51
|
Lee DC, Varela A, Kostenuik PJ, Ominsky MS, Keaveny TM. Finite Element Analysis of Denosumab Treatment Effects on Vertebral Strength in Ovariectomized Cynomolgus Monkeys. J Bone Miner Res 2016; 31:1586-95. [PMID: 27149403 DOI: 10.1002/jbmr.2830] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 03/01/2016] [Accepted: 03/04/2016] [Indexed: 01/22/2023]
Abstract
Finite element analysis has not yet been validated for measuring changes in whole-bone strength at the hip or spine in people after treatment with an osteoporosis agent. Toward that end, we assessed the ability of a clinically approved implementation of finite element analysis to correctly quantify treatment effects on vertebral strength, comparing against direct mechanical testing, in cynomolgus monkeys randomly assigned to one of three 16-month-long treatments: sham surgery with vehicle (Sham-Vehicle), ovariectomy with vehicle (OVX-Vehicle), or ovariectomy with denosumab (OVX-DMAb). After treatment, T12 vertebrae were retrieved, scanned with micro-CT, and mechanically tested to measure compressive strength. Blinded to the strength data and treatment codes, the micro-CT images were coarsened and homogenized to create continuum-type finite element models, without explicit porosity. With clinical translation in mind, these models were then analyzed for strength using the U.S. Food and Drug Administration (FDA)-cleared VirtuOst software application (O.N. Diagnostics, Berkeley, CA, USA), developed for analysis of human bones. We found that vertebral strength by finite element analysis was highly correlated (R(2) = 0.97; n = 52) with mechanical testing, independent of treatment (p = 0.12). Further, the size of the treatment effect on strength (ratio of mean OVX-DMAb to mean OVX-Vehicle, as a percentage) was large and did not differ (p = 0.79) between mechanical testing (+57%; 95% CI [26%, 95%]) and finite element analysis (+51% [20%, 88%]). The micro-CT analysis revealed increases in cortical thickness (+45% [19%, 73%]) and trabecular bone volume fraction (+24% [8%, 42%]). These results show that a preestablished clinical finite element analysis implementation-developed for human bone and clinically validated in fracture-outcome studies-correctly quantified the observed treatment effects of denosumab on vertebral strength in cynomolgus monkeys. One implication is that the treatment effects in this study are well explained by the features contained within these finite element models, namely, the bone geometry and mass and the spatial distribution of bone mass. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | - Aurore Varela
- Charles River Laboratories Inc., Montréal, QC, Canada
| | | | | | | |
Collapse
|
52
|
Wang J, Stein EM, Zhou B, Nishiyama KK, Yu YE, Shane E, Guo XE. Deterioration of trabecular plate-rod and cortical microarchitecture and reduced bone stiffness at distal radius and tibia in postmenopausal women with vertebral fractures. Bone 2016; 88:39-46. [PMID: 27083398 PMCID: PMC4899124 DOI: 10.1016/j.bone.2016.04.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 03/07/2016] [Accepted: 04/04/2016] [Indexed: 10/21/2022]
Abstract
Postmenopausal women with vertebral fractures have abnormal bone microarchitecture at the distal radius and tibia by HR-pQCT, independent of areal BMD. However, whether trabecular plate and rod microarchitecture is altered in women with vertebral fractures is unknown. This study aims to characterize the abnormalities of trabecular plate and rod microarchitecture, cortex, and bone stiffness in postmenopausal women with vertebral fractures. HR-pQCT images of distal radius and tibia were acquired from 45 women with vertebral fractures and 45 control subjects without fractures. Trabecular and cortical compartments were separated by an automatic segmentation algorithm and subjected to individual trabecula segmentation (ITS) analysis for measuring trabecular plate and rod morphology and cortical bone evaluation for measuring cortical thickness and porosity, respectively. Whole bone and trabecular bone stiffness were estimated by finite element analysis. Fracture and control subjects did not differ according to age, race, body mass index, osteoporosis risk factors, or medication use. Women with vertebral fractures had thinner cortices, and larger trabecular area compared to the control group. By ITS analysis, fracture subjects had fewer trabecular plates, less axially aligned trabeculae and less trabecular connectivity at both the radius and the tibia. Fewer trabecular rods were observed at the radius. Whole bone stiffness and trabecular bone stiffness were 18% and 22% lower in women with vertebral fractures at the radius, and 19% and 16% lower at the tibia, compared with controls. The estimated failure load of the radius and tibia were also reduced in the fracture subjects by 13% and 14%, respectively. In summary, postmenopausal women with vertebral fractures had both trabecular and cortical microstructural deterioration at the peripheral skeleton, with a preferential loss of trabecular plates and cortical thinning. These microstructural deficits translated into lower whole bone and trabecular bone stiffness at the radius and tibia. Our results suggest that abnormalities in trabecular plate and rod microstructure may be important mechanisms of vertebral fracture in postmenopausal women.
Collapse
Affiliation(s)
- Ji Wang
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| | - Emily M Stein
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Bin Zhou
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| | - Kyle K Nishiyama
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Y Eric Yu
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| | - Elizabeth Shane
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - X Edward Guo
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
53
|
Boutroy S, Khosla S, Sornay-Rendu E, Zanchetta MB, McMahon DJ, Zhang CA, Chapurlat RD, Zanchetta J, Stein EM, Bogado C, Majumdar S, Burghardt AJ, Shane E. Microarchitecture and Peripheral BMD are Impaired in Postmenopausal White Women With Fracture Independently of Total Hip T-Score: An International Multicenter Study. J Bone Miner Res 2016; 31:1158-66. [PMID: 26818785 PMCID: PMC4891284 DOI: 10.1002/jbmr.2796] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 12/23/2015] [Accepted: 12/29/2015] [Indexed: 11/06/2022]
Abstract
Because single-center studies have reported conflicting associations between microarchitecture and fracture prevalence, we included high-resolution peripheral quantitative computed tomography (HR-pQCT) data from five centers worldwide into a large multicenter analysis of postmenopausal women with and without fracture. Volumetric BMD (vBMD) and microarchitecture were assessed at the distal radius and tibia in 1379 white postmenopausal women (age 67 ± 8 years); 470 (34%) had at least one fracture including 349 with a major fragility fracture. Age, height, weight, and total hip T-score differed across centers and were employed as covariates in analyses. Women with fracture had higher BMI, were older, and had lower total hip T-score, but lumbar spine T-score was similar between groups. At the radius, total and trabecular vBMD and cortical thickness were significantly lower in fractured women in three out of five centers, and trabecular number in two centers. Similar results were found at the tibia. When data from five centers were combined, however, women with fracture had significantly lower total, trabecular, and cortical vBMD (2% to 7%), lower trabecular number (4% to 5%), and thinner cortices (5% to 6%) than women without fracture after adjustment for covariates. Results were similar at the radius and tibia. Similar results were observed with analysis restricted to major fragility fracture, vertebral and hip fractures, and peripheral fracture (at the radius). When focusing on osteopenic women, each SD decrease of total and trabecular vBMD was associated with a significantly increased risk of major fragility fracture (OR = 1.55 to 1.88, p < 0.01) after adjustment for covariates. Moreover, trabecular architecture modestly improved fracture discrimination beyond peripheral total vBMD. In conclusion, we observed differences by center in the magnitude of fracture/nonfracture differences at both the distal radius and tibia. However, when data were pooled across centers and the sample size increased, we observed significant and consistent deficits in vBMD and microarchitecture independent of total hip T-score in all postmenopausal white women with fracture and in the subgroup of osteopenic women, compared to women who never had a fracture. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Stephanie Boutroy
- College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA.,INSERM UMR1033, Université de Lyon, Hospices Civils de Lyon, Lyon, France
| | - Sundeep Khosla
- Endocrine Research Unit, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Maria Belen Zanchetta
- Instituto de Diagnóstico e Investigaciones Metabolicas (IDIM), Universidad del Salvador, Buenos Aires, Argentina
| | - Donald J McMahon
- College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Chiyuan A Zhang
- College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Roland D Chapurlat
- INSERM UMR1033, Université de Lyon, Hospices Civils de Lyon, Lyon, France
| | - Jose Zanchetta
- Instituto de Diagnóstico e Investigaciones Metabolicas (IDIM), Universidad del Salvador, Buenos Aires, Argentina
| | - Emily M Stein
- College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Cesar Bogado
- Instituto de Diagnóstico e Investigaciones Metabolicas (IDIM), Universidad del Salvador, Buenos Aires, Argentina
| | - Sharmila Majumdar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Andrew J Burghardt
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Elizabeth Shane
- College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
54
|
Verroken C, Zmierczak HG, Goemaere S, Kaufman JM, Lapauw B. Association of Jumping Mechanography-Derived Indices of Muscle Function with Tibial Cortical Bone Geometry. Calcif Tissue Int 2016; 98:446-55. [PMID: 26671019 DOI: 10.1007/s00223-015-0094-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
Abstract
Jumping mechanography has been developed to estimate maximum voluntary muscle forces. This study assessed associations of jumping mechanography-derived force and power measurements with tibial cortical bone geometry, compared to other estimates of muscle mass, size, and function. Healthy men (n = 181; 25-45 years) were recruited in a cross-sectional, population-based sibling-pair study. Muscle parameters include isokinetic peak torque of the quadriceps, DXA-derived leg lean mass, mechanography-derived peak jump force and power, and pQCT-derived mid-tibial (66 %) muscle cross-sectional area (CSA). Mid-tibial cortical bone parameters were assessed by pQCT. In age, height, and weight-adjusted analyses, jump force and power correlated positively with cortical bone area, cortical thickness, and polar strength-strain index (SSIp) (β = 0.23-0.34, p ≤ 0.001 for force; β = 0.25-0.30, p ≤ 0.007 for power) and inversely with endosteal circumference adjusted for periosteal circumference (ECPC) (β = -0.16, p < 0.001 for force; β = -0.13, p = 0.007 for power). Force but not power correlated with cortical over total bone area ratio (β = 0.25, p = 0.002). Whereas leg lean mass correlated with all cortical parameters except cortical over total bone area ratio (β = 0.25-0.62, p ≤ 0.004), muscle CSA only correlated with cortical bone area, periosteal circumference, and SSIp (β = 0.21-0.26, p ≤ 0.001), and quadriceps torque showed no significant correlations with the bone parameters. Multivariate models indicated that leg lean mass was independently associated with overall bone size and strength reflected by periosteal and endosteal circumference and SSIp (β = 0.32-0.55, p ≤ 0.004), whereas jump force was independently associated with cortical bone size reflected by ECPC, cortical thickness, and cortical over total bone area ratio (β = 0.13-0.28; p ≤ 0.002). These data indicate that jumping mechanography provides relevant information about the relationship of muscle with bone geometry.
Collapse
Affiliation(s)
- Charlotte Verroken
- Unit for Osteoporosis and Metabolic Bone Diseases, Department of Endocrinology, Ghent University Hospital, De Pintelaan 185, 9K12IE, 9000, Ghent, Belgium.
| | - Hans-Georg Zmierczak
- Unit for Osteoporosis and Metabolic Bone Diseases, Department of Endocrinology, Ghent University Hospital, De Pintelaan 185, 9K12IE, 9000, Ghent, Belgium
| | - Stefan Goemaere
- Unit for Osteoporosis and Metabolic Bone Diseases, Department of Endocrinology, Ghent University Hospital, De Pintelaan 185, 9K12IE, 9000, Ghent, Belgium
| | - Jean-Marc Kaufman
- Unit for Osteoporosis and Metabolic Bone Diseases, Department of Endocrinology, Ghent University Hospital, De Pintelaan 185, 9K12IE, 9000, Ghent, Belgium
| | - Bruno Lapauw
- Unit for Osteoporosis and Metabolic Bone Diseases, Department of Endocrinology, Ghent University Hospital, De Pintelaan 185, 9K12IE, 9000, Ghent, Belgium
| |
Collapse
|
55
|
Vilayphiou N, Boutroy S, Sornay-Rendu E, Van Rietbergen B, Chapurlat R. Age-related changes in bone strength from HR-pQCT derived microarchitectural parameters with an emphasis on the role of cortical porosity. Bone 2016; 83:233-240. [PMID: 26525593 DOI: 10.1016/j.bone.2015.10.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 10/11/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
Abstract
The high resolution peripheral computed tomography (HR-pQCT) technique has seen recent developments with regard to the assessment of cortical porosity. In this study, we investigated the role of cortical porosity on bone strength in a large cohort of women. The distal radius and distal tibia were scanned by HR-pQCT. We assessed bone strength by estimating the failure load by microfinite element analysis (μFEA), with isotropic and homogeneous material properties. We built a multivariate model to predict it, using a few microarchitecture variables including cortical porosity. Among 857 Caucasian women analyzed with μFEA, we found that cortical and trabecular properties, along with the failure load, impaired slightly with advancing age in premenopausal women, the correlations with age being modest, with |rage| ranging from 0.14 to 0.38. After the onset of the menopause, those relationships with age were stronger for most parameters at both sites, with |rage| ranging from 0.10 to 0.64, notably for cortical porosity and failure load, which were markedly deteriorated with increasing age. Our multivariate model using microarchitecture parameters revealed that cortical porosity played a significant role in bone strength prediction, with semipartial r(2)=0.22 only at the tibia in postmenopausal women. In conclusion, in our large cohort of women, we observed a small decline of bone strength at the tibia before the onset of menopause. We also found an age-related increase of cortical porosity at both scanned sites in premenopausal women. In postmenopausal women, the relatively high increase of cortical porosity accounted for the decline in bone strength only at the tibia.
Collapse
Affiliation(s)
- Nicolas Vilayphiou
- INSERM Research Unit 1033, Université de Lyon, Lyon, France; Scanco Medical AG, Bruttisellen, Switzerland.
| | | | | | - Bert Van Rietbergen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | |
Collapse
|
56
|
Prevalence of Poor Bone Quality in Women Undergoing Spinal Fusion Using Biomechanical-CT Analysis. Spine (Phila Pa 1976) 2016; 41:246-52. [PMID: 26352741 DOI: 10.1097/brs.0000000000001175] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Retrospective, cross-sectional analysis of vertebral bone quality in spine-fusion patients at a single medical center. OBJECTIVE To characterize the prevalence of osteoporosis and fragile bone strength in a spine-fusion population of women with an age range of 50 years to 70 years. Fragile bone strength is defined as the level of vertebral strength below which a patient is at as high a risk of future vertebral fracture as a patient having bone density-defined osteoporosis. SUMMARY OF BACKGROUND DATA Poor bone quality--defined here as the presence of either osteoporosis or fragile bone strength--is a risk factor for spine-fusion patients that often goes undetected but can now be assessed preoperatively by additional postprocessing of computed tomography (CT) scans originally ordered for perioperative clinical assessment. METHODS Utilizing such perioperative CT scans for a cohort of 98 women (age range: 51-70 yr) about to undergo spine fusion, we retrospectively used a phantomless calibration technique and biomechanical-CT postprocessing analysis to measure vertebral trabecular bone mineral density (BMD) (in mg/cm³) and by nonlinear finite element analysis, vertebral compressive strength (in Newtons, N) in the L1 or L2 vertebra. Preestablished validated threshold values were used to define the presence of osteoporosis (trabecular BMD of 80 mg/cm³ or lower) and fragile bone strength (vertebral strength of 4500 N or lower). RESULTS Fourteen percent of the women tested positive for osteoporosis, 27% tested positive for fragile bone strength, and 29% were classified as having poor bone quality (either osteoporosis or fragile bone strength). Over this narrow age range, neither BMD nor vertebral strength were significantly correlated with age, weight, height, or body mass index (P values 0.14-0.97 for BMD; 0.13-0.51 for strength). CONCLUSION Poor bone quality appears to be common in women between ages 50 years and 70 years undergoing spinal fusion surgery. LEVEL OF EVIDENCE 3.
