51
|
Wade KJ, Tisa S, Barrington C, Henriksen JC, Crooks KR, Gignoux CR, Almand AT, Steel JJ, Sitko JC, Rohrer JW, Wickert DP, Almand EA, Pollock DD, Rissland OS. Phylodynamics of a regional SARS-CoV-2 rapid spreading event in Colorado in late 2020. PLoS One 2022; 17:e0274050. [PMID: 36194597 PMCID: PMC9531818 DOI: 10.1371/journal.pone.0274050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 08/20/2022] [Indexed: 11/07/2022] Open
Abstract
Since the initial reported discovery of SARS-CoV-2 in late 2019, genomic surveillance has been an important tool to understand its transmission and evolution. Here, we sought to describe the underlying regional phylodynamics before and during a rapid spreading event that was documented by surveillance protocols of the United States Air Force Academy (USAFA) in late October-November of 2020. We used replicate long-read sequencing on Colorado SARS-CoV-2 genomes collected July through November 2020 at the University of Colorado Anschutz Medical campus in Aurora and the United States Air Force Academy in Colorado Springs. Replicate sequencing allowed rigorous validation of variation and placement in a phylogenetic relatedness network. We focus on describing the phylodynamics of a lineage that likely originated in the local Colorado Springs community and expanded rapidly over the course of two months in an outbreak within the well-controlled environment of the United States Air Force Academy. Divergence estimates from sampling dates indicate that the SARS-CoV-2 lineage associated with this rapid expansion event originated in late October 2020. These results are in agreement with transmission pathways inferred by the United States Air Force Academy, and provide a window into the evolutionary process and transmission dynamics of a potentially dangerous but ultimately contained variant.
Collapse
Affiliation(s)
- Kristen J. Wade
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Samantha Tisa
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Chloe Barrington
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Jesslyn C. Henriksen
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Kristy R. Crooks
- Colorado Center for Personalized Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Christopher R. Gignoux
- Colorado Center for Personalized Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Austin T. Almand
- Department of Biology, United States Air Force, Colorado Springs, Colorado, United States of America
| | - J. Jordan Steel
- Department of Biology, United States Air Force, Colorado Springs, Colorado, United States of America
| | - John C. Sitko
- Department of Biology, United States Air Force, Colorado Springs, Colorado, United States of America
| | - Joseph W. Rohrer
- Colorado Center for Personalized Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Douglas P. Wickert
- Department of Biology, United States Air Force, Colorado Springs, Colorado, United States of America
| | - Erin A. Almand
- Department of Biology, United States Air Force, Colorado Springs, Colorado, United States of America
| | - David D. Pollock
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Olivia S. Rissland
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| |
Collapse
|
52
|
Asghar A, Imran HM, Bano N, Maalik S, Mushtaq S, Hussain A, Varjani S, Aleya L, Iqbal HMN, Bilal M. SARS-COV-2/COVID-19: scenario, epidemiology, adaptive mutations, and environmental factors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69117-69136. [PMID: 35947257 PMCID: PMC9363873 DOI: 10.1007/s11356-022-22333-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
The coronavirus pandemic of 2019 has already exerted an enormous impact. For over a year, the worldwide pandemic has ravaged the whole globe, with approximately 250 million verified human infection cases and a mortality rate surpassing 4 million. While the genetic makeup of the related pathogen (SARS-CoV-2) was identified, many unknown facets remain a mystery, comprising the virus's origin and evolutionary trend. There were many rumors that SARS-CoV-2 was human-borne and its evolution was predicted many years ago, but scientific investigation proved them wrong and concluded that bats might be the origin of SARS-CoV-2 and pangolins act as intermediary species to transmit the virus from bats to humans. Airborne droplets were found to be the leading cause of human-to-human transmission of this virus, but later studies showed that contaminated surfaces and other environmental factors are also involved in its transmission. The evolution of different SARS-CoV-2 variants worsens the condition and has become a challenge to overcome this pandemic. The emergence of COVID-19 is still a mystery, and scientists are unable to explain the exact origin of SARS-CoV-2. This review sheds light on the possible origin of SARS-CoV-2, its transmission, and the key factors that worsen the situation.
Collapse
Affiliation(s)
- Asma Asghar
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Hafiz Muhammad Imran
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Naheed Bano
- Department of Fisheries & Aquaculture, MNS-University of Agriculture, Multan, Pakistan
| | - Sadia Maalik
- Department of Zoology, Government College Women University, Sialkot, Pakistan
| | - Sajida Mushtaq
- Department of Zoology, Government College Women University, Sialkot, Pakistan
| | - Asim Hussain
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382 010, Gujarat, India
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| |
Collapse
|
53
|
Mura M, Simon F, Pommier de Santi V, Tangy F, Tournier JN. Role and Limits of COVID-19 Vaccines in the Delicate Transition from Pandemic Mitigation to Endemic Control. Vaccines (Basel) 2022; 10:vaccines10091555. [PMID: 36146633 PMCID: PMC9505741 DOI: 10.3390/vaccines10091555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
The recent surge of COVID-19 related to the Omicron variant emergence has thrown a harsh light upon epidemic control in the near future. This should lead the scientific and medical community to question the long-term vaccine strategy for SARS-CoV-2 control. We provide here a critical point of view regarding the virological evolution, epidemiological aspects, and immunological drivers for COVID-19 control, including a vaccination strategy. Overall, we need more innovations in vaccine development to reduce the COVID-19 burden long term. The most adequate answer might be better cooperation between universities, biotech and pharmaceutical companies
Collapse
Affiliation(s)
- Marie Mura
- Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées (IRBA), 91220 Brétigny sur Orge, France
- Innovative Vaccine Laboratory, Institut Pasteur, 75015 Paris, France
| | - Fabrice Simon
- Department of Infectious Diseases and Tropical Medicine, HIA Laveran, 13384 Marseille, France
| | | | - Frédéric Tangy
- Innovative Vaccine Laboratory, Institut Pasteur, 75015 Paris, France
| | - Jean-Nicolas Tournier
- Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées (IRBA), 91220 Brétigny sur Orge, France
- Innovative Vaccine Laboratory, Institut Pasteur, 75015 Paris, France
- École du Val-de-Grâce, 75005 Paris, France
- Correspondence:
| |
Collapse
|
54
|
Orłowska A, Smreczak M, Thor K, Niedbalska M, Pawelec D, Trębas P, Rola J. The Genetic Characterization of the First Detected Bat Coronaviruses in Poland Revealed SARS-Related Types and Alphacoronaviruses. Viruses 2022; 14:v14091914. [PMID: 36146721 PMCID: PMC9501061 DOI: 10.3390/v14091914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/18/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Bats are a major global reservoir of alphacoronaviruses (alphaCoVs) and betaCoVs. Attempts to discover the causative agents of COVID-19 and SARS have revealed horseshoe bats (Rhinolophidae) to be the most probable source of the virus. We report the first detection of bat coronaviruses (BtCoVs) in insectivorous bats in Poland and highlight SARS-related coronaviruses found in Rhinolophidae bats. The study included 503 (397 oral swabs and 106 fecal) samples collected from 20 bat species. Genetically diverse BtCoVs (n = 20) of the Alpha- and Betacoronavirus genera were found in fecal samples of two bat species. SARS-related CoVs were in 18 out of 58 lesser horseshoe bat (Rhinolophus hipposideros) samples (31%, 95% CI 20.6–43.8), and alphaCoVs were in 2 out of 55 Daubenton’s bat (Myotis daubentonii) samples (3.6%, 95% CI 0.6–12.3). The overall BtCoV prevalence was 4.0% (95% CI 2.6–6.1). High identity was determined for BtCoVs isolated from European M. daubentonii and R. hipposideros bats. The detection of SARS-related and alphaCoVs in Polish bats with high phylogenetic relatedness to reference BtCoVs isolated in different European countries but from the same species confirms their high host restriction. Our data elucidate the molecular epidemiology, prevalence, and geographic distribution of coronaviruses and particularly SARS-related types in the bat population.
Collapse
Affiliation(s)
- Anna Orłowska
- Department of Virology, National Veterinary Research Institute, 24-100 Puławy, Poland
- Correspondence: ; Tel.: +48-818-893-072; Fax: +48-818-862-595
| | - Marcin Smreczak
- Department of Virology, National Veterinary Research Institute, 24-100 Puławy, Poland
| | - Katarzyna Thor
- Department of Animal Genetics and Conservation, Institute of Animal Sciences, Warsaw University of Life Sciences—SGGW, 02-786 Warsaw, Poland
| | - Magda Niedbalska
- Department of Virology, National Veterinary Research Institute, 24-100 Puławy, Poland
| | - Dominika Pawelec
- Department of Virology, National Veterinary Research Institute, 24-100 Puławy, Poland
| | - Paweł Trębas
- Department of Virology, National Veterinary Research Institute, 24-100 Puławy, Poland
| | - Jerzy Rola
- Department of Virology, National Veterinary Research Institute, 24-100 Puławy, Poland
| |
Collapse
|
55
|
Gulati I, Khan S, Gulati G, Verma SR, Khan M, Ahmad S, Bantun F, Mathkor DM, Haque S. SARS-CoV-2 origins: zoonotic Rhinolophus vs contemporary models. Biotechnol Genet Eng Rev 2022:1-34. [PMID: 36036250 DOI: 10.1080/02648725.2022.2115682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/03/2022] [Indexed: 11/02/2022]
Abstract
The question of the origin of coronavirus spread like wildfire ever since it wreaked havoc among humankind, and ever since the scientific community has worked tirelessly to trace the history of the virus. In this review, we have tried to compile relevant literature pertaining to the different theories of origin of SARS-CoV-2, hopefully without any bias, and we strongly support the zoonotic origin of the infamous SARS-CoV-2 in bats and its transfer to human beings through the most probable evolutionary hosts, pangolins and minks. We also support the contemporary 'Circulation Model' that simply mirrors the concept of evolution to explain the origin of the virus which, the authors believe, is the most rational school of thought. The most recent variant of SARS-CoV-2, Omicron, has been taken as an example to clarify the concept. We recommend the community to refer to this model for further understanding and delving deep into this mystery of the origin of SARS-CoV-2.
Collapse
Affiliation(s)
- Ishika Gulati
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, Ha'il University, Ha'il, Saudi Arabia
| | - Garima Gulati
- Department of Applied Mechanics, Motilal Nehru National Institute of Technology, Prayagraj, Allahabad, India
| | | | - Mahvish Khan
- Department of Biology, College of science, University of Ha'il, Ha'il, Saudi Arabia
| | - Saheem Ahmad
- Department of clinical laboratory science, College of Applied Medical Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Farkad Bantun
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
56
|
Tai JH, Sun HY, Tseng YC, Li G, Chang SY, Yeh SH, Chen PJ, Chaw SM, Wang HY. Contrasting patterns in the early stage of SARS-CoV-2 evolution between humans and minks. Mol Biol Evol 2022; 39:6658056. [PMID: 35934827 PMCID: PMC9384665 DOI: 10.1093/molbev/msac156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
One of the unique features of SARS-CoV-2 is its apparent neutral evolution during the early pandemic (before February 2020). This contrasts with the preceding SARS-CoV epidemics, where viruses evolved adaptively. SARS-CoV-2 may exhibit a unique or adaptive feature which deviates from other coronaviruses. Alternatively, the virus may have been cryptically circulating in humans for a sufficient time to have acquired adaptive changes before the onset of the current pandemic. To test the scenarios above, we analyzed the SARS-CoV-2 sequences from minks (Neovision vision) and parental humans. In the early phase of the mink epidemic (April to May 2020), nonsynonymous to synonymous mutation ratio per site in the spike protein is 2.93, indicating a selection process favoring adaptive amino acid changes. Mutations in the spike protein were concentrated within its receptor binding domain and receptor binding motif. An excess of high frequency derived variants produced by genetic hitchhiking was found during the middle (June to July 2020) and late phase I (August to September 2020) of the mink epidemic. In contrast, the site frequency spectra of early SARS-CoV-2 in humans only show an excess of low frequency mutations, consistent with the recent outbreak of the virus. Strong positive selection in the mink SARS-CoV-2 implies the virus may not be pre-adapted to a wide range of hosts and illustrates how a virus evolves to establish a continuous infection in a new host. Therefore, the lack of positive selection signal during the early pandemic in humans deserves further investigation.
