51
|
Newey CR, Olausson AT, Applegate A, Reid AA, Robison RA, Grose JH. Presence and stability of SARS-CoV-2 on environmental currency and money cards in Utah reveals a lack of live virus. PLoS One 2022; 17:e0263025. [PMID: 35077511 PMCID: PMC8789161 DOI: 10.1371/journal.pone.0263025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/10/2022] [Indexed: 01/22/2023] Open
Abstract
The highly contagious nature of SARS-CoV-2 has led to several studies on the transmission of the virus. A little studied potential fomite of great concern in the community is currency, which has been shown to harbor microbial pathogens in several studies. Since the onset of the COVID-19 pandemic, many businesses in the United States have limited the use of banknotes in favor of credit cards. However, SARS-CoV-2 has shown greater stability on plastic in several studies. Herein, the stability of SARS-CoV-2 at room temperature on banknotes, money cards and coins was investigated. In vitro studies with live virus suggested SARS-CoV-2 was highly unstable on banknotes, showing an initial rapid reduction in viable virus and no viral detection by 24 hours. In contrast, SARS-CoV-2 displayed increased stability on money cards with live virus detected after 48 hours. Environmental swabbing of currency and money cards on and near the campus of Brigham Young University supported these results, with no detection of SARS-CoV-2 RNA on banknotes, and a low level on money cards. However, no viable virus was detected on either. These preliminary results suggest that the use of money cards over banknotes in order to slow the spread of this virus may be ill-advised. These findings should be investigated further through larger environmental studies involving more locations.
Collapse
Affiliation(s)
- Colleen R. Newey
- Department of Microbiology and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, UT, United States of America
| | - Abigail T. Olausson
- Department of Microbiology and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, UT, United States of America
| | - Alyssa Applegate
- Department of Microbiology and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, UT, United States of America
| | - Ann-Aubrey Reid
- Department of Microbiology and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, UT, United States of America
| | - Richard A. Robison
- Department of Microbiology and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, UT, United States of America
| | - Julianne H. Grose
- Department of Microbiology and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, UT, United States of America
| |
Collapse
|
52
|
Locas A, Brassard J, Rose-Martel M, Lambert D, Green A, Deckert A, Illing M. Comprehensive Risk Pathway of the Qualitative Likelihood of Human Exposure to Severe Acute Respiratory Syndrome Coronavirus 2 from the Food Chain. J Food Prot 2022; 85:85-97. [PMID: 34499732 PMCID: PMC9906280 DOI: 10.4315/jfp-21-218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/08/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT A group of experts from all Canadian federal food safety partners was formed to monitor the potential issues relating to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) food contamination, to gather and consider all of the relevant evidence and to determine the impact for Canadian food safety. A comprehensive risk pathway was generated to consider the likelihood of a SARS-CoV-2 contamination event at any of the relevant steps of the food processing and handling chain and the potential for exposure and transmission of the virus to the consumer. The scientific evidence was reviewed and assessed for each event in the pathway, taking into consideration relevant elements that could increase or mitigate the risk of contamination. The advantage of having an event-wise contextualization of the SARS-CoV-2 transmission pathway through the food chain is that it provides a systematic and consistent approach to evaluate any new data and communicate its importance and impact. The pathway also increases the objectivity and consistency of the assessment in a rapidly evolving and high-stakes situation. Based on our review and analysis, there is currently no comprehensive epidemiological evidence of confirmed cases of SARS-CoV-2, or its known variants, causing coronavirus disease 2019 from transmission through food or food packaging. Considering the remote possibility of exposure through food, the likelihood of exposure by ingestion or contact with mucosa is considered negligible to very low, and good hygiene practices during food preparation should continue to be followed. HIGHLIGHTS
Collapse
Affiliation(s)
- Annie Locas
- Canadian Food Inspection Agency, 1400 Merivale, Ottawa, Ontario, Canada K1A 0Y9,Author for correspondence. Tel: 613-773-6539
| | - Julie Brassard
- Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, Quebec, Canada J2S 8E3
| | - Megan Rose-Martel
- Health Canada, 251 Sir Frederick Banting Drive, Ottawa, Ontario, Canada K1A 0K9
| | - Dominic Lambert
- Canadian Food Inspection Agency, 3400 Casavant Boulevard West, Saint-Hyacinthe, Quebec, Canada J2S 8E3
| | - Alyssa Green
- Public Health Agency of Canada, 370 Speedvale Avenue West, Guelph, Ontario, Canada N1H 7M7
| | - Anne Deckert
- Public Health Agency of Canada, 370 Speedvale Avenue West, Guelph, Ontario, Canada N1H 7M7
| | - Michelle Illing
- Canadian Food Inspection Agency, 1400 Merivale, Ottawa, Ontario, Canada K1A 0Y9
| |
Collapse
|
53
|
Sami N, Ahmad R, Afzal B, Naaz H, Fatma T. SARS-CoV-2 in the Environment: Its Transmission, Mitigation, and Prospective Strategies of Safety and Sustainability. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 260:8. [PMCID: PMC9419920 DOI: 10.1007/s44169-022-00009-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The emergence and spread of SARS-CoV-2 have threatened the world’s public health security. The COVID-19 pandemic has affected many countries and significantly smashed the global economy, and also affected the health of the environment. This has upraised many apprehensions about its high transmission rate. Even though the most important routes of its transmission include direct contact and respiratory droplets, the infection through non-direct contacts also plays an important role. The increasing demand for intensive healthcare, escalating death toll and disruption in supply chains and trade have directed to mass implementation of testing, quarantine, and lockdown to restrain virus transmission. The lockdown has been a boon and a bane as well when it comes to the health of the environment. It had improved the air and water quality since the industrial activities were banned and therefore there was no addition of pollutants in the environment, but the usage of plastic-based personal protective equipment (PPE) and other medical waste has simultaneously resulted in huge plastic pollution that is choking seas and marine lives. The precautionary measures given by the United Nations Environment Programme in its COVID response factsheets suggest ways to reduce medical waste and to prevent the spread of the present pandemic. The recent green innovations and environmental stringency programs have resulted in reducing the threats to the environment that would eventually help in inhibiting the spread of such pandemics. In addition, proper measures should be adopted to safeguard the complete health of humans and the environment to execute safety and sustainable development that will help in achieving a stable biome.
Collapse
Affiliation(s)
- Neha Sami
- Cyanobacterial Biotechnology Lab, Department of Biosciences, Jamia Millia Islamia, Maulana Mohammad Ali Jauhar Marg, Jamia Nagar, New Delhi, 110025 India
| | - Rakhshan Ahmad
- Cyanobacterial Biotechnology Lab, Department of Biosciences, Jamia Millia Islamia, Maulana Mohammad Ali Jauhar Marg, Jamia Nagar, New Delhi, 110025 India
| | - Bushra Afzal
- Cyanobacterial Biotechnology Lab, Department of Biosciences, Jamia Millia Islamia, Maulana Mohammad Ali Jauhar Marg, Jamia Nagar, New Delhi, 110025 India
| | - Haleema Naaz
- Cyanobacterial Biotechnology Lab, Department of Biosciences, Jamia Millia Islamia, Maulana Mohammad Ali Jauhar Marg, Jamia Nagar, New Delhi, 110025 India
| | - Tasneem Fatma
- Cyanobacterial Biotechnology Lab, Department of Biosciences, Jamia Millia Islamia, Maulana Mohammad Ali Jauhar Marg, Jamia Nagar, New Delhi, 110025 India
| |
Collapse
|
54
|
King M, Wilson AM, Weir MH, López‐García M, Proctor J, Hiwar W, Khan A, Fletcher LA, Sleigh PA, Clifton I, Dancer SJ, Wilcox M, Reynolds KA, Noakes CJ. Modeling fomite-mediated SARS-CoV-2 exposure through personal protective equipment doffing in a hospital environment. INDOOR AIR 2022; 32:e12938. [PMID: 34693567 PMCID: PMC8653260 DOI: 10.1111/ina.12938] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/20/2021] [Accepted: 09/18/2021] [Indexed: 06/08/2023]
Abstract
Self-contamination during doffing of personal protective equipment (PPE) is a concern for healthcare workers (HCW) following SARS-CoV-2-positive patient care. Staff may subconsciously become contaminated through improper glove removal; so, quantifying this exposure is critical for safe working procedures. HCW surface contact sequences on a respiratory ward were modeled using a discrete-time Markov chain for: IV-drip care, blood pressure monitoring, and doctors' rounds. Accretion of viral RNA on gloves during care was modeled using a stochastic recurrence relation. In the simulation, the HCW then doffed PPE and contaminated themselves in a fraction of cases based on increasing caseload. A parametric study was conducted to analyze the effect of: (1a) increasing patient numbers on the ward, (1b) the proportion of COVID-19 cases, (2) the length of a shift, and (3) the probability of touching contaminated PPE. The driving factors for the exposure were surface contamination and the number of surface contacts. The results simulate generally low viral exposures in most of the scenarios considered including on 100% COVID-19 positive wards, although this is where the highest self-inoculated dose is likely to occur with median 0.0305 viruses (95% CI =0-0.6 viruses). Dose correlates highly with surface contamination showing that this can be a determining factor for the exposure. The infection risk resulting from the exposure is challenging to estimate, as it will be influenced by the factors such as virus variant and vaccination rates.