Collapse
|
57
|
Abstract
Vertebral fractures are one of the most common fractures associated with skeletal fragility and can cause as much morbidity as hip fractures. However, the epidemiology of vertebral fractures differs from that of osteoporotic fractures at other skeletal sites in important ways, largely because only one quarter to one-third of vertebral fractures are recognized clinically at the time of their occurrence and otherwise require lateral spine imaging to be recognized. This article first reviews the prevalence and incidence of clinical and radiographic vertebral fractures in populations across the globe and secular trends in the incidence of vertebral fracture over time. Next, associations of vertebral fractures with measures of bone mineral density and bone microarchitecture are reviewed followed by associations of vertebral fracture with various textural measures of trabecular bone, including trabecular bone score. Finally, the article reviews clinical risk factors for vertebral fracture and the association of vertebral fractures with morbidity, mortality, and other subsequent adverse health outcomes.
Collapse
Affiliation(s)
- John T Schousboe
- Park Nicollet Osteoporosis Center, Park Nicollet Clinic, HealthPartners, Minneapolis, MN, USA; Division of Health Policy and Management, School of Public Health, University of Minnesota, Minneapolis, MD, USA.
| |
Collapse
|
58
|
Hoff BA, Toole M, Yablon C, Ross BD, Luker GD, VanPoznak C, Galbán CJ. Potential for Early Fracture Risk Assessment in Patients with Metastatic Bone Disease using Parametric Response Mapping of CT Images. ACTA ACUST UNITED AC 2015; 1:98-104. [PMID: 26771006 PMCID: PMC4710140 DOI: 10.18383/j.tom.2015.00154] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pathologic vertebral compression fractures (PVCFs) cause significant morbidity in patients with metastatic bone disease. Limitations in existing clinical biomarkers leave clinicians without reliable metrics for predicting PVCF, thus impeding efforts to prevent this severe complication. To establish the feasibility of a new method for defining the risk of a PVCF, we retrospectively analyzed serial computed tomography (CT) scans from 5 breast cancer patients using parametric response mapping (PRM) to quantify dynamic bone miniral density (BMD) changes that preceded an event. Vertebrae segmented from each scan were registered to the same spatial frame and voxel classification was accomplished using a predetermined threshold of change in Hounsfield units (HU), resulting in relative volumes of increased (PRMHU+), decreased (PRMHU−), or unchanged (PRMHU0) attenuation. A total of 7 PVCFs were compared to undiseased vertebrae in each patient serving as controls. A receiver operator curve (ROC) analysis identified optimal imaging times for group stratification. BMD changes were apparent by an elevated PRMHU+ as early as 1 year before fracture. ROC analysis showed poor performance of PRMHU− in stratifying PVCFs versus controls. As early as 6 months before PVCF, PRMHU+ was significantly larger (12.9 ± 11.6%) than control vertebrae (2.3 ± 2.5%), with an area under the curve of 0.918 from an ROC analysis. Mean HU changes were also significant between PVCF (26.8 ± 26.9%) and control (−2.2 ± 22.0%) over the same period. A PRM analysis of BMD changes using standard CT imaging was sensitive for spatially resolving changes that preceded structural failure in these patients.
Collapse
Affiliation(s)
- Benjamin A Hoff
- Department of Radiology, University of Michigan, Center for Molecular Imaging, Ann Arbor, MI 48109, USA
| | - Michael Toole
- Department of Internal Medicine, University of Michigan, Center for Molecular Imaging, Ann Arbor, MI 48109, USA
| | - Corrie Yablon
- Department of Radiology, University of Michigan, Center for Molecular Imaging, Ann Arbor, MI 48109, USA
| | - Brian D Ross
- Department of Radiology, University of Michigan, Center for Molecular Imaging, Ann Arbor, MI 48109, USA
| | - Gary D Luker
- Department of Radiology, University of Michigan, Center for Molecular Imaging, Ann Arbor, MI 48109, USA
| | - Catherine VanPoznak
- Department of Internal Medicine, University of Michigan, Center for Molecular Imaging, Ann Arbor, MI 48109, USA
| | - Craig J Galbán
- Department of Radiology, University of Michigan, Center for Molecular Imaging, Ann Arbor, MI 48109, USA
| |
Collapse
|
59
|
Cervinka T, Sievänen H, Lala D, Cheung AM, Giangregorio L, Hyttinen J. A new algorithm to improve assessment of cortical bone geometry in pQCT. Bone 2015; 81:721-730. [PMID: 26428659 DOI: 10.1016/j.bone.2015.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 08/31/2015] [Accepted: 09/25/2015] [Indexed: 11/18/2022]
Abstract
High-resolution peripheral quantitative computed tomography (HR-pQCT) is now considered the leading imaging modality in bone research. However, access to HR-pQCT is limited and image acquisition is mainly constrained only for the distal third of appendicular bones. Hence, the conventional pQCT is still commonly used despite inaccurate threshold-based segmentation of cortical bone that can compromise the assessment of whole bone strength. Therefore, this study addressed whether the use of an advanced image processing algorithm, called OBS, can enhance the cortical bone analysis in pQCT images and provide similar information to HR-pQCT when the same volumes of interest are analyzed. Using pQCT images of European Forearm Phantom (EFP), and pQCT and HR-pQCT images of the distal tibia from 15 cadavers, we compared the results from the OBS algorithm with those obtained from common pQCT analyses, HR-pQCT manual analysis (considered as a gold standard) and common HR-pQCT analysis dual threshold technique.We found that the use of OBS segmentation method for pQCT image analysis of EFP data did not result in any improvement but reached similar performance in cortical bone delineation as did HR-pQCT image analyses. The assessments of cortical cross-sectional bone area and thickness by OBS algorithm were overestimated by less than 4% while area moments of inertia were overestimated by ~5–10%, depending on reference HR-pQCT analysis method. In conclusion, this study showed that the OBS algorithm performed reasonably well and it offers a promising practical tool to enhance the assessment of cortical bone geometry in pQCT.
Collapse
Affiliation(s)
- Tomas Cervinka
- Department of Electronics and Communications Engineering, Tampere University of Technology, Korkeakoulunkatu 3, 33720 Tampere, Finland; Institute of Bioscience and Medical Technology (BioMediTech), Tampere, Finland.
| | - Harri Sievänen
- Bone Research Group, UKK Institute, Kaupinpuistonkatu 1, 33500 Tampere, Finland.
| | - Deena Lala
- Department of Health and Rehabilitation Sciences, Western University, London, Canada.
| | - Angela M Cheung
- Centre of Excellence in Skeletal Health Assessment, University of Toronto, Toronto, Canada.
| | - Lora Giangregorio
- Department of Kinesiology, University of Waterloo, Waterloo, Canada.
| | - Jari Hyttinen
- Department of Electronics and Communications Engineering, Tampere University of Technology, Korkeakoulunkatu 3, 33720 Tampere, Finland; Institute of Bioscience and Medical Technology (BioMediTech), Tampere, Finland.
| |
Collapse
|
60
|
Pasco JA, Lane SE, Brennan-Olsen SL, Holloway KL, Timney EN, Bucki-Smith G, Morse AG, Dobbins AG, Williams LJ, Hyde NK, Kotowicz MA. The Epidemiology of Incident Fracture from Cradle to Senescence. Calcif Tissue Int 2015; 97:568-76. [PMID: 26319674 DOI: 10.1007/s00223-015-0053-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/13/2015] [Indexed: 10/23/2022]
Abstract
To reduce the burden of fracture, not only does bone fragility need to be addressed, but also injury prevention. Thus, fracture epidemiology irrespective of degree of trauma is informative. We aimed to determine age-and-sex-specific fracture incidence rates for the Barwon Statistical Division, Australia, 2006-2007. Using radiology reports, incident fractures were identified for 5342 males and 4512 females, with incidence of 210.4 (95 % CI 204.8, 216.2) and 160.0 (155.3, 164.7)/10,000/year, respectively. In females, spine (clinical vertebral), hip (proximal femoral) and distal forearm fractures demonstrated a pattern of stable incidence through early adult life, with an exponential increase beginning in postmenopausal years for fractures of the forearm followed by spine and hip. A similar pattern was observed for the pelvis, humerus, femur and patella. Distal forearm, humerus, other forearm and ankle fractures showed incidence peaks during childhood and adolescence. For males, age-related changes mimicked the female pattern for fractures of the spine, hip, ribs, pelvis and humerus. Incidence at these sites was generally lower for males, particularly among the elderly. A similar childhood-adolescent peak was seen for the distal forearm and humerus. For ankle fractures, there was an increase during childhood and adolescence but this extended into early adult life; in contrast to females, there were no further age-related increases. An adolescent-young adult peak incidence was observed for fractures of the face, clavicle, carpal bones, hand, fingers, foot and toe, without further age-related increases. Examining patterns of fracture provides the evidence base for monitoring temporal changes in fracture burden, and for identifying high-incidence groups to which fracture prevention strategies could be directed.
Collapse
Affiliation(s)
- Julie A Pasco
- School of Medicine, Deakin University, Geelong, VIC, Australia.
- Department of Medicine, The University of Melbourne, St Albans, VIC, Australia.
- University Hospital Geelong, Barwon Health, Geelong, VIC, Australia.
| | - Stephen E Lane
- School of Medicine, Deakin University, Geelong, VIC, Australia
- University Hospital Geelong, Barwon Health, Geelong, VIC, Australia
| | - Sharon L Brennan-Olsen
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Department of Medicine, The University of Melbourne, St Albans, VIC, Australia
- Institute for Health and Ageing, Australian Catholic University, Melbourne, VIC, Australia
| | - Kara L Holloway
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | | | | | - Amelia G Morse
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | | | - Lana J Williams
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Natalie K Hyde
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Mark A Kotowicz
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Department of Medicine, The University of Melbourne, St Albans, VIC, Australia
- University Hospital Geelong, Barwon Health, Geelong, VIC, Australia
| |
Collapse
|
61
|
Abstract
Spinal cord injury (SCI) is characterized by marked bone loss and an increased risk of fracture with high complication rate. Recent research based on advanced imaging analysis, including quantitative computed tomography (QCT) and patient-specific finite element (FE) modeling, has provided new and important insights into the magnitude and temporal pattern of bone loss, as well as the associated changes to bone structure and strength, following SCI. This work has illustrated the importance of early therapeutic treatment to prevent bone loss after SCI and may someday serve as the basis for a clinical fracture risk assessment tool for the SCI population. This review provides an update on the epidemiology of fracture after SCI and discusses new findings and significant developments related to bone loss and fracture risk assessment in the SCI population based on QCT analysis and patient-specific FE modeling.
Collapse
Affiliation(s)
- W Brent Edwards
- Human Performance Laboratory, Faculty of Kinesiology, and Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada,
| | | |
Collapse
|
62
|
Edwards WB, Simonian N, Troy KL, Schnitzer TJ. Reduction in Torsional Stiffness and Strength at the Proximal Tibia as a Function of Time Since Spinal Cord Injury. J Bone Miner Res 2015; 30:1422-30. [PMID: 25656743 DOI: 10.1002/jbmr.2474] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/20/2015] [Accepted: 02/03/2015] [Indexed: 11/10/2022]
Abstract
Spinal cord injury (SCI) is characterized by marked bone loss and a high rate of low-energy fracture around regions of the knee. Changes in the mechanical integrity of bone after SCI are poorly defined, and a better understanding may inform approaches to prevent fractures. The purpose of this study was to quantify reductions in torsional stiffness and strength at the proximal tibia as a function of time since SCI. Sixty adults with SCI ranging from 0 to 50 years of duration and a reference group of 10 able-bodied controls received a CT scan of the proximal tibia. Measures of integral bone mineral were calculated for the total proximal tibia, and localized measures of cortical and trabecular bone mineral were calculated for the epiphysis, metaphysis, and diaphysis. Torsional stiffness (K) and strength (T(ult)) for the total proximal tibia were quantified using validated subject-specific finite element models. Total proximal tibia measures of integral bone mineral, K, and T(ult) decreased exponentially (r(2) = 0.52 to 0.70) and reached a new steady state within 2.1 to 2.7 years after SCI. Whereas new steady-state values for integral bone mineral and K were 52% to 56% (p < 0.001) lower than the reference group, the new steady state for T(ult) was 69% (p < 0.001) lower than the reference group. Reductions in total proximal tibia measures occurred through a combination of trabecular and endocortical resorption, leaving a bone comprised primarily of marrow fat rather than hydroxyapatite. These findings illustrate that a short therapeutic window exists early (ie, 2 years) after SCI, during which bone-specific intervention may attenuate reductions in mechanical integrity and ultimately prevent SCI-related fragility fracture.
Collapse
Affiliation(s)
- W Brent Edwards
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Narina Simonian
- Department of Physical Medicine and Rehabilitation Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Karen L Troy
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Thomas J Schnitzer
- Department of Physical Medicine and Rehabilitation Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
63
|
Fidler JL, Murthy NS, Khosla S, Clarke BL, Bruining DH, Kopperdahl DL, Lee DC, Keaveny TM. Comprehensive Assessment of Osteoporosis and Bone Fragility with CT Colonography. Radiology 2015. [PMID: 26200602 DOI: 10.1148/radiol.2015141984] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE To evaluate the ability of additional analysis of computed tomographic (CT) colonography images to provide a comprehensive osteoporosis assessment. MATERIALS AND METHODS This Health Insurance Portability and Accountability Act-compliant study was approved by our institutional review board with a waiver of informed consent. Diagnosis of osteoporosis and assessment of fracture risk were compared between biomechanical CT analysis and dual-energy x-ray absorptiometry (DXA) in 136 women (age range, 43-92 years), each of whom underwent CT colonography and DXA within a 6-month period (between January 2008 and April 2010). Blinded to the DXA data, biomechanical CT analysis was retrospectively applied to CT images by using phantomless calibration and finite element analysis to measure bone mineral density and bone strength at the hip and spine. Regression, Bland-Altman, and reclassification analyses and paired t tests were used to compare results. RESULTS For bone mineral density T scores at the femoral neck, biomechanical CT analysis was highly correlated (R(2) = 0.84) with DXA, did not differ from DXA (P = .15, paired t test), and was able to identify osteoporosis (as defined by DXA), with 100% sensitivity in eight of eight patients (95% confidence interval [CI]: 67.6%, 100%) and 98.4% specificity in 126 of 128 patients (95% CI: 94.5%, 99.6%). Considering both the hip and spine, the classification of patients at high risk for fracture by biomechanical CT analysis--those with osteoporosis or "fragile bone strength"--agreed well against classifications for clinical osteoporosis by DXA (T score ≤-2.5 at the hip or spine), with 82.8% sensitivity in 24 of 29 patients (95% CI: 65.4%, 92.4%) and 85.7% specificity in 66 of 77 patients (95% CI: 76.2%, 91.8%). CONCLUSION Retrospective biomechanical CT analysis of CT colonography for colorectal cancer screening provides a comprehensive osteoporosis assessment without requiring changes in imaging protocols.
