
| |
Collapse
|
91
|
Panichnantakul P, Patel A, Tse EYW, Wyatt HDM. An open-source platform to quantify subnuclear foci and protein colocalization in response to replication stress. DNA Repair (Amst) 2021; 105:103156. [PMID: 34139663 DOI: 10.1016/j.dnarep.2021.103156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 11/28/2022]
Abstract
Nuclear reorganization, including the localization of proteins into discrete subnuclear foci, is a hallmark of the cellular response to DNA damage and replication stress. These foci are thought to represent transient environments or repair factories, in which the lesion is sequestered with molecules and co-factors that catalyze repair. For example, nuclear foci contain signaling proteins that recruit transducer proteins. One important class of transducers is the structure-selective endonucleases, such as SLX1-SLX4, MUS81-EME1, and XPF-ERCC1, which remove branched DNA structures that form during repair. The relocalization of structure-selective endonucleases into subnuclear foci provides a visual read-out for the presence of direct DNA damage, replication barriers, or DNA entanglements and can be monitored using fluorescence microscopy. By simultaneously probing for two or more fluorescent signals, fluorescence microscopy can also provide insights into the proximal association of proteins within a local environment. Here, we report an open-source and semi-automated method to detect and quantify subnuclear foci, as well as foci colocalization and the accompanying pixel-based colocalization metrics. We use this pipeline to show that pre-mitotic nuclei contain a basal threshold of foci marked by SLX1-SLX4, MUS81, or XPF. Some of these foci colocalize with FANCD2 and have a high degree of correlation and co-occurrence. We also show that pre-mitotic cells experiencing replication stress contain elevated levels of foci containing SLX1-SLX4 or XPF, but not MUS81. These results point towards a role for SLX1-SLX4 and XPF-ERCC1 in the early cellular response to replication stress. Nevertheless, most of the foci that form in response to replication stress contain either FANCD2 or one of the three endonucleases. Altogether, our work highlights the compositional heterogeneity of subnuclear foci that form in response to replication stress. We also describe a user-friendly pipeline that can be used to characterize these dynamic structures.
Collapse
Affiliation(s)
- Pudchalaluck Panichnantakul
- Department of Biochemistry, University of Toronto, MaRS Centre, 661 University Ave., Toronto, ON, M5G 1M1, Canada
| | - Ayushi Patel
- Department of Biochemistry, University of Toronto, MaRS Centre, 661 University Ave., Toronto, ON, M5G 1M1, Canada
| | - Elizabeth Y W Tse
- Department of Biochemistry, University of Toronto, MaRS Centre, 661 University Ave., Toronto, ON, M5G 1M1, Canada
| | - Haley D M Wyatt
- Department of Biochemistry, University of Toronto, MaRS Centre, 661 University Ave., Toronto, ON, M5G 1M1, Canada; Canada Research Chairs Program, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
92
|
Huang B, Zdora I, de Buhr N, Lehmbecker A, Baumgärtner W, Leitzen E. Phenotypical peculiarities and species-specific differences of canine and murine satellite glial cells of spinal ganglia. J Cell Mol Med 2021; 25:6909-6924. [PMID: 34096171 PMCID: PMC8278083 DOI: 10.1111/jcmm.16701] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022] Open
Abstract
Satellite glial cells (SGCs) are located in the spinal ganglia (SG) of the peripheral nervous system and tightly envelop each neuron. They preserve tissue homeostasis, protect neurons and react in response to injury. This study comparatively characterizes the phenotype of murine (mSGCs) and canine SGCs (cSGCs). Immunohistochemistry and immunofluorescence as well as 2D and 3D imaging techniques were performed to describe a SGC-specific marker panel, identify potential functional subsets and other phenotypical, species-specific peculiarities. Glutamine synthetase (GS) and the potassium channel Kir 4.1 are SGC-specific markers in murine and canine SG. Furthermore, a subset of mSGCs showed CD45 immunoreactivity and the majority of mSGCs were immunopositive for neural/glial antigen 2 (NG2), indicating an immune and a progenitor cell character. The majority of cSGCs were immunopositive for glial fibrillary acidic protein (GFAP), 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase) and Sox2. Therefore, cSGCs resemble central nervous system glial cells and progenitor cells. SGCs lacked expression of macrophage markers CD107b, Iba1 and CD204. Double labelling with GS/Kir 4.1 highlights the unique anatomy of SGC-neuron units and emphasizes the indispensability of further staining and imaging techniques for closer insights into the specific distribution of markers and potential colocalizations.
