51
|
Ooms D, de Vries A, Koedijk FD, Generaal E, Friesema IH, Rouvroye M, van Lelyveld SF, van den Beld MJ, Notermans DW, van Schelven P, van den Brink JF, Hartog T, Veenstra T, Slavenburg S, Sinnige JC, Ruijs WL. Large outbreak of typhoid fever on a river cruise ship used as accommodation for asylum seekers, the Netherlands, 2022. Euro Surveill 2024; 29. [PMID: 38304948 PMCID: PMC10835751 DOI: 10.2807/1560-7917.es.2024.29.5.2300211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/28/2023] [Indexed: 02/03/2024] Open
Abstract
On 6 April 2022, the Public Health Service of Kennemerland, the Netherlands, was notified about an outbreak of fever and abdominal complaints on a retired river cruise ship, used as shelter for asylum seekers. The diagnosis typhoid fever was confirmed on 7 April. An extensive outbreak investigation was performed. Within 47 days, 72 typhoid fever cases were identified among asylum seekers (n = 52) and staff (n = 20), of which 25 were hospitalised. All recovered after treatment. Consumption of food and tap water on the ship was associated with developing typhoid fever. The freshwater and wastewater tanks shared a common wall with severe corrosion and perforations, enabling wastewater to leak into the freshwater tank at high filling levels. Salmonella Typhi was cultured from the wastewater tank, matching the patient isolates. In the freshwater tank, Salmonella species DNA was detected by PCR, suggesting the presence of the bacterium and supporting the conclusion of contaminated freshwater as the probable source of the outbreak. Outbreaks of uncommon infections may occur if persons from endemic countries are accommodated in crowded conditions. Especially when accommodating migrants on ships, strict supervision on water quality and technical installations are indispensable to guarantee the health and safety of the residents.
Collapse
Affiliation(s)
- Daisy Ooms
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Anne de Vries
- Department of Communicable Disease Control, Public Health Service of Kennemerland, Haarlem, the Netherlands
| | - Femke Dh Koedijk
- Department of Communicable Disease Control, Public Health Service of Twente, Enschede, the Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Ellen Generaal
- Department of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, the Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Ingrid Hm Friesema
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Maxine Rouvroye
- Department of Internal Medicine, Spaarne Gasthuis, Haarlem/Hoofddorp, the Netherlands
| | | | - Maaike Jc van den Beld
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Daan W Notermans
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Patrick van Schelven
- Department of Communicable Disease Control, Public Health Service of Gelderland-Midden, Arnhem, the Netherlands
| | - Janine Fh van den Brink
- Department of Communicable Disease Control, Public Health Service of IJsselland, Zwolle, the Netherlands
| | - Tanja Hartog
- Department of Communicable Disease Control, Public Health Service of Kennemerland, Haarlem, the Netherlands
| | - Thijs Veenstra
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Serena Slavenburg
- Regional Public Health Laboratory Kennemerland, Haarlem, the Netherlands
| | - Jan C Sinnige
- Regional Public Health Laboratory Kennemerland, Haarlem, the Netherlands
| | - Wilhelmina Lm Ruijs
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
52
|
Benevides VP, Saraiva MMS, Nascimento CF, Delgado-Suárez EJ, Oliveira CJB, Silva SR, Miranda VFO, Christensen H, Olsen JE, Berchieri Junior A. Genomic Features and Phylogenetic Analysis of Antimicrobial-Resistant Salmonella Mbandaka ST413 Strains. Microorganisms 2024; 12:312. [PMID: 38399716 PMCID: PMC10893270 DOI: 10.3390/microorganisms12020312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, Salmonella enterica subsp. enterica serovar Mbandaka (S. Mbandaka) has been increasingly isolated from laying hens and shell eggs around the world. Moreover, this serovar has been identified as the causative agent of several salmonellosis outbreaks in humans. Surprisingly, little is known about the characteristics of this emerging serovar, and therefore, we investigated antimicrobial resistance, virulence, and prophage genes of six selected Brazilian strains of Salmonella Mbandaka using Whole Genome Sequencing (WGS). Multi-locus sequence typing revealed that the tested strains belong to Sequence Type 413 (ST413), which has been linked to recent multi-country salmonellosis outbreaks in Europe. A total of nine resistance genes were detected, and the most frequent ones were aac(6')-Iaa, sul1, qacE, blaOXA-129, tet(B), and aadA1. A point mutation in ParC at the 57th position (threonine → serine) associated with quinolone resistance was present in all investigated genomes. A 112,960 bp IncHI2A plasmid was mapped in 4/6 strains. This plasmid harboured tetracycline (tetACDR) and mercury (mer) resistance genes, genes contributing to conjugative transfer, and genes involved in plasmid maintenance. Most strains (four/six) carried Salmonella genomic island 1 (SGI1). All S. Mbandaka genomes carried seven pathogenicity islands (SPIs) involved in intracellular survival and virulence: SPIs 1-5, 9, and C63PI. The virulence genes csgC, fimY, tcfA, sscA, (two/six), and ssaS (one/six) were absent in some of the genomes; conversely, fimA, prgH, and mgtC were present in all of them. Five Salmonella bacteriophage sequences (with homology to Escherichia phage phiV10, Enterobacteria phage Fels-2, Enterobacteria phage HK542, Enterobacteria phage ST64T, Salmonella phage SW9) were identified, with protein counts between 31 and 54, genome lengths of 24.7 bp and 47.7 bp, and average GC content of 51.25%. In the phylogenetic analysis, the genomes of strains isolated from poultry in Brazil clustered into well-supported clades with a heterogeneous distribution, primarily associated with strains isolated from humans and food. The phylogenetic relationship of Brazilian S. Mbandaka suggests the presence of strains with high epidemiological significance and the potential to be linked to foodborne outbreaks. Overall, our results show that isolated strains of S. Mbandaka are multidrug-resistant and encode a rather conserved virulence machinery, which is an epidemiological hallmark of Salmonella strains that have successfully disseminated both regionally and globally.
Collapse
Affiliation(s)
- Valdinete P Benevides
- Postgraduate Program in Agricultural Microbiology, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Mauro M S Saraiva
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Camila F Nascimento
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil
| | - Enrique J Delgado-Suárez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Celso J B Oliveira
- Center for Agricultural Sciences, Department of Animal Science, Federal University of Paraiba (CCA/UFPB), Areia 58051-900, Brazil
- Global One Health Initiative (GOHi), The Ohio State University, Columbus, OH 43210, USA
| | - Saura R Silva
- Laboratory of Plant Systematics, Department of Biology, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil
| | - Vitor F O Miranda
- Laboratory of Plant Systematics, Department of Biology, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil
| | - Henrik Christensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - John E Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Angelo Berchieri Junior
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil
| |
Collapse
|
53
|
Leão C, Silveira L, Usié A, Gião J, Clemente L, Themudo P, Amaro A, Pista A. Genetic Diversity of Salmonella enterica subsp. enterica Serovar Enteritidis from Human and Non-Human Sources in Portugal. Pathogens 2024; 13:112. [PMID: 38392849 PMCID: PMC10892295 DOI: 10.3390/pathogens13020112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis) is one of the leading causes of foodborne infections associated with broilers and laying hens. Portugal has had the lowest notification rates of salmonellosis in recent years, due to the vaccinations of layer and breeder flocks and strict compliance with biosecurity measures. However, data about the genetic diversity of S. Enteritidis in Portugal are scarce. In this study, 102 S. Enteritidis isolates selected from human (n = 63) and non-human sources (n = 39) were characterized by serotyping, antimicrobial susceptibility, and whole genome sequencing. The S. Enteritidis population was mainly resistant to fluoroquinolones, and a sole isolate showed resistance to extended-spectrum cephalosporins. ST11 was the most frequent sequence type, and three novel STs from human isolates (ST9236, ST4457, and ST9995) were assigned. Several Salmonella pathogenic islands (SPI) and Putative SPI were present in the genomes, namely SPI-1, 2, 3, 4, 5, 9, 10, 12, 13, and 14, C63PI, CS54_island, and 170 virulence genes were identified. The phylogenetic analysis revealed that strains from Portugal are genetically heterogeneous regarding sample type, collection date, and genetic content. This study increases the available data, essential to a better characterization of strains in a global context.
Collapse
Affiliation(s)
- Célia Leão
- Laboratory of Bacteriology and Mycology, Department of Antimicrobial Resistance, National Institute of Agrarian and Veterinary Research (INIAV, IP), 2780-157 Oeiras, Portugal; (C.L.); (J.G.); (L.C.); (P.T.); (A.A.)
- MED—Mediterranean Institute for Agriculture, Environment and Development, 7006-554 Évora, Portugal
| | - Leonor Silveira
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, 1649-016 Lisbon, Portugal;
| | - Ana Usié
- Department of Animal Genomics and Bioinformatics, Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), 7801-908 Beja, Portugal;
- MED—Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento & CHANGE–Global Change and Sustainability Institute, CEBAL, 7801-908 Beja, Portugal
| | - Joana Gião
- Laboratory of Bacteriology and Mycology, Department of Antimicrobial Resistance, National Institute of Agrarian and Veterinary Research (INIAV, IP), 2780-157 Oeiras, Portugal; (C.L.); (J.G.); (L.C.); (P.T.); (A.A.)
| | - Lurdes Clemente
- Laboratory of Bacteriology and Mycology, Department of Antimicrobial Resistance, National Institute of Agrarian and Veterinary Research (INIAV, IP), 2780-157 Oeiras, Portugal; (C.L.); (J.G.); (L.C.); (P.T.); (A.A.)
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Science, 1300-477 Lisbon, Portugal
| | - Patricia Themudo
- Laboratory of Bacteriology and Mycology, Department of Antimicrobial Resistance, National Institute of Agrarian and Veterinary Research (INIAV, IP), 2780-157 Oeiras, Portugal; (C.L.); (J.G.); (L.C.); (P.T.); (A.A.)
| | - Ana Amaro
- Laboratory of Bacteriology and Mycology, Department of Antimicrobial Resistance, National Institute of Agrarian and Veterinary Research (INIAV, IP), 2780-157 Oeiras, Portugal; (C.L.); (J.G.); (L.C.); (P.T.); (A.A.)
| | - Angela Pista
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, 1649-016 Lisbon, Portugal;
| |
Collapse
|
54
|
Hugho EA, Kumburu HH, Thomas K, Lukambagire AS, Wadugu B, Amani N, Kinabo G, Hald T, Mmbaga BT. High diversity of Salmonella spp. from children with diarrhea, food, and environmental sources in Kilimanjaro - Tanzania: one health approach. Front Microbiol 2024; 14:1277019. [PMID: 38235427 PMCID: PMC10793262 DOI: 10.3389/fmicb.2023.1277019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024] Open
Abstract
Salmonella is one of the most frequent causes of diarrhea globally. This study used a One Health approach to identify Salmonella species in children admitted with diarrhea and tested samples from the cases' household environment to investigate their genetic similarity using whole genome sequencing. Surveillance of hospitalized diarrhea cases among children under 5 years was conducted in rural and urban Moshi Districts in the Kilimanjaro Region of Tanzania from July 2020 through November 2022. Household visits were conducted for every child case whose parent/caregiver provided consent. Stool samples, water, domestic animal feces, meat, and milk were collected and tested for Salmonella. Isolates were sequenced on the Illumina NextSeq platform. Multilocus Sequence Typing and phylogenetic analyses were performed to map the genetic relatedness of the isolates. Salmonella was isolated from 72 (6.0%) of 1,191 samples. The prevalence of Salmonella in children with diarrhea, domestic animal feces, food, and water was 2.6% (n = 8/306), 4.6% (n = 8/174), 4.2% (n = 16/382), and 17.3% (n = 39/225), respectively. Four (1.3%) of the 306 enrolled children had a Salmonella positive sample taken from their household. The common sequence types (STs) were ST1208, ST309, ST166, and ST473. Salmonella Newport was shared by a case and a raw milk sample taken from the same household. The study revealed a high diversity of Salmonella spp., however, we detected a Salmonella clone of ST1208 isolated at least from all types of samples. These findings contribute to understanding the epidemiology of Salmonella in the region and provide insight into potential control of foodborne diseases through a One Health approach.
Collapse
Affiliation(s)
- Ephrasia A. Hugho
- Biotechnology Research Laboratory, Kilimanjaro Clinical Research Institute, Moshi, Kilimanjaro, Tanzania
- Institute of Public Health, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Happiness H. Kumburu
- Biotechnology Research Laboratory, Kilimanjaro Clinical Research Institute, Moshi, Kilimanjaro, Tanzania
- Department of Biochemistry, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Kate Thomas
- Ministry of Primary Industries, New Zealand Food Safety, Wellington, New Zealand
| | | | - Boaz Wadugu
- Biotechnology Research Laboratory, Kilimanjaro Clinical Research Institute, Moshi, Kilimanjaro, Tanzania
| | - Nelson Amani
- Biotechnology Research Laboratory, Kilimanjaro Clinical Research Institute, Moshi, Kilimanjaro, Tanzania
| | - Grace Kinabo
- Biotechnology Research Laboratory, Kilimanjaro Clinical Research Institute, Moshi, Kilimanjaro, Tanzania
- Department of Pediatrics, Christian Medical Center, Kilimanjaro, Moshi, Tanzania
- Faculty of Medicine, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Tine Hald
- Research Group for Genomic Epidemiology, Technical University of Denmark, Lyngby, Denmark
| | - Blandina T. Mmbaga
- Biotechnology Research Laboratory, Kilimanjaro Clinical Research Institute, Moshi, Kilimanjaro, Tanzania
- Department of Pediatrics, Christian Medical Center, Kilimanjaro, Moshi, Tanzania
- Faculty of Medicine, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| |
Collapse
|
55
|
Bolzoni L, Conter M, Lamperti L, Scaltriti E, Morganti M, Poeta A, Vecchi M, Paglioli S, Rampini A, Ramoni P, De Vita D, Bacci C, Rega M, Andriani L, Pongolini S, Bonardi S. Salmonella in horses at slaughter and public health effects in Italy. Int J Food Microbiol 2024; 408:110429. [PMID: 37839149 DOI: 10.1016/j.ijfoodmicro.2023.110429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023]
Abstract
The study assessed the role of equids at slaughter as faecal carriers of Salmonella enterica and the occurrence of contaminated equid carcasses during the slaughter process in Northern Italy (Emilia-Romagna Region). From June to November 2021, 152 equids (146 horses, 5 donkeys and 1 mule) were tested for Salmonella both in caecal contents and through carcass swabs. Antimicrobial resistance (AMR) of recovered strains was tested against 15 antimicrobials. Salmonella was detected in 3/152 of the caecal contents (2.0 %), while all carcass samples were negative. S. enterica serovars Enteriditis, Typhimurium and Stanleyville were identified. The only AMR isolate was S. Typhimurium with AMR profile AmCStxT. Considering the consumption of raw horse meat (i.e., minced raw meat named "pesto di cavallo" and dried and smoked strips named "sfilacci di cavallo") in different areas of Northern Italy, we also investigated the possible link between horse meat eating and salmonellosis cases in the human population in the same area. Specifically, we compared the Salmonella strains collected during the study with those routinely processed in the laboratory surveillance system for human salmonellosis in Emilia-Romagna (a region with about 4.5 million inhabitants). The comparison was based on whole genome sequencing data through core genome multi-locus sequence typing (cgMLST) used in routine surveillance. A genomic match in cgMLST was found between the strain of S. enterica serovar Enteritidis isolated from a horse caecal content and an enduring outbreak of 17 human cases in Emilia-Romagna during the study period. The consequent epidemiological investigation highlighted that a number of cases with known food history reported the consumption of horse meat and traced different batches of the consumed meat, released weeks apart from each other, to the slaughter investigated in the study. The results of the epidemiological investigation suggested the role of horses in the S. enterica serovar Enteritidis outbreak affecting raw horse meat consumers. This study shows that, despite the low prevalence on equid carcasses, S. enterica in horse meat can represent a risk to consumers. From the perspective of the slaughter activities, this highlights the need to maintain a high level of hygiene during the entire process, starting from the hygiene at lairage up to the slaughtering phase and dressing of carcasses.