Collapse
Affiliation(s)
- Jeff L Fidler
- From the Department of Radiology (J.L.F., N.S.M.), Division of Endocrinology (S.K., B.L.C.), and Division of Gastroenterology and Hepatology (D.H.B.), Mayo Clinic, 200 1st Ave SW, Rochester, MN 55902; O.N. Diagnostics, Berkeley, Calif (D.L.K., D.C.L., T.M.K.); and Departments of Mechanical Engineering and Bioengineering, University of California-Berkeley, Berkeley, Calif (T.M.K.)
| | - Naveen S Murthy
- From the Department of Radiology (J.L.F., N.S.M.), Division of Endocrinology (S.K., B.L.C.), and Division of Gastroenterology and Hepatology (D.H.B.), Mayo Clinic, 200 1st Ave SW, Rochester, MN 55902; O.N. Diagnostics, Berkeley, Calif (D.L.K., D.C.L., T.M.K.); and Departments of Mechanical Engineering and Bioengineering, University of California-Berkeley, Berkeley, Calif (T.M.K.)
| | - Sundeep Khosla
- From the Department of Radiology (J.L.F., N.S.M.), Division of Endocrinology (S.K., B.L.C.), and Division of Gastroenterology and Hepatology (D.H.B.), Mayo Clinic, 200 1st Ave SW, Rochester, MN 55902; O.N. Diagnostics, Berkeley, Calif (D.L.K., D.C.L., T.M.K.); and Departments of Mechanical Engineering and Bioengineering, University of California-Berkeley, Berkeley, Calif (T.M.K.)
| | - Bart L Clarke
- From the Department of Radiology (J.L.F., N.S.M.), Division of Endocrinology (S.K., B.L.C.), and Division of Gastroenterology and Hepatology (D.H.B.), Mayo Clinic, 200 1st Ave SW, Rochester, MN 55902; O.N. Diagnostics, Berkeley, Calif (D.L.K., D.C.L., T.M.K.); and Departments of Mechanical Engineering and Bioengineering, University of California-Berkeley, Berkeley, Calif (T.M.K.)
| | - David H Bruining
- From the Department of Radiology (J.L.F., N.S.M.), Division of Endocrinology (S.K., B.L.C.), and Division of Gastroenterology and Hepatology (D.H.B.), Mayo Clinic, 200 1st Ave SW, Rochester, MN 55902; O.N. Diagnostics, Berkeley, Calif (D.L.K., D.C.L., T.M.K.); and Departments of Mechanical Engineering and Bioengineering, University of California-Berkeley, Berkeley, Calif (T.M.K.)
| | - David L Kopperdahl
- From the Department of Radiology (J.L.F., N.S.M.), Division of Endocrinology (S.K., B.L.C.), and Division of Gastroenterology and Hepatology (D.H.B.), Mayo Clinic, 200 1st Ave SW, Rochester, MN 55902; O.N. Diagnostics, Berkeley, Calif (D.L.K., D.C.L., T.M.K.); and Departments of Mechanical Engineering and Bioengineering, University of California-Berkeley, Berkeley, Calif (T.M.K.)
| | - David C Lee
- From the Department of Radiology (J.L.F., N.S.M.), Division of Endocrinology (S.K., B.L.C.), and Division of Gastroenterology and Hepatology (D.H.B.), Mayo Clinic, 200 1st Ave SW, Rochester, MN 55902; O.N. Diagnostics, Berkeley, Calif (D.L.K., D.C.L., T.M.K.); and Departments of Mechanical Engineering and Bioengineering, University of California-Berkeley, Berkeley, Calif (T.M.K.)
| | - Tony M Keaveny
- From the Department of Radiology (J.L.F., N.S.M.), Division of Endocrinology (S.K., B.L.C.), and Division of Gastroenterology and Hepatology (D.H.B.), Mayo Clinic, 200 1st Ave SW, Rochester, MN 55902; O.N. Diagnostics, Berkeley, Calif (D.L.K., D.C.L., T.M.K.); and Departments of Mechanical Engineering and Bioengineering, University of California-Berkeley, Berkeley, Calif (T.M.K.)
| |
Collapse
|
64
|
Wong AKO, Beattie KA, Min KKH, Merali Z, Webber CE, Gordon CL, Papaioannou A, Cheung AMW, Adachi JD. A Trimodality Comparison of Volumetric Bone Imaging Technologies. Part III: SD, SEE, LSC Association With Fragility Fractures. J Clin Densitom 2015; 18:408-18. [PMID: 25129407 PMCID: PMC5092155 DOI: 10.1016/j.jocd.2014.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/13/2014] [Accepted: 07/03/2014] [Indexed: 11/29/2022]
Abstract
Part II of this 3-part series demonstrated 1-yr precision, standard error of the estimate, and 1-yr least significant change for volumetric bone outcomes determined using peripheral (p) quantitative computed tomography (QCT) and peripheral magnetic resonance imaging (pMRI) modalities in vivo. However, no clinically relevant outcomes have been linked to these measures of change. This study examined 97 women with mean age of 75 ± 9 yr and body mass index of 26.84 ± 4.77 kg/m(2), demonstrating a lack of association between fragility fractures and standard deviation, least significant change and standard error of the estimate-based unit differences in volumetric bone outcomes derived from both pMRI and pQCT. Only cortical volumetric bone mineral density and cortical thickness derived from high-resolution pQCT images were associated with an increased odds for fractures. The same measures obtained by pQCT erred toward significance. Despite the smaller 1-yr and short-term precision error for measures at the tibia vs the radius, the associations with fractures observed at the radius were larger than at the tibia for high-resolution pQCT. Unit differences in cortical thickness and cortical volumetric bone mineral density able to yield a 50% increase in odds for fractures were quantified here and suggested as a reference for future power computations.
Collapse
Affiliation(s)
- Andy K O Wong
- Department of Medicine, McMaster University, Hamilton, ON, Canada.
| | - Karen A Beattie
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Kevin K H Min
- Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Zamir Merali
- Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Colin E Webber
- Department of Nuclear Medicine, Hamilton Health Sciences, Hamilton, ON, Canada
| | | | | | - Angela M W Cheung
- Osteoporosis Program, University Health Network, Toronto, ON, Canada
| | | |
Collapse
|
65
|
Borggrefe J, Giravent S, Thomsen F, Peña J, Campbell G, Wulff A, Günther A, Heller M, Glüer CC. Association of QCT Bone Mineral Density and Bone Structure With Vertebral Fractures in Patients With Multiple Myeloma. J Bone Miner Res 2015; 30:1329-37. [PMID: 25545497 DOI: 10.1002/jbmr.2443] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/08/2014] [Accepted: 09/16/2014] [Indexed: 02/04/2023]
Abstract
Computed tomography (CT) is used for staging osteolytic lesions and detecting fractures in patients with multiple myeloma (MM). In the OsteoLysis of Metastases and Plasmacell-infiltration Computed Tomography 2 study (OLyMP-CT) study we investigated whether patients with and without vertebral fractures show differences in bone mineral density (BMD) or microstructure that could be used to identify patients at risk for fracture. We evaluated whole-body CT scans in a group of 104 MM patients without visible osteolytic lesions using an underlying lightweight calibration phantom (Image Analysis Inc., Columbia, KY, USA). QCT software (StructuralInsight) was used for the assessment of BMD and bone structure of the T11 or T12 vertebral body. Age-adjusted standardized odds ratios (sORs) per SD change were derived from logistic regression analyses, and areas under the receiver operating characteristics (ROC) curve (AUCs) analyses were calculated. Forty-six of the 104 patients had prevalent vertebral fractures (24/60 men, 22/44 women). Patients with fractures were not significantly older than patients without fractures (mean ± SD, 64 ± 9.2 versus 62 ± 12.3 years; p = 0.4). Trabecular BMD in patients with fractures versus without fractures was 169 ± 41 versus 192 ± 51 mg/cc (AUC = 0.62 ± 0.06, sOR = 1.6 [1.1 to 2.5], p = 0.02). Microstructural variables achieved optimal discriminatory power at bone thresholds of 150 mg/cc. Best fracture discrimination for single microstructural variables was observed for trabecular separation (Tb.Sp) (AUC = 0.72 ± 0.05, sOR = 2.4 (1.5 to 3.9), p < 0.0001). In multivariate models AUCs improved to 0.77 ± 0.05 for BMD and Tb.Sp, and 0.79 ± 0.05 for Tb.Sp and trabecular thickness (Tb.Th). Compared to BMD values, these improvements of AUC values were statistically significant (p < 0.0001). In MM patients, QCT-based analyses of bone structure derived from routine CT scans permit discrimination of patients with and without vertebral fractures. Rarefaction of the trabecular network due to plasma cell infiltration and osteoporosis can be measured. Deterioration of microstructural measures appear to be of value for vertebral fracture risk assessment and may indicate early stages of osteolytic processes not yet visible.
Collapse
Affiliation(s)
- Jan Borggrefe
- Section for Biomedical Imaging, Department of Radiology and Neuroradiology, University-Clinics Schleswig Holstein, Campus Kiel, Kiel, Germany.,Institute for Diagnostic and Interventional Radiology, University-Clinics Cologne, Cologne, Germany
| | - Sarah Giravent
- Section for Biomedical Imaging, Department of Radiology and Neuroradiology, University-Clinics Schleswig Holstein, Campus Kiel, Kiel, Germany
| | - Felix Thomsen
- Section for Biomedical Imaging, Department of Radiology and Neuroradiology, University-Clinics Schleswig Holstein, Campus Kiel, Kiel, Germany.,Department of Engineering, National University of the South, Bahia Blanca, Argentina
| | - Jaime Peña
- Section for Biomedical Imaging, Department of Radiology and Neuroradiology, University-Clinics Schleswig Holstein, Campus Kiel, Kiel, Germany
| | - Graeme Campbell
- Section for Biomedical Imaging, Department of Radiology and Neuroradiology, University-Clinics Schleswig Holstein, Campus Kiel, Kiel, Germany
| | - Asmus Wulff
- Section for Biomedical Imaging, Department of Radiology and Neuroradiology, University-Clinics Schleswig Holstein, Campus Kiel, Kiel, Germany
| | - Andreas Günther
- Section for Immun- and Stemcell- Therapy, Department of Inner Medicine, University-Clinics Schleswig Holstein, Campus Kiel, Kiel, Germany
| | - Martin Heller
- Section for Biomedical Imaging, Department of Radiology and Neuroradiology, University-Clinics Schleswig Holstein, Campus Kiel, Kiel, Germany
| | - Claus C Glüer
- Section for Biomedical Imaging, Department of Radiology and Neuroradiology, University-Clinics Schleswig Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
66
|
Abstract
The global trend towards increased longevity has resulted in ageing populations and a rise in diseases or conditions that primarily affect older persons. One such condition is osteoporosis (fragile or porous bones), which causes an increased fracture risk. Vertebral and hip fractures lead to increased morbidity and mortality and result in enormous healthcare costs. Here, we review the evolution of the diagnosis of osteoporosis. In an attempt to separate patients with normal bones from those with osteoporosis and to define the osteoporosis diagnosis, multiple factors and characteristics have been considered. These include pathology and histology of the disease, the endocrine regulation of bone metabolism, bone mineral density (BMD), fracture type or trauma severity, risk models for fracture prediction, and thresholds for pharmacological intervention. The femoral neck BMD -2.5 SDs cut-off for the diagnosis of osteoporosis is arbitrarily chosen, and there is no evidence to support the notion that fracture location (except vertebral fractures) or severity is useful to discriminate osteoporotic from normal bones. Fracture risk models (including factors unrelated to bone) dissociate bone strength from the diagnosis, and treatment thresholds are often based on health-economic considerations rather than bone properties. Vertebral fractures are a primary feature of osteoporosis, characterized by decreased bone mass, strength and quality, and a high risk of another such fracture that can be considerably reduced by treatment. We believe that the 2001 definition of osteoporosis by the National Institutes of Health Consensus Development Panel on Osteoporosis is still valid and useful: 'Osteoporosis is defined as a skeletal disorder characterized by compromised bone strength predisposing a person to an increased risk of fracture'.
Collapse
Affiliation(s)
- M Lorentzon
- Geriatric Medicine, Institute of Medicine, Centre for Bone and Arthritis Research, Sahlgrenska Academy, Mölndal, Sweden
| | - S R Cummings
- University of California, the San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA, USA
| |
Collapse
|
67
|
Chang G, Honig S, Liu Y, Chen C, Chu KK, Rajapakse CS, Egol K, Xia D, Saha PK, Regatte RR. 7 Tesla MRI of bone microarchitecture discriminates between women without and with fragility fractures who do not differ by bone mineral density. J Bone Miner Metab 2015; 33:285-93. [PMID: 24752823 PMCID: PMC4363287 DOI: 10.1007/s00774-014-0588-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 03/17/2014] [Indexed: 01/23/2023]
Abstract
Osteoporosis is a disease of poor bone quality. Bone mineral density (BMD) has limited ability to discriminate between subjects without and with poor bone quality, and assessment of bone microarchitecture may have added value in this regard. Our goals were to use 7 T MRI to: (1) quantify and compare distal femur bone microarchitecture in women without and with poor bone quality (defined clinically by presence of fragility fractures); and (2) determine whether microarchitectural parameters could be used to discriminate between these two groups. This study had institutional review board approval, and we obtained written informed consent from all subjects. We used a 28-channel knee coil to image the distal femur of 31 subjects with fragility fractures and 25 controls without fracture on a 7 T MRI scanner using a 3-D fast low angle shot sequence (0.234 mm × 0.234 mm × 1 mm, parallel imaging factor = 2, acquisition time = 7 min 9 s). We applied digital topological analysis to quantify parameters of bone microarchitecture. All subjects also underwent standard clinical BMD assessment in the hip and spine. Compared to controls, fracture cases demonstrated lower bone volume fraction and markers of trabecular number, plate-like structure, and plate-to-rod ratio, and higher markers of trabecular isolation, rod disruption, and network resorption (p < 0.05 for all). There were no differences in hip or spine BMD T-scores between groups (p > 0.05). In receiver-operating-characteristics analyses, microarchitectural parameters could discriminate cases and controls (AUC = 0.66-0.73, p < 0.05). Hip and spine BMD T-scores could not discriminate cases and controls (AUC = 0.58-0.64, p ≥ 0.08). We conclude that 7 T MRI can detect bone microarchitectural deterioration in women with fragility fractures who do not differ by BMD. Microarchitectural parameters might some day be used as an additional tool to detect patients with poor bone quality who cannot be detected by dual-energy X-ray absorptiometry (DXA).
