51
|
Zheng W, Zhang H, Zhao D, Zhang J, Pollard JW. Lung Mammary Metastases but Not Primary Tumors Induce Accumulation of Atypical Large Platelets and Their Chemokine Expression. Cell Rep 2019; 29:1747-1755.e4. [PMID: 31722193 PMCID: PMC6919330 DOI: 10.1016/j.celrep.2019.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 09/12/2019] [Accepted: 10/03/2019] [Indexed: 01/11/2023] Open
Abstract
The tumor microenvironment (TME) at the metastatic site consists of multiple components with considerable cellular heterogeneity. To test whether endothelial cells (ECs) associated with lung metastases express a distinct gene expression program that promotes metastatic growth, we isolated CD31+/CD45- cells from lung mammary cancer metastases for RNA sequencing and found CD44 upregulation. Unexpectedly, the CD44+ subset did not comprise authentic ECs nor were they bone-marrow-derived CD45- endothelial progenitor cells. Instead, they were a population of large platelets that are distinct from regular small platelets. These CD44+ large platelets were enriched in lung metastases but not primary mammary tumors and upregulated myeloid cell-regulating chemokines indicative of potential regulation of metastasis via indirect mechanisms. Identification of this cellular player in the TME of metastasis suggests a role for the recently identified lung-resident megakaryocytes (MKs) and offers an unexplored route to discover novel mechanisms and an opportunity for therapeutic interventions.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA.
| | - Hui Zhang
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Dejian Zhao
- Yale Center for Genome Analysis, Yale University, New Haven, CT 06510, USA
| | - Jinghang Zhang
- Department of Microbiology & Immunology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Jeffrey W Pollard
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA; MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
52
|
Ren X, Ustiyan V, Guo M, Wang G, Bolte C, Zhang Y, Xu Y, Whitsett JA, Kalin TV, Kalinichenko VV. Postnatal Alveologenesis Depends on FOXF1 Signaling in c-KIT + Endothelial Progenitor Cells. Am J Respir Crit Care Med 2019; 200:1164-1176. [PMID: 31233341 PMCID: PMC6888649 DOI: 10.1164/rccm.201812-2312oc] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/24/2019] [Indexed: 11/16/2022] Open
Abstract
Rationale: Disruption of alveologenesis is associated with severe pediatric lung disorders, including bronchopulmonary dysplasia (BPD). Although c-KIT+ endothelial cell (EC) progenitors are abundant in embryonic and neonatal lungs, their role in alveolar septation and the therapeutic potential of these cells remain unknown.Objectives: To determine whether c-KIT+ EC progenitors stimulate alveologenesis in the neonatal lung.Methods: We used single-cell RNA sequencing of neonatal human and mouse lung tissues, immunostaining, and FACS analysis to identify transcriptional and signaling networks shared by human and mouse pulmonary c-KIT+ EC progenitors. A mouse model of perinatal hyperoxia-induced lung injury was used to identify molecular mechanisms that are critical for the survival, proliferation, and engraftment of c-KIT+ EC progenitors in the neonatal lung.Measurements and Main Results: Pulmonary c-KIT+ EC progenitors expressing PECAM-1, CD34, VE-Cadherin, FLK1, and TIE2 lacked mature arterial, venal, and lymphatic cell-surface markers. The transcriptomic signature of c-KIT+ ECs was conserved in mouse and human lungs and enriched in FOXF1-regulated transcriptional targets. Expression of FOXF1 and c-KIT was decreased in the lungs of infants with BPD. In the mouse, neonatal hyperoxia decreased the number of c-KIT+ EC progenitors. Haploinsufficiency or endothelial-specific deletion of Foxf1 in mice increased apoptosis and decreased proliferation of c-KIT+ ECs. Inactivation of either Foxf1 or c-Kit caused alveolar simplification. Adoptive transfer of c-KIT+ ECs into the neonatal circulation increased lung angiogenesis and prevented alveolar simplification in neonatal mice exposed to hyperoxia.Conclusions: Cell therapy involving c-KIT+ EC progenitors can be beneficial for the treatment of BPD.
Collapse
Affiliation(s)
- Xiaomeng Ren
- Center for Lung Regenerative Medicine
- Division of Pulmonary Biology, and
| | - Vladimir Ustiyan
- Center for Lung Regenerative Medicine
- Division of Pulmonary Biology, and
| | | | - Guolun Wang
- Center for Lung Regenerative Medicine
- Division of Pulmonary Biology, and
| | - Craig Bolte
- Center for Lung Regenerative Medicine
- Division of Pulmonary Biology, and
| | - Yufang Zhang
- Center for Lung Regenerative Medicine
- Division of Pulmonary Biology, and
| | - Yan Xu
- Division of Pulmonary Biology, and
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jeffrey A. Whitsett
- Division of Pulmonary Biology, and
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Research Foundation, Cincinnati, Ohio; and
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Tanya V. Kalin
- Division of Pulmonary Biology, and
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Vladimir V. Kalinichenko
- Center for Lung Regenerative Medicine
- Division of Pulmonary Biology, and
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Research Foundation, Cincinnati, Ohio; and
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
53
|
Kim KL, Seo S, Kim JT, Kim J, Kim W, Yeo Y, Sung JH, Park SG, Suh W. SCF (Stem Cell Factor) and cKIT Modulate Pathological Ocular Neovascularization. Arterioscler Thromb Vasc Biol 2019; 39:2120-2131. [DOI: 10.1161/atvbaha.119.313179] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Objective:
Aberrant neovascularization is a leading cause of blindness in several eye diseases, including age-related macular degeneration and proliferative diabetic retinopathy. The identification of key regulators of pathological ocular neovascularization has been a subject of extensive research and great therapeutic interest. Here, we explored the previously unrecognized role of cKIT and its ligand, SCF (stem cell factor), in the pathological ocular neovascularization process.
Approach and Results:
Compared with normoxia, hypoxia, a crucial driver of neovascularization, caused cKIT to be highly upregulated in endothelial cells, which significantly enhanced the angiogenic response of endothelial cells to SCF. In murine models of pathological ocular neovascularization, such as oxygen-induced retinopathy and laser-induced choroidal neovascularization models, cKIT and SCF expression was significantly increased in ocular tissues, and blockade of cKIT and SCF using
cKit
mutant mice and anti-SCF neutralizing IgG substantially suppressed pathological ocular neovascularization. Mechanistically, SCF/cKIT signaling induced neovascularization through phosphorylation of glycogen synthase kinase-3β and enhancement of the nuclear translocation of β-catenin and the transcription of β-catenin target genes related to angiogenesis. Inhibition of β-catenin-mediated transcription using chemical inhibitors blocked SCF-induced in vitro angiogenesis in hypoxia, and injection of a β-catenin agonist into
cKit
mutant mice with oxygen-induced retinopathy significantly enhanced pathological neovascularization in the retina.
Conclusions;
Our data reveal that SCF and cKIT are promising novel therapeutic targets for treating vision-threatening ocular neovascular diseases.
Collapse
Affiliation(s)
- Koung Li Kim
- From the College of Pharmacy (K.L.K., S.S., Y.Y., W.S.), Chung-Ang University, Seoul, Korea
| | - Songyi Seo
- From the College of Pharmacy (K.L.K., S.S., Y.Y., W.S.), Chung-Ang University, Seoul, Korea
| | - Jee Taek Kim
- Department of Ophthalmology (J.T.K.), Chung-Ang University, Seoul, Korea
| | - Jaetaek Kim
- Department of Internal Medicine, College of Medicine (J.K.), Chung-Ang University, Seoul, Korea
| | - Won Kim
- Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, Korea (W.K.)
| | - Yeongju Yeo
- From the College of Pharmacy (K.L.K., S.S., Y.Y., W.S.), Chung-Ang University, Seoul, Korea
| | - Jong-Hyuk Sung
- College of Pharmacy, Yonsei University, Incheon, Korea (J.-H.S.)
| | - Sang Gyu Park
- College of Pharmacy, Ajou University, Suwon, Korea (S.G.P.)
| | - Wonhee Suh
- From the College of Pharmacy (K.L.K., S.S., Y.Y., W.S.), Chung-Ang University, Seoul, Korea
| |
Collapse
|
54
|
Forner L, Berkowicz A, Dickmeiss E, Hyldegaard O, Jansen EC, Fischer-Nielsen A. Only minor stem cell mobilization in head and neck irradiated patients treated with hyperbaric oxygen. Diving Hyperb Med 2019; 49:175-185. [PMID: 31523792 DOI: 10.28920/dhm49.3.175-185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 05/10/2019] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Hyperbaric oxygen, (HBO) is used to treat several conditions including late radiation tissue injury. Previous studies have suggested that HBO mobilizes bone marrow derived stem/progenitor cells (SPC) to the peripheral blood, however possible cumulative effects were highly variable. METHODS We have investigated a possible HBO-induced mobilization of SPCs by determining CD34+CD45dim cell numbers, as well as SPCs in general. The latter were characterized by high aldehyde dehydrogenase (ALDH) activity by use of the Aldefluor® assay. We included ten patients admitted for HBO treatment of radiation tissue injury. Six patients completed the 29-30 HBO treatment exposures. We also investigated possible HBO-induced effects on platelet activation as measured by flow cytometry and functional analyses. RESULTS We found a weak and insignificant tendency toward mobilization of CD34+CD45dim cells after a single HBO exposure versus before. Additionally, we found an additive effect of 15 HBO exposures on the increase in CD34+CD45dim cells relative to the pre-1st-HBO values. These changes were significantly more than zero but less than a doubling. We could not demonstrate a significant effect of HBO on the content of Aldefluor® positive SPCs in peripheral blood. There was no significant effect on platelet activation overall. However, in patients with increased expression of activation markers at baseline, we found a decrease after one exposure although this was not reflected in functional tests. CONCLUSION We found a minor statistically significant mobilizing effect of HBO treatment on the bone marrow derived stem/progenitor cell content in peripheral blood after 15 treatments (n = 10 patients), but no effect after 30 treatments (n = 6 patients). However, because of the low number of patients we cannot confidentially prove or disprove the null hypothesis. The possibility that HBO treatment reduces the number of activated platelets could not be demonstrated nor excluded.
Collapse
Affiliation(s)
- Lone Forner
- Corresponding author: Dr Lone Forner, Department of Oral and Maxillofacial Surgery, Centre for Head and Orthopedics and Department of Anaesthesia, Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark, .,Department of Oral and Maxillofacial Surgery, Centre for Head and Orthopedics and Department of Anaesthesia, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Anaesthesia, Centre for Head and Orthopedics, Copenhagen University Hospital, Copenhagen, Denmark
| | - Adela Berkowicz
- Cell Therapy Facility, Department of Clinical Immunology, Centre of Diagnostic Investigation, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ebbe Dickmeiss
- Cell Therapy Facility, Department of Clinical Immunology, Centre of Diagnostic Investigation, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ole Hyldegaard
- Department of Anaesthesia, Centre for Head and Orthopedics, Copenhagen University Hospital, Copenhagen, Denmark
| | - Erik C Jansen
- Department of Anaesthesia, Centre for Head and Orthopedics, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anne Fischer-Nielsen
- Cell Therapy Facility, Department of Clinical Immunology, Centre of Diagnostic Investigation, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
55
|
Circulating Proangiogenic Cells and Proteins in Patients with Glioma and Acute Myocardial Infarction: Differences in Neovascularization between Neoplasia and Tissue Regeneration. JOURNAL OF ONCOLOGY 2019; 2019:3560830. [PMID: 31428150 PMCID: PMC6679840 DOI: 10.1155/2019/3560830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/06/2019] [Indexed: 01/10/2023]
Abstract
Although extensive angiogenesis takes place in glial tumors, antiangiogenic therapies have remained without the expected success. In the peripheral circulation of glioma patients, increased numbers of endothelial precursor cells (EPCs) are present, potentially offering targets for antiangiogenic therapy. However, for an antiangiogenic therapy to be successful, the therapy should specifically target glioma-related EPC subsets and secreted factors only. Here, we compared the EPC subsets and plasma factors in the peripheral circulation of patients with gliomas to acute myocardial infarctions. We investigated the five most important EPC subsets and 21 angiogenesis-related plasma factors in peripheral blood samples of 29 patients with glioma, 14 patients with myocardial infarction, and 20 healthy people as controls, by FACS and Luminex assay. In GBM patients, all EPC subsets were elevated as compared to healthy subjects. In addition, HPC and KDR+ cell fractions were higher than in MI, while CD133+ and KDR+CD133+ cell fractions were lower. There were differences in relative EPC fractions between the groups: KDR+ cells were the largest fraction in GBM, while CD133+ cells were the largest fraction in MI. An increase in glioma malignancy grade coincided with an increase in the KDR+ fraction, while the CD133+ cell fraction decreased relatively. Most plasma angiogenic factors were higher in GBM than in MI patients. In both MI and GBM, the ratio of CD133+ HPCs correlated significantly with elevated levels of MMP9. In the GBM patients, MMP9 correlated strongly with levels of all HPCs. In conclusion, the data demonstrate that EPC traffic in patients with glioma, representing neoplasia, is different from that in myocardial infarction, representing tissue regeneration. Glioma patients may benefit from therapies aimed at lowering KDR+ cells and HPCs.
