51
|
Radovanovic M, Kekic D, Gajic I, Kabic J, Jovicevic M, Kekic N, Opavski N, Ranin L. Potential influence of antimicrobial resistance gene content in probiotic bacteria on the gut resistome ecosystems. Front Nutr 2023; 10:1054555. [PMID: 36819705 PMCID: PMC9928729 DOI: 10.3389/fnut.2023.1054555] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Antimicrobial resistance (AMR) poses a substantial threat to human health. The commensal bacteria of the gut microbiome were shown to serve as a reservoir of antibiotic resistance genes (ARGs), termed the gut resistome, which has the potential to transfer horizontally to pathogens and contribute to the emergence of drug-resistant bacteria. Namely, AMR traits are generally linked with mobile genetic elements (MGEs), which apart from disseminating vertically to the progeny, may cross horizontally to the distantly related microbial species. On the other hand, while probiotics are generally considered beneficiary to human health, and are therefore widely consumed in recent years most commonly in conjunction with antibiotics, the complexities and extent of their impact on the gut microbiome and resistome have not been elucidated. By reviewing the latest studies on ARG containing commercial probiotic products and common probiotic supplement species with their actual effects on the human gut resistome, this study aims to demonstrate that their contribution to the spread of ARGs along the GI tract merits additional attention, but also indicates the changes in sampling and profiling of the gut microbiome which may allow for the more comprehensive studying of the effects of probiotics in this part of the resistome.
Collapse
Affiliation(s)
- Marina Radovanovic
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Dusan Kekic
- Institute of Microbiology and Immunology, Medical Faculty, University of Belgrade, Belgrade, Serbia,*Correspondence: Dusan Kekic,
| | - Ina Gajic
- Institute of Microbiology and Immunology, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Jovana Kabic
- Institute of Microbiology and Immunology, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Milos Jovicevic
- Institute of Microbiology and Immunology, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Natalija Kekic
- Clinic for Infectious and Tropical Diseases, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Natasa Opavski
- Institute of Microbiology and Immunology, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Lazar Ranin
- Institute of Microbiology and Immunology, Medical Faculty, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
52
|
Jankiewicz M, Łukasik J, Kotowska M, Kołodziej M, Szajewska H. Strain-Specificity of Probiotics in Pediatrics: A Rapid Review of the Clinical Evidence. J Pediatr Gastroenterol Nutr 2023; 76:227-231. [PMID: 36563089 DOI: 10.1097/mpg.0000000000003675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The dogma of probiotic strain-specificity is widely accepted. However, only the genus- and species-specific effects of probiotics are supported by evidence from clinical trials. The aim of this rapid review was to assess clinical evidence supporting the claim that the efficacy of probiotics in the pediatric population is strain-specific. METHODS The Cochrane Library, MEDLINE, and EMBASE databases were searched (up to August 2022) for randomized controlled trials (RCTs) conducted in children aged 0-18 years evaluating the effects of prophylactic or therapeutic administration of probiotics (well-characterized at the strain level) for conditions such as antibiotic-associated diarrhea, acute diarrhea, necrotizing enterocolitis, respiratory tract infections, Helicobacter pylori infection, and atopic dermatitis. To allow evaluation of strain-specificity, a trial could only be included in the review if at least one additional RCT assessed the effect of a different strain of the same species against the same comparator. RCTs without proper strain-level data were excluded. In the absence of identifying head-to-head strain versus strain RCTs, indirect comparisons were made between interventions. RESULTS Twenty-three RCTs were eligible for inclusion. Out of the 11 performed comparisons, with 1 exception (two Lacticaseibacillus paracasei strains in reducing atopic dermatitis symptoms), no significant differences between the clinical effects of different strains of the same probiotic species were found. CONCLUSIONS Head-to-head comparison is an optimal study design to compare probiotic strains, but such comparisons are lacking. Based on indirect comparisons, this rapid review demonstrates insufficient clinical evidence to support or refute the claim that probiotic effects in children are strain-specific.
Collapse
Affiliation(s)
- Mateusz Jankiewicz
- From the Department of Paediatrics, The Medical University of Warsaw, Warszawa, Poland
| | | | | | | | | |
Collapse
|
53
|
Jeon HJ, Kim J, Seok WY, Kim GS, Choi B, Shin M, Lee JH, Kim Y, Yang J, Jung YH. Metabolome changes in probiotics in the stationary phase increases resistance to lyophilization. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
54
|
Ghalandari N, Assarzadegan F, Habibi SAH, Esmaily H, Malekpour H. Efficacy of Probiotics in Improving Motor Function and Alleviating Constipation in Parkinson's Disease: A Randomized Controlled Trial. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e137840. [PMID: 38116573 PMCID: PMC10728848 DOI: 10.5812/ijpr-137840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 12/21/2023]
Abstract
Background Parkinson's disease (PD) is one of the common neurodegenerative diseases, and there has been an increasing interest in the potential role of intestinal dysbiosis in its pathogenesis and related gastrointestinal complications such as constipation. Objectives This study aims to evaluate the effects of multi-strain probiotics on constipation and motor function in PD patients. Methods This study was a blinded, randomized controlled trial (RCT) that involved 27 PD patients who were diagnosed with constipation according to the ROME IV criteria for functional constipation. The primary outcome measured before and after the intervention in both the placebo and probiotic groups was the frequency of defecation. Secondary outcomes evaluated were laxative use, sense of complete evacuation, Bristol Stool Scale for consistency, and Unified Parkinson's Disease Rating Scale (UPDRS) scale. The study lasted for eight weeks. Both groups also were educated about lifestyle modification. Results Of 30 included patients (15 in each group), 13 were women, and 17 were men. Three patients dropped out of the study. Between-group analysis showed that the frequency of bowel movements significantly increased in the probiotic group 4 [3 - 5] in comparison with 2 [2 - 3] in placebo (P = 0.02). Stool consistency also improved in the probiotic group (P = 0.04). However, there were no significant differences in other outcomes. The within-group analysis showed improvement in stool consistency in both probiotics and placebo groups (P = 0.01 and P = 0.007, respectively), while stool frequency and sense of complete evacuation significantly improved only in the probiotic group (P < 0.05). Conclusions This study demonstrated that multi-strain probiotics could improve frequency, consistency, and sense of complete evacuation in PD patients, while there was no significant effect on motor functions in 8 weeks. It is suggested that additional studies be conducted on longer-term effects.
Collapse
Affiliation(s)
- Nasibeh Ghalandari
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhad Assarzadegan
- Department of Neurology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Hassan Habibi
- Department of Gastroenterology and Liver Diseases, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hadi Esmaily
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habib Malekpour
- Department of Gastroenterology and Liver Diseases, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
55
|
Tang HJ, Chen CC, Lu YC, Huang HL, Chen HJ, Chuang YC, Lai CC, Chao CM. The effect of Lactobacillus with prebiotics on KPC-2-producing Klebsiella pneumoniae. Front Microbiol 2022; 13:1050247. [PMID: 36569071 PMCID: PMC9767986 DOI: 10.3389/fmicb.2022.1050247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022] Open
Abstract
Objectives This study investigated the inhibitory effect of Lactobacillus spp. with prebiotics against Klebsiella pneumoniae carbapenemase-2 (KPC-2)-producing Klebsiella pneumoniae using both in vitro experiments and animal models. Methods Thirty-three Lactobacillus spp. strains were confirmed by 16S rDNA sequencing, and four different PFGE genotyped KPC-2-producing K. pneumoniae strains were selected for investigation. In vitro studies, including broth microdilution assays, changes in pH values in lactobacilli cultures with different prebiotics, time-kill tests of Lactobacillus spp. against KPC-2-producing K. pneumoniae and further in vivo Lactobacillus alone or in combination with prebiotics against KPC-2-producing K. pneumoniae in an animal model, were performed. Results The lower pH value of the cell-free supernatant was associated with a lower minimal inhibitory percentage of the Lactobacillus strain against KPC-2-producing K. pneumoniae. Furthermore, lactulose/isomalto-oligosaccharide/inulin and fructo-oligosaccharide can enhance the inhibitory effect of all 107 CFU/ml Lactobacillus strains against KPC001. Three Lactobacillus strains (LYC1154, LYC1322, and LYC1511) that could be persistently detected in the stool were tested for their ability to reduce the amount of KPC001 in the feces individually or in combination. A significantly better effect in reducing the amount of KPC001 was observed for the combination of three different Lactobacillus species than for each of them alone. Furthermore, their inhibitory effect was enhanced after adding lactulose or isomalto-oligosaccharide (both p < 0.05). Conclusion This study demonstrates the inhibitory effect of probiotic Lactobacillus, including LYC1154, LYC1322, and LYC1511, with prebiotics such as lactulose or isomalto-oligosaccharide against the colonization of KPC-2-producing K. pneumoniae.