Collapse
Affiliation(s)
- Luca Bolzoni
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Parma, Italy
| | - Mauro Conter
- Department of Veterinary Science, Unit of Inspection of Food of Animal Origin, University of Parma, Italy
| | - Luca Lamperti
- Department of Veterinary Science, Unit of Inspection of Food of Animal Origin, University of Parma, Italy
| | - Erika Scaltriti
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Parma, Italy
| | - Marina Morganti
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Parma, Italy
| | - Antonio Poeta
- Hygiene and Public Health Unit, Local Health Authority, Reggio Emilia, Italy
| | - Marco Vecchi
- Specialization School in Inspection of Food of Animal Origin, University of Parma, Italy
| | - Silvia Paglioli
- Hygiene and Public Health Unit, Local Health Authority, Parma, Italy
| | | | - Paolo Ramoni
- Hygiene and Public Health Unit, Local Health Authority, Piacenza, Italy
| | - Daniela De Vita
- Hygiene and Public Health Unit, Local Health Authority, Reggio Emilia, Italy
| | - Cristina Bacci
- Department of Veterinary Science, Unit of Inspection of Food of Animal Origin, University of Parma, Italy
| | - Martina Rega
- Department of Veterinary Science, Unit of Inspection of Food of Animal Origin, University of Parma, Italy
| | - Laura Andriani
- Department of Veterinary Science, Unit of Inspection of Food of Animal Origin, University of Parma, Italy
| | - Stefano Pongolini
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Parma, Italy
| | - Silvia Bonardi
- Department of Veterinary Science, Unit of Inspection of Food of Animal Origin, University of Parma, Italy.
| |
Collapse
|
56
|
Wang W, Liu F, Li H, Li M, Hu Y, Li F, Xiao J, Dong Y. Emergence and genomic characteristics of multi-drug-resistant Salmonella in pet turtles and children with diarrhoea. Microb Genom 2024; 10:001164. [PMID: 38170193 PMCID: PMC10868623 DOI: 10.1099/mgen.0.001164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Pet turtles are a well-recognized source of human salmonellosis, posing a threat to human health, particularly children who commonly keep pet turtles. To date, the genomic characteristics of Salmonella among pet turtles and children has not been well described. We investigated the prevalence, antimicrobial resistance (AMR) and genomic characteristics of Salmonella from pet turtles in Beijing, China. In total, 9.6 % (46/480) of pet turtles were positive for Salmonella with S. Thompson being the dominant serovar (19/46) in 2019. Moreover, 80.4 % of Salmonella were multi-drug resistant (MDR) and 60.7 % were resistant to ampicillin, streptomycin, sulfonamides and tetracycline (ASSuT). We further compared the genomes of S. Thompson isolates from pet turtles (n=19) with those from children with diarrhoea (n=28) in the same region and year, most of which were sequence type (ST)26, with one novel ST7937 identified from a child-associated isolate. S. Thompson isolates from children with diarrhoea exhibited less resistance than isolates from pet turtles. Most MDR isolates possessed multiple AMR genes, including the AmpC β-lactamase-encoding genes bla DHA-15 and bla DHA-1 which co-occurred with the IncA/C and IncHI plasmid replicon types. To the best of our knowledge, this is the first time that the bla DHA-15 gene has been detected from Salmonella. Several pet turtle-associated S. Thompson isolates comprised phylogenetically close clusters with those from children with diarrhoea (<20 SNP differences). Bayesian analysis demonstrated that the Chinese ST26 S. Thompson strains had a recent evolutionary history and evolved into two major clades, with one clade acquiring various resistant plasmids. Our findings revealed the emergence of MDR Salmonella among pet turtles in China and provided evidence for the interspecies transmission of S. Thompson.
Collapse
Affiliation(s)
- Wei Wang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, PR China
- Division IV of Food Safety Standards, China National Center for Food Safety Risk Assessment, Beijing, PR China
| | - Feng Liu
- Pharmaceutical Department, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao, Shandong, PR China
| | - Hui Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, PR China
| | - Menghan Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, PR China
| | - Yujie Hu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, PR China
| | - Fengqin Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, PR China
| | - Jing Xiao
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, PR China
- Division IV of Food Safety Standards, China National Center for Food Safety Risk Assessment, Beijing, PR China
| | - Yinping Dong
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, PR China
| |
Collapse
|
57
|
Carhuaricra-Huaman D, Setubal JC. Step-by-Step Bacterial Genome Comparison. Methods Mol Biol 2024; 2802:107-134. [PMID: 38819558 DOI: 10.1007/978-1-0716-3838-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Thanks to advancements in genome sequencing and bioinformatics, thousands of bacterial genome sequences are available in public databases. This presents an opportunity to study bacterial diversity in unprecedented detail. This chapter describes a complete bioinformatics workflow for comparative genomics of bacterial genomes, including genome annotation, pangenome reconstruction and visualization, phylogenetic analysis, and identification of sequences of interest such as antimicrobial-resistance genes, virulence factors, and phage sequences. The workflow uses state-of-the-art, open-source tools. The workflow is presented by means of a comparative analysis of Salmonella enterica serovar Typhimurium genomes. The workflow is based on Linux commands and scripts, and result visualization relies on the R environment. The chapter provides a step-by-step protocol that researchers with basic expertise in bioinformatics can easily follow to conduct investigations on their own genome datasets.
Collapse
Affiliation(s)
- Dennis Carhuaricra-Huaman
- Programa de Pós-Graduação Interunidades em Bioinformática, Instituto de Matemática e Estatística, Universidade de São Paulo, Sao Paulo, SP, Brazil
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, San Borja, Lima, Peru
| | - João Carlos Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
58
|
Moore HL, Aabye M, Hoban A, Rosner B, Lefevre SK, Litrup E, Müller L, Ethelberg S, Simon S, Balasegaram S, Larkin L, Jernberg C, Takkinen J. Multinational collaboration in solving a European Salmonella Braenderup outbreak linked to imported melons, 2021. Euro Surveill 2024; 29:2300273. [PMID: 38179625 PMCID: PMC10905663 DOI: 10.2807/1560-7917.es.2024.29.1.2300273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/23/2023] [Indexed: 01/06/2024] Open
Abstract
A genomic cluster of Salmonella Braenderup ST22, a serovar of Salmonella enterica subsp. enterica which causes symptoms of gastrointestinal illness, was notified by Danish authorities to the European Centre for Disease Prevention and Control (ECDC) on 3 May 2021. By 6 July 2021, S. Braenderup outbreak cases (n = 348) had been reported from 12 countries in the European Union/European Economic Area (EU/EEA) and the United Kingdom (UK), including 68 hospitalised cases. With support from affected EU/EEA countries, and in partnership with the European Food Safety Authority (EFSA), ECDC established an international outbreak investigation team to rapidly identify the source and prevent outbreak spread. Consumption information was shared with affected countries through a standard line list, revealing that 124 of 197 cases (63%) reported having eaten (any) melons within 7 days prior to disease onset. The speed and completeness of the investigation, which identified the outbreak vehicle as galia melons imported from Honduras in June 2021, was a direct result of extensive collaboration and information sharing between countries' national food safety and public health authorities. This article describes the outbreak and the benefits, successes, and challenges of multi-country collaboration for consideration in future large foodborne outbreaks across Europe.
Collapse
Affiliation(s)
- Hannah L Moore
- UK Field Epidemiology Training Program (UK FETP), UK Health Security Agency, London, United Kingdom
- UK Health Security Agency, London, United Kingdom
| | - Martine Aabye
- European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control, (ECDC), Stockholm, Sweden
- Statens Serum Institut, Copenhagen, Denmark
- The Danish Health Authority, Copenhagen, Denmark
| | - Ann Hoban
- UK Health Security Agency, London, United Kingdom
| | | | | | - Eva Litrup
- Statens Serum Institut, Copenhagen, Denmark
| | - Luise Müller
- UK Health Security Agency, London, United Kingdom
| | - Steen Ethelberg
- Statens Serum Institut, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Cecilia Jernberg
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Johanna Takkinen
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| |
Collapse
|
59
|
Rodrigues IC, Cristal AP, Ribeiro-Almeida M, Silveira L, Prata JC, Simões R, Vaz-Pires P, Pista Â, Martins da Costa P. Gulls in Porto Coastline as Reservoirs for Salmonella spp.: Findings from 2008 and 2023. Microorganisms 2023; 12:59. [PMID: 38257887 PMCID: PMC10819206 DOI: 10.3390/microorganisms12010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Gulls act as intermediaries in the exchange of microorganisms between the environment and human settlements, including Salmonella spp. This study assessed the antimicrobial resistance and molecular profiles of Salmonella spp. isolates obtained from fecal samples of gulls in the city of Porto, Portugal, in 2008 and 2023 and from water samples in 2023. Antimicrobial susceptibility profiling revealed an improvement in the prevalence (71% to 17%) and antimicrobial resistance between the two collection dates. Two isolate collections from both 2008 and 2023 underwent serotyping and whole-genome sequencing, revealing genotypic changes, including an increased frequency in the monophasic variant of S. Typhimurium. qacE was identified in 2008 and 2023 in both water and fecal samples, with most isolates exhibiting an MDR profile. The most frequently observed plasmid types were IncF in 2008 (23%), while IncQ1 predominated in 2023 (43%). Findings suggest that Salmonella spp. circulate between humans, animals, and the environment. However, the genetic heterogeneity among the isolates from the gulls' feces and the surface water may indicate a complex ecological and evolutionary dynamic shaped by changing conditions. The observed improvements are likely due to measures to reduce biological contamination and antimicrobial resistance. Nevertheless, additional strategies must be implemented to reduce the public health risk modeled by the dissemination of pathogens by gulls.
Collapse
Affiliation(s)
- Inês C. Rodrigues
- ICBAS-UP—School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (I.C.R.); (A.P.C.); (M.R.-A.); (J.C.P.); (R.S.); (P.V.-P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto, de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Ana Paula Cristal
- ICBAS-UP—School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (I.C.R.); (A.P.C.); (M.R.-A.); (J.C.P.); (R.S.); (P.V.-P.)
| | - Marisa Ribeiro-Almeida
- ICBAS-UP—School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (I.C.R.); (A.P.C.); (M.R.-A.); (J.C.P.); (R.S.); (P.V.-P.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Leonor Silveira
- INSA—National Institute of Health, Department of Infectious Diseases, Av. Padre Cruz, 1649-016 Lisbon, Portugal; (L.S.); (Â.P.)
| | - Joana C. Prata
- ICBAS-UP—School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (I.C.R.); (A.P.C.); (M.R.-A.); (J.C.P.); (R.S.); (P.V.-P.)
- 1H-TOXRUN—One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
| | - Roméo Simões
- ICBAS-UP—School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (I.C.R.); (A.P.C.); (M.R.-A.); (J.C.P.); (R.S.); (P.V.-P.)
| | - Paulo Vaz-Pires
- ICBAS-UP—School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (I.C.R.); (A.P.C.); (M.R.-A.); (J.C.P.); (R.S.); (P.V.-P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto, de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Ângela Pista
- INSA—National Institute of Health, Department of Infectious Diseases, Av. Padre Cruz, 1649-016 Lisbon, Portugal; (L.S.); (Â.P.)
| | - Paulo Martins da Costa
- ICBAS-UP—School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (I.C.R.); (A.P.C.); (M.R.-A.); (J.C.P.); (R.S.); (P.V.-P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto, de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
60
|
Gómez-Baltazar A, Godínez-Oviedo A, Vázquez-Marrufo G, Vázquez-Garcidueñas MS, Hernández-Iturriaga M. Genomic analysis of the MLST population structure and antimicrobial resistance genes associated with Salmonella enterica in Mexico. Genome 2023; 66:319-332. [PMID: 37478495 DOI: 10.1139/gen-2023-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Salmonella enterica is one of the most commonly reported foodborne pathogens by public health agencies worldwide. In this study, the multilocus sequence typing (MLST) population structure and frequency of antimicrobial resistance (AMR) genes were evaluated in S. enterica strains from Mexico (n = 2561). The most common sources of isolation were food (44.28%), environment (27.41%), animal-related (24.83%), and human (3.48%). The most prevalent serovars were Newport (8.51%), Oranienburg (7.03%), Anatum (5.78%), Typhimurium (5.12%), and Infantis (4.57%). As determined by the 7-gene MLST scheme, the most frequent sequence types were ST23, ST64, and ST32. The core genome MLST scheme identified 132 HC2000 and 195 HC900 hierarchical clusters, with the HC2000_2 cluster being the most prevalent in Mexico (n = 256). A total of 78 different AMR genes belonging to 13 antimicrobial classes were detected in 638 genomic assemblies of S. enterica. The most frequent class was aminoglycosides (31.76%), followed by tetracyclines (12.53%) and sulfonamides (11.91%). These results can help public health agencies in Mexico prioritize their efforts and resources to increase the genomic sequencing of circulating Salmonella strains. Additionally, they provide valuable information for local and global public health efforts to reduce the impact of foodborne diseases and AMR.
Collapse
Affiliation(s)
- Adrián Gómez-Baltazar
- Departamento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Santiago de Querétaro C.P. 76010, Querétaro, Mexico
| | - Angélica Godínez-Oviedo
- Departamento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Santiago de Querétaro C.P. 76010, Querétaro, Mexico
| | - Gerardo Vázquez-Marrufo
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro C.P. 58893, Michoacán, Mexico
| | - Ma Soledad Vázquez-Garcidueñas
- División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez," Universidad Michoacana de San Nicolás de Hidalgo, Morelia C.P. 58020, Michoacán, Mexico
| | - Montserrat Hernández-Iturriaga
- Departamento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Santiago de Querétaro C.P. 76010, Querétaro, Mexico
| |
Collapse
|
61
|
Martins IM, Seribelli AA, Machado Ribeiro TR, da Silva P, Lustri BC, Hernandes RT, Falcão JP, Moreira CG. Invasive non-typhoidal Salmonella (iNTS) aminoglycoside-resistant ST313 isolates feature unique pathogenic mechanisms to reach the bloodstream. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 116:105519. [PMID: 37890808 DOI: 10.1016/j.meegid.2023.105519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Invasive non-typhoidal Salmonella (iNTS) from the clonal type ST313 (S. Typhimurium ST313) is the primary cause of invasive salmonellosis in Africa. Recently, in Brazil, iNTS ST313 strains have been isolated from different sources, but there is a lack of understanding of the mechanisms behind how these gut bacteria can break the gut barrier and reach the patient's bloodstream. Here, we compare 13 strains of S. Typhimurium ST313, previously unreported isolates, from human blood cultures, investigating aspects of virulence and mechanisms of resistance. Initially, RNAseq analyses between ST13-blood isolate and SL1344 (ST19) prototype revealed 15 upregulated genes directly related to cellular invasion and replication, such as sopD2, sifB, and pipB. Limited information is available about S. Typhimurium ST313 pathogenesis and epidemiology, especially related to the global distribution of strains. Herein, the correlation of strains isolated from different sources in Brazil was employed to compare clinical and non-clinical isolates, a total of 22 genomes were studied by single nucleotide polymorphism (SNPs). The epidemiological analysis of 22 genomes of S. Typhimurium ST313 strains grouped them into three distinct clusters (A, B, and C) by SNP analysis, where cluster A comprised five, group B six, and group C 11. The 13 clinical blood isolates were all resistant to streptomycin, 92.3% of strains were resistant to ampicillin and 15.39% were resistant to kanamycin. The resistance genes acrA, acrB, mdtK, emrB, emrR, mdsA, and mdsB related to the production of efflux pumps were detected in all (100%) strains studied, similar to pathogenic traits investigated. In conclusion, we evidenced that S. Typhimurium ST313 strains isolated in Brazil have unique epidemiology. The elevated frequencies of virulence genes such as sseJ, sopD2, and pipB are a major concern in these Brazilian isolates, showing a higher pathogenic potential.
Collapse
Affiliation(s)
- Isabela Mancini Martins
- Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista- UNESP- Departamento de Ciências Biológicas, Araraquara, SP, Brazil
| | - Amanda Aparecida Seribelli
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo- USP, Ribeirão Preto, SP, Brazil
| | - Tamara R Machado Ribeiro
- Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista- UNESP- Departamento de Ciências Biológicas, Araraquara, SP, Brazil
| | - Patrick da Silva
- Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista- UNESP- Departamento de Ciências Biológicas, Araraquara, SP, Brazil
| | - Bruna Cardinali Lustri
- Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista- UNESP- Departamento de Ciências Biológicas, Araraquara, SP, Brazil
| | - Rodrigo T Hernandes
- Instituto de Biociências, Universidade Estadual Paulista- UNESP, Botucatu, SP, Brazil
| | - Juliana Pfrimer Falcão
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo- USP, Ribeirão Preto, SP, Brazil.
| | - Cristiano Gallina Moreira
- Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista- UNESP- Departamento de Ciências Biológicas, Araraquara, SP, Brazil; Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
62
|
Thomas NE, Ugokwe NI, Kinsella A, Galyov E, van Schaik W, Joyce N, Nobrega FL, Millard A, Wilkinson RC. Genome Sequence and Characterization of Coliphage Môr Ffagbaw. PHAGE (NEW ROCHELLE, N.Y.) 2023; 4:159-164. [PMID: 40134791 PMCID: PMC11932519 DOI: 10.1089/phage.2023.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Background The quality of coastal waters around the United Kingdom is an area of increasing concern following sewer overflow, where wastewater is discharged into the environment. Coliphages, viruses that infect coliform bacteria, are associated with water quality in aquatic systems, yet remain largely uncharacterized at the genomic level. Materials and Methods Phage môr ffagbaw was isolated from seawater against Escherichia coli by enrichment and plaque assays. Whole genome sequencing, transmission electron microscopy, and host range analysis against the E. coli reference (ECOR) collection were used to characterize the phage. Results The virion had a siphovirus morphology and genomic analysis placed it within the family Drexlerviridae, subfamily Tempevirinae, and forms a new species within the genus Hanrivervirus. Spot assays revealed that phage môr ffagbaw could form plaques on 6 out of 72 ECOR strains (8%). Conclusions Môr ffagbaw represents a new species of phage within the genus Hanrivervirus, with a narrow host range.