Collapse
|
56
|
Rethineswaran VK, Kim YJ, Jang WB, Ji ST, Kang S, Kim DY, Park JH, Van LTH, Giang LTT, Ha JS, Yun J, Lee DH, Yu SN, Park SG, Ahn SC, Kwon SM. Enzyme-Aided Extraction of Fucoidan by AMG Augments the Functionality of EPCs through Regulation of the AKT/Rheb Signaling Pathway. Mar Drugs 2019; 17:md17070392. [PMID: 31277207 PMCID: PMC6669526 DOI: 10.3390/md17070392] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 12/21/2022] Open
Abstract
The purpose of the present study is to improve the endothelial progenitor cells (EPC) activation, proliferation, and angiogenesis using enzyme-aided extraction of fucoidan by amyloglucosidase (EAEF-AMG). Enzyme-aided extraction of fucoidan by AMG (EAEF-AMG) significantly increased EPC proliferation by reducing the reactive oxygen species (ROS) and decreasing apoptosis. Notably, EAEF-AMG treated EPCs repressed the colocalization of TSC2/LAMP1 and promoted perinuclear localization of mTOR/LAMP1 and mTOR/Rheb. Moreover, EAEF-AMG enhanced EPC functionalities, including tube formation, cell migration, and wound healing via regulation of AKT/Rheb signaling. Our data provided cell priming protocols to enhance therapeutic applications of EPCs using bioactive compounds for the treatment of CVD.
Collapse
Affiliation(s)
- Vinoth Kumar Rethineswaran
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Yeon-Ju Kim
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Woong Bi Jang
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Seung Taek Ji
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Songhwa Kang
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Da Yeon Kim
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Ji Hye Park
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Le Thi Hong Van
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Ly Thanh Truong Giang
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Jong Seong Ha
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Jisoo Yun
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Dong Hyung Lee
- Department of Obstetrics and Gynecology, Biomedical Research Institute, Pusan National University School of Medicine, Busan 46241, Korea
| | - Sun-Nyoung Yu
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Sul-Gi Park
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Soon-Cheol Ahn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Sang-Mo Kwon
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea.
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea.
- Research Institute of Convergence Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea.
| |
Collapse
|
57
|
Smadja DM, Melero-Martin JM, Eikenboom J, Bowman M, Sabatier F, Randi AM. Standardization of methods to quantify and culture endothelial colony-forming cells derived from peripheral blood: Position paper from the International Society on Thrombosis and Haemostasis SSC. J Thromb Haemost 2019; 17:1190-1194. [PMID: 31119878 PMCID: PMC7028216 DOI: 10.1111/jth.14462] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/18/2019] [Indexed: 12/27/2022]
Affiliation(s)
- David M. Smadja
- Université Paris Descartes, Paris, France
- Faculté de Pharmacie de Paris, INSERM UMR-S 1140,
Paris, France
- Hematology Department, AP-HP, Hôpital
Européen Georges Pompidou, Paris, France
- Laboratory of Biosurgical Research, Carpentier Foundation,
Hôpital Européen Georges Pompidou, Paris, France
| | - Juan M. Melero-Martin
- Department of Cardiac Surgery, Boston Children’s
Hospital, Boston, Massachusetts
- Department of Surgery, Harvard Medical School, Boston,
Massachusetts
- Harvard Stem Cell Institute, Cambridge, Massachusetts
| | - Jeroen Eikenboom
- Einthoven Laboratory for Vascular and Regenerative
Medicine, Department of Thrombosis and Hemostasis, Leiden University Medical Center,
Leiden, the Netherlands
| | - Mackenzie Bowman
- Department of Medicine, Queen’s University,
Kingston, Ontario, Canada
| | - Florence Sabatier
- C2VN Aix Marseille University, INSERM, INRA, Marseille,
France
- Laboratory of Cell Therapy, INSERM CBT-1409, CHU La
Conception, AP-HM, Marseille, France
| | - Anna M. Randi
- Imperial Centre for Translational and Experimental
Medicine, National Heart and Lung Institute, Imperial College London, London,
UK
| |
Collapse
|
58
|
|
59
|
Zhang T, Kawaguchi N, Yoshihara K, Hayama E, Furutani Y, Kawaguchi K, Tanaka T, Nakanishi T. Silibinin efficacy in a rat model of pulmonary arterial hypertension using monocrotaline and chronic hypoxia. Respir Res 2019; 20:79. [PMID: 31023308 PMCID: PMC6485095 DOI: 10.1186/s12931-019-1041-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/02/2019] [Indexed: 01/07/2023] Open
Abstract
Background C-X-C chemokine receptor type 4 (CXCR4) may be involved in the development of pulmonary arterial hypertension (PAH). CXCR4 inhibitor AMD3100 was described to have a positive effect on the prevention of pulmonary arterial muscularization in PAH models. Silibinin is a traditional medicine that has an antagonistic effect on CXCR4. We investigated the effect of silibinin using rat models of PAH. Methods PAH was induced by a single subcutaneous injection of monocrotaline. The rats were maintained in a chronic hypoxic condition (10% O2) with or without silibinin. To evaluate the efficacy of silibinin on PAH, right ventricular systolic pressure (RVSP), Fulton index (weight ratio of right ventricle to the left ventricle and septum), percent medial wall thickness (% MT), and vascular occlusion score (VOS) were measured and calculated. Immunohistochemical analysis was performed targeting CXCR4 and c-Kit. Reverse transcription-quantitative polymerase chain reaction was performed for the stem cell markers CXCR4, stromal cell derived factor-1 (SDF-1), c-Kit, and stem cell factor (SCF), and the inflammatory markers monocyte chemoattractant protein 1 (MCP1), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNFα). Statistical analyses were performed using t-test and one-way analysis of variance with Bonferroni’s post hoc test. Results Silibinin treatment for 1 week reduced RVSP and Fulton index. Treatment for 2 weeks reduced RVSP, Fulton index, % MT, and VOS, as well as downregulating the expression of CXCR4, SDF-1, and TNFα in pulmonary arteries. In contrast, treatment for 3 weeks failed to ameliorate PAH. The time-course study demonstrated that RVSP, Fulton index, % MT, and VOS gradually increased over time, with a decrease in the expression of CXCR4 and TNFα occurring after 2 weeks of PAH development. After 3 weeks, SDF-1, c-Kit, and SCF began to decrease and, after 5 weeks, MCP1 and IL-6 gradually accumulated. Conclusions The CXCR4 inhibitor silibinin can ameliorate PAH, possibly through the suppression of the CXCR4/SDF-1 axis, until the point where PAH becomes a severe and irreversible condition. Silibinin results in reduced pulmonary arterial pressure and delays pulmonary arteriolar occlusion and pulmonary vascular remodeling. Electronic supplementary material The online version of this article (10.1186/s12931-019-1041-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Pediatric Cardiology and Adult Congenital Cardiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo, 162-8666, Japan.,Department of Structural Heart Disease, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Nanako Kawaguchi
- Department of Pediatric Cardiology and Adult Congenital Cardiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo, 162-8666, Japan.
| | - Kenji Yoshihara
- Department of Pediatric Cardiology and Adult Congenital Cardiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo, 162-8666, Japan
| | - Emiko Hayama
- Department of Pediatric Cardiology and Adult Congenital Cardiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo, 162-8666, Japan
| | - Yoshiyuki Furutani
- Department of Pediatric Cardiology and Adult Congenital Cardiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo, 162-8666, Japan
| | - Kayoko Kawaguchi
- Department of Pediatric Cardiology and Adult Congenital Cardiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo, 162-8666, Japan
| | - Takeshi Tanaka
- Department of Pediatric Cardiology and Adult Congenital Cardiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo, 162-8666, Japan
| | - Toshio Nakanishi
- Department of Pediatric Cardiology and Adult Congenital Cardiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo, 162-8666, Japan.
| |
Collapse
|
60
|
Whitsett JA, Kalin TV, Xu Y, Kalinichenko VV. Building and Regenerating the Lung Cell by Cell. Physiol Rev 2019; 99:513-554. [PMID: 30427276 DOI: 10.1152/physrev.00001.2018] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The unique architecture of the mammalian lung is required for adaptation to air breathing at birth and thereafter. Understanding the cellular and molecular mechanisms controlling its morphogenesis provides the framework for understanding the pathogenesis of acute and chronic lung diseases. Recent single-cell RNA sequencing data and high-resolution imaging identify the remarkable heterogeneity of pulmonary cell types and provides cell selective gene expression underlying lung development. We will address fundamental issues related to the diversity of pulmonary cells, to the formation and function of the mammalian lung, and will review recent advances regarding the cellular and molecular pathways involved in lung organogenesis. What cells form the lung in the early embryo? How are cell proliferation, migration, and differentiation regulated during lung morphogenesis? How do cells interact during lung formation and repair? How do signaling and transcriptional programs determine cell-cell interactions necessary for lung morphogenesis and function?
Collapse
Affiliation(s)
- Jeffrey A Whitsett
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati, Ohio
| | - Tanya V Kalin
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati, Ohio
| | - Yan Xu
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati, Ohio
| | - Vladimir V Kalinichenko
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati, Ohio
| |
Collapse
|
61
|
Gucciardo E, Loukovaara S, Salven P, Lehti K. Lymphatic Vascular Structures: A New Aspect in Proliferative Diabetic Retinopathy. Int J Mol Sci 2018; 19:ijms19124034. [PMID: 30551619 PMCID: PMC6321212 DOI: 10.3390/ijms19124034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 12/28/2022] Open
Abstract
Diabetic retinopathy (DR) is the most common diabetic microvascular complication and major cause of blindness in working-age adults. According to the level of microvascular degeneration and ischemic damage, DR is classified into non-proliferative DR (NPDR), and end-stage, proliferative DR (PDR). Despite advances in the disease etiology and pathogenesis, molecular understanding of end-stage PDR, characterized by ischemia- and inflammation-associated neovascularization and fibrosis, remains incomplete due to the limited availability of ideal clinical samples and experimental research models. Since a great portion of patients do not benefit from current treatments, improved therapies are essential. DR is known to be a complex and multifactorial disease featuring the interplay of microvascular, neurodegenerative, metabolic, genetic/epigenetic, immunological, and inflammation-related factors. Particularly, deeper knowledge on the mechanisms and pathophysiology of most advanced PDR is critical. Lymphatic-like vessel formation coupled with abnormal endothelial differentiation and progenitor cell involvement in the neovascularization associated with PDR are novel recent findings which hold potential for improved DR treatment. Understanding the underlying mechanisms of PDR pathogenesis is therefore crucial. To this goal, multidisciplinary approaches and new ex vivo models have been developed for a more comprehensive molecular, cellular and tissue-level understanding of the disease. This is the first step to gain the needed information on how PDR can be better evaluated, stratified, and treated.
Collapse
Affiliation(s)
- Erika Gucciardo
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Sirpa Loukovaara
- Unit of Vitreoretinal Surgery, Ophthalmology, University of Helsinki and Helsinki University Hospital, FI-00014 Helsinki, Finland.
| | - Petri Salven
- Department of Pathology, University of Helsinki and Helsinki University Hospital, FI-00014 Helsinki, Finland.
| | - Kaisa Lehti
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland.
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institutet, SE-17165 Stockholm, Sweden.
| |
Collapse
|
62
|
Castro PR, Barbosa AS, Pereira JM, Ranfley H, Felipetto M, Gonçalves CAX, Paiva IR, Berg BB, Barcelos LS. Cellular and Molecular Heterogeneity Associated with Vessel Formation Processes. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6740408. [PMID: 30406137 PMCID: PMC6199857 DOI: 10.1155/2018/6740408] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022]
Abstract
The microvasculature heterogeneity is a complex subject in vascular biology. The difficulty of building a dynamic and interactive view among the microenvironments, the cellular and molecular heterogeneities, and the basic aspects of the vessel formation processes make the available knowledge largely fragmented. The neovascularisation processes, termed vasculogenesis, angiogenesis, arteriogenesis, and lymphangiogenesis, are important to the formation and proper functioning of organs and tissues both in the embryo and the postnatal period. These processes are intrinsically related to microvascular cells, such as endothelial and mural cells. These cells are able to adjust their activities in response to the metabolic and physiological requirements of the tissues, by displaying a broad plasticity that results in a significant cellular and molecular heterogeneity. In this review, we intend to approach the microvasculature heterogeneity in an integrated view considering the diversity of neovascularisation processes and the cellular and molecular heterogeneity that contribute to microcirculatory homeostasis. For that, we will cover their interactions in the different blood-organ barriers and discuss how they cooperate in an integrated regulatory network that is controlled by specific molecular signatures.