Collapse
Affiliation(s)
- Gregory Chang
- Department of Radiology, NYU Langone Medical Center, Center for Musculoskeletal Care, 333 E. 38th Street, 6th Floor, Room 6-210, New York, NY, 10016, USA,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Clouthier AL, Hosseini HS, Maquer G, Zysset PK. Finite element analysis predicts experimental failure patterns in vertebral bodies loaded via intervertebral discs up to large deformation. Med Eng Phys 2015; 37:599-604. [PMID: 25922211 DOI: 10.1016/j.medengphy.2015.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 01/14/2015] [Accepted: 03/22/2015] [Indexed: 11/28/2022]
Abstract
Vertebral compression fractures are becoming increasingly common. Patient-specific nonlinear finite element (FE) models have shown promise in predicting yield strength and damage pattern but have not been experimentally validated for clinically relevant vertebral fractures, which involve loading through intervertebral discs with varying degrees of degeneration up to large compressive strains. Therefore, stepwise axial compression was applied in vitro on segments and performed in silico on their FE equivalents using a nonlocal damage-plastic model including densification at large compression for bone and a time-independent hyperelastic model for the disc. The ability of the nonlinear FE models to predict the failure pattern in large compression was evaluated for three boundary conditions: healthy and degenerated intervertebral discs and embedded endplates. Bone compaction and fracture patterns were predicted using the local volume change as an indicator and the best correspondence was obtained for the healthy intervertebral discs. These preliminary results show that nonlinear finite element models enable prediction of bone localisation and compaction. To the best of our knowledge, this is the first study to predict the collapse of osteoporotic vertebral bodies up to large compression using realistic loading via the intervertebral discs.
Collapse
Affiliation(s)
- Allison L Clouthier
- Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstrasse 78, 3014 Bern, Switzerland.
| | - Hadi S Hosseini
- Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstrasse 78, 3014 Bern, Switzerland.
| | - Ghislain Maquer
- Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstrasse 78, 3014 Bern, Switzerland.
| | - Philippe K Zysset
- Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstrasse 78, 3014 Bern, Switzerland.
| |
Collapse
|
69
|
Touvier J, Winzenrieth R, Johansson H, Roux JP, Chaintreuil J, Toumi H, Jennane R, Hans D, Lespessailles E. Fracture discrimination by combined bone mineral density (BMD) and microarchitectural texture analysis. Calcif Tissue Int 2015; 96:274-83. [PMID: 25586017 DOI: 10.1007/s00223-015-9952-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/03/2015] [Indexed: 10/24/2022]
Abstract
The use of bone mineral density (BMD) for fracture discrimination may be improved by considering bone microarchitecture. Texture parameters such as trabecular bone score (TBS) or mean Hurst parameter (H) could help to find women who are at high risk of fracture in the non-osteoporotic group. The purpose of this study was to combine BMD and microarchitectural texture parameters (spine TBS and calcaneus H) for the detection of osteoporotic fractures. Two hundred and fifty five women had a lumbar spine (LS), total hip (TH), and femoral neck (FN) DXA. Additionally, texture analyses were performed with TBS on spine DXA and with H on calcaneus radiographs. Seventy-nine women had prevalent fragility fractures. The association with fracture was evaluated by multivariate logistic regressions. The diagnostic value of each parameter alone and together was evaluated by odds ratios (OR). The area under curve (AUC) of the receiver operating characteristics (ROC) were assessed in models including BMD, H, and TBS. Women were also classified above and under the lowest tertile of H or TBS according to their BMD status. Women with prevalent fracture were older and had lower TBS, H, LS-BMD, and TH-BMD than women without fracture. Age-adjusted ORs were 1.66, 1.70, and 1.93 for LS, FN, and TH-BMD, respectively. Both TBS and H remained significantly associated with fracture after adjustment for age and TH-BMD: OR 2.07 [1.43; 3.05] and 1.47 [1.04; 2.11], respectively. The addition of texture parameters in the multivariate models didn't show a significant improvement of the ROC-AUC. However, women with normal or osteopenic BMD in the lowest range of TBS or H had significantly more fractures than women above the TBS or the H threshold. We have shown the potential interest of texture parameters such as TBS and H in addition to BMD to discriminate patients with or without osteoporotic fractures. However, their clinical added values should be evaluated relative to other risk factors.
Collapse
Affiliation(s)
- J Touvier
- I3MTO, EA4708, Université d'Orléans, 1, Rue Porte-Madeleine, Orléans, BP 2439, 45032 Cedex 1, France,
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Ebeling PR, Daly RM, Kerr DA, Kimlin MG. Building healthy bones throughout life: an evidence-informed strategy to prevent osteoporosis in Australia. Med J Aust 2015; 199:S1-S46. [PMID: 25370432 DOI: 10.5694/j.1326-5377.2013.tb04225.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/02/2012] [Indexed: 12/14/2022]
Abstract
Osteoporosis imposes a tremendous burden on Australia: 1.2 million Australians have osteoporosis and 6.3 million have osteopenia. In the 2007–08 financial year, 82 000 Australians suffered fragility fractures, of which > 17 000 were hip fractures. In the 2000–01 financial year, direct costs were estimated at $1.9 billion per year and an additional $5.6 billion on indirect costs. Osteoporosis was designated a National Health Priority Area in 2002; however, implementation of national plans has not yet matched the rhetoric in terms of urgency. Building healthy bones throughout life, the Osteoporosis Australia strategy to prevent osteoporosis throughout the life cycle, presents an evidence-informed set of recommendations for consumers, health care professionals and policymakers. The strategy was adopted by consensus at the Osteoporosis Australia Summit in Sydney, 20 October 2011. Primary objectives throughout the life cycle are: to maximise peak bone mass during childhood and adolescence to prevent premature bone loss and improve or maintain muscle mass, strength and functional capacity in healthy adults to prevent and treat osteoporosis in order to minimise the risk of suffering fragility fractures, and reduce falls risk, in older people. The recommendations focus on three affordable and important interventions — to ensure people have adequate calcium intake, vitamin D levels and appropriate physical activity throughout their lives. Recommendations relevant to all stages of life include: daily dietary calcium intakes should be consistent with Australian and New Zealand guidelines serum levels of vitamin D in the general population should be above 50nmol/L in winter or early spring for optimal bone health regular weight-bearing physical activity, muscle strengthening exercises and challenging balance/mobility activities should be conducted in a safe environment.
Collapse
Affiliation(s)
- Peter R Ebeling
- NorthWest Academic Centre, University of Melbourne, and Western Health, Melbourne, VIC, Australia.
| | - Robin M Daly
- Centre for Physical Activity and Nutrition Research, Deakin University, Melbourne, VIC, Australia
| | - Deborah A Kerr
- Curtin Health Innovation Research Institute and School of Public Health, Curtin University, Perth, WA, Australia
| | - Michael G Kimlin
- Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
71
|
Edwards WB, Schnitzer TJ, Troy KL. Reduction in proximal femoral strength in patients with acute spinal cord injury. J Bone Miner Res 2014; 29:2074-9. [PMID: 24677293 DOI: 10.1002/jbmr.2227] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/08/2014] [Accepted: 03/12/2014] [Indexed: 11/11/2022]
Abstract
Bone loss after spinal cord injury (SCI) is associated with an increased risk of fracture resulting from minor trauma. Proximal femoral fractures account for approximately 10% to 20% of the fractures in this population and are among the most serious of injuries. Our purpose was to quantify changes to proximal femoral strength in patients with acute SCI. Thirteen subjects received dual-energy X-ray absorptiometry (DXA) and clinical computed tomography (CT) scans at serial time points during acute SCI separated by a mean of 3.5 months (range 2.6 to 4.8 months). Areal bone mineral density (aBMD) at the proximal femur was quantified from DXA, and proximal femoral strength was predicted using CT-based finite element (FE) modeling in a sideways fall configuration. During the acute period of SCI, femoral neck and total proximal femur aBMD decreased by 2.0 ± 1.1%/month (p < 0.001) and 2.2 ± 0.7%/month (p < 0.001), respectively. The observed reductions in aBMD were associated with a 6.9 ± 2.0%/month (p < 0.001) reduction in femoral strength. Thus, changes in femoral strength were some 3 times greater than the observed changes in aBMD (p < 0.001). It was interesting to note that in just 3.5 months of acute SCI, reductions in strength for some patients were on the order of that predicted for lifetime declines owing to aging. Therefore, it is important that therapeutic interventions are implemented soon after SCI in an effort to halt bone loss and decrease fracture risk. In addition, clinicians utilizing DXA to monitor bone health after SCI should be aware of the potential discrepancy between changes in aBMD and strength.
Collapse
Affiliation(s)
- W Brent Edwards
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | | | | |
Collapse
|
72
|
Ellouz R, Chapurlat R, van Rietbergen B, Christen P, Pialat JB, Boutroy S. Challenges in longitudinal measurements with HR-pQCT: evaluation of a 3D registration method to improve bone microarchitecture and strength measurement reproducibility. Bone 2014; 63:147-57. [PMID: 24614646 DOI: 10.1016/j.bone.2014.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 02/10/2014] [Accepted: 03/02/2014] [Indexed: 02/04/2023]
Abstract
Definition of identical regions between repeated computed tomography (CT) scans is a key factor to monitor changes in bone microarchitecture. In longitudinal studies, accurate determination of the volume of interest (VOI), using three dimensional (3D) registration may improve precision. Therefore, the aim of our study was to investigate the short-term reproducibility of bone geometry, density, microstructure and biomechanical parameters assessed by HR-pQCT and micro-finite element (μFE) derived analyses, using the cross-sectional area (CSA) registration method in comparison with the use of 3D registration, to find overlapping regions between scans. Fifteen healthy individuals (aged 21-47 years) underwent 3 separate scans at the distal radius and tibia, within a one-month interval. Reproducibility was assessed after double contouring the cortical compartment and after applying three different methods to determine the common region between repeated scans: (i) the VOI was determined with no registration, i.e., on 110 slices, (ii) the VOI was determined after CSA-based registration, and (iii) the VOI was determined after 3D registration. Both pre- and post-registration short-term reproducibility for each subject was determined. With no registration, CVrms of geometry parameters ranged from 0.5 to 3.7%, showing a slight variation in the CSA between scans. When the CSA registration method was employed, the variability of geometry (CVrms<1.8%) and density parameters (CVrms<1.8%), was better than that obtained without registration. By removing the effect of repositioning, the 3D registration further improved the reproducibility of cortical bone measurements compared to other methods. Indeed, significant improvements were found for cortical geometry and microstructure measurements (CVrms ranged from 0.4% to 10.7% at both sites; p<0.05), whereas the impact on trabecular bone measurements was restricted to its geometry parameter. The repositioning error was significantly reduced, most markedly at the radius compared to the tibia. For μFE measures, the impact of 3D registration on whole bone stiffness was negligible, indicating adequate assessment of longitudinal changes in estimated biomechanical properties, even without registration. In conclusion, we have shown that the 3D registration improved the identification of the common region retained for longitudinal analysis, contributing to improve the reproducibility of cortical bone parameter measurements. We also quantified the minimally detectable bone changes to help designing future studies with HR-pQCT.
Collapse
Affiliation(s)
| | | | - Bert van Rietbergen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands.
| | - Patrik Christen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands.
| | | | | |
Collapse
|
73
|
Amugongo SK, Yao W, Jia J, Lay YAE, Dai W, Jiang L, Walsh D, Li CS, Dave NKN, Olivera D, Panganiban B, Ritchie RO, Lane NE. Effects of sequential osteoporosis treatments on trabecular bone in adult rats with low bone mass. Osteoporos Int 2014; 25:1735-50. [PMID: 24722767 PMCID: PMC4394748 DOI: 10.1007/s00198-014-2678-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/03/2013] [Indexed: 10/25/2022]
Abstract
UNLABELLED We used an osteopenic adult ovariectomized (OVX) rat model to evaluate various sequential treatments for osteoporosis, using FDA-approved agents with complementary tissue-level mechanisms of action. Sequential treatment for 3 months each with alendronate (Aln), followed by PTH, followed by resumption of Aln, created the highest trabecular bone mass, best microarchitecture, and highest bone strength. INTRODUCTION Individual agents used to treat human osteoporosis reduce fracture risk by ∼ 50-60%. As agents that act with complementary mechanisms are available, sequential therapies that mix antiresorptive and anabolic agents could improve fracture risk reduction, when compared with monotherapies. METHODS We evaluated bone mass, bone microarchitecture, and bone strength in adult OVX, osteopenic rats, during different sequences of vehicle (Veh), parathyroid hormone (PTH), Aln, or raloxifene (Ral) in three 90-day treatment periods, over 9 months. Differences among groups were evaluated. The interrelationships of bone mass and microarchitecture endpoints and their relationship to bone strength were studied. RESULTS Estrogen deficiency caused bone loss. OVX rats treated with Aln monotherapy had significantly better bone mass, microarchitecture, and bone strength than untreated OVX rats. Rats treated with an Aln drug holiday had bone mass and microarchitecture similar to the Aln monotherapy group but with significantly lower bone strength. PTH-treated rats had markedly higher bone endpoints, but all were lost after PTH withdrawal without follow-up treatment. Rats treated with PTH followed by Aln had better bone endpoints than those treated with Aln monotherapy, PTH monotherapy, or an Aln holiday. Rats treated initially with Aln or Ral, then switched to PTH, also had better bone endpoints, than monotherapy treatment. Rats treated with Aln, then PTH, and returned to Aln had the highest values for all endpoints. CONCLUSION Our data indicate that antiresorptive therapy can be coupled with an anabolic agent, to produce and maintain better bone mass, microarchitecture, and strength than can be achieved with any monotherapy.
Collapse
Affiliation(s)
- S K Amugongo
- Center for Musculoskeletal Health and Department of Medicine, University of California Davis Medical Center, 4625 2nd Avenue, Suite 1002, Sacramento, CA, 95817, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Weber NK, Fidler JL, Keaveny TM, Clarke BL, Khosla S, Fletcher JG, Lee DC, Pardi DS, Loftus EV, Kane SV, Barlow JM, Murthy NS, Becker BD, Bruining DH. Validation of a CT-derived method for osteoporosis screening in IBD patients undergoing contrast-enhanced CT enterography. Am J Gastroenterol 2014; 109:401-8. [PMID: 24445572 PMCID: PMC4033296 DOI: 10.1038/ajg.2013.478] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 12/12/2013] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Osteoporosis and bone fractures are of particular concern in patients with inflammatory bowel disease (IBD). Biomechanical computed tomography (BCT) is an image-analysis technique that can measure bone strength and dual-energy X-ray absorptiometry (DXA)-equivalent bone mineral density (BMD) from noncontrast CT images. This study seeks to determine whether this advanced technology can be applied to patients with IBD undergoing CT enterography (CTE) with IV contrast. METHODS Patients with IBD who underwent a CTE and DXA scan between 2007 and 2011 were retrospectively identified. Femoral neck BMD (g/cm(2)) and T-scores were measured and compared between DXA and BCT analysis of the CTE images. Femoral strength (Newtons) was also determined from BCT analysis. RESULTS DXA- and CTE-generated BMD T-score values were highly correlated (R(2)=0.84, P<0.0001) in this patient cohort (n=136). CTE identified patients with both osteoporosis (sensitivity, 85.7%; 95% confidence interval (CI), 48.7-97.4 and specificity, 98.5%; 95% CI, 94.5-99.6) and osteopenia (sensitivity, 85.1%; 95% CI, 72.3-92.6 and specificity, 85.4%; 95% CI, 76.6-91.3). Of the 16 patients who had "fragile" bone strength by BCT (placing them at the equivalent high risk of fracture as for osteoporosis), 6 had osteoporosis and 10 had osteopenia by DXA. CONCLUSIONS CTE scans can provide hip BMD, T-scores, and clinical classifications that are comparable to those obtained from DXA; when combined with BCT analysis, CTE can identify a subset of patients with osteopenia who have clinically relevant fragile bone strength. This technique could markedly increase bone health assessments in IBD patients already undergoing CTE to evaluate small bowel disease.