Collapse
Affiliation(s)
| | - Amanda M. Wilson
- Department of Community, Environment, and PolicyMel and Enid Zuckerman College of Public HealthUniversity of ArizonaTucsonArizonaUSA
| | - Mark H. Weir
- Division of Environmental Health SciencesThe Ohio State UniversityColumbusOhioUSA
| | | | | | - Waseem Hiwar
- School of Civil EngineeringUniversity of LeedsLeedsUK
| | - Amirul Khan
- School of Civil EngineeringUniversity of LeedsLeedsUK
| | | | | | - Ian Clifton
- Department of Respiratory MedicineSt. James's HospitalUniversity of LeedsLeedsUK
| | - Stephanie J. Dancer
- School of Applied SciencesEdinburgh Napier UniversityEdinburghUK
- Department of MicrobiologyHairmyres HospitalNHS LanarkshireGlasgowG75 8RGUK
| | - Mark Wilcox
- Healthcare Associated Infections Research GroupLeeds Teaching Hospitals NHS Trust and University of LeedsLeedsUK
| | - Kelly A. Reynolds
- Department of Community, Environment, and PolicyMel and Enid Zuckerman College of Public HealthUniversity of ArizonaTucsonArizonaUSA
| | | |
Collapse
|
55
|
Delgado Corrales B, Kaiser R, Nerlich P, Agraviador A, Sherry A. BioMateriOME: To understand microbe-material interactions within sustainable, living architectures. ADVANCES IN APPLIED MICROBIOLOGY 2022; 122:77-126. [PMID: 37085194 DOI: 10.1016/bs.aambs.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BioMateriOME evolved from a prototyping process which was informed from discussions between a team of designers, architects and microbiologists, when considering constructing with biomaterials or human cohabitation with novel living materials in the built environment. The prototype has two elements (i) BioMateriOME-Public (BMP), an interactive public materials library, and (ii) BioMateriOME-eXperimental (BMX), a replicated materials library for rigorous microbiome experimentation. The prototype was installed into the OME, a unique experimental living house, in order to (1) gain insights into society's perceptions of living materials, and (2) perform a comparative analysis of indoor surface microbiome development on novel biomaterials in contrast to conventional indoor surfaces, respectively. This review summarizes the BioMateriOME prototype and its use as a tool in combining microbiology, design, architecture and social science. The use of microbiology and biological components in the fabrication of biomaterials is provided, together with an appreciation of the microbial communities common to conventional indoor surfaces, and how these communities may change in response to the implementation of living materials in our homes. Societal perceptions of microbiomes and biomaterials, are considered within the framework of healthy architecture. Finally, features of architectural design with microbes in mind are introduced, with the possibility of codifying microbial surveillance into design and construction benchmarks, standards and regulations toward healthier buildings and their occupants.
Collapse
Affiliation(s)
- Beatriz Delgado Corrales
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Romy Kaiser
- Hub for Biotechnology in the Built Environment, School of Architecture, Planning and Landscape, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Paula Nerlich
- Hub for Biotechnology in the Built Environment, School of Architecture, Planning and Landscape, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Armand Agraviador
- Hub for Biotechnology in the Built Environment, School of Architecture, Planning and Landscape, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Angela Sherry
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
56
|
Salido RA, Cantú VJ, Clark AE, Leibel SL, Foroughishafiei A, Saha A, Hakim A, Nouri A, Lastrella AL, Castro-Martínez A, Plascencia A, Kapadia BK, Xia B, Ruiz CA, Marotz CA, Maunder D, Lawrence ES, Smoot EW, Eisner E, Crescini ES, Kohn L, Franco Vargas L, Chacón M, Betty M, Machnicki M, Wu MY, Baer NA, Belda-Ferre P, De Hoff P, Seaver P, Ostrander RT, Tsai R, Sathe S, Aigner S, Morgan SC, Ngo TT, Barber T, Cheung W, Carlin AF, Yeo GW, Laurent LC, Fielding-Miller R, Knight R. Analysis of SARS-CoV-2 RNA Persistence across Indoor Surface Materials Reveals Best Practices for Environmental Monitoring Programs. mSystems 2021; 6:e0113621. [PMID: 34726486 PMCID: PMC8562474 DOI: 10.1128/msystems.01136-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/15/2021] [Indexed: 11/20/2022] Open
Abstract
Environmental monitoring in public spaces can be used to identify surfaces contaminated by persons with coronavirus disease 2019 (COVID-19) and inform appropriate infection mitigation responses. Research groups have reported detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on surfaces days or weeks after the virus has been deposited, making it difficult to estimate when an infected individual may have shed virus onto a SARS-CoV-2-positive surface, which in turn complicates the process of establishing effective quarantine measures. In this study, we determined that reverse transcription-quantitative PCR (RT-qPCR) detection of viral RNA from heat-inactivated particles experiences minimal decay over 7 days of monitoring on eight out of nine surfaces tested. The properties of the studied surfaces result in RT-qPCR signatures that can be segregated into two material categories, rough and smooth, where smooth surfaces have a lower limit of detection. RT-qPCR signal intensity (average quantification cycle [Cq]) can be correlated with surface viral load using only one linear regression model per material category. The same experiment was performed with untreated viral particles on one surface from each category, with essentially identical results. The stability of RT-qPCR viral signal demonstrates the need to clean monitored surfaces after sampling to establish temporal resolution. Additionally, these findings can be used to minimize the number of materials and time points tested and allow for the use of heat-inactivated viral particles when optimizing environmental monitoring methods. IMPORTANCE Environmental monitoring is an important tool for public health surveillance, particularly in settings with low rates of diagnostic testing. Time between sampling public environments, such as hospitals or schools, and notifying stakeholders of the results should be minimal, allowing decisions to be made toward containing outbreaks of coronavirus disease 2019 (COVID-19). The Safer At School Early Alert program (SASEA) (https://saseasystem.org/), a large-scale environmental monitoring effort in elementary school and child care settings, has processed >13,000 surface samples for SARS-CoV-2, detecting viral signals from 574 samples. However, consecutive detection events necessitated the present study to establish appropriate response practices around persistent viral signals on classroom surfaces. Other research groups and clinical labs developing environmental monitoring methods may need to establish their own correlation between RT-qPCR results and viral load, but this work provides evidence justifying simplified experimental designs, like reduced testing materials and the use of heat-inactivated viral particles.
Collapse
Affiliation(s)
- Rodolfo A. Salido
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Victor J. Cantú
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Alex E. Clark
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Sandra L. Leibel
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Sanford Consortium of Regenerative Medicine, University of California San Diego, La Jolla, California, USA
| | - Anahid Foroughishafiei
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Anushka Saha
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Abbas Hakim
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Alhakam Nouri
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Alma L. Lastrella
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Anelizze Castro-Martínez
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Ashley Plascencia
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Bhavika K. Kapadia
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Bing Xia
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Christopher A. Ruiz
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Clarisse A. Marotz
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Daniel Maunder
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Elijah S. Lawrence
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Elizabeth W. Smoot
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Emily Eisner
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Evelyn S. Crescini
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Laura Kohn
- Herbert Wertheim School of Public Health, University of California, La Jolla, California, USA
| | - Lizbeth Franco Vargas
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Marisol Chacón
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Maryann Betty
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Rady Children’s Hospital, San Diego, California, USA
| | - Michal Machnicki
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Min Yi Wu
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Nathan A. Baer
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Pedro Belda-Ferre
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Peter De Hoff
- Sanford Consortium of Regenerative Medicine, University of California San Diego, La Jolla, California, USA
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
| | - Phoebe Seaver
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - R. Tyler Ostrander
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Rebecca Tsai
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Shashank Sathe
- Sanford Consortium of Regenerative Medicine, University of California San Diego, La Jolla, California, USA
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Stefan Aigner
- Sanford Consortium of Regenerative Medicine, University of California San Diego, La Jolla, California, USA
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Sydney C. Morgan
- Sanford Consortium of Regenerative Medicine, University of California San Diego, La Jolla, California, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
| | - Toan T. Ngo
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Tom Barber
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Willi Cheung
- Sanford Consortium of Regenerative Medicine, University of California San Diego, La Jolla, California, USA
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- San Diego State University, San Diego, California, USA
| | - Aaron F. Carlin
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Gene W. Yeo
- Sanford Consortium of Regenerative Medicine, University of California San Diego, La Jolla, California, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Louise C. Laurent
- Sanford Consortium of Regenerative Medicine, University of California San Diego, La Jolla, California, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
| | - Rebecca Fielding-Miller
- Herbert Wertheim School of Public Health, University of California, La Jolla, California, USA
| | - Rob Knight
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
57
|
Freeman AL, Parker S, Noakes C, Fitzgerald S, Smyth A, Macbeth R, Spiegelhalter D, Rutter H. Expert elicitation on the relative importance of possible SARS-CoV-2 transmission routes and the effectiveness of mitigations. BMJ Open 2021; 11:e050869. [PMID: 34853105 PMCID: PMC8637346 DOI: 10.1136/bmjopen-2021-050869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/26/2021] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES To help people make decisions about the most effective mitigation measures against SARS-CoV-2 transmission in different scenarios, the likelihoods of transmission by different routes need to be quantified to some degree (however uncertain). These likelihoods need to be communicated in an appropriate way to illustrate the relative importance of different routes in different scenarios, the likely effectiveness of different mitigation measures along those routes, and the level of uncertainty in those estimates. In this study, a pragmatic expert elicitation was undertaken to supply the underlying quantitative values to produce such a communication tool. PARTICIPANTS Twenty-seven individual experts from five countries and many scientific disciplines provided estimates. OUTCOME MEASURES Estimates of transmission parameters, assessments of the quality of the evidence, references to relevant literature, rationales for their estimates and sources of uncertainty. RESULTS AND CONCLUSION The participants' responses showed that there is still considerable disagreement among experts about the relative importance of different transmission pathways and the effectiveness of different mitigation measures due to a lack of empirical evidence. Despite these disagreements, when pooled, the majority views on each parameter formed an internally consistent set of estimates (for example, that transmission was more likely indoors than outdoors, and at closer range), which formed the basis of a visualisation to help individuals and organisations understand the factors that influence transmission and the potential benefits of different mitigation measures.
Collapse
Affiliation(s)
- Alexandra Lj Freeman
- Winton Centre for Risk & Evidence Communication, University of Cambridge, Cambridge, UK
| | - Simon Parker
- Defence Science and Technology Laboratory, Salisbury, UK
| | | | - Shaun Fitzgerald
- Centre for Climate Repair at Cambridge, University of Cambridge, Cambridge, UK
| | | | | | - David Spiegelhalter
- Winton Centre for Risk & Evidence Communication, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
58
|
Behzadinasab S, Chin AWH, Hosseini M, Poon LLM, Ducker WA. SARS-CoV-2 virus transfers to skin through contact with contaminated solids. Sci Rep 2021; 11:22868. [PMID: 34819522 PMCID: PMC8613237 DOI: 10.1038/s41598-021-00843-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/06/2021] [Indexed: 12/20/2022] Open
Abstract
Transfer of SARS-CoV-2 from solids to fingers is one step in infection via contaminated solids, and the possibility of infection from this route has driven calls for increased frequency of handwashing during the COVID-19 pandemic. To analyze this route of infection, we measured the percentage of SARS-CoV-2 that was transferred from a solid to an artificial finger. A droplet of SARS-CoV-2 suspension (1 µL) was placed on a solid, and then artificial skin was briefly pressed against the solid with a light force (3 N). Transfer from a variety of solids was detected, and transfer from the non-porous solids, glass, stainless steel, and Teflon, was substantial when the droplet was still wet. The viral titer for the finger was 13-16% or 0.8-0.9 log less than for the input droplet. Transfer still occurred after the droplet evaporated, but was smaller, 3-9%. We found a lower level of transfer from porous solids but did not find a significant effect of solid wettability for non-porous solids.