Collapse
Affiliation(s)
- Jui Hung Tai
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| | - Hsiao Yu Sun
- Taipei Municipal Zhongshan Girls High School, Taipei 10490, Taiwan
| | - Yi Cheng Tseng
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Guanghao Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sui Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Shiou Hwei Yeh
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Pei Jer Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan.,Department of Microbiology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan.,Hepatitis Research Center, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei 10002, Taiwan.,Department of Internal Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei 10002, Taiwan.,Department of Medical Research, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Shu Miaw Chaw
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Hurng Yi Wang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan.,Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei 10617, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei 10002, Taiwan
| |
Collapse
|
57
|
Gopi P, Gurnani M, Singh S, Sharma P, Pandya P. Structural aspects of SARS-CoV-2 mutations: Implications to plausible infectivity with ACE-2 using computational modeling approach. J Biomol Struct Dyn 2022:1-16. [PMID: 35938696 DOI: 10.1080/07391102.2022.2108901] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Some of the SARS-CoV-2 variants are said to be more infectious than the previous others and are causing panic around the globe. Cases related to Delta plus (δ+) and omicron (ο) variants are on the rise worldwide. This sudden surge warrants an investigation into the reasons for its binding with ACE-2. The present study attempts to find out the structural basis of binding interactions of SARS-CoV-2 mutants based on computational modeling and comparative analysis. In silico strategies including protein-protein docking, mutation analysis, molecular dynamics, and binding energy calculations were used to study the binding of the 'receptor binding domain' (RBD) of the seven 'variants of concern' which include Alpha (α), Beta (β), Gamma (γ), Kappa (κ), Delta (δ), Delta plus (δ+) and omicron (ο) with ACE-2 (human angiotensin-converting enzyme-2) and with antibodies. Among all the variants dealt with in this study, Delta plus and omicron were found to be binding more strongly to ACE-2 than others due to inherent mutations and the consequent change in the hydrophilic and hydrophobic environment of the binding site. Furthermore, molecular dynamic (MD) simulations and subsequent MM/PBSA calculations provided useful structural insights into key residues participating in the interaction. Infectivity of a virus could be dependent on the interplay of evading antibodies and simultaneously attaching strongly with the host receptor. A cross-correlation between mutant spike proteins' binding with ACE-2 and antibodies provides a holistic assessment of the binding nature of these mutants vis-à-vis native virus and offers opportunities for designing potential therapeutics against these new mutants.
Collapse
Affiliation(s)
- Priyanka Gopi
- Amity Institute of Forensic Sciences, Amity University, Noida, Uttar Pradesh, India
| | - Manisha Gurnani
- Amity Institute of Environmental Science, Amity University, Noida, Uttar Pradesh, India
| | - Shweta Singh
- Amity Institute of Forensic Sciences, Amity University, Noida, Uttar Pradesh, India
| | - Palak Sharma
- Amity Institute of Forensic Sciences, Amity University, Noida, Uttar Pradesh, India
| | - Prateek Pandya
- Amity Institute of Forensic Sciences, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
58
|
Schindell BG, Allardice M, McBride JA, Dennehy B, Kindrachuk J. SARS-CoV-2 and the Missing Link of Intermediate Hosts in Viral Emergence - What We Can Learn From Other Betacoronaviruses. FRONTIERS IN VIROLOGY 2022; 2. [DOI: 10.3389/fviro.2022.875213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The emergence of SARS-CoV-2 in 2019 has resulted in a global pandemic with devastating human health and economic consequences. The development of multiple vaccines, antivirals and supportive care modalities have aided in our efforts to gain control of the pandemic. However, the emergence of multiple variants of concern and spillover into numerous nonhuman animal species could protract the pandemic. Further, these events also increase the difficulty in simultaneously monitoring viral evolution across multiple species and predicting future spillback potential into the human population. Here, we provide historic context regarding the roles of reservoir and intermediate hosts in coronavirus circulation and discuss current knowledge of these for SARS-CoV-2. Increased understanding of SARS-CoV-2 zoonoses are fundamental for efforts to control the global health and economic impacts of COVID-19.
Collapse
|
59
|
Abstract
Background: Knowledge about the origin of SARS-CoV-2 is necessary for both a biological and epidemiological understanding of the COVID-19 pandemic. Evidence suggests that a proximal evolutionary ancestor of SARS-CoV-2 belongs to the bat coronavirus family. However, as further evidence for a direct zoonosis remains limited, alternative modes of SARS-CoV-2 biogenesis should also be considered. Results: Here we show that the genomes of SARS-CoV-2 and SARS-CoV-1 significantly diverge from other SARS-like coronaviruses through short chromosomal sequences from the yeast S. cerevisiae at focal positions that are known to be critical for host cell invasion, virus replication, and host immune response. For SARS-CoV-1, we identify two sites: one at the start of the RNA dependent RNA polymerase gene, and the other at the start of the spike protein’s receptor binding domain; for SARS-CoV-2, one at the start of the viral replicase domain, and the other toward the end of the spike gene past its domain junction. At this junction, we detect a highly specific stretch of yeast origin covering the critical furin cleavage site insert PRRA, which has not been seen in other lineage b betacoronaviruses. As yeast is not a natural host for this virus family, we propose an artificial synthesis model for viral constructs in yeast cells based on co-transformation of virus DNA plasmids carrying yeast selectable genetic markers followed by intra-chromosomal homologous recombination through gene conversion. Highly differential yeast sequence patterns congruent with chromosomes harboring specific auxotrophic markers further support yeast artificial synthesis. Conclusions: These results provide evidence that the genomes of SARS-CoV-1 and SARS-CoV-2 contain sequence information that points to their artificial synthesis in genetically modified yeast cells. Our data specifically allow the identification of the yeast S. cerevisiae as a potential recombination donor for the critical furin cleavage site in SARS-CoV-2.
Collapse
|
60
|
Spira B. The Impact of the Highly Virulent SARS-CoV-2 Gamma Variant on Young Adults in the State of São Paulo: Was It Inevitable? Cureus 2022; 14:e26486. [PMID: 35919213 PMCID: PMC9339207 DOI: 10.7759/cureus.26486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
Background The coronavirus disease 2019 (COVID-19) pandemic had and is still having a tremendous impact on people all over the world, but it has been particularly harsh in South America. Nine out of 13 South American countries are among the 50 countries with the highest COVID-19 death rates. The gamma severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant that emerged by the end of 2020 in the Brazilian Amazon quickly spread throughout the country causing the harsh COVID-19 second wave. This variant displayed high viral loads, high transmissibility, and increased virulence as compared to previous variants. Aims The aim of this retrospective study is to revisit and analyse the epidemiology of the COVID-19 second wave in the state of São Paulo, the most populous Brazilian state. In addition to examining the possible factors that led to the emergence and propagation of the gamma variant, measures that could have prevented its spread and that of other highly virulent variants were also investigated. Materials and methods Data from São Paulo's official sources on morbidity, mortality, age distribution, and testing prior to and during the COVID-19 second wave (February - June 2021) and data regarding the distribution of SARS-CoV-2 variants in the country were parsed, analyzed, and compared to the period that anteceded the eruption of the second COVID-19 wave. Results In the state of São Paulo, the toll of the COVID-19 second wave surpassed that of the first 11 months of the pandemic (from March 2020 to January 2021), as 56% of the deaths occurred in the five months of the second wave between February and June 2021. The mean age of COVID-19 victims, which was already below life expectancy in the state dropped even further in the pandemic's second wave, reaching an average of 60 years of age. The years of life lost per death per month doubled and the case-fatality rate (CFR) of young adults (20-39 years old) more than trebled during this period. A number of hypotheses have been raised that might explain the emergence and spread of the gamma variant and the measures that could have been taken to prevent it and minimise its impact on the population. Conclusions Over 142,000 people died as a result of the SARS-CoV-2 gamma variant sweep in São Paulo in the first semester of 2021. Due to its high viral load, the gamma variant displayed high transmissibility and a high degree of virulence resulting in increased case fatality rates across most age tiers. Notably, this second wave was marked by a very significant increase in deaths among young adults. This increase was at least partially due to a deterioration in general health provoked by non-pharmaceutical interventions. In hindsight, a safer and more effective measure might have been to allow the free spread of the virus among the young and healthy in the first wave, thus conferring immunity against more virulent variants that emerged later on.
Collapse
|
61
|
Ginex T, Marco-Marín C, Wieczór M, Mata CP, Krieger J, Ruiz-Rodriguez P, López-Redondo ML, Francés-Gómez C, Melero R, Sánchez-Sorzano CÓ, Martínez M, Gougeard N, Forcada-Nadal A, Zamora-Caballero S, Gozalbo-Rovira R, Sanz-Frasquet C, Arranz R, Bravo J, Rubio V, Marina A, The IBV-Covid19-Pipeline, Geller R, Comas I, Gil C, Coscolla M, Orozco M, Llácer JL, Carazo JM. The structural role of SARS-CoV-2 genetic background in the emergence and success of spike mutations: The case of the spike A222V mutation. PLoS Pathog 2022; 18:e1010631. [PMID: 35816514 PMCID: PMC9302720 DOI: 10.1371/journal.ppat.1010631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/21/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022] Open
Abstract
The S:A222V point mutation, within the G clade, was characteristic of the 20E (EU1) SARS-CoV-2 variant identified in Spain in early summer 2020. This mutation has since reappeared in the Delta subvariant AY.4.2, raising questions about its specific effect on viral infection. We report combined serological, functional, structural and computational studies characterizing the impact of this mutation. Our results reveal that S:A222V promotes an increased RBD opening and slightly increases ACE2 binding as compared to the parent S:D614G clade. Finally, S:A222V does not reduce sera neutralization capacity, suggesting it does not affect vaccine effectiveness.
Collapse
Affiliation(s)
- Tiziana Ginex
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Clara Marco-Marín
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Miłosz Wieczór
- Molecular Modeling and Bioinformatics, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Carlos P. Mata
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
- Centro Nacional de Microbiología (CNM-ISCIII), Instituto de Salud Carlos III, Madrid, Spain
| | - James Krieger
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Paula Ruiz-Rodriguez
- ISysBio, University of Valencia-CSIC, FISABIO Joint Research Unit Infection and Public Health, Valencia, Spain
| | | | - Clara Francés-Gómez
- ISysBio, University of Valencia-CSIC, FISABIO Joint Research Unit Infection and Public Health, Valencia, Spain
| | - Roberto Melero
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | | | - Marta Martínez
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Nadine Gougeard
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Alicia Forcada-Nadal
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | | | | | | | - Rocío Arranz
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Jeronimo Bravo
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Alberto Marina
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | | | - Ron Geller
- ISysBio, University of Valencia-CSIC, FISABIO Joint Research Unit Infection and Public Health, Valencia, Spain
| | - Iñaki Comas
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
- Centro para Investigación Biomédica en Red sobre Epidemiología y Salud Pública (CIBERESP), Valencia, Spain
| | - Carmen Gil
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Mireia Coscolla
- ISysBio, University of Valencia-CSIC, FISABIO Joint Research Unit Infection and Public Health, Valencia, Spain
| | - Modesto Orozco
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
- Department of Biochemistry and Biomedicine, University of Barcelona, Barcelona, Spain
| | - José Luis Llácer
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | | |
Collapse
|
62
|
Rojas Chávez RA, Fili M, Han C, Rahman SA, Bicar IGL, Gregory S, Hu G, Das J, Brown GD, Haim H. Mutability Patterns Across the Spike Glycoprotein Reveal the Diverging and Lineage-specific Evolutionary Space of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.02.01.478697. [PMID: 35132415 PMCID: PMC8820662 DOI: 10.1101/2022.02.01.478697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mutations in the spike glycoprotein of SARS-CoV-2 allow the virus to probe the sequence space in search of higher-fitness states. New sublineages of SARS-CoV-2 variants-of-concern (VOCs) continuously emerge with such mutations. Interestingly, the sites of mutation in these sublineages vary between the VOCs. Whether such differences reflect the random nature of mutation appearance or distinct evolutionary spaces of spike in the VOCs is unclear. Here we show that each position of spike has a lineage-specific likelihood for mutations to appear and dominate descendent sublineages. This likelihood can be accurately estimated from the lineage-specific mutational profile of spike at a protein-wide level. The mutability environment of each position, including adjacent sites on the protein structure and neighboring sites on the network of comutability, accurately forecast changes in descendent sublineages. Mapping of imminent changes within the VOCs can contribute to the design of immunogens and therapeutics that address future forms of SARS-CoV-2.
Collapse
|
63
|
Harari S, Tahor M, Rutsinsky N, Meijer S, Miller D, Henig O, Halutz O, Levytskyi K, Ben-Ami R, Adler A, Paran Y, Stern A. Drivers of adaptive evolution during chronic SARS-CoV-2 infections. Nat Med 2022; 28:1501-1508. [PMID: 35725921 PMCID: PMC9307477 DOI: 10.1038/s41591-022-01882-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022]
Abstract
In some immunocompromised patients with chronic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, considerable adaptive evolution occurs. Some substitutions found in chronic infections are lineage-defining mutations in variants of concern (VOCs), which has led to the hypothesis that VOCs emerged from chronic infections. In this study, we searched for drivers of VOC-like emergence by consolidating sequencing results from a set of 27 chronic infections. Most substitutions in this set reflected lineage-defining VOC mutations; however, a subset of mutations associated with successful global transmission was absent from chronic infections. We further tested the ability to associate antibody evasion mutations with patient-specific and virus-specific features and found that viral rebound is strongly correlated with the emergence of antibody evasion. We found evidence for dynamic polymorphic viral populations in most patients, suggesting that a compromised immune system selects for antibody evasion in particular niches in a patient’s body. We suggest that a tradeoff exists between antibody evasion and transmissibility and that extensive monitoring of chronic infections is necessary to further understanding of VOC emergence. Analysis of mutations that arise in chronic SARS-CoV-2 infections shows both overlap and differences with mutations present in pandemic viral variants of concern, highlighting their distinct drivers of evolution.