Collapse
Affiliation(s)
- Pollyana Ribeiro Castro
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Alan Sales Barbosa
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Jousie Michel Pereira
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Hedden Ranfley
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Mariane Felipetto
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Carlos Alberto Xavier Gonçalves
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Isabela Ribeiro Paiva
- Department of Pharmacology, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Bárbara Betônico Berg
- Department of Pharmacology, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Luciola Silva Barcelos
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil
| |
Collapse
|
63
|
Nowak-Sliwinska P, Alitalo K, Allen E, Anisimov A, Aplin AC, Auerbach R, Augustin HG, Bates DO, van Beijnum JR, Bender RHF, Bergers G, Bikfalvi A, Bischoff J, Böck BC, Brooks PC, Bussolino F, Cakir B, Carmeliet P, Castranova D, Cimpean AM, Cleaver O, Coukos G, Davis GE, De Palma M, Dimberg A, Dings RPM, Djonov V, Dudley AC, Dufton NP, Fendt SM, Ferrara N, Fruttiger M, Fukumura D, Ghesquière B, Gong Y, Griffin RJ, Harris AL, Hughes CCW, Hultgren NW, Iruela-Arispe ML, Irving M, Jain RK, Kalluri R, Kalucka J, Kerbel RS, Kitajewski J, Klaassen I, Kleinmann HK, Koolwijk P, Kuczynski E, Kwak BR, Marien K, Melero-Martin JM, Munn LL, Nicosia RF, Noel A, Nurro J, Olsson AK, Petrova TV, Pietras K, Pili R, Pollard JW, Post MJ, Quax PHA, Rabinovich GA, Raica M, Randi AM, Ribatti D, Ruegg C, Schlingemann RO, Schulte-Merker S, Smith LEH, Song JW, Stacker SA, Stalin J, Stratman AN, Van de Velde M, van Hinsbergh VWM, Vermeulen PB, Waltenberger J, Weinstein BM, Xin H, Yetkin-Arik B, Yla-Herttuala S, Yoder MC, Griffioen AW. Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 2018; 21:425-532. [PMID: 29766399 PMCID: PMC6237663 DOI: 10.1007/s10456-018-9613-x] [Citation(s) in RCA: 457] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference.
Collapse
Affiliation(s)
- Patrycja Nowak-Sliwinska
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, Faculty of Sciences, University of Geneva, University of Lausanne, Rue Michel-Servet 1, CMU, 1211, Geneva 4, Switzerland.
- Translational Research Center in Oncohaematology, University of Geneva, Geneva, Switzerland.
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Elizabeth Allen
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Louvain, Belgium
| | - Andrey Anisimov
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Alfred C Aplin
- Department of Pathology, University of Washington, Seattle, WA, USA
| | | | - Hellmut G Augustin
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis Research, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Heidelberg, Germany
| | - David O Bates
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Judy R van Beijnum
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - R Hugh F Bender
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Gabriele Bergers
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Louvain, Belgium
- Department of Neurological Surgery, Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Andreas Bikfalvi
- Angiogenesis and Tumor Microenvironment Laboratory (INSERM U1029), University Bordeaux, Pessac, France
| | - Joyce Bischoff
- Vascular Biology Program and Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Barbara C Böck
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis Research, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Heidelberg, Germany
| | - Peter C Brooks
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Federico Bussolino
- Department of Oncology, University of Torino, Turin, Italy
- Candiolo Cancer Institute-FPO-IRCCS, 10060, Candiolo, Italy
| | - Bertan Cakir
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Daniel Castranova
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Anca M Cimpean
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Ondine Cleaver
- Department of Molecular Biology, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - George Coukos
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - George E Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, School of Medicine and Dalton Cardiovascular Center, Columbia, MO, USA
| | - Michele De Palma
- School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ruud P M Dings
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Andrew C Dudley
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Emily Couric Cancer Center, The University of Virginia, Charlottesville, VA, USA
| | - Neil P Dufton
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute, Leuven, Belgium
| | | | - Marcus Fruttiger
- Institute of Ophthalmology, University College London, London, UK
| | - Dai Fukumura
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bart Ghesquière
- Metabolomics Expertise Center, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Oncology, Metabolomics Expertise Center, KU Leuven, Leuven, Belgium
| | - Yan Gong
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Adrian L Harris
- Molecular Oncology Laboratories, Oxford University Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | - Christopher C W Hughes
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Nan W Hultgren
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | | | - Melita Irving
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joanna Kalucka
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Robert S Kerbel
- Department of Medical Biophysics, Biological Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Jan Kitajewski
- Department of Physiology and Biophysics, University of Illinois, Chicago, IL, USA
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hynda K Kleinmann
- The George Washington University School of Medicine, Washington, DC, USA
| | - Pieter Koolwijk
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Elisabeth Kuczynski
- Department of Medical Biophysics, Biological Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Brenda R Kwak
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | - Juan M Melero-Martin
- Department of Cardiac Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Lance L Munn
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Roberto F Nicosia
- Department of Pathology, University of Washington, Seattle, WA, USA
- Pathology and Laboratory Medicine Service, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Agnes Noel
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Jussi Nurro
- Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Tatiana V Petrova
- Department of oncology UNIL-CHUV, Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Kristian Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund, Sweden
| | - Roberto Pili
- Genitourinary Program, Indiana University-Simon Cancer Center, Indianapolis, IN, USA
| | - Jeffrey W Pollard
- Medical Research Council Centre for Reproductive Health, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Mark J Post
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Paul H A Quax
- Einthoven Laboratory for Experimental Vascular Medicine, Department Surgery, LUMC, Leiden, The Netherlands
| | - Gabriel A Rabinovich
- Laboratory of Immunopathology, Institute of Biology and Experimental Medicine, National Council of Scientific and Technical Investigations (CONICET), Buenos Aires, Argentina
| | - Marius Raica
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Anna M Randi
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
- National Cancer Institute "Giovanni Paolo II", Bari, Italy
| | - Curzio Ruegg
- Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Reinier O Schlingemann
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Stefan Schulte-Merker
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU, Münster, Germany
| | - Lois E H Smith
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Steven A Stacker
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre and The Sir Peter MacCallum, Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Jimmy Stalin
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU, Münster, Germany
| | - Amber N Stratman
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Maureen Van de Velde
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Victor W M van Hinsbergh
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Peter B Vermeulen
- HistoGeneX, Antwerp, Belgium
- Translational Cancer Research Unit, GZA Hospitals, Sint-Augustinus & University of Antwerp, Antwerp, Belgium
| | - Johannes Waltenberger
- Medical Faculty, University of Münster, Albert-Schweitzer-Campus 1, Münster, Germany
| | - Brant M Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Hong Xin
- University of California, San Diego, La Jolla, CA, USA
| | - Bahar Yetkin-Arik
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Seppo Yla-Herttuala
- Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mervin C Yoder
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
64
|
Genetic lineage tracing analysis of c-kit + stem/progenitor cells revealed a contribution to vascular injury-induced neointimal lesions. J Mol Cell Cardiol 2018; 121:277-286. [PMID: 30053526 DOI: 10.1016/j.yjmcc.2018.07.252] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 07/23/2018] [Indexed: 11/23/2022]
Abstract
AIMS Accumulating evidence indicates the presence of vascular stem/progenitor cells that may play a role in endothelial repair and lesion formation in the injured artery, in which c-kit+ stem/progenitor cells have been reported to differentiate into endothelial and smooth muscle cells in vitro and in ischemic tissue. In this study, we investigated whether and how endogenous c-kit+ stem/progenitor cells contribute to vascular injury and neointima formation in vivo. METHODS AND RESULTS We created Kit-CreERxRosa26-RFP mice and performed genetic lineage tracing analysis of c-kit+ stem/progenitor cells in injury-induced neointima formation in vivo. We provide direct evidence that endogenous c-kit+ stem/progenitor cells minimally differentiate into endothelial or smooth muscle cells facilitating vascular repair, but predominantly generate monocytes/macrophages and granulocytes contributing to vascular immuno-inflammatory response to endothelial injury. Although c-kit+ cells reside in both bone marrow and vessel wall, bone marrow transplantation data indicate that bone marrow-derived c-kit+ cells are the main source for enhancing neointima formation. Furthermore, treatment of ACK2, a c-kit receptor antagonizer, attenuates neointimal hyperplasia after injury at least in part by depleting c-kit+ cells and their generated progeny. CONCLUSIONS c-kit+ stem/progenitor cells are not a main source for endothelial regeneration and smooth muscle accumulation of the large artery injury, but a plausible interventional approach to reduce vascular immuno-inflammatory response and subsequently to ameliorate vascular lesions.
Collapse
|
65
|
Abstract
Vascular, resident stem cells are present in all 3 layers of the vessel wall; they play a role in vascular formation under physiological conditions and in remodeling in pathological situations. Throughout development and adult early life, resident stem cells participate in vessel formation through vasculogenesis and angiogenesis. In adults, the vascular stem cells are mostly quiescent in their niches but can be activated in response to injury and participate in endothelial repair and smooth muscle cell accumulation to form neointima. However, delineation of the characteristics and of the migration and differentiation behaviors of these stem cells is an area of ongoing investigation. A set of genetic mouse models for cell lineage tracing has been developed to specifically address the nature of these cells and both migration and differentiation processes during physiological angiogenesis and in vascular diseases. This review summarizes the current knowledge on resident stem cells, which has become more defined and refined in vascular biology research, thus contributing to the development of new potential therapeutic strategies to promote endothelial regeneration and ameliorate vascular disease development.
Collapse
Affiliation(s)
- Li Zhang
- From the Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z., T.C., Q.X.)
| | - Shirin Issa Bhaloo
- School of Cardiovascular Medicine and Sciences, King’s College London, BHF Centre, United Kingdom (S.I.B., Q.X.)
| | - Ting Chen
- From the Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z., T.C., Q.X.)
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academic of Sciences (B.Z.)
| | - Qingbo Xu
- From the Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, China (L.Z., T.C., Q.X.)
- School of Cardiovascular Medicine and Sciences, King’s College London, BHF Centre, United Kingdom (S.I.B., Q.X.)
| |
Collapse
|
66
|
Zhang T, Kawaguchi N, Hayama E, Furutani Y, Nakanishi T. High expression of CXCR4 and stem cell markers in a monocrotaline and chronic hypoxia-induced rat model of pulmonary arterial hypertension. Exp Ther Med 2018; 15:4615-4622. [PMID: 29805477 PMCID: PMC5952071 DOI: 10.3892/etm.2018.6027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 02/09/2018] [Indexed: 12/22/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe and fatal clinical syndrome. C-X-C chemokine receptor type 4 (CXCR4) is known to serve a key role in recruiting mesenchymal stem cells (MSCs) from the bone marrow. In the present study, a rat model of PAH induced by 5 weeks of chronic hypoxia and treatment with a single injection of monocrotaline (60 mg/kg) was used to investigate the involvement of CXCR4 in PAH. Successful establishment of the PAH model was confirmed by significant differences between the PAH and control groups in right ventricular systolic pressure, Fulton index, wall thickness, vascular occlusion score determined by immunohistochemical staining and the expression of inflammatory markers measured by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The expression of CXCR4 and other stem cell markers were compared in the PAH and control groups. RT-qPCR showed that the expression of CXCR4, SCF, c-Kit, and CD29, which are expressed in MSCs, was significantly higher in the PAH group. Immunohistochemical staining also showed that the numbers of CXCR4-, c-Kit- and CD90-positive cells were significantly higher in the PAH group. These results suggest that CXCR4 is involved in the pathogenesis of PAH and that stem cells may serve an important role in pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Pediatric Cardiology, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Nanako Kawaguchi
- Department of Pediatric Cardiology, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Emiko Hayama
- Department of Pediatric Cardiology, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Yoshiyuki Furutani
- Department of Pediatric Cardiology, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Toshio Nakanishi
- Department of Pediatric Cardiology, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| |
Collapse
|
67
|
Gerisch M, Smettan J, Ebert S, Athelogou M, Brand-Saberi B, Spindler N, Mueller WC, Giri S, Bader A. Qualitative and Quantitative Analysis of Cardiac Progenitor Cells in Cases of Myocarditis and Cardiomyopathy. Front Genet 2018; 9:72. [PMID: 29559994 PMCID: PMC5845648 DOI: 10.3389/fgene.2018.00072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 02/16/2018] [Indexed: 11/24/2022] Open
Abstract
We aimed to identify and quantify CD117+ and CD90+ endogenous cardiac progenitor cells (CPC) in human healthy and diseased hearts. We hypothesize that these cells perform a locally acting, contributing function in overcoming medical conditions of the heart by endogenous means. Human myocardium biopsies were obtained from 23 patients with the following diagnoses: Dilatative cardiomyopathy (DCM), ischemic cardiomyopathy (ICM), myocarditis, and controls from healthy cardiac patients. High-resolution scanning microscopy of the whole slide enabled a computer-based immunohistochemical quantification of CD117 and CD90. Those signals were evaluated by Definiens Tissue Phenomics® Technology. Co-localization of CD117 and CD90 was determined by analyzing comparable serial sections. CD117+/CD90+ cardiac cells were detected in all biopsies. The highest expression of CD90 was revealed in the myocarditis group. CD117 was significantly higher in all patient groups, compared to healthy specimens (*p < 0.05). The highest co-expression was found in the myocarditis group (6.75 ± 3.25 CD90+CD117+ cells/mm2) followed by ICM (4 ± 1.89 cells/mm2), DCM (1.67 ± 0.58 cells/mm2), and healthy specimens (1 ± 0.43 cells/mm2). We conclude that the human heart comprises a fraction of local CD117+ and CD90+ cells. We hypothesize that these cells are part of local endogenous progenitor cells due to the co-expression of CD90 and CD117. With novel digital image analysis technologies, a quantification of the CD117 and CD90 signals is available. Our experiments reveal an increase of CD117 and CD90 in patients with myocarditis.