Collapse
Affiliation(s)
- Nerissa E. Thomas
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | | | - Andrew Kinsella
- Centre for Phage Research, University of Leicester, Leicester, United Kingdom
| | - Edouard Galyov
- Centre for Phage Research, University of Leicester, Leicester, United Kingdom
| | - Willem van Schaik
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Naomi Joyce
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Franklin L. Nobrega
- School of Biosciences, University of Southampton, Southampton, United Kingdom
| | - Andrew Millard
- Centre for Phage Research, University of Leicester, Leicester, United Kingdom
| | | |
Collapse
|
63
|
Moniruzzaman M, Hussain MT, Ali S, Hossain M, Hossain MS, Alam MAU, Galib FC, Islam MT, Paul P, Islam MS, Siddiqee MH, Mondal D, Parveen S, Mahmud ZH. Multidrug-resistant Escherichia coli isolated from patients and surrounding hospital environments in Bangladesh: A molecular approach for the determination of pathogenicity and resistance. Heliyon 2023; 9:e22109. [PMID: 38027708 PMCID: PMC10679508 DOI: 10.1016/j.heliyon.2023.e22109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 09/08/2023] [Accepted: 11/04/2023] [Indexed: 12/01/2023] Open
Abstract
Extended spectrum β-lactamase producing Escherichia coli (ESBL E. coli) is a primary concern for hospital and community healthcare settings, often linked to an increased incidence of nosocomial infections. This study investigated the characteristics of ESBL E. coli isolated from hospital environments and clinical samples. In total, 117 ESBL E. coli isolates were obtained. The isolates were subjected to molecular analysis for the presence of resistance and virulence genes, antibiotic susceptibility testing, quantitative adherence assay, ERIC-PCR for phylogenetic analysis and whole genome sequencing of four highly drug resistant isolates. Out of the 117 isolates, 68.4% were positive for blaCTX-M, 39.3% for blaTEM, 30.8% for blaNDM-1, 13.7% for blaOXA and 1.7% for blaSHV gene. Upon screening for diarrheagenic genes, no isolates were found to harbour any of the tested genes. In the case of extraintestinal pathogenic E. coli (ExPEC) virulence factors, 7.6%, 11%, 5.9%, 4.3% and 21.2% of isolates harbored the focG, kpsMII, sfaS, afa and iutA genes, respectively. At a temperature of 25°C, 14.5% of isolates exhibited strong biofilm formation with 21.4% and 28.2% exhibiting moderate and weak biofilm formation respectively, whereas 35.9% were non-biofilm formers. On the other hand at 37°C, 2.6% of isolates showed strong biofilm formation with 3.4% and 31.6% showing moderate and weak biofilm formation respectively, whereas, 62.4% were non-biofilm formers. Regarding antibiotic susceptibility testing, all isolates were found to be multidrug-resistant (MDR), with 30 isolates being highly drug resistant. ERIC-PCR resulted in 12 clusters, with cluster E-10 containing the maximum number of isolates. Hierarchical clustering and correlation analysis revealed associations between environmental and clinical isolates, indicating likely transmission and dissemination from the hospital environment to the patients. The whole genome sequencing of four highly drug resistant ExPEC isolates showed the presence of various antimicrobial resistance genes, virulence factors and mobile genetic elements, with isolates harbouring the plasmid incompatibility group IncF (FII, FIB, FIA). The sequenced isolates were identified as human pathogens with a 93.3% average score. This study suggests that ESBL producing E. coli are prevalent in the healthcare settings of Bangladesh, acting as a potential reservoir for AMR bacteria. This information may have a profound effect on treatment, and improvements in public healthcare policies are a necessity to combat the increased incidences of hospital-acquired infections in the country.
Collapse
Affiliation(s)
- M. Moniruzzaman
- Laboratory of Environmental Health, Health Systems and Population Studies Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Mohammed Tanveer Hussain
- Laboratory of Environmental Health, Health Systems and Population Studies Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
- Microbiology Program, Department of Mathematics and Natural Sciences, BRAC University, Mohakhali-66, Dhaka, Bangladesh
| | - Sobur Ali
- Laboratory of Environmental Health, Health Systems and Population Studies Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Monir Hossain
- Laboratory of Environmental Health, Health Systems and Population Studies Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Md. Sakib Hossain
- Laboratory of Environmental Health, Health Systems and Population Studies Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Mohammad Atique Ul Alam
- Laboratory of Environmental Health, Health Systems and Population Studies Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Faisal Chowdhury Galib
- Laboratory of Environmental Health, Health Systems and Population Studies Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Md. Tamzid Islam
- Laboratory of Environmental Health, Health Systems and Population Studies Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, USA
| | - Partha Paul
- BCSIR Rajshahi Laboratories, Bangladesh Council of Scientific and Industrial Research, Dhaka, Bangladesh
| | - Md. Shafiqul Islam
- Laboratory of Environmental Health, Health Systems and Population Studies Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Mahbubul H. Siddiqee
- Microbiology Program, Department of Mathematics and Natural Sciences, BRAC University, Mohakhali-66, Dhaka, Bangladesh
| | - Dinesh Mondal
- Laboratory of Environmental Health, Health Systems and Population Studies Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Shahana Parveen
- Emerging Infections, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Zahid Hayat Mahmud
- Laboratory of Environmental Health, Health Systems and Population Studies Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| |
Collapse
|
64
|
Wang Z, Gu D, Hong Y, Hu Y, Gu J, Tang Y, Zhou X, Zhang Y, Jiao X, Li Q. Microevolution of Salmonella 4,[5],12:i:- derived from Salmonella enterica serovar Typhimurium through complicated transpositions. Cell Rep 2023; 42:113227. [PMID: 37837619 DOI: 10.1016/j.celrep.2023.113227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 08/28/2023] [Accepted: 09/21/2023] [Indexed: 10/16/2023] Open
Abstract
Salmonella enterica subsp. enterica serovar 4,[5],12:i:- (Salmonella 4,[5],12:i:-), derived from S. Typhimurium, has become the dominant serotype causing human salmonellosis. In this study, we define the genetic mechanism of the generation of Salmonella 4,[5],12:i:- from S. Typhimurium through complicated transpositions and demonstrate that Salmonella 4,[5],12:i:- displays more efficient colonization and survival abilities in mice than its parent S. Typhimurium strain. We identified intermediate strains carrying both resistance regions (RRs) and the fljAB operon for the generation of Salmonella 4,[5],12:i:-. The insertion of RR3 into the chromosomal hin-iroB site of S. Typhimurium produced RR3-S. Typhimurium as a primary intermediate. Salmonella 4,[5],12:i:- was then produced by replacing the fljAB operon and/or its flanking sequences through intramolecular transpositions mediated by IS26 and/or IS1R elements in RR3-S. Typhimurium, which was further confirmed both in vitro and in vivo. Overall, we demonstrate the molecular mechanism underlying the origin, generation, and advantage of RRs-Salmonella 4,[5],12:i:- from S. Typhimurium.
Collapse
Affiliation(s)
- Zhenyu Wang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China; Jiangsu Key Lab of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China
| | - Dan Gu
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China; Jiangsu Key Lab of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China
| | - Yaming Hong
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China; Jiangsu Key Lab of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China
| | - Yachen Hu
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China; Jiangsu Key Lab of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China
| | - Jiaojie Gu
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China; Jiangsu Key Lab of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China
| | - Yuanyue Tang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China; Jiangsu Key Lab of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China
| | - Xiaohui Zhou
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06269, USA; School of Public Health and Emergency Management, Southern University of Science and Technology, 1088 Xueyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Yunzeng Zhang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China; Jiangsu Key Lab of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China.
| | - Xinan Jiao
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China; Jiangsu Key Lab of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China.
| | - Qiuchun Li
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China; Jiangsu Key Lab of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China.
| |
Collapse
|
65
|
Chalka A, Dallman TJ, Vohra P, Stevens MP, Gally DL. The advantage of intergenic regions as genomic features for machine-learning-based host attribution of Salmonella Typhimurium from the USA. Microb Genom 2023; 9:001116. [PMID: 37843883 PMCID: PMC10634445 DOI: 10.1099/mgen.0.001116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023] Open
Abstract
Salmonella enterica is a taxonomically diverse pathogen with over 2600 serovars associated with a wide variety of animal hosts including humans, other mammals, birds and reptiles. Some serovars are host-specific or host-restricted and cause disease in distinct host species, while others, such as serovar S. Typhimurium (STm), are generalists and have the potential to colonize a wide variety of species. However, even within generalist serovars such as STm it is becoming clear that pathovariants exist that differ in tropism and virulence. Identifying the genetic factors underlying host specificity is complex, but the availability of thousands of genome sequences and advances in machine learning have made it possible to build specific host prediction models to aid outbreak control and predict the human pathogenic potential of isolates from animals and other reservoirs. We have advanced this area by building host-association prediction models trained on a wide range of genomic features and compared them with predictions based on nearest-neighbour phylogeny. SNPs, protein variants (PVs), antimicrobial resistance (AMR) profiles and intergenic regions (IGRs) were extracted from 3883 high-quality STm assemblies collected from humans, swine, bovine and poultry in the USA, and used to construct Random Forest (RF) machine learning models. An additional 244 recent STm assemblies from farm animals were used as a test set for further validation. The models based on PVs and IGRs had the best performance in terms of predicting the host of origin of isolates and outperformed nearest-neighbour phylogenetic host prediction as well as models based on SNPs or AMR data. However, the models did not yield reliable predictions when tested with isolates that were phylogenetically distinct from the training set. The IGR and PV models were often able to differentiate human isolates in clusters where the majority of isolates were from a single animal source. Notably, IGRs were the feature with the best performance across multiple models which may be due to IGRs acting as both a representation of their flanking genes, equivalent to PVs, while also capturing genomic regulatory variation, such as altered promoter regions. The IGR and PV models predict that ~45 % of the human infections with STm in the USA originate from bovine, ~40 % from poultry and ~14.5 % from swine, although sequences of isolates from other sources were not used for training. In summary, the research demonstrates a significant gain in accuracy for models with IGRs and PVs as features compared to SNP-based and core genome phylogeny predictions when applied within the existing population structure. This article contains data hosted by Microreact.
Collapse
Affiliation(s)
- Antonia Chalka
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, UK
| | - Tim J. Dallman
- Institute for Risk Assessment Sciences (IRAS), University of Utrecht, Heidelberglaan, Utrecht, Netherlands
| | - Prerna Vohra
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, UK
| | - Mark P. Stevens
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, UK
| | - David L. Gally
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
66
|
Amato HK, Loayza F, Salinas L, Paredes D, Garcia D, Sarzosa S, Saraiva-Garcia C, Johnson TJ, Pickering AJ, Riley LW, Trueba G, Graham JP. Risk factors for extended-spectrum beta-lactamase (ESBL)-producing E. coli carriage among children in a food animal-producing region of Ecuador: A repeated measures observational study. PLoS Med 2023; 20:e1004299. [PMID: 37831716 PMCID: PMC10621961 DOI: 10.1371/journal.pmed.1004299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/02/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND The spread of antibiotic-resistant bacteria may be driven by human-animal-environment interactions, especially in regions with limited restrictions on antibiotic use, widespread food animal production, and free-roaming domestic animals. In this study, we aimed to identify risk factors related to commercial food animal production, small-scale or "backyard" food animal production, domestic animal ownership, and practices related to animal handling, waste disposal, and antibiotic use in Ecuadorian communities. METHODS AND FINDINGS We conducted a repeated measures study from 2018 to 2021 in 7 semirural parishes of Quito, Ecuador to identify determinants of third-generation cephalosporin-resistant E. coli (3GCR-EC) and extended-spectrum beta-lactamase E. coli (ESBL-EC) in children. We collected 1,699 fecal samples from 600 children and 1,871 domestic animal fecal samples from 376 of the same households at up to 5 time points per household over the 3-year study period. We used multivariable log-binomial regression models to estimate relative risks (RR) of 3GCR-EC and ESBL-EC carriage, adjusting for child sex and age, caregiver education, household wealth, and recent child antibiotic use. Risk factors for 3GCR-EC included living within 5 km of more than 5 commercial food animal operations (RR: 1.26; 95% confidence interval (CI): 1.10, 1.45; p-value: 0.001), household pig ownership (RR: 1.23; 95% CI: 1.02, 1.48; p-value: 0.030) and child pet contact (RR: 1.23; 95% CI: 1.09, 1.39; p-value: 0.001). Risk factors for ESBL-EC were dog ownership (RR: 1.35; 95% CI: 1.00, 1.83; p-value: 0.053), child pet contact (RR: 1.54; 95% CI: 1.10, 2.16; p-value: 0.012), and placing animal feces on household land/crops (RR: 1.63; 95% CI: 1.09, 2.46; p-value: 0.019). The primary limitations of this study are the use of proxy and self-reported exposure measures and the use of a single beta-lactamase drug (ceftazidime with clavulanic acid) in combination disk diffusion tests for ESBL confirmation, potentially underestimating phenotypic ESBL production among cephalosporin-resistant E. coli isolates. To improve ESBL determination, it is recommended to use 2 combination disk diffusion tests (ceftazidime with clavulanic acid and cefotaxime with clavulanic acid) for ESBL confirmatory testing. Future studies should also characterize transmission pathways by assessing antibiotic resistance in commercial food animals and environmental reservoirs. CONCLUSIONS In this study, we observed an increase in enteric colonization of antibiotic-resistant bacteria among children with exposures to domestic animals and their waste in the household environment and children living in areas with a higher density of commercial food animal production operations.
Collapse
Affiliation(s)
- Heather K. Amato
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, California, United States of America
| | - Fernanda Loayza
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Liseth Salinas
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Diana Paredes
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Daniela Garcia
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Soledad Sarzosa
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Carlos Saraiva-Garcia
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Timothy J. Johnson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America
- Mid Central Research & Outreach Center, Willmar, Minnesota, United States of America
| | - Amy J. Pickering
- Department of Civil and Environmental Engineering, University of California, Berkeley, California, United States of America
- Blum Center for Developing Economies, University of California, Berkeley, California, United States of America
| | - Lee W. Riley
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, United States of America
| | - Gabriel Trueba
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Jay P. Graham
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, California, United States of America
| |
Collapse
|
67
|
Wang Z, Jiang Y, Xu H, Jiao X, Wang J, Li Q. Poultry production as the main reservoir of ciprofloxacin- and tigecycline-resistant extended-spectrum β-lactamase (ESBL)-producing Salmonella enterica serovar Kentucky ST198.2-2 causing human infections in China. Appl Environ Microbiol 2023; 89:e0094423. [PMID: 37610223 PMCID: PMC10537671 DOI: 10.1128/aem.00944-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/08/2023] [Indexed: 08/24/2023] Open
Abstract
Salmonella enterica serovar Kentucky (S. Kentucky) has been regarded as a common serotype causing human nontyphoidal salmonellosis, frequently associated with the consumption of contaminated poultry products. Recently, multidrug-resistant (MDR) S. Kentucky ST198 with strong resistance to cefotaxime, ciprofloxacin, and tigecycline has emerged and been frequently detected in both poultry and humans in Europe and Asia. In this study, whole-genome sequencing (WGS) analysis divided 327 S. Kentucky ST198 isolates into two clades, of which ST198.2 is more prevalent than ST198.1 worldwide. We further compared the genomic characteristics of 70 ST198 isolates from animals and humans during 2019-2022 plus previously reported 38 isolates from 2013 to 2019 in China. One hundred five of the 108 isolates were ST198.2, which could be differentiated into two subclades. ST198.2-1 was prevalent in isolates during 2013-2019, while ST198.2-2 has increased to be the predominant subclade in isolates since 2019. CRISPR typing can differentiate the clade ST198.1 isolates from clade ST198.2 ones but cannot differentiate the two subclade isolates. The acquisition of a large multi-drug resistant region in ST198.2-2 enhanced bacterial resistance to β-lactam, aminoglycoside, amphenicol, and fosfomycin. In addition, compared with the extended-spectrum β-lactamase (ESBL)-encoding gene blaCTX-M-14b in ST198.2-1, co-existence of blaCTX-M-55 and blaTEM-1B was detected in most of the ST198.2-2 isolates. The emergence of ciprofloxacin- and tigecycline-resistant ESBL-producing S. Kentucky ST198.2-2 strains highlight the necessity for Salmonella surveillance. It is imperative to implement more effective measures to prevent and control transmission of these strains from poultry to humans. IMPORTANCE Salmonella enterica serovar Kentucky (S. Kentucky) can cause human infections through consumption of contaminated food of animal origin, and the emergence of multidrug-resistant (MDR) ST198-S. Kentucky strains are of concern for human and animal health. Based on whole-genome sequencing (WGS) analysis, this study revealed that the clade ST198.2-2 S. Kentucky has increased to the predominant group in both chickens and humans in China since 2019, which is different to previous studies of the prevalent ST198.2-1 S. Kentucky before 2019. Acquirement of a multidrug resistance region (MRR) makes the ST198.2-2 S. Kentucky to be extensively drug-resistant (XDR) isolate compared with ST198.2-1 S. Kentucky. Besides, the ST198.2-2 S. Kentucky was mainly detected in chickens (chicken meat, intestinal contents, and slaughterhouse) and humans, indicating chicken is the main reservoir for these XDR S. Kentucky isolates. Therefore, it is necessary to implement continuous Salmonella surveillance and effective measures, such as the development of phages and novel antibiotics/compounds, to prevent the transmission of XDR ST198.2-2 S. Kentucky from chickens to humans across China.