Collapse
Affiliation(s)
- Sheri Harari
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel.,Edmond J. Safra Center for Bioinformatics at Tel Aviv University, Tel Aviv, Israel
| | - Maayan Tahor
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Natalie Rutsinsky
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Suzy Meijer
- Department of Infectious Diseases and Epidemiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Danielle Miller
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel.,Edmond J. Safra Center for Bioinformatics at Tel Aviv University, Tel Aviv, Israel
| | - Oryan Henig
- Department of Infectious Diseases and Epidemiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ora Halutz
- Clinical Microbiology Laboratory, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Katia Levytskyi
- Department of Infectious Diseases and Epidemiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronen Ben-Ami
- Department of Infectious Diseases and Epidemiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amos Adler
- Department of Infectious Diseases and Epidemiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Paran
- Department of Infectious Diseases and Epidemiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adi Stern
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel. .,Edmond J. Safra Center for Bioinformatics at Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
64
|
Balloux F, Tan C, Swadling L, Richard D, Jenner C, Maini M, van Dorp L. The past, current and future epidemiological dynamic of SARS-CoV-2. OXFORD OPEN IMMUNOLOGY 2022; 3:iqac003. [PMID: 35872966 PMCID: PMC9278178 DOI: 10.1093/oxfimm/iqac003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/11/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2, the agent of the COVID-19 pandemic, emerged in late 2019 in China, and rapidly spread throughout the world to reach all continents. As the virus expanded in its novel human host, viral lineages diversified through the accumulation of around two mutations a month on average. Different viral lineages have replaced each other since the start of the pandemic, with the most successful Alpha, Delta and Omicron variants of concern (VoCs) sequentially sweeping through the world to reach high global prevalence. Neither Alpha nor Delta was characterized by strong immune escape, with their success coming mainly from their higher transmissibility. Omicron is far more prone to immune evasion and spread primarily due to its increased ability to (re-)infect hosts with prior immunity. As host immunity reaches high levels globally through vaccination and prior infection, the epidemic is expected to transition from a pandemic regime to an endemic one where seasonality and waning host immunization are anticipated to become the primary forces shaping future SARS-CoV-2 lineage dynamics. In this review, we consider a body of evidence on the origins, host tropism, epidemiology, genomic and immunogenetic evolution of SARS-CoV-2 including an assessment of other coronaviruses infecting humans. Considering what is known so far, we conclude by delineating scenarios for the future dynamic of SARS-CoV-2, ranging from the good-circulation of a fifth endemic 'common cold' coronavirus of potentially low virulence, the bad-a situation roughly comparable with seasonal flu, and the ugly-extensive diversification into serotypes with long-term high-level endemicity.
Collapse
Affiliation(s)
- François Balloux
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Cedric Tan
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 138672 Singapore, Singapore
| | - Leo Swadling
- Division of Infection and Immunity, University College London, London NW3 2PP, UK
| | - Damien Richard
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
- Division of Infection and Immunity, University College London, London NW3 2PP, UK
| | - Charlotte Jenner
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Mala Maini
- Division of Infection and Immunity, University College London, London NW3 2PP, UK
| | - Lucy van Dorp
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| |
Collapse
|
65
|
Frutos R, Gavotte L, Devaux CA. Le virus SARS-CoV-2 n’a pas « d’origine ». Med Sci (Paris) 2022; 38:600-607. [DOI: 10.1051/medsci/2022079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Depuis le début de la pandémie de COVID-19, la question de l’origine de ce virus fait l’objet d’une vive polémique. C’est la question de « l’origine » qui est biaisée. Darwin a montré qu’il n’y a pas d’origine déterminée à aucune espèce animale ou végétale, simplement un processus évolutif et sélectif. Il en est de même pour les virus, il n’y a pas d’origine, mais un processus évolutif. Les virus circulent d’hôte à hôte, animaux ou humains. Les virus pandémiques circulent déjà chez l’homme et évoluent avant l’apparition d’une maladie. Ce processus évolutif se poursuit et donne naissance à des variants successifs. La solution n’est pas de cibler la maladie ou le possible agent causal, mais plutôt de cibler le processus d’émergence de la maladie lui-même.
Collapse
|
66
|
Chakraborty C, Sharma AR, Bhattacharya M, Agoramoorthy G, Lee SS. A Paradigm Shift in the Combination Changes of SARS-CoV-2 Variants and Increased Spread of Delta Variant (B.1.617.2) across the World. Aging Dis 2022; 13:927-942. [PMID: 35656100 PMCID: PMC9116911 DOI: 10.14336/ad.2021.1117] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
Since September 2020, the SARS-CoV-2 variants have gained their dominance worldwide, especially in Kenya, Italy, France, the UK, Turkey, Indonesia, India, Finland, Ireland, Singapore, Denmark, Germany, and Portugal. In this study, we developed a model on the frequency of delta variants across 28 countries (R2= 0.1497), displaying the inheritance of mutations during the generation of the delta variants with 123,526 haplotypes. The country-wise haplotype network showed the distribution of haplotypes in USA (10,174), Denmark (5,637), India (4,089), Germany (2,350), Netherlands (1,899), Sweden (1,791), Italy (1,720), France (1,293), Ireland (1,257), Belgium (1,207), Singapore (1,193), Portugal (1,184) and Spain (1,133). Our analysis shows the highest haplotype in Europe with 84% and the lowest in Australia with 0.00001%. A model of scatter plot was generated with a regression line which provided the estimated rate of mutation, including 24.048 substitutions yearly. Our study concluded that the high global prevalence of the delta variants is due to a high frequency of infectivity, supporting the paradigm shift of the viral variants.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- 1Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India
| | - Ashish Ranjan Sharma
- 2Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Gangwon-do, Korea
| | | | | | - Sang-Soo Lee
- 2Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Gangwon-do, Korea
| |
Collapse
|
67
|
Li Z, Jiang J, Tong Y, Ruan X, Xu J. COVID-19 is a natural infectious disease. JOURNAL OF BIOSAFETY AND BIOSECURITY 2022; 4:38-42. [PMID: 34927018 PMCID: PMC8664692 DOI: 10.1016/j.jobb.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Zhenjun Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Jiafu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Yigang Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Xiangdong Ruan
- Academy of Forest Inventory and Planning, State Forestry and Grassland Administration, Beijing 100714, PR China
| | - Jianguo Xu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| |
Collapse
|
68
|
Abstract
Our understanding of the still unfolding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic would have been extremely limited without the study of the genetics and evolution of this new human coronavirus. Large-scale genome-sequencing efforts have provided close to real-time tracking of the global spread and diversification of SARS-CoV-2 since its entry into the human population in late 2019. These data have underpinned analysis of its origins, epidemiology, and adaptations to the human population: principally immune evasion and increasing transmissibility. SARS-CoV-2, despite being a new human pathogen, was highly capable of human-to-human transmission. During its rapid spread in humans, SARS-CoV-2 has evolved independent new forms, the so-called "variants of concern," that are better optimized for human-to-human transmission. The most important adaptation of the bat coronavirus progenitor of both SARS-CoV-1 and SARS-CoV-2 for human infection (and other mammals) is the use of the angiotensin-converting enzyme 2 (ACE2) receptor. Relaxed structural constraints provide plasticity to SARS-related coronavirus spike protein permitting it to accommodate significant amino acid replacements of antigenic consequence without compromising the ability to bind to ACE2. Although the bulk of research has justifiably concentrated on the viral spike protein as the main determinant of antigenic evolution and changes in transmissibility, there is accumulating evidence for the contribution of other regions of the viral proteome to virus-host interaction. Whereas levels of community transmission of recombinants compromising genetically distinct variants are at present low, when divergent variants cocirculate, recombination between SARS-CoV-2 clades is being detected, increasing the risk that viruses with new properties emerge. Applying computational and machine learning methods to genome sequence data sets to generate experimentally verifiable predictions will serve as an early warning system for novel variant surveillance and will be important in future vaccine planning. Omicron, the latest SARS-CoV-2 variant of concern, has focused attention on step change antigenic events, "shift," as opposed to incremental "drift" changes in antigenicity. Both an increase in transmissibility and antigenic shift in Omicron led to it readily causing infections in the fully vaccinated and/or previously infected. Omicron's virulence, while reduced relative to the variant of concern it replaced, Delta, is very much premised on the past immune exposure of individuals with a clear signal that boosted vaccination protects from severe disease. Currently, SARS-CoV-2 has proven itself to be a dangerous new human respiratory pathogen with an unpredictable evolutionary capacity, leading to a risk of future variants too great not to ensure all regions of the world are screened by viral genome sequencing, protected through available and affordable vaccines, and have non-punitive strategies in place for detecting and responding to novel variants of concern.
Collapse
Affiliation(s)
- Amalio Telenti
- Vir Biotechnology, San Francisco, California 94158, USA
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California 92037, USA
| | - Emma B Hodcroft
- Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - David L Robertson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
69
|
Tan CCS, Lam SD, Richard D, Owen CJ, Berchtold D, Orengo C, Nair MS, Kuchipudi SV, Kapur V, van Dorp L, Balloux F. Transmission of SARS-CoV-2 from humans to animals and potential host adaptation. Nat Commun 2022; 13:2988. [PMID: 35624123 PMCID: PMC9142586 DOI: 10.1038/s41467-022-30698-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/13/2022] [Indexed: 12/16/2022] Open
Abstract
SARS-CoV-2, the causative agent of the COVID-19 pandemic, can infect a wide range of mammals. Since its spread in humans, secondary host jumps of SARS-CoV-2 from humans to multiple domestic and wild populations of mammals have been documented. Understanding the extent of adaptation to these animal hosts is critical for assessing the threat that the spillback of animal-adapted SARS-CoV-2 into humans poses. We compare the genomic landscapes of SARS-CoV-2 isolated from animal species to that in humans, profiling the mutational biases indicative of potentially different selective pressures in animals. We focus on viral genomes isolated from mink (Neovison vison) and white-tailed deer (Odocoileus virginianus) for which multiple independent outbreaks driven by onward animal-to-animal transmission have been reported. We identify five candidate mutations for animal-specific adaptation in mink (NSP9_G37E, Spike_F486L, Spike_N501T, Spike_Y453F, ORF3a_L219V), and one in deer (NSP3a_L1035F), though they appear to confer a minimal advantage for human-to-human transmission. No considerable changes to the mutation rate or evolutionary trajectory of SARS-CoV-2 has resulted from circulation in mink and deer thus far. Our findings suggest that minimal adaptation was required for onward transmission in mink and deer following human-to-animal spillover, highlighting the 'generalist' nature of SARS-CoV-2 as a mammalian pathogen.
Collapse
Affiliation(s)
- Cedric C S Tan
- UCL Genetics Institute, University College London, London, UK.
- Genome Institute of Singapore, A*STAR, Singapore, Singapore.
| | - Su Datt Lam
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Department of Structural and Molecular Biology, University College London, London, UK
| | - Damien Richard
- UCL Genetics Institute, University College London, London, UK
- Division of Infection and Immunity, University College London, London, UK
| | | | | | - Christine Orengo
- Department of Structural and Molecular Biology, University College London, London, UK
| | - Meera Surendran Nair
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, PA, Pennsylvania, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, PA, Pennsylvania, USA
| | - Suresh V Kuchipudi
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, PA, Pennsylvania, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, PA, Pennsylvania, USA
| | - Vivek Kapur
- Huck Institutes of the Life Sciences, The Pennsylvania State University, PA, Pennsylvania, USA
- Department of Animal Science, The Pennsylvania State University, PA, Pennsylvania, USA
| | - Lucy van Dorp
- UCL Genetics Institute, University College London, London, UK
| | | |
Collapse
|
70
|
Nunes DR, Braconi CT, Ludwig-Begall LF, Arns CW, Durães-Carvalho R. Deep phylogenetic-based clustering analysis uncovers new and shared mutations in SARS-CoV-2 variants as a result of directional and convergent evolution. PLoS One 2022; 17:e0268389. [PMID: 35609034 PMCID: PMC9129020 DOI: 10.1371/journal.pone.0268389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Nearly two decades after the last epidemic caused by a severe acute respiratory syndrome coronavirus (SARS-CoV), newly emerged SARS-CoV-2 quickly spread in 2020 and precipitated an ongoing global public health crisis. Both the continuous accumulation of point mutations, owed to the naturally imposed genomic plasticity of SARS-CoV-2 evolutionary processes, as well as viral spread over time, allow this RNA virus to gain new genetic identities, spawn novel variants and enhance its potential for immune evasion. Here, through an in-depth phylogenetic clustering analysis of upwards of 200,000 whole-genome sequences, we reveal the presence of previously unreported and hitherto unidentified mutations and recombination breakpoints in Variants of Concern (VOC) and Variants of Interest (VOI) from Brazil, India (Beta, Eta and Kappa) and the USA (Beta, Eta and Lambda). Additionally, we identify sites with shared mutations under directional evolution in the SARS-CoV-2 Spike-encoding protein of VOC and VOI, tracing a heretofore-undescribed correlation with viral spread in South America, India and the USA. Our evidence-based analysis provides well-supported evidence of similar pathways of evolution for such mutations in all SARS-CoV-2 variants and sub-lineages. This raises two pivotal points: (i) the co-circulation of variants and sub-lineages in close evolutionary environments, which sheds light onto their trajectories into convergent and directional evolution, and (ii) a linear perspective into the prospective vaccine efficacy against different SARS-CoV-2 strains.