Collapse
Affiliation(s)
- Bei Huang
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany.,Center of Systems Neuroscience, Hannover, Germany
| | - Isabel Zdora
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany.,Center of Systems Neuroscience, Hannover, Germany
| | - Nicole de Buhr
- Department of Biochemistry, University of Veterinary Medicine, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine, Hannover, Germany
| | - Annika Lehmbecker
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany.,Center of Systems Neuroscience, Hannover, Germany
| | - Eva Leitzen
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
93
|
Kelly L, Seifi M, Ma R, Mitchell SJ, Rudolph U, Viola KL, Klein WL, Lambert JJ, Swinny JD. Identification of intraneuronal amyloid beta oligomers in locus coeruleus neurons of Alzheimer's patients and their potential impact on inhibitory neurotransmitter receptors and neuronal excitability. Neuropathol Appl Neurobiol 2021; 47:488-505. [PMID: 33119191 DOI: 10.1111/nan.12674] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/22/2022]
Abstract
AIMS Amyloid β-oligomers (AβO) are potent modulators of Alzheimer's pathology, yet their impact on one of the earliest brain regions to exhibit signs of the condition, the locus coeruleus (LC), remains to be determined. Of particular importance is whether AβO impact the spontaneous excitability of LC neurons. This parameter determines brain-wide noradrenaline (NA) release, and thus NA-mediated brain functions, including cognition, emotion and immune function, which are all compromised in Alzheimer's patients. Therefore, the aim of the study was to determine the expression profile of AβO in the LC of Alzheimer's patients and to probe their potential impact on the molecular and functional correlates of LC excitability, using a mouse model of increased Aβ production (APP-PSEN1). METHODS AND RESULTS Immunohistochemistry and confocal microscopy, using AβO-specific antibodies, confirmed LC AβO expression both intraneuronally and extracellularly in both Alzheimer's and APP-PSEN1 samples. Patch clamp electrophysiology recordings revealed that APP-PSEN1 LC neuronal hyperexcitability accompanied this AβO expression profile, arising from a diminished inhibitory effect of GABA due to impaired expression and function of the GABA-A receptor (GABAA R) α3 subunit. This altered LC α3-GABAA R expression profile overlapped with AβO expression in samples from both APP-PSEN1 mice and Alzheimer's patients. Finally, strychnine-sensitive glycine receptors (GlyRs) remained resilient to Aβ-induced changes and their activation reversed LC hyperexcitability. CONCLUSIONS The data suggest a close association between AβO and α3-GABAA Rs in the LC of Alzheimer's patients, and their potential to dysregulate LC activity, thereby contributing to the spectrum of pathology of the LC-NA system in this condition.
Collapse
Affiliation(s)
- Louise Kelly
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Mohsen Seifi
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, UK
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Ruolin Ma
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Scott J Mitchell
- Neuroscience, Division of Systems Medicine, Ninewells Hospital & Medical School, Dundee University, Dundee, UK
| | - Uwe Rudolph
- Department of Comparative Biosciences, College of Veterinary Medicine, and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kirsten L Viola
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL, USA
| | - William L Klein
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL, USA
| | - Jeremy J Lambert
- Neuroscience, Division of Systems Medicine, Ninewells Hospital & Medical School, Dundee University, Dundee, UK
| | - Jerome D Swinny
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
94
|
Nguyen DP, Nguyen HTH, Do LH. Tools and Methods for Investigating Synthetic Metal-Catalyzed Reactions in Living Cells. ACS Catal 2021; 11:5148-5165. [PMID: 34824879 PMCID: PMC8612649 DOI: 10.1021/acscatal.1c00438] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although abiotic catalysts are capable of promoting numerous new-to-nature reactions, only a small subset has so far been successfully integrated into living systems. Research in intracellular catalysis requires an interdisciplinary approach that takes advantage of both chemical and biological tools as well as state-of-the-art instrumentations. In this perspective, we will focus on the techniques that have made studying metal-catalyzed reactions in cells possible using representative examples from the literature. Although the lack of quantitative data in vitro and in vivo has somewhat limited progress in the catalyst development process, recent advances in characterization methods should help overcome some of these deficiencies. Given its tremendous potential, we believe that intracellular catalysis will play a more prominent role in the development of future biotechnologies and therapeutics.