Collapse
Affiliation(s)
- Zhenyu Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Yue Jiang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Haiyan Xu
- Nantong Center for Disease Control and Prevention, Nantong, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Jing Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Qiuchun Li
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
68
|
Leeper MM, Tolar BM, Griswold T, Vidyaprakash E, Hise KB, Williams GM, Im SB, Chen JC, Pouseele H, Carleton HA. Evaluation of whole and core genome multilocus sequence typing allele schemes for Salmonella enterica outbreak detection in a national surveillance network, PulseNet USA. Front Microbiol 2023; 14:1254777. [PMID: 37808298 PMCID: PMC10558246 DOI: 10.3389/fmicb.2023.1254777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Salmonella enterica is a leading cause of bacterial foodborne and zoonotic illnesses in the United States. For this study, we applied four different whole genome sequencing (WGS)-based subtyping methods: high quality single-nucleotide polymorphism (hqSNP) analysis, whole genome multilocus sequence typing using either all loci [wgMLST (all loci)] and only chromosome-associated loci [wgMLST (chrom)], and core genome multilocus sequence typing (cgMLST) to a dataset of isolate sequences from 9 well-characterized Salmonella outbreaks. For each outbreak, we evaluated the genomic and epidemiologic concordance between hqSNP and allele-based methods. We first compared pairwise genomic differences using all four methods. We observed discrepancies in allele difference ranges when using wgMLST (all loci), likely caused by inflated genetic variation due to loci found on plasmids and/or other mobile genetic elements in the accessory genome. Therefore, we excluded wgMLST (all loci) results from any further comparisons in the study. Then, we created linear regression models and phylogenetic tanglegrams using the remaining three methods. K-means analysis using the silhouette method was applied to compare the ability of the three methods to partition outbreak and sporadic isolate sequences. Our results showed that pairwise hqSNP differences had high concordance with cgMLST and wgMLST (chrom) allele differences. The slopes of the regressions for hqSNP vs. allele pairwise differences were 0.58 (cgMLST) and 0.74 [wgMLST (chrom)], and the slope of the regression was 0.77 for cgMLST vs. wgMLST (chrom) pairwise differences. Tanglegrams showed high clustering concordance between methods using two statistical measures, the Baker's gamma index (BGI) and cophenetic correlation coefficient (CCC), where 9/9 (100%) of outbreaks yielded BGI values ≥ 0.60 and CCCs were ≥ 0.97 across all nine outbreaks and all three methods. K-means analysis showed separation of outbreak and sporadic isolate groups with average silhouette widths ≥ 0.87 for outbreak groups and ≥ 0.16 for sporadic groups. This study demonstrates that Salmonella isolates clustered in concordance with epidemiologic data using three WGS-based subtyping methods and supports using cgMLST as the primary method for national surveillance of Salmonella outbreak clusters.
Collapse
Affiliation(s)
- Molly M. Leeper
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Beth M. Tolar
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Taylor Griswold
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Eshaw Vidyaprakash
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Kelley B. Hise
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Grant M. Williams
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Sung B. Im
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jessica C. Chen
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | | | - Heather A. Carleton
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
69
|
Gomes-Neto JC, Pavlovikj N, Korth N, Naberhaus SA, Arruda B, Benson AK, Kreuder AJ. Salmonella enterica induces biogeography-specific changes in the gut microbiome of pigs. Front Vet Sci 2023; 10:1186554. [PMID: 37781286 PMCID: PMC10537282 DOI: 10.3389/fvets.2023.1186554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/18/2023] [Indexed: 10/03/2023] Open
Abstract
Swine are a major reservoir of an array of zoonotic Salmonella enterica subsp. enterica lineage I serovars including Derby, Typhimurium, and 4,[5],12:i:- (a.k.a. Monophasic Typhimurium). In this study, we assessed the gastrointestinal (GI) microbiome composition of pigs in different intestinal compartments and the feces following infection with specific zoonotic serovars of S. enterica (S. Derby, S. Monophasic, and S. Typhimurium). 16S rRNA based microbiome analysis was performed to assess for GI microbiome changes in terms of diversity (alpha and beta), community structure and volatility, and specific taxa alterations across GI biogeography (small and large intestine, feces) and days post-infection (DPI) 2, 4, and 28; these results were compared to disease phenotypes measured as histopathological changes. As previously reported, only S. Monophasic and S. Typhimurium induced morphological alterations that marked an inflammatory milieu restricted to the large intestine in this experimental model. S. Typhimurium alone induced significant changes at the alpha- (Simpson's and Shannon's indexes) and beta-diversity levels, specifically at the peak of inflammation in the large intestine and feces. Increased community dispersion and volatility in colonic apex and fecal microbiomes were also noted for S. Typhimurium. All three Salmonella serovars altered community structure as measured by co-occurrence networks; this was most prominent at DPI 2 and 4 in colonic apex samples. At the genus taxonomic level, a diverse array of putative short-chain fatty acid (SCFA) producing bacteria were altered and often decreased during the peak of inflammation at DPI 2 and 4 within colonic apex and fecal samples. Among all putative SCFA producing bacteria, Prevotella showed a broad pattern of negative correlation with disease scores at the peak of inflammation. In addition, Prevotella 9 was found to be significantly reduced in all Salmonella infected groups compared to the control at DPI 4 in the colonic apex. In conclusion, this work further elucidates that distinct swine-related zoonotic serovars of S. enterica can induce both shared (high resilience) and unique (altered resistance) alterations in gut microbiome biogeography, which helps inform future investigations of dietary modifications aimed at increasing colonization resistance against Salmonella through GI microbiome alterations.
Collapse
Affiliation(s)
- Joao Carlos Gomes-Neto
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Natasha Pavlovikj
- Holland Computing Center, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Nate Korth
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Samantha A. Naberhaus
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Bailey Arruda
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Andrew K. Benson
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Amanda J. Kreuder
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
70
|
Amato HK, Loayza F, Salinas L, Paredes D, García D, Sarzosa S, Saraiva-Garcia C, Johnson TJ, Pickering AJ, Riley LW, Trueba G, Graham JP. Leveraging the COVID-19 pandemic as a natural experiment to assess changes in antibiotic use and antibiotic-resistant E. coli carriage in semi-rural Ecuador. Sci Rep 2023; 13:14854. [PMID: 37684276 PMCID: PMC10491794 DOI: 10.1038/s41598-023-39532-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/26/2023] [Indexed: 09/10/2023] Open
Abstract
The coronavirus 2019 (COVID-19) pandemic has had significant impacts on health systems, population dynamics, public health awareness, and antibiotic stewardship, which could affect antibiotic resistant bacteria (ARB) emergence and transmission. In this study, we aimed to compare knowledge, attitudes, and practices (KAP) of antibiotic use and ARB carriage in Ecuadorian communities before versus after the COVID-19 pandemic began. We leveraged data collected for a repeated measures observational study of third-generation cephalosporin-resistant E. coli (3GCR-EC) carriage among children in semi-rural communities in Quito, Ecuador between July 2018 and September 2021. We included 241 households that participated in surveys and child stool sample collection in 2019, before the pandemic, and in 2021, after the pandemic began. We estimated adjusted Prevalence Ratios (aPR) and 95% Confidence Intervals (CI) using logistic and Poisson regression models. Child antibiotic use in the last 3 months declined from 17% pre-pandemic to 5% in 2021 (aPR: 0.30; 95% CI 0.15, 0.61) and 3GCR-EC carriage among children declined from 40 to 23% (aPR: 0.48; 95% CI 0.32, 0.73). Multi-drug resistance declined from 86 to 70% (aPR: 0.32; 95% CI 0.13; 0.79), the average number of antibiotic resistance genes (ARGs) per 3GCR-EC isolate declined from 9.9 to 7.8 (aPR of 0.79; 95% CI 0.65, 0.96), and the diversity of ARGs was lower in 2021. In the context of Ecuador, where COVID-19 prevention and control measures were strictly enforced after its major cities experienced some of the world's the highest mortality rates from SARS-CoV-2 infections, antibiotic use and ARB carriage declined in semi-rural communities of Quito from 2019 to 2021.
Collapse
Affiliation(s)
- Heather K Amato
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, CA, USA.
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA.
| | - Fernanda Loayza
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Pichincha, Ecuador
| | - Liseth Salinas
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Pichincha, Ecuador
| | - Diana Paredes
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Pichincha, Ecuador
| | - Daniela García
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Pichincha, Ecuador
| | - Soledad Sarzosa
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Pichincha, Ecuador
| | - Carlos Saraiva-Garcia
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Pichincha, Ecuador
| | - Timothy J Johnson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, USA
| | - Amy J Pickering
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
- Blum Center for Developing Economies, University of California, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Lee W Riley
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Gabriel Trueba
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Pichincha, Ecuador
| | - Jay P Graham
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, CA, USA
| |
Collapse
|
71
|
Horsfield ST, Tonkin-Hill G, Croucher NJ, Lees JA. Accurate and fast graph-based pangenome annotation and clustering with ggCaller. Genome Res 2023; 33:1622-1637. [PMID: 37620118 PMCID: PMC10620059 DOI: 10.1101/gr.277733.123] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023]
Abstract
Bacterial genomes differ in both gene content and sequence mutations, which underlie extensive phenotypic diversity, including variation in susceptibility to antimicrobials or vaccine-induced immunity. To identify and quantify important variants, all genes within a population must be predicted, functionally annotated, and clustered, representing the "pangenome." Despite the volume of genome data available, gene prediction and annotation are currently conducted in isolation on individual genomes, which is computationally inefficient and frequently inconsistent across genomes. Here, we introduce the open-source software graph-gene-caller (ggCaller). ggCaller combines gene prediction, functional annotation, and clustering into a single workflow using population-wide de Bruijn graphs, removing redundancy in gene annotation and resulting in more accurate gene predictions and orthologue clustering. We applied ggCaller to simulated and real-world bacterial data sets containing hundreds or thousands of genomes, comparing it to current state-of-the-art tools. ggCaller has considerable speed-ups with equivalent or greater accuracy, particularly with data sets containing complex sources of error, such as assembly contamination or fragmentation. ggCaller is also an important extension to bacterial genome-wide association studies, enabling querying of annotated graphs for functional analyses. We highlight this application by functionally annotating DNA sequences with significant associations to tetracycline and macrolide resistance in Streptococcus pneumoniae, identifying key resistance determinants that were missed when using only a single reference genome. ggCaller is a novel bacterial genome analysis tool with applications in bacterial evolution and epidemiology.
Collapse
Affiliation(s)
- Samuel T Horsfield
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London W12 0BZ, United Kingdom;
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, United Kingdom
| | - Gerry Tonkin-Hill
- Department of Biostatistics, University of Oslo, Blindern, 0372 Oslo, Norway
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London W12 0BZ, United Kingdom
| | - John A Lees
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London W12 0BZ, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, United Kingdom
| |
Collapse
|
72
|
Jiang Z, Li D, Liu Z, Dong X, Liu Z, Cui D, Yan S, Zhu L. Genomic typing and virulence gene profile analysis of Salmonella Derby from different sources. Microb Pathog 2023; 182:106248. [PMID: 37423493 DOI: 10.1016/j.micpath.2023.106248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023]
Abstract
Salmonella enterica serovar Derby (S. Derby) is one of the most common Salmonella serovars which can infect poultry, swine, and humans. With the reduction of the sequencing cost and the improvement of sequencing technology, whole genome sequencing (WGS) has become an important method for bacterial determination, molecular investigation, and pathogenic tracing analysis. In this study, we investigated S. Derby isolates from different sources in China using in-silico multilocus sequence typing (MLST), core genome MLST (cgMLST) and whole genome MLST (wgMLST) analysis based on WGS. The results showed that 21 S. Derby strains were divided into 3 STs using MLST analysis, including ST40 (n = 19, accounting for 90.48%), ST71 (n = 1, accounting for 4.76%) and ST8016 (n = 1, accounting for 4.76%). cgMLST and wgMLST analysis categorized the tested strains into 13 cgSTs and 21 wgSTs, respectively. The minimum spanning trees of cgMLST and wgMLST both divided these strains into 3 clusters and 4 singletons. In addition, virulence gene profiles of S. Derby isolates were also analyzed, and a total of 174 virulence genes belonged to 8 categories were identified. In summary, we studied genomic typing, phylogenetic relationship and virulence gene profiles of S. Derby strains from different sources in China. These findings were beneficial for the epidemiology and pathogenesis of Salmonella.
Collapse
Affiliation(s)
- Zhaoxu Jiang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Donghui Li
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Zhenhai Liu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Xiaorui Dong
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Zijun Liu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Daoshi Cui
- Qilu Animal Health Products Co., Ltd, Jinan, 250100, China
| | - Shigan Yan
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Liping Zhu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| |
Collapse
|
73
|
Richards AK, Kue S, Norris CG, Shariat NW. Genomic and phenotypic characterization of Salmonella enterica serovar Kentucky. Microb Genom 2023; 9:001089. [PMID: 37750759 PMCID: PMC10569734 DOI: 10.1099/mgen.0.001089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/27/2023] [Indexed: 09/27/2023] Open
Abstract
Non-typhoidal Salmonella are extremely diverse and different serovars can exhibit varied phenotypes, including host adaptation and the ability to cause clinical illness in animals and humans. In the USA, Salmonella enterica serovar Kentucky is infrequently found to cause human illness, despite being the top serovar isolated from broiler chickens. Conversely, in Europe, this serovar falls in the top 10 serovars linked to human salmonellosis. Serovar Kentucky is polyphyletic and has two lineages, Kentucky-I and Kentucky-II; isolates belonging to Kentucky-I are frequently isolated from poultry in the USA, while Kentucky-II isolates tend to be associated with human illness. In this study, we analysed whole-genome sequences and associated metadata deposited in public databases between 2017 and 2021 by federal agencies to determine serovar Kentucky incidence across different animal and human sources. Of 5151 genomes, 90.3 % were from isolates that came from broilers, while 5.9 % were from humans and 3.0 % were from cattle. Kentucky-I isolates were associated with broilers, while isolates belonging to Kentucky-II and a new lineage, Kentucky-III, were more commonly associated with cattle and humans. Very few serovar Kentucky isolates were associated with turkey and swine sources. Phylogenetic analyses showed that Kentucky-III genomes were more closely related to Kentucky-I, and this was confirmed by CRISPR-typing and multilocus sequence typing (MLST). In a macrophage assay, serovar Kentucky-II isolates were able to replicate over eight times better than Kentucky-I isolates. Analysis of virulence factors showed unique patterns across these three groups, and these differences may be linked to their association with different hosts.
Collapse
Affiliation(s)
- Amber K. Richards
- Department of Population Health, University of Georgia, Athens, GA, USA
| | - Song Kue
- Department of Population Health, University of Georgia, Athens, GA, USA
| | - Connor G. Norris
- Department of Population Health, University of Georgia, Athens, GA, USA
| | - Nikki W. Shariat
- Department of Population Health, University of Georgia, Athens, GA, USA
- Center for Food Safety, University of Georgia, Griffin, GA, USA
| |
Collapse
|
74
|
Cobo-Simón M, Hart R, Ochman H. Gene flow and species boundaries of the genus Salmonella. mSystems 2023; 8:e0029223. [PMID: 37486130 PMCID: PMC10470047 DOI: 10.1128/msystems.00292-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/07/2023] [Indexed: 07/25/2023] Open
Abstract
The genus Salmonella comprises two species, Salmonella bongori and Salmonella enterica, which are infectious to a wide variety of animal hosts. The diversity within S. enterica has been further partitioned into 6-10 subspecies based on such features as host range, geography, and most recently, genetic relatedness and phylogenetic affiliation. Although Salmonella pathogenicity is attributable to large numbers of acquired virulence factors, the extent of homologous exchange in the species at large is apparently constrained such that the species and subspecies form distinct clusters of strains. To explore the extent of gene flow within and among subspecies, and to ultimately define true biological species, we evaluated patterns of recombination in over 1,000 genomes currently assigned to the genus. Those Salmonella subspecies containing sufficient numbers of sequenced genomes to allow meaningful analysis-i.e., subsp. enterica and diarizonae-were found to be reproductively isolated from one another and from all other subspecies. Based on the configuration of genomic sequence divergence among subspecies, it is expected that each of the other Salmonella subspecies will also represent a biological species. Our findings argue against the application of prescribed nucleotide-identity thresholds to delineate bacterial species and contend that the Biological Species Concept should not be disregarded for bacteria, even those, like Salmonella, that demonstrate complex patterns of species and subspecies divergence. IMPORTANCE The Biological Species Concept (BSC), which defines species boundaries based on the capacity for gene exchange, is widely used to classify sexually reproducing eukaryotes but is generally thought to be inapplicable to bacteria due to their completely asexual mode of reproduction. We show that the genus Salmonella, whose thousands of described serovars were formerly considered to be strictly clonal, undergoes sufficient levels of homologous recombination to be assigned to species according to the BSC. Aside from the two recognized species, Salmonella enterica and Salmonella bongori, several (and likely all) of the subspecies within S. enterica are reproductively isolated from one another and should each be considered a separate biological species. These findings demonstrate that species barriers in bacteria can form despite high levels of nucleotide identity and that commonly applied thresholds of genomic sequence identity are not reliable indicators of bacterial species status.