Collapse
Affiliation(s)
- Hung-Jen Tang
- Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan,Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Chi-Chung Chen
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Ying-Chen Lu
- Department of Food Science, National Chiayi University, Chiayi, Taiwan
| | - Hui-Ling Huang
- Department of Food Science, National Chiayi University, Chiayi, Taiwan
| | - Hung-Jui Chen
- Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Yin-Ching Chuang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Chih-Cheng Lai
- Division of Hospital Medicine, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Chien-Ming Chao
- Department of Intensive Care Medicine, Chi Mei Medical Center, Liouying, Tainan, Taiwan,*Correspondence: Chien-Ming Chao,
| |
Collapse
|
56
|
Wortelboer K, Koopen AM, Herrema H, de Vos WM, Nieuwdorp M, Kemper EM. From fecal microbiota transplantation toward next-generation beneficial microbes: The case of Anaerobutyricum soehngenii. Front Med (Lausanne) 2022; 9:1077275. [PMID: 36544495 PMCID: PMC9760881 DOI: 10.3389/fmed.2022.1077275] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The commensal gut microbiota is important for human health and well-being whereas deviations of the gut microbiota have been associated with a multitude of diseases. Restoration of a balanced and diverse microbiota by fecal microbiota transplantation (FMT) has emerged as a potential treatment strategy and promising tool to study causality of the microbiota in disease pathogenesis. However, FMT comes with logistical challenges and potential safety risks, such as the transfer of pathogenic microorganisms, undesired phenotypes or an increased risk of developing disease later in life. Therefore, a more controlled, personalized mixture of cultured beneficial microbes might prove a better alternative. Most of these beneficial microbes will be endogenous commensals to the host without a long history of safe and beneficial use and are therefore commonly referred to as next-generation probiotics (NGP) or live biotherapeutic products (LBP). Following a previous FMT study within our group, the commensal butyrate producer Anaerobutyricum spp. (previously named Eubacterium hallii) was found to be associated with improved insulin-sensitivity in subjects with the metabolic syndrome. After the preclinical testing with Anaerobutyricum soehngenii in mice models was completed, the strain was produced under controlled conditions and several clinical studies evaluating its safety and efficacy in humans were performed. Here, we describe and reflect on the development of A. soehngenii for clinical use, providing practical guidance for the development and testing of NGPs and reflecting on the current regulatory framework.
Collapse
Affiliation(s)
- Koen Wortelboer
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, Netherlands
- Department of Pharmacy, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Annefleur M. Koopen
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, Netherlands
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hilde Herrema
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, Netherlands
| | - Willem M. de Vos
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Max Nieuwdorp
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, Netherlands
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Diabetes Center, Department of Internal Medicine, Amsterdam UMC, Location VUMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - E. Marleen Kemper
- Department of Pharmacy, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
57
|
Tyutkov N, Zhernyakova A, Birchenko A, Eminova E, Nadtochii L, Baranenko D. Probiotics viability in frozen food products. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
58
|
Gross M, Beckenbauer UE, Bruder L, Zehrer A. [Diverticular disease: treatment and management by general practitioners in Germany - high importance of probiotics in primary care]. MMW Fortschr Med 2022; 164:16-26. [PMID: 36520376 DOI: 10.1007/s15006-022-2072-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION The symptomatic uncomplicated diverticular disease (SUDD) is often difficult to treat and guidelines only provide few evidence-based treatment options. METHOD For the German-wide survey, a questionnaire was sent to 13790 physicians. It contained questions concerning the status of medical care for patients with diverticula and queried their individual option in regards to current treatment options and challenges for the daily medical routine. RESULTS In total, 526 questionnaires were sent back for analysis. The biggest challenge for doctors handling patients with chronic diverticular disease (SUDD) is to make the correct diagnosis (17%) and the distinction to the irritable bowel syndrome (22%). Despite the high abundance of SUDD pathology, only 6% of the medical practitioners feel themselves sufficiently informed about it. The support for general practitioners by medical specialists (gastroenterologists) is limited: In the case of a SUDD or a diverticulitis diagnosis, the physicians sometimes receive an acute therapy plan (27%), but rarely get recommendations for diverticulitis pre- and post-care (11% and 18%), or assisting information for patient education (4%). For primary prophylaxis for persons with asymptomatic diverticula, practitioners give nutrition (41%) and life style (37%) recommendations, as well as probiotics (18%). After an acute diverticulitis, 42% recommend life style and nutrition modifications and 26% the intake of probiotics. For the treatment of SUDD symptoms, they advise mostly life style and nutrition modifications (45%) and probiotics (30%). About 60% of the doctors are satisfied with the efficacy of probiotics. Another 15% stated that they have not yet used them to treat SUDD. The main reasons for it seem to be the lack of reimbursability for probiotics (31%), the poor adherence of patients to therapy (20%) due to the slow onset of positive effects, and the difficulty of finding an evidence-based probiotic (16%). CONCLUSION In the daily medical routine the correct diagnosing of SUDD is a major challenge and supporting information by medical specialist is scarce. Physicians frequently choose life style and nutrition recommendations and the use of probiotics as treatment options. The majority of the general practitioners is thereby satisfied with the efficacy of probiotics for patients with chronic diverticular disease, even though the choice of an evidence-based probiotic is an obstacle.
Collapse
Affiliation(s)
- Manfred Gross
- Klinik für Allgemeine Innere Medizin und Gastroenterologie, Internistisches Klinikum München Süd, Am Isarkanal 36, 81379, München, Deutschland.
| | | | | | | |
Collapse
|
59
|
Lê A, Mantel M, Marchix J, Bodinier M, Jan G, Rolli-Derkinderen M. Inflammatory bowel disease therapeutic strategies by modulation of the microbiota: how and when to introduce pre-, pro-, syn-, or postbiotics? Am J Physiol Gastrointest Liver Physiol 2022; 323:G523-G553. [PMID: 36165557 DOI: 10.1152/ajpgi.00002.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inflammatory bowel diseases (IBD), a heterogeneous group of inflammatory conditions that encompass both ulcerative colitis and Crohn's disease, represent a major public health concern. The etiology of IBD is not yet fully understood and no cure is available, with current treatments only showing long-term effectiveness in a minority of patients. A need to increase our knowledge on IBD pathophysiology is growing, to define preventive measures, to improve disease outcome, and to develop new effective and lasting treatments. IBD pathogenesis is sustained by aberrant immune responses, associated with alterations of the intestinal epithelial barrier (IEB), modifications of the enteric nervous system, and changes in microbiota composition. Currently, most of the treatments target the inflammation and the immune system, but holistic approaches targeting lifestyle and diet improvements are emerging. As dysbiosis is involved in IBD pathogenesis, pre-, pro-, syn-, and postbiotics are used/tested to reduce the inflammation or strengthen the IEB. The present review will resume these works, pointing out the stage of life, the duration, and the environmental conditions that should go along with microbiota or microbiota-derived treatments.