Collapse
Affiliation(s)
- Dat P. Nguyen
- Department of Chemistry, University of Houston, 4800 Calhoun Rd, Houston, Texas 77004, United States
| | - Huong T. H. Nguyen
- Department of Chemistry, University of Houston, 4800 Calhoun Rd, Houston, Texas 77004, United States
| | - Loi H. Do
- Department of Chemistry, University of Houston, 4800 Calhoun Rd, Houston, Texas 77004, United States
| |
Collapse
|
95
|
Sousa de Almeida M, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev 2021; 50:5397-5434. [PMID: 33666625 PMCID: PMC8111542 DOI: 10.1039/d0cs01127d] [Citation(s) in RCA: 484] [Impact Index Per Article: 121.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Indexed: 12/19/2022]
Abstract
Nanoparticles (NPs) have attracted considerable attention in various fields, such as cosmetics, the food industry, material design, and nanomedicine. In particular, the fast-moving field of nanomedicine takes advantage of features of NPs for the detection and treatment of different types of cancer, fibrosis, inflammation, arthritis as well as neurodegenerative and gastrointestinal diseases. To this end, a detailed understanding of the NP uptake mechanisms by cells and intracellular localization is essential for safe and efficient therapeutic applications. In the first part of this review, we describe the several endocytic pathways involved in the internalization of NPs and we discuss the impact of the physicochemical properties of NPs on this process. In addition, the potential challenges of using various inhibitors, endocytic markers and genetic approaches to study endocytosis are addressed along with the principal (semi) quantification methods of NP uptake. The second part focuses on synthetic and bio-inspired substances, which can stimulate or decrease the cellular uptake of NPs. This approach could be interesting in nanomedicine where a high accumulation of drugs in the target cells is desirable and clearance by immune cells is to be avoided. This review contributes to an improved understanding of NP endocytic pathways and reveals potential substances, which can be used in nanomedicine to improve NP delivery.
Collapse
Affiliation(s)
- Mauro Sousa de Almeida
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | - Eva Susnik
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | - Barbara Drasler
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | | | - Alke Petri-Fink
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
- Department of Chemistry, University of FribourgChemin du Musée 91700 FribourgSwitzerland
| | | |
Collapse
|
96
|
Liu Z, Yan A, Zhao J, Yang S, Song L, Liu Z. The p75 neurotrophin receptor as a novel intermediate in L-dopa-induced dyskinesia in experimental Parkinson's disease. Exp Neurol 2021; 342:113740. [PMID: 33971218 DOI: 10.1016/j.expneurol.2021.113740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/14/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022]
Abstract
In Parkinson's disease (PD), long-term administration of L-dopa often leads to L-dopa-induced dyskinesia (LID), a debilitating motor complication. The p75 neurotrophin receptor (p75NTR) is likely to play a critical role in the regulation of dendritic spine density and morphology and appears to be associated with neuroinflammation, which previously has been identified as a crucial mechanism in LID. While aberrant modifications of p75NTR in neurological diseases have been extensively documented, only a few studies report p75NTR dysfunction in PD, and no data are available in LID. Here, we explored the functional role of p75NTR in LID. In LID rats, we identified that p75NTR was significantly increased in the lesioned striatum. In 6-hydroxydopamine (6-OHDA)-hemilesioned rats, specific knockdown of striatal p75NTR levels achieved by viral vector injection into the striatum prevented the development of LID and increased striatal structural plasticity. By contrast, we found that in 6-OHDA-hemilesioned rats, striatal p75NTR overexpression exacerbated LID and facilitated striatal dendritic spine losses. Moreover, we observed that the immunomodulatory drug fingolimod attenuated LID without lessening the therapeutic efficacy of L-dopa and normalized p75NTR levels. Together, these data demonstrate for the first time that p75NTR plays a pivotal role in the development of LID and that p75NTR may act as a potential novel target for the management of LID.