Collapse
Affiliation(s)
- Marie Gerisch
- Applied Stem Cell Biology and Cell Technology, Biomedical and Biotechnological Center, University of Leipzig, Leipzig, Germany
| | - Jan Smettan
- Division of Cardiology and Angiology, Department of Internal Medicine, Neurology and Dermatology, University Hospital Leipzig, Leipzig, Germany
| | - Sabine Ebert
- Applied Stem Cell Biology and Cell Technology, Biomedical and Biotechnological Center, University of Leipzig, Leipzig, Germany
| | | | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Faculty of Medicine, Ruhr-University Bochum, Bochum, Germany
| | - Nick Spindler
- Department of Orthopedics, Trauma and Plastic Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Wolf C Mueller
- Department of Neuropathology, University Hospital Leipzig, Leipzig, Germany
| | - Shibashish Giri
- Applied Stem Cell Biology and Cell Technology, Biomedical and Biotechnological Center, University of Leipzig, Leipzig, Germany.,Department of Plastic and Hand Surgery, University Hospital Rechts der Isar, Munich Technical University, Munich, Germany
| | - Augustinus Bader
- Applied Stem Cell Biology and Cell Technology, Biomedical and Biotechnological Center, University of Leipzig, Leipzig, Germany
| |
Collapse
|
68
|
Yoder MC, Annex BH. Does Multicolor Lineage Tracing of Endothelial Cells Provide a Black and White Answer on Clonal Expansion in Post-Natal Angiogenesis? Circ Res 2018; 122:643-645. [DOI: 10.1161/circresaha.118.312704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Mervin C. Yoder
- From the Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis (M.C.Y.); and Division of Cardiovascular Medicine, Department of Medicine, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville (B.A.)
| | - Brian H. Annex
- From the Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis (M.C.Y.); and Division of Cardiovascular Medicine, Department of Medicine, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville (B.A.)
| |
Collapse
|
69
|
Wakabayashi T, Naito H, Suehiro JI, Lin Y, Kawaji H, Iba T, Kouno T, Ishikawa-Kato S, Furuno M, Takara K, Muramatsu F, Weizhen J, Kidoya H, Ishihara K, Hayashizaki Y, Nishida K, Yoder MC, Takakura N. CD157 Marks Tissue-Resident Endothelial Stem Cells with Homeostatic and Regenerative Properties. Cell Stem Cell 2018; 22:384-397.e6. [PMID: 29429943 DOI: 10.1016/j.stem.2018.01.010] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/06/2017] [Accepted: 01/12/2018] [Indexed: 12/14/2022]
Abstract
The generation of new blood vessels via angiogenesis is critical for meeting tissue oxygen demands. A role for adult stem cells in this process remains unclear. Here, we identified CD157 (bst1, bone marrow stromal antigen 1) as a marker of tissue-resident vascular endothelial stem cells (VESCs) in large arteries and veins of numerous mouse organs. Single CD157+ VESCs form colonies in vitro and generate donor-derived portal vein, sinusoids, and central vein endothelial cells upon transplantation in the liver. In response to injury, VESCs expand and regenerate entire vasculature structures, supporting the existence of an endothelial hierarchy within blood vessels. Genetic lineage tracing revealed that VESCs maintain large vessels and sinusoids in the normal liver for more than a year, and transplantation of VESCs rescued bleeding phenotypes in a mouse model of hemophilia. Our findings show that tissue-resident VESCs display self-renewal capacity and that vascular regeneration potential exists in peripheral blood vessels.
Collapse
Affiliation(s)
- Taku Wakabayashi
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan; Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hisamichi Naito
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan.
| | - Jun-Ichi Suehiro
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan
| | - Yang Lin
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hideya Kawaji
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan; Preventive Medicine and Applied Genomics Unit, RIKEN Advanced Center for Computing and Communication, Yokohama, Kanagawa 230-0045, Japan; RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Saitama 351-0198, Japan
| | - Tomohiro Iba
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Tsukasa Kouno
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Sachi Ishikawa-Kato
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Masaaki Furuno
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Kazuhiro Takara
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Fumitaka Muramatsu
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Jia Weizhen
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hiroyasu Kidoya
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Katsuhiko Ishihara
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan
| | - Yoshihide Hayashizaki
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Saitama 351-0198, Japan
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Mervin C Yoder
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
70
|
Afonyushkin T, Oskolkova OV, Bochkov VN. Oxidized phospholipids stimulate production of stem cell factor via NRF2-dependent mechanisms. Angiogenesis 2018; 21:229-236. [PMID: 29330760 PMCID: PMC5878191 DOI: 10.1007/s10456-017-9590-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 12/16/2017] [Indexed: 01/01/2023]
Abstract
Receptor tyrosine kinase c-Kit and its ligand stem cell factor (SCF) regulate resident vascular wall cells and recruit circulating progenitors. We tested whether SCF may be induced by oxidized palmitoyl-arachidonoyl-phosphatidylcholine (OxPAPC) known to accumulate in atherosclerotic vessels. Gene expression analysis demonstrated OxPAPC-induced upregulation of SCF mRNA and protein in different types of endothelial cells (ECs). Elevated levels of SCF mRNA were observed in aortas of ApoE-/- knockout mice. ECs produced biologically active SCF because conditioned medium from OxPAPC-treated cells stimulated activation (phosphorylation) of c-Kit in naïve ECs. Induction of SCF by OxPAPC was inhibited by knocking down transcription factor NRF2. Inhibition or stimulation of NRF2 by pharmacological or molecular tools induced corresponding changes in SCF expression. Finally, we observed decreased levels of SCF mRNA in aortas of NRF2 knockout mice. We characterize OxPLs as a novel pathology-associated stimulus inducing expression of SCF in endothelial cells. Furthermore, our data point to transcription factor NRF2 as a major mediator of OxPL-induced upregulation of SCF. This mechanism may represent one of the facets of pleiotropic action of NRF2 in vascular wall.
Collapse
Affiliation(s)
- Taras Afonyushkin
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25-3, 1090, Vienna, Austria
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Olga V Oskolkova
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Humboldtstrasse 46/III, 8010, Graz, Austria
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Valery N Bochkov
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Humboldtstrasse 46/III, 8010, Graz, Austria.
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria.
| |
Collapse
|
71
|
Yoder MC. Endothelial stem and progenitor cells (stem cells): (2017 Grover Conference Series). Pulm Circ 2018; 8:2045893217743950. [PMID: 29099663 PMCID: PMC5731724 DOI: 10.1177/2045893217743950] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/31/2017] [Indexed: 12/11/2022] Open
Abstract
The capacity of existing blood vessels to give rise to new blood vessels via endothelial cell sprouting is called angiogenesis and is a well-studied biologic process. In contrast, little is known about the mechanisms for endothelial cell replacement or regeneration within established blood vessels. Since clear definitions exist for identifying cells with stem and progenitor cell properties in many tissues and organs of the body, several groups have begun to accumulate evidence that endothelial stem and progenitor cells exist within the endothelial intima of existing blood vessels. This paper will review stem and progenitor cell definitions and highlight several recent papers purporting to have identified resident vascular endothelial stem and progenitor cells.
Collapse
Affiliation(s)
- Mervin C. Yoder
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
72
|
Wang D, Li LK, Dai T, Wang A, Li S. Adult Stem Cells in Vascular Remodeling. Am J Cancer Res 2018; 8:815-829. [PMID: 29344309 PMCID: PMC5771096 DOI: 10.7150/thno.19577] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 10/01/2017] [Indexed: 01/03/2023] Open
Abstract
Understanding the contribution of vascular cells to blood vessel remodeling is critical for the development of new therapeutic approaches to cure cardiovascular diseases (CVDs) and regenerate blood vessels. Recent findings suggest that neointimal formation and atherosclerotic lesions involve not only inflammatory cells, endothelial cells, and smooth muscle cells, but also several types of stem cells or progenitors in arterial walls and the circulation. Some of these stem cells also participate in the remodeling of vascular grafts, microvessel regeneration, and formation of fibrotic tissue around biomaterial implants. Here we review the recent findings on how adult stem cells participate in CVD development and regeneration as well as the current state of clinical trials in the field, which may lead to new approaches for cardiovascular therapies and tissue engineering.
Collapse
|
73
|
Hernandez DR, Artiles A, Duque JC, Martinez L, Pinto MT, Webster KA, Velazquez OC, Vazquez-Padron RI, Lassance-Soares RM. Loss of c-Kit function impairs arteriogenesis in a mouse model of hindlimb ischemia. Surgery 2017; 163:877-882. [PMID: 29287914 DOI: 10.1016/j.surg.2017.10.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/28/2017] [Accepted: 10/25/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND Arteriogenesis is a process whereby collateral vessels remodel usually in response to increased blood flow and/or wall stress. Remodeling of collaterals can function as a natural bypass to alleviate ischemia during arterial occlusion. Here we used a genetic approach to investigate possible roles of tyrosine receptor c-Kit in arteriogenesis. METHODS Mutant mice with loss of c-Kit function (KitW/W-v), and controls were subjected to hindlimb ischemia. Blood flow recovery was evaluated pre-, post-, and weekly after ischemia. Foot ischemic damage and function were assessed between days 1 to 14 post-ischemia while collaterals remodeling were measured 28 days post-ischemia. Both groups of mice also were subjected to wild type bone marrow cells transplantation 3 weeks before hindlimb ischemia to evaluate possible contributions of defective bone marrow c-Kit expression on vascular recovery. RESULTS KitW/W-v mice displayed impaired blood flow recovery, greater ischemic damage and foot dysfunction after ischemia compared to controls. KitW/W-v mice also demonstrated impaired collateral remodeling consistent with flow recovery findings. Because arteriogenesis is a biological process that involves bone marrow-derived cells, we investigated which source of c-Kit signaling (bone marrow or vascular) plays a major role in arteriogenesis. KitW/W-v mice transplanted with bone marrow wild type cells exhibited similar phenotype of impaired blood flow recovery, greater tissue ischemic damage and foot dysfunction as nontransplanted KitW/W-v mice. CONCLUSION This study provides evidence that c-Kit signaling is required during arteriogenesis. Also, it strongly suggests a vascular role for c-Kit signaling because rescue of systemic c-Kit activity by bone marrow transplantation did not augment the functional recovery of KitW/W-v mouse hindlimbs.
Collapse
Affiliation(s)
- Diana R Hernandez
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Adriana Artiles
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Juan C Duque
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Laisel Martinez
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Mariana T Pinto
- Interdiciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Keith A Webster
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Omaida C Velazquez
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Roberto I Vazquez-Padron
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA; Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | | |
Collapse
|
74
|
Huizer K, Mustafa DAM, Spelt JC, Kros JM, Sacchetti A. Improving the characterization of endothelial progenitor cell subsets by an optimized FACS protocol. PLoS One 2017; 12:e0184895. [PMID: 28910385 PMCID: PMC5599045 DOI: 10.1371/journal.pone.0184895] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/01/2017] [Indexed: 02/07/2023] Open
Abstract
The characterization of circulating endothelial progenitor cells (EPCs) is fundamental to any study related to angiogenesis. Unfortunately, current literature lacks consistency in the definition of EPC subsets due to variations in isolation strategies and inconsistencies in the use of lineage markers. Here we address critical points in the identification of hematopoietic progenitor cells (HPCs), circulating endothelial cells (CECs), and culture-generated outgrowth endothelial cells (OECs) from blood samples of healthy adults (AB) and umbilical cord (UCB). Peripheral blood mononuclear cells (PBMCs) were enriched using a Ficoll-based gradient followed by an optimized staining and gating strategy to enrich for the target cells. Sorted EPC populations were subjected to RT-PCR for tracing the expression of markers beyond the limits of cell surface-based immunophenotyping. Using CD34, CD133 and c-kit staining, combined with FSC and SSC, we succeeded in the accurate and reproducible identification of four HPC subgroups and found significant differences in the respective populations in AB vs. UCB. Co-expression analysis of endothelial markers on HPCs revealed a complex pattern characterized by various subpopulations. CECs were identified by using CD34, KDR, CD45, and additional endothelial markers, and were subdivided according to their apoptotic state and expression of c-kit. Comparison of UCB-CECs vs. AB-CECs revealed significant differences in CD34 and KDR levels. OECs were grown from PBMC-fractions We found that viable c-kit+ CECs are a candidate circulating precursor for CECs. RT-PCR to angiogenic factors and receptors revealed that all EPC subsets expressed angiogenesis-related molecules. Taken together, the improvements in immunophenotyping and gating strategies resulted in accurate identification and comparison of better defined cell populations in a single procedure.
Collapse
Affiliation(s)
- Karin Huizer
- Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Johan M. Kros
- Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
- * E-mail:
| | | |
Collapse
|
75
|
Yu QC, Song W, Lai D, Zeng YA. A Novel Mammary Fat Pad Transplantation Technique to Visualize the Vessel Generation of Vascular Endothelial Stem Cells. J Vis Exp 2017. [PMID: 28809839 DOI: 10.3791/55795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Endothelial cells (ECs) are the fundamental building blocks of the vascular architecture and mediate vascular growth and remodeling to ensure proper vessel development and homeostasis. However, studies on endothelial lineage hierarchy remain elusive due to the lack of tools to gain access as well as to directly evaluate their behavior in vivo. To address this shortcoming, a new tissue model to study angiogenesis using the mammary fat pad has been developed. The mammary gland develops mostly in the postnatal stages, including puberty and pregnancy, during which robust epithelium proliferation is accompanied by extensive vascular remodeling. Mammary fat pads provide space, matrix, and rich angiogenic stimuli from the growing mammary epithelium. Furthermore, mammary fat pads are located outside the peritoneal cavity, making them an easily accessible grafting site for assessing the angiogenic potential of exogenous cells. This work also describes an efficient tracing approach using fluorescent reporter mice to specifically label the targeted population of vascular endothelial stem cells (VESCs) in vivo. This lineage tracing method, coupled with subsequent tissue whole-mount microscopy, enable the direct visualization of targeted cells and their descendants, through which the proliferation capability can be quantified and the differentiation commitment can be fate-mapped. Using these methods, a population of bipotent protein C receptor (Procr) expressing VESCs has recently been identified in multiple vascular systems. Procr+ VESCs, giving rise to both new ECs and pericytes, actively contribute to angiogenesis during development, homeostasis, and injury repair. Overall, this manuscript describes a new mammary fat pad transplantation and in vivo lineage tracing techniques that can be used to evaluate the stem cell properties of VESCs.