Collapse
Affiliation(s)
- Nicholas K. Weber
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine , Rochester , Minnesota , USA
| | - Jeff L. Fidler
- Department of Radiology, Mayo Clinic College of Medicine , Rochester , Minnesota , USA
| | - Tony M. Keaveny
- O.N. Diagnostics , Berkeley , California , USA
,Departments of Mechanical Engineering and Bioengineering, UC Berkeley , California , USA
| | - Bart L. Clarke
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic College of Medicine , Rochester , Minnesota , USA
| | - Sundeep Khosla
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic College of Medicine , Rochester , Minnesota , USA
| | - Joel G. Fletcher
- Department of Radiology, Mayo Clinic College of Medicine , Rochester , Minnesota , USA
| | | | - Darrell S. Pardi
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine , Rochester , Minnesota , USA
| | - Edward V. Loftus
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine , Rochester , Minnesota , USA
| | - Sunanda V. Kane
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine , Rochester , Minnesota , USA
| | - John M. Barlow
- Department of Radiology, Mayo Clinic College of Medicine , Rochester , Minnesota , USA
| | - Naveen S. Murthy
- Department of Radiology, Mayo Clinic College of Medicine , Rochester , Minnesota , USA
| | - Brenda D. Becker
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine , Rochester , Minnesota , USA
| | - David H. Bruining
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine , Rochester , Minnesota , USA
| |
Collapse
|
75
|
Kopperdahl DL, Aspelund T, Hoffmann PF, Sigurdsson S, Siggeirsdottir K, Harris TB, Gudnason V, Keaveny TM. Assessment of incident spine and hip fractures in women and men using finite element analysis of CT scans. J Bone Miner Res 2014; 29:570-80. [PMID: 23956027 PMCID: PMC3925753 DOI: 10.1002/jbmr.2069] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 07/26/2013] [Accepted: 08/02/2013] [Indexed: 01/22/2023]
Abstract
Finite element analysis of computed tomography (CT) scans provides noninvasive estimates of bone strength at the spine and hip. To further validate such estimates clinically, we performed a 5-year case-control study of 1110 women and men over age 65 years from the AGES-Reykjavik cohort (case = incident spine or hip fracture; control = no incident spine or hip fracture). From the baseline CT scans, we measured femoral and vertebral strength, as well as bone mineral density (BMD) at the hip (areal BMD only) and lumbar spine (trabecular volumetric BMD only). We found that for incident radiographically confirmed spine fractures (n = 167), the age-adjusted odds ratio for vertebral strength was significant for women (2.8, 95% confidence interval [CI] 1.8 to 4.3) and men (2.2, 95% CI 1.5 to 3.2) and for men remained significant (p = 0.01) independent of vertebral trabecular volumetric BMD. For incident hip fractures (n = 171), the age-adjusted odds ratio for femoral strength was significant for women (4.2, 95% CI 2.6 to 6.9) and men (3.5, 95% CI 2.3 to 5.3) and remained significant after adjusting for femoral neck areal BMD in women and for total hip areal BMD in both sexes; fracture classification improved for women by combining femoral strength with femoral neck areal BMD (p = 0.002). For both sexes, the probabilities of spine and hip fractures were similarly high at the BMD-based interventional thresholds for osteoporosis and at corresponding preestablished thresholds for "fragile bone strength" (spine: women ≤ 4500 N, men ≤ 6500 N; hip: women ≤ 3000 N, men ≤ 3500 N). Because it is well established that individuals over age 65 years who have osteoporosis at the hip or spine by BMD criteria should be considered at high risk of fracture, these results indicate that individuals who have fragile bone strength at the hip or spine should also be considered at high risk of fracture.
Collapse
|
76
|
Rajapakse CS, Phillips EA, Sun W, Wald MJ, Magland JF, Snyder PJ, Wehrli FW. Vertebral deformities and fractures are associated with MRI and pQCT measures obtained at the distal tibia and radius of postmenopausal women. Osteoporos Int 2014; 25:973-82. [PMID: 24221453 PMCID: PMC4746757 DOI: 10.1007/s00198-013-2569-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 10/24/2013] [Indexed: 11/26/2022]
Abstract
SUMMARY We investigated the association of postmenopausal vertebral deformities and fractures with bone parameters derived from distal extremities using MRI and pQCT. Distal extremity measures showed variable degrees of association with vertebral deformities and fractures, highlighting the systemic nature of postmenopausal bone loss. INTRODUCTION Prevalent vertebral deformities and fractures are known to predict incident further fractures. However, the association of distal extremity measures and vertebral deformities in postmenopausal women has not been fully established. METHODS This study involved 98 postmenopausal women (age range 60-88 years, mean 70 years) with DXA BMD T-scores at either the hip or spine in the range of -1.5 to -3.5. Wedge, biconcavity, and crush deformities were computed on the basis of spine MRI. Vertebral fractures were assessed using Eastell's criterion. Distal tibia and radius stiffness was computed using MRI-based finite element analysis. BMD at the distal extremities were obtained using pQCT. RESULTS Several distal extremity MRI and pQCT measures showed negative association with vertebral deformity on the basis of single parameter correlation (r up to 0.67) and two-parameter regression (r up to 0.76) models involving MRI stiffness and pQCT BMD. Subjects who had at least one prevalent vertebral fracture showed decreased MRI stiffness (up to 17.9 %) and pQCT density (up to 34.2 %) at the distal extremities compared to the non-fracture group. DXA lumbar spine BMD T-score was not associated with vertebral deformities. CONCLUSIONS The association between vertebral deformities and distal extremity measures supports the notion of postmenopausal osteoporosis as a systemic phenomenon.
Collapse
Affiliation(s)
- C S Rajapakse
- University of Pennsylvania School of Medicine, Philadelphia, PA, USA,
| | | | | | | | | | | | | |
Collapse
|
77
|
Decreased activity of osteocyte autophagy with aging may contribute to the bone loss in senile population. Histochem Cell Biol 2014; 142:285-95. [PMID: 24553790 DOI: 10.1007/s00418-014-1194-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2014] [Indexed: 12/30/2022]
Abstract
Age-related bone loss is a major cause of osteoporosis and osteoporotic fractures in the elderly. However, the underlying molecular mechanism of age-related bone loss is still poorly understood. The aim of this study was to clarify whether autophagy in osteocytes was involved in age-related bone loss. Male Sprague-Dawley (SD) rats in 3, 9, and 24 month old were used to mimic the age-related bone loss in men. Micro-CT evaluation, histomorphometric analysis, and measurement of bone turnover rate verified age-related bone loss in the male SD rats. Immunofluorescent histochemistry, RT-PCR, and Western blot assessment demonstrated that the expression of LC3-II, LC3-II/I, Beclin-1, and Ulk-1 in the osteocytes decreased with age, while SQSTM1/p62 and apoptosis in the osteocytes increased. A significant correlation between the markers of osteocyte autophagy and bone mineral density in the proximal tibia was revealed. However, osteocyte autophagy was not correlated with osteocyte apoptosis in the process of aging. These results suggested that osteocyte autophagy was possibly involved in the age-related bone loss. Decreased activity of osteocyte autophagy independent of apoptosis might contribute to the age-related bone loss in senile osteoporosis.
Collapse
|
78
|
Orwoll ES, Shapiro J, Veith S, Wang Y, Lapidus J, Vanek C, Reeder JL, Keaveny TM, Lee DC, Mullins MA, Nagamani SC, Lee B. Evaluation of teriparatide treatment in adults with osteogenesis imperfecta. J Clin Invest 2014; 124:491-8. [PMID: 24463451 PMCID: PMC3904621 DOI: 10.1172/jci71101] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 11/05/2013] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Adults with osteogenesis imperfecta (OI) have a high risk of fracture. Currently, few treatment options are available, and bone anabolic therapies have not been tested in clinical trials for OI treatment. METHODS 79 adults with OI were randomized to receive 20 μg recombinant human parathyroid hormone (teriparatide) or placebo for 18 months in a double-blind, placebo-controlled trial. The primary endpoint was the percent change in areal bone mineral density (aBMD) of the lumbar spine (LS), as determined by dual-energy X-ray absorptiometry. Secondary endpoints included percent change in bone remodeling markers and vertebral volumetric BMD (vBMD) by quantitative computed tomography, estimated vertebral strength by finite element analysis, and self-reported fractures. RESULTS Compared with the placebo group, the teriparatide group showed increased LS aBMD (6.1% ± 1.0% vs. 2.8% ± 1.0% change from baseline; P < 0.05) and total hip aBMD (2.6% ± 1.0% vs. -2.4% ± 1.0% change; P < 0.001). Vertebral vBMD and strength improved with teriparatide therapy (18% ± 6% and 15% ± 3% change, respectively), but declined with placebo (-5.0% ± 6% and -2.0% ± 3% change; P < 0.05 for both comparisons). Serum procollagen type 1 N-terminal propeptide (P1NP) and urine collagen N-telopeptide (NTx) levels increased with teriparatide therapy (135% ± 14% and 64% ± 10% change, respectively). Teriparatide-induced elevation of P1NP levels was less pronounced in severe forms of OI (type III/IV) compared with the milder form (type I). Type I OI patients exhibited robust BMD increases with teriparatide; however, there was no observed benefit for those with type III/IV OI. There was no difference in self-reported fractures between the 2 groups. CONCLUSIONS Adults with OI, particularly those with less severe disease (type I), displayed a teriparatide-induced anabolic response, as well as increased hip and spine aBMD, vertebral vBMD, and estimated vertebral strength. Trial registration. Clinicaltrials.gov NCT00131469. Funding. The Osteoporosis Imperfecta Foundation, Eli Lilly and Co., the National Center for Advancing Translational Science (NCATS) at the NIH (grant no. UL1RR024140), and the Baylor College of Medicine General Clinical Research Center (grant no. RR00188).
Collapse
Affiliation(s)
- Eric S. Orwoll
- Oregon Health and Science University, Portland, Oregon, USA.
Kennedy Krieger Institute, Baltimore, Maryland, USA.
ON Diagnostics, Berkeley, California, USA.
Departments of Mechanical Engineering and Bioengineering, UC Berkeley, Berkeley, California, USA.
Baylor College of Medicine, Houston, Texas, USA.
Howard Hughes Medical Institute, Houston, Texas, USA
| | - Jay Shapiro
- Oregon Health and Science University, Portland, Oregon, USA.
Kennedy Krieger Institute, Baltimore, Maryland, USA.
ON Diagnostics, Berkeley, California, USA.
Departments of Mechanical Engineering and Bioengineering, UC Berkeley, Berkeley, California, USA.
Baylor College of Medicine, Houston, Texas, USA.
Howard Hughes Medical Institute, Houston, Texas, USA
| | - Sandra Veith
- Oregon Health and Science University, Portland, Oregon, USA.
Kennedy Krieger Institute, Baltimore, Maryland, USA.
ON Diagnostics, Berkeley, California, USA.
Departments of Mechanical Engineering and Bioengineering, UC Berkeley, Berkeley, California, USA.
Baylor College of Medicine, Houston, Texas, USA.
Howard Hughes Medical Institute, Houston, Texas, USA
| | - Ying Wang
- Oregon Health and Science University, Portland, Oregon, USA.
Kennedy Krieger Institute, Baltimore, Maryland, USA.
ON Diagnostics, Berkeley, California, USA.
Departments of Mechanical Engineering and Bioengineering, UC Berkeley, Berkeley, California, USA.
Baylor College of Medicine, Houston, Texas, USA.
Howard Hughes Medical Institute, Houston, Texas, USA
| | - Jodi Lapidus
- Oregon Health and Science University, Portland, Oregon, USA.
Kennedy Krieger Institute, Baltimore, Maryland, USA.
ON Diagnostics, Berkeley, California, USA.
Departments of Mechanical Engineering and Bioengineering, UC Berkeley, Berkeley, California, USA.
Baylor College of Medicine, Houston, Texas, USA.
Howard Hughes Medical Institute, Houston, Texas, USA
| | - Chaim Vanek
- Oregon Health and Science University, Portland, Oregon, USA.
Kennedy Krieger Institute, Baltimore, Maryland, USA.
ON Diagnostics, Berkeley, California, USA.
Departments of Mechanical Engineering and Bioengineering, UC Berkeley, Berkeley, California, USA.
Baylor College of Medicine, Houston, Texas, USA.
Howard Hughes Medical Institute, Houston, Texas, USA
| | - Jan L. Reeder
- Oregon Health and Science University, Portland, Oregon, USA.
Kennedy Krieger Institute, Baltimore, Maryland, USA.
ON Diagnostics, Berkeley, California, USA.
Departments of Mechanical Engineering and Bioengineering, UC Berkeley, Berkeley, California, USA.
Baylor College of Medicine, Houston, Texas, USA.
Howard Hughes Medical Institute, Houston, Texas, USA
| | - Tony M. Keaveny
- Oregon Health and Science University, Portland, Oregon, USA.
Kennedy Krieger Institute, Baltimore, Maryland, USA.
ON Diagnostics, Berkeley, California, USA.
Departments of Mechanical Engineering and Bioengineering, UC Berkeley, Berkeley, California, USA.
Baylor College of Medicine, Houston, Texas, USA.
Howard Hughes Medical Institute, Houston, Texas, USA
| | - David C. Lee
- Oregon Health and Science University, Portland, Oregon, USA.
Kennedy Krieger Institute, Baltimore, Maryland, USA.
ON Diagnostics, Berkeley, California, USA.
Departments of Mechanical Engineering and Bioengineering, UC Berkeley, Berkeley, California, USA.
Baylor College of Medicine, Houston, Texas, USA.
Howard Hughes Medical Institute, Houston, Texas, USA
| | - Mary A. Mullins
- Oregon Health and Science University, Portland, Oregon, USA.
Kennedy Krieger Institute, Baltimore, Maryland, USA.
ON Diagnostics, Berkeley, California, USA.
Departments of Mechanical Engineering and Bioengineering, UC Berkeley, Berkeley, California, USA.
Baylor College of Medicine, Houston, Texas, USA.
Howard Hughes Medical Institute, Houston, Texas, USA
| | - Sandesh C.S. Nagamani
- Oregon Health and Science University, Portland, Oregon, USA.