Collapse
Affiliation(s)
- Amélie Lê
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
| | - Marine Mantel
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
- Unité Mixte de Recherche Science et Technologie du Lait et de l'Oeuf, Agrocampus Ouest, Institut Agro, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Rennes, France
| | - Justine Marchix
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
| | - Marie Bodinier
- Unité de Recherche 1268 Biopolymères Interactions Assemblages, I Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Pays de la Loire, Nantes, France
| | - Gwénaël Jan
- Unité Mixte de Recherche Science et Technologie du Lait et de l'Oeuf, Agrocampus Ouest, Institut Agro, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Rennes, France
| | - Malvyne Rolli-Derkinderen
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
| |
Collapse
|
60
|
Zhang H, Duan Y, Cai F, Cao D, Wang L, Qiao Z, Hong Q, Li N, Zheng Y, Su M, Liu Z, Zhu B. Next-Generation Probiotics: Microflora Intervention to Human Diseases. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5633403. [PMID: 36440358 PMCID: PMC9683952 DOI: 10.1155/2022/5633403] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/06/2022] [Indexed: 11/02/2023]
Abstract
With the development of human genome sequencing and techniques such as intestinal microbial culture and fecal microbial transplantation, newly discovered microorganisms have been isolated, cultured, and researched. Consequently, many beneficial probiotics have emerged as next-generation probiotics (NGPs). Currently, "safety," "individualized treatment," and "internal interaction within the flora" are requirements of a potential NGPs. Furthermore, in the complex ecosystem of humans and microbes, it is challenging to identify the relationship between specific strains, specific flora, and hosts to warrant a therapeutic intervention in case of a disease. Thus, this review focuses on the progress made in NGPs and human health research by elucidating the limitations of traditional probiotics; summarizing the functions and strengths of Akkermansia muciniphila, Faecalibacterium prausnitzii, Bacteroides fragilis, Eubacterium hallii, and Roseburia spp. as NGPs; and determining the role of their intervention in treatment of certain diseases. Finally, we aim to provide a reference for developing new probiotics in the future.
Collapse
Affiliation(s)
- Huanchang Zhang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Yunfeng Duan
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Feng Cai
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Demin Cao
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lei Wang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Zhenyi Qiao
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Qing Hong
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Nan Li
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Miya Su
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Baoli Zhu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
61
|
Idrees M, Imran M, Atiq N, Zahra R, Abid R, Alreshidi M, Roberts T, Abdelgadir A, Tipu MK, Farid A, Olawale OA, Ghazanfar S. Probiotics, their action modality and the use of multi-omics in metamorphosis of commensal microbiota into target-based probiotics. Front Nutr 2022; 9:959941. [PMID: 36185680 PMCID: PMC9523698 DOI: 10.3389/fnut.2022.959941] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
This review article addresses the strategic formulation of human probiotics and allows the reader to walk along the journey that metamorphoses commensal microbiota into target-based probiotics. It recapitulates what are probiotics, their history, and the main mechanisms through which probiotics exert beneficial effects on the host. It articulates how a given probiotic preparation could not be all-encompassing and how each probiotic strain has its unique repertoire of functional genes. It answers what criteria should be met to formulate probiotics intended for human use, and why certain probiotics meet ill-fate in pre-clinical and clinical trials? It communicates the reasons that taint the reputation of probiotics and cause discord between the industry, medical and scientific communities. It revisits the notion of host-adapted strains carrying niche-specific genetic modifications. Lastly, this paper emphasizes the strategic development of target-based probiotics using host-adapted microbial isolates with known molecular effectors that would serve as better candidates for bioprophylactic and biotherapeutic interventions in disease-susceptible individuals.
Collapse
Affiliation(s)
- Maryam Idrees
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
- National Agricultural Research Centre (NARC), National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan
| | - Muhammad Imran
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Naima Atiq
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rabaab Zahra
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rameesha Abid
- National Agricultural Research Centre (NARC), National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan
- Department of Biotechnology, University of Sialkot, Sialkot, Pakistan
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il, Saudi Arabia
| | - Tim Roberts
- Metabolic Research Group, Faculty of Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, Australia
| | - Abdelmuhsin Abdelgadir
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il, Saudi Arabia
| | | | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Pakistan
| | | | - Shakira Ghazanfar
- National Agricultural Research Centre (NARC), National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan
| |
Collapse
|
62
|
Altcheh J, Carosella MV, Ceballos A, D’Andrea U, Jofre SM, Marotta C, Mugeri D, Sabbaj L, Soto A, Josse C, Montestruc F, McFarland LV. Randomized, direct comparison study of Saccharomyces boulardii CNCM I-745 versus multi-strained Bacillus clausii probiotics for the treatment of pediatric acute gastroenteritis. Medicine (Baltimore) 2022; 101:e30500. [PMID: 36086703 PMCID: PMC9646502 DOI: 10.1097/md.0000000000030500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/04/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The choice of an appropriate probiotic for pediatric acute gastroenteritis (PAGE) can be confusing. Our aim was to compare the efficacy and safety of 2 probiotics (Saccharomyces boulardii CNCM I-745 vs a 4-strain mixture of Bacillus clausii O/C, SIN, N/R, T) for the treatment of PAGE. METHODS A 2-arm parallel, randomized trial recruited children (6 months to 5 years old) with mild-moderate acute diarrhea, from 8 centers in Argentina. A total of 317 children were enrolled and blindly randomized to 5 days of either S boulardii CNCM I-745 (n = 159) or a 4-strain mixture of B clausii (n = 158), then followed for 7 days post-probiotic treatment. A stool sample was collected at inclusion for pathogen identification. The primary outcome was duration of diarrhea defined as the time from enrollment to the last loose stool followed by the first 24-hour period with stool consistency improvement. Secondary outcomes included frequency of loose stools/day, severity of diarrhea, number reporting no diarrhea at Day 6, time-to-first formed stool, recurrence of diarrhea by study end (Day 12) and safety outcomes. RESULTS Three hundred twelve (98%) children completed the study. S boulardii CNCM I-745 showed a significant reduction (P = .04) in the mean duration of diarrhea (64.6 hours, 95% confidence interval [CI] 56.5-72.8) compared to those given B clausii (78.0 hours, 95% CI 69.9-86.1). Both probiotics showed improvement in secondary outcomes and were well-tolerated. CONCLUSION In this study, S boulardii CNCM I-745 demonstrated better efficacy than B clausii mix for reducing the duration of pediatric acute diarrhea.
Collapse
Affiliation(s)
- Jaime Altcheh
- Consultorio de Pediatria Maza, Buenos Aires, Argentina
| | | | - Ana Ceballos
- Instituto Medico Rio Cuarto, Rio Cuarto, Argentina
| | | | | | | | | | | | - Adriana Soto
- Clinica Mayo SRL, San Miguel DE Tucuman, Argentina
| | | | | | | |
Collapse
|
63
|
Larval gut microbiome of Pelidnota luridipes (Coleoptera: Scarabaeidae): high bacterial diversity, different metabolic profiles on gut chambers and species with probiotic potential. World J Microbiol Biotechnol 2022; 38:210. [PMID: 36050590 DOI: 10.1007/s11274-022-03387-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/11/2022] [Indexed: 10/14/2022]
Abstract
Pelidnota luridipes Blanchard (1850) is a tropical beetle of the family Scarabaeidae, whose larvae live on wood without parental care. Microbiota of mid- and hindgut of larvae was evaluated by culture-dependent and independent methods, and the results show a diverse microbiota, with most species of bacteria and fungi shared between midgut and hindgut. We isolated 272 bacterial and 29 yeast isolates, identified in 57 and 7 species, respectively, while using metabarcoding, we accessed 1,481 and 267 OTUs of bacteria and fungi, respectively. The composition and abundance of bacteria and fungi differed between mid- and hindgut, with a tendency for higher richness and diversity of yeasts in the midgut, and bacteria on the hindgut. Some taxa are abundant in the intestine of P. luridipes larvae, such as Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria; as well as Saccharomycetales and Trichosporonales yeasts. Mid- and hindgut metabolic profiles differ (e.g. biosynthesis of amino acids, cofactors, and lipopolysaccharides) with higher functional diversity in the hindgut. Isolates have different functional traits such as secretion of hydrolytic enzymes and antibiosis against pathogens. Apiotrichum siamense L29A and Bacillus sp. BL17B protected larvae of the moth Galleria mellonella, against infection by the pathogens Listeria monocytogenes ATCC19111 and Pseudomonas aeruginosa ATCC 9027. This is the first work with the larval microbiome of a Rutelini beetle, demonstrating its diversity and potential in prospecting microbial products as probiotics. The functional role of microbiota for the nutrition and adaptability of P. luridipes larvae needs to be evaluated in the future.