Collapse
Affiliation(s)
- Saeed Behzadinasab
- Department of Chemical Engineering and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Alex W H Chin
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Mohsen Hosseini
- Department of Chemical Engineering and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Leo L M Poon
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China.
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - William A Ducker
- Department of Chemical Engineering and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
59
|
Behzadinasab S, Williams MD, Hosseini M, Poon LLM, Chin AWH, Falkinham JO, Ducker WA. Transparent and Sprayable Surface Coatings that Kill Drug-Resistant Bacteria Within Minutes and Inactivate SARS-CoV-2 Virus. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54706-54714. [PMID: 34766745 PMCID: PMC8609913 DOI: 10.1021/acsami.1c15505] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/27/2021] [Indexed: 05/05/2023]
Abstract
Antimicrobial coatings are one method to reduce the spread of microbial diseases. Transparent coatings preserve the visual properties of surfaces and are strictly necessary for applications such as antimicrobial cell phone screens. This work describes transparent coatings that inactivate microbes within minutes. The coatings are based on a polydopamine (PDA) adhesive, which has the useful property that the monomer can be sprayed, and then the monomer polymerizes in a conformal film at room temperature. Two coatings are described (1) a coating where PDA is deposited first and then a thin layer of copper is grown on the PDA by electroless deposition (PDA/Cu) and (2) a coating where a suspension of Cu2O particles in a PDA solution is deposited in a single step (PDA/Cu2O). In the second coating, PDA menisci bind Cu2O particles to the solid surface. Both coatings are transparent and are highly efficient in inactivating microbes. PDA/Cu kills >99.99% of Pseudomonas aeruginosa and 99.18% of methicillin-resistant Staphylococcus aureus (MRSA) in only 10 min and inactivates 99.98% of SARS-CoV-2 virus in 1 h. PDA/Cu2O kills 99.94% of P. aeruginosa and 96.82% of MRSA within 10 min and inactivates 99.88% of SARS-CoV-2 in 1 h.
Collapse
Affiliation(s)
- Saeed Behzadinasab
- Department of Chemical Engineering and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Myra D Williams
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Mohsen Hosseini
- Department of Chemical Engineering and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Leo L M Poon
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Immunity and Infection, Hong Kong Science Park, Hong Kong, China
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Alex W H Chin
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Immunity and Infection, Hong Kong Science Park, Hong Kong, China
| | - Joseph O Falkinham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - William A Ducker
- Department of Chemical Engineering and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
60
|
Stability of SARS-CoV-2 and influenza virus varies across different paper types. J Infect Chemother 2021; 28:252-256. [PMID: 34799238 PMCID: PMC8590490 DOI: 10.1016/j.jiac.2021.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/14/2021] [Accepted: 11/09/2021] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The assessment of the risk of virus transmission through papers, such as postcards, is important. However, the stability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV) on different types of papers is currently unknown. Investigation of the survival time of these viruses on different types of papers will provide insights into their risk of long-distance transport by postal items. METHODS We evaluated the stability of SARS-CoV-2 and IAV, mixed with a culture medium, on the surface of postcards with various coatings, including plain paper (PP), inkjet paper (IP), and inkjet photo paper (IPP). The surface structure of each paper was microscopically assessed. RESULTS The surface structures of PP, IP, and IPP varied greatly depending on the presence or absence, and type, of coat layer, regardless of the base material. IP and IPP surfaces were less conducive to virus survival than PP surfaces, because of the difference in surface shapes. The survival times of SARS-CoV-2 on each paper were approximately 59.8 (PP), 6.5 (IP), and 9.8 h (IPP), and significantly longer than those of IAV (10.3, 1.8, and 3.3 h, respectively). CONCLUSIONS The risk of SARS-CoV-2 transmission via paper, such as postcards, is significantly higher than that of IAV transmission. While PP, IP, and IPP have the same base material, their surface structures differ, which affects viral stability. The IP and IPP surfaces are less suitable for virus survival. This study provides novel insights into the risks of viral transmission via paper.
Collapse
|
61
|
Lu LC, Quintela I, Lin CH, Lin TC, Lin CH, Wu VCH, Lin CS. A review of epidemic investigation on cold-chain food-mediated SARS-CoV-2 transmission and food safety consideration during COVID-19 pandemic. J Food Saf 2021; 41:e12932. [PMID: 34898751 PMCID: PMC8646261 DOI: 10.1111/jfs.12932] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/29/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022]
Abstract
COVID‐19 has brought speculations on potential transmission routes of the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), the causal agent of the pandemic. It is reported that the main route of virus transmission to be person‐to‐person by respiratory droplets; however, people have raised concerns on the possible transmission of SARS‐CoV‐2 to humans via food and packaging and its potential effects on food safety. This review discusses food safety issues in the COVID‐19 pandemic and reveals its possible transmission in cold‐chain food. The first outbreak of COVID‐19 in late 2019 was associated with a seafood market in Wuhan, China, while the second outbreak of COVID‐19 in June 2020 was also related to a seafood market in Beijing, China. As of 2020, several frozen seafood products linked with SARS‐CoV‐2 have been reported in China. According to the current survey and scientific studies, the risk of infection by SARS‐CoV‐2 from cold‐chain food, food products, and food packaging is thought to be very low. However, studies on food cold chain contamination have shown that SARS‐CoV‐2 remained highly stable under refrigerated (4°C) and even in freezing conditions (−10 to −80°C). Since one mode of SARS‐CoV‐2 transmission appears to be touching contaminated surfaces, it is important to clean and sanitize food contact surfaces properly. Understanding food safety hazard risks is essential to avoid potential negative health effects and SARS‐CoV‐2 transmission in the food supply chain during the COVID‐19 pandemic.
Collapse
Affiliation(s)
- Li-Che Lu
- Division of Nephrology, Department of Internal Medicine Shin Kong Wu Ho-Su Memorial Hospital Taipei Taiwan
| | - Irwin Quintela
- Produce Safety and Microbiology Research Unit United States Department of Agriculture, Agricultural Research Service Albany California USA
| | - Cheng-Han Lin
- Department of Biological Science and Technology National Yang Ming Chiao Tung University Hsinchu Taiwan
| | - Tzu-Ching Lin
- Department of Pharmacy, College of Pharmacy Taipei Medical University Taipei Taiwan
| | - Chao-Hsu Lin
- Department of Biological Science and Technology National Yang Ming Chiao Tung University Hsinchu Taiwan.,Department of Pediatrics Hsinchu Mackay Memorial Hospital Hsinchu Taiwan
| | - Vivian C H Wu
- Produce Safety and Microbiology Research Unit United States Department of Agriculture, Agricultural Research Service Albany California USA
| | - Chih-Sheng Lin
- Department of Biological Science and Technology National Yang Ming Chiao Tung University Hsinchu Taiwan.,Department of Biological Science and Technology National Chiao Tung University Hsinchu Taiwan.,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B) National Yang Ming Chiao Tung University Hsinchu Taiwan
| |
Collapse
|
62
|
Ijaz MK, Nims RW, de Szalay S, Rubino JR. Soap, water, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): an ancient handwashing strategy for preventing dissemination of a novel virus. PeerJ 2021; 9:e12041. [PMID: 34616601 PMCID: PMC8451441 DOI: 10.7717/peerj.12041] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/02/2021] [Indexed: 12/23/2022] Open
Abstract
Public Health Agencies worldwide (World Health Organization, United States Centers for Disease Prevention & Control, Chinese Center for Disease Control and Prevention, European Centre for Disease Prevention and Control, etc.) are recommending hand washing with soap and water for preventing the dissemination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. In this review, we have discussed the mechanisms of decontamination by soap and water (involving both removal and inactivation), described the contribution of the various components of formulated soaps to performance as cleansers and to pathogen inactivation, explained why adherence to recommended contact times is critical, evaluated the possible contribution of water temperature to inactivation, discussed the advantages of antimicrobial soaps vs. basic soaps, discussed the differences between use of soap and water vs. alcohol-based hand sanitizers for hand decontamination, and evaluated the limitations and advantages of different methods of drying hands following washing. While the paper emphasizes data applicable to SARS-CoV-2, the topics discussed are germane to most emerging and re-emerging enveloped and non-enveloped viruses and many other pathogen types.
Collapse
Affiliation(s)
- M. Khalid Ijaz
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, New Jersey, United States
- Department of Biology, Medgar Evers College of the City University of New York (CUNY), Brooklyn, New York, United States
| | - Raymond W. Nims
- RMC Pharmaceutical Solutions, Inc., Longmont, Colorado, United States
| | - Sarah de Szalay
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, New Jersey, United States
| | - Joseph R. Rubino
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, New Jersey, United States
| |
Collapse
|
63
|
Kwiatkowska R, Yaxley N, Moore G, Bennett A, Donati M, Love N, Vivancos R, Hickman M, Ready DR. Environmental screening for SARS-CoV-2 in long term care facilities: lessons from a pilot study. Wellcome Open Res 2021. [DOI: 10.12688/wellcomeopenres.17047.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: The SARS-CoV-2 pandemic has highlighted the risk of infection transmission in long-term care facilities (LTCF) and the vulnerability of resident populations. It is essential to understand the environmental spread of the virus and risk of indirect transmission to inform Infection Prevention and Control (IPC) measures in these settings. Methods: Upon notification of SARS-CoV-2 outbreaks, LTCF within a local authority in the South West of England were approached to take part in this pilot study. Investigators visited to swab common touch-points and elevated ‘non-touch’ surfaces and samples were analysed for presence of SARS-CoV-2 genetic material (RNA). Data were collected regarding LTCF infrastructure, staff behaviours, clinical and epidemiological risk factors for infection (staff and residents), and IPC measures. Criteria for success were: recruitment of three LTCF; detection of SARS-COV-2 RNA; variation in proportion of SARS-CoV-2 positive surfaces by sampling zone; potential to assess infection risk from SARS-CoV-2 positive surfaces. Results: Three LTCFs were recruited, ranging in size and resident demographics. Outbreaks lasted 63, 50 and 30 days with resident attack rates of 53%, 40% and 8%, respectively. The proportion of sample sites on which SARS-CoV-2 was detected was highest in rooms occupied by infected residents and varied elsewhere in the LTCF, with low levels in a facility implementing enhanced IPC measures. The heterogeneity of settings and difficulty obtaining data made it difficult to assess association between environmental contamination and infection. Elevated surfaces were more likely to test positive for SARS-CoV-2 RNA than common touch-points. Conclusions: SARS-CoV-2 RNA can be detected in a variety of LTCF outbreak settings. We identified variation in environmental spread which could be associated with implementation of IPC measures, though we were unable to assess the impact on infection risk. Sampling elevated surfaces could add to ongoing public health surveillance for SARS-CoV-2 and other airborne pathogens in LTCF.