Collapse
Affiliation(s)
- Zhihua Liu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200082, China
| | - Aijuan Yan
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Jiahao Zhao
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200082, China
| | - Shuyuan Yang
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200082, China
| | - Lu Song
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200082, China
| | - Zhenguo Liu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200082, China.
| |
Collapse
|
97
|
Halewa J, Marouillat S, Dixneuf M, Thépault RA, Ung DC, Chatron N, Gérard B, Ghoumid J, Lesca G, Till M, Smol T, Couque N, Ruaud L, Chune V, Grotto S, Verloes A, Vuillaume ML, Toutain A, Raynaud M, Laumonnier F. Novel missense mutations in PTCHD1 alter its plasma membrane subcellular localization and cause intellectual disability and autism spectrum disorder. Hum Mutat 2021; 42:848-861. [PMID: 33856728 PMCID: PMC8359977 DOI: 10.1002/humu.24208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/29/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022]
Abstract
The X-linked PTCHD1 gene, encoding a synaptic membrane protein, has been involved in neurodevelopmental disorders with the description of deleterious genomic microdeletions or truncating coding mutations. Missense variants were also identified, however, without any functional evidence supporting their pathogenicity level. We investigated 13 missense variants of PTCHD1, including eight previously described (c.152G>A,p.(Ser51Asn); c.217C>T,p.(Leu73Phe); c.517A>G,p.(Ile173Val); c.542A>C,p.(Lys181Thr); c.583G>A,p.(Val195Ile); c.1076A>G,p.(His359Arg); c.1409C>A,p.(Ala470Asp); c.1436A>G,p.(Glu479Gly)), and five novel ones (c.95C>T,p.(Pro32Leu); c.95C>G,p.(Pro32Arg); c.638A>G,p.(Tyr213Cys); c.898G>C,p.(Gly300Arg); c.928G>C,p.(Ala310Pro)) identified in male patients with intellectual disability (ID) and/or autism spectrum disorder (ASD). Interestingly, several of these variants involve amino acids localized in structural domains such as transmembrane segments. To evaluate their potentially deleterious impact on PTCHD1 protein function, we performed in vitro overexpression experiments of the wild-type and mutated forms of PTCHD1-GFP in HEK 293T and in Neuro-2a cell lines as well as in mouse hippocampal primary neuronal cultures. We found that six variants impaired the expression level of the PTCHD1 protein, and were retained in the endoplasmic reticulum suggesting abnormal protein folding. Our functional analyses thus provided evidence of the pathogenic impact of missense variants in PTCHD1, which reinforces the involvement of the PTCHD1 gene in ID and in ASD.