Kennedy Krieger Institute, Baltimore, Maryland, USA.
ON Diagnostics, Berkeley, California, USA.
Departments of Mechanical Engineering and Bioengineering, UC Berkeley, Berkeley, California, USA.
Baylor College of Medicine, Houston, Texas, USA.
Howard Hughes Medical Institute, Houston, Texas, USA
| | - Brendan Lee
- Oregon Health and Science University, Portland, Oregon, USA.
Kennedy Krieger Institute, Baltimore, Maryland, USA.
ON Diagnostics, Berkeley, California, USA.
Departments of Mechanical Engineering and Bioengineering, UC Berkeley, Berkeley, California, USA.
Baylor College of Medicine, Houston, Texas, USA.
Howard Hughes Medical Institute, Houston, Texas, USA
| |
Collapse
|
79
|
Lower peak bone mass and abnormal trabecular and cortical microarchitecture in young men infected with HIV early in life. AIDS 2014; 28:345-53. [PMID: 24072196 DOI: 10.1097/qad.0000000000000070] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
INTRODUCTION HIV infection and antiretroviral therapy (ART) early in life may interfere with acquisition of peak bone mass, thereby increasing fracture risk in adulthood. METHODS We conducted a cross-sectional study of dual-energy X-ray absorptiometry (DXA) and high-resolution peripheral quantitative computed tomography (HR-pQCT) in 30 HIV-infected African-American or Hispanic Tanner stage 5 men aged 20-25 on ART (15 perinatally infected and 15 infected during adolescence) and 15 HIV-uninfected controls. RESULTS HIV-infected men were similar in age and BMI, but were more likely to be African-American (P = 0.01) than uninfected men. DXA-derived areal bone mineral density (aBMD) Z-scores were 0.4-1.2 lower in HIV-infected men at the spine, hip, and radius (all P < 0.05). At the radius and tibia, total and trabecular volumetric BMD (vBMD), and cortical and trabecular thickness were between 6 and 19% lower in HIV-infected than uninfected men (P <0.05). HIV-infected men had dramatic deficiencies in plate-related parameters by individual trabeculae segmentation (ITS) analyses and 14-17% lower bone stiffness by finite element analysis. Differences in most HR-pQCT parameters remained significant after adjustment for race/ethnicity. No DXA or HR-pQCT parameters differed between men infected perinatally or during adolescence. CONCLUSION At an age by which young men have typically acquired peak bone mass, HIV-infected men on ART have lower BMD, markedly abnormal trabecular plate and cortical microarchitecture, and decreased whole bone stiffness, whether infected perinatally or during adolescence. Reduced bone strength in young adults infected with HIV early in life may place them at higher risk for fractures as they age.
Collapse
|
80
|
Keaveny TM, McClung MR, Genant HK, Zanchetta JR, Kendler D, Brown JP, Goemaere S, Recknor C, Brandi ML, Eastell R, Kopperdahl DL, Engelke K, Fuerst T, Radcliffe HS, Libanati C. Femoral and vertebral strength improvements in postmenopausal women with osteoporosis treated with denosumab. J Bone Miner Res 2014; 29:158-65. [PMID: 23794225 PMCID: PMC4238810 DOI: 10.1002/jbmr.2024] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/30/2013] [Accepted: 06/10/2013] [Indexed: 01/23/2023]
Abstract
In the randomized, placebo-controlled FREEDOM study of women aged 60 to 90 years with postmenopausal osteoporosis, treatment with denosumab once every 6 months for 36 months significantly reduced hip and new vertebral fracture risk by 40% and 68%, respectively. To gain further insight into this efficacy, we performed a nonlinear finite element analysis (FEA) of hip and spine quantitative computed tomography (QCT) scans to estimate hip and spine strength in a subset of FREEDOM subjects (n = 48 placebo; n = 51 denosumab) at baseline, 12, 24, and 36 months. We found that, compared with baseline, the finite element estimates of hip strength increased from 12 months (5.3%; p < 0.0001) and through 36 months (8.6%; p < 0.0001) in the denosumab group. For the placebo group, hip strength did not change at 12 months and decreased at 36 months (-5.6%; p < 0.0001). Similar changes were observed at the spine: strength increased by 18.2% at 36 months for the denosumab group (p < 0.0001) and decreased by -4.2% for the placebo group (p = 0.002). At 36 months, hip and spine strength increased for the denosumab group compared with the placebo group by 14.3% (p < 0.0001) and 22.4% (p < 0.0001), respectively. Further analysis of the finite element models indicated that strength associated with the trabecular bone was lost at the hip and spine in the placebo group, whereas strength associated with both the trabecular and cortical bone improved in the denosumab group. In conclusion, treatment with denosumab increased hip and spine strength as estimated by FEA of QCT scans compared with both baseline and placebo owing to positive treatment effects in both the trabecular and cortical bone compartments. These findings provide insight into the mechanism by which denosumab reduces fracture risk for postmenopausal women with osteoporosis.
Collapse
Affiliation(s)
- Tony M Keaveny
- University of California Berkeley, Berkeley, CA, USA; O.N. Diagnostics, Berkeley, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Cong E, Walker MD. The Chinese skeleton: insights into microstructure that help to explain the epidemiology of fracture. Bone Res 2014; 2:14009. [PMID: 26273521 PMCID: PMC4472143 DOI: 10.1038/boneres.2014.9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/18/2014] [Accepted: 04/18/2014] [Indexed: 01/12/2023] Open
Abstract
Osteoporotic fractures are a major public health problem worldwide, but incidence varies greatly across racial groups and geographic regions. Recent work suggests that the incidence of osteoporotic fracture is rising among Asian populations. Studies comparing areal bone mineral density and fracture across races generally indicate lower bone mineral density in Asian individuals including the Chinese, but this does not reflect their relatively low risk of non-vertebral fractures. In contrast, the Chinese have relatively high vertebral fracture rates similar to that of Caucasians. The paradoxically low risk for some types of fractures among the Chinese despite their low areal bone mineral density has been elucidated in part by recent advances in skeletal imaging. New techniques for assessing bone quality non-invasively demonstrate that the Chinese compensate for smaller bone size by differences in hip geometry and microstructural skeletal organization. Studies evaluating factors influencing racial differences in bone remodeling, as well as bone acquisition and loss, may further elucidate racial variation in bone microstructure. Advances in understanding the microstructure of the Chinese skeleton have not only helped to explain the epidemiology of fracture in the Chinese, but may also provide insight into the epidemiology of fracture in other races as well.
Collapse
Affiliation(s)
- Elaine Cong
- New York Presbyterian Hospital, New York, USA
| | | |
Collapse
|
82
|
Christen D, Melton LJ, Zwahlen A, Amin S, Khosla S, Müller R. Improved fracture risk assessment based on nonlinear micro-finite element simulations from HRpQCT images at the distal radius. J Bone Miner Res 2013; 28:2601-8. [PMID: 23703921 PMCID: PMC3818502 DOI: 10.1002/jbmr.1996] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 04/04/2013] [Accepted: 04/15/2013] [Indexed: 01/23/2023]
Abstract
More accurate techniques to estimate fracture risk could help reduce the burden of fractures in postmenopausal women. Although micro-finite element (µFE) simulations allow a direct assessment of bone mechanical performance, in this first clinical study we investigated whether the additional information obtained using geometrically and materially nonlinear µFE simulations allows a better discrimination between fracture cases and controls. We used patient data and high-resolution peripheral quantitative computed tomography (HRpQCT) measurements from our previous clinical study on fracture risk, which compared 100 postmenopausal women with a distal forearm fracture to 105 controls. Analyzing these data with the nonlinear µFE simulations, the odds ratio (OR) for the factor-of-risk (yield load divided by the expected fall load) was marginally higher (1.99; 95% confidence interval [CI], 1.41-2.77) than for the factor-of-risk computed from linear µFE (1.89; 95% CI, 1.37-2.69). The yield load and the energy absorbed up to the yield point as computed from nonlinear µFE were highly correlated with the initial stiffness (R(2) = 0.97 and 0.94, respectively) and could therefore be derived from linear simulations with little loss in precision. However, yield deformation was not related to any other measurement performed and was itself a good predictor of fracture risk (OR, 1.89; 95% CI, 1.39-2.63). Moreover, a combined risk score integrating information on relative bone strength (yield load-based factor-of-risk), bone ductility (yield deformation), and the structural integrity of the bone under critical loads (cortical plastic volume) improved the separation of cases and controls by one-third (OR, 2.66; 95% CI, 1.84-4.02). We therefore conclude that nonlinear µFE simulations provide important additional information on the risk of distal forearm fractures not accessible from linear µFE nor from other techniques assessing bone microstructure, density, or mass.
Collapse
Affiliation(s)
- David Christen
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
83
|
Farahmand P, Marin F, Hawkins F, Möricke R, Ringe JD, Glüer CC, Papaioannou N, Minisola S, Martínez G, Nolla JM, Niedhart C, Guañabens N, Nuti R, Martín-Mola E, Thomasius F, Peña J, Graeff C, Kapetanos G, Petto H, Gentzel A, Reisinger A, Zysset PK. Early changes in biochemical markers of bone formation during teriparatide therapy correlate with improvements in vertebral strength in men with glucocorticoid-induced osteoporosis. Osteoporos Int 2013; 24:2971-81. [PMID: 23740422 PMCID: PMC3838582 DOI: 10.1007/s00198-013-2379-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/23/2013] [Indexed: 01/19/2023]
Abstract
UNLABELLED Changes of the bone formation marker PINP correlated positively with improvements in vertebral strength in men with glucocorticoid-induced osteoporosis (GIO) who received 18-month treatment with teriparatide, but not with risedronate. These results support the use of PINP as a surrogate marker of bone strength in GIO patients treated with teriparatide. INTRODUCTION To investigate the correlations between biochemical markers of bone turnover and vertebral strength estimated by finite element analysis (FEA) in men with GIO. METHODS A total of 92 men with GIO were included in an 18-month, randomized, open-label trial of teriparatide (20 μg/day, n = 45) and risedronate (35 mg/week, n = 47). High-resolution quantitative computed tomography images of the 12th thoracic vertebra obtained at baseline, 6 and 18 months were converted into digital nonlinear FE models and subjected to anterior bending, axial compression and torsion. Stiffness and strength were computed for each model and loading mode. Serum biochemical markers of bone formation (amino-terminal-propeptide of type I collagen [PINP]) and bone resorption (type I collagen cross-linked C-telopeptide degradation fragments [CTx]) were measured at baseline, 3 months, 6 months and 18 months. A mixed-model of repeated measures analysed changes from baseline and between-group differences. Spearman correlations assessed the relationship between changes from baseline of bone markers with FEA variables. RESULTS PINP and CTx levels increased in the teriparatide group and decreased in the risedronate group. FEA-derived parameters increased in both groups, but were significantly higher at 18 months in the teriparatide group. Significant positive correlations were found between changes from baseline of PINP at 3, 6 and 18 months with changes in FE strength in the teriparatide-treated group, but not in the risedronate group. CONCLUSIONS Positive correlations between changes in a biochemical marker of bone formation and improvement of biomechanical properties support the use of PINP as a surrogate marker of bone strength in teriparatide-treated GIO patients.
Collapse
Affiliation(s)
- P Farahmand
- West German Osteoporosis Centre, Klinikum Leverkusen, University of Cologne, Am Gesundheitspark 11, 51375, Leverkusen, Germany,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Courtland HW, Kennedy OD, Wu Y, Gao Y, Sun H, Schaffler MB, Yakar S. Low levels of plasma IGF-1 inhibit intracortical bone remodeling during aging. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1691-1703. [PMID: 22976122 PMCID: PMC3776121 DOI: 10.1007/s11357-012-9469-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 08/31/2012] [Indexed: 06/01/2023]
Abstract
Studies linking insulin-like growth factor-1 (IGF-1) to age-related bone loss in humans have been reported but remain only correlative. In this investigation, we characterized the bone phenotype of aged WT C57BL/6J male mice in comparison to that of C57BL/6J mice with reduced serum IGF-1 levels arising from an igfals gene deletion (ALS knockout (ALSKO)). During the aging process, WT mice showed an increase in fat mass and decrease lean mass while ALSKO mice had stable lean and fat mass values. Skeletal analyses of femora from WT mice revealed an expansion of the marrow area and a significant accumulation of intracortical porosity associated with increased intracortical remodeling. In contrast, ALSKO mice showed only small age-related declines in the amount of cortical bone tissue and minimal intracortical porosity, at 2 years of age. Accordingly, mechanical tests of femora from 2-year-old WT mice revealed reduced stiffness and maximal load when compared to bones from ALSKO mice. We show here that lifelong reductions in serum IGF-1 compromise skeletal size in development leading to slender bones; they are also associated with decreased intracortical bone remodeling and preservation of bone strength during aging.
Collapse
Affiliation(s)
- Hayden-William Courtland
- />Division of Endocrinology, Diabetes and Bone Diseases, Mount Sinai School of Medicine, New York, NY 10029 USA
| | - Oran D. Kennedy
- />Department of Biomedical Engineering, City College of New York, CUNY, New York, NY 10031 USA
| | - Yingjie Wu
- />Division of Endocrinology, Diabetes and Bone Diseases, Mount Sinai School of Medicine, New York, NY 10029 USA
- />David B. Kriser Dental Center, Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 East 24th Street, New York, NY 10010-4086 USA
| | - Ying Gao
- />Division of Endocrinology, Diabetes and Bone Diseases, Mount Sinai School of Medicine, New York, NY 10029 USA
| | - Hui Sun
- />Division of Endocrinology, Diabetes and Bone Diseases, Mount Sinai School of Medicine, New York, NY 10029 USA
- />David B. Kriser Dental Center, Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 East 24th Street, New York, NY 10010-4086 USA
| | - Mitchell B. Schaffler
- />Department of Biomedical Engineering, City College of New York, CUNY, New York, NY 10031 USA
| | - Shoshana Yakar
- />Division of Endocrinology, Diabetes and Bone Diseases, Mount Sinai School of Medicine, New York, NY 10029 USA
- />David B. Kriser Dental Center, Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 East 24th Street, New York, NY 10010-4086 USA
| |
Collapse
|
85
|
Shirazi-Fard Y, Anthony RA, Kwaczala AT, Judex S, Bloomfield SA, Hogan HA. Previous exposure to simulated microgravity does not exacerbate bone loss during subsequent exposure in the proximal tibia of adult rats. Bone 2013; 56:461-73. [PMID: 23871849 DOI: 10.1016/j.bone.2013.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/16/2013] [Accepted: 07/04/2013] [Indexed: 11/29/2022]
Abstract
Extended periods of inactivity cause severe bone loss and concomitant deterioration of the musculoskeletal system. Considerable research has been aimed at better understanding the mechanisms and consequences of bone loss due to unloading and the associated effects on strength and fracture risk. One factor that has not been studied extensively but is of great interest, particularly for human spaceflight, is how multiple or repeated exposures to unloading and reloading affect the skeleton. Space agencies worldwide anticipate increased usage of repeat-flier crewmembers, and major thrust of research has focused on better understanding of microgravity effects on loss of bone density at weightbearing skeletal sites; however there is limited data available on repeat microgravity exposure. The adult hindlimb unloaded (HU) rat model was used to determine how an initial unloading cycle will affect a subsequent exposure to disuse and recovery thereafter. Animals underwent 28 days of HU starting at 6 months of age followed by 56 days of recovery, and then another 28 days of HU with 56 days of recovery. In vivo longitudinal pQCT was used to quantify bone morphological changes, and ex vivo μCT was used to quantify trabecular microarchitecture and cortical shell geometry at the proximal tibia metaphysis (PTM). The mechanical properties of trabecular bone were examined by the reduced platen compression mechanical test. The hypothesis that the initial HU exposure will mitigate decrements in bone mass and density for the second HU exposure was supported as pre- to post-HU declines in total BMC, total vBMD, and cortical area by in vivo pQCT at the proximal tibia metaphysis were milder for the second HU (and not significant) compared to an age-matched single HU (3% vs. 6%, 2% vs. 6%, and 2% vs. 6%, respectively). In contrast, the hypothesis was not supported at the microarchitectural level as losses in BV/TV and Tb.Th. were similar during 2nd HU exposure and age-matched single HU. Recovery with respect to post-HU values and compared to aging controls for total BMC, vBMD and cortical area were slower in older animals exposed to single or double HU cycles compared to recovery of younger animals exposed to a single HU bout. Despite milder recovery at the older age, there was no difference between unloaded animals and controls at the end of second recovery period. Therefore, the data did not support the hypothesis that two cycles of HU exposure with recovery would have a net negative effect. Mechanical properties of trabecular bone were affected more severely than densitometric measures (35% loss in trabecular bone ultimate stress vs. 9% loss in trabecular vBMD), which can be attributed most prominently to reductions in trabecular bone density and tissue mineral density. Together, our data demonstrate that initial exposure to mechanical unloading does not exacerbate bone loss during a subsequent unloading period and two cycles of unloading followed by recovery do not have a cumulative net negative effect on total bone mineral content and density as measured by pQCT at the proximal tibia metaphysis.