Collapse
|
64
|
Li X, Zhang L, Chen S, Ji W, Li C, Ren L. Recent progress on the mutations of SARS-CoV-2 spike protein and suggestions for prevention and controlling of the pandemic. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 93:104971. [PMID: 34146731 PMCID: PMC8213438 DOI: 10.1016/j.meegid.2021.104971] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 02/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection has caused a global pandemic in the past year, which poses continuing threat to human beings. To date, more than 3561 mutations in the viral spike protein were identified, including 2434 mutations that cause amino acid changes with 343 amino acids located in the viral receptor-binding domain (RBD). Among these mutations, the most representative ones are substitution mutations such as D614G, N501Y, Y453F, N439K/R, P681H, K417N/T, and E484K, and deletion mutations of ΔH69/V70 and Δ242-244, which confer the virus with enhanced infectivity, transmissibility, and resistance to neutralization. In this review, we discussed the recent findings of SARS-CoV-2 for highlighting mutations and variants on virus transmissibility and pathogenicity. Moreover, several suggestions for prevention and controlling the pandemic are also proposed.
Collapse
Affiliation(s)
- Xue Li
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xi' An Road, Changchun 130062, China
| | - Liying Zhang
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xi' An Road, Changchun 130062, China
| | - Si Chen
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xi' An Road, Changchun 130062, China
| | - Weilong Ji
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xi' An Road, Changchun 130062, China
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun 130112, China
| | - Linzhu Ren
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xi' An Road, Changchun 130062, China.
| |
Collapse
|
65
|
Todt D, Meister TL, Tamele B, Howes J, Paulmann D, Becker B, Brill FH, Wind M, Schijven J, Heinen N, Kinast V, Mhlekude B, Goffinet C, Krawczyk A, Steinmann J, Pfaender S, Brüggemann Y, Steinmann E. A realistic transfer method reveals low risk of SARS-CoV-2 transmission via contaminated euro coins and banknotes. iScience 2021; 24:102908. [PMID: 34337354 PMCID: PMC8312053 DOI: 10.1016/j.isci.2021.102908] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/15/2021] [Accepted: 07/22/2021] [Indexed: 12/21/2022] Open
Abstract
The current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has created a significant threat to global health. While respiratory aerosols or droplets are considered as the main route of human-to-human transmission, secretions expelled by infected individuals can also contaminate surfaces and objects, potentially creating the risk of fomite-based transmission. Consequently, frequently touched objects such as paper currency and coins have been suspected as potential transmission vehicle. To assess the risk of SARS-CoV-2 transmission by banknotes and coins, we examined the stability of SARS-CoV-2 and bovine coronavirus, as surrogate with lower biosafety restrictions, on these different means of payment and developed a touch transfer method to examine transfer efficiency from contaminated surfaces to fingertips. Although we observed prolonged virus stability, our results indicate that transmission of SARS-CoV-2 via contaminated coins and banknotes is unlikely and requires high viral loads and a timely order of specific events.
Collapse
Affiliation(s)
- Daniel Todt
- Department of Molecular & Medical Virology, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
- European Virus Bioinformatics Center (EVBC), 07743 Jena, Germany
| | - Toni Luise Meister
- Department of Molecular & Medical Virology, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Barbora Tamele
- European Central Bank (ECB), 60314 Frankfurt am Main, Germany
| | - John Howes
- European Central Bank (ECB), 60314 Frankfurt am Main, Germany
| | - Dajana Paulmann
- Dr. Brill + Partner GmbH Institute for Hygiene and Microbiology, 28259 Bremen, Germany
| | - Britta Becker
- Dr. Brill + Partner GmbH Institute for Hygiene and Microbiology, 28259 Bremen, Germany
| | - Florian H. Brill
- Dr. Brill + Partner GmbH Institute for Hygiene and Microbiology, 28259 Bremen, Germany
| | - Mark Wind
- Cash Policy Department, De Nederlandsche Bank, 1000 Amsterdam, The Netherlands
| | - Jack Schijven
- Department of Statistics, Informatics and Modeling, National Institute of Public Health and the Environment, 3720 Bilthoven, the Netherlands
- Department of Earth Sciences, Utrecht University, 3508 Utrecht, the Netherlands
| | - Natalie Heinen
- Department of Molecular & Medical Virology, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Volker Kinast
- Department of Molecular & Medical Virology, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Baxolele Mhlekude
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin Institute of Health (BIH), 10117 Berlin, Germany
| | - Christine Goffinet
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin Institute of Health (BIH), 10117 Berlin, Germany
| | - Adalbert Krawczyk
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Department of Infectious Diseases, West German Centre of Infectious Diseases, Universitätsmedizin Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Jörg Steinmann
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, General Hospital Nürnberg, Paracelsus Medical University, 90419 Nuremberg, Germany
- Institute of Medical Microbiology, University Hospital of Essen, 45147 Essen, Germany
| | - Stephanie Pfaender
- Department of Molecular & Medical Virology, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Yannick Brüggemann
- Department of Molecular & Medical Virology, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Eike Steinmann
- Department of Molecular & Medical Virology, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| |
Collapse
|
66
|
El-Sayed A, Aleya L, Kamel M. COVID-19: a new emerging respiratory disease from the neurological perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40445-40459. [PMID: 33590398 PMCID: PMC7884096 DOI: 10.1007/s11356-021-12969-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/10/2021] [Indexed: 04/15/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has become a challenging public health catastrophe worldwide. The newly emerged disease spread in almost all countries and infected 100 million persons worldwide. The infection is not limited to the respiratory system but involves various body systems and may lead to multiple organ failure. Tissue degenerative changes result from direct viral invasion, indirect consequences, or through an uncontrolled immune response. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spreads to the brain via hematogenous and neural routes accompanied with dysfunction of the blood-brain barrier. The involvement of the central nervous system is now suspected to be among the main causes of death. The present review discusses the historical background of coronaviruses, their role in previous and ongoing pandemics, the way they escape the immune system, why they are able to spread despite all undertaken measures, in addition to the neurological manifestations, long-term consequences of the disease, and various routes of viral introduction to the CNS.
Collapse
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
67
|
Salido RA, Cantú VJ, Clark AE, Leibel SL, Foroughishafiei A, Saha A, Hakim A, Nouri A, Lastrella AL, Castro-Martínez A, Plascencia A, Kapadia B, Xia B, Ruiz C, Marotz CA, Maunder D, Lawrence ES, Smoot EW, Eisner E, Crescini ES, Kohn L, Vargas LF, Chacón M, Betty M, Machnicki M, Wu MY, Baer NA, Belda-Ferre P, Hoff PD, Seaver P, Ostrander RT, Tsai R, Sathe S, Aigner S, Morgan SC, Ngo TT, Barber T, Cheung W, Carlin AF, Yeo GW, Laurent LC, Fielding-Miller R, Knight R. Comparison of heat-inactivated and infectious SARS-CoV-2 across indoor surface materials shows comparable RT-qPCR viral signal intensity and persistence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.07.16.452756. [PMID: 34312621 PMCID: PMC8312891 DOI: 10.1101/2021.07.16.452756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Environmental monitoring in public spaces can be used to identify surfaces contaminated by persons with COVID-19 and inform appropriate infection mitigation responses. Research groups have reported detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) on surfaces days or weeks after the virus has been deposited, making it difficult to estimate when an infected individual may have shed virus onto a SARS-CoV-2 positive surface, which in turn complicates the process of establishing effective quarantine measures. In this study, we determined that reverse transcription-quantitative polymerase chain reaction (RT-qPCR) detection of viral RNA from heat-inactivated particles experiences minimal decay over seven days of monitoring on eight out of nine surfaces tested. The properties of the studied surfaces result in RT-qPCR signatures that can be segregated into two material categories, rough and smooth, where smooth surfaces have a lower limit of detection. RT-qPCR signal intensity (average quantification cycle (Cq)) can be correlated to surface viral load using only one linear regression model per material category. The same experiment was performed with infectious viral particles on one surface from each category, with essentially identical results. The stability of RT-qPCR viral signal demonstrates the need to clean monitored surfaces after sampling to establish temporal resolution. Additionally, these findings can be used to minimize the number of materials and time points tested and allow for the use of heat-inactivated viral particles when optimizing environmental monitoring methods.
Collapse
Affiliation(s)
- Rodolfo A Salido
- These authors contributed equally
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Victor J Cantú
- These authors contributed equally
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alex E Clark
- Division of Infectious Diseases and Global Public Health, Department of Medicine; University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Sandra L Leibel
- Department of Pediatrics, University of California San Diego, La Jolla, CA
- Sanford Consortium of Regenerative Medicine, University of California San Diego, La Jolla, CA
| | - Anahid Foroughishafiei
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anushka Saha
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Abbas Hakim
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Alhakam Nouri
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Alma L Lastrella
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Anelizze Castro-Martínez
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Ashley Plascencia
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Bhavika Kapadia
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Bing Xia
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Christopher Ruiz
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Clarisse A Marotz
- Department of Pediatrics, University of California San Diego, La Jolla, CA
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Daniel Maunder
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Elijah S Lawrence
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Elizabeth W Smoot
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Emily Eisner
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Evelyn S Crescini
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Laura Kohn
- Herbert Wertheim School of Public Health, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093
| | - Lizbeth Franco Vargas
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Marisol Chacón
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Maryann Betty
- Department of Pediatrics, University of California San Diego, La Jolla, CA
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, CA
- Rady Children's Hospital, San Diego, CA
| | - Michal Machnicki
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Min Yi Wu
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Nathan A Baer
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Pedro Belda-Ferre
- Department of Pediatrics, University of California San Diego, La Jolla, CA
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Peter De Hoff
- Sanford Consortium of Regenerative Medicine, University of California San Diego, La Jolla, CA
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, CA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, USA
| | - Phoebe Seaver
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - R Tyler Ostrander
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Rebecca Tsai
- Department of Pediatrics, University of California San Diego, La Jolla, CA
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Shashank Sathe
- Sanford Consortium of Regenerative Medicine, University of California San Diego, La Jolla, CA
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, CA
- Dept of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA
| | - Stefan Aigner
- Sanford Consortium of Regenerative Medicine, University of California San Diego, La Jolla, CA
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, CA
- Dept of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA
| | - Sydney C Morgan
- Sanford Consortium of Regenerative Medicine, University of California San Diego, La Jolla, CA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, USA
| | - Toan T Ngo
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Tom Barber
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Willi Cheung
- Sanford Consortium of Regenerative Medicine, University of California San Diego, La Jolla, CA
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California San Diego, La Jolla, CA
- San Diego State University, San Diego, CA
| | - Aaron F Carlin
- Division of Infectious Diseases and Global Public Health, Department of Medicine; University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Gene W Yeo
- Sanford Consortium of Regenerative Medicine, University of California San Diego, La Jolla, CA
- Dept of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA
| | - Louise C Laurent
- Sanford Consortium of Regenerative Medicine, University of California San Diego, La Jolla, CA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, USA
| | - Rebecca Fielding-Miller
- Herbert Wertheim School of Public Health, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093
- Co-corresponding authors
| | - Rob Knight
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Co-corresponding authors
| |
Collapse
|
68
|
Wendling JM, Saulnier A, Sabatier JM. Shared Food, Meals and Drinks: 10 Arguments Suggesting an Oral Transmission Route of SARS-CoV-2. Infect Disord Drug Targets 2021; 22:e160721194830. [PMID: 34279208 DOI: 10.2174/1871526521666210716110603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Numerous observational, epidemiologic data have suggested that the risk of COVID19 is related to shared meals or drinks. The presence of ACE2 receptors in the gastrointestinal tract supports this hypothesis. Furthermore, several patients experience gastrointestinal symptoms without any respiratory disease. The SARS-CoV-2 found on food and packaging in China and the epidemic resurgence attributed to foods are also strong indications of an oral transmission route. Unprecedented biopersistence on skin, food, and beverages supports this theory. Finally, animal models reproducing the disease by oral inoculation are additional arguments in favor of an oro-digestive route of infection.