Collapse
Affiliation(s)
- Marta Cobo-Simón
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Rowan Hart
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Howard Ochman
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
75
|
Raut R, Maharjan P, Fouladkhah AC. Practical Preventive Considerations for Reducing the Public Health Burden of Poultry-Related Salmonellosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6654. [PMID: 37681794 PMCID: PMC10487474 DOI: 10.3390/ijerph20176654] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
With poultry products as one of the leading reservoirs for the pathogen, in a typical year in the United States, it is estimated that over one million individuals contract non-typhoidal Salmonella infections. Foodborne outbreaks associated with Salmonella infections in poultry, thus, continue to remain a significant risk to public health. Moreover, the further emergence of antimicrobial resistance among various serovars of Salmonella is an additional public health concern. Feeding-based strategies (such as use of prebiotics, probiotics, and/or phytobiotics as well as essential oils), non-feeding-based strategies (such as use of bacteriophages, vaccinations, and in ovo strategies), omics tools and surveillance for identifying antibiotic-resistance genes, post-harvest application of antimicrobials, and biosecurity measures at poultry facilities are practical interventions that could reduce the public health burden of salmonellosis and antibiotic resistance associated with poultry products. With the escalating consumption of poultry products around the globe, the fate, prevalence, and transmission of Salmonella in agricultural settings and various poultry-processing facilities are major public health challenges demanding integrated control measures throughout the food chain. Implementation of practical preventive measures discussed in the current study could appreciably reduce the public health burden of foodborne salmonellosis associated with poultry products.
Collapse
Affiliation(s)
- Rabin Raut
- Cooperative Extension Program, Tennessee State University, Nashville, TN 37209, USA;
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA
| | - Pramir Maharjan
- Cooperative Extension Program, Tennessee State University, Nashville, TN 37209, USA;
| | - Aliyar Cyrus Fouladkhah
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA
- Public Health Microbiology FoundationSM, Nashville, TN 37209, USA
| |
Collapse
|
76
|
Gorski L, Noriega AA. Comparison of Phenotype Nutritional Profiles and Phosphate Metabolism Genes in Four Serovars of Salmonella enterica from Water Sources. Microorganisms 2023; 11:2109. [PMID: 37630669 PMCID: PMC10459026 DOI: 10.3390/microorganisms11082109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The surveillance of foods for Salmonella is hindered by bias in common enrichment media where serovars implicated in human illness are outgrown by less virulent serovars. We examined four Salmonella serovars, two common in human illness (Enteritidis and Typhimurium) and two that often dominate enrichments (Give and Kentucky), for factors that might influence culture bias. The four serovars had similar growth kinetics in Tryptic Soy Broth and Buffered Peptone Water. Phenotype microarray analysis with 950 chemical substrates to assess nutrient utilization and stress resistance revealed phenotype differences between serovars. Strains of S. Enteritidis had better utilization of plant-derived sugars such as xylose, mannitol, rhamnose, and fructose, while S. Typhimurium strains were able to metabolize tagatose. Strains of S. Kentucky used more compounds as phosphorus sources and grew better with inorganic phosphate as the sole phosphorus source. The sequences of nine genes involved in phosphate metabolism were compared, and there were differences between serovars in the catalytic ATP-binding domain of the histidine kinase phoR. Analysis of the predicted PhoR amino acid sequences from additional Salmonella genomes indicated a conservation of sequences each within the Typhimurium, Give, and Enteritidis serovars. However, three different PhoR versions were observed in S. Kentucky.
Collapse
Affiliation(s)
- Lisa Gorski
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA
| | | |
Collapse
|
77
|
Carroll LM, Piacenza N, Cheng RA, Wiedmann M, Guldimann C. A multidrug-resistant Salmonella enterica Typhimurium DT104 complex lineage circulating among humans and cattle in the USA lost the ability to produce pertussis-like toxin ArtAB. Microb Genom 2023; 9:mgen001050. [PMID: 37402177 PMCID: PMC10438809 DOI: 10.1099/mgen.0.001050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 05/23/2023] [Indexed: 07/06/2023] Open
Abstract
Salmonella enterica subsp. enterica serotype Typhimurium definitive type 104 (DT104) can infect both humans and animals and is often multidrug-resistant (MDR). Previous studies have indicated that, unlike most S . Typhimurium, the overwhelming majority of DT104 strains produce pertussis-like toxin ArtAB via prophage-encoded genes artAB . However, DT104 that lack artAB have been described on occasion. Here, we identify an MDR DT104 complex lineage circulating among humans and cattle in the USA, which lacks artAB (i.e. the ‘U.S. artAB -negative major clade’; n =42 genomes). Unlike most other bovine- and human-associated DT104 complex strains from the USA (n =230 total genomes), which harbour artAB on prophage Gifsy-1 (n =177), members of the U.S. artAB -negative major clade lack Gifsy-1, as well as anti-inflammatory effector gogB . The U.S. artAB -negative major clade encompasses human- and cattle-associated strains isolated from ≥11 USA states over a 20-year period. The clade was predicted to have lost artAB , Gifsy-1 and gogB circa 1985–1987 (95 % highest posterior density interval 1979.0–1992.1). When compared to DT104 genomes from other regions of the world (n =752 total genomes), several additional, sporadic artAB , Gifsy-1 and/or gogB loss events among clades encompassing five or fewer genomes were observed. Using phenotypic assays that simulate conditions encountered during human and/or bovine digestion, members of the U.S. artAB -negative major clade did not differ from closely related Gifsy-1/artAB /gogB -harbouring U.S. DT104 complex strains (ANOVA raw P >0.05); thus, future research is needed to elucidate the roles that artAB , gogB and Gifsy-1 play in DT104 virulence in humans and animals.
Collapse
Affiliation(s)
- Laura M. Carroll
- Department of Clinical Microbiology, SciLifeLab, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- Integrated Science Lab, Umeå University, Umeå, Sweden
| | - Nicolo Piacenza
- Chair for Food Safety and Analytics, Ludwig-Maximillians-University Munich, Munich, Germany
| | - Rachel A. Cheng
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - Claudia Guldimann
- Chair for Food Safety and Analytics, Ludwig-Maximillians-University Munich, Munich, Germany
| |
Collapse
|
78
|
Vilela FP, Rodrigues DDP, Allard MW, Falcão JP. The rare Salmonella enterica serovar Isangi: genomic characterization of the antimicrobial resistance, virulence potential and epidemiology of Brazilian strains in comparison to global isolates. J Med Microbiol 2023; 72. [PMID: 37462464 DOI: 10.1099/jmm.0.001736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
Introduction. Salmonella enterica serovar Isangi (S. Isangi) is a rare non-typhoidal serovar, related to invasive nosocomial infections in various countries and to increasing antimicrobial resistance rates.Gap statement. Despite existing reports on S. Isangi, there is a lack of information of specific traits regarding this serovar, which could be improved through genomic analyses.Aim. Our goals were to characterize the antimicrobial resistance, virulence potential and genomic relatedness of 11 S. Isangi strains from Brazil in comparison to 185 genomes of global isolates using whole-genome sequencing (WGS) data.Methodology. Phenotypic resistance was determined by disc-diffusion. The search for resistance genes, plasmids, prophages, Salmonella pathogenicity islands (SPIs) and virulence genes, plus multi-locus sequence typing (MLST) and core-genome MLST (cgMLST) were performed using WGS.Results. Brazilian S. Isangi strains showed phenotypic resistance to nalidixic acid, ciprofloxacin and streptomycin, and harboured antimicrobial resistance [qnrB19, aac(6')-Iaa, mdsAB] and heavy metal tolerance (arsD, golST) genes. Col(pHAD28) and IncFII(S) plasmids, virulence genes related to adherence, macrophage induction, magnesium uptake, regulation and type III secretion systems, 12 SPIs and eight prophages were detected. The 185 additional global genomes analysed harboured resistance genes against 11 classes of antimicrobial compounds, 22 types of plasmids, 32 prophages, 14 SPIs, and additional virulence genes related to serum resistance, stress adaptation and toxins. Sequence type (ST)216 was assigned to genomes from Brazil and other countries, while ST335 was the most frequent ST, especially among South African genomes. cgMLST showed that Brazilian genomes were more closely related to genomes from European and African countries, the USA and Taiwan, while the majority of South African genomes were more closely related among each other.Conclusion. The presence of S. Isangi strains from Brazil and different countries showing a close genomic correlation, antimicrobial resistance profiles to drugs used in human therapy and a large number of virulence determinants reinforced the need for stronger initiatives to monitor rare non-typhoidal Salmonella serovars such as S. Isangi in order to prevent its dissemination among human and non-human sources.
Collapse
Affiliation(s)
- Felipe Pinheiro Vilela
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Av. do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | | | - Marc William Allard
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Juliana Pfrimer Falcão
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Av. do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| |
Collapse
|
79
|
Wang Z, Jiang Z, Xu H, Jiao X, Li Q. Prevalence and molecular characterization of mcr-1-positive foodborne ST34-Salmonella isolates in China. Microbiol Res 2023; 274:127441. [PMID: 37356255 DOI: 10.1016/j.micres.2023.127441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) and S. 4,[5],12:i:- have become the most common serovars associated with human salmonellosis worldwide. Moreover, the emergence of mcr-carrying S. Typhimurium and S. 4,[5],12:i:- with multidrug resistance (MDR) patterns has posed a threat to public health. In this study, we retrospectively screened 2009-2022 laboratory-preserved strains for the presence of mcr genes. We obtained 16 mcr-1-positive S. Typhimurium and S. 4,[5],12:i:- strains with MDR that belonged to sequence type 34 (ST34). Whole-genome sequencing analysis revealed that the mcr-1 was located on the IncI2 or IncHI2 plasmids. The ISApl1 element downstream of mcr-1 was present in all pig-derived strains. Conjugation experiments confirmed that nine mcr-1-carrying IncHI2 plasmids could not be transferred to Escherichia coli due to loss of the conjugation region. Finally, core genome single nucleotide polymorphism (cgSNP) analyses of the 16 mcr-1-carrying strains and 77 mcr-carrying ST34-Salmonella genome sequences from the NCBI and ENA databases showed that five out of eight clusters contained strains from pig and pig products, revealing pigs and pig products as key reservoirs of mcr-1-positive ST34-Salmonella strains. The transmission of mcr-carrying ST34 Salmonella strains to humans via the pig food chain is a potential cause for public health concern in controlling human salmonellosis.
Collapse
Affiliation(s)
- Zhenyu Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, China
| | - Zhongyi Jiang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, China
| | - Haiyan Xu
- Nantong Center for Disease Control and Prevention, Nantong 226007, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, China.
| | - Qiuchun Li
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, China.
| |
Collapse
|
80
|
Félix B, Capitaine K, Te S, Felten A, Gillot G, Feurer C, van den Bosch T, Torresi M, Sréterné Lancz Z, Delannoy S, Brauge T, Midelet G, Leblanc JC, Roussel S. Identification by High-Throughput Real-Time PCR of 30 Major Circulating Listeria monocytogenes Clonal Complexes in Europe. Microbiol Spectr 2023; 11:e0395422. [PMID: 37158749 PMCID: PMC10269651 DOI: 10.1128/spectrum.03954-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
Listeria monocytogenes is a ubiquitous bacterium that causes a foodborne illness, listeriosis. Most strains can be classified into major clonal complexes (CCs) that account for the majority of outbreaks and sporadic cases in Europe. In addition to the 20 CCs known to account for the majority of human and animal clinical cases, 10 CCs are frequently reported in food production, thereby posing a serious challenge for the agrifood industry. Therefore, there is a need for a rapid and reliable method to identify these 30 major CCs. The high-throughput real-time PCR assay presented here provides accurate identification of these 30 CCs and eight genetic subdivisions within four CCs, splitting each CC into two distinct subpopulations, along with the molecular serogroup of a strain. Based on the BioMark high-throughput real-time PCR system, our assay analyzes 46 strains against 40 real-time PCR arrays in a single experiment. This European study (i) designed the assay from a broad panel of 3,342 L. monocytogenes genomes, (ii) tested its sensitivity and specificity on 597 sequenced strains collected from 24 European countries, and (iii) evaluated its performance in the typing of 526 strains collected during surveillance activities. The assay was then optimized for conventional multiplex real-time PCR for easy implementation in food laboratories. It has already been used for outbreak investigations. It represents a key tool for assisting food laboratories to establish strain relatedness with human clinical strains during outbreak investigations and for helping food business operators by improving their microbiological management plans. IMPORTANCE Multilocus sequence typing (MLST) is the reference method for Listeria monocytogenes typing but is expensive and takes time to perform, from 3 to 5 days for laboratories that outsource sequencing. Thirty major MLST clonal complexes (CCs) are circulating in the food chain and are currently identifiable only by sequencing. Therefore, there is a need for a rapid and reliable method to identify these CCs. The method presented here enables the rapid identification, by real-time PCR, of 30 CCs and eight genetic subdivisions within four CCs, splitting each CC into two distinct subpopulations. The assay was then optimized on different conventional multiplex real-time PCR systems for easy implementation in food laboratories. The two assays will be used for frontline identification of L. monocytogenes isolates prior to whole-genome sequencing. Such assays are of great interest for all food industry stakeholders and public agencies for tracking L. monocytogenes food contamination.
Collapse
Affiliation(s)
- Benjamin Félix
- ANSES, European Union Reference Laboratory for Listeria monocytogenes, Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, Maisons-Alfort, France
| | - Karine Capitaine
- ANSES, European Union Reference Laboratory for Listeria monocytogenes, Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, Maisons-Alfort, France
| | - Sandrine Te
- ANSES, European Union Reference Laboratory for Listeria monocytogenes, Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, Maisons-Alfort, France
| | - Arnaud Felten
- ANSES, Ploufragan/Plouzané/Niort Laboratory, Viral Genetics and Bio-Security Unit, Université Européenne de Bretagne, Ploufragan, France
| | | | - Carole Feurer
- IFIP–The French Pig and Pork Institute, Department of Fresh and Processed Meat, Le Rheu, France
| | - Tijs van den Bosch
- Wageningen Food Safety Research, Department of Bacteriology, Molecular Technology and Antimicrobial Resistance, Wageningen, The Netherlands
| | - Marina Torresi
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale” Via Campo Boario, Teramo, Italy
| | - Zsuzsanna Sréterné Lancz
- Microbiological National Reference Laboratory, National Food Chain Safety Office, Food Chain Safety Laboratory Directorate, Budapest, Hungary
| | - Sabine Delannoy
- ANSES, Laboratory for Food Safety, IdentyPath Platform, Maisons-Alfort, France
| | - Thomas Brauge
- ANSES, Laboratory for Food Safety, Bacteriology and Parasitology of Fishery and Aquaculture Products Unit, Boulogne-sur-Mer, France
| | - Graziella Midelet
- ANSES, Laboratory for Food Safety, Bacteriology and Parasitology of Fishery and Aquaculture Products Unit, Boulogne-sur-Mer, France
| | - Jean-Charles Leblanc
- ANSES, European Union Reference Laboratory for Listeria monocytogenes, Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, Maisons-Alfort, France
| | - Sophie Roussel
- ANSES, European Union Reference Laboratory for Listeria monocytogenes, Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, Maisons-Alfort, France
| |
Collapse
|
81
|
Kong M, Liu C, Xu Y, Wang J, Jin D. Concordance between Genotypic and Phenotypic Drug-Resistant Profiles of Shigella Isolates from Taiyuan City, Shanxi Province, China, 2005 to 2016. Microbiol Spectr 2023; 11:e0011923. [PMID: 37249442 PMCID: PMC10269460 DOI: 10.1128/spectrum.00119-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
Antimicrobial resistance in Shigella spp. is a global public health concern. In this study, the AMR phenotypic profiles of 10 kinds of antibiotics were compared with the genotypic profiles using genomic analysis of 218 Shigella isolates from Taiyuan City, Shanxi Province, China, 2005 to 2016. Core genome Multilocus Sequence Typing (cgMLST) based on the EnteroBase Escherichia/Shigella scheme was used to obtain the genetic relatedness of Shigella isolates. Multiple-drug resistance was observed in 96.79% Shigella spp., and the resistance to antimicrobial agents varied between S. flexneri and S. sonnei. The genotypic results correlated well with the phenotypic profiles with concordance rates of 96.42% and 94.50% in S. flexneri and S. sonnei isolates, respectively, from Taiyuan City, Shanxi Province. The sensitivity and specificity of the genotypic antimicrobial susceptibility testing (AST) were 97.56% and 95.34% for S. flexneri, and 95.65% and 93.31% for S. sonnei isolates, respectively. A discrepancy of genotypic and phenotypic AST results existed in some cephalosporin- and azithromycin-resistant Shigella isolates; there were no clear resistance patterns to predict ciprofloxacin resistance. There were major discrepancies between genotypic and phenotypic AST in the genotypically resistant but phenotypically susceptible isolates. The drug-resistance patterns and essential drug-resistance genes to predict the phenotypic drug-resistant profiles were the discrepancies between S. flexneri and S. sonnei isolates. Phylogenetic analysis showed that isolates of the same cluster but with different antibiotic-resistance gene patterns occurred because of the loss or gain of antibiotic-resistance genes located in the plasmids and multidrug-resistance islands. IMPORTANCE Antimicrobial resistance in Shigella spp. has become a global public health concern. In this study, we identified the antimicrobial susceptibility testing (AST) characteristics based on genomic sequences of 218 Shigella isolates and analyzed the correlation between genotypic and phenotypic antibiotic resistance profiles of Shigella spp., especially for fluoroquinolone, macrolides, and third-generation cephalosporins. Our results show that the genotypic results correlated with the phenotypic profiles with concordance rates of 96.42% and 94.50% in S. flexneri and S. sonnei isolates, respectively. The drug-resistance patterns and essential drug-resistance genes to predict the phenotypic drug-resistant profiles of S. flexneri and S. sonnei isolates in Taiyuan city were distinct. The discrepancy between genotypic and phenotypic AST was considerable in the genotypically resistant but phenotypically susceptible isolates. The information on drug resistance and resistance genes in this study can offer more details on the prevalence of drug resistance of Shigella spp.