Collapse
Affiliation(s)
- Yasaman Shirazi-Fard
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | | | |
Collapse
|
86
|
Engelke K, Libanati C, Fuerst T, Zysset P, Genant HK. Advanced CT based in vivo methods for the assessment of bone density, structure, and strength. Curr Osteoporos Rep 2013; 11:246-55. [PMID: 23712690 DOI: 10.1007/s11914-013-0147-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Based on spiral 3D tomography a large variety of applications have been developed during the last decade to asses bone mineral density, bone macro and micro structure, and bone strength. Quantitative computed tomography (QCT) using clinical whole body scanners provides separate assessment of trabecular, cortical, and subcortical bone mineral density (BMD) and content (BMC) principally in the spine and hip, although the distal forearm can also be assessed. Further bone macrostructure, for example bone geometry or cortical thickness can be quantified. Special high resolution peripheral CT (hr-pQCT) devices have been introduced to measure bone microstructure for example the trabecular architecture or cortical porosity at the distal forearm or tibia. 3D CT is also the basis for finite element analysis (FEA) to determine bone strength. QCT, hr-pQCT, and FEM are increasingly used in research as well as in clinical trials to complement areal BMD measurements obtained by the standard densitometric technique of dual x-ray absorptiometry (DXA). This review explains technical developments and demonstrates how QCT based techniques advanced our understanding of bone biology.
Collapse
Affiliation(s)
- K Engelke
- Institute of Medical Physics, University of Erlangen, Henkestr. 91, 91052, Erlangen, Germany,
| | | | | | | | | |
Collapse
|
87
|
Nickolas TL, Stein EM, Dworakowski E, Nishiyama KK, Komandah-Kosseh M, Zhang CA, McMahon DJ, Liu XS, Boutroy S, Cremers S, Shane E. Rapid cortical bone loss in patients with chronic kidney disease. J Bone Miner Res 2013; 28:1811-20. [PMID: 23456850 PMCID: PMC3720694 DOI: 10.1002/jbmr.1916] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/06/2013] [Accepted: 02/13/2013] [Indexed: 11/12/2022]
Abstract
Chronic kidney disease (CKD) patients may have high rates of bone loss and fractures, but microarchitectural and biochemical mechanisms of bone loss in CKD patients have not been fully described. In this longitudinal study of 53 patients with CKD Stages 2 to 5D, we used dual-energy X-ray absorptiometry (DXA), high-resolution peripheral quantitative computed tomography (HRpQCT), and biochemical markers of bone metabolism to elucidate effects of CKD on the skeleton. Median follow-up was 1.5 years (range 0.9 to 4.3 years); bone changes were annualized and compared with baseline. By DXA, there were significant declines in areal bone mineral density (BMD) of the total hip and ultradistal radius: -1.3% (95% confidence interval [CI] -2.1 to -0.6) and -2.4% (95% CI -4.0 to -0.9), respectively. By HRpQCT at the distal radius, there were significant declines in cortical area, density, and thickness and increases in porosity: -2.9% (95% CI -3.7 to -2.2), -1.3% (95% CI -1.6 to -0.6), -2.8% (95% CI -3.6 to -1.9), and +4.2% (95% CI 2.0 to 6.4), respectively. Radius trabecular area increased significantly: +0.4% (95% CI 0.2 to 0.6), without significant changes in trabecular density or microarchitecture. Elevated time-averaged levels of parathyroid hormone (PTH) and bone turnover markers predicted cortical deterioration. Higher levels of serum 25-hydroxyvitamin D predicted decreases in trabecular network heterogeneity. These data suggest that significant cortical loss occurs with CKD, which is mediated by hyperparathyroidism and elevated turnover. Future investigations are required to determine whether these cortical losses can be attenuated by treatments that reduce PTH levels and remodeling rates.
Collapse
Affiliation(s)
- Thomas L Nickolas
- Columbia University Medical Center, Department of Medicine, Division of Nephrology, New York, NY, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Cosman F, Keaveny TM, Kopperdahl D, Wermers RA, Wan X, Krohn KD, Krege JH. Hip and spine strength effects of adding versus switching to teriparatide in postmenopausal women with osteoporosis treated with prior alendronate or raloxifene. J Bone Miner Res 2013; 28:1328-36. [PMID: 23281041 DOI: 10.1002/jbmr.1853] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 12/03/2012] [Accepted: 12/10/2012] [Indexed: 11/12/2022]
Abstract
Many postmenopausal women treated with teriparatide for osteoporosis have previously received antiresorptive therapy. In women treated with alendronate (ALN) or raloxifene (RLX), adding versus switching to teriparatide produced different responses in areal bone mineral density (aBMD) and biochemistry; the effects of these approaches on volumetric BMD (vBMD) and bone strength are unknown. In this study, postmenopausal women with osteoporosis receiving ALN 70 mg/week (n = 91) or RLX 60 mg/day (n = 77) for ≥18 months were randomly assigned to add or switch to teriparatide 20 µg/day. Quantitative computed tomography scans were performed at baseline, 6 months, and 18 months to assess changes in vBMD; strength was estimated by nonlinear finite element analysis. A statistical plan specifying analyses was approved before assessments were completed. At the spine, median vBMD and strength increased from baseline in all groups (13.2% to 17.5%, p < 0.01); there were no significant differences between the Add and Switch groups. In the RLX stratum, hip vBMD and strength increased at 6 and 18 months in the Add group but only at 18 months in the Switch group (Strength, Month 18: 2.7% Add group, p < 0.01 and 3.4% Switch group, p < 0.05). In the ALN stratum, hip vBMD increased in the Add but not in the Switch group (0.9% versus -0.5% at 6 months and 2.2% versus 0.0% at 18 months, both p ≤ 0.004 group difference). At 18 months, hip strength increased in the Add group (2.7%, p < 0.01) but not in the Switch group (0%); however, the difference between groups was not significant (p = 0.076). Adding or switching to teriparatide conferred similar benefits on spine strength in postmenopausal women with osteoporosis pretreated with ALN or RLX. Increases in hip strength were more variable. In RLX-treated women, strength increased more quickly in the Add group; in ALN-treated women, a significant increase in strength compared with baseline was seen only in the Add group.
Collapse
|
89
|
Abstract
Quantitative computed tomography (QCT) provides three-dimensional information about bone geometry and the spatial distribution of bone mineral. Images obtained with QCT can be used to create finite element models, which offer the ability to analyze bone strength and the distribution of mechanical stress and physical deformation. This approach can be used to investigate different mechanical loading scenarios (stance and fall configurations at the hip, for example) and to estimate whole bone strength and the relative mechanical contributions of the cortical and trabecular bone compartments. Finite element analyses based on QCT images of the hip and spine have been used to provide important insights into the biomechanical effects of factors such as age, sex, bone loss, pharmaceuticals, and mechanical loading at sites of high clinical importance. Thus, this analysis approach has become an important tool in the study of the etiology and treatment of osteoporosis at the hip and spine.
Collapse
Affiliation(s)
- R Dana Carpenter
- Department of Mechanical Engineering , University of Colorado Denver, Campus Box 112, P.O. Box 173364, Denver, CO 80217-3364, USA.
| |
Collapse
|
90
|
Orwoll ES, Adler RA, Amin S, Binkley N, Lewiecki EM, Petak SM, Shapses SA, Sinaki M, Watts NB, Sibonga JD. Skeletal health in long-duration astronauts: nature, assessment, and management recommendations from the NASA Bone Summit. J Bone Miner Res 2013; 28:1243-55. [PMID: 23553962 DOI: 10.1002/jbmr.1948] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 03/04/2013] [Accepted: 03/20/2013] [Indexed: 11/09/2022]
Abstract
Concern about the risk of bone loss in astronauts as a result of prolonged exposure to microgravity prompted the National Aeronautics and Space Administration to convene a Bone Summit with a panel of experts at the Johnson Space Center to review the medical data and research evidence from astronauts who have had prolonged exposure to spaceflight. Data were reviewed from 35 astronauts who had served on spaceflight missions lasting between 120 and 180 days with attention focused on astronauts who (1) were repeat fliers on long-duration missions, (2) were users of an advanced resistive exercise device (ARED), (3) were scanned by quantitative computed tomography (QCT) at the hip, (4) had hip bone strength estimated by finite element modeling, or (5) had lost >10% of areal bone mineral density (aBMD) at the hip or lumbar spine as measured by dual-energy X-ray absorptiometry (DXA). Because of the limitations of DXA in describing the effects of spaceflight on bone strength, the panel recommended that the U.S. space program use QCT and finite element modeling to further study the unique effects of spaceflight (and recovery) on bone health in order to better inform clinical decisions.
Collapse
Affiliation(s)
- Eric S Orwoll
- Bone and Mineral Unit, Oregon Health and Science University, Portland, OR, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Yin MT, Shu A, Zhang CA, Boutroy S, McMahon DJ, Ferris DC, Colon I, Shane E. Trabecular and cortical microarchitecture in postmenopausal HIV-infected women. Calcif Tissue Int 2013; 92:557-65. [PMID: 23460340 PMCID: PMC3656136 DOI: 10.1007/s00223-013-9716-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 01/29/2013] [Indexed: 10/27/2022]
Abstract
Our objective was to assess the effects of HIV infection and antiretroviral therapy on trabecular and cortical microarchitecture in postmenopausal minority women. A subgroup of 106 (46 HIV-infected, 60 uninfected) postmenopausal Hispanic and African American women from an established cohort had areal bone mineral density (aBMD) measured by dual-energy X-ray absorptiometry and trabecular and cortical volumetric BMD (vBMD) and microarchitecture measured by high-resolution peripheral quantitative computed tomography (HRpQCT) at the radius and tibia. HIV-infected women were slightly younger (58 ± 1 vs. 61 ± 1 years, p = 0.08), and had lower body mass index (BMI; 28 ± 1 vs. 32 ± 1 kg/m(2), p < 0.01). BMI-adjusted aBMD Z scores were lower in HIV-infected women at the lumbar spine, total hip, and ultradistal radius. Serum N-telopeptide and C-telopeptide levels were also higher in HIV-infected women. Trabecular and cortical vBMD were similar at the radius, but cortical area (105.5 ± 2.4 vs. 120.6 ± 2.0 mm(2), p < 0.01) and thickness (956 ± 33 vs. 1,075 ± 28 μm, p < 0.01) at the tibia were approximately 11-12 % lower in HIV-infected women. Differences remained significant after adjusting for age, BMI, and race/ethnicity. In contrast, cortical porosity was similar in the two groups. Although HIV-infected postmenopausal women had lower aBMD at the spine, total hip, and ultradistal radius and higher levels of bone resorption markers, the only differences detected by HRpQCT were lower cortical thickness and area at the tibia.
Collapse
Affiliation(s)
- Michael T Yin
- Division of Infectious Diseases, Columbia University Medical Center, 630 West 168th Street, PH8-876, New York, NY 10032, USA.
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Brixen K, Chapurlat R, Cheung AM, Keaveny TM, Fuerst T, Engelke K, Recker R, Dardzinski B, Verbruggen N, Ather S, Rosenberg E, de Papp AE. Bone density, turnover, and estimated strength in postmenopausal women treated with odanacatib: a randomized trial. J Clin Endocrinol Metab 2013; 98:571-80. [PMID: 23337728 DOI: 10.1210/jc.2012-2972] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CONTEXT Odanacatib, a cathepsin K inhibitor, increases spine and hip areal bone mineral density (BMD) in postmenopausal women with low BMD and cortical thickness in ovariectomized monkeys. OBJECTIVE The objective of the study was to examine the impact of odanacatib on the trabecular and cortical bone compartments and estimated strength at the hip and spine. DESIGN This was a randomized, double-blind, 2-year trial. SETTING The study was conducted at a private or institutional practice. PARTICIPANTS PARTICIPANTS included 214 postmenopausal women with low areal BMD. INTERVENTION The intervention included odanacatib 50 mg or placebo weekly. MAIN OUTCOME MEASURES Changes in areal BMD by dual-energy x-ray absorptiometry (primary end point, 1 year areal BMD change at lumbar spine), bone turnover markers, volumetric BMD by quantitative computed tomography (QCT), and bone strength estimated by finite element analysis were measured. RESULTS Year 1 lumbar spine areal BMD percent change from baseline was 3.5% greater with odanacatib than placebo (P < .001). Bone-resorption marker C-telopeptide of type 1 collagen was significantly lower with odanacatib vs placebo at 6 months and 2 years (P < .001). Bone-formation marker procollagen I N-terminal peptide initially decreased with odanacatib but by 2 years did not differ from placebo. After 6 months, odanacatib-treated women had greater increases in trabecular volumetric BMD and estimated compressive strength at the spine and integral and trabecular volumetric BMD and estimated strength at the hip (P < .001). At the cortical envelope of the femoral neck, bone mineral content, thickness, volume, and cross-sectional area also increased from baseline with odanacatib vs placebo (P < .001 at 24 months). Adverse experiences were similar between groups. CONCLUSIONS Over 2 years, odanacatib decreased bone resorption, maintained bone formation, increased areal and volumetric BMD, and increased estimated bone strength at both the hip and spine.