Collapse
|
64
|
Trivedi R, Upadhyay TK, Kausar MA, Saeed A, Sharangi AB, Almatroudi A, Alabdallah NM, Saeed M, Aqil F. Nanotechnological interventions of the microbiome as a next-generation antimicrobial therapy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155085. [PMID: 35398124 DOI: 10.1016/j.scitotenv.2022.155085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/22/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
The rise of antimicrobial resistance (AMR) impacts public health due to the diminished potency of existing antibiotics. The microbiome plays an important role in the host's immune system activity and shows the history of exposure to antimicrobials and its manipulation in combating antimicrobial resistance. Advancements in gene technologies, DNA sequencing, and computational biology have emerged as powerful platforms to better understand the relationship between animals and microorganisms (MOs). The past few years have witnessed an increase in the use of nanotechnology, both in industry and in academia, as tools to tackle antimicrobial resistance. New strategies of microbiome manipulation have been developed, such as the use of prebiotics, probiotics, peptides, antibodies, an appropriate diet, phage therapy, and the use of various nanotechnological techniques. Owing to the research outcomes, targeted delivery of antimicrobials with some modifications with nanoparticles can lead to the destruction of resistant microbial cells. In addition, nanoparticles have been studied for their potential antimicrobial effects both in vitro and in vivo. In this review, we highlight key opportunistic areas for applying nanotechnologies with the aim of manipulating the microbiome for the treatment of antimicrobial resistance. Besides providing a detailed review on various nanomaterials, technologies, opportunities, technical needs, and potential approaches for the manipulation of the microbiome to address these challenges, we discuss future challenges and our perspective.
Collapse
Affiliation(s)
- Rashmi Trivedi
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara 391760, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara 391760, India.
| | - Mohd Adnan Kausar
- Department of Biochemistry, College of Medicine, University of Hail, PO Box 2240, Hail, Saudi Arabia
| | - Amir Saeed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, PO Box 2240, Hail, Saudi Arabia
| | - Amit Baran Sharangi
- Department of Plantation Spices Medicinal and Aromatic Crops, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, India
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia
| | - Nadiyah M Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, PO Box 2240, Hail, Saudi Arabia.
| | - Farrukh Aqil
- UofL Health - Brown Cancer Center and Department of Medicine, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
65
|
Kopacz K, Phadtare S. Probiotics for the Prevention of Antibiotic-Associated Diarrhea. Healthcare (Basel) 2022; 10:1450. [PMID: 36011108 PMCID: PMC9408191 DOI: 10.3390/healthcare10081450] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 07/30/2022] [Indexed: 11/24/2022] Open
Abstract
Several communities have started using probiotic-rich fermented foods as therapeutic options with presumed medicinal powers. We now know the importance of microbiome balance and how probiotics can restore imbalances in the microbiome. Probiotics have been tested for a number of clinical uses such as the prevention of antibiotic-associated diarrhea (AAD), the treatment of various diseases such as H. pylori infection, irritable bowel disease, vaginitis, the prevention of allergies, and necrotizing enterocolitis in newborns. AAD has been the most indicated therapeutic use for probiotics. AAD is a common side effect of antibiotic usage, which affects up to 30% of patients. The hypothesis behind using probiotics for AAD is that they help normalize an unbalanced flora. There are many potential mechanisms by which probiotics support intestinal health such as (i) boosting immunity, (ii) increasing gut barrier integrity, (iii) producing antimicrobial substances, (iv) modulating the gut microbiome, (v) increasing water absorption, and (vi) decreasing opportunistic pathogens. Many randomized-controlled trials including the strain-specific trials that use Lactobacillus and Saccharomyces and meta-analyses have shown the benefits of probiotics in addressing AAD. Although adverse events have been reported for probiotics, these are broadly considered to be a safe and inexpensive preventative treatment option for AAD and other gastrointestinal disorders.
Collapse
|
66
|
Probiotics in Critical Illness: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Crit Care Med 2022; 50:1175-1186. [PMID: 35608319 DOI: 10.1097/ccm.0000000000005580] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To determine the safety and efficacy of probiotics or synbiotics on morbidity and mortality in critically ill adults and children. DATA SOURCES We searched MEDLINE, EMBASE, CENTRAL, and unpublished sources from inception to May 4, 2021. STUDY SELECTION We performed a systematic search for randomized controlled trials (RCTs) that compared enteral probiotics or synbiotics to placebo or no treatment in critically ill patients. We screened studies independently and in duplicate. DATA EXTRACTION Independent reviewers extracted data in duplicate. A random-effects model was used to pool data. We assessed the overall certainty of evidence for each outcome using the Grading Recommendations Assessment, Development, and Evaluation approach. DATA SYNTHESIS Sixty-five RCTs enrolled 8,483 patients. Probiotics may reduce ventilator-associated pneumonia (VAP) (relative risk [RR], 0.72; 95% CI, 0.59 to 0.89 and risk difference [RD], 6.9% reduction; 95% CI, 2.7-10.2% fewer; low certainty), healthcare-associated pneumonia (HAP) (RR, 0.70; 95% CI, 0.55-0.89; RD, 5.5% reduction; 95% CI, 8.2-2.0% fewer; low certainty), ICU length of stay (LOS) (mean difference [MD], 1.38 days fewer; 95% CI, 0.57-2.19 d fewer; low certainty), hospital LOS (MD, 2.21 d fewer; 95% CI, 1.18-3.24 d fewer; low certainty), and duration of invasive mechanical ventilation (MD, 2.53 d fewer; 95% CI, 1.31-3.74 d fewer; low certainty). Probiotics probably have no effect on mortality (RR, 0.95; 95% CI, 0.87-1.04 and RD, 1.1% reduction; 95% CI, 2.8% reduction to 0.8% increase; moderate certainty). Post hoc sensitivity analyses without high risk of bias studies negated the effect of probiotics on VAP, HAP, and hospital LOS. CONCLUSIONS Low certainty RCT evidence suggests that probiotics or synbiotics during critical illness may reduce VAP, HAP, ICU and hospital LOS but probably have no effect on mortality.
Collapse
|
67
|
Ni Z, Wang S, Li Y, Zhou L, Zhai D, Xia D, Yu C. Mapping trends and hotspot regarding gut microbiota and host immune response: A bibliometric analysis of global research (2011–2021). Front Microbiol 2022; 13:932197. [PMID: 35958122 PMCID: PMC9361022 DOI: 10.3389/fmicb.2022.932197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background Gut microbiota is a complex ecosystem that is vital for the development and function of the immune system, is closely associated with host immunity, and affects human health and disease. Therefore, the current progress and trends in this field must be explored. Purpose No bibliometric analysis has been conducted on gut microbiota and host immune response. This study aimed to analyze the current progress and developing trends in this field through bibliometric and visual analysis. Methods Global publications on gut microbiota and host immune response from January 2011 to December 2021 were extracted from the Web of Science (WOS) collection database. GraphPad Prism, VOSviewer software, and CiteSpace were employed to perform a bibliometric and visual study. Results The number of publications has rapidly increased in the last decade but has declined in the most recent year. The Cooperation network shows that the United States, Harvard Medical School, and Frontiers in Immunology were the most active country, institute, and journal in this field, respectively. Co-occurrence analysis divided all keywords into four clusters: people, animals, cells, and diseases. The latest keyword within all clusters was “COVID,” and the most frequently occurring keyword was “SCFA.” Conclusion Gut microbiota and host immune response remain a research hotspot, and their relation to cancer, CNS disorders, and autoimmune disease has been explored. However, additional studies on gut microbiota must be performed, particularly its association with bacterial strain screening and personalized therapy.