Collapse
Affiliation(s)
- Danilo Rosa Nunes
- Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Carla Torres Braconi
- Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
- * E-mail: (CTB); (RDC)
| | - Louisa F. Ludwig-Begall
- Department of Infectious and Parasitic Diseases, Veterinary Virology and Animal Viral Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Clarice Weis Arns
- Laboratory of Virology, University of Campinas, Campinas, SP, Brazil
| | - Ricardo Durães-Carvalho
- Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
- * E-mail: (CTB); (RDC)
| |
Collapse
|
71
|
Gröhs Ferrareze PA, Zimerman RA, Franceschi VB, Caldana GD, Netz PA, Thompson CE. Molecular evolution and structural analyses of the spike glycoprotein from Brazilian SARS-CoV-2 genomes: the impact of selected mutations. J Biomol Struct Dyn 2022; 41:3110-3128. [PMID: 35594172 DOI: 10.1080/07391102.2022.2076154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has reached by February 2022 more than 380 million cases and 5.5 million deaths worldwide since its beginning in late 2019, leading to enhanced concern in the scientific community and the general population. One of the most important pieces of this host-pathogen interaction is the spike protein, which binds to the hACE2 cell receptor, mediates the membrane fusion and is the major target of neutralizing antibodies against SARS-CoV-2. The multiple amino acid substitutions observed in this region, specially in RBD have enhanced the hACE2 binding affinity and led to several modifications in the mechanisms of SARS-CoV-2 pathogenesis, improving the viral fitness and/or promoting immune evasion, with potential impact in the vaccine development. In this work, we identified 48 sites under selective pressures, 17 of them with the strongest evidence by the HyPhy tests, including VOC related mutation sites 138, 142, 222, 262, 484, 681, and 845, among others. The coevolutionary analysis identified 28 sites found not to be conditionally independent, such as E484K-N501Y. The molecular dynamics and free energy estimates showed the structural stabilizing effect and the higher impact of E484K for enhanced binding affinity between the spike RBD and hACE2 in P.1 and P.2 lineages (specially with L452V). Structural changes were also identified in the hACE molecule when interacting with B.1.1.7 RDB. Despite some destabilizing substitutions, a stabilizing effect was identified for the majority of the positively selected mutations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Patrícia Aline Gröhs Ferrareze
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | | | - Vinícius Bonetti Franceschi
- Center of Biotechnology, Graduate Program in Cell and Molecular Biology (PPGBCM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Gabriel Dickin Caldana
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Paulo Augusto Netz
- Graduate Program in Chemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Claudia Elizabeth Thompson
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.,Center of Biotechnology, Graduate Program in Cell and Molecular Biology (PPGBCM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Department of Pharmacosciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| |
Collapse
|
72
|
Frutos R, Pliez O, Gavotte L, Devaux CA. There is no "origin" to SARS-CoV-2. ENVIRONMENTAL RESEARCH 2022; 207:112173. [PMID: 34626592 PMCID: PMC8493644 DOI: 10.1016/j.envres.2021.112173] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 05/04/2023]
Abstract
Since the beginning of the COVID-19 pandemic in 2020 caused by SARS-CoV-2, the question of the origin of this virus has been a highly debated issue. Debates have been, and are still, very disputed and often violent between the two main hypotheses: a natural origin through the "spillover" model or a laboratory-leak origin. Tenants of these two options are building arguments often based on the discrepancies of the other theory. The main problem is that it is the initial question of the origin itself which is biased. Charles Darwin demonstrated in 1859 that all species are appearing through a process of evolution, adaptation and selection. There is no determined origin to any animal or plant species, simply an evolutionary and selective process in which chance and environment play a key role. The very same is true for viruses. There is no determined origin to viruses, simply also an evolutionary and selective process in which chance and environment play a key role. However, in the case of viruses the process is slightly more complex because the "environment" is another living organism. Pandemic viruses already circulate in humans prior to the emergence of a disease. They are simply not capable of triggering an epidemic yet. They must evolve in-host, i.e. in-humans, for that. The evolutionary process which gave rise to SARS-CoV-2 is still ongoing with regular emergence of novel variants more adapted than the previous ones. The real relevant question is how these viruses can emerge as pandemic viruses and what the society can do to prevent the future emergence of pandemic viruses.
Collapse
Affiliation(s)
| | | | | | - Christian A Devaux
- MEPHI, Aix-Marseille Université, IRD, AP-HM, IHU-Méditerranée Infection, Marseille, France; CNRS, Marseille, France
| |
Collapse
|
73
|
McLean G, Kamil J, Lee B, Moore P, Schulz TF, Muik A, Sahin U, Türeci Ö, Pather S. The Impact of Evolving SARS-CoV-2 Mutations and Variants on COVID-19 Vaccines. mBio 2022; 13:e0297921. [PMID: 35352979 PMCID: PMC9040821 DOI: 10.1128/mbio.02979-21] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 12/26/2022] Open
Abstract
The emergence of several new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in recent months has raised concerns around the potential impact on ongoing vaccination programs. Data from clinical trials and real-world evidence suggest that current vaccines remain highly effective against the alpha variant (B.1.1.7), while some vaccines have reduced efficacy and effectiveness against symptomatic disease caused by the beta variant (B.1.351) and the delta variant (B.1.617.2); however, effectiveness against severe disease and hospitalization caused by delta remains high. Although data on the effectiveness of the primary regimen against omicron (B.1.1.529) are limited, booster programs using mRNA vaccines have been shown to restore protection against infection and symptomatic disease (regardless of the vaccine used for the primary regimen) and maintain high effectiveness against hospitalization. However, effectiveness against infection and symptomatic disease wanes with time after the booster dose. Studies have demonstrated reductions of varying magnitude in neutralizing activity of vaccine-elicited antibodies against a range of SARS-CoV-2 variants, with the omicron variant in particular exhibiting partial immune escape. However, evidence suggests that T-cell responses are preserved across vaccine platforms, regardless of variant of concern. Nevertheless, various mitigation strategies are under investigation to address the potential for reduced efficacy or effectiveness against current and future SARS-CoV-2 variants, including modification of vaccines for certain variants (including omicron), multivalent vaccine formulations, and different delivery mechanisms.
Collapse
Affiliation(s)
- Gary McLean
- School of Human Sciences, London Metropolitan University and National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jeremy Kamil
- Louisiana State University Health, Shreveport, Louisiana, USA
| | - Benhur Lee
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Penny Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, The University of the Witwatersrand, Johannesburg, South Africa
| | - Thomas F. Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence 2155 RESIST, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | | | | | | | | |
Collapse
|
74
|
Martin DP, Lytras S, Lucaci AG, Maier W, Grüning B, Shank SD, Weaver S, MacLean OA, Orton RJ, Lemey P, Boni MF, Tegally H, Harkins GW, Scheepers C, Bhiman JN, Everatt J, Amoako DG, San JE, Giandhari J, Sigal A, Williamson C, Hsiao NY, von Gottberg A, De Klerk A, Shafer RW, Robertson DL, Wilkinson RJ, Sewell BT, Lessells R, Nekrutenko A, Greaney AJ, Starr TN, Bloom JD, Murrell B, Wilkinson E, Gupta RK, de Oliveira T, Kosakovsky Pond SL. Selection Analysis Identifies Clusters of Unusual Mutational Changes in Omicron Lineage BA.1 That Likely Impact Spike Function. Mol Biol Evol 2022; 39:msac061. [PMID: 35325204 PMCID: PMC9037384 DOI: 10.1093/molbev/msac061] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Among the 30 nonsynonymous nucleotide substitutions in the Omicron S-gene are 13 that have only rarely been seen in other SARS-CoV-2 sequences. These mutations cluster within three functionally important regions of the S-gene at sites that will likely impact (1) interactions between subunits of the Spike trimer and the predisposition of subunits to shift from down to up configurations, (2) interactions of Spike with ACE2 receptors, and (3) the priming of Spike for membrane fusion. We show here that, based on both the rarity of these 13 mutations in intrapatient sequencing reads and patterns of selection at the codon sites where the mutations occur in SARS-CoV-2 and related sarbecoviruses, prior to the emergence of Omicron the mutations would have been predicted to decrease the fitness of any virus within which they occurred. We further propose that the mutations in each of the three clusters therefore cooperatively interact to both mitigate their individual fitness costs, and, in combination with other mutations, adaptively alter the function of Spike. Given the evident epidemic growth advantages of Omicron overall previously known SARS-CoV-2 lineages, it is crucial to determine both how such complex and highly adaptive mutation constellations were assembled within the Omicron S-gene, and why, despite unprecedented global genomic surveillance efforts, the early stages of this assembly process went completely undetected.
Collapse
Affiliation(s)
- Darren P. Martin
- Institute of Infectious Diseases and Molecular Medicine, Division of Computational Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Spyros Lytras
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Alexander G. Lucaci
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA, USA
| | - Wolfgang Maier
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany, usegalaxy.eu
| | - Björn Grüning
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany, usegalaxy.eu
| | - Stephen D. Shank
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA, USA
| | - Steven Weaver
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA, USA
| | - Oscar A. MacLean
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Richard J. Orton
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Maciej F. Boni
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Houriiyah Tegally
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Gordon W. Harkins
- South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Cathrine Scheepers
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jinal N. Bhiman
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Josie Everatt
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Daniel G. Amoako
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - James Emmanuel San
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Jennifer Giandhari
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Alex Sigal
- Africa Health Research Institute, Durban, South Africa
| | - Carolyn Williamson
- Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, University of Cape Town and National Health Laboratory Service, Cape Town, South Africa
- Wellcome Center for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Nei-yuan Hsiao
- Division of Medical Virology, University of Cape Town and National Health Laboratory Service, Cape Town, South Africa
| | - Anne von Gottberg
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Arne De Klerk
- Institute of Infectious Diseases and Molecular Medicine, Division of Computational Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Robert W. Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA
| | - David L. Robertson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Robert J. Wilkinson
- Wellcome Center for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Cape Town, South Africa
- Francis Crick Institute, London, United Kingdom
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | - B. Trevor Sewell
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Richard Lessells
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Anton Nekrutenko
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA, usegalaxy.org
| | - Allison J. Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Genome Sciences & Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Tyler N. Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Eduan Wilkinson
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for Epidemic Response and Innovation (CERI), School of Data Science, Stellenbosch University, Stellenbosch, South Africa
| | - Ravindra K. Gupta
- Africa Health Research Institute, Durban, South Africa
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for Epidemic Response and Innovation (CERI), School of Data Science, Stellenbosch University, Stellenbosch, South Africa
| | - Sergei L. Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
75
|
Zhang D, Zhu L, Wang Y, Li P, Gao Y. Translational Control of COVID-19 and Its Therapeutic Implication. Front Immunol 2022; 13:857490. [PMID: 35422818 PMCID: PMC9002053 DOI: 10.3389/fimmu.2022.857490] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/07/2022] [Indexed: 12/19/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19, which has broken out worldwide for more than two years. However, due to limited treatment, new cases of infection are still rising. Therefore, there is an urgent need to understand the basic molecular biology of SARS-CoV-2 to control this virus. SARS-CoV-2 replication and spread depend on the recruitment of host ribosomes to translate viral messenger RNA (mRNA). To ensure the translation of their own mRNAs, the SARS-CoV-2 has developed multiple strategies to globally inhibit the translation of host mRNAs and block the cellular innate immune response. This review provides a comprehensive picture of recent advancements in our understanding of the molecular basis and complexity of SARS-CoV-2 protein translation. Specifically, we summarize how this viral infection inhibits host mRNA translation to better utilize translation elements for translation of its own mRNA. Finally, we discuss the potential of translational components as targets for therapeutic interventions.