Collapse
Affiliation(s)
- Jean-Michel Wendling
- ACST - Strasbourg - Occupational health - 37 avenue de Colmar - 67100 Strasbourg. France
| | | | - Jean-Marc Sabatier
- Université Aix-Marseille - Institut de Neuro-Physiopathologie (INP) - UMR 7051, Faculté de Pharmacie, 27 Bd Jean Moulin, 13385 Marseille Cedex. France
| |
Collapse
|
69
|
Morris DH, Yinda KC, Gamble A, Rossine FW, Huang Q, Bushmaker T, Fischer RJ, Matson MJ, Van Doremalen N, Vikesland PJ, Marr LC, Munster VJ, Lloyd-Smith JO. Mechanistic theory predicts the effects of temperature and humidity on inactivation of SARS-CoV-2 and other enveloped viruses. eLife 2021; 10:e65902. [PMID: 33904403 PMCID: PMC8277363 DOI: 10.7554/elife.65902] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/20/2021] [Indexed: 12/14/2022] Open
Abstract
Ambient temperature and humidity strongly affect inactivation rates of enveloped viruses, but a mechanistic, quantitative theory of these effects has been elusive. We measure the stability of SARS-CoV-2 on an inert surface at nine temperature and humidity conditions and develop a mechanistic model to explain and predict how temperature and humidity alter virus inactivation. We find SARS-CoV-2 survives longest at low temperatures and extreme relative humidities (RH); median estimated virus half-life is >24 hr at 10°C and 40% RH, but ∼1.5 hr at 27°C and 65% RH. Our mechanistic model uses fundamental chemistry to explain why inactivation rate increases with increased temperature and shows a U-shaped dependence on RH. The model accurately predicts existing measurements of five different human coronaviruses, suggesting that shared mechanisms may affect stability for many viruses. The results indicate scenarios of high transmission risk, point to mitigation strategies, and advance the mechanistic study of virus transmission.
Collapse
Affiliation(s)
- Dylan H Morris
- Department of Ecology and Evolutionary Biology, Princeton UniversityPrincetonUnited States
- Department of Ecology and Evolutionary Biology, University of California, Los AngelesLos AngelesUnited States
| | - Kwe Claude Yinda
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious DiseasesHamiltonUnited States
| | - Amandine Gamble
- Department of Ecology and Evolutionary Biology, University of California, Los AngelesLos AngelesUnited States
| | - Fernando W Rossine
- Department of Ecology and Evolutionary Biology, Princeton UniversityPrincetonUnited States
| | - Qishen Huang
- Department of Civil and Environmental Engineering, Virginia TechBlacksburgUnited States
| | - Trenton Bushmaker
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious DiseasesHamiltonUnited States
| | - Robert J Fischer
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious DiseasesHamiltonUnited States
| | - M Jeremiah Matson
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious DiseasesHamiltonUnited States
- Joan C. Edwards School of Medicine, Marshall UniversityHuntingtonUnited States
| | - Neeltje Van Doremalen
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious DiseasesHamiltonUnited States
| | - Peter J Vikesland
- Department of Civil and Environmental Engineering, Virginia TechBlacksburgUnited States
| | - Linsey C Marr
- Department of Civil and Environmental Engineering, Virginia TechBlacksburgUnited States
| | - Vincent J Munster
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious DiseasesHamiltonUnited States
| | - James O Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
70
|
Verma MK, Sharma PK, Verma HK, Singh AN, Singh DD, Verma P, Siddiqui AH. Rapid diagnostic methods for SARS-CoV-2 (COVID-19) detection: an evidence-based report. J Med Life 2021; 14:431-442. [PMID: 34621365 PMCID: PMC8485368 DOI: 10.25122/jml-2021-0168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/05/2021] [Indexed: 12/15/2022] Open
Abstract
Since December 2019, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been a global health concern. The transmission method is human-to-human. Since this second wave of SARS-CoV-2 is more aggressive than the first wave, rapid testing is warranted to use practical diagnostics to break the transfer chain. Currently, various techniques are used to diagnose SARS-CoV-2 infection, each with its own set of advantages and disadvantages. A full review of online databases such as PubMed, EMBASE, Web of Science, and Google Scholar was analyzed to identify relevant articles focusing on SARS-CoV-2 and diagnosis and therapeutics. The most recent article search was on May 10, 2021. We summarize promising methods for detecting the novel Coronavirus using sensor-based diagnostic technologies that are sensitive, cost-effective, and simple to use at the point of care. This includes loop-mediated isothermal amplification and several laboratory protocols for confirming suspected 2019-nCoV cases, as well as studies with non-commercial laboratory protocols based on real-time reverse transcription-polymerase chain reaction and a field-effect transistor-based bio-sensing device. We discuss a potential discovery that could lead to the mass and targeted SARS-CoV-2 detection needed to manage the COVID-19 pandemic through infection succession and timely therapy.
Collapse
Affiliation(s)
| | - Parshant Kumar Sharma
- Department of Electronic Engineering, Kwangwoon University, Nowon-gu, Seoul, South Korea
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of lungs Biology and Disease, Comprehensive Pneumology Center, Munich, Germany
| | | | - Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Poonam Verma
- Department of Biotechnology, IFTM University, Moradabad, India
| | - Areena Hoda Siddiqui
- Department of Laboratory Medicine, Sahara Hospital, Viraj Khand, Gomti Nagar, Lucknow, India
| |
Collapse
|
71
|
Abstract
Laundering of textiles—clothing, linens, and cleaning cloths—functionally removes dirt and bodily fluids, which prevents the transmission of and reexposure to pathogens as well as providing odor control. Thus, proper laundering is key to controlling microbes that cause illness and produce odors. The practice of laundering varies from region to region and is influenced by culture and resources. This review aims to define laundering as a series of steps that influence the exposure of the person processing the laundry to pathogens, with respect to the removal and control of pathogens and odor-causing bacteria, while taking into consideration the types of textiles. Defining laundering in this manner will help better educate the consumer and highlight areas where more research is needed and how to maximize products and resources. The control of microorganisms during laundering involves mechanical (agitation and soaking), chemical (detergent and bleach), and physical (detergent and temperature) processes. Temperature plays the most important role in terms of pathogen control, requiring temperatures exceeding 40°C to 60°C for proper inactivation, while detergents play a role in reducing the microbial load of laundering through the release of microbes attached to fabrics and the inactivation of microbes sensitive to detergents (e.g., enveloped viruses). The use of additives (enzymes) and bleach (chlorine and activated oxygen) becomes essential in washes with temperatures below 20°C, especially for certain enteric viruses and bacteria. A structured approach is needed that identifies all the steps in the laundering process and attempts to identify each step relative to its importance to infection risk and odor production.
Collapse
|
72
|
Hosseini M, Behzadinasab S, Benmamoun Z, Ducker WA. The viability of SARS-CoV-2 on solid surfaces. Curr Opin Colloid Interface Sci 2021; 55:101481. [PMID: 34149298 PMCID: PMC8205552 DOI: 10.1016/j.cocis.2021.101481] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The COVID-19 pandemic had a major impact on life in 2020 and 2021. One method of transmission occurs when the causative virus, SARS-CoV-2, contaminates solids. Understanding and controlling the interaction with solids is thus potentially important for limiting the spread of the disease. We review work that describes the prevalence of the virus on common objects, the longevity of the virus on solids, and surface coatings that are designed to inactivate the virus. Engineered coatings have already succeeded in producing a large reduction in viral infectivity from surfaces. We also review work describing inactivation on facemasks and clothing and discuss probable mechanisms of inactivation of the virus at surfaces.
Collapse
Affiliation(s)
- Mohsen Hosseini
- Dept. of Chemical Engineering and Center for Soft Matter and Biological Physics, Virginia Tech, VA, 24061, USA
| | - Saeed Behzadinasab
- Dept. of Chemical Engineering and Center for Soft Matter and Biological Physics, Virginia Tech, VA, 24061, USA
| | - Zachary Benmamoun
- Dept. of Chemical Engineering and Center for Soft Matter and Biological Physics, Virginia Tech, VA, 24061, USA
| | - William A Ducker
- Dept. of Chemical Engineering and Center for Soft Matter and Biological Physics, Virginia Tech, VA, 24061, USA
| |
Collapse
|
73
|
Abstract
The body of a deceased with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection is considered infectious. In this study, we present the results of infectivity testing of the body and testing of mortuary staff for SARS-CoV-2. We performed real-time quantitative polymerase chain reaction (RT-qPCR) for SARS-CoV-2 on 33 decedents with ante mortem confirmed SARS-CoV-2 infection. Swabs of the body surface from five different body regions and from the body bag or coffin were examined. A subset of the swabs was brought into cell culture. In addition, screening of 25 Institute of Legal Medicine (ILM) personnel for ongoing or past SARS-CoV-2 infection was performed at two different time points during the pandemic. Swabs from all locations of the body surface and the body environment were negative in cases of negative post mortem nasopharyngeal testing (n=9). When the post mortem nasopharyngeal swab tested positive (n=24), between 0 and 5 of the body surface swabs were also positive, primarily the perioral region. In six of the cases, the body bag also yielded a positive result. The longest postmortem interval with positive SARS-CoV-2 RT-qPCR at the body surface was nine days. In no case viable SARS-CoV-2 was found on the skin of the bodies or the body bags. One employee (autopsy technician) had possible occupational infection with SARS-CoV-2; all other employees were tested negative for SARS-CoV-2 RNA or antibody twice. Our data indicate that with adequate management of general safety precautions, transmission of SARS-CoV-2 through autopsies and handling of bodies is unlikely.