Collapse
Affiliation(s)
- Zhexin Ni
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Sheng Wang
- Department of Emergency, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Trauma Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yangshuo Li
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Ling Zhou
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Dongxia Zhai
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Demeng Xia
- Department of Trauma Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, China
- Luodian Clinical Drug Research Center, Shanghai Baoshan Luodian Hospital, Shanghai University, Shanghai, China
- *Correspondence: Demeng Xia
| | - Chaoqin Yu
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Chaoqin Yu
| |
Collapse
|
68
|
Farahmandi K, Mohr AE, McFarland LV. Effects of Probiotics on Allergic Rhinitis: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Am J Rhinol Allergy 2022; 36:440-450. [PMID: 35099301 DOI: 10.1177/19458924211073550] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The prevalence of allergic rhinitis has been estimated to range from 10 to 30% in adults and up to 40% in children. Probiotics have been tested as for this condition, but no census on which probiotic types are most effective. OBJECTIVE Our aim of this study was to provide probiotic strain-specific evaluation for the treatment of allergic rhinitis. METHODS Databases (PubMed, Google Scholar, and ScienceDirect) were searched (from inception to October 2020) to identify randomized controlled trials (RCTs) of probiotic treatments in allergic rhinitis patients. A systematic review was done comparing types of reported outcomes, clinical and immunological parameters and safety data. A meta-analysis was done for probiotics with at least two RCTs per probiotic strain(s) and sharing a common outcome. RESULTS A total of 13 randomized, double-blind, placebo-controlled trials (N = 1591 participants) were included in the systematic review. Overall, 8 of 9 probiotic types alleviated at least one clinical symptom of allergic rhinitis. The meta-analysis results showed that, neither L. paracasei Lp33 (SMD = -1.61, 95% CI -4.67, 1.45) nor L. rhamnosus GG (SMD = -1.00, 95% CI -3.01, 1.00) had significant efficacy for reducing nasal symptom scores. CONCLUSIONS Our analysis showed probiotics produced a slight improvement in some clinical and immunological measurements on allergic rhinitis. Due to the diversity of outcome measurements and lack of sufficient trials for each probiotic strain, future trials are needed with similar study design and uniform outcomes to better compare the effect of probiotics on allergic rhinitis.
Collapse
Affiliation(s)
- Kajal Farahmandi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Alex E Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| | - Lynne V McFarland
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
69
|
Mestre A, Sathiya Narayanan R, Rivas D, John J, Abdulqader MA, Khanna T, Chakinala RC, Gupta S. Role of Probiotics in the Management of Helicobacter pylori. Cureus 2022; 14:e26463. [PMID: 35919364 PMCID: PMC9338786 DOI: 10.7759/cureus.26463] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/30/2022] [Indexed: 11/14/2022] Open
Abstract
The global prevalence of Helicobacter pylori (H. pylori) is estimated to be around 4.4 billion, with the majority of individuals affected in developing countries. Chronic infection of the gram-negative bacterium results in several gastrointestinal pathologies such as chronic gastritis, peptic ulcer, and cancer. Probiotics compete directly with H. pylori and help restore the gut microbial environment; these living microorganisms are comparatively more effective than the standard triple antibiotic regimen in the management of symptoms related to the pathogenic bacteria. The need for alternative therapy is better explained by the increasing rate of antibiotic resistance and the lowering of patient compliance to the standard treatment. Adjuvant administration of probiotics to H. pylori eradication therapy is associated with a higher H. pylori eradication rate, decreased diarrhea-related treatment, less common self-reported side effects, and higher treatment compliance. Therefore, with the ongoing and future resistance to antibiotics, this systematic review aims to investigate the use and efficacy of probiotics when used alone or in conjunction with the current guideline treatment. A literature search was conducted using Pubmed, MEDLINE, and Cochrane for peer-reviewed articles published between January 1, 2016 and April 2022. MeSH terms used were: “H. pylori,” “H. pylori and probiotics,” “Probiotics,” “H. pylori treatment,” “Mechanism of Action” with subheadings as “clinical manifestations,” “treatment,” and “diagnosis.” All literature reviews, original papers, and case reports were included. This search strategy aimed to find literature that could describe the transmission and mechanism of action of H. pylori, the current treatment guidelines, and the efficacy of probiotics in eradicating H. pylori.
Collapse
|
70
|
Kahraman M, Karahan AG, Terzioğlu ME. Characterization of Some Microorganisms from Human Stool Samples and Determination of Their Effects on CT26 Colorectal Carcinoma Cell Line. Curr Microbiol 2022; 79:225. [PMID: 35704105 DOI: 10.1007/s00284-022-02915-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/23/2022] [Indexed: 12/26/2022]
Abstract
The present study aimed to isolate and identify the potential probiotic, pathobiont, and pathogenic microorganisms in the stool samples of 12 healthy individuals and evaluate their in vitro effects on cancer formation. A total of 83 strains were isolated from the stool samples and identified using MALDI-Biotyper. Fourteen of the isolates were identified as Candida spp., three isolates were identified as Cryptococcus neoformans, 55 isolates were identified as lactic acid bacteria, and the remaining isolates belonged to different 11 bacterial genera. Important microbial properties for cancer prevention and some probiotic properties were examined. All strains maintained their viability under acidic conditions and in media containing bile salts. Of the bacterial strains, 62.5% were resistant to ampicillin, chloramphenicol, gentamicin, erythromycin, kanamycin, penicillin, streptomycin, tetracycline, and vancomycin. All yeast strains were resistant to ketoconazole and susceptible to nystatin. The susceptibility of the strains to fluconazole, voriconazole, amphotericin B, and itraconazole varied. Fifty-nine percent of the strains produced EPS and 21.7% showed proteolytic activity (PA). Of the strains, 15.7% both produced exopolysaccharides (EPS) and had PA. The antioxidant activity (AOA) varied depending on the strains. The pathobiont and pathogenic microorganisms promoted tumor formation, while potential probiotic microorganisms had a suppressive effect on tumor formation (P > 0.01). One yeast (Candida kefyr MK17) and three lactic acid bacteria strains (Lacticaseibacillus paracasei MK73, Lactiplantibacillus plantarum MK55, Limosilactobacillus mucosae MK45) have superior potential thanks to their anticarcinogenic properties as well as tolerance to gastrointestinal tract conditions. Stool samples of each individual contain various potential probiotic, pathobiont, and pathogenic microorganisms.
Collapse
Affiliation(s)
- Münevver Kahraman
- Department of Food Engineering, Faculty of Engineering, Süleyman Demirel University, Isparta, Turkey
| | - Aynur Gül Karahan
- Department of Food Engineering, Faculty of Engineering, Süleyman Demirel University, Isparta, Turkey.
| | | |
Collapse
|
71
|
Lingas EC. Empiric Antibiotics in COVID 19: A Narrative Review. Cureus 2022; 14:e25596. [PMID: 35795519 PMCID: PMC9250242 DOI: 10.7759/cureus.25596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 11/05/2022] Open
|
72
|
Sałański P, Kowalczyk M, Bardowski JK, Szczepankowska AK. Health-Promoting Nature of Lactococcus lactis IBB109 and Lactococcus lactis IBB417 Strains Exhibiting Proliferation Inhibition and Stimulation of Interleukin-18 Expression in Colorectal Cancer Cells. Front Microbiol 2022; 13:822912. [PMID: 35694291 PMCID: PMC9174673 DOI: 10.3389/fmicb.2022.822912] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/29/2022] [Indexed: 12/19/2022] Open
Abstract
Lactic acid bacteria (LAB) are Gram-positive bacteria which are considered for use as adjuvant therapeutics in management of various disease ailments, including obesity, irritable bowel syndrome, lactose intolerance and cancer. To investigate the possible use of Lactococcus lactis strains from our collection in treatment of gastrointestinal cancer, we tested them for the ability to arrest proliferation of human colorectal adenocarcinoma cells (Caco-2). Results of the BrdU assay showed that the anti-proliferative activity of L. lactis cells is strain-specific. We found that particularly, two strains, L. lactis IBB109 and L. lactis IBB417, exhibited the most potent inhibitory effect. Moreover, both strains triggered interleukin 18 gene expression, normally inhibited in Caco-2 (cancer) cells. To examine the probiotic potential of the two strains, we tested them for bile salts and acid tolerance, as well as adhesion properties. Both isolates exhibited probiotic potential—they survived in the presence of 0.3% bile salts and tolerated exposure to low pH and osmotic stress. Notably, we found that L. lactis IBB417 displayed better adherence to mucus and Caco-2 cells than L. lactis IBB109. Additionally, by microdilution tests we confirmed that both strains are sensitive to all nine antibiotics of human and veterinary importance listed by the European Food Safety Authority. Finally, by in silico investigations of whole genome sequencing data, we revealed the genetic features of L. lactis IBB109 and L. lactis IBB417 that can be associated with functional (e.g., adhesion and carbohydrate metabolic genes) and safety (e.g., virulence and antibiotic resistance) aspects of the strains, confirming their health-promoting potential.