Collapse
Affiliation(s)
- Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
76
|
Nikolaidis M, Papakyriakou A, Chlichlia K, Markoulatos P, Oliver SG, Amoutzias GD. Comparative Analysis of SARS-CoV-2 Variants of Concern, Including Omicron, Highlights Their Common and Distinctive Amino Acid Substitution Patterns, Especially at the Spike ORF. Viruses 2022; 14:707. [PMID: 35458441 PMCID: PMC9025783 DOI: 10.3390/v14040707] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 12/13/2022] Open
Abstract
In order to gain a deeper understanding of the recently emerged and highly divergent Omicron variant of concern (VoC), a study of amino acid substitution (AAS) patterns was performed and compared with those of the other four successful variants of concern (Alpha, Beta, Gamma, Delta) and one closely related variant of interest (VoI-Lambda). The Spike ORF consistently emerges as an AAS hotspot in all six lineages, but in Omicron this enrichment is significantly higher. The progenitors of each of these VoC/VoI lineages underwent positive selection in the Spike ORF. However, once they were established, their Spike ORFs have been undergoing purifying selection, despite the application of global vaccination schemes from 2021 onwards. Our analyses reject the hypothesis that the heavily mutated receptor binding domain (RBD) of the Omicron Spike was introduced via recombination from another closely related Sarbecovirus. Thus, successive point mutations appear as the most parsimonious scenario. Intriguingly, in each of the six lineages, we observed a significant number of AAS wherein the new residue is not present at any homologous site among the other known Sarbecoviruses. Such AAS should be further investigated as potential adaptations to the human host. By studying the phylogenetic distribution of AAS shared between the six lineages, we observed that the Omicron (BA.1) lineage had the highest number (8/10) of recurrent mutations.
Collapse
Affiliation(s)
- Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece;
| | - Athanasios Papakyriakou
- Institute of Biosciences & Applications, National Centre for Scientific Research Demokritos, 15341 Agia Paraskevi, Greece;
| | - Katerina Chlichlia
- Laboratory of Molecular Immunology, Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, 68100 Alexandroupolis, Greece;
| | - Panayotis Markoulatos
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece;
| | - Stephen G. Oliver
- Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK;
| | - Grigorios D. Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece;
| |
Collapse
|
77
|
Voskarides K. SARS-CoV-2: tracing the origin, tracking the evolution. BMC Med Genomics 2022; 15:62. [PMID: 35303887 PMCID: PMC8931788 DOI: 10.1186/s12920-022-01208-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/07/2022] [Indexed: 01/03/2023] Open
Abstract
The origin of SARS-CoV-2 is uncertain. Findings support a "bat origin" but results are not highly convincing. Studies found evidence that SARS-CoV-2 was around for many years before the pandemic outbreak. Evidence has been published that the progenitor of SARS-CoV-2 already had the capability to bind strongly to the human ACE2 receptor. This may be an indication that many other animal viruses are capable to jump to humans, having already affinity for a human receptor. This is quite worrying since current ecosystems' collapse brings people to high proximity with animals, increasing probabilities for random viral transitions. On the other hand, future adaptation of SARS-CoV-2 is of great concern. Virus-host interactions are complicated and unfortunately, we still do not have accurate tools for predicting viruses' future evolution. Viral adaptation is a multifactorial process and probably SARS-CoV-2 will not become soon, as we wish, a harmless infection. However, humanity is currently under the largest vaccination program and it's of great interest to see if vaccinations will change the evolutionary game against the virus.
Collapse
Affiliation(s)
- Konstantinos Voskarides
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus.
| |
Collapse
|
78
|
Wright DW, Harvey WT, Hughes J, Cox M, Peacock TP, Colquhoun R, Jackson B, Orton R, Nielsen M, Hsu NS, The COVID-19 Genomics UK (COG-UK) consortium, Harrison EM, de Silva TI, Rambaut A, Peacock SJ, Robertson DL, Carabelli AM. Tracking SARS-CoV-2 mutations and variants through the COG-UK-Mutation Explorer. Virus Evol 2022; 8:veac023. [PMID: 35502202 PMCID: PMC9037374 DOI: 10.1093/ve/veac023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/03/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
COG-UK Mutation Explorer (COG-UK-ME, https://sars2.cvr.gla.ac.uk/cog-uk/-last accessed date 16 March 2022) is a web resource that displays knowledge and analyses on SARS-CoV-2 virus genome mutations and variants circulating in the UK, with a focus on the observed amino acid replacements that have an antigenic role in the context of the human humoral and cellular immune response. This analysis is based on more than 2 million genome sequences (as of March 2022) for UK SARS-CoV-2 data held in the CLIMB-COVID centralised data environment. COG-UK-ME curates these data and displays analyses that are cross-referenced to experimental data collated from the primary literature. The aim is to track mutations of immunological importance that are accumulating in current variants of concern and variants of interest that could alter the neutralising activity of monoclonal antibodies (mAbs), convalescent sera, and vaccines. Changes in epitopes recognised by T cells, including those where reduced T cell binding has been demonstrated, are reported. Mutations that have been shown to confer SARS-CoV-2 resistance to antiviral drugs are also included. Using visualisation tools, COG-UK-ME also allows users to identify the emergence of variants carrying mutations that could decrease the neutralising activity of both mAbs present in therapeutic cocktails, e.g. Ronapreve. COG-UK-ME tracks changes in the frequency of combinations of mutations and brings together the curated literature on the impact of those mutations on various functional aspects of the virus and therapeutics. Given the unpredictable nature of SARS-CoV-2 as exemplified by yet another variant of concern, Omicron, continued surveillance of SARS-CoV-2 remains imperative to monitor virus evolution linked to the efficacy of therapeutics.
Collapse
Affiliation(s)
- Derek W Wright
- MRC-University of Glasgow Centre for Virus
Research, University of Glasgow, Garscube Campus, 464 Bearsden Road,
Glasgow G61 1QH, UK
| | | | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus
Research, University of Glasgow, Garscube Campus, 464 Bearsden Road,
Glasgow G61 1QH, UK
| | - MacGregor Cox
- Department of Medicine, University of
Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 0QQ,
UK
| | - Thomas P Peacock
- Department of Infectious Disease, St Mary’s
Medical School, Imperial College London, Praed Street, London,
Westminster W2 1NY, UK
| | - Rachel Colquhoun
- Institute of Evolutionary Biology, University of
Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
- MRC-University of Glasgow Centre for Virus
Research, University of Glasgow, Garscube Campus, 464 Bearsden Road,
Glasgow G61 1QH, UK
| | - Ben Jackson
- Institute of Evolutionary Biology, University of
Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Richard Orton
- MRC-University of Glasgow Centre for Virus
Research, University of Glasgow, Garscube Campus, 464 Bearsden Road,
Glasgow G61 1QH, UK
| | - Morten Nielsen
- Department of Health Technology, Technical
University of Denmark, Lyngby DK-2800, Denmark
| | - Nienyun Sharon Hsu
- The Florey Institute for Host-Pathogen
Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical
School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX,
UK
| | | | - Ewan M Harrison
- Department of Medicine, University of
Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 0QQ,
UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton
CB10 1SA, UK
- Department of Public Health and Primary Care,
University of Cambridge, Worts Causeway, Cambridge CB1 8RN, UK
| | - Thushan I de Silva
- The Florey Institute for Host-Pathogen
Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical
School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX,
UK
| | - Andrew Rambaut
- Institute of Evolutionary Biology, University of
Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Sharon J Peacock
- Department of Medicine, University of
Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 0QQ,
UK
| | - David L Robertson
- MRC-University of Glasgow Centre for Virus
Research, University of Glasgow, Garscube Campus, 464 Bearsden Road,
Glasgow G61 1QH, UK
| | - Alessandro M Carabelli
- Department of Medicine, University of
Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 0QQ,
UK
| |
Collapse
|
79
|
Kawashima IY, Lopez MCN, Cunha MDP, Hashimoto RF. SARS-CoV-2 host prediction based on virus-host genetic features. Sci Rep 2022; 12:4576. [PMID: 35301337 PMCID: PMC8930995 DOI: 10.1038/s41598-022-08350-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/28/2022] [Indexed: 11/25/2022] Open
Abstract
The genetic diversity of the Coronaviruses gives them different biological abilities, such as infect different cells and/or organisms, a wide spectrum of clinical manifestations, their different routes of dispersion, and viral transmission in a specific host. In recent decades, different Coronaviruses have emerged that are highly adapted for humans and causing serious diseases, leaving their host of unknown origin. The viral genome information is particularly important to enable the recognition of patterns linked to their biological characteristics, such as the specificity in the host-parasite relationship. Here, based on a previously computational tool, the Seq2Hosts, we developed a novel approach which uses new variables obtained from the frequency of spike-Coronaviruses codons, the Relative Synonymous Codon Usage (RSCU) to shed new light on the molecular mechanisms involved in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) host specificity. By using the RSCU obtained from nucleotide sequences before the SARS-CoV-2 pandemic, we assessed the possibility of know the hosts capable to be infected by these new emerging species, which was first identified infecting humans during 2019 in Wuhan, China. According to the model trained and validated using sequences available before the pandemic, bats are the most likely the natural host to the SARS-CoV-2 infection, as previously suggested in other studies that searched for the host viral origin.
Collapse
Affiliation(s)
- Irina Yuri Kawashima
- Institute of Mathematics and Statistics, University of Sao Paulo, São Paulo, 05508-090, Brazil
| | | | | | - Ronaldo Fumio Hashimoto
- Institute of Mathematics and Statistics, University of Sao Paulo, São Paulo, 05508-090, Brazil.
| |
Collapse
|
80
|
Abstract
Background: Knowledge about the origin of SARS-CoV-2 is necessary for both a biological and epidemiological understanding of the COVID-19 pandemic. Evidence suggests that a proximal evolutionary ancestor of SARS-CoV-2 belongs to the bat coronavirus family. However, as further evidence for a direct zoonosis remains limited, alternative modes of SARS-CoV-2 biogenesis should be considered. Results: Here we show that the genomes from SARS-CoV-2 and from SARS-CoV-1 are differentially enriched with short chromosomal sequences from the yeast S. cerevisiae at focal positions that are known to be critical for host cell invasion, virus replication, and host immune response. For SARS-CoV-1, we identify two sites: one at the start of the RNA dependent RNA polymerase gene, and the other at the start of the spike protein’s receptor binding domain; for SARS-CoV-2, one at the start of the viral replicase domain, and the other toward the end of the spike gene past its domain junction. At this junction, we detect a highly specific stretch of yeast DNA origin covering the critical furin cleavage site insert PRRA, which has not been seen in other lineage b betacoronaviruses. As yeast is not a natural host for this virus family, we propose a passage model for viral constructs in yeast cells based on co-transformation of virus DNA plasmids carrying yeast selectable genetic markers followed by intra-chromosomal homologous recombination through gene conversion. Highly differential sequence homology data across yeast chromosomes congruent with chromosomes harboring specific auxotrophic markers further support this passage model. Conclusions: These results provide evidence that among SARS-like coronaviruses only the genomes of SARS-CoV-1 and SARS-CoV-2 contain information that points to a synthetic passage in genetically modified yeast cells. Our data specifically allow the identification of the yeast S. cerevisiae as a potential recombination donor for the critical furin cleavage site in SARS-CoV-2.
Collapse
|
81
|
Kim YI, Casel MAB, Choi YK. Transmissibility and pathogenicity of SARS-CoV-2 variants in animal models. J Microbiol 2022; 60:255-267. [PMID: 35235177 PMCID: PMC8890026 DOI: 10.1007/s12275-022-2033-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022]
Abstract
As of February 2022, SARS-CoV-2 is still one of the most serious public health threats due to its high mortality rate and rapid spread of novel variants. Since the first outbreak in 2019, general understanding of SARS-CoV-2 has been improved through basic and clinical studies; however, knowledge gaps still exist in our understanding of the emerging novel SARSCoV-2 variants, which impacts the corresponding development of vaccines and therapeutics. Especially, accumulation of mutations in SARS-CoV-2 and rapid spread in populations with previous immunity has resulted in selection of variants that evade the host immune response. This phenomenon threatens to render current SARS-CoV-2 vaccines ineffective for controlling the pandemic. Proper animal models are essential for detailed investigations into the viral etiology, transmission and pathogenesis mechanisms, as well as evaluation of the efficacy of vaccine candidates against recent SARS-CoV-2 variants. Further, the choice of animal model for each research topic is important for researchers to gain better knowledge of recent SARS-CoV-2 variants. Here, we review the advantages and limitations of each animal model, including mice, hamsters, ferrets, and non-human primates, to elucidate variant SARS-CoV-2 etiology and transmission and to evaluate therapeutic and vaccine efficacy.
Collapse
Affiliation(s)
- Young-Il Kim
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
| | - Mark Anthony B Casel
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Young Ki Choi
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea.
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
82
|
Mogro EG, Bottero D, Lozano MJ. Analysis of SARS-CoV-2 synonymous codon usage evolution throughout the COVID-19 pandemic. Virology 2022; 568:56-71. [PMID: 35134624 PMCID: PMC8808327 DOI: 10.1016/j.virol.2022.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 12/12/2022]
Abstract
SARS-CoV-2, the seventh coronavirus known to infect humans, can cause severe life-threatening respiratory pathologies. To better understand SARS-CoV-2 evolution, genome-wide analyses have been made, including the general characterization of its codons usage profile. Here we present a bioinformatic analysis of the evolution of SARS-CoV-2 codon usage over time using complete genomes collected since December 2019. Our results show that SARS-CoV-2 codon usage pattern is antagonistic to, and it is getting farther away from that of the human host. Further, a selection of deoptimized codons over time, which was accompanied by a decrease in both the codon adaptation index and the effective number of codons, was observed. All together, these findings suggest that SARS-CoV-2 could be evolving, at least from the perspective of the synonymous codon usage, to become less pathogenic.