Collapse
Affiliation(s)
- Judith Halewa
- UMR1253, iBrain, INSERM, University of Tours, Tours, France
| | | | - Manon Dixneuf
- UMR1253, iBrain, INSERM, University of Tours, Tours, France
| | | | - Dévina C Ung
- UMR1253, iBrain, INSERM, University of Tours, Tours, France
| | - Nicolas Chatron
- Department of Genetics, Hospices Civils de Lyon, Lyon, France.,Institut NeuroMyoGène, CNRS UMR-5310, INSERM U-1217, Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Bénédicte Gérard
- Laboratoire de diagnostic génétique, Institut de Génétique Médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jamal Ghoumid
- EA7364 RADEME, Clinique de Génétique Guy Fontaine, Université de Lille, CHU de Lille, Lille, France
| | - Gaëtan Lesca
- Department of Genetics, Hospices Civils de Lyon, Lyon, France.,Institut NeuroMyoGène, CNRS UMR-5310, INSERM U-1217, Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Marianne Till
- Department of Genetics, Hospices Civils de Lyon, Lyon, France
| | - Thomas Smol
- EA7364 RADEME, Institut de Génétique Médicale, Université de Lille, CHU de Lille, Lille, France
| | - Nathalie Couque
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France
| | - Lyse Ruaud
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France.,INSERM, UMR1141, Denis Diderot School of Medicine, Paris University, Paris, France
| | - Valérie Chune
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France
| | - Sarah Grotto
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France.,INSERM, UMR1141, Denis Diderot School of Medicine, Paris University, Paris, France
| | - Alain Verloes
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France.,INSERM, UMR1141, Denis Diderot School of Medicine, Paris University, Paris, France
| | - Marie-Laure Vuillaume
- UMR1253, iBrain, INSERM, University of Tours, Tours, France.,Service de Génétique, Centre hospitalier régional universitaire de Tours, Tours, France
| | - Annick Toutain
- UMR1253, iBrain, INSERM, University of Tours, Tours, France.,Service de Génétique, Centre hospitalier régional universitaire de Tours, Tours, France
| | - Martine Raynaud
- UMR1253, iBrain, INSERM, University of Tours, Tours, France.,Service de Génétique, Centre hospitalier régional universitaire de Tours, Tours, France
| | - Frédéric Laumonnier
- UMR1253, iBrain, INSERM, University of Tours, Tours, France.,Service de Génétique, Centre hospitalier régional universitaire de Tours, Tours, France
| |
Collapse
|
98
|
Guevara RB, Fox BA, Bzik DJ. A Family of Toxoplasma gondii Genes Related to GRA12 Regulate Cyst Burdens and Cyst Reactivation. mSphere 2021; 6:e00182-21. [PMID: 33883265 PMCID: PMC8546695 DOI: 10.1128/msphere.00182-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/26/2021] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii causes a chronic infection that renders the immunocompromised human host susceptible to toxoplasmic encephalitis triggered by cyst reactivation in the central nervous system. The dense granule protein GRA12 is a major parasite virulence factor required for parasite survival during acute infection. Here, we characterized the role of four GRA12-related genes in acute and chronic stages of infection. While GRA12A, GRA12B, and GRA12D were highly expressed in asexual stage tachyzoites and bradyzoites, expression of GRA12C appeared to be restricted to the sexual stages. In contrast to deletion of GRA12 (Δgra12), no major defects in acute virulence were observed in Δgra12A, Δgra12B, or Δgra12D parasites, though Δgra12B parasites exhibited an increased tachyzoite replication rate. Bradyzoites secreted GRA12A, GRA12B, and GRA12D and incorporated these molecules into the developing cyst wall, as well as the cyst matrix in distinct patterns. Similar to GRA12, GRA12A, GRA12B, and GRA12D colocalized with the dense granules in extracellular tachyzoites, with GRA2 and the intravacuolar network in the tachyzoite stage parasitophorous vacuole and with GRA2 in the cyst matrix and cyst wall. Chronic stage cyst burdens were decreased in mice infected with Δgra12A parasites and were increased in mice infected with Δgra12B parasites. However, Δgra12B cysts were not efficiently maintained in vivo Δgra12A, Δgra12B, and Δgra12D in vitro cysts displayed a reduced reactivation efficiency, and reactivation of Δgra12A cysts was delayed. Collectively, our results suggest that a family of genes related to GRA12 play significant roles in the formation, maintenance, and reactivation of chronic stage cysts.IMPORTANCE If host immunity weakens, Toxoplasma gondii cysts recrudesce in the central nervous system and cause a severe toxoplasmic encephalitis. Current therapies target acute stage infection but do not eliminate chronic cysts. Parasite molecules that mediate the development and persistence of chronic infection are poorly characterized. Dense granule (GRA) proteins such as GRA12 are key virulence factors during acute infection. Here, we investigated four GRA12-related genes. GRA12-related genes were not major virulence factors during acute infection. Instead, GRA12-related proteins localized at the cyst wall and cyst matrix and played significant roles in cyst development, persistence, and reactivation during chronic infection. Similar to GRA12, the GRA12-related proteins selectively associated with the intravacuolar network of membranes inside the vacuole. Collectively, our results support the hypothesis that GRA12 proteins associated with the intravacuolar membrane system support parasite virulence during acute infection and cyst development, persistence, and reactivation during chronic infection.