Collapse
Affiliation(s)
- Mimi Kong
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan City, Shanxi Province, China
| | - Chunmei Liu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan City, Shanxi Province, China
| | - Yang Xu
- Department of Microbiology Test, Taiyuan Center for Disease Control and Prevention, Taiyuan City, Shanxi Province, China
| | - Jitao Wang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan City, Shanxi Province, China
- Department of Microbiology Test, Taiyuan Center for Disease Control and Prevention, Taiyuan City, Shanxi Province, China
| | - Dong Jin
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan City, Shanxi Province, China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| |
Collapse
|
82
|
Zhou L, Zhang TJ, Zhang W, Xie C, Yang Y, Chen X, Wang Q, Wang HN, Lei CW. Prevalence and genetic diversity of multidrug-resistant Salmonella Typhimurium monophasic variant in a swine farm from China. Front Microbiol 2023; 14:1200088. [PMID: 37396383 PMCID: PMC10311412 DOI: 10.3389/fmicb.2023.1200088] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
Salmonella 4,[5],12:i:-, a monophasic variant of S. Typhimurium, has become a global serovar causing animal and human infections since its first emergence in the late 1980's. Several previous studies showed the increasing prevalence of S. 4,[5],12:i:- in China, most of which were from swine with multidrug resistance (MDR) profiles. However, the molecular characteristic and evolution of S. 4,[5],12:i:- in the same swine farm are still unknown. In this study, a total of 54 S. enterica strains were isolated from different fattening pigs aged 1, 3, and 6 months, most of which belonged to S. 4,[5],12:i:-. Whole-genome sequencing revealed that all 45 S. 4,[5],12:i:- strains belonged to ST34 and were further divided into two different ribosomal STs and nine different core-genome STs. Phylogenetic analysis of 286 S. 4,[5],12:i:- strains in China, including 241 from the EnteroBase Salmonella database, revealed the genetic diversity of S. 4,[5],12:i:- and indicated that S. 4,[5],12:i:- in this swine farm might have multiple origins. Three different IncHI2 plasmids carrying various resistance genes were characterized by nanopore sequencing and could be conjugated to Escherichia coli. The colistin resistance gene mcr-1 and ESBLs gene blaCTX - M-14 were co-located on the chromosome of one strain. The dynamic changes in antimicrobial resistance regions and transferability of IncHI2 plasmids, as well as the chromosomal location of resistance genes, facilitated the diversity of the antimicrobial resistance characteristics in S. 4,[5],12:i:-. Since the swine farm is regarded as the important reservoir of MDR S. 4,[5],12:i:-, the prevalence and evolution of S. 4,[5],12:i:- from swine farms to pig products and humans should be continually monitored.
Collapse
|
83
|
Akinyemi KO, Fakorede CO, Linde J, Methner U, Wareth G, Tomaso H, Neubauer H. Whole genome sequencing of Salmonella enterica serovars isolated from humans, animals, and the environment in Lagos, Nigeria. BMC Microbiol 2023; 23:164. [PMID: 37312043 DOI: 10.1186/s12866-023-02901-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/17/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Salmonella infections remain an important public health issue worldwide. Some serovars of non-typhoidal Salmonella (NTS) have been associated with bloodstream infections and gastroenteritis, especially in children in Sub-Saharan Africa with circulating S. enterica serovars with drug resistance and virulence genes. This study identified and verified the clonal relationship of Nigerian NTS strains isolated from humans, animals, and the environment. METHODS In total, 2,522 samples were collected from patients, animals (cattle and poultry), and environmental sources between December 2017 and May 2019. The samples were subjected to a standard microbiological investigation. All the isolates were identified using Microbact 24E, and MALDI-TOF MS. The isolates were serotyped using the Kauffmann-White scheme. Antibiotic susceptibility testing was conducted using the disc diffusion method and the Vitek 2 compact system. Virulence and antimicrobial resistance genes, sequence type, and cluster analysis were investigated using WGS data. RESULTS Forty-eight (48) NTS isolates (1.9%) were obtained. The prevalence of NTS from clinical sources was 0.9%, while 4% was recorded for animal sources. The serovars identified were S. Cotham (n = 17), S. Give (n = 16), S. Mokola (n = 6), S. Abony (n = 4), S. Typhimurium (n = 4), and S. Senftenberg (n = 1). All 48 Salmonella isolates carried intrinsic and acquired resistant genes such as aac.6…Iaa, mdf(A), qnrB, qnrB19 genes and golT, golS, pcoA, and silP, mediated by plasmid Col440I_1, incFIB.B and incFII. Between 100 and 118 virulence gene markers distributed across several Salmonella pathogenicity islands (SPIs), clusters, prophages, and plasmid operons were found in each isolate. WGS revealed that strains of each Salmonella serovar could be assigned to a single 7-gene MLST cluster, and strains within the clusters were identical strains and closely related as defined by the 0 and 10 cgSNPs and likely shared a common ancestor. The dominant sequence types were S. Give ST516 and S. Cotham ST617. CONCLUSION We found identical Salmonella sequence types in human, animal, and environmental samples in the same locality, which demonstrates the great potential of the applied tools to trace back outbreak strains. Strategies to control and prevent the spread of NTS in the context of one's health are essential to prevent possible outbreaks.
Collapse
Affiliation(s)
| | | | - Jörg Linde
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
| | - Ulrich Methner
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
| | - Gamal Wareth
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Benha University, PO Box 13736, Toukh, Moshtohor, Egypt
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Herbert Tomaso
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
| |
Collapse
|
84
|
Zhao B, Lees JA, Wu H, Yang C, Falush D. Genealogical inference and more flexible sequence clustering using iterative-PopPUNK. Genome Res 2023; 33:988-998. [PMID: 37253539 PMCID: PMC10519404 DOI: 10.1101/gr.277395.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 05/22/2023] [Indexed: 06/01/2023]
Abstract
Bacterial genome data are accumulating at an unprecedented speed due to the routine use of sequencing in clinical diagnoses, public health surveillance, and population genetics studies. Genealogical reconstruction is fundamental to many of these uses; however, inferring genealogy from large-scale genome data sets quickly, accurately, and flexibly is still a challenge. Here, we extend an alignment- and annotation-free method, PopPUNK, to increase its flexibility and interpretability across data sets. Our method, iterative-PopPUNK, rapidly produces multiple consistent cluster assignments across a range of sequence identities. By constructing a partially resolved genealogical tree with respect to these clusters, users can select a resolution most appropriate for their needs. We showed the accuracy of clusters at all levels of similarity and genealogical inference of iterative-PopPUNK based on simulated data and obtained phylogenetically concordant results in real data sets from seven bacterial species. Using two example sets of Escherichia/Shigella and Vibrio parahaemolyticus genomes, we show that iterative-PopPUNK can achieve cluster resolutions ranging from phylogroup down to sequence typing (ST). The iterative-PopPUNK algorithm is implemented in the "PopPUNK_iterate" program, available as part of the PopPUNK package.
Collapse
Affiliation(s)
- Bin Zhao
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - John A Lees
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London W2 1PG, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute EMBL-EBI, Hinxton CB10 1SD, United Kingdom
| | - Hongjin Wu
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Chao Yang
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China;
| | - Daniel Falush
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China;
| |
Collapse
|
85
|
Santana-Hernández KM, Rodríguez-Ponce E, Medina IR, Acosta-Hernández B, Priestnall SL, Vega S, Marin C, Cerdà-Cuéllar M, Marco-Fuertes A, Ayats T, García Beltrán T, Lupiola-Gómez PA. One Health Approach: Invasive California Kingsnake ( Lampropeltis californiae) as an Important Source of Antimicrobial Drug-Resistant Salmonella Clones on Gran Canaria Island. Animals (Basel) 2023; 13:1790. [PMID: 37889724 PMCID: PMC10251910 DOI: 10.3390/ani13111790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 07/30/2023] Open
Abstract
The increase in the reptile population has led to a rise in the number of zoonotic infections due to close contact with reptiles, with reptile-associated salmonellosis being particularly relevant. California kingsnake invasion not only threatens the endemic reptile population of the island of Gran Canaria (Spain) but also poses serious public health problems by spreading zoonotic pathogens and their antimicrobial resistance (AMR) to the environment. Thus, the aim of this study was to assess the occurrence, genetic diversity, and AMR among Salmonella spp. strains isolated from California kingsnakes in Gran Canaria Island (Spain). Of 73 invasive individuals captured, 20.5% carried Salmonella spp., belonging to different subspecies and serovars, with subsp. salamae as the most abundant. Pulsed-field electrophoresis showed high genetic diversity among subsp. salamae isolates, and among these, 73.3% showed resistance to at least one of the antimicrobials tested. In conclusion, the present study revealed the importance of wild invasive California kingsnakes as reservoirs of drug-resistant Salmonella spp. that could pose a direct threat to livestock and humans. Identification of drug-resistant Salmonella strains in wildlife provides valuable information on potential routes of transmission that involve risks to public and animal health.
Collapse
Affiliation(s)
- Kevin M. Santana-Hernández
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Spain; (K.M.S.-H.); (E.R.-P.); (I.R.M.); (B.A.-H.)
| | - Eligia Rodríguez-Ponce
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Spain; (K.M.S.-H.); (E.R.-P.); (I.R.M.); (B.A.-H.)
| | - Inmaculada Rosario Medina
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Spain; (K.M.S.-H.); (E.R.-P.); (I.R.M.); (B.A.-H.)
- Instituto Universitario de Sanidad Animal (IUSA), Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Spain
| | - Begoña Acosta-Hernández
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Spain; (K.M.S.-H.); (E.R.-P.); (I.R.M.); (B.A.-H.)
- Instituto Universitario de Sanidad Animal (IUSA), Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Spain
| | - Simon L. Priestnall
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield AL9 7TA, UK;
| | - Santiago Vega
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain; (C.M.)
| | - Clara Marin
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain; (C.M.)
| | - Marta Cerdà-Cuéllar
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Ana Marco-Fuertes
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain; (C.M.)
| | - Teresa Ayats
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Teresa García Beltrán
- Instituto Universitario de Sanidad Animal (IUSA), Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Spain
| | - Pablo A. Lupiola-Gómez
- Departamento de Ciencias Clínicas, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Spain
| |
Collapse
|
86
|
Trampari E, Prischi F, Vargiu AV, Abi-Assaf J, Bavro VN, Webber MA. Functionally distinct mutations within AcrB underpin antibiotic resistance in different lifestyles. NPJ ANTIMICROBIALS AND RESISTANCE 2023; 1:2. [PMID: 38686215 PMCID: PMC11057200 DOI: 10.1038/s44259-023-00001-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/27/2023] [Indexed: 05/02/2024]
Abstract
Antibiotic resistance is a pressing healthcare challenge and is mediated by various mechanisms, including the active export of drugs via multidrug efflux systems, which prevent drug accumulation within the cell. Here, we studied how Salmonella evolved resistance to two key antibiotics, cefotaxime and azithromycin, when grown planktonically or as a biofilm. Resistance to both drugs emerged in both conditions and was associated with different substitutions within the efflux-associated transporter, AcrB. Azithromycin exposure selected for an R717L substitution, while cefotaxime for Q176K. Additional mutations in ramR or envZ accumulated concurrently with the R717L or Q176K substitutions respectively, resulting in clinical resistance to the selective antibiotics and cross-resistance to other drugs. Structural, genetic, and phenotypic analysis showed the two AcrB substitutions confer their benefits in profoundly different ways. R717L reduces steric barriers associated with transit through the substrate channel 2 of AcrB. Q176K increases binding energy for cefotaxime, improving recognition in the distal binding pocket, resulting in increased efflux efficiency. Finally, we show the R717 substitution is present in isolates recovered around the world.
Collapse
Affiliation(s)
- Eleftheria Trampari
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ UK
| | - Filippo Prischi
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ UK
| | - Attilio V. Vargiu
- Department of Physics, University of Cagliari, S. P. 8, km. 0.700, 09042 Monserrato, Italy
| | - Justin Abi-Assaf
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ UK
| | - Vassiliy N. Bavro
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ UK
| | - Mark A. Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ UK
- Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7UA UK
| |
Collapse
|
87
|
Sánchez-Serrano A, Mejía L, Camaró ML, Ortolá-Malvar S, Llácer-Luna M, García-González N, González-Candelas F. Genomic Surveillance of Salmonella from the Comunitat Valenciana (Spain). Antibiotics (Basel) 2023; 12:antibiotics12050883. [PMID: 37237786 DOI: 10.3390/antibiotics12050883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Salmonella enterica subspecies enterica is one of the most important foodborne pathogens and the causative agent of salmonellosis, which affects both humans and animals producing numerous infections every year. The study and understanding of its epidemiology are key to monitoring and controlling these bacteria. With the development of whole-genome sequencing (WGS) technologies, surveillance based on traditional serotyping and phenotypic tests of resistance is being replaced by genomic surveillance. To introduce WGS as a routine methodology for the surveillance of food-borne Salmonella in the region, we applied this technology to analyze a set of 141 S. enterica isolates obtained from various food sources between 2010 and 2017 in the Comunitat Valenciana (Spain). For this, we performed an evaluation of the most relevant Salmonella typing methods, serotyping and sequence typing, using both traditional and in silico approaches. We extended the use of WGS to detect antimicrobial resistance determinants and predicted minimum inhibitory concentrations (MICs). Finally, to understand possible contaminant sources in this region and their relationship to antimicrobial resistance (AMR), we performed cluster detection combining single-nucleotide polymorphism (SNP) pairwise distances and phylogenetic and epidemiological data. The results of in silico serotyping with WGS data were highly congruent with those of serological analyses (98.5% concordance). Multi-locus sequence typing (MLST) profiles obtained with WGS information were also highly congruent with the sequence type (ST) assignment based on Sanger sequencing (91.9% coincidence). In silico identification of antimicrobial resistance determinants and minimum inhibitory concentrations revealed a high number of resistance genes and possible resistant isolates. A combined phylogenetic and epidemiological analysis with complete genome sequences revealed relationships among isolates indicative of possible common sources for isolates with separate sampling in time and space that had not been detected from epidemiological information. As a result, we demonstrate the usefulness of WGS and in silico methods to obtain an improved characterization of S. enterica enterica isolates, allowing better surveillance of the pathogen in food products and in potential environmental and clinical samples of related interest.
Collapse
Affiliation(s)
- Andrea Sánchez-Serrano
- Joint Research Unit "Infection and Public Health", FISABIO-University of Valencia, 46020 Valencia, Spain
| | - Lorena Mejía
- Joint Research Unit "Infection and Public Health", FISABIO-University of Valencia, 46020 Valencia, Spain
- Institute for Integrative Systems Biology (I2SysBio), CSIC-University of Valencia, 46980 Valencia, Spain
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito 170901, Ecuador
| | | | | | | | - Neris García-González
- Joint Research Unit "Infection and Public Health", FISABIO-University of Valencia, 46020 Valencia, Spain
- Institute for Integrative Systems Biology (I2SysBio), CSIC-University of Valencia, 46980 Valencia, Spain
| | - Fernando González-Candelas
- Joint Research Unit "Infection and Public Health", FISABIO-University of Valencia, 46020 Valencia, Spain
- Institute for Integrative Systems Biology (I2SysBio), CSIC-University of Valencia, 46980 Valencia, Spain
- CIBER in Epidemiology and Public Health, 28029 Madrid, Spain
| |
Collapse
|
88
|
Yan S, Jiang Z, Zhang W, Liu Z, Dong X, Li D, Liu Z, Li C, Liu X, Zhu L. Genomes-based MLST, cgMLST, wgMLST and SNP analysis of Salmonella Typhimurium from animals and humans. Comp Immunol Microbiol Infect Dis 2023; 96:101973. [PMID: 36989679 DOI: 10.1016/j.cimid.2023.101973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Salmonella Typhimurium (S. Typhimurium) is an important food-borne and zoonotic pathogen that causes salmonellosis. With the development of whole genome sequencing (WGS), genome-based typing has been widely applied to bacteriology. In this study, we investigated genotyping and phylogenetic clusters of S. Typhimurium isolates from humans and animals in different provinces (including Beijing, Shandong, Guangxi, Shaanxi, Henan, and Shanghai) of China during 2009-2018 using multi locus sequence typing (MLST), core genome MLST (cgMLST), whole genome MLST (wgMLST) and single nucleotide polymorphism (SNP) based on WGS. 29 S. Typhimurium isolates from chicken (n = 22), sick pigeon (n = 2), patients (n = 4) and sick swine (n = 1) were tested. MLST analysis showed S. Typhimurium strains were divided into four STs, namely ST19 (n = 14), ST34 (n = 12), ST128 (n = 2) and ST1544 (n = 1). cgMLST and wgMLST divided 29 strains into 27 cgSTs and 29 wgST, respectively. Phylogenetic clustering showed that all isolates were divided into 4 clusters and 4 singletons. SNP analysis was used to examine MLST, cgMLST, wgMLST analysis. Finally, comparisons of MLST, cgMLST, wgMLST, and SNP were analyzed and the results showed their precision increased in order. In summary, genomic typing and phylogenetic relationships of 29 S. Typhimurium strains from different sources in China were analyzed. These findings were beneficial to investigate molecular pathogenesis, bacterial diversity, and traceability analysis of Salmonella.