Collapse
Affiliation(s)
- Ezequiel G Mogro
- Instituto de Biotecnología y Biología Molecular (IBBM), CONICET, CCT-La Plata, Universidad Nacional de La Plata (UNLP), Argentina
| | - Daniela Bottero
- Instituto de Biotecnología y Biología Molecular (IBBM), CONICET, CCT-La Plata, Universidad Nacional de La Plata (UNLP), Argentina
| | - Mauricio J Lozano
- Instituto de Biotecnología y Biología Molecular (IBBM), CONICET, CCT-La Plata, Universidad Nacional de La Plata (UNLP), Argentina.
| |
Collapse
|
83
|
Evolutionary Shift from Purifying Selection towards Divergent Selection of SARS-CoV2 Favors its Invasion into Multiple Human Organs. Virus Res 2022; 313:198712. [PMID: 35176330 PMCID: PMC8843322 DOI: 10.1016/j.virusres.2022.198712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 01/07/2023]
Abstract
SARS-CoV2 virus is believed to be originated from a closely related bat Coronavirus RaTG13 lineage and uses its key entry-point residues in S1 protein to attach with human ACE2 receptor. SARS-CoV2 could enter human from bat with its poorly developed entry-point residues much before its known appearance with slower mutation rate or recently with efficiently developed entry-point residues with higher mutation rate or through an intermediate host. Temporal analysis of SARS-CoV2 genome shows that its nucleotide substitution rate is as low as 27nt/year with an evolutionary rate of 9×10−4/site/year, which is well within the range of other RNA virus (10−4 to 10−6/site/year). TMRCA of SARS-CoV2 from bat RaTG13 lineage appears to be in between 9 and 14 years. Evolution of a critical entry-point residue Y493Q needs two substitutions with an intermediate virus carrying Y493H (Y>H>Q) but has not been identified in known twenty-nine bat CoV virus. Genetic codon analysis indicates that SARS-CoV2 evolution during propagation in human disobeys neutral evolution as nonsynonymous mutations surpass synonymous mutations with the increase of ω (dn/ds). Taken together, genetic data suggests that SARS-CoV2 is originated long time back before its appearance in human in 2019. Increase of ω signifies that SARs-CoV2 evolution is approaching towards diversifying selection from purifying selection predictably for its infection power to evade multiple human organs.
Collapse
|
84
|
Lytras S, Hughes J, Martin D, Swanepoel P, de Klerk A, Lourens R, Kosakovsky Pond SL, Xia W, Jiang X, Robertson DL. Exploring the Natural Origins of SARS-CoV-2 in the Light of Recombination. Genome Biol Evol 2022; 14:evac018. [PMID: 35137080 PMCID: PMC8882382 DOI: 10.1093/gbe/evac018] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2022] [Indexed: 11/19/2022] Open
Abstract
The lack of an identifiable intermediate host species for the proximal animal ancestor of SARS-CoV-2, and the large geographical distance between Wuhan and where the closest evolutionary related coronaviruses circulating in horseshoe bats (members of the Sarbecovirus subgenus) have been identified, is fueling speculation on the natural origins of SARS-CoV-2. We performed a comprehensive phylogenetic study on SARS-CoV-2 and all the related bat and pangolin sarbecoviruses sampled so far. Determining the likely recombination events reveals a highly reticulate evolutionary history within this group of coronaviruses. Distribution of the inferred recombination events is nonrandom with evidence that Spike, the main target for humoral immunity, is beside a recombination hotspot likely driving antigenic shift events in the ancestry of bat sarbecoviruses. Coupled with the geographic ranges of their hosts and the sampling locations, across southern China, and into Southeast Asia, we confirm that horseshoe bats, Rhinolophus, are the likely reservoir species for the SARS-CoV-2 progenitor. By tracing the recombinant sequence patterns, we conclude that there has been relatively recent geographic movement and cocirculation of these viruses' ancestors, extending across their bat host ranges in China and Southeast Asia over the last 100 years. We confirm that a direct proximal ancestor to SARS-CoV-2 has not yet been sampled, since the closest known relatives collected in Yunnan shared a common ancestor with SARS-CoV-2 approximately 40 years ago. Our analysis highlights the need for dramatically more wildlife sampling to: 1) pinpoint the exact origins of SARS-CoV-2's animal progenitor, 2) the intermediate species that facilitated transmission from bats to humans (if there is one), and 3) survey the extent of the diversity in the related sarbecoviruses' phylogeny that present high risk for future spillovers.
Collapse
Affiliation(s)
- Spyros Lytras
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Darren Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, University of Cape Town, South Africa
| | - Phillip Swanepoel
- Computational Biology Division, Department of Integrative Biomedical Sciences, University of Cape Town, South Africa
| | - Arné de Klerk
- Computational Biology Division, Department of Integrative Biomedical Sciences, University of Cape Town, South Africa
| | - Rentia Lourens
- Division of Neurosurgery, Department of Surgery, Neuroscience Institute, University of Cape Town, South Africa
| | | | - Wei Xia
- National School of Agricultural Institution and Development, South China Agricultural University, Guangzhou, China
| | - Xiaowei Jiang
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou, China
| | - David L Robertson
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
85
|
Kumar A, Goyal N, Saranathan N, Dhamija S, Saraswat S, Menon MB, Vivekanandan P. The slowing rate of CpG depletion in SARS-CoV-2 genomes is consistent with adaptations to the human host. Mol Biol Evol 2022; 39:6521032. [PMID: 35134218 PMCID: PMC8892944 DOI: 10.1093/molbev/msac029] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Depletion of CpG dinucleotides in SARS-CoV-2 genomes has been linked to virus evolution, host-switching, virus replication, and innate immune responses. Temporal variations, if any, in the rate of CpG depletion during virus evolution in the host remain poorly understood. Here, we analysed the CpG content of over 1.4 million full-length SARS-CoV-2 genomes representing over 170 million documented infections during the first 17 months of the pandemic. Our findings suggest that the extent of CpG depletion in SARS-CoV-2 genomes is modest. Interestingly, the rate of CpG depletion is highest during early evolution in humans and it gradually tapers off almost reaching an equilibrium; this is consistent with adaptations to the human host. Furthermore, within the coding regions, CpG depletion occurs predominantly at codon positions 2-3 and 3-1. Loss of ZAP-binding motifs in SARS-CoV-2 genomes is primarily driven by the loss of the terminal CpG in the motifs. Nonetheless, majority of the CpG depletion in SARS-CoV-2 genomes occurs outside ZAP-binding motifs. SARS-CoV-2 genomes selectively lose CpGs-motifs from a U-rich context; this may help avoid immune recognition by TLR7. SARS-CoV-2 alpha-, beta- and delta-variants of concern have reduced CpG content compared to sequences from the beginning of the pandemic. In sum, we provide evidence that the rate of CpG depletion in virus genomes is not uniform and it greatly varies over time and during adaptations to the host. This work highlights how temporal variations in selection pressures during virus adaption may impact the rate and the extent of CpG depletion in virus genomes.
Collapse
Affiliation(s)
- Akhil Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Nishank Goyal
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Nandhini Saranathan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Sonam Dhamija
- CSIR-Institute of Genomics and Integrative Biology, New Delhi-110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Saurabh Saraswat
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Manoj B Menon
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi-110016, India
| |
Collapse
|
86
|
Tay JH, Porter AF, Wirth W, Duchene S. The Emergence of SARS-CoV-2 Variants of Concern Is Driven by Acceleration of the Substitution Rate. Mol Biol Evol 2022; 39:msac013. [PMID: 35038741 PMCID: PMC8807201 DOI: 10.1093/molbev/msac013] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ongoing SARS-CoV-2 pandemic has seen an unprecedented amount of rapidly generated genome data. These data have revealed the emergence of lineages with mutations associated to transmissibility and antigenicity, known as variants of concern (VOCs). A striking aspect of VOCs is that many of them involve an unusually large number of defining mutations. Current phylogenetic estimates of the substitution rate of SARS-CoV-2 suggest that its genome accrues around two mutations per month. However, VOCs can have 15 or more defining mutations and it is hypothesized that they emerged over the course of a few months, implying that they must have evolved faster for a period of time. We analyzed genome sequence data from the GISAID database to assess whether the emergence of VOCs can be attributed to changes in the substitution rate of the virus and whether this pattern can be detected at a phylogenetic level using genome data. We fit a range of molecular clock models and assessed their statistical performance. Our analyses indicate that the emergence of VOCs is driven by an episodic increase in the substitution rate of around 4-fold the background phylogenetic rate estimate that may have lasted several weeks or months. These results underscore the importance of monitoring the molecular evolution of the virus as a means of understanding the circumstances under which VOCs may emerge.
Collapse
Affiliation(s)
- John H Tay
- Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Ashleigh F Porter
- Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Wytamma Wirth
- Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Sebastian Duchene
- Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
87
|
Zhang Y, Jin X, Wang H, Miao Y, Yang X, Jiang W, Yin B. SARS-CoV-2 competes with host mRNAs for efficient translation by maintaining the mutations favorable for translation initiation. J Appl Genet 2022; 63:159-167. [PMID: 34655422 PMCID: PMC8520108 DOI: 10.1007/s13353-021-00665-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/24/2021] [Accepted: 10/03/2021] [Indexed: 11/05/2022]
Abstract
During SARS-CoV-2 proliferation, the translation of viral RNAs is usually the rate-limiting step. Understanding the molecular details of this step is beneficial for uncovering the origin and evolution of SARS-CoV-2 and even for controlling the pandemic. To date, it is unclear how SARS-CoV-2 competes with host mRNAs for ribosome binding and efficient translation. We retrieved the coding sequences of all human genes and SARS-CoV-2 genes. We systematically profiled the GC content and folding energy of each CDS. Considering that some fixed or polymorphic mutations exist in SARS-CoV-2 and human genomes, all algorithms and analyses were applied to both pre-mutate and post-mutate versions. In SARS-CoV-2 but not human, the 5-prime end of CDS had lower GC content and less RNA structure than the 3-prime part, which was favorable for ribosome binding and efficient translation initiation. Globally, the fixed and polymorphic mutations in SARS-CoV-2 had created an even lower GC content at the 5-prime end of CDS. In contrast, no similar patterns were observed for the fixed and polymorphic mutations in human genome. Compared with human RNAs, the SARS-CoV-2 RNAs have less RNA structure in the 5-prime end and thus are more favorable of fast translation initiation. The fixed and polymorphic mutations in SARS-CoV-2 are further amplifying this advantage. This might serve as a strategy for SARS-CoV-2 to adapt to the human host.
Collapse
Affiliation(s)
- Yanping Zhang
- Department of Respiratory Diseases, Qingdao Haici Hospital, Qingdao, China
- The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, China
| | - Xiaojie Jin
- Department of Respiratory Diseases, Qingdao Haici Hospital, Qingdao, China
- The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, China
| | - Haiyan Wang
- Department of Respiratory Diseases, Qingdao Haici Hospital, Qingdao, China
- The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, China
| | - Yaoyao Miao
- Department of Respiratory Diseases, Qingdao Haici Hospital, Qingdao, China
- The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, China
| | - Xiaoping Yang
- Department of Respiratory Diseases, Qingdao Haici Hospital, Qingdao, China
- The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, China
| | - Wenqing Jiang
- Department of Respiratory Diseases, Qingdao Haici Hospital, Qingdao, China
- The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, China
| | - Bin Yin
- Department of Respiratory Diseases, Qingdao Haici Hospital, Qingdao, China.
- The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
88
|
Chen F, Yang JR. Distinct codon usage bias evolutionary patterns between weakly and strongly virulent respiratory viruses. iScience 2022; 25:103682. [PMID: 34977494 PMCID: PMC8704784 DOI: 10.1016/j.isci.2021.103682] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/01/2021] [Accepted: 12/22/2021] [Indexed: 01/24/2023] Open
Abstract
Human respiratory viruses are of vastly different virulence, giving rise to symptoms ranging from common cold to severe pneumonia or even death. Although this most likely impacts molecular evolution of the corresponding viruses, the specific differences in their evolutionary patterns remain largely unknown. By comparing structural and nonstructural genes within respiratory viruses, greater similarities in codon usage bias (CUB) between nonstructural genes and humans were observed in weakly virulent viruses, whereas in strongly virulent viruses, it was structural genes whose CUBs were more similar to that of humans. Further comparisons between genomes of weakly and strongly virulent coronaviruses revealed greater similarities in CUBs between strongly virulent viruses and humans. Finally, using phylogenetic independent contrasts, dissimilation of viral CUB from that of humans was observed in SARS-CoV-2. Our work revealed distinct CUB evolutionary patterns between weakly and strongly virulent viruses, a previously unrecognized interaction between CUB and virulence in respiratory viruses.