Collapse
Affiliation(s)
- Qing Cissy Yu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences;
| | - Wenqian Song
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
| | - Dengwen Lai
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
| | - Yi Arial Zeng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences;
| |
Collapse
|
76
|
Mistriotis P, Andreadis ST. Vascular aging: Molecular mechanisms and potential treatments for vascular rejuvenation. Ageing Res Rev 2017; 37:94-116. [PMID: 28579130 DOI: 10.1016/j.arr.2017.05.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 12/14/2022]
Abstract
Aging is the main risk factor contributing to vascular dysfunction and the progression of vascular diseases. In this review, we discuss the causes and mechanisms of vascular aging at the tissue and cellular level. We focus on Endothelial Cell (EC) and Smooth Muscle Cell (SMC) aging due to their critical role in mediating the defective vascular phenotype. We elaborate on two categories that contribute to cellular dysfunction: cell extrinsic and intrinsic factors. Extrinsic factors reflect systemic or environmental changes which alter EC and SMC homeostasis compromising vascular function. Intrinsic factors induce EC and SMC transformation resulting in cellular senescence. Replenishing or rejuvenating the aged/dysfunctional vascular cells is critical to the effective repair of the vasculature. As such, this review also elaborates on recent findings which indicate that stem cell and gene therapies may restore the impaired vascular cell function, reverse vascular aging, and prolong lifespan.
Collapse
Affiliation(s)
- Panagiotis Mistriotis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| | - Stelios T Andreadis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA; Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA; Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA.
| |
Collapse
|
77
|
Endothelial Progenitor Cells' Classification and Application in Neurological Diseases. Tissue Eng Regen Med 2017; 14:327-332. [PMID: 30603489 DOI: 10.1007/s13770-017-0043-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 09/15/2016] [Accepted: 09/25/2016] [Indexed: 12/31/2022] Open
Abstract
The therapeutic effects of endothelial progenitor cells (EPCs) on ischemic stroke have been extensively studied in recent years. However, the differences in early EPCs and endothelial outgrowth cells (EOCs) are still unclear. Clarifications of their respective properties and specific functioning characteristics contribute to better applications of EPCs in ischemic diseases. In this review, we discuss cellular origin, isolation, culture, surface markers of early EPCs and EOCs and relevant applications in neurological diseases. We conclude that EOCs possess all characteristics of true endothelial progenitors and have potent advantages in EPC-based therapies for ischemic diseases. A number of preclinical and clinical applications of EPCs in neurological diseases are under study. More studies are needed to determine the specific characteristics of EPCs and the relevant mechanisms of EPCs for neurological diseases.
Collapse
|
78
|
The vascular adventitia: An endogenous, omnipresent source of stem cells in the body. Pharmacol Ther 2017; 171:13-29. [DOI: 10.1016/j.pharmthera.2016.07.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 07/12/2016] [Indexed: 12/22/2022]
|
79
|
Malinverno M, Corada M, Ferrarini L, Formicola L, Marazzi G, Sassoon D, Dejana E. Peg3/PW1 Is a Marker of a Subset of Vessel Associated Endothelial Progenitors. Stem Cells 2017; 35:1328-1340. [PMID: 28090691 DOI: 10.1002/stem.2566] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/30/2016] [Accepted: 12/12/2016] [Indexed: 12/16/2022]
Abstract
Vascular associated endothelial cell (ECs) progenitors are still poorly studied and their role in the newly forming vasculature at embryonic or postnatal stage remains elusive. In the present work, we first defined a set of genes highly expressed during embryo development and strongly downregulated in the adult mouse. In this group, we then concentrated on the progenitor cell marker Peg3/PW1. By in vivo staining of the vasculature we found that only a subset of cells coexpressed endothelial markers and PW1. These cells were quite abundant in the embryo vasculature but declined in number at postnatal and adult stages. Using a reporter mouse for PW1 expression, we have been able to isolate PW1-positive (PW1posECs) and negative endothelial cells (PW1negECs). PW1-positive cells were highly proliferative in comparison to PW1negECs and were able to form colonies when seeded at clonal dilution. Furthermore, by RNAseq analysis, PW1posECs expressed endothelial cell markers together with mesenchymal and stem cell markers. When challenged by endothelial growth factors in vitro, PW1posECs were able to proliferate more than PW1negECs and to efficiently form new vessels in vivo. Taken together these data identify a subset of vessel associated endothelial cells with characteristics of progenitor cells. Considering their high proliferative potential these cells may be of particular importance to design therapies to improve the perfusion of ischemic tissues or to promote vascular repair. Stem Cells 2017;35:1328-1340.
Collapse
Affiliation(s)
- Matteo Malinverno
- FIRC Institute of Molecular Oncology (IFOM) Fondazione, Milan, Italy
| | - Monica Corada
- FIRC Institute of Molecular Oncology (IFOM) Fondazione, Milan, Italy
| | - Luca Ferrarini
- FIRC Institute of Molecular Oncology (IFOM) Fondazione, Milan, Italy
| | - Luigi Formicola
- Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition (ICAN) UMRS 1166 Université de Pierre et Marie Curie-Sorbonne Universités and INSERM, Paris, France
| | - Giovanna Marazzi
- Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition (ICAN) UMRS 1166 Université de Pierre et Marie Curie-Sorbonne Universités and INSERM, Paris, France
| | - David Sassoon
- Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition (ICAN) UMRS 1166 Université de Pierre et Marie Curie-Sorbonne Universités and INSERM, Paris, France
| | - Elisabetta Dejana
- FIRC Institute of Molecular Oncology (IFOM) Fondazione, Milan, Italy.,Department of Biosciences, School of Sciences and Department of Oncology, School of Medicine, Milan University, Milan, Italy.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
80
|
Patel J, Seppanen EJ, Rodero MP, Wong HY, Donovan P, Neufeld Z, Fisk NM, Francois M, Khosrotehrani K. Functional Definition of Progenitors Versus Mature Endothelial Cells Reveals Key SoxF-Dependent Differentiation Process. Circulation 2016; 135:786-805. [PMID: 27899395 DOI: 10.1161/circulationaha.116.024754] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 11/16/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND During adult life, blood vessel formation is thought to occur via angiogenic processes involving branching from existing vessels. An alternate proposal suggests that neovessels form from endothelial progenitors able to assemble the intimal layers. We here aimed to define vessel-resident endothelial progenitors in vivo in a variety of tissues in physiological and pathological situations such as normal aorta, lungs, and wound healing, tumors, and placenta, as well. METHODS Based on protein expression levels of common endothelial markers using flow cytometry, 3 subpopulations of endothelial cells could be identified among VE-Cadherin+ and CD45- cells. RESULTS Lineage tracing by using Cdh5creERt2/Rosa-YFP reporter strategy demonstrated that the CD31-/loVEGFR2lo/intracellular endothelial population was indeed an endovascular progenitor (EVP) of an intermediate CD31intVEGFR2lo/intracellular transit amplifying (TA) and a definitive differentiated (D) CD31hiVEGFR2hi/extracellular population. EVP cells arose from vascular-resident beds that could not be transferred by bone marrow transplantation. Furthermore, EVP displayed progenitor-like status with a high proportion of cells in a quiescent cell cycle phase as assessed in wounds, tumors, and aorta. Only EVP cells and not TA and D cells had self-renewal capacity as demonstrated by colony-forming capacity in limiting dilution and by transplantation in Matrigel plugs in recipient mice. RNA sequencing revealed prominent gene expression differences between EVP and D cells. In particular, EVP cells highly expressed genes related to progenitor function including Sox9, Il33, Egfr, and Pdfgrα. Conversely, D cells highly expressed genes related to differentiated endothelium including Ets1&2, Gata2, Cd31, Vwf, and Notch. The RNA sequencing also pointed to an essential role of the Sox18 transcription factor. The role of SOX18 in the differentiation process was validated by using lineage-tracing experiments based on Sox18CreERt2/Rosa-YFP mice. Besides, in the absence of functional SOX18/SOXF, EVP progenitors were still present, but TA and D populations were significantly reduced. CONCLUSIONS Our findings support an entirely novel endothelial hierarchy, from EVP to TA to D, as defined by self-renewal, differentiation, and molecular profiling of an endothelial progenitor. This paradigm shift in our understanding of vascular-resident endothelial progenitors in tissue regeneration opens new avenues for better understanding of cardiovascular biology.
Collapse
Affiliation(s)
- Jatin Patel
- From The University of Queensland, UQ Centre for Clinical Research, Experimental Dermatology Group, Brisbane, QLD, Australia (J.P., E.J.S., M.P.R., H.Y.W., N.M.F., K.K.); The University of Queensland, UQ Diamantina Institute, Translational Research Institute, Woolloongabba, QLD, Australia (P.D., K.K.); The University of Queensland, School of Mathematics and Physics, Brisbane, QLD, Australia (Z.N.); and The University of Queensland, Institute of Molecular Biosciences, Brisbane, QLD, Australia (M.F.)
| | - Elke J Seppanen
- From The University of Queensland, UQ Centre for Clinical Research, Experimental Dermatology Group, Brisbane, QLD, Australia (J.P., E.J.S., M.P.R., H.Y.W., N.M.F., K.K.); The University of Queensland, UQ Diamantina Institute, Translational Research Institute, Woolloongabba, QLD, Australia (P.D., K.K.); The University of Queensland, School of Mathematics and Physics, Brisbane, QLD, Australia (Z.N.); and The University of Queensland, Institute of Molecular Biosciences, Brisbane, QLD, Australia (M.F.)
| | - Mathieu P Rodero
- From The University of Queensland, UQ Centre for Clinical Research, Experimental Dermatology Group, Brisbane, QLD, Australia (J.P., E.J.S., M.P.R., H.Y.W., N.M.F., K.K.); The University of Queensland, UQ Diamantina Institute, Translational Research Institute, Woolloongabba, QLD, Australia (P.D., K.K.); The University of Queensland, School of Mathematics and Physics, Brisbane, QLD, Australia (Z.N.); and The University of Queensland, Institute of Molecular Biosciences, Brisbane, QLD, Australia (M.F.)
| | - Ho Yi Wong
- From The University of Queensland, UQ Centre for Clinical Research, Experimental Dermatology Group, Brisbane, QLD, Australia (J.P., E.J.S., M.P.R., H.Y.W., N.M.F., K.K.); The University of Queensland, UQ Diamantina Institute, Translational Research Institute, Woolloongabba, QLD, Australia (P.D., K.K.); The University of Queensland, School of Mathematics and Physics, Brisbane, QLD, Australia (Z.N.); and The University of Queensland, Institute of Molecular Biosciences, Brisbane, QLD, Australia (M.F.)
| | - Prudence Donovan
- From The University of Queensland, UQ Centre for Clinical Research, Experimental Dermatology Group, Brisbane, QLD, Australia (J.P., E.J.S., M.P.R., H.Y.W., N.M.F., K.K.); The University of Queensland, UQ Diamantina Institute, Translational Research Institute, Woolloongabba, QLD, Australia (P.D., K.K.); The University of Queensland, School of Mathematics and Physics, Brisbane, QLD, Australia (Z.N.); and The University of Queensland, Institute of Molecular Biosciences, Brisbane, QLD, Australia (M.F.)
| | - Zoltan Neufeld
- From The University of Queensland, UQ Centre for Clinical Research, Experimental Dermatology Group, Brisbane, QLD, Australia (J.P., E.J.S., M.P.R., H.Y.W., N.M.F., K.K.); The University of Queensland, UQ Diamantina Institute, Translational Research Institute, Woolloongabba, QLD, Australia (P.D., K.K.); The University of Queensland, School of Mathematics and Physics, Brisbane, QLD, Australia (Z.N.); and The University of Queensland, Institute of Molecular Biosciences, Brisbane, QLD, Australia (M.F.)
| | - Nicholas M Fisk
- From The University of Queensland, UQ Centre for Clinical Research, Experimental Dermatology Group, Brisbane, QLD, Australia (J.P., E.J.S., M.P.R., H.Y.W., N.M.F., K.K.); The University of Queensland, UQ Diamantina Institute, Translational Research Institute, Woolloongabba, QLD, Australia (P.D., K.K.); The University of Queensland, School of Mathematics and Physics, Brisbane, QLD, Australia (Z.N.); and The University of Queensland, Institute of Molecular Biosciences, Brisbane, QLD, Australia (M.F.)
| | - Mathias Francois
- From The University of Queensland, UQ Centre for Clinical Research, Experimental Dermatology Group, Brisbane, QLD, Australia (J.P., E.J.S., M.P.R., H.Y.W., N.M.F., K.K.); The University of Queensland, UQ Diamantina Institute, Translational Research Institute, Woolloongabba, QLD, Australia (P.D., K.K.); The University of Queensland, School of Mathematics and Physics, Brisbane, QLD, Australia (Z.N.); and The University of Queensland, Institute of Molecular Biosciences, Brisbane, QLD, Australia (M.F.)
| | - Kiarash Khosrotehrani
- From The University of Queensland, UQ Centre for Clinical Research, Experimental Dermatology Group, Brisbane, QLD, Australia (J.P., E.J.S., M.P.R., H.Y.W., N.M.F., K.K.); The University of Queensland, UQ Diamantina Institute, Translational Research Institute, Woolloongabba, QLD, Australia (P.D., K.K.); The University of Queensland, School of Mathematics and Physics, Brisbane, QLD, Australia (Z.N.); and The University of Queensland, Institute of Molecular Biosciences, Brisbane, QLD, Australia (M.F.).
| |
Collapse
|
81
|
Abstract
The concept of pericyte has been changing over years. This cell type was believed to possess only a function of trophic support to endothelial cells and to maintain vasculature stabilization. In the last years, the discovery of multipotent ability of perivascular populations led to the concept of vessel/wall niche. Likewise, several perivascular populations have been identified in animal and human bone marrow. In this review, we provide an overview on bone marrow perivascular population, their cross-talk with other niche components, relationship with bone marrow stromal stem cells, and similarities and differences with the perivascular population of the vessel/wall niche. Finally, we focus on the regenerative potential of these cells and the forthcoming challenges related to their use as cell therapy products.