Collapse
Affiliation(s)
- Rebekah B Guevara
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Barbara A Fox
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - David J Bzik
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| |
Collapse
|
99
|
Duplancic R, Kero D. Novel approach for quantification of multiple immunofluorescent signals using histograms and 2D plot profiling of whole-section panoramic images. Sci Rep 2021; 11:8619. [PMID: 33883639 PMCID: PMC8060297 DOI: 10.1038/s41598-021-88101-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 04/08/2021] [Indexed: 12/27/2022] Open
Abstract
We describe a novel approach for quantification and colocalization of immunofluorescence (IF) signals of multiple markers on high-resolution panoramic images of serial histological sections utilizing standard staining techniques and readily available software for image processing and analysis. Human gingiva samples stained with primary antibodies against the common leukocyte antigen CD45 and factors related to heparan sulfate glycosaminoglycans (HS GAG) were used. Expression domains and spatial gradients of IF signals were quantified by histograms and 2D plot profiles, respectively. The importance of histomorphometric profiling of tissue samples and IF signal thresholding is elaborated. This approach to quantification of IF staining utilizes pixel (px) counts and comparison of px grey value (GV) or luminance. No cell counting is applied either to determine the cellular content of a given histological section nor the number of cells positive to the primary antibody of interest. There is no selection of multiple Regions-Of-Interest (ROIs) since the entire histological section is quantified. Although the standard IF staining protocol is applied, the data output enables colocalization of multiple markers (up to 30) from a given histological sample. This can serve as an alternative for colocalization of IF staining of multiple primary antibodies based on repeating cycles of staining of the same histological section since those techniques require non standard staining protocols and sophisticated equipment that can be out of reach for small laboratories in academic settings. Combined with the data from ontological bases, this approach to quantification of IF enables creation of in silico virtual disease models.
Collapse
Affiliation(s)
- Roko Duplancic
- Study Program of Dental Medicine, School of Medicine, University of Split, Soltanska 2, 21000, Split, Croatia
| | - Darko Kero
- Study Program of Dental Medicine, School of Medicine, University of Split, Soltanska 2, 21000, Split, Croatia. .,Department of Anatomy, Histology and Embryology, Laboratory for Early Human Development, School of Medicine, University of Split, Soltanska 2, 21000, Split, Croatia.
| |
Collapse
|
100
|
Mahadevan G, Valiyaveettil S. Comparison of Genotoxicity and Cytotoxicity of Polyvinyl Chloride and Poly(methyl methacrylate) Nanoparticles on Normal Human Lung Cell Lines. Chem Res Toxicol 2021; 34:1468-1480. [PMID: 33861932 DOI: 10.1021/acs.chemrestox.0c00391] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
High concentrations of micro- and nanoparticles of common plastic materials present in the environment are causing an adverse health impact on living organisms. As a model study, here we report the synthesis and characterization of luminescent polyvinyl chloride (PVC) and poly(methyl methacrylate) (PMMA) nanoparticles and investigate the interaction with normal human lung fibroblast cells (IMR 90) to understand the uptake, translocation, and toxicity of PVC and PMMA nanoparticles. The synthesized particles are in the size range of 120-140 nm with a negative surface potential. The colocalization and uptake efficiency of the nanoparticles were analyzed, and the cytotoxicity assay shows significant reduction in cell viability. Cellular internalization was investigated using colocalization and dynasore inhibitor tests, which showed that the PVC and PMMA nanoparticles enter into the cell via endocytosis. The polymer nanoparticles induced a reduction in viability, decrease in adenosine triphosphate, and increase in reactive oxygen species and lactate dehydrogenase concentrations. In addition, the polymer nanoparticles caused cell cycle arrest at sub-G1, G0/G1, and G2/M phases, followed by apoptotic cell death. Our results reported here are important to the emerging data on understanding the impact of common polymer particles on human health.
Collapse
Affiliation(s)
- Gomathi Mahadevan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Suresh Valiyaveettil
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| |
Collapse
|