Collapse
Affiliation(s)
- Feng Chen
- Department of Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jian-Rong Yang
- Department of Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
89
|
Lucaci AG, Zehr JD, Shank SD, Bouvier D, Mei H, Nekrutenko A, Martin DP, Kosakovsky Pond SL. RASCL: Rapid Assessment Of SARS-CoV-2 Clades Through Molecular Sequence Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.01.15.476448. [PMID: 35075458 PMCID: PMC8786235 DOI: 10.1101/2022.01.15.476448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An important component of efforts to manage the ongoing COVID19 pandemic is the R apid A ssessment of how natural selection contributes to the emergence and proliferation of potentially dangerous S ARS-CoV-2 lineages and CL ades (RASCL). The RASCL pipeline enables continuous comparative phylogenetics-based selection analyses of rapidly growing clade-focused genome surveillance datasets, such as those produced following the initial detection of potentially dangerous variants. From such datasets RASCL automatically generates down-sampled codon alignments of individual genes/ORFs containing contextualizing background reference sequences, analyzes these with a battery of selection tests, and outputs results as both machine readable JSON files, and interactive notebook-based visualizations. AVAILABILITY RASCL is available from a dedicated repository at https://github.com/veg/RASCL and as a Galaxy workflow https://usegalaxy.eu/u/hyphy/w/rascl . Existing clade/variant analysis results are available here: https://observablehq.com/@aglucaci/rascl . CONTACT Dr. Sergei L Kosakovsky Pond ( spond@temple.edu ). SUPPLEMENTARY INFORMATION N/A.
Collapse
Affiliation(s)
- Alexander G Lucaci
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Jordan D Zehr
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Stephen D Shank
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Dave Bouvier
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Han Mei
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Anton Nekrutenko
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Darren P Martin
- Institute of Infectious Diseases and Molecular Medicine, Division Of Computational Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7701, South Africa
| | - Sergei L Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
90
|
Martin DP, Lytras S, Lucaci AG, Maier W, Grüning B, Shank SD, Weaver S, MacLean OA, Orton RJ, Lemey P, Boni MF, Tegally H, Harkins G, Scheepers C, Bhiman JN, Everatt J, Amoako DG, San JE, Giandhari J, Sigal A, Williamson C, Hsiao NY, von Gottberg A, De Klerk A, Shafer RW, Robertson DL, Wilkinson RJ, Sewell BT, Lessells R, Nekrutenko A, Greaney AJ, Starr TN, Bloom JD, Murrell B, Wilkinson E, Gupta RK, de Oliveira T, Kosakovsky Pond SL. Selection analysis identifies unusual clustered mutational changes in Omicron lineage BA.1 that likely impact Spike function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.01.14.476382. [PMID: 35075456 PMCID: PMC8786225 DOI: 10.1101/2022.01.14.476382] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Among the 30 non-synonymous nucleotide substitutions in the Omicron S-gene are 13 that have only rarely been seen in other SARS-CoV-2 sequences. These mutations cluster within three functionally important regions of the S-gene at sites that will likely impact (i) interactions between subunits of the Spike trimer and the predisposition of subunits to shift from down to up configurations, (ii) interactions of Spike with ACE2 receptors, and (iii) the priming of Spike for membrane fusion. We show here that, based on both the rarity of these 13 mutations in intrapatient sequencing reads and patterns of selection at the codon sites where the mutations occur in SARS-CoV-2 and related sarbecoviruses, prior to the emergence of Omicron the mutations would have been predicted to decrease the fitness of any genomes within which they occurred. We further propose that the mutations in each of the three clusters therefore cooperatively interact to both mitigate their individual fitness costs, and adaptively alter the function of Spike. Given the evident epidemic growth advantages of Omicron over all previously known SARS-CoV-2 lineages, it is crucial to determine both how such complex and highly adaptive mutation constellations were assembled within the Omicron S-gene, and why, despite unprecedented global genomic surveillance efforts, the early stages of this assembly process went completely undetected.
Collapse
Affiliation(s)
- Darren P Martin
- Institute of Infectious Diseases and Molecular Medicine, Division Of Computational Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7701, South Africa
| | - Spyros Lytras
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK
| | - Alexander G Lucaci
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | - Wolfgang Maier
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany, usegalaxy.eu
| | - Björn Grüning
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany, usegalaxy.eu
| | - Stephen D Shank
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | - Steven Weaver
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | - Oscar A MacLean
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK
| | - Richard J Orton
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Maciej F Boni
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Houriiyah Tegally
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Gordon Harkins
- South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Cathrine Scheepers
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jinal N Bhiman
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Josie Everatt
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Daniel G Amoako
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - James Emmanuel San
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Jennifer Giandhari
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Alex Sigal
- Africa Health Research Institute, Durban, South Africa
| | - Carolyn Williamson
- Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, University of Cape Town and National Health Laboratory Service, Cape Town South Africa
- Wellcome Center for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, South Africa
| | - Nei-Yuan Hsiao
- Division of Medical Virology, University of Cape Town and National Health Laboratory Service, Cape Town South Africa
| | - Anne von Gottberg
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg
| | - Arne De Klerk
- Institute of Infectious Diseases and Molecular Medicine, Division Of Computational Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7701, South Africa
| | - Robert W Shafer
- Division of Infectious Diseases, Department of medicine, Stanford university, Stanford, CA, USA
| | - David L Robertson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK
| | - Robert J Wilkinson
- Wellcome Center for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, South Africa
- Francis Crick Institute, Midland Road, London NW1 1AT, UK
- Department of Infectious Diseases, Imperial College London, W12 0NN, UK
| | - B Trevor Sewell
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, South Africa
| | - Richard Lessells
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Anton Nekrutenko
- Department Of Biochemistry and Molecular Biology, The Pennsylvania State University, usegalaxy.org
| | - Allison J Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences & Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA3
| | - Tyler N Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Eduan Wilkinson
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for Epidemic Response and Innovation (CERI), School of Data Science, Stellenbosch University
| | - Ravindra K Gupta
- Africa Health Research Institute, Durban, South Africa
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for Epidemic Response and Innovation (CERI), School of Data Science, Stellenbosch University
| | - Sergei L Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
91
|
Forni D, Cagliani R, Pontremoli C, Clerici M, Sironi M. The substitution spectra of coronavirus genomes. Brief Bioinform 2022; 23:bbab382. [PMID: 34518866 PMCID: PMC8499949 DOI: 10.1093/bib/bbab382] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/23/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has triggered an unprecedented international effort to sequence complete viral genomes. We leveraged this wealth of information to characterize the substitution spectrum of SARS-CoV-2 and to compare it with those of other human and animal coronaviruses. We show that, once nucleotide composition is taken into account, human and most animal coronaviruses display a mutation spectrum dominated by C to U and G to U substitutions, a feature that is not shared by other positive-sense RNA viruses. However, the proportions of C to U and G to U substitutions tend to decrease as divergence increases, suggesting that, whatever their origin, a proportion of these changes is subsequently eliminated by purifying selection. Analysis of the sequence context of C to U substitutions showed little evidence of apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC)-mediated editing and such contexts were similar for SARS-CoV-2 and Middle East respiratory syndrome coronavirus sampled from different hosts, despite different repertoires of APOBEC3 proteins in distinct species. Conversely, we found evidence that C to U and G to U changes affect CpG dinucleotides at a frequency higher than expected. Whereas this suggests ongoing selective reduction of CpGs, this effect alone cannot account for the substitution spectra. Finally, we show that, during the first months of SARS-CoV-2 pandemic spread, the frequency of both G to U and C to U substitutions increased. Our data suggest that the substitution spectrum of SARS-CoV-2 is determined by an interplay of factors, including intrinsic biases of the replication process, avoidance of CpG dinucleotides and other constraints exerted by the new host.
Collapse
Affiliation(s)
- Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Chiara Pontremoli
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy
- Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| |
Collapse
|
92
|
Genomic Characterization of SARS-CoV-2 Isolated from Patients with Distinct Disease Outcomes in Mexico. Microbiol Spectr 2022; 10:e0124921. [PMID: 35019701 PMCID: PMC8754132 DOI: 10.1128/spectrum.01249-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has shown a wide spectrum of clinical manifestations ranging from asymptomatic infections to severe disease and death. Pre-existing medical conditions and age have been mainly linked to the development of severe disease; however, the potential association of viral genetic characteristics with different clinical conditions remains unclear. SARS-CoV-2 variants with increased transmissibility were detected early in the pandemics, and several variants with potential relevance for public health are currently circulating around the world. In this study, we characterized 57 complete SARS-CoV-2 genomes during the exponential growth phase of the early epidemiological curve in Mexico, in April 2020. Patients were categorized under distinct disease severity outcomes: mild disease or ambulatory care, severe disease or hospitalized, and deceased. To reduce bias related to risk factors, the patients were less than 60 years old and with no diagnosed comorbidities A trait-association phylogenomic approach was used to explore genotype–phenotype associations, represented by the co-occurrence of mutations, disease severity outcome categories, and clusters of Mexican sequences. Phylogenetic results revealed a higher genomic diversity compared to the initial viruses detected during the early stage of the local epidemic. We identified a total of 90 single nucleotide variants compared to the Wuhan-Hu-1 genome, including 54 nonsynonymous mutations. We did not find evidence for the co-occurrence of mutations associated with specific disease outcomes. Therefore, in the group of patients studied, disease severity was likely mainly driven by the host genetic background and other demographic factors. IMPORTANCE The genetic association of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) with different clinical conditions remains unclear and needs further investigation. In this study, we characterized 57 complete SARS-CoV-2 genomes from patients in Mexico with distinct disease severity outcomes: mild disease or ambulatory care, severe disease or hospitalized, and deceased. To reduce bias related to risk factors the patients were less than 60 years old and with no diagnosed comorbidities. We did not find evidence for the co-occurrence of mutations associated with specific disease outcomes. Therefore, in the group of patients studied, disease severity was likely mainly driven by the host genetic background and other demographic factors.
Collapse
|
93
|
Amoutzias GD, Nikolaidis M, Tryfonopoulou E, Chlichlia K, Markoulatos P, Oliver SG. The Remarkable Evolutionary Plasticity of Coronaviruses by Mutation and Recombination: Insights for the COVID-19 Pandemic and the Future Evolutionary Paths of SARS-CoV-2. Viruses 2022; 14:78. [PMID: 35062282 PMCID: PMC8778387 DOI: 10.3390/v14010078] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/22/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022] Open
Abstract
Coronaviruses (CoVs) constitute a large and diverse subfamily of positive-sense single-stranded RNA viruses. They are found in many mammals and birds and have great importance for the health of humans and farm animals. The current SARS-CoV-2 pandemic, as well as many previous epidemics in humans that were of zoonotic origin, highlights the importance of studying the evolution of the entire CoV subfamily in order to understand how novel strains emerge and which molecular processes affect their adaptation, transmissibility, host/tissue tropism, and patho non-homologous genicity. In this review, we focus on studies over the last two years that reveal the impact of point mutations, insertions/deletions, and intratypic/intertypic homologous and non-homologous recombination events on the evolution of CoVs. We discuss whether the next generations of CoV vaccines should be directed against other CoV proteins in addition to or instead of spike. Based on the observed patterns of molecular evolution for the entire subfamily, we discuss five scenarios for the future evolutionary path of SARS-CoV-2 and the COVID-19 pandemic. Finally, within this evolutionary context, we discuss the recently emerged Omicron (B.1.1.529) VoC.
Collapse
Affiliation(s)
- Grigorios D. Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece;
| | - Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece;
| | - Eleni Tryfonopoulou
- Laboratory of Molecular Immunology, Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, 68100 Alexandroupolis, Greece; (E.T.); (K.C.)
| | - Katerina Chlichlia
- Laboratory of Molecular Immunology, Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, 68100 Alexandroupolis, Greece; (E.T.); (K.C.)
| | - Panayotis Markoulatos
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece;
| | - Stephen G. Oliver
- Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
94
|
Lalchhandama K. A history of coronaviruses. WIKIJOURNAL OF MEDICINE 2022. [DOI: 10.15347/wjm/2022.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The history of coronaviruses is an account of the discovery of coronaviruses and the diseases they cause. It starts with a report of a new type of upper-respiratory tract disease among chickens in North Dakota, US, in 1931. The causative agent was identified as a virus in 1933. By 1936, the disease and the virus were recognised as unique from other viral diseases. The virus became known as infectious bronchitis virus (IBV), but later officially renamed as Avian coronavirus. A new brain disease of mice (murine encephalomyelitis) was discovered in 1947 at Harvard Medical School in Boston. The virus was called JHM (after Harvard pathologist John Howard Mueller). Three years later a new mouse hepatitis was reported from the National Institute for Medical Research in London. The causative virus was identified as mouse hepatitis virus (MHV), later renamed Murine coronavirus. In 1961, a virus was obtained from a school boy in Epsom, England, who was suffering from common cold. The sample, designated B814, was confirmed as novel virus in 1965. New common cold viruses (assigned 229E) collected from medical students at the University of Chicago were also reported in 1966. Structural analyses of IBV, MHV, B18 and 229E using transmission electron microscopy revealed that they all belong to the same group of viruses. Making a crucial comparison in 1967, June Almeida and David Tyrrell invented the collective name coronavirus, as all those viruses were characterised by solar corona-like projections (called spikes) on their surfaces. Other coronaviruses have been discovered from pigs, dogs, cats, rodents, cows, horses, camels, Beluga whales, birds and bats. As of 2022, 52 species are described. Bats are found to be the richest source of different species of coronaviruses. All coronaviruses originated from a common ancestor about 293 million years ago. Zoonotic species such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV), Middle East respiratory syndrome-related coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a variant of SARS-CoV, emerged during the past two decades and caused the first pandemics of the 21st century.