Collapse
Affiliation(s)
- Giuseppe Mangialardi
- Division of Experimental Cardiovascular Medicine, Bristol Heart Institute, University of Bristol, UK
| | - Andrea Cordaro
- Division of Experimental Cardiovascular Medicine, Bristol Heart Institute, University of Bristol, UK
| | - Paolo Madeddu
- Division of Experimental Cardiovascular Medicine, Bristol Heart Institute, University of Bristol, UK
| |
Collapse
|
82
|
Generation of functional endothelial cells with progenitor-like features from murine induced pluripotent stem cells. Vascul Pharmacol 2016; 86:94-108. [DOI: 10.1016/j.vph.2016.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/20/2016] [Indexed: 11/19/2022]
|
83
|
Im JE, Song SH, Suh W. Src tyrosine kinase regulates the stem cell factor-induced breakdown of the blood-retinal barrier. Mol Vis 2016; 22:1213-1220. [PMID: 27746675 PMCID: PMC5063088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 10/11/2016] [Indexed: 10/31/2022] Open
Abstract
PURPOSE Stem cell factor (SCF) has been recently acknowledged as a novel endothelial permeability factor. However, the mechanisms by which SCF-induced activation of the SCF cognate receptor, cKit, enhances endothelial permeability have not been fully elucidated. This study aimed to investigate the role of Src in SCF-induced breakdown of the blood-retinal barrier (BRB). METHODS In vitro endothelial permeability and in vivo retinal vascular permeability assays were performed to investigate the role of Src in SCF-induced breakdown of the BRB. Immunofluorescence staining experiments were performed to analyze the cellular distribution of phosphorylated Src and vascular endothelial (VE)-cadherin. RESULTS SCF markedly reduced electric resistance across the human retinal vascular endothelial monolayer in vitro and enhanced extravasation of dyes in murine retinal vasculature in vivo. Inhibition of cKit activation using cKit mutant mice and chemical inhibitor substantially diminished the ability of SCF to increase endothelial permeability and retinal vascular leakage. In human retinal vascular endothelial cells, SCF induced strong phosphorylation of Src and distinct localization of phosphorylated Src in the plasma membrane. Inhibition of Src activation using chemical inhibitors abolished the SCF-induced hyperpermeability of human retinal vascular endothelial cells and retinal vascular leakage in mice. In addition, treatment with Src inhibitors restored junctional expression of VE-cadherin that disappeared in SCF-treated retinal endothelial cells and retinal vasculature. CONCLUSIONS These results showed the important role of Src in mediating SCF-induced breakdown of the BRB and retinal vascular leakage. Given that increased retinal vascular permeability is a common manifestation of various ocular diseases, the SCF/cKit/Src signaling pathway may be involved in the development of the hyperpermeable retinal vasculature in many ocular disorders.
Collapse
|
84
|
Testa U, Saulle E, Castelli G, Pelosi E. Endothelial progenitor cells in hematologic malignancies. Stem Cell Investig 2016; 3:26. [PMID: 27583252 DOI: 10.21037/sci.2016.06.07] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/23/2016] [Indexed: 01/09/2023]
Abstract
Studies carried out in the last years have improved the understanding of the cellular and molecular mechanisms controlling angiogenesis during adult life in normal and pathological conditions. Some of these studies have led to the identification of some progenitor cells that sustain angiogenesis through indirect, paracrine mechanisms (hematopoietic angiogenic cells) and through direct mechanisms, i.e., through their capacity to generate a progeny of phenotypically and functionally competent endothelial cells [endothelial colony forming cells (ECFCs)]. The contribution of these progenitors to angiogenetic processes under physiological and pathological conditions is intensively investigated. Angiogenetic mechanisms are stimulated in various hematological malignancies, including chronic myeloid leukemia (CML), acute myeloid leukemia (AML), myelodysplastic syndromes and multiple myeloma, resulting in an increased angiogenesis that contributes to disease progression. In some of these conditions there is preliminary evidence that some endothelial cells could derive from the malignant clone, thus leading to the speculation that the leukemic cell derives from the malignant transformation of a hemangioblastic progenitor, i.e., of a cell capable of differentiation to the hematopoietic and to the endothelial cell lineages. Our understanding of the mechanisms underlying increased angiogenesis in these malignancies not only contributed to a better knowledge of the mechanisms responsible for tumor progression, but also offered the way for the discovery of new therapeutic targets.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Ernestina Saulle
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
85
|
Yu QC, Song W, Wang D, Zeng YA. Identification of blood vascular endothelial stem cells by the expression of protein C receptor. Cell Res 2016; 26:1079-1098. [PMID: 27364685 PMCID: PMC5113308 DOI: 10.1038/cr.2016.85] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/20/2016] [Accepted: 05/25/2016] [Indexed: 02/07/2023] Open
Abstract
Vascular growth and remodeling are dependent on the generation of new endothelial cells from stem cells and the involvement of perivascular cells to maintain vessel integrity and function. The existence and cellular identity of vascular endothelial stem cells (VESCs) remain unclear. The perivascular pericytes in adult tissues are thought to arise from the recruitment and differentiation of mesenchymal progenitors during early development. In this study, we identified Protein C receptor-expressing (Procr+) endothelial cells as VESCs in multiple tissues. Procr+ VESCs exhibit robust clonogenicity in culture, high vessel reconstitution efficiency in transplantation, long-term clonal expansion in lineage tracing, and EndMT characteristics. Moreover, Procr+ VESCs are bipotent, giving rise to de novo formation of endothelial cells and pericytes. This represents a novel origin of pericytes in adult angiogenesis, reshaping our understanding of blood vessel development and homeostatic process. Our study may also provide a more precise therapeutic target to inhibit pathological angiogenesis and tumor growth.
Collapse
Affiliation(s)
- Qing Cissy Yu
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenqian Song
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Daisong Wang
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi Arial Zeng
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
86
|
Stress-Induced Premature Senescence of Endothelial and Endothelial Progenitor Cells. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 77:281-306. [PMID: 27451101 DOI: 10.1016/bs.apha.2016.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This brief overview of premature senescence of dysfunctional endothelial and endothelial progenitor cells provides information on endothelial cell differentiation and specialization, their ontogeny, and controversies related to endothelial stem and progenitor cells. Stressors responsible for the dysfunction of endothelial and endothelial progenitor cells, as well as cellular mechanisms and consequences of endothelial cell dysfunction are presented. Metabolic signatures of dysfunctional endothelial cells and senescence pathways are described. Emerging strategies to rejuvenate endothelial and endothelial progenitor cells conclude the review.
Collapse
|
87
|
Suzuki T, Tada Y, Nishimura R, Kawasaki T, Sekine A, Urushibara T, Kato F, Kinoshita T, Ikari J, West J, Tatsumi K. Endothelial-to-mesenchymal transition in lipopolysaccharide-induced acute lung injury drives a progenitor cell-like phenotype. Am J Physiol Lung Cell Mol Physiol 2016; 310:L1185-98. [PMID: 27106288 DOI: 10.1152/ajplung.00074.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/17/2016] [Indexed: 12/15/2022] Open
Abstract
Pulmonary vascular endothelial function may be impaired by oxidative stress in endotoxemia-derived acute lung injury. Growing evidence suggests that endothelial-to-mesenchymal transition (EndMT) could play a pivotal role in various respiratory diseases; however, it remains unclear whether EndMT participates in the injury/repair process of septic acute lung injury. Here, we analyzed lipopolysaccharide (LPS)-treated mice whose total number of pulmonary vascular endothelial cells (PVECs) transiently decreased after production of reactive oxygen species (ROS), while the population of EndMT-PVECs significantly increased. NAD(P)H oxidase inhibition suppressed EndMT of PVECs. Most EndMT-PVECs derived from tissue-resident cells, not from bone marrow, as assessed by mice with chimeric bone marrow. Bromodeoxyuridine-incorporation assays revealed higher proliferation of capillary EndMT-PVECs. In addition, EndMT-PVECs strongly expressed c-kit and CD133. LPS loading to human lung microvascular endothelial cells (HMVEC-Ls) induced reversible EndMT, as evidenced by phenotypic recovery observed after removal of LPS. LPS-induced EndMT-HMVEC-Ls had increased vasculogenic ability, aldehyde dehydrogenase activity, and expression of drug resistance genes, which are also fundamental properties of progenitor cells. Taken together, our results demonstrate that LPS induces EndMT of tissue-resident PVECs during the early phase of acute lung injury, partly mediated by ROS, contributing to increased proliferation of PVECs.
Collapse
Affiliation(s)
- Toshio Suzuki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan; and
| | - Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan; and
| | - Rintaro Nishimura
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan; and
| | - Takeshi Kawasaki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan; and
| | - Ayumi Sekine
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan; and
| | - Takashi Urushibara
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan; and
| | - Fumiaki Kato
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan; and
| | - Taku Kinoshita
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan; and
| | - Jun Ikari
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan; and
| | - James West
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan; and
| |
Collapse
|
88
|
Zhan H, Ma Y, Lin CHS, Kaushansky K. JAK2 V617F-mutant megakaryocytes contribute to hematopoietic stem/progenitor cell expansion in a model of murine myeloproliferation. Leukemia 2016; 30:2332-2341. [PMID: 27133820 DOI: 10.1038/leu.2016.114] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 03/06/2016] [Accepted: 05/02/2016] [Indexed: 02/07/2023]
Abstract
The myeloproliferative neoplasms (MPNs) are characterized by hematopoietic stem/progenitor cell (HSPC) expansion and overproduction of mature blood cells. The JAK2V617F mutation is present in hematopoietic cells in a majority of patients with MPNs, but the mechanism(s) responsible for MPN stem cell expansion remain incomplete. One hallmark feature of the marrow in patients with MPNs is megakaryocyte (MK) hyperplasia. We report here that mice bearing a human JAK2V617F gene restricted exclusively to the MK lineage develop many of the features of a MPN. Specifically, these mice exhibit thrombocytosis, splenomegaly, increased numbers of marrow and splenic hematopoietic progenitors and a substantial expansion of HSPCs. In addition, wild-type mice transplanted with cells from JAK2V617F-bearing MK marrow develop a myeloproliferative syndrome with thrombocytosis and erythrocytosis as well as pan-hematopoietic progenitor and stem cell expansion. As marrow histology in this murine model of myeloproliferation reveals a preferentially perivascular localization of JAK2V617F-mutant MKs and an increased marrow sinusoid vascular density, it adds to accumulating data that MKs are an important component of the marrow HSPC niche, and that MK expansion might indirectly contribute to the critical role of the thrombopoietin/c-Mpl signaling pathway in HSPC maintenance and expansion.