Collapse
Affiliation(s)
- Kim Brixen
- Department of Endocrinology, Institute of Clinical Research, University of Southern Denmark, DK-5000 Odense C., Denmark.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Graeff C, Marin F, Petto H, Kayser O, Reisinger A, Peña J, Zysset P, Glüer CC. High resolution quantitative computed tomography-based assessment of trabecular microstructure and strength estimates by finite-element analysis of the spine, but not DXA, reflects vertebral fracture status in men with glucocorticoid-induced osteoporosis. Bone 2013; 52:568-77. [PMID: 23149277 DOI: 10.1016/j.bone.2012.10.036] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 10/07/2012] [Accepted: 10/31/2012] [Indexed: 11/25/2022]
Abstract
High-resolution quantitative computed tomography (HRQCT)-based analysis of spinal bone density and microstructure, finite element analysis (FEA), and DXA were used to investigate the vertebral bone status of men with glucocorticoid-induced osteoporosis (GIO). DXA of L1-L3 and total hip, QCT of L1-L3, and HRQCT of T12 were available for 73 men (54.6±14.0years) with GIO. Prevalent vertebral fracture status was evaluated on radiographs using a semi-quantitative (SQ) score (normal=0 to severe fracture=3), and the spinal deformity index (SDI) score (sum of SQ scores of T4 to L4 vertebrae). Thirty-one (42.4%) subjects had prevalent vertebral fractures. Cortical BMD (Ct.BMD) and thickness (Ct.Th), trabecular BMD (Tb.BMD), apparent trabecular bone volume fraction (app.BV/TV), and apparent trabecular separation (app.Tb.Sp) were analyzed by HRQCT. Stiffness and strength of T12 were computed by HRQCT-based nonlinear FEA for axial compression, anterior bending and axial torsion. In logistic regressions adjusted for age, glucocorticoid dose and osteoporosis treatment, Tb.BMD was most closely associated with vertebral fracture status (standardized odds ratio [sOR]: Tb.BMD T12: 4.05 [95% CI: 1.8-9.0], Tb.BMD L1-L3: 3.95 [1.8-8.9]). Strength divided by cross-sectional area for axial compression showed the most significant association with spine fracture status among FEA variables (2.56 [1.29-5.07]). SDI was best predicted by a microstructural model using Ct.Th and app.Tb.Sp (r(2)=0.57, p<0.001). Spinal or hip DXA measurements did not show significant associations with fracture status or severity. In this cross-sectional study of males with GIO, QCT, HRQCT-based measurements and FEA variables were superior to DXA in discriminating between patients of differing prevalent vertebral fracture status. A microstructural model combining aspects of cortical and trabecular bone reflected fracture severity most accurately.
Collapse
Affiliation(s)
- Christian Graeff
- Sektion Biomedizinische Bildgebung, Klinik für Diagnostische Radiologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Fields AJ, Nawathe S, Eswaran SK, Jekir MG, Adams MF, Papadopoulos P, Keaveny TM. Vertebral fragility and structural redundancy. J Bone Miner Res 2012; 27:2152-8. [PMID: 22623120 PMCID: PMC3440513 DOI: 10.1002/jbmr.1664] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The mechanisms of age-related vertebral fragility remain unclear, but may be related to the degree of "structural redundancy" of the vertebra; ie, its ability to safely redistribute stress internally after local trabecular failure from an isolated mechanical overload. To better understand this issue, we performed biomechanical testing and nonlinear micro-CT-based finite element analysis on 12 elderly human thoracic ninth vertebral bodies (age 76.9 ± 10.8 years). After experimentally overloading the vertebrae to measure strength, we used nonlinear finite element analysis to estimate the amount of failed tissue and understand the failure mechanisms. We found that the amount of failed tissue per unit bone mass decreased with decreasing bone volume fraction (r(2) = 0.66, p < 0.01). Thus, for the weak vertebrae with low bone volume fraction, overall failure of the vertebra occurred after failure of just a tiny proportion of the bone tissue (<5%). This small proportion of failed tissue had two sources: the existence of fewer vertically oriented load paths to which load could be redistributed from failed trabeculae; and the vulnerability of the trabeculae in these few load paths to undergo bending-type failure mechanisms, which further weaken the bone. Taken together, these characteristics suggest that diminished structural redundancy may be an important aspect of age-related vertebral fragility: vertebrae with low bone volume fraction are highly susceptible to collapse because so few trabeculae are available for load redistribution if the external loads cause any trabeculae to fail.
Collapse
Affiliation(s)
- Aaron J Fields
- Orthopaedic Biomechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | | | | | | | | | | | | |
Collapse
|
95
|
Cervinka T, Hyttinen J, Sievänen H. Threshold-free automatic detection of cortical bone geometry by peripheral quantitative computed tomography. J Clin Densitom 2012; 15:413-421. [PMID: 22572529 DOI: 10.1016/j.jocd.2012.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 02/28/2012] [Accepted: 03/05/2012] [Indexed: 10/28/2022]
Abstract
An accurate assessment of bone strength is an important goal in clinical bone research. For appropriate information on bone strength, precise segmentation of actual cross-sectional bone geometry is needed. In this article, we introduce an automatic, simple, and fast approach for reliable segmentation of cortical bone cross-sectional area based on the outer boundary detection and subsequent shrinking (OBS) procedure. Using repeated in vivo peripheral quantitative computed tomography (pQCT) images of distal tibia from 25 subjects, we compared new segmentation results with those obtained from commonly applied simple density thresholds and from a recent advanced analysis based on distance regularized level set evolution (DRLSE). Manual segmentation of cortical bone done by 3 independent evaluators was considered a gold standard. The new approach showed nearly 50% less variation in error compared with threshold-based analysis in conjunction with a recently introduced statistical preprocessing method and agreed well with results obtained from manual segmentation. The DRLSE segmentation resulted consistently in ~15% mean overestimation of all geometrical traits with a similar variation of data as obtained from the OBS method. In conclusion, the OBS method improved assessment of all observed measures of cortical geometry and can enhance the cortical bone analysis of pQCT images in clinical research studies.
Collapse
Affiliation(s)
- Tomas Cervinka
- Department of Biomedical Engineering, Tampere University of Technology, Tampere, Finland; BioMediTech, Tampere, Finland.
| | - Jari Hyttinen
- Department of Biomedical Engineering, Tampere University of Technology, Tampere, Finland; BioMediTech, Tampere, Finland
| | - Harri Sievänen
- Bone Research Group, UKK Institute, Tampere, Finland; Pirkanmaa Hospital District, Science Center, Tampere, Finland
| |
Collapse
|
96
|
van der Meulen MCH, Boskey AL. Atypical subtrochanteric femoral shaft fractures: role for mechanics and bone quality. Arthritis Res Ther 2012; 14:220. [PMID: 22958475 PMCID: PMC3580578 DOI: 10.1186/ar4013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Bisphosphonates are highly effective agents for reducing osteoporotic fractures in women and men, decreasing fracture incidence at the hip and spine up to 50%. In a small subset of patients, however, these agents have recently been associated with 'atypical femoral fractures' (AFFs) in the subtrochanteric region or the diaphysis. These fractures have several atypical characteristics, including occurrence with minimal trauma; younger age than typical osteoporotic fractures; occurrence at cortical, rather than cancellous sites; early radiographic appearance similar to that of a stress fracture; transverse fracture pattern rather than the familiar spiral or transverse-oblique morphologies; initiation on the lateral cortex; and high risk of fracture on the contralateral side, at the same location as the initial fracture. Fracture is a mechanical phenomenon that occurs when the loads applied to a structure such as a long bone exceed its load-bearing capacity, either due to a single catastrophic overload (traumatic failure) or as a result of accumulated damage and crack propagation at sub-failure loads (fatigue failure). The association of AFFs with no or minimal trauma suggests a fatigue-based mechanism that depends on cortical cross-sectional geometry and tissue material properties. In the case of AFFs, bisphosphonate treatment may alter cortical tissue properties, as these agents are known to alter bone remodeling. This review discusses the use of bisphosphonates, their effects on bone remodeling, mechanics and tissue composition, their significance as an effective therapy for osteoporosis, and why these agents may increase fracture risk in a small population of patients.
Collapse
|
97
|
Parkinson IH, Badiei A, Stauber M, Codrington J, Müller R, Fazzalari NL. Vertebral body bone strength: the contribution of individual trabecular element morphology. Osteoporos Int 2012; 23:1957-65. [PMID: 22086309 DOI: 10.1007/s00198-011-1832-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 08/30/2011] [Indexed: 10/15/2022]
Abstract
SUMMARY Although the amount of bone explains the largest amount of variability in bone strength, there is still a significant proportion unaccounted for. The morphology of individual bone trabeculae explains a further proportion of the variability in bone strength and bone elements that contribute to bone strength depending on the direction of loading. INTRODUCTION Micro-CT imaging enables measurement of bone microarchitecture and subsequently mechanical strength of the same sample. It is possible using micro-CT data to perform morphometric analysis on individual rod and plate bone trabeculae using a volumetric spatial decomposition algorithm and hence determine their contribution to bone strength. METHODS Twelve pairs of vertebral bodies (T12/L1 or L4/L5) were harvested from human cadavers, and bone cubes (10 × 10 × 10 mm) were obtained. After micro-CT imaging, a volumetric spatial decomposition algorithm was applied, and measures of individual trabecular elements were obtained. Bone strength was measured in compression, where one bone specimen from each vertebral segment was tested supero-inferiorly (SI) and the paired specimen was tested antero-posteriorly (AP). RESULTS Bone volume fraction was the strongest individual determinant of SI strength (r(2) = 0.77, p < 0.0001) and AP (r(2) = 0.54, p < 0.0001). The determination of SI strength was improved to r(2) = 0.87 with the addition of mean rod length and relative plate bone volume fraction. The determination of AP strength was improved to r(2) = 0.85 with the addition of mean rod volume and relative rod bone volume fraction. CONCLUSIONS Microarchitectural measures of individual trabeculae that contribute to bone strength have been identified. In addition to the contribution of BV/TV, trabecular rod morphology increased the determination of AP strength by 57%, whereas measures of trabecular plate and rod morphology increased determination of SI strength by 13%. Decomposing vertebral body bone architecture into its constituent morphological elements shows that trabecular element morphology has specific functional roles to assist in maintaining skeletal integrity.
Collapse
Affiliation(s)
- I H Parkinson
- Bone and Joint Research Laboratory, SA Pathology and Hanson Institute, Frome Road, Adelaide, South Australia, 5000, Australia.
| | | | | | | | | | | |
Collapse
|
98
|
Abstract
Osteoporosis heightens vertebral fragility owing to the biomechanical effects of diminished bone structure and composition. These biomechanical effects are only partially explained by loss in bone mass, so additional factors that are independent of bone mass are also thought to play an important role in vertebral fragility. Recent advances in imaging equipment, imaging-processing methods, and computational capacity allow researchers to quantify trabecular architecture in the vertebra at the level of the individual trabecular elements and to derive biomechanics-based measures of architecture that are independent of bone mass and density. These advances have shed light on the role of architecture in vertebral fragility. In addition to the adverse biomechanical consequences associated with trabecular thinning and loss of connectivity, a reduction in the number of vertical trabecular plates appears to be particularly harmful to vertebral strength. In the clinic, detailed architecture analysis is primarily applied to peripheral sites such as the distal radius and tibia. Analysis of trabecular architecture at these peripheral sites has shown mixed results for discriminating between patients with and without a vertebral fracture independent of bone mass, but has the potential to provide unique insight into the effects of therapeutic treatments. Overall, it does appear that trabecular architecture has an independent role on vertebral strength. Additional research is required to determine how and where architecture should be measured in vivo and whether assessment of trabecular architecture in a clinical setting improves prospective fracture risk assessment for the vertebra.
Collapse
Affiliation(s)
- Aaron J Fields
- Department of Orthopaedic Surgery, University of California, 513 Parnassus Avenue, S-1161, San Francisco, CA, 94143-0514, USA.
| | | |
Collapse
|
99
|
Atkinson EJ, Therneau TM, Melton LJ, Camp JJ, Achenbach SJ, Amin S, Khosta S. Assessing fracture risk using gradient boosting machine (GBM) models. J Bone Miner Res 2012; 27:1397-404. [PMID: 22367889 PMCID: PMC3408850 DOI: 10.1002/jbmr.1577] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Advanced bone imaging with quantitative computed tomography (QCT) has had limited success in significantly improving fracture prediction beyond standard areal bone mineral density (aBMD) measurements. Thus, we examined whether a machine learning paradigm, gradient boosting machine (GBM) modeling, which can incorporate diverse measurements of bone density and geometry from central QCT imaging and of bone microstructure from high-resolution peripheral QCT imaging, can improve fracture prediction. We studied two cohorts of postmenopausal women: 105 with and 99 without distal forearm fractures (Distal Forearm Cohort) and 40 with at least one grade 2 or 3 vertebral deformity and 78 with no vertebral fracture (Vertebral Cohort). Within each cohort, individual bone density, structure, or strength variables had areas under receiver operating characteristic curves (AUCs) ranging from 0.50 to 0.84 (median 0.61) for discriminating women with and without fracture. Using all possible variables in the GBM model, the AUCs were close to 1.0. Fracture predictions in the Vertebral Cohort using the GBM models built with the Distal Forearm Cohort had AUCs of 0.82-0.95, while predictions in the Distal Forearm Cohort using models built with the Vertebral Cohort had AUCs of 0.80-0.83. Attempts at capturing a comparable parametric model using the top variables from the Distal Forearm Cohort resulted in resulted in an AUC of 0.81. Relatively high AUCs for differing fracture types suggest that an underlying fracture propensity is being captured by this modeling approach. More complex modeling, such as with GBM, creates stronger fracture predictions and may allow deeper insights into information provided by advanced bone imaging techniques.
Collapse
Affiliation(s)
- Elizabeth J Atkinson
- Divisions of Biomedical Statistics and Informatics, College of Medicine, Mayo Clinic, Rochester, MN, USA.
| | | | | | | | | | | | | |
Collapse
|
100
|
Abstract
Bone mineral density alone cannot reliably predict fracture risk in humans and laboratory animals. Therefore, other factors including the quality of organic bone matrix components and their interactions may be of crucial importance to understanding of fragility fractures. Emerging research evidence shows, that in addition to collagen, certain noncollagenous proteins (NCPs) play a significant role in the structural organization of bone and influence its mechanical properties. However, their contribution to bone strength still remains largely undefined. Collagen and NCPs undergo different post-translational modifications, which alter the quality of the extracellular matrix and the response of bone to mechanical load. The primary focus of this overview is on NCPs that, together with collagen, contribute to structural and mechanical properties of bone. Current information on several mechanisms through which some NCPs influence bone's resistance to fracture, including the role of nonenzymatic glycation, is also presented.
Collapse
Affiliation(s)
- Grażyna E. Sroga
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, 110 Eighth Street, Troy, NY 12180-3590, USA.
| | - Deepak Vashishth
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, 110 Eighth Street, Troy, NY 12180-3590, USA.
| |
Collapse
|