Collapse
|
95
|
Fritz M, Nesi N, Denolly S, Boson B, Legros V, Rosolen SG, Briend‐Marchal A, Ar Gouilh M, Leroy EM. Detection of SARS-CoV-2 in two cats during the second wave of the COVID-19 pandemic in France. Vet Med Sci 2022; 8:14-20. [PMID: 34704394 PMCID: PMC8661769 DOI: 10.1002/vms3.638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Although there are several reports in the literature of SARS-CoV-2 infection in cats, few SARS-CoV-2 sequences from infected cats have been published. In this study, SARS-CoV-2 infection was evaluated in two cats by clinical observation, molecular biology (qPCR and NGS), and serology (microsphere immunoassay and seroneutralization). Following the observation of symptomatic SARS-CoV-2 infection in two cats, infection status was confirmed by RT-qPCR and, in one cat, serological analysis for antibodies against N-protein and S-protein, as well as neutralizing antibodies. Comparative analysis of five SARS-CoV-2 sequence fragments obtained from one of the cats showed that this infection was not with one of the three recently emerged variants of SARS-CoV-2. This study provides additional information on the clinical, molecular, and serological aspects of SARS-CoV-2 infection in cats.
Collapse
Affiliation(s)
- Matthieu Fritz
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC)Université de MontpellierIRD 224 ‐ CNRS 5290Institut de Recherche pour le Développement (IRD)MontpellierFrance
| | - Nicolas Nesi
- Groupe de Recherche sur l'Adaptation Microbienne (GRAM 2.0)Normandie UniversitéUNICAENUNIROUENEA2656CaenFrance
| | - Solène Denolly
- CIRI – Centre International de Recherche en InfectiologieTeam EVIRUniv LyonUniversité Claude Bernard Lyon 1InsermU111CNRSUMR5308ENS LyonLyonFrance
| | - Bertrand Boson
- CIRI – Centre International de Recherche en InfectiologieTeam EVIRUniv LyonUniversité Claude Bernard Lyon 1InsermU111CNRSUMR5308ENS LyonLyonFrance
| | - Vincent Legros
- CIRI – Centre International de Recherche en InfectiologieTeam EVIRUniv LyonUniversité Claude Bernard Lyon 1InsermU111CNRSUMR5308ENS LyonLyonFrance
- Campus vétérinaire de LyonVetAgro SupUniversité de LyonMarcy‐l'EtoileFrance
| | - Serge G. Rosolen
- Sorbonne UniversitéINSERMCNRSInstitut de la VisionParisFrance
- Clinique vétérinaire voltaireAsnièresFrance
| | | | - Meriadeg Ar Gouilh
- Groupe de Recherche sur l'Adaptation Microbienne (GRAM 2.0)Normandie UniversitéUNICAENUNIROUENEA2656CaenFrance
- Laboratoire de VirologieCentre Hospitalo‐UniversitaireCaenFrance
| | - Eric M. Leroy
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC)Université de MontpellierIRD 224 ‐ CNRS 5290Institut de Recherche pour le Développement (IRD)MontpellierFrance
| |
Collapse
|
96
|
Negi N, Maurya SP, Singh R, Das BK. An update on host immunity correlates and prospects of re-infection in COVID-19. Int Rev Immunol 2021; 41:367-392. [PMID: 34961403 PMCID: PMC8787841 DOI: 10.1080/08830185.2021.2019727] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/18/2021] [Accepted: 12/08/2021] [Indexed: 01/08/2023]
Abstract
Reinfection with SARS-CoV-2 is not frequent yet the incidence rate of it is increasing globally owing to the slow emergence of drift variants that pose a perpetual threat to vaccination strategies and have a greater propensity for disease reoccurrence. Long-term protection against SARS-CoV-2 reinfection relies on the induction of the innate as well as the adaptive immune response endowed with immune memory. However, a multitude of factors including the selection pressure, the waning immunity against SARS-CoV-2 over the first year after infection possibly favors evolution of more infectious immune escape variants, amplifying the risk of reinfection. Additionally, the correlates of immune protection, the novel SARS-CoV-2 variants of concern (VOC), the durability of the adaptive and mucosal immunity remain major challenges for the development of therapeutic and prophylactic interventions. Interestingly, a recent body of evidence indicated that the gastrointestinal (GI) tract is another important target organ for SARS-CoV-2 besides the respiratory system, potentially increasing the likelihood of reinfection by impacting the microbiome and the immune response via the gut-lung axis. In this review, we summarized the latest development in SARS-CoV-2 reinfection, and explored the untapped potential of trained immunity. We also highlighted the immune memory kinetics of the humoral and cell-mediated immune response, genetic drift of the emerging viral variants, and discussed the current challenges in vaccine development. Understanding the dynamics and the quality of immune response by unlocking the power of the innate, humoral and cell-mediated immunity during SARS-CoV-2 reinfection would open newer avenues for drug discovery and vaccine designs.
Collapse
Affiliation(s)
- Neema Negi
- Department of Chemical Sciences, University of Limerick, Limerick, Ireland
- Bernal Institute, University of Limerick,Limerick, Ireland
| | - Shesh Prakash Maurya
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Ravinder Singh
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Bimal Kumar Das
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
97
|
Islam KU, A-Elgadir TME, Afaq S, Ahmad T, Iqbal J. Molecular and Clinical Aspects of COVID-19 Vaccines and Other Therapeutic Interventions Apropos Emerging Variants of Concern. Front Pharmacol 2021; 12:778219. [PMID: 35002711 PMCID: PMC8734653 DOI: 10.3389/fphar.2021.778219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has overwhelmed the healthcare and economy of the world, with emerging new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) posing an everlasting threat to humanity. While most COVID-19 vaccines provide adequate protective immunological response against the original SARS-CoV-2 variant, there is a pressing need to understand their biological and clinical responses. Recent evidence suggests that some of the new variants of SARS-CoV-2 evade the protection conferred by the existing vaccines, which may impede the ongoing efforts to expedite the vaccination programs worldwide. These concerns have also highlighted the importance of a pan-COVID-19 vaccine, which is currently in the making. Thus, it is imperative to have a better molecular and clinical understanding of the various COVID-19 vaccines and their immunological trajectory against any emerging variant of concerns (VOCs) in particular to break this vicious cycle. Furthermore, other treatment regimens based on cellular therapies and monoclonal antibodies should be explored systematically as an alternative and readily available option considering the possibility of the emergence of more virulent SARS-CoV-2 mutants. In this review, we shed light on the various molecular mechanisms and clinical responses of COVID-19 vaccines. Importantly, we review the recent findings of their long-term immune protection and efficacy against emerging VOCs. Considering that other targeted and effective treatments will complement vaccine therapy, we provide a comprehensive understanding of the role of cell-based therapies, monoclonal antibodies, and immunomodulatory agents as alternative and readily available treatment modalities against any emerging SARS-CoV-2 variant.
Collapse
Affiliation(s)
- Khursheed Ul Islam
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | | | - Sarah Afaq
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Tanveer Ahmad
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Jawed Iqbal
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
98
|
Chakraborty C, Saha A, Sharma AR, Bhattacharya M, Lee SS, Agoramoorthy G. D614G mutation eventuates in all VOI and VOC in SARS-CoV-2: Is it part of the positive selection pioneered by Darwin? MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:237-241. [PMID: 34484868 PMCID: PMC8408019 DOI: 10.1016/j.omtn.2021.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recently, several emerging variants of SARS-CoV-2 have originated from the Wuhan strain and spread throughout the globe within one and a half years. One mutation, D614G, is very prominent in all VOI and VOC in SARS-CoV-2. This mutation might help to increase the viral fitness in all emerging variants where the mutation is present. With the help of this mutation (D614G), the SARS-CoV-2 variants have gained viral fitness to enhance viral replication and increase transmission. This paper attempts to answer the question of whether the mutation (D614G) occurs due to positive selection or not.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore RD, Kolkata, West Bengal 700126, India
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Republic of Korea
- Corresponding author: Chiranjib Chakraborty, PhD, Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore RD, Jagannathpur, Kolkata, West Bengal 700126, India.
| | - Abinit Saha
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore RD, Kolkata, West Bengal 700126, India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Republic of Korea
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756020 Odisha, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Republic of Korea
- Corresponding author: Sang-Soo Lee, MD, PhD, Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea.
| | - Govindasamy Agoramoorthy
- College of Pharmacy and Health Care, Tajen University, Yanpu, Pingtung 907, Taiwan
- Corresponding author: Govindasamy Agoramoorthy, PhD, College of Pharmacy and Health Care, Tajen University, Yanpu, Pingtung 907, Taiwan.
| |
Collapse
|
99
|
Li J, Lai S, Gao GF, Shi W. The emergence, genomic diversity and global spread of SARS-CoV-2. Nature 2021; 600:408-418. [PMID: 34880490 DOI: 10.1038/s41586-021-04188-6] [Citation(s) in RCA: 251] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022]
Abstract
Since the first cases of COVID-19 were documented in Wuhan, China in 2019, the world has witnessed a devastating global pandemic, with more than 238 million cases, nearly 5 million fatalities and the daily number of people infected increasing rapidly. Here we describe the currently available data on the emergence of the SARS-CoV-2 virus, the causative agent of COVID-19, outline the early viral spread in Wuhan and its transmission patterns in China and across the rest of the world, and highlight how genomic surveillance, together with other data such as those on human mobility, has helped to trace the spread and genetic variation of the virus and has also comprised a key element for the control of the pandemic. We pay particular attention to characterizing and describing the international spread of the major variants of concern of SARS-CoV-2 that were first identified in late 2020 and demonstrate that virus evolution has entered a new phase. More broadly, we highlight our currently limited understanding of coronavirus diversity in nature, the rapid spread of the virus and its variants in such an increasingly connected world, the reduced protection of vaccines, and the urgent need for coordinated global surveillance using genomic techniques. In summary, we provide important information for the prevention and control of both the ongoing COVID-19 pandemic and any new diseases that will inevitably emerge in the human population in future generations.
Collapse
Affiliation(s)
- Juan Li
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China.,Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in the Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Shengjie Lai
- WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton, UK
| | - George F Gao
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China.,CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology,, Chinese Academy of Sciences, Beijing, China.,Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, China
| | - Weifeng Shi
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China. .,Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in the Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China.
| |
Collapse
|
100
|
Tao K, Tzou PL, Nouhin J, Gupta RK, de Oliveira T, Kosakovsky Pond SL, Fera D, Shafer RW. The biological and clinical significance of emerging SARS-CoV-2 variants. Nat Rev Genet 2021; 22:757-773. [PMID: 34535792 PMCID: PMC8447121 DOI: 10.1038/s41576-021-00408-x] [Citation(s) in RCA: 696] [Impact Index Per Article: 174.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 12/13/2022]
Abstract
The past several months have witnessed the emergence of SARS-CoV-2 variants with novel spike protein mutations that are influencing the epidemiological and clinical aspects of the COVID-19 pandemic. These variants can increase rates of virus transmission and/or increase the risk of reinfection and reduce the protection afforded by neutralizing monoclonal antibodies and vaccination. These variants can therefore enable SARS-CoV-2 to continue its spread in the face of rising population immunity while maintaining or increasing its replication fitness. The identification of four rapidly expanding virus lineages since December 2020, designated variants of concern, has ushered in a new stage of the pandemic. The four variants of concern, the Alpha variant (originally identified in the UK), the Beta variant (originally identified in South Africa), the Gamma variant (originally identified in Brazil) and the Delta variant (originally identified in India), share several mutations with one another as well as with an increasing number of other recently identified SARS-CoV-2 variants. Collectively, these SARS-CoV-2 variants complicate the COVID-19 research agenda and necessitate additional avenues of laboratory, epidemiological and clinical research.
Collapse
Affiliation(s)
- Kaiming Tao
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Philip L Tzou
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Janin Nouhin
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Ravindra K Gupta
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), University of KwaZulu-Natal, Durban, South Africa
| | | | - Daniela Fera
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA, USA
| | - Robert W Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University, Stanford, CA, USA.
| |
Collapse
|