Collapse
Affiliation(s)
- H Zhan
- Division of Hematology-Oncology, Department of Medicine, Northport VA Medical Center, Northport, NY, USA.,Department of Medicine, Division of Hematology-Oncology, Stony Brook University, Stony Brook, NY, USA
| | - Y Ma
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - C H S Lin
- Department of Medicine, Division of Hematology-Oncology, Stony Brook University, Stony Brook, NY, USA
| | - K Kaushansky
- Office of the Sr Vice President, Health Sciences, Stony Brook Medicine, NY, USA
| |
Collapse
|
89
|
Shi H, Drummond CA, Fan X, Haller ST, Liu J, Malhotra D, Tian J. Hiding inside? Intracellular expression of non-glycosylated c-kit protein in cardiac progenitor cells. Stem Cell Res 2016; 16:795-806. [PMID: 27161312 DOI: 10.1016/j.scr.2016.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/15/2016] [Accepted: 04/22/2016] [Indexed: 12/23/2022] Open
Abstract
Cardiac progenitor cells including c-kit(+) cells and cardiosphere-derived cells (CDCs) play important roles in cardiac repair and regeneration. CDCs were reported to contain only small subpopulations of c-kit(+) cells and recent publications suggested that depletion of the c-kit(+) subpopulation of cells has no effect on regenerative properties of CDCs. However, our current study showed that the vast majority of CDCs from murine heart actually express c-kit, albeit, in an intracellular and non-glycosylated form. Immunostaining and flow cytometry showed that the fluorescent signal indicative of c-kit immunostaining significantly increased when cell membranes were permeabilized. Western blots further demonstrated that glycosylation of c-kit was increased during endothelial differentiation in a time dependent manner. Glycosylation inhibition by 1-deoxymannojirimycin hydrochloride (1-DMM) blocked c-kit glycosylation and reduced expression of endothelial cell markers such as Flk-1 and CD31 during differentiation. Pretreatment of these cells with a c-kit kinase inhibitor (imatinib mesylate) also attenuated Flk-1 and CD31 expression. These results suggest that c-kit glycosylation and its kinase activity are likely needed for these cells to differentiate into an endothelial lineage. In vivo, we found that intracellular c-kit expressing cells are located in the wall of cardiac blood vessels in mice subjected to myocardial infarction. In summary, our work demonstrated for the first time that c-kit is not only expressed in CDCs but may also directly participate in CDC differentiation into an endothelial lineage.
Collapse
Affiliation(s)
- Huilin Shi
- Department of Medicine, Division of Cardiovascular Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Christopher A Drummond
- Department of Medicine, Division of Cardiovascular Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Xiaoming Fan
- Department of Medicine, Division of Cardiovascular Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Steven T Haller
- Department of Medicine, Division of Cardiovascular Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Jiang Liu
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Deepak Malhotra
- Department of Medicine, Division of Cardiovascular Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Jiang Tian
- Department of Medicine, Division of Cardiovascular Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA.
| |
Collapse
|
90
|
Turner EC, Huang CL, Sawhney N, Govindarajan K, Clover AJP, Martin K, Browne TC, Whelan D, Kumar AHS, Mackrill JJ, Wang S, Schmeckpeper J, Stocca A, Pierce WG, Leblond AL, Cai L, O'Sullivan DM, Buneker CK, Choi J, MacSharry J, Ikeda Y, Russell SJ, Caplice NM. A Novel Selectable Islet 1 Positive Progenitor Cell Reprogrammed to Expandable and Functional Smooth Muscle Cells. Stem Cells 2016; 34:1354-68. [PMID: 26840832 DOI: 10.1002/stem.2319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 12/17/2015] [Indexed: 11/08/2022]
Abstract
Disorders affecting smooth muscle structure/function may require technologies that can generate large scale, differentiated and contractile smooth muscle cells (SMC) suitable for cell therapy. To date no clonal precursor population that provides large numbers of differentiated SMC in culture has been identified in a rodent. Identification of such cells may also enhance insight into progenitor cell fate decisions and the relationship between smooth muscle precursors and disease states that implicate differentiated SMC. In this study, we used classic clonal expansion techniques to identify novel self-renewing Islet 1 (Isl-1) positive primitive progenitor cells (PPC) within rat bone marrow that exhibited canonical stem cell markers and preferential differentiation towards a smooth muscle-like fate. We subsequently used molecular tagging to select Isl-1 positive clonal populations from expanded and de novo marrow cell populations. We refer to these previously undescribed cells as the PPC given its stem cell marker profile, and robust self-renewal capacity. PPC could be directly converted into induced smooth muscle cells (iSMC) using single transcription factor (Kruppel-like factor 4) knockdown or transactivator (myocardin) overexpression in contrast to three control cells (HEK 293, endothelial cells and mesenchymal stem cells) where such induction was not possible. iSMC exhibited immuno- and cytoskeletal-phenotype, calcium signaling profile and contractile responses similar to bona fide SMC. Passaged iSMC could be expanded to a scale sufficient for large scale tissue replacement. PPC and reprogramed iSMC so derived may offer future opportunities to investigate molecular, structure/function and cell-based replacement therapy approaches to diverse cardiovascular, respiratory, gastrointestinal, and genitourinary diseases that have as their basis smooth muscle cell functional aberrancy or numerical loss. Stem Cells 2016;34:1354-1368.
Collapse
Affiliation(s)
- Elizabeth C Turner
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Chien-Ling Huang
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Neha Sawhney
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Kalaimathi Govindarajan
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Anthony J P Clover
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Kenneth Martin
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Tara C Browne
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Derek Whelan
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Arun H S Kumar
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - John J Mackrill
- Department of Physiology, University College Cork, Biosciences Institute, College Road, Cork, Ireland
| | - Shaohua Wang
- Molecular Medicine Program, Mayo Clinic and Foundation, 200 First St, Rochester, Minnesota, 55905
| | - Jeffrey Schmeckpeper
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Alessia Stocca
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - William G Pierce
- Department of Physiology, University College Cork, Biosciences Institute, College Road, Cork, Ireland
| | - Anne-Laure Leblond
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Liquan Cai
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Donnchadh M O'Sullivan
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Chirlei K Buneker
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Janet Choi
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - John MacSharry
- Alimentary Pharmabiotic Centre (APC), Biosciences Institute, University College Cork, Cork, Ireland
| | - Yasuhiro Ikeda
- Molecular Medicine Program, Mayo Clinic and Foundation, 200 First St, Rochester, Minnesota, 55905
| | - Stephen J Russell
- Molecular Medicine Program, Mayo Clinic and Foundation, 200 First St, Rochester, Minnesota, 55905
| | - Noel M Caplice
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| |
Collapse
|
91
|
Heise RL, Link PA, Farkas L. From Here to There, Progenitor Cells and Stem Cells Are Everywhere in Lung Vascular Remodeling. Front Pediatr 2016; 4:80. [PMID: 27583245 PMCID: PMC4988064 DOI: 10.3389/fped.2016.00080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/20/2016] [Indexed: 01/27/2023] Open
Abstract
The field of stem cell biology, cell therapy, and regenerative medicine has expanded almost exponentially, in the last decade. Clinical trials are evaluating the potential therapeutic use of stem cells in many adult and pediatric lung diseases with vascular component, such as bronchopulmonary dysplasia (BPD), chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), or pulmonary arterial hypertension (PAH). Extensive research activity is exploring the lung resident and circulating progenitor cells and their contribution to vascular complications of chronic lung diseases, and researchers hope to use resident or circulating stem/progenitor cells to treat chronic lung diseases and their vascular complications. It is becoming more and more clear that progress in mechanobiology will help to understand the various influences of physical forces and extracellular matrix composition on the phenotype and features of the progenitor cells and stem cells. The current review provides an overview of current concepts in the field.
Collapse
Affiliation(s)
- Rebecca L Heise
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University , Richmond, VA , USA
| | - Patrick A Link
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University , Richmond, VA , USA
| | - Laszlo Farkas
- Department of Internal Medicine, Division of Pulmonary Disease and Critical Care Medicine, School of Medicine, Virginia Commonwealth University , Richmond, VA , USA
| |
Collapse
|
92
|
Goto K, Takemura G, Takahashi T, Okada H, Kanamori H, Kawamura I, Watanabe T, Morishita K, Tsujimoto A, Miyazaki N, Ushikoshi H, Kawasaki M, Mikami A, Kosai KI, Minatoguchi S. Intravenous Administration of Endothelial Colony-Forming Cells Overexpressing Integrin β1 Augments Angiogenesis in Ischemic Legs. Stem Cells Transl Med 2015; 5:218-26. [PMID: 26702126 DOI: 10.5966/sctm.2015-0096] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/23/2015] [Indexed: 01/16/2023] Open
Abstract
When injected directly into ischemic tissue in patients with peripheral artery disease, the reparative capacity of endothelial progenitor cells (EPCs) appears to be limited by their poor survival. We, therefore, attempted to improve the survival of transplanted EPCs through intravenous injection and gene modification. We anticipated that overexpression of integrin β1 will enable injected EPCs to home to ischemic tissue, which abundantly express extracellular matrix proteins, the ligands for integrins. In addition, integrin β1 has an independent angiogenesis-stimulating function. Human endothelial colony-forming cells (ECFCs; late-outgrowth EPCs) were transduced using a lentiviral vector encoding integrin β1 (ITGB1) or enhanced green fluorescent protein (GFP). We then locally or systemically injected phosphate-buffered saline or the genetically modified ECFCs (GFP-ECFCs or ITGB1-ECFCs; 1 × 10(5) cells each) into NOD/Shi-scid, IL-2Rγnull mice whose right femoral arteries had been occluded 24 hours earlier. Upregulation of extracellular matrix proteins, including fibronectin, was apparent in the ischemic legs. Four weeks later, blood perfusion of the ischemic limb was significantly augmented only in the ITGB1-ECFC group. Scanning electron microscopy of vascular casts revealed increases in the perfused blood vessels in the ischemic legs of mice in the ITGB1-ECFC group and significant increases in the density of both capillaries and arterioles. Transplanted ECFC-derived vessels accounted for 28% ± 4.2% of the vessels in the ITGB1-ECFC group, with no cell fusion. Intravenous administration of ECFCs engineered to home to ischemic tissue appears to efficiently mediate therapeutic angiogenesis in a mouse model of peripheral artery disease. Significance: The intravenous administration of endothelial colony-forming cells (ECFCs) genetically modified to overexpress integrin β1 effectively stimulated angiogenesis in ischemic mouse hindlimbs. Transplanted ECFCs were observed in the ischemic leg tissue, even at the chronic stage. Moreover, the cells appeared functional, as evidenced by the improved blood flow. The cell type used (ECFCs), the route of administration (intravenous, not directly injected into the affected area), and the use of ligand-receptor interactions (extracellular matrix and integrins) for homing represent substantial advantages over previously reported cell therapies for the treatment of peripheral artery disease.
Collapse
Affiliation(s)
- Kazuko Goto
- Department of Cardiology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Genzou Takemura
- Department of Cardiology, Graduate School of Medicine, Gifu University, Gifu, Japan Department of Internal Medicine, School of Dentistry, Asahi University, Mizuho, Japan
| | - Tomoyuki Takahashi
- Department of Pediatrics and Child Health, School of Medicine, Kurume University, Kurume, Japan
| | - Hideshi Okada
- Department of Cardiology, Graduate School of Medicine, Gifu University, Gifu, Japan Department of Internal Medicine, School of Dentistry, Asahi University, Mizuho, Japan Department of Emergency and Disaster Medicine, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Hiromitsu Kanamori
- Department of Cardiology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Itta Kawamura
- Department of Cardiology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Takatomo Watanabe
- Department of Cardiology, Graduate School of Medicine, Gifu University, Gifu, Japan Department of Emergency and Disaster Medicine, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Kentaro Morishita
- Department of Cardiology, Graduate School of Medicine, Gifu University, Gifu, Japan Department of Emergency and Disaster Medicine, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Akiko Tsujimoto
- Department of Cardiology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Nagisa Miyazaki
- Department of Internal Medicine, School of Dentistry, Asahi University, Mizuho, Japan
| | - Hiroaki Ushikoshi
- Department of Cardiology, Graduate School of Medicine, Gifu University, Gifu, Japan Department of Emergency and Disaster Medicine, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Masanori Kawasaki
- Department of Cardiology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Atsushi Mikami
- Department of Cardiology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Ken-ichiro Kosai
- Department of Gene Therapy and Regenerative Medicine, Graduate School of Medicine and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shinya Minatoguchi
- Department of Cardiology, Graduate School of Medicine, Gifu University, Gifu, Japan
| |
Collapse
|
93
|
The isolation and culture of endothelial colony-forming cells from human and rat lungs. Nat Protoc 2015; 10:1697-708. [DOI: 10.1038/nprot.2015.107] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
94
|
Leach DF, Nagarkatti M, Nagarkatti P, Cui T. Functional states of resident vascular stem cells and vascular remodeling. FRONTIERS IN BIOLOGY 2015; 10:387-397. [PMID: 26913049 PMCID: PMC4762060 DOI: 10.1007/s11515-015-1375-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Recent evidence indicates that different types of vascular stem cells (VSCs) reside within the mural layers of arteries and veins. The precise identities of these resident VSCs are still unclear; generally, postnatal vasculature contains multilineage stem cells and vascular cell lineage-specific progenitor/stem cells which may participate in both vascular repair and lesion formation. However, the underlying mechanism remains poorly understood. In this review, we summarize the potential molecular mechanisms, which may control the quiescence and activation of resident VSCs and highlight a notion that the differential states of resident VSCs are directly linked to vascular repair or lesion formation.