Collapse
|
74
|
Ortiz-Prado E, Henriquez-Trujillo AR, Rivera-Olivero IA, Lozada T, Garcia-Bereguiain MA. High prevalence of SARS-CoV-2 infection among food delivery riders. A case study from Quito, Ecuador. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145225. [PMID: 33513511 PMCID: PMC7813502 DOI: 10.1016/j.scitotenv.2021.145225] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/26/2020] [Accepted: 01/13/2021] [Indexed: 05/23/2023]
Abstract
AIM COVID-19 pandemic has posed an unprecedented pressure on health systems and economies worldwide. Delivery services have grown as an alternative source of revenue for many people. Consumers generally perceive that delivery services are safer than going into a restaurant, because they reduce exposure to other people and their risk of SARS-CoV-2 contagion. There are no studies analyzing viral load or the burden of COID-19 within this population. This study aims to describe the presence of SARS-CoV-2 among food delivery riders in the city of Quito, Ecuador. STUDY DESIGN From July and August 2020, bike and motorbike riders self-employed in two of the main online delivery services in Quito, Ecuador, were invited for RT-PCR testing for SARS-CoV-2 detection during the compulsory lockdown due to the COVID-19 pandemic. The Center for Disease Control (CDC) 2019-Novel Coronavirus (2019-nCoV) RT-qPCR Diagnostic Panel was used to identify the presence of SARS-CoV-2 in nasopharyngeal swabs. All samples were processed in the BSL2 certified molecular biology laboratory at Universidad de Las Americas. RESULTS A total of 22 out of 145 delivery workers (15.2%) tested positive for SARS-CoV-2. The majority of workers were men (n = 138), the average age of male workers was 32 years-old (±7.3) and 38 years-old (± 10.6) for females. The presence of mild symptoms was reported in only 9 subjects (6%). The calculated viral load was higher among males with 1.31E+08 copies/mL vs 2.30E+06 in females, although this difference was not statistically significant (p value: 0.68, [CI: -53 to -79]). CONCLUSIONS The self-employed food delivery riders have a high incidence rate of SARS-CoV-2 infection in relation to the national average. It is important to point out that this is the first study of its kind in Latin-American and probably one of the very few in the world. The results emphasize the need for policy makers to look at the pandemic from as many population's sub-groups as possible. Delivery riders are a highly moving population that offer their services to a wide range of clients, including vulnerable populations such as the elderly or those less likely to leave their house for basic needs stoking.
Collapse
Affiliation(s)
- Esteban Ortiz-Prado
- One Health Research Group, Facultad de Ciencias de la Salud, Universidad de Las Américas, Quito, Ecuador.
| | | | - Ismar A Rivera-Olivero
- One Health Research Group, Facultad de Ciencias de la Salud, Universidad de Las Américas, Quito, Ecuador
| | - Tannya Lozada
- One Health Research Group, Facultad de Ciencias de la Salud, Universidad de Las Américas, Quito, Ecuador
| | | |
Collapse
|
75
|
López-Mendoza H, Montañés A, Moliner-Lahoz FJ. Disparities in the Evolution of the COVID-19 Pandemic between Spanish Provinces. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5085. [PMID: 34064938 PMCID: PMC8151898 DOI: 10.3390/ijerph18105085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/04/2021] [Accepted: 05/09/2021] [Indexed: 12/11/2022]
Abstract
Spain experienced a second wave of the COVID-19 pandemic in autumn 2020, which has been approached with different measures by regional authorities. We analyze the presence of convergence in the cumulative incidence for 14 days (CI14) in provinces and self-governing cities. The Phillips-Sul methodology was used to study the grouping of behavior between provinces, and an ordered logit model was estimated to understand the forces that drive creating the different convergence clubs. We reject the presence of a single pattern of behavior in the evolution of the CI14 across territories. Four statistically different convergence clubs and an additional province (Madrid) with divergent behavior are observed. Provinces with developed agricultural and industrial economic sectors, high mobility, and a high proportion of Central and South American immigrants had the highest level of CI14. We show that the transmission of the virus is not homogeneous in the Spanish national territory. Our results are helpful for identifying differences in determinants that could explain the pandemic's evolution and for formulating hypotheses about the effectiveness of implemented measures.
Collapse
Affiliation(s)
- Héctor López-Mendoza
- Directorate-General of Public Health, Aragon Department of Health, 50017 Zaragoza, Spain;
- Preventive Medicine and Public Health Department, Lozano Blesa University Hospital, 50009 Zaragoza, Spain;
| | - Antonio Montañés
- Economic Analysis Department, University of Zaragoza, 50005 Zaragoza, Spain
| | - F. Javier Moliner-Lahoz
- Preventive Medicine and Public Health Department, Lozano Blesa University Hospital, 50009 Zaragoza, Spain;
| |
Collapse
|
76
|
Mourmouris P, Tzelves L, Roidi C, Fotsali A. COVID-19 transmission: a rapid systematic review of current knowledge. Osong Public Health Res Perspect 2021; 12:54-63. [PMID: 33979995 PMCID: PMC8102883 DOI: 10.24171/j.phrp.2021.12.2.02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/21/2021] [Indexed: 12/12/2022] Open
Abstract
Objective The objective of this study was to identify the potential and definite sources of transmission of coronavirus disease 2019 (COVID-19). Methods Due to time constraints and the acute nature of the pandemic, we searched only PubMed/Medline from inception until January 28, 2021. We analyzed the level of evidence and risk of bias in each category and made suggestions accordingly. Results The virus was traced from its potential origin via possible ways of transmission to the last host. Symptomatic human-to-human transmission remains the driver of the epidemic, but asymptomatic transmission can potentially contribute in a substantial manner. Feces and fomites have both been found to contain viable virus; even though transmission through these routes has not been documented, their contribution cannot be ruled out. Finally, transmission from pregnant women to their children has been found to be low (up to 3%). Conclusion Even though robust outcomes cannot be easily assessed, medical personnel must maintain awareness of the main routes of transmission (via droplets and aerosols from even asymptomatic patients). This is the first attempt to systematically review the existing knowledge to produce a paper with a potentially significant clinical impact.
Collapse
Affiliation(s)
- Panagiotis Mourmouris
- Second Department of Urology, Athens Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Lazaros Tzelves
- Second Department of Urology, Athens Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christiana Roidi
- Second Department of Urology, Athens Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasia Fotsali
- Second Department of Urology, Athens Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
77
|
Smither SJ, Eastaugh LS, Findlay JS, Laws TR, Marriott SN, Notman S, O'Brien LM, Phelps AL, Richards M, Ulaeto D, Watts P, Lever MS, Govan N. Investigative study into whether an insect repellent has virucidal activity against SARS-CoV-2. J Gen Virol 2021; 102. [PMID: 33891534 PMCID: PMC8290268 DOI: 10.1099/jgv.0.001585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A small-scale study with Mosi-guard Natural spray, an insect repellent containing Citriodiol, was performed to determine if it has virucidal activity against SARS-CoV-2. A liquid test examined the activity of the insect repellent and the individual components for virucidal activity. A surface contact test looked at the activity of the insect repellent when impregnated on a latex surface as a synthetic skin for potential topical prophylactic application. Both Mosi-guard Natural spray and Citriodiol, as well as other components of the repellent, had virucidal activity in the liquid contact test. On a latex surface used to simulate treated skin, the titre of SARS-CoV-2 was less over time on the Mosi-guard Natural-treated surface but virus was still recovered.
Collapse
Affiliation(s)
- Sophie J Smither
- Chemical, Biological and Radiological Division, Defence Science and Technology Laboratory (Dstl), Porton Down, Wiltshire, SP4 0JQ, UK
| | - Lin S Eastaugh
- Chemical, Biological and Radiological Division, Defence Science and Technology Laboratory (Dstl), Porton Down, Wiltshire, SP4 0JQ, UK
| | - James S Findlay
- Chemical, Biological and Radiological Division, Defence Science and Technology Laboratory (Dstl), Porton Down, Wiltshire, SP4 0JQ, UK
| | - Thomas R Laws
- Chemical, Biological and Radiological Division, Defence Science and Technology Laboratory (Dstl), Porton Down, Wiltshire, SP4 0JQ, UK
| | - Stephen N Marriott
- Chemical, Biological and Radiological Division, Defence Science and Technology Laboratory (Dstl), Porton Down, Wiltshire, SP4 0JQ, UK
| | - Stuart Notman
- Chemical, Biological and Radiological Division, Defence Science and Technology Laboratory (Dstl), Porton Down, Wiltshire, SP4 0JQ, UK
| | - Lyn M O'Brien
- Chemical, Biological and Radiological Division, Defence Science and Technology Laboratory (Dstl), Porton Down, Wiltshire, SP4 0JQ, UK
| | - Amanda L Phelps
- Chemical, Biological and Radiological Division, Defence Science and Technology Laboratory (Dstl), Porton Down, Wiltshire, SP4 0JQ, UK
| | - Mark Richards
- Chemical, Biological and Radiological Division, Defence Science and Technology Laboratory (Dstl), Porton Down, Wiltshire, SP4 0JQ, UK
| | - David Ulaeto
- Chemical, Biological and Radiological Division, Defence Science and Technology Laboratory (Dstl), Porton Down, Wiltshire, SP4 0JQ, UK
| | - Pat Watts
- Chemical, Biological and Radiological Division, Defence Science and Technology Laboratory (Dstl), Porton Down, Wiltshire, SP4 0JQ, UK
| | - Mark S Lever
- Chemical, Biological and Radiological Division, Defence Science and Technology Laboratory (Dstl), Porton Down, Wiltshire, SP4 0JQ, UK
| | - Norman Govan
- Chemical, Biological and Radiological Division, Defence Science and Technology Laboratory (Dstl), Porton Down, Wiltshire, SP4 0JQ, UK
| |
Collapse
|
78
|
Martí D, Torras J, Bertran O, Turon P, Alemán C. Temperature effect on the SARS-CoV-2: A molecular dynamics study of the spike homotrimeric glycoprotein. Comput Struct Biotechnol J 2021; 19:1848-1862. [PMID: 33841750 PMCID: PMC8024222 DOI: 10.1016/j.csbj.2021.03.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Rapid spread of SARS-CoV-2 virus have boosted the need of knowledge about inactivation mechanisms to minimize the impact of COVID-19 pandemic. Recent studies have shown that SARS-CoV-2 virus can be disabled by heating, the exposure time for total inactivation depending on the reached temperature (e.g. more than 45 min at 329 K or less than 5 min at 373 K. In spite of recent crystallographic structures, little is known about the molecular changes induced by the temperature. Here, we unravel the molecular basis of the effect of the temperature over the SARS-CoV-2 spike glycoprotein, which is a homotrimer with three identical monomers, by executing atomistic molecular dynamics (MD) simulations at 298, 310, 324, 338, 358 and 373 K. Furthermore, both the closed down and open up conformational states, which affect the accessibility of receptor binding domain, have been considered. Our results suggest that the spike homotrimer undergoes drastic changes in the topology of the hydrogen bonding interactions and important changes on the secondary structure of the receptor binding domain (RBD), while electrostatic interactions (i.e. salt bridges) are mainly preserved. The proposed inactivation mechanism has important implications for engineering new approaches to fight the SARS-CoV-2 coronavirus, as for example, cleaving or reorganizing the hydrogen bonds through chaotropic agents or nanoparticles with local surface resonant plasmon effect.