Collapse
Affiliation(s)
- Shigan Yan
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Zhaoxu Jiang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Wencheng Zhang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Zhenhai Liu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Xiaorui Dong
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Donghui Li
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Zijun Liu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Chengyu Li
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Xu Liu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Liping Zhu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| |
Collapse
|
89
|
Bolzoni L, Bonardi S, Tansini C, Scaltriti E, Menozzi I, Morganti M, Conter M, Pongolini S. Different Roles of Wild Boars and Livestock in Salmonella Transmission to Humans in Italy. ECOHEALTH 2023; 20:122-132. [PMID: 36918504 PMCID: PMC10014403 DOI: 10.1007/s10393-023-01625-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 01/31/2023] [Indexed: 06/11/2023]
Abstract
Wild boar (Sus scrofa) is the most widely distributed large wildlife mammal worldwide. To investigate the transmission of Salmonella enterica amongst wild boars (Sus scrofa), humans, and livestock, we compared via pulsed-field gel electrophoresis and whole genome sequences the isolates of S. enterica serovar Typhimurium (biphasic and monophasic variants) and Enteritidis collected from wild boars, food-producing animals, and human patients in Emilia-Romagna region (Northern Italy) between 2017 and 2020. Specifically, we analysed 2175 isolates originated from human (1832), swine (117), bovine (128), poultry (76), and wild boar (22). The genomic analyses showed that wild boars shared most of their lineages of biphasic Typhimurium with bovines and most of Enteritidis with poultry, whilst we did not find any lineage shared with swine. Moreover, almost 17% of human biphasic Typhimurium and Enteritidis belonged to genomic clusters including wild boar isolates, but the inclusion of bovine and poultry isolates in the same clusters and the peculiar spatial distribution of the isolates suggested that human cases (and wild boar infections) likely originated from bovines and poultry. Consequently, wild boars appear not to play a significant role in infecting humans with these serovars, but seem to get infected themselves from livestock, probably through the environment.
Collapse
Affiliation(s)
- Luca Bolzoni
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Sezione di Parma, Strada dei Mercati 13/A, 43126, Parma, Italy
| | - Silvia Bonardi
- Department of Veterinary Science, Unit of Inspection of Food of Animal Origin, University of Parma, Strada del Taglio 10, 43126, Parma, Italy.
| | - Cesare Tansini
- Department of Veterinary Science, Unit of Inspection of Food of Animal Origin, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Erica Scaltriti
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Sezione di Parma, Strada dei Mercati 13/A, 43126, Parma, Italy
| | - Ilaria Menozzi
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Sezione di Parma, Strada dei Mercati 13/A, 43126, Parma, Italy
| | - Marina Morganti
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Sezione di Parma, Strada dei Mercati 13/A, 43126, Parma, Italy
| | - Mauro Conter
- Department of Veterinary Science, Unit of Inspection of Food of Animal Origin, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Stefano Pongolini
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Sezione di Parma, Strada dei Mercati 13/A, 43126, Parma, Italy
| |
Collapse
|
90
|
Hurt W, Stephenson J, Hutchinson J, Godbole G, Chattaway MA. A rare case of Salmonella Paratyphi C osteomyelitis: A genetic analysis and review of Salmonella osteomyelitis in England. Diagn Microbiol Infect Dis 2023; 105:115877. [PMID: 36566569 DOI: 10.1016/j.diagmicrobio.2022.115877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/15/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Salmonella osteomyelitis is rare in patients without sickling hemoglobinopathies. Invasive disease caused by Salmonella Paratyphi C is rarer still with only one case reported in the United Kingdom in the last 15 years. We report a case of relapsing S. Paratyphi C osteomyelitis in a newly diagnosed diabetic patient from Ghana. Our patient was initially treated successfully with surgical debridement followed by 6 weeks of IV ceftriaxone before recrudescence 9 months later. Due to the rarity of S. Paratyphi C and the lack of recent travel, genomic analysis was undertaken to assess possible sources with the closest related strain being from Cote d'Ivoire. The patient had likley picked up the strain several years before presentation. We review current Salmonella osteomyelitis literature and audit all cases referred to the England and Wales Salmonella national reference laboratory over the last 15 years.
Collapse
Affiliation(s)
- William Hurt
- Clinical Academic Group in Infection & Immunity, St Georges, University of London, London, UK.
| | - Jim Stephenson
- Microbiology Department, St. Helier Hospital, Epsom and St. Helier Universtiy Hospitals NHS Trust, Carshalton, UK
| | - Jon Hutchinson
- Microbiology Department, St. Helier Hospital, Epsom and St. Helier Universtiy Hospitals NHS Trust, Carshalton, UK
| | - Gauri Godbole
- Gastrointestinal Pathogens & Food Safety (One Health), UK Health Security Agency, Colindale, London, UK
| | - Marie Anne Chattaway
- Gastrointestinal Bacteria Reference Unit, UK Health Security Agency, Colindale, London, UK
| |
Collapse
|
91
|
Genomic Epidemiology and Multilevel Genome Typing of Australian Salmonella enterica Serovar Enteritidis. Microbiol Spectr 2023; 11:e0301422. [PMID: 36625638 PMCID: PMC9927265 DOI: 10.1128/spectrum.03014-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Salmonella enterica serovar Enteritidis is one of the leading causes of salmonellosis in Australia. In this study, a total of 568 S. Enteritidis isolates from two Australian states across two consecutive years were analyzed and compared to international strains, using the S. Enteritidis multilevel genome typing (MGT) database, which contained 40,390 publicly available genomes from 99 countries. The Australian S. Enteritidis isolates were divided into three phylogenetic clades (A, B, and C). Clades A and C represented 16.4% and 3.5% of the total isolates, respectively, and were of local origin. Clade B accounted for 80.1% of the isolates which belonged to seven previously defined lineages but was dominated by the global epidemic lineage. At the MGT5 level, three out of five top sequence types (STs) in Australia were also top STs in Asia, suggesting that a fair proportion of Australian S. Enteritidis cases may be epidemiologically linked with Asian strains. In 2018, a large egg-associated local outbreak was caused by a recently defined clade B lineage prevalent in Europe and was closely related, but not directly linked, to three European isolates. Additionally, over half (54.8%) of predicted multidrug resistance (MDR) isolates belonged to 10 MDR-associated MGT-STs, which were also frequent in Asian S. Enteritidis . Overall, this study investigated the genomic epidemiology of S. Enteritidis in Australia, including the first large local outbreak, using MGT. The open MGT platform enables a standardized and sharable nomenclature that can be effectively applied to public health for unified surveillance of S. Enteritidis nationally and globally. IMPORTANCE Salmonella enterica serovar Enteritidis is a leading cause of foodborne infections. We previously developed a genomic typing database (MGTdb) for S. Enteritidis to facilitate global surveillance of this pathogen. In this study, we examined the genomic features of Australian S. Enteritidis using the MGTdb and found that Australian S. Enteritidis is mainly epidemiologically linked with Asian strains (especially strains carrying antimicrobial resistance genes), followed by European strains. The first large-scale egg-associated local outbreak in Australia was caused by a recently defined lineage prevalent in Europe, and three European isolates in the MGTdb were closely related but not directly linked to this outbreak. In summary, the S. Enteritidis MGTdb open platform is shown to be a potentially powerful tool for national and global public health surveillance of this pathogen.
Collapse
|
92
|
Hudson LK, Andershock WE, Qian X, Gibbs PL, Orejuela K, Garman KN, Dunn JR, Denes TG. Phylogeny and Genomic Characterization of Clinical Salmonella enterica Serovar Newport Collected in Tennessee. Microbiol Spectr 2023; 11:e0387622. [PMID: 36602313 PMCID: PMC9927352 DOI: 10.1128/spectrum.03876-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/21/2022] [Indexed: 01/06/2023] Open
Abstract
Salmonella enterica subsp. enterica serovar Newport (S. Newport) is a clinically and epidemiologically significant serovar in the United States. It is the second most prevalent clinically isolated Salmonella serovar in the United States, and it can contaminate a wide variety of food products. In this study, we evaluated the population structure of S. Newport clinical isolates obtained by the Tennessee Department of Health during routine surveillance (n = 346), along with a diverse set of other global clinical isolates obtained from EnteroBase (n = 271). Most of these clinical isolates belonged to established lineages II and III. Additionally, we performed lineage-specific phylogenetic analyses and were able to identify 18 potential epidemiological clusters among the isolates from Tennessee, which represented a greater proportion of Tennessee isolates belonging to putative epidemiological clusters than the proportion of isolates of this serovar that are outbreak related. IMPORTANCE This study provides insight on the genomic diversity of one of the Salmonella serovars that most frequently cause human illness. Specifically, we explored the diversity of human clinical isolates from a localized region (Tennessee) and compared this level of diversity with the global context. Additionally, we showed that a greater proportion of isolates were associated with potential epidemiological clusters (based on genomic relatedness) than historical estimates. We also identified that one potential cluster was predicted to be multidrug resistant. Taken together, these findings provide insight on Salmonella enterica serovar Newport that can impact public health surveillance and responses and serve as a foundational context for the Salmonella research community.
Collapse
Affiliation(s)
- Lauren K. Hudson
- Department of Food Science, University of Tennessee, Knoxville, Tennessee, USA
| | | | - Xiaorong Qian
- Division of Laboratory Services, Tennessee Department of Health, Nashville, Tennessee, USA
| | - Paula L. Gibbs
- Division of Laboratory Services, Tennessee Department of Health, Nashville, Tennessee, USA
| | - Kelly Orejuela
- Tennessee Department of Health, Nashville, Tennessee, USA
| | | | - John R. Dunn
- Tennessee Department of Health, Nashville, Tennessee, USA
| | - Thomas G. Denes
- Department of Food Science, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
93
|
Gebremichael Y, Crandall J, Mukhopadhyay R, Xu F. Salmonella Subpopulations Identified from Human Specimens Express Heterogenous Phenotypes That Are Relevant to Clinical Diagnosis. Microbiol Spectr 2023; 11:e0167922. [PMID: 36507668 PMCID: PMC9927314 DOI: 10.1128/spectrum.01679-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022] Open
Abstract
Clonal bacterial cells can give rise to functionally heterogeneous subpopulations. This diversification is considered an adaptation strategy that has been demonstrated for several bacterial species, including Salmonella enterica serovar Typhimurium. In previous studies on mouse models infected orally with pure Salmonella cultures, derived bacterial cells collected from animal tissues were found to express heterogenous phenotypes. Here, we show mixed Salmonella populations, apparently derived from the same progenitor, present in human specimens collected at a single disease time point, and in a long-term-infected patient, these Salmonella were no longer expressing surface-exposed antigen epitopes by isolates collected at earlier days of the disease. The subpopulations express different phenotypes related to cell surface antigen expression, motility, biofilm formation, biochemical metabolism, and antibiotic resistance, which can all contribute to pathogenicity. Some of the phenotypes correlate with single nucleotide polymorphisms or other sequence changes in bacterial genomes. These genetic variations can alter synthesis of cell membrane-associated molecules such as lipopolysaccharides and lipoproteins, leading to changes in bacterial surface structure and function. This study demonstrates the limitation of Salmonella diagnostic methods that are based on a single-cell population which may not represent the heterogenous bacterial community in infected humans. IMPORTANCE In animal model systems, heterogenous Salmonella phenotypes were found previously to regulate bacterial infections. We describe in this communication that different Salmonella phenotypes also exist in infected humans at a single disease time point and that their phenotypic and molecular traits are associated with different aspects of pathogenicity. Notably, variation in genes encoding antibiotic resistance and two-component systems were observed from the subpopulations of a patient suffering from persistent salmonellosis. Therefore, clinical and public health interventions of the disease that are based on diagnosis of a single-cell population may miss other subpopulations that can cause residual human infections.
Collapse
Affiliation(s)
- Yismashoa Gebremichael
- Microbial Diseases Laboratory, California Department of Public Health, Richmond, California, USA
| | - John Crandall
- Microbial Diseases Laboratory, California Department of Public Health, Richmond, California, USA
| | - Rituparna Mukhopadhyay
- Microbial Diseases Laboratory, California Department of Public Health, Richmond, California, USA
| | - Fengfeng Xu
- Microbial Diseases Laboratory, California Department of Public Health, Richmond, California, USA
| |
Collapse
|
94
|
Pardos de la Gandara M, Fournet N, Bonifait L, Lefèvre S, Chemaly M, Grastilleur C, Cadel-Six S, Fach P, Pignault A, Brisabois A, Jourdan-Da Silva N, Weill FX. Countrywide multi-serotype outbreak of Salmonella Bovismorbificans ST142 and monophasic Salmonella Typhimurium ST34 associated with dried pork sausages in France, September 2020* to January 2021. Euro Surveill 2023; 28:2200123. [PMID: 36695482 PMCID: PMC9837855 DOI: 10.2807/1560-7917.es.2023.28.2.2200123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The French National Reference Centre for Escherichia coli, Shigella and Salmonella (FNRC-ESS) detected two human clusters of 33 cases (median age: 10 years; 17 females) infected by Salmonella enterica serotype Bovismorbificans, ST142, HC5_243255 (EnteroBase HierCC‑cgMLST scheme) in September-November 2020 and of 11 cases (median age: 11 years; seven males) infected by S. enterica serotype 4,12:i:-, ST34, HC5_198125 in October-December 2020. Epidemiological investigations conducted by Santé publique France linked these outbreaks to the consumption of dried pork sausages from the same manufacturer. S. Bovismorbificans and S. 4,12:i:- were isolated by the National Reference Laboratory from different food samples, but both strains were identified in a single food sample only by qPCR. Three recalls and withdrawals of dried pork products were issued by the French general directorate of food of the French ministry for agriculture and food in November 2020, affecting eight supermarket chains. A notification on the European Rapid Alert System for Food and Feed and a European urgent enquiry on the Epidemic Intelligence Information System for Food and Waterborne Diseases and Zoonoses (EPIS-FWD) were launched. No cases were reported outside France. Outbreaks caused by multiple serotypes of Salmonella may go undetected by protocols in standard procedures in microbiology laboratories.
Collapse
Affiliation(s)
- Maria Pardos de la Gandara
- Institut Pasteur, Université Paris Cité, Unité des Bactéries pathogènes entériques, Centre National de Référence des Escherichia coli, Shigella et Salmonella, Paris, France
| | | | - Laetitia Bonifait
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Unit of Hygiene and Quality of Poultry and Pork Products, Ploufragan, France
| | - Sophie Lefèvre
- Institut Pasteur, Université Paris Cité, Unité des Bactéries pathogènes entériques, Centre National de Référence des Escherichia coli, Shigella et Salmonella, Paris, France
| | - Marianne Chemaly
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Unit of Hygiene and Quality of Poultry and Pork Products, Ploufragan, France
| | - Charlotte Grastilleur
- Mission des Urgences Sanitaires, Direction générale de l’alimentation, Paris, France
| | - Sabrina Cadel-Six
- ANSES, Laboratory for Food Safety, Salmonella and Listeria Unit, Maisons-Alfort, France
| | - Patrick Fach
- ANSES, Laboratory for Food Safety, IdentyPath Genomics Platform, Maisons-Alfort, France
| | - Agnès Pignault
- Mission des Urgences Sanitaires, Direction générale de l’alimentation, Paris, France
| | - Anne Brisabois
- ANSES, Strategy and Programs Department, Research and Reference Division, Maisons-Alfort, France
| | | | - François-Xavier Weill
- Institut Pasteur, Université Paris Cité, Unité des Bactéries pathogènes entériques, Centre National de Référence des Escherichia coli, Shigella et Salmonella, Paris, France
| |
Collapse
|
95
|
Tast Lahti E, Karamehmedovic N, Riedel H, Blom L, Boel J, Delibato E, Denis M, van Essen-Zandbergen A, Garcia-Fernandez A, Hendriksen R, Heydecke A, van Hoek AHAM, Huby T, Kwit R, Lucarelli C, Lundin K, Michelacci V, Owczarek S, Ring I, Sejer Kjeldgaard J, Sjögren I, Skóra M, Torpdahl M, Ugarte-Ruiz M, Veldman K, Ventola E, Zajac M, Jernberg C. One Health surveillance-A cross-sectoral detection, characterization, and notification of foodborne pathogens. Front Public Health 2023; 11:1129083. [PMID: 36969662 PMCID: PMC10034719 DOI: 10.3389/fpubh.2023.1129083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/16/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction Several Proficiency Test (PT) or External Quality Assessment (EQA) schemes are currently available for assessing the ability of laboratories to detect and characterize enteropathogenic bacteria, but they are usually targeting one sector, covering either public health, food safety or animal health. In addition to sector-specific PTs/EQAs for detection, cross-sectoral panels would be useful for assessment of the capacity to detect and characterize foodborne pathogens in a One Health (OH) perspective and further improving food safety and interpretation of cross-sectoral surveillance data. The aims of the study were to assess the cross-sectoral capability of European public health, animal health and food safety laboratories to detect, characterize and notify findings of the foodborne pathogens Campylobacter spp., Salmonella spp. and Yersinia enterocolitica, and to develop recommendations for future cross-sectoral PTs and EQAs within OH. The PT/EQA scheme developed within this study consisted of a test panel of five samples, designed to represent a theoretical outbreak scenario. Methods A total of 15 laboratories from animal health, public health and food safety sectors were enrolled in eight countries: Denmark, France, Italy, the Netherlands, Poland, Spain, Sweden, and the United Kingdom. The laboratories analyzed the samples according to the methods used in the laboratory and reported the target organisms at species level, and if applicable, serovar for Salmonella and bioserotype for Yersinia. Results All 15 laboratories analyzed the samples for Salmonella, 13 for Campylobacter and 11 for Yersinia. Analytical errors were predominately false negative results. One sample (S. Stockholm and Y. enterocolitica O:3/BT4) with lower concentrations of target organisms was especially challenging, resulting in six out of seven false negative results. These findings were associated with laboratories using smaller sample sizes and not using enrichment methods. Detection of Salmonella was most commonly mandatory to notify within the three sectors in the eight countries participating in the pilot whereas findings of Campylobacter and Y. enterocolitica were notifiable from human samples, but less commonly from animal and food samples. Discussion The results of the pilot PT/EQA conducted in this study confirmed the possibility to apply a cross-sectoral approach for assessment of the joint OH capacity to detect and characterize foodborne pathogens.