Collapse
|
73
|
Sbehat M, Altamimi M, Sabbah M, Mauriello G. Layer-by-Layer Coating of Single-Cell Lacticaseibacillus rhamnosus to Increase Viability Under Simulated Gastrointestinal Conditions and Use in Film Formation. Front Microbiol 2022; 13:838416. [PMID: 35602083 PMCID: PMC9115559 DOI: 10.3389/fmicb.2022.838416] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
Probiotics and prebiotics are widely used as functional food ingredients. Viability of probiotics in the food matrix and further in the digestive system is still a challenge for the food industry. Different approaches were used to enhance the viability of probiotics including microencapsulation and layer-by-layer cell coating. The of aim of this study was to evaluate the viability of coated Lacticaseibacillus rhamnosus using a layer-by-layer (LbL) technique with black seed protein (BSP) extracted from Nigella sativa defatted seeds cakes (NsDSC), as a coating material, with alginate, inulin, or glucomannan, separately, and the final number of coating layers was 3. The viable cell counts of the plain and coated L. rhamnosus were determined under sequential simulated gastric fluid (SGF) for 120 min and simulated intestinal fluid (SIF) for 180 min. Additionally, the viability after exposure to 37, 45, and 55°C for 30 min was also determined. Generally, the survivability of coated L. rhamnosus showed significant (p ≤ 0.05) improvement (<4, 3, and 1.5 logs reduction for glucomannan, alginate and inulin, respectively) compared with plain cells (∼6.7 log reduction) under sequential exposure to SGF and SIF. Moreover, the cells coated with BSP and inulin showed the best protection for L. rhamnosus under high temperatures. Edible films prepared with pectin with LbL-coated cells showed significantly higher values in their tensile strength (TS) of 50% and elongation at the break (EB) of 32.5% than pectin without LbL-coated cells. The LbL technique showed a significant protection of probiotic cells and potential use in food application.
Collapse
Affiliation(s)
- Maram Sbehat
- Department of Nutrition and Food Technology, An-Najah National University, Nablus, Palestine
| | - Mohammad Altamimi
- Department of Nutrition and Food Technology, An-Najah National University, Nablus, Palestine
| | - Mohammad Sabbah
- Department of Nutrition and Food Technology, An-Najah National University, Nablus, Palestine
| | - Gianluigi Mauriello
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
74
|
Anania C, Brindisi G, Martinelli I, Bonucci E, D’Orsi M, Ialongo S, Nyffenegger A, Raso T, Spatuzzo M, De Castro G, Zicari AM, Carraro C, Piccioni MG, Olivero F. Probiotics Function in Preventing Atopic Dermatitis in Children. Int J Mol Sci 2022; 23:ijms23105409. [PMID: 35628229 PMCID: PMC9141149 DOI: 10.3390/ijms23105409] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 11/16/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disorder characterized by relapsing eczematous injuries and severe pruritus. In the last few years, the AD prevalence has been increasing, reaching 20% in children and 10% in adults in high-income countries. Recently, the potential role of probiotics in AD prevention has generated considerable interest. As many clinical studies show, the gut microbiota is able to modulate systemic inflammatory and immune responses influencing the development of sensitization and allergy. Probiotics are used increasingly against AD. However, the molecular mechanisms underlying the probiotics mediated anti-allergic effect remain unclear and there is controversy about their efficacy. In this narrative review, we examine the actual evidence on the effect of probiotic supplementation for AD prevention in the pediatric population, discussing also the potential biological mechanisms of action in this regard.
Collapse
Affiliation(s)
- Caterina Anania
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (G.B.); (I.M.); (E.B.); (M.D.); (S.I.); (A.N.); (T.R.); (M.S.); (G.D.C.); (A.M.Z.); (C.C.); (M.G.P.)
- Correspondence:
| | - Giulia Brindisi
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (G.B.); (I.M.); (E.B.); (M.D.); (S.I.); (A.N.); (T.R.); (M.S.); (G.D.C.); (A.M.Z.); (C.C.); (M.G.P.)
| | - Ivana Martinelli
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (G.B.); (I.M.); (E.B.); (M.D.); (S.I.); (A.N.); (T.R.); (M.S.); (G.D.C.); (A.M.Z.); (C.C.); (M.G.P.)
| | - Edoardo Bonucci
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (G.B.); (I.M.); (E.B.); (M.D.); (S.I.); (A.N.); (T.R.); (M.S.); (G.D.C.); (A.M.Z.); (C.C.); (M.G.P.)
| | - Miriam D’Orsi
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (G.B.); (I.M.); (E.B.); (M.D.); (S.I.); (A.N.); (T.R.); (M.S.); (G.D.C.); (A.M.Z.); (C.C.); (M.G.P.)
| | - Sara Ialongo
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (G.B.); (I.M.); (E.B.); (M.D.); (S.I.); (A.N.); (T.R.); (M.S.); (G.D.C.); (A.M.Z.); (C.C.); (M.G.P.)
| | - Anna Nyffenegger
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (G.B.); (I.M.); (E.B.); (M.D.); (S.I.); (A.N.); (T.R.); (M.S.); (G.D.C.); (A.M.Z.); (C.C.); (M.G.P.)
| | - Tonia Raso
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (G.B.); (I.M.); (E.B.); (M.D.); (S.I.); (A.N.); (T.R.); (M.S.); (G.D.C.); (A.M.Z.); (C.C.); (M.G.P.)
| | - Mattia Spatuzzo
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (G.B.); (I.M.); (E.B.); (M.D.); (S.I.); (A.N.); (T.R.); (M.S.); (G.D.C.); (A.M.Z.); (C.C.); (M.G.P.)
| | - Giovanna De Castro
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (G.B.); (I.M.); (E.B.); (M.D.); (S.I.); (A.N.); (T.R.); (M.S.); (G.D.C.); (A.M.Z.); (C.C.); (M.G.P.)
| | - Anna Maria Zicari
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (G.B.); (I.M.); (E.B.); (M.D.); (S.I.); (A.N.); (T.R.); (M.S.); (G.D.C.); (A.M.Z.); (C.C.); (M.G.P.)
| | - Carlo Carraro
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (G.B.); (I.M.); (E.B.); (M.D.); (S.I.); (A.N.); (T.R.); (M.S.); (G.D.C.); (A.M.Z.); (C.C.); (M.G.P.)
| | - Maria Grazia Piccioni
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (G.B.); (I.M.); (E.B.); (M.D.); (S.I.); (A.N.); (T.R.); (M.S.); (G.D.C.); (A.M.Z.); (C.C.); (M.G.P.)
| | - Francesca Olivero
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCSS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
75
|
Vilar MDDC, Vale SHDL, Rosado EL, Dourado Júnior MET, Brandão-Neto J, Leite-Lais L. Intestinal Microbiota and Sclerosis Lateral Amyotrophic. REVISTA CIÊNCIAS EM SAÚDE 2022. [DOI: 10.21876/rcshci.v12i1.1223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The human gastrointestinal tract contains numerous microorganisms. This intestinal microbiota (IM) has a mutualistic relationship with the human organism, and it plays a fundamental role in regulating metabolic, endocrine, and immunological functions. Intestinal dysbiosis is associated with phenotypes of many chronic and inflammatory diseases. This association is explained by the functions of the IM and the existing bi-directional communication of the microbiota-intestine-brain axis. Studies have uncovered new evidence between the IM and neurodegenerative diseases recently, including amyotrophic lateral sclerosis (ALS). Given this, the present narrative review discusses didactically about IM, its functions, its relationship with the neuroimmune-endocrine system, and its association with neurodegenerative diseases, with emphasis on ALS.