Collapse
Affiliation(s)
- Didac Martí
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, 08019 Barcelona, Spain
| | - Juan Torras
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, 08019 Barcelona, Spain
| | - Oscar Bertran
- Departament de Física EETAC, Universitat Politècnica de Catalunya, c/ Esteve Terrades, 7, 08860 Castelldefels, Spain
| | - Pau Turon
- B. Braun Surgical, S.A.U. Carretera de Terrasa 121, 08191 Rubí (Barcelona), Spain
| | - Carlos Alemán
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, 08019 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona Spain
| |
Collapse
|
79
|
Ijaz MK, Nims RW, Zhou SS, Whitehead K, Srinivasan V, Kapes T, Fanuel S, Epstein JH, Daszak P, Rubino JR, McKinney J. Microbicidal actives with virucidal efficacy against SARS-CoV-2 and other beta- and alpha-coronaviruses and implications for future emerging coronaviruses and other enveloped viruses. Sci Rep 2021; 11:5626. [PMID: 33707476 PMCID: PMC7952405 DOI: 10.1038/s41598-021-84842-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Mitigating the risk of acquiring coronaviruses including SARS-CoV-2 requires awareness of the survival of virus on high-touch environmental surfaces (HITES) and skin, and frequent use of targeted microbicides with demonstrated efficacy. The data on stability of infectious SARS-CoV-2 on surfaces and in suspension have been put into perspective, as these inform the need for hygiene. We evaluated the efficacies of formulated microbicidal actives against alpha- and beta-coronaviruses, including SARS-CoV-2. The coronaviruses SARS-CoV, SARS-CoV-2, human coronavirus 229E, murine hepatitis virus-1, or MERS-CoV were deposited on prototypic HITES or spiked into liquid matrices along with organic soil loads. Alcohol-, quaternary ammonium compound-, hydrochloric acid-, organic acid-, p-chloro-m-xylenol-, and sodium hypochlorite-based microbicidal formulations were evaluated per ASTM International and EN standard methodologies. All evaluated formulated microbicides inactivated SARS-CoV-2 and other coronaviruses in suspension or on prototypic HITES. Virucidal efficacies (≥ 3 to ≥ 6 log10 reduction) were displayed within 30 s to 5 min. The virucidal efficacy of a variety of commercially available formulated microbicides against SARS-CoV-2 and other coronaviruses was confirmed. These microbicides should be useful for targeted surface and hand hygiene and disinfection of liquids, as part of infection prevention and control for SARS-CoV-2 and emerging mutational variants, and other emerging enveloped viruses.
Collapse
Affiliation(s)
- M Khalid Ijaz
- Reckitt Benckiser LLC, Global Research and Development for Lysol and Dettol, One Philips Parkway, Montvale, NJ, 07645, USA.
- Medgar Evers College of the City University of New York (CUNY), 1650 Bedford Ave, Brooklyn, NY, 11225, USA.
| | - Raymond W Nims
- RMC Pharmaceutical Solutions, Inc, 1851 Lefthand Circle, Suite A, Longmont, CO, 80501, USA
| | - Sifang Steve Zhou
- Microbac Laboratories, Inc, 105 Carpenter Drive, Sterling, VA, 20164, USA
| | - Kelly Whitehead
- Reckitt Benckiser LLC, Global Research and Development for Lysol and Dettol, One Philips Parkway, Montvale, NJ, 07645, USA
| | - Vanita Srinivasan
- Reckitt Benckiser LLC, Global Research and Development for Lysol and Dettol, One Philips Parkway, Montvale, NJ, 07645, USA
| | - Tanya Kapes
- Microbac Laboratories, Inc, 105 Carpenter Drive, Sterling, VA, 20164, USA
| | - Semhar Fanuel
- Microbac Laboratories, Inc, 105 Carpenter Drive, Sterling, VA, 20164, USA
| | - Jonathan H Epstein
- EcoHealth Alliance, 520 Eighth Avenue, Suite 1200, New York, NY, 10018-6507, USA
| | - Peter Daszak
- EcoHealth Alliance, 520 Eighth Avenue, Suite 1200, New York, NY, 10018-6507, USA
| | - Joseph R Rubino
- Reckitt Benckiser LLC, Global Research and Development for Lysol and Dettol, One Philips Parkway, Montvale, NJ, 07645, USA
| | - Julie McKinney
- Reckitt Benckiser LLC, Global Research and Development for Lysol and Dettol, One Philips Parkway, Montvale, NJ, 07645, USA
| |
Collapse
|
80
|
Ursachi CȘ, Munteanu FD, Cioca G. The Safety of Slaughterhouse Workers during the Pandemic Crisis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:2633. [PMID: 33807936 PMCID: PMC7967316 DOI: 10.3390/ijerph18052633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 12/23/2022]
Abstract
The working conditions in a slaughterhouse are difficult because of the low temperatures, high humidity, and little natural light. Therefore, in these facilities, there is a high demand in the maintenance of strict hygiene rules. Lately, the new SARS-CoV-2 pandemic situation has brought new challenges in the meat industry, as this sector has to maintain its operability to supply the meat and meat products demanded by the consumers. In this challenging period, the safety of the workers is as important as keeping the high demands for the safety of the meat and meat products along with consumer confidence. This paper aims to give an overview of the risks associated with the SARS-CoV-2 virus transmission between the workers in slaughterhouses and to evaluate the stability and infectivity in the working environment of these facilities. Considering the persistence of this virus on different surfaces and the environmental conditions affecting its stability (temperature, relative humidity, and natural light), in the study we proposed several short-, medium-, and long-term preventive measures for minimizing the potential threats of the actual pandemic.
Collapse
Affiliation(s)
- Claudiu Ștefan Ursachi
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania;
| | - Florentina-Daniela Munteanu
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania;
| | - Gabriela Cioca
- Preclinical Department, Faculty of Medicine, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania;
| |
Collapse
|
81
|
Transmission of SARS-CoV-2 via fomite, especially cold chain, should not be ignored. Proc Natl Acad Sci U S A 2021; 118:2026093118. [PMID: 33637653 DOI: 10.1073/pnas.2026093118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
82
|
Abstract
In March 2020, the World Health Organization (WHO) declared that the COVID-19 outbreak can be characterized as a pandemic. Human-to-human transmission of the SARS-CoV-2 virus may initially be blamed as the first cause of spread, but can an infection be contracted by ingestion of contaminated food or touching contaminated food surfaces? Recently cold-chain food contamination has been indicated as a possible source of many human cases in China. However, the risk of a food-related COVID-19 infection is still debated since the virus may reach people through a fresh product or packaging, which have been touched/sneezed on by infected people. This review summarizes the most recent evidence on the zoonotic origin of the pandemic, reports the main results regarding the transmission of SARS-CoV-2 through food or a food chain, as well as the persistence of the virus at different environmental conditions and surfaces. Emphasis is also posed on how to manage the risk of food-related COVID-19 spread and potential approaches that can reduce the risk of SARS-CoV-2 contamination.
Collapse
|
83
|
|
84
|
Jones B, Phillips G, Valeriani F, Edwards T, Adams ER, Bonadonna L, Copeland RJ, Cross MJ, Dalton C, Hodgson L, Jimenez A, Kemp SP, Patricios J, Spica VR, Stokes KA, Weed M, Beggs C. End-to-end SARS-CoV-2 transmission risks in sport: Current evidence and practical recommendations. SOUTH AFRICAN JOURNAL OF SPORTS MEDICINE 2021; 33:v33i1a11210. [PMID: 39498368 PMCID: PMC11534289 DOI: 10.17159/2078-516x/2021/v33i1a11210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused disruption to professional and recreational sports across the world. The SARS-CoV-2 virus can be transmitted by relatively large respiratory droplets that behave ballistically, and exhaled aerosol droplets, which potentially pose a greater risk. This review provides a summary of end-to-end SARS-CoV-2 transmission risk factors for sport and an overview of transmission mechanisms to be considered by all stakeholders. The risk of SARS-CoV-2 transmission is greatest indoors, and primarily influenced by the ventilation of the environment and the close proximity of individuals. The SARS-CoV-2 transmission risks outdoors, e.g. via water, and from fomites, appear less than initially thought. Mitigation strategies include good end-to-end scenario planning of activities to optimise physical distancing, face mask wearing and hygiene practice of individuals, the environment and equipment. The identification and removal of infectious individuals should be undertaken by means of the taking of temperature and COVID-19 symptom screening, and the use of diagnostic monitoring tests to identify asymptomatic individuals. Using adequate video footage, data from proximity technology and subject interviews, the identification and isolation of 'close contacts' should also be undertaken to limit SARS-CoV-2 transmission within sporting environments and into the wider community. Sports should aim to undertake activities outdoors where possible, given the lower SARS-CoV-2 transmission risk, in comparison to indoor environments.