Collapse
Affiliation(s)
- Elina Tast Lahti
- Department of Epidemiology and Disease Control, National Veterinary Institute (SVA), Uppsala, Sweden
- *Correspondence: Elina Tast Lahti
| | | | - Hilde Riedel
- Department of Biology, Swedish Food Agency, Uppsala, Sweden
| | - Linnea Blom
- Department of Biology, Swedish Food Agency, Uppsala, Sweden
| | - Jeppe Boel
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut (SSI), Copenhagen, Denmark
| | - Elisabetta Delibato
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Martine Denis
- Research Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Ploufragan, France
| | - Alieda van Essen-Zandbergen
- Department of Bacteriology, Host-Pathogen Interaction, and Diagnostics Development, Wageningen Bioveterinary Research (WBVR) Part of Wageningen University and Research (WUR), Lelystad, Netherlands
| | | | - Rene Hendriksen
- Technical University of Denmark, The National Food Institute (DTU Food), Copenhagen, Denmark
| | - Anna Heydecke
- Center for Research and Development, Uppsala University/Region Gävleborg, Gävle, Sweden
| | - Angela H. A. M. van Hoek
- Centre for Infectious Disease Control (Department Zoonoses and Environmental Microbiology), Dutch National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Tom Huby
- Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
| | - Renata Kwit
- Department of Microbiology, National Veterinary Research Institute (PIWet), Pulawy, Poland
| | - Claudia Lucarelli
- Department of Infectious Diseases, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Karl Lundin
- Clinical Microbiology, Uppsala University Hospital, Uppsala, Sweden
| | - Valeria Michelacci
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Slawomir Owczarek
- Department of Infectious Diseases, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Isaac Ring
- Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
| | - Jette Sejer Kjeldgaard
- Technical University of Denmark, The National Food Institute (DTU Food), Copenhagen, Denmark
| | | | - Milena Skóra
- Department of Microbiology, National Veterinary Research Institute (PIWet), Pulawy, Poland
| | - Mia Torpdahl
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut (SSI), Copenhagen, Denmark
| | - María Ugarte-Ruiz
- VISAVET Health Surveillance Centre, Universidad Complutense Madrid, Madrid, Spain
| | - Kees Veldman
- Department of Bacteriology, Host-Pathogen Interaction, and Diagnostics Development, Wageningen Bioveterinary Research (WBVR) Part of Wageningen University and Research (WUR), Lelystad, Netherlands
| | - Eleonora Ventola
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Magdalena Zajac
- Department of Microbiology, National Veterinary Research Institute (PIWet), Pulawy, Poland
| | - Cecilia Jernberg
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| |
Collapse
|
96
|
Alzahrani KO, AL-Reshoodi FM, Alshdokhi EA, Alhamed AS, Al Hadlaq MA, Mujallad MI, Mukhtar LE, Alsufyani AT, Alajlan AA, Al Rashidy MS, Al Dawsari MJ, Al-Akeel SI, AL-Harthi MH, Al Manee AM, Alghoribi MF, Alajel SM. Antimicrobial resistance and genomic characterization of Salmonella enterica isolates from chicken meat. Front Microbiol 2023; 14:1104164. [PMID: 37065154 PMCID: PMC10100587 DOI: 10.3389/fmicb.2023.1104164] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/15/2023] [Indexed: 04/18/2023] Open
Abstract
This study investigated genotypic and phenotypic antimicrobial resistance profiles, phylogenic relatedness, plasmid and virulence composition of 39 Salmonella enterica strains isolated from chicken meat samples using whole genome sequencing (WGS) technology. Four distinct serotypes were identified; Salmonella Minnesota (16/39, 41%), Salmonella Infantis (13/39, 33.3%), Salmonella Enteritidis (9/39, 23.1%), and one isolate was detected for Salmonella Kentucky (1/39, 2.6%), with sequence types (STs) as followed: ST548, ST32, ST11, and ST198, respectively. Phenotypic resistance to tetracycline (91.2%), ampicillin (82.4%), sulfisoxazole (64.7%), and nalidixic acid (61.6%) was the most observed. Resistome analysis revealed the presence of resistance genes to aminoglycosides, β-lactamase, sulfonamides, trimethoprim, phenicol, lincosamide, macrolides, and tetracyclines. Plasmidome showed the presence of eight incompatibility groups, including IncA/C2, IncFIB(K)_1_Kpn3, Col440I_1, IncR, IncX1, IncI1_1_Alpha, IncFIB(S)/IncFII(S), IncHI2/IncHI2A, IncX2 and ColpVC plasmids across the 39 genomes. Three resistance genes, sul2, tetA and blaCMY-2, were predicted to be located on IncA/C2 plasmid in S. Minnesota isolates, whereas all S. Infantis isolates were positive to IncFIB(K)_1_Kpn3 plasmid that carries bla CTX-M-65 gene. Eleven Salmonella pathogenicity islands and up to 131 stress and/or virulence genes were identified in the evaluated genomes. Phylogenetic analysis showed four phylogroups that were consistent with the identified ST profiles with a high level of inter-diversity between isolates. This is the first genomic characterization of Salmonella isolates from retail chicken meat in Saudi Arabia using WGS technology. The availability of Salmonella genomes from multiple geographic locations, including Saudi Arabia, would be highly beneficial in future source-tracking, especially during epidemiological surveillance and outbreak investigations.
Collapse
Affiliation(s)
- Khaloud O. Alzahrani
- Molecular Biology Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Fahad M. AL-Reshoodi
- Antimicrobial Resistance Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Elaf A. Alshdokhi
- Molecular Biology Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Ashwaq S. Alhamed
- Molecular Biology Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Meshari A. Al Hadlaq
- Molecular Biology Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Mohammed I. Mujallad
- Molecular Biology Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Lenah E. Mukhtar
- Antimicrobial Resistance Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Amani T. Alsufyani
- Antimicrobial Resistance Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Abdullah A. Alajlan
- Microbial Identification Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Malfi S. Al Rashidy
- Microbial Identification Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Mashan J. Al Dawsari
- Microbial Identification Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Saleh I. Al-Akeel
- Microbial Identification Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Meshari H. AL-Harthi
- Microbiology Section, Food Laboratory, Laboratories Executive Department, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Abdulaziz M. Al Manee
- Microbial Hazards Division, Risk Assessment Department, Executive Department of Monitoring and Risk Assessment, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
- Biology Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Majed F. Alghoribi
- Infectious Diseases Research Department, King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
- Department of Basic Science, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences (KSAU), Riyadh, Saudi Arabia
| | - Suliman M. Alajel
- Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
- *Correspondence: Suliman M. Alajel,
| |
Collapse
|
97
|
A Familiar Outbreak of Monophasic Salmonella serovar Typhimurium (ST34) Involving Three Dogs and Their Owner's Children. Pathogens 2022; 11:pathogens11121500. [PMID: 36558834 PMCID: PMC9788015 DOI: 10.3390/pathogens11121500] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Salmonella is a Gram-negative enteric bacterium responsible for the foodborne and waterborne disease salmonellosis, which is the second most reported bacterial zoonosis in humans. Many animals are potential sources of salmonellosis, including dogs, cats, and other pets. We report the case of an outbreak of salmonellosis in a family in central Italy, affecting two children and involving their three dogs as carriers. One of the children needed medical care and hospitalisation. Isolation and analysis of stool samples from the sibling and the animals present in the house were carried out. Serotyping allowed the identification of S. enterica subsp. enterica serovar Typhimurium in its monophasic variant for all the isolates. The results of whole-genome sequencing confirmed that the strains were tightly related. The minimum inhibitory concentration (MIC) test documented the resistance to ampicillin, sulfamethoxazole, and tetracycline. The origin of the zoonotic outbreak could not be assessed; however, the case study showed a clear passage of the pathogen between the human and non-human members of the family. The possibility of a transmission from a dog to a human suggests the need for further studies on the potential ways of transmission of salmonellosis through standard and alternative feed.
Collapse
|
98
|
Liu CC, Hsiao WWL. Large-scale comparative genomics to refine the organization of the global Salmonella enterica population structure. Microb Genom 2022; 8:mgen000906. [PMID: 36748524 PMCID: PMC9837569 DOI: 10.1099/mgen.0.000906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The White-Kauffmann-Le Minor (WKL) scheme is the most widely used Salmonella typing scheme for reporting the disease prevalence of the enteric pathogen. With the advent of whole-genome sequencing (WGS), in silico methods have increasingly replaced traditional serotyping due to reproducibility, speed and coverage. However, despite integrating genomic-based typing by in silico serotyping tools such as SISTR, in silico serotyping in certain contexts remains ambiguous and insufficiently informative. Specifically, in silico serotyping does not attempt to resolve polyphyly. Furthermore, in spite of the widespread acknowledgement of polyphyly from genomic studies, the prevalence of polyphyletic serovars is not well characterized. Here, we applied a genomics approach to acquire the necessary resolution to classify genetically discordant serovars and propose an alternative typing scheme that consistently reflect natural Salmonella populations. By accessing the unprecedented volume of bacterial genomic data publicly available in GenomeTrakr and PubMLST databases (>180 000 genomes representing 723 serovars), we characterized the global Salmonella population structure and systematically identified putative non-monophyletic serovars. The proportion of putative non-monophyletic serovars was estimated higher than previous reports, reinforcing the inability of antigenic determinants to depict the complexity of Salmonella evolutionary history. We explored the extent of genetic diversity masked by serotyping labels and found significant intra-serovar molecular differences across many clinically important serovars. To avoid false discovery due to incorrect in silico serotyping calls, we cross-referenced reported serovar labels and concluded a low error rate in in silico serotyping. The combined application of clustering statistics and genome-wide association methods demonstrated effective characterization of stable bacterial populations and explained functional differences. The collective methods adopted in our study have practical values in establishing genomic-based typing nomenclatures for an entire microbial species or closely related subpopulations. Ultimately, we foresee an improved typing scheme to be a hybrid that integrates both genomic and antigenic information such that the resolution from WGS is leveraged to improve the precision of subpopulation classification while preserving the common names defined by the WKL scheme.
Collapse
Affiliation(s)
- Chao Chun Liu
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - William W. L. Hsiao
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada,Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada,*Correspondence: William W. L. Hsiao,
| |
Collapse
|
99
|
Koolman L, Prakash R, Diness Y, Msefula C, Nyirenda TS, Olgemoeller F, Wigley P, Perez-Sepulveda B, Hinton JCD, Owen SV, Feasey NA, Ashton PM, Gordon MA. Case-control investigation of invasive Salmonella disease in Malawi reveals no evidence of environmental or animal transmission of invasive strains, and supports human to human transmission. PLoS Negl Trop Dis 2022; 16:e0010982. [PMID: 36508466 PMCID: PMC9779717 DOI: 10.1371/journal.pntd.0010982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 12/22/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Invasive Salmonella infections cause significant morbidity and mortality in Sub-Saharan Africa. However, the routes of transmission are uncertain. We conducted a case-control study of index-case and geographically-matched control households in Blantyre, Malawi, sampling Salmonella isolates from index cases, healthy people, animals, and the household environment. METHODOLOGY Sixty index cases of human invasive Salmonella infection were recruited (March 2015-Oct 2016). Twenty-eight invasive Non-Typhoidal Salmonella (iNTS) disease and 32 typhoid patients consented to household sampling. Each index-case household was geographically matched to a control household. Extensive microbiological sampling included stool sampling from healthy household members, stool or rectal swabs from household-associated animals and boot-sock sampling of the household environment. FINDINGS 1203 samples from 120 households, yielded 43 non-Typhoidal Salmonella (NTS) isolates from 25 households (overall sample positivity 3.6%). In the 28 iNTS patients, disease was caused by 3 STs of Salmonella Typhimurium, mainly ST313. In contrast, the isolates from households spanned 15 sequence types (STs). Two S. Typhimurium isolates from index cases closely matched isolates from their respective asymptomatic household members (2 and 3 SNP differences respectively). Despite the recovery of a diverse range of NTS, there was no overlap between the STs causing iNTS disease with any environmental or animal isolates. CONCLUSIONS The finding of NTS strains from index cases that matched household members, coupled with lack of related animal or environmental isolates, supports a hypothesis of human to human transmission of iNTS infections in the household. The breadth of NTS strains found in animals and the household environment demonstrated the robustness of NTS sampling and culture methodology, and suggests a diverse ecology of Salmonella in this setting. Healthy typhoid (S. Typhi) carrier state was not detected. The lack of S. Typhi isolates from the household environment suggests that further methodological development is needed to culture S. Typhi from the environment.
Collapse
Affiliation(s)
- Leonard Koolman
- Malawi-Liverpool Wellcome Programme, Blantyre, Malawi
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Reenesh Prakash
- Malawi-Liverpool Wellcome Programme, Blantyre, Malawi
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Yohane Diness
- Malawi-Liverpool Wellcome Programme, Blantyre, Malawi
| | | | | | - Franziska Olgemoeller
- Malawi-Liverpool Wellcome Programme, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Paul Wigley
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Blanca Perez-Sepulveda
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jay C. D. Hinton
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Siân V. Owen
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Nicholas A. Feasey
- Malawi-Liverpool Wellcome Programme, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Philip M. Ashton
- Malawi-Liverpool Wellcome Programme, Blantyre, Malawi
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Melita A. Gordon
- Malawi-Liverpool Wellcome Programme, Blantyre, Malawi
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Kamuzu University of Health Sciences, Blantyre, Malawi
| |
Collapse
|
100
|
Cohn AR, Orsi RH, Carroll LM, Liao J, Wiedmann M, Cheng RA. Salmonella enterica serovar Cerro displays a phylogenetic structure and genomic features consistent with virulence attenuation and adaptation to cattle. Front Microbiol 2022; 13:1005215. [PMID: 36532462 PMCID: PMC9748477 DOI: 10.3389/fmicb.2022.1005215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/07/2022] [Indexed: 07/30/2023] Open
Abstract
Salmonella enterica subsp. enterica (S.) serovar Cerro is rarely isolated from human clinical cases of salmonellosis but represents the most common serovar isolated from cattle without clinical signs of illness in the United States. In this study, using a large, diverse set of 316 isolates, we utilized genomic methods to further elucidate the evolutionary history of S. Cerro and to identify genomic features associated with its apparent virulence attenuation in humans. Phylogenetic analyses showed that within this polyphyletic serovar, 98.4% of isolates (311/316) represent a monophyletic clade within section Typhi and the remaining 1.6% of isolates (5/316) form a monophyletic clade within subspecies enterica Clade A1. Of the section Typhi S. Cerro isolates, 93.2% of isolates (290/311) clustered into a large clonal clade comprised of predominantly sequence type (ST) 367 cattle and environmental isolates, while the remaining 6.8% of isolates (21/311), primarily from human clinical sources, clustered outside of this clonal clade. A tip-dated phylogeny of S. Cerro ST367 identified two major clades (I and II), one of which overwhelmingly consisted of cattle isolates that share a most recent common ancestor that existed circa 1975. Gene presence/absence and rarefaction curve analyses suggested that the pangenome of section Typhi S. Cerro is open, potentially reflecting the gain/loss of prophage; human isolates contained the most open pangenome, while cattle isolates had the least open pangenome. Hypothetically disrupted coding sequences (HDCs) displayed clade-specific losses of intact speC and sopA virulence genes within the large clonal S. Cerro clade, while loss of intact vgrG, araH, and vapC occurred in all section Typhi S. Cerro isolates. Further phenotypic analysis suggested that the presence of a premature stop codon in speC does not abolish ornithine decarboxylase activity in S. Cerro, likely due to the activity of the second ornithine decarboxylase encoded by speF, which remained intact in all isolates. Overall, our study identifies specific genomic features associated with S. Cerro's infrequent isolation from humans and its apparent adaptation to cattle, which has broader implications for informing our understanding of the evolutionary events facilitating host adaptation in Salmonella.
Collapse
Affiliation(s)
- Alexa R. Cohn
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Renato H. Orsi
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Laura M. Carroll
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jingqiu Liao
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Rachel A. Cheng
- Department of Food Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|