Collapse
|
76
|
Mohr AE, Pugh J, O'Sullivan O, Black K, Townsend JR, Pyne DB, Wardenaar FC, West NP, Whisner CM, McFarland LV. Best Practices for Probiotic Research in Athletic and Physically Active Populations: Guidance for Future Randomized Controlled Trials. Front Nutr 2022; 9:809983. [PMID: 35350412 PMCID: PMC8957944 DOI: 10.3389/fnut.2022.809983] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Probiotic supplementation, traditionally used for the prevention or treatment of a variety of disease indications, is now recognized in a variety of population groups including athletes and those physically active for improving general health and performance. However, experimental and clinical trials with probiotics commonly suffer from design flaws and different outcome measures, making comparison and synthesis of conclusions difficult. Here we review current randomized controlled trials (RCTs) using probiotics for performance improvement, prevention of common illnesses, or general health, in a specific target population (athletes and those physically active). Future RCTs should address the key elements of (1) properly defining and characterizing a probiotic intervention, (2) study design factors, (3) study population characteristics, and (4) outcome measures, that will allow valid conclusions to be drawn. Careful evaluation and implementation of these elements should yield improved trials, which will better facilitate the generation of evidence-based probiotic supplementation recommendations for athletes and physically active individuals.
Collapse
Affiliation(s)
- Alex E. Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
- *Correspondence: Alex E. Mohr
| | - Jamie Pugh
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Orla O'Sullivan
- Teagasc Food Research Centre, Moorepark, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Katherine Black
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Jeremy R. Townsend
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN, United States
| | - David B. Pyne
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT, Australia
| | - Floris C. Wardenaar
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Nicholas P. West
- School of Medical Science and Menzies Health Institute of QLD, Griffith Health, Griffith University, Southport, QLD, Australia
| | - Corrie M. Whisner
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Lynne V. McFarland
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, United States
| |
Collapse
|
77
|
Development of a shelf-stable, gel-based delivery system for probiotics by encapsulation, 3D printing, and freeze-drying. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
78
|
Song X, Wang L, Liu Y, Zhang X, Weng P, Liu L, Zhang R, Wu Z. The gut microbiota–brain axis: Role of the gut microbial metabolites of dietary food in obesity. Food Res Int 2022; 153:110971. [DOI: 10.1016/j.foodres.2022.110971] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 12/13/2022]
|
79
|
Scuderi G, Troiani E, Minnella AM. Gut Microbiome in Retina Health: The Crucial Role of the Gut-Retina Axis. Front Microbiol 2022; 12:726792. [PMID: 35095780 PMCID: PMC8795667 DOI: 10.3389/fmicb.2021.726792] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
The term microbiome means not only a complex ecosystem of microbial species that colonize our body but also their genome and the surrounding environment in which they live. Recent studies support the existence of a gut-retina axis involved in the pathogenesis of several chronic progressive ocular diseases, including age-related macular disorders. This review aims to underline the importance of the gut microbiome in relation to ocular health. After briefly introducing the characteristics of the gut microbiome in terms of composition and functions, the role of gut microbiome dysbiosis, in the development or progression of retinal diseases, is highlighted, focusing on the relationship between gut microbiome composition and retinal health based on the recently investigated gut-retina axis.
Collapse
Affiliation(s)
- Gianluca Scuderi
- Ophthalmology Unit, NESMOS Department, St. Andrea Hospital, Sapienza University of Rome, Rome, Italy
- *Correspondence: Gianluca Scuderi,
| | - Emidio Troiani
- Cardiology Unit, State Hospital, Institute for Social Security, Cailungo, San Marino
| | - Angelo Maria Minnella
- Department of Ophthalmology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
80
|
de Rijke TJ, Doting MHE, van Hemert S, De Deyn PP, van Munster BC, Harmsen HJM, Sommer IEC. A Systematic Review on the Effects of Different Types of Probiotics in Animal Alzheimer's Disease Studies. Front Psychiatry 2022; 13:879491. [PMID: 35573324 PMCID: PMC9094066 DOI: 10.3389/fpsyt.2022.879491] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/01/2022] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a global public health priority as with aging populations, its prevalence is expected to rise even further in the future. The brain and gut are in close communication through immunological, nervous and hormonal routes, and therefore, probiotics are examined as an option to influence AD hallmarks, such as plaques, tangles, and low grade inflammation. This study aimed to provide an overview of the available animal evidence on the effect of different probiotics on gut microbiota composition, short chain fatty acids (SCFAs), inflammatory markers, Amyloid-β (Aβ), and cognitive functioning in AD animal models. A systematic literature search was performed in PubMed, SCOPUS, and APA PsychInfo. Articles were included up to May 2021. Inclusion criteria included a controlled animal study on probiotic supplementation and at least one of the abovementioned outcome variables. Of the eighteen studies, most were conducted in AD male mice models (n = 9). Probiotics of the genera Lactobacillus and Bifidobacterium were used most frequently. Probiotic administration increased species richness and/or bacterial richness in the gut microbiota, increased SCFAs levels, reduced inflammatory markers, and improved cognitive functioning in AD models in multiple studies. The effect of probiotic administration on Aβ remains ambiguous. B. longum (NK46), C. butyricum, and the mixture SLAB51 are the most promising probiotics, as positive improvements were found on almost all outcomes. The results of this animal review underline the potential of probiotic therapy as a treatment option in AD.
Collapse
Affiliation(s)
- Tanja J de Rijke
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen/University of Groningen, Groningen, Netherlands
| | - M H Edwina Doting
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen/University of Groningen, Groningen, Netherlands
| | | | - Peter P De Deyn
- Alzheimer Center Groningen, University Medical Center Groningen, Groningen, Netherlands.,Department of Neurology, University Medical Center Groningen, Groningen, Netherlands
| | - Barbara C van Munster
- Alzheimer Center Groningen, University Medical Center Groningen, Groningen, Netherlands.,Department of Internal Medicine, University Medical Center Groningen, Groningen, Netherlands
| | - Hermie J M Harmsen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen/University of Groningen, Groningen, Netherlands
| | - Iris E C Sommer
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen/University of Groningen, Groningen, Netherlands
| |
Collapse
|
81
|
Andreev V, Stetsiouk OU, Andreeva IV. Probiotics: controversial issues. CLINICAL MICROBIOLOGY AND ANTIMICROBIAL CHEMOTHERAPY 2022; 24:345-360. [DOI: 10.36488/cmac.2022.4.345-360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Recent studies have strongly confirmed the health benefits of a variety of probiotic microorganisms. However, some issues regarding the use of probiotics currently remain unresolved or ambiguous. This article highlights some controversial issues of probiotic use in clinical practice such as regulatory status of probiotics, co-administration of probiotics and antibiotics, potential impact of probiotics on antimicrobial resistance emergence and spread, dosing and duration of probiotic use, contraindications and some other debatable topics.