Collapse
Affiliation(s)
- B Jones
- Carnegie Applied Rugby Research (CARR) centre, Carnegie School of Sport, Leeds Beckett University, Leeds,
UK
- England Performance Unit, The Rugby Football League, Leeds,
UK
- Leeds Rhinos Rugby League club, Leeds,
UK
- Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Sciences, the University of Cape Town and the Sports Science Institute of South Africa, Cape Town,
South Africa
- School of Science and Technology, University of New England, Armidale, NSW,
Australia
| | - G Phillips
- Carnegie Applied Rugby Research (CARR) centre, Carnegie School of Sport, Leeds Beckett University, Leeds,
UK
- England Performance Unit, The Rugby Football League, Leeds,
UK
- Hull Kingston Rovers, Hull,
UK
| | - F Valeriani
- Public Health Unit, Department of Movement, Human and Health Sciences; University of Rome “Foro Italico”, Rome,
Italy
| | - T Edwards
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA,
UK
| | - ER Adams
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA,
UK
| | - L Bonadonna
- Italian National Institute of Health, Rome
Italy
| | - RJ Copeland
- Advanced Wellbeing Research Centre, Sheffield Hallam University,
UK
| | - MJ Cross
- University of Bath, Bath,
UK
- Premiership Rugby, Twickenham,
UK
| | - C Dalton
- Advanced Wellbeing Research Centre, Sheffield Hallam University,
UK
| | - L Hodgson
- The Football Association, St George’s Park, Burton-Upon-Trent,
UK
- School of Clinical and Applied Sciences, Leeds Beckett University, Leeds,
UK
| | - A Jimenez
- Advanced Wellbeing Research Centre, Sheffield Hallam University,
UK
- Centre for Sport Studies, King Juan Carlos University, Fuenlabrada, Madrid,
Spain
| | - SP Kemp
- Rugby Football Union, Twickenham,
UK
- London School of Hygiene and Tropical Medicine, London,
UK
| | - J Patricios
- Wits Sport and Health (WiSH), School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg,
South Africa
| | - V Romano Spica
- Public Health Unit, Department of Movement, Human and Health Sciences; University of Rome “Foro Italico”, Rome,
Italy
| | - KA Stokes
- University of Bath, Bath,
UK
- Rugby Football Union, Twickenham,
UK
| | - M Weed
- Centre for Sport, Physical Education and Activity Research (spear), Canterbury Christ Church University,
UK
| | - C Beggs
- Carnegie Applied Rugby Research (CARR) centre, Carnegie School of Sport, Leeds Beckett University, Leeds,
UK
| |
Collapse
|
85
|
Sun C, Cheng C, Zhao T, Chen Y, Ayaz Ahmed M. Frozen food: is it safe to eat during COVID-19 pandemic? Public Health 2021; 190:e26. [PMID: 33384182 PMCID: PMC7698823 DOI: 10.1016/j.puhe.2020.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 01/25/2023]
Affiliation(s)
- C Sun
- AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago 60657, Illinois, USA.
| | - C Cheng
- The University of Arizona College of Medicine at South Campus, 2800 E Ajo Way, Tucson 85713, AZ, USA
| | - T Zhao
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Y Chen
- Department of Clinical Medicine, School of the First Clinical Medicine, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, PR China
| | - M Ayaz Ahmed
- AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago 60657, Illinois, USA
| |
Collapse
|
86
|
Corpet DE. Why does SARS-CoV-2 survive longer on plastic than on paper? Med Hypotheses 2021; 146:110429. [PMID: 33277105 PMCID: PMC7695943 DOI: 10.1016/j.mehy.2020.110429] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/17/2020] [Indexed: 12/24/2022]
Abstract
The Covid-19 coronavirus, SARS-CoV-2, is inactivated much faster on paper (3 h) than on plastic (7 d). By classifying materials according to virus stability on their surface, the following list is obtained (from long to short stability): polypropylene (mask), plastic, glass, stainless steel, pig skin, cardboard, banknote, cotton, wood, paper, tissue, copper. These observations and other studies suggest that SARS-CoV-2 may be inactivated by dryness on water absorbent porous materials but sheltered by long-persisting micro-droplets of water on waterproof surfaces. If such physical phenomenons were confirmed by direct evidence, the persistence of the virus on any surface could be predicted, and new porous objects could be designed to eliminate the virus faster.
Collapse
Affiliation(s)
- Denis E Corpet
- Emeritus Professor of Hygiene, Ecole Nationale Vétérinaire Toulouse, University of Toulouse, ENVT, 23 chemin des Capelles, 31300 Toulouse, France; Ex team-leader, Food and Cancer team E9, INRAE Toxalim laboratory, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, France.
| |
Collapse
|
87
|
Haddow AD, Watt TR, Bloomfield HA, Fetterer DP, Harbourt DE. Modeling the Stability of SARS-CoV-2 on Personal Protective Equipment (PPE). Am J Trop Med Hyg 2020; 104:549-551. [PMID: 33355071 PMCID: PMC7866333 DOI: 10.4269/ajtmh.20-1508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022] Open
Abstract
We modeled the stability of SARS-CoV-2 on personal protective equipment (PPE) commonly worn in hospitals when carrying out high-risk airway procedures. Evaluated PPE included the visors and hoods of two brands of commercially available powered air purifying respirators, a disposable face shield, and Tyvek coveralls. Following an exposure to 4.3 log10 plaque-forming units (PFUs) of SARS-CoV-2, all materials displayed a reduction in titer of > 4.2 log10 by 72 hours postexposure, with detectable titers at 72 hours varying by material (1.1–2.3 log10 PFU/mL). Our results highlight the need for proper doffing and disinfection of PPE, or disposal, to reduce the risk of SARS-CoV-2 contact or fomite transmission.
Collapse
Affiliation(s)
- Andrew D Haddow
- General Dynamics Health Solutions in Support of USAMRIID, Fort Detrick, Maryland
| | - Taylor R Watt
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland
| | - Holly A Bloomfield
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland
| | | | - David E Harbourt
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland
| |
Collapse
|
88
|
Haddow AD, Watt TR, Bloomfield HA, Shamblin JD, Dyer DN, Harbourt DE. Stability of SARS-CoV-2 on Produce following a Low-Dose Aerosol Exposure. Am J Trop Med Hyg 2020; 103:2024-2025. [PMID: 32930089 PMCID: PMC7646763 DOI: 10.4269/ajtmh.20-1033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We modeled the stability of SARS-CoV-2 on apples, tomatoes, and jalapeño peppers at two temperatures following a low-dose aerosol exposure designed to simulate an airborne transmission event involving droplet nuclei. Infectious virus was not recovered postexposure.
Collapse
Affiliation(s)
- Andrew D Haddow
- General Dynamics Health Solutions in Support of USAMRIID, Fort Detrick, Maryland
| | - Taylor R Watt
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland
| | - Holly A Bloomfield
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland
| | - Joshua D Shamblin
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland
| | - David N Dyer
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland
| | - David E Harbourt
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland
| |
Collapse
|
89
|
Bueckert M, Gupta R, Gupta A, Garg M, Mazumder A. Infectivity of SARS-CoV-2 and Other Coronaviruses on Dry Surfaces: Potential for Indirect Transmission. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5211. [PMID: 33218120 PMCID: PMC7698891 DOI: 10.3390/ma13225211] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 01/03/2023]
Abstract
The unwavering spread of COVID-19 has taken the world by storm. Preventive measures like social distancing and mask usage have been taken all around the globe but still, as of September 2020, the number of cases continues to rise in many countries. Evidently, these measures are insufficient. Although decreases in population density and surges in the public's usage of personal protective equipment can mitigate direct transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), indirect transmission of the virus is still probable. By summarizing the current state of knowledge on the stability of coronaviruses on dry materials, this review uncovers the high potential for SARS-CoV-2 transmission through contaminated surfaces (i.e., fomites) and prompts future research. Fully contextualized data on coronavirus persistence are presented. The methods and limitations to testing the stability of coronaviruses are explored, and the SARS-CoV-2 representativeness of different coronaviruses is analyzed. The factors which dictate the persistence of coronaviruses on surfaces (media, environmental conditions, and material-type) are investigated, and the review is concluded by encouraging material innovation to combat the current pandemic. To summarize, SARS-CoV-2 remains viable on the timescale of days on hard surfaces under ambient indoor conditions. Similarly, the virus is stable on human skin, signifying the necessity of hand hygiene amidst the current pandemic. There is an inverse relationship between SARS-CoV-2 surface persistence and temperature/humidity, and the virus is well suited to air-conditioned environments (room temperature, ~ 40% relative humidity). Sunlight may rapidly inactivate the virus, suggesting that indirect transmission predominantly occurs indoors. The development of antiviral materials and surface coatings would be an extremely effective method to mitigate the spread of COVID-19. To obtain applicable data on the persistence of coronaviruses and the efficiency of virucidal materials, future researchers should understand the common experimental limitations outlined in this review and plan their studies accordingly.
Collapse
Affiliation(s)
- Max Bueckert
- Department of Biochemistry & Microbiology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Rishi Gupta
- Department of Civil Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada;
| | - Aditi Gupta
- Mearns Centre for Learning—McPherson Library, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada;
| | - Mohit Garg
- Department of Civil Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada;
| | - Asit Mazumder
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada;
| |
Collapse
|
90
|
Han J, Zhang X, He S, Jia P. Can the coronavirus disease be transmitted from food? A review of evidence, risks, policies and knowledge gaps. ENVIRONMENTAL CHEMISTRY LETTERS 2020; 19:5-16. [PMID: 33024427 PMCID: PMC7529092 DOI: 10.1007/s10311-020-01101-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/12/2020] [Indexed: 05/04/2023]
Abstract
The coronavirus disease 2019 (COVID-19) has brought speculations on possible transmission routes of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of the pandemic. Air pollution has been linked to increased risks of COVID-19 infection and mortality rates in regions with poor air quality, yet no retrospective study has been reported on foodborne transmission of COVID-19. While studies have shown that low temperature could dramatically prolong the persistence on SARS-CoV-2 and other coronaviruses, frozen and refrigerated foods have been widely overlooked as potential vectors in policy frameworks and risk mitigation strategies. Food transmission evidence has been disclosed in China early July 2020 by the detection of SARS-CoV-2 on frozen foods, including their packaging materials and storage environments, with two re-emergent outbreaks linked to contaminated food sources. The contamination risk is augmented by a complex farm-to-table process, which favors exposure to food workers and ambient environments. Moreover, the food cold-chain also promotes contamination because laboratory studies showed that SARS-CoV-2 remained highly stable under refrigerated, at 4 °C, and freezing conditions, from - 10 to - 80 °C, on fish, meat, poultry, and swine skin, during 14-21 days. While data are lacking on long-term survival and infectivity under these conditions, ample evidence has been shown on other coronaviruses, including SARS-CoV-1. We therefore hypothesize that contaminated cold-storage foods may present a systematic risk for SARS-CoV-2 transmission between countries and regions. Here, we review the evidence, risk factors, current policy and knowledge gaps, on food contamination and foodborne transmission of SARS-CoV-2.
Collapse
Affiliation(s)
- Jie Han
- Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Xue Zhang
- Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
- Department of Environmental Engineering, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000 People’s Republic of China
| | - Shanshan He
- Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Puqi Jia
- Department of Environmental Engineering, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000 People’s Republic of China
| |
Collapse
|