Collapse
Affiliation(s)
- Desiree F. Leach
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Taixing Cui
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| |
Collapse
|
95
|
Kawasaki T, Nishiwaki T, Sekine A, Nishimura R, Suda R, Urushibara T, Suzuki T, Takayanagi S, Terada J, Sakao S, Tatsumi K. Vascular Repair by Tissue-Resident Endothelial Progenitor Cells in Endotoxin-Induced Lung Injury. Am J Respir Cell Mol Biol 2015; 53:500-12. [PMID: 25719275 DOI: 10.1165/rcmb.2014-0185oc] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Vascular disruption is one of the pathological hallmarks in acute respiratory distress syndrome. Bone marrow (BM)-derived circulating endothelial progenitor cells (EPCs) and lung tissue-resident EPCs have been considered to play a pivotal role in pulmonary vascular repair; however, which population is predominant in local pulmonary vasculogenesis remains to be clarified. We therefore examined the origin of EPCs participating in the regenerative process of pulmonary vascular endothelial cells (PVECs) in experimental acute respiratory distress syndrome. Lung samples from mice administered LPS intratracheally were investigated for cell dynamics and EPC functions. Quantitative flow cytometric analysis demonstrated that the number of PVECs decreased by roughly 20% on Day 1 and then recovered on Day 7 of LPS challenge. Bromodeoxyuridine-incorporation assays and immunofluorescence microscopy demonstrated that proliferating PVECs preferentially located in the capillary vessels. Experiments using BM chimera mice revealed that most of the regenerating PVECs were tissue-resident cells, and BM-derived cells hardly engrafted as PVECs. The population of circulating putative phenotypical EPCs decreased during the first week after LPS challenge. The regenerating PVECs were characterized by high colony-forming and vasculogenic capacities, intracellular reactive oxygen species scavenging and aldehyde dehydrogenase activites, and enhanced gene expression of Abcb1b (a drug-resistant gene), suggesting that the population of PVECs included tissue-resident EPCs activated during regenerative process of PVECs. The proliferating PVECs expressed CD34, Flk-1/KDR, and c-kit more strongly and Prom1/CD133 less strongly on the surface than nonproliferating PVECs. Our findings indicated that lung tissue-resident EPCs predominantly contribute to pulmonary vascular repair after endotoxin-induced injury.
Collapse
Affiliation(s)
- Takeshi Kawasaki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tetsu Nishiwaki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ayumi Sekine
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Rintaro Nishimura
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Rika Suda
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takashi Urushibara
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshio Suzuki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shin Takayanagi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Jiro Terada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Seiichiro Sakao
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
96
|
Loukovaara S, Gucciardo E, Repo P, Vihinen H, Lohi J, Jokitalo E, Salven P, Lehti K. Indications of lymphatic endothelial differentiation and endothelial progenitor cell activation in the pathology of proliferative diabetic retinopathy. Acta Ophthalmol 2015; 93:512-23. [PMID: 25899460 DOI: 10.1111/aos.12741] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 03/18/2015] [Indexed: 12/25/2022]
Abstract
PURPOSE Proliferative diabetic retinopathy (PDR) is characterized by ischaemia- and inflammation-induced neovascularization, but the pathological vascular differentiation in PDR remains poorly characterized. Here, endothelial progenitor and growth properties, as well as potential lymphatic differentiation, were investigated in the neovascular membrane specimens from vitrectomized patients with PDR. METHODS The expression of pan-endothelial CD31 (PECAM-1), ETS-related gene (ERG), α-smooth muscle actin (α-SMA), and stem/progenitor cell marker CD117 (c-kit) and cell proliferation marker Ki67 was investigated along with the markers of lymphatic endothelial differentiation (vascular endothelial growth factor receptor (VEGFR)-3; prospero-related homeobox gene-1 (Prox-1), lymphatic vessel endothelial receptor [LYVE)-1 and podoplanin (PDPN)] by immunohistochemistry. Lymphocyte antigen CD45 and pan-macrophage marker CD68 were likewise investigated. RESULTS All specimens displayed CD31, ERG and α-SMA immunoreactivity in irregular blood vessels. Unexpectedly, VEGFR3 and Prox-1 lymphatic marker positive vessels were also detected in several tissues. Prox-1 was co-expressed with CD117 in lumen-lining endothelial cells and adjacent cells, representing putative endothelial stem/progenitor cells and pro-angiogenic perivascular cells. Immunoreactivity of CD45 and CD68 was detectable in all investigated diabetic neovessel specimens. PDPN immunoreactivity was also detected in irregular lumen-forming structures, but these cells lacked CD31 and ERG that mark blood and lymphatic endothelium. CONCLUSIONS Although the inner part of human eye is physiologically devoid of lymphatic vessels, lymphatic differentiation associated with endothelial stem/progenitor cell activation may be involved in the pathogenesis of human PDR. Further studies are warranted to elucidate whether targeting lymphatic factors could be beneficial in the treatment of patients with the sight-threatening forms of DR.
Collapse
Affiliation(s)
- Sirpa Loukovaara
- Unit of Vitreoretinal Surgery; Ophthalmology; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - Erika Gucciardo
- Research Programs Unit; Genome-Scale Biology; Biomedicum Helsinki; University of Helsinki; Helsinki Finland
- Pathology; Haartman Institute; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - Pauliina Repo
- Research Programs Unit; Genome-Scale Biology; Biomedicum Helsinki; University of Helsinki; Helsinki Finland
- Pathology; Haartman Institute; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - Helena Vihinen
- Electron Microscopy Unit; Institute of Biotechnology; University of Helsinki; Helsinki Finland
| | - Jouko Lohi
- Pathology; Haartman Institute; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - Eija Jokitalo
- Electron Microscopy Unit; Institute of Biotechnology; University of Helsinki; Helsinki Finland
| | - Petri Salven
- Pathology; Haartman Institute; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - Kaisa Lehti
- Research Programs Unit; Genome-Scale Biology; Biomedicum Helsinki; University of Helsinki; Helsinki Finland
- Pathology; Haartman Institute; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| |
Collapse
|
97
|
Loukovaara S, Gucciardo E, Repo P, Lohi J, Salven P, Lehti K. A Case of Abnormal Lymphatic-Like Differentiation and Endothelial Progenitor Cell Activation in Neovascularization Associated with Hemi-Retinal Vein Occlusion. Case Rep Ophthalmol 2015; 6:228-38. [PMID: 26327908 PMCID: PMC4553915 DOI: 10.1159/000437254] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Purpose Pathological vascular differentiation in retinal vein occlusion (RVO)-related neovessel formation remains poorly characterized. The role of intraocular lymphatic-like differentiation or endothelial progenitor cell activity has not been studied in this disease. Methods Vitrectomy was performed in an eye with hemi-RVO; the neovessel membrane located at the optic nerve head was removed and subjected to immunohistochemistry. Characterization of the neovascular tissue was performed using hematoxylin and eosin, α-smooth muscle actin, and the pan-endothelial cell (EC) adhesion molecule CD31. The expression of lymphatic EC markers was studied by lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), podoplanin (PDPN), and prospero-related homeobox protein 1 (Prox-1). Potential vascular stem/progenitor cells were identified by active cellular proliferation (Ki67) and expression of the stem cell marker CD117. Results The specimen contained blood vessels lined by ECs and surrounded by pericytes. Immunoreactivity for LYVE-1 and Prox-1 was detected, with Prox-1 being more widely expressed in the active Ki67-positive lumen-lining cells. PDPN expression was instead found in the cells residing in the extravascular tissue. Expression of the stem cell markers CD117 and Ki67 suggested vascular endothelial progenitor cell activity. Conclusions Intraocular lymphatic-like differentiation coupled with progenitor cell activation may be involved in the pathology of neovessel formation in ischemia-induced human hemi-RVO.
Collapse
Affiliation(s)
- Sirpa Loukovaara
- Unit of Vitreoretinal Surgery, Department of Ophthalmology, Helsinki, Finland
| | - Erika Gucciardo
- Genome-Scale Biology Research Program, Research Programs Unit, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Pauliina Repo
- Genome-Scale Biology Research Program, Research Programs Unit, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Jouko Lohi
- Department of Pathology, Haartman Institute, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Petri Salven
- Department of Pathology, Haartman Institute, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Kaisa Lehti
- Genome-Scale Biology Research Program, Research Programs Unit, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| |
Collapse
|
98
|
Abstract
The vasculature plays an indispensible role in organ development and maintenance of tissue homeostasis, such that disturbances to it impact greatly on developmental and postnatal health. Although cell turnover in healthy blood vessels is low, it increases considerably under pathological conditions. The principle sources for this phenomenon have long been considered to be the recruitment of cells from the peripheral circulation and the re-entry of mature cells in the vessel wall back into cell cycle. However, recent discoveries have also uncovered the presence of a range of multipotent and lineage-restricted progenitor cells in the mural layers of postnatal blood vessels, possessing high proliferative capacity and potential to generate endothelial, smooth muscle, hematopoietic or mesenchymal cell progeny. In particular, the tunica adventitia has emerged as a progenitor-rich compartment with niche-like characteristics that support and regulate vascular wall progenitor cells. Preliminary data indicate the involvement of some of these vascular wall progenitor cells in vascular disease states, adding weight to the notion that the adventitia is integral to vascular wall pathogenesis, and raising potential implications for clinical therapies. This review discusses the current body of evidence for the existence of vascular wall progenitor cell subpopulations from development to adulthood and addresses the gains made and significant challenges that lie ahead in trying to accurately delineate their identities, origins, regulatory pathways, and relevance to normal vascular structure and function, as well as disease.
Collapse
Affiliation(s)
- Peter J Psaltis
- From the Department of Medicine, University of Adelaide and Heart Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia (P.J.P.); Monash Cardiovascular Research Centre, Monash University, Clayton, Victoria, Australia (P.J.P.); and Department of Internal Medicine, University of Kansas School of Medicine (R.D.S.)
| | - Robert D Simari
- From the Department of Medicine, University of Adelaide and Heart Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia (P.J.P.); Monash Cardiovascular Research Centre, Monash University, Clayton, Victoria, Australia (P.J.P.); and Department of Internal Medicine, University of Kansas School of Medicine (R.D.S.).
| |
Collapse
|
99
|
Kachamakova-Trojanowska N, Bukowska-Strakova K, Zukowska M, Dulak J, Jozkowicz A. The real face of endothelial progenitor cells - Circulating angiogenic cells as endothelial prognostic marker? Pharmacol Rep 2015; 67:793-802. [PMID: 26321283 DOI: 10.1016/j.pharep.2015.05.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 02/08/2023]
Abstract
Endothelial progenitor cells (EPCs) have been extensively studied for almost 19 years now and were considered as a potential marker for endothelial regeneration ability. On the other hand, circulating endothelial cells (CEC) were studied as biomarker for endothelial injury. Yet, in the literature, there is also huge incoherency in regards to terminology and protocols used. This results in misleading conclusions on the role of so called "EPCs", especially in the clinical field. The discrepancies are mainly due to strong phenotypic overlap between EPCs and circulating angiogenic cells (CAC), therefore changes in "EPC" terminology have been suggested. Other factors leading to inconsistent results are varied definitions of the studied populations and the lack of universal data reporting, which could strongly affect data interpretation. The current review is focused on controversies concerning the use of "EPCs"/CAC and CEC as putative endothelial diagnostic markers.
Collapse
Affiliation(s)
- Neli Kachamakova-Trojanowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Karolina Bukowska-Strakova
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Monika Zukowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
100
|
Leite CF, Almeida TR, Lopes CS, Dias da Silva VJ. Multipotent stem cells of the heart-do they have therapeutic promise? Front Physiol 2015; 6:123. [PMID: 26005421 PMCID: PMC4424849 DOI: 10.3389/fphys.2015.00123] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 04/06/2015] [Indexed: 01/26/2023] Open
Abstract
The last decade has brought a comprehensive change in our view of cardiac remodeling processes under both physiological and pathological conditions, and cardiac stem cells have become important new players in the general mainframe of cardiac homeostasis. Different types of cardiac stem cells show different capacities for differentiation into the three major cardiac lineages: myocytes, endothelial cells and smooth muscle cells. Physiologically, cardiac stem cells contribute to cardiac homeostasis through continual cellular turnover. Pathologically, these cells exhibit a high level of proliferative activity in an apparent attempt to repair acute cardiac injury, indicating that these cells possess (albeit limited) regenerative potential. In addition to cardiac stem cells, mesenchymal stem cells represent another multipotent cell population in the heart; these cells are located in regions near pericytes and exhibit regenerative, angiogenic, antiapoptotic, and immunosuppressive properties. The discovery of these resident cardiac stem cells was followed by a number of experimental studies in animal models of cardiomyopathies, in which cardiac stem cells were tested as a therapeutic option to overcome the limited transdifferentiating potential of hematopoietic or mesenchymal stem cells derived from bone marrow. The promising results of these studies prompted clinical studies of the role of these cells, which have demonstrated the safety and practicability of cellular therapies for the treatment of heart disease. However, questions remain regarding this new therapeutic approach. Thus, the aim of the present review was to discuss the multitude of different cardiac stem cells that have been identified, their possible functional roles in the cardiac regenerative process, and their potential therapeutic uses in treating cardiac diseases.
Collapse
Affiliation(s)
- Camila F Leite
- Department of Biochemistry, Pharmacology, Physiology and Molecular Biology, Institute for Biological and Natural Sciences, Triângulo Mineiro Federal University Uberaba, Brazil
| | - Thalles R Almeida
- Department of Biochemistry, Pharmacology, Physiology and Molecular Biology, Institute for Biological and Natural Sciences, Triângulo Mineiro Federal University Uberaba, Brazil
| | - Carolina S Lopes
- Department of Biochemistry, Pharmacology, Physiology and Molecular Biology, Institute for Biological and Natural Sciences, Triângulo Mineiro Federal University Uberaba, Brazil
| | - Valdo J Dias da Silva
- Department of Biochemistry, Pharmacology, Physiology and Molecular Biology, Institute for Biological and Natural Sciences, Triângulo Mineiro Federal University Uberaba, Brazil
| |
Collapse
|