Collapse
Affiliation(s)
- V.A. Andreev
- Smolensk State Medical University (Smolensk, Russia)
| | | | | |
Collapse
|
82
|
Pogačar MŠ, Mičetić-Turk D, Fijan S. Probiotics: current regulatory aspects of probiotics for use in different disease conditions. PROBIOTICS IN THE PREVENTION AND MANAGEMENT OF HUMAN DISEASES 2022:465-499. [DOI: 10.1016/b978-0-12-823733-5.00021-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
83
|
Nabavi-Rad A, Sadeghi A, Asadzadeh Aghdaei H, Yadegar A, Smith SM, Zali MR. The double-edged sword of probiotic supplementation on gut microbiota structure in Helicobacter pylori management. Gut Microbes 2022; 14:2108655. [PMID: 35951774 PMCID: PMC9373750 DOI: 10.1080/19490976.2022.2108655] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/13/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
As Helicobacter pylori management has become more challenging and less efficient over the last decade, the interest in innovative interventions is growing by the day. Probiotic co-supplementation to antibiotic therapies is reported in several studies, presenting a moderate reduction in drug-related side effects and a promotion in positive treatment outcomes. However, the significance of gut microbiota involvement in the competence of probiotic co-supplementation is emphasized by a few researchers, indicating the alteration in the host gastrointestinal microbiota following probiotic and drug uptake. Due to the lack of long-term follow-up studies to determine the efficiency of probiotic intervention in H. pylori eradication, and the delicate interaction of the gut microbiota with the host wellness, this review aims to discuss the gut microbiota alteration by probiotic co-supplementation in H. pylori management to predict the comprehensive effectiveness of probiotic oral administration.Abbreviations: acyl-CoA- acyl-coenzyme A; AMP- antimicrobial peptide; AMPK- AMP-activated protein kinase; AP-1- activator protein 1; BA- bile acid; BAR- bile acid receptor; BCAA- branched-chain amino acid; C2- acetate; C3- propionate; C4- butyrate; C5- valeric acid; CagA- Cytotoxin-associated gene A; cAMP- cyclic adenosine monophosphate; CD- Crohn's disease; CDI- C. difficile infection; COX-2- cyclooxygenase-2; DC- dendritic cell; EMT- epithelial-mesenchymal transition; FMO- flavin monooxygenases; FXR- farnesoid X receptor; GPBAR1- G-protein-coupled bile acid receptor 1; GPR4- G protein-coupled receptor 4; H2O2- hydrogen peroxide; HCC- hepatocellular carcinoma; HSC- hepatic stellate cell; IBD- inflammatory bowel disease; IBS- irritable bowel syndrome; IFN-γ- interferon-gamma; IgA immunoglobulin A; IL- interleukin; iNOS- induced nitric oxide synthase; JAK1- janus kinase 1; JAM-A- junctional adhesion molecule A; LAB- lactic acid bacteria; LPS- lipopolysaccharide; MALT- mucosa-associated lymphoid tissue; MAMP- microbe-associated molecular pattern; MCP-1- monocyte chemoattractant protein-1; MDR- multiple drug resistance; mTOR- mammalian target of rapamycin; MUC- mucin; NAFLD- nonalcoholic fatty liver disease; NF-κB- nuclear factor kappa B; NK- natural killer; NLRP3- NLR family pyrin domain containing 3; NOC- N-nitroso compounds; NOD- nucleotide-binding oligomerization domain; PICRUSt- phylogenetic investigation of communities by reconstruction of unobserved states; PRR- pattern recognition receptor; RA- retinoic acid; RNS- reactive nitrogen species; ROS- reactive oxygen species; rRNA- ribosomal RNA; SCFA- short-chain fatty acids; SDR- single drug resistance; SIgA- secretory immunoglobulin A; STAT3- signal transducer and activator of transcription 3; T1D- type 1 diabetes; T2D- type 2 diabetes; Th17- T helper 17; TLR- toll-like receptor; TMAO- trimethylamine N-oxide; TML- trimethyllysine; TNF-α- tumor necrosis factor-alpha; Tr1- type 1 regulatory T cell; Treg- regulatory T cell; UC- ulcerative colitis; VacA- Vacuolating toxin A.
Collapse
Affiliation(s)
- Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sinéad Marian Smith
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
84
|
Turner RB, Lehtoranta L, Hibberd A, Männikkö S, Zabel B, Yeung N, Huttunen T, Burns FR, Lehtinen MJ. Effect of Bifidobacterium animalis spp. lactis Bl-04 on Rhinovirus-Induced Colds: A Randomized, Placebo-Controlled, Single-Center, Phase II Trial in Healthy Volunteers. EClinicalMedicine 2022; 43:101224. [PMID: 34927036 PMCID: PMC8649651 DOI: 10.1016/j.eclinm.2021.101224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND This study was designed to assess the efficacy of Bifidobacterium animalis ssp. lactis (Bl-04) for prevention of rhinovirus colds and to explore the interactions between the probiotic, the viral infection, the host response and the host microbiome. METHODS The effect of ingestion of the probiotic Bl-04 was evaluated in a randomized, double-blinded rhinovirus (RV) challenge study. Healthy volunteers recruited from a university community in USA were randomized 1:1 using a computer generated code to ingest either Bl-04 (n=165) or placebo (n=169) for 28 days and were then challenged with RV-A39, and followed for 14 days. All study interactions and sample collection occurred in dedicated clinical research space. The primary analysis was the effect of the probiotic on the incidence of RV-associated illness. (Trial registration: NCT02679807, study complete). FINDINGS The first cohort of volunteers was randomized on March 14, 2016 and the last (5th) cohort was randomized on March 12, 2018. Sixty-three (56%, 95% CI [47%; 66%]) of the 112 subjects in the active group and 60 (50%,95% CI [41%; 59%]) of the 120 subjects in the placebo group had a protocol-defined rhinovirus-associated illness (χ2=0·91, p=0·34). The point estimate of the difference in illness (active-placebo) is 6.3% (95% CI -6.7;19.1). There were no adverse events that were judged as definitely or probably related to the study product. INTERPRETATION In this study there was no effect of orally administered Bl-04 on the occurrence of RV-associated illness. FUNDING Danisco Sweeteners Oy (now IFF Health & Biosciences).
Collapse
Affiliation(s)
- Ronald B. Turner
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA
- Corresponding To: 512 Rosemont Drive, Charlottesville, VA 22903
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Requena T, Pérez Martínez G. Probiotics, Prebiotics, Synbiotics, Postbiotics and Other Biotics. What's Next? COMPREHENSIVE GUT MICROBIOTA 2022:197-210. [DOI: 10.1016/b978-0-12-819265-8.00094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
86
|
Xu B, Ling S, Xu X, Liu X, Wang A, Zhou Y, Luo Y, Li W, Yao X. A New Formulation of Probiotics Attenuates Calcipotriol-Induced Dermatitis by Inducing Regulatory Dendritic Cells. Front Immunol 2021; 12:775018. [PMID: 34868040 PMCID: PMC8634942 DOI: 10.3389/fimmu.2021.775018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Atopic dermatitis (AD) is a recurrent chronic inflammatory skin disease affecting up to 30% of the children population, and immuno-regulatory therapy that could modify the course of disease is urgently needed. Probiotics have demonstrated therapeutic effects on AD and could potentially regulate the disease process. However, the efficacy of probiotics for AD is inconsistent among different studies, which is mainly due to the elusive mechanism and different species and (or) strains used. In this study, we designed a mixture of five strains of probiotics (named IW5) and analyzed the effect and mechanism of IW5 on calcipotriol (MC903)-induced AD-like dermatitis. We found that IW5 significantly alleviated skin inflammation of the MC903-induced AD in mice. Administration with IW5 induced increased production of regulatory T cells and regulatory dendritic cells (DCregs) in the mesenteric lymph nodes. We also found that the diversity of the gut microbiota in the mice with MC903-induced dermatitis was increased after IW5 administration, and the level of butyrate in the gut was elevated. In cell culture, butyrate induced the production of DCregs. Our study revealed the therapeutic effects of a newly designed probiotics mixture and uncovered a possible mechanism, providing a foundation for future clinical studies.
Collapse
Affiliation(s)
- Beilei Xu
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Shiqi Ling
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Xiaoqiang Xu
- Department of Bioinformatics, 01life Institute, Shenzhen, China
| | - Xiaochun Liu
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Ao Wang
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yuan Zhou
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yang Luo
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Wei Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xu Yao
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| |
Collapse
|
87
|
Goh ADY, Ng CSM, Toh YG, Chong JBK, Chew EH, Yap KYL. Development of a Probiotics Practice E-Reference Database for Health Care Professionals. Clin Ther 2021; 43:e364-e376.e3. [PMID: 34794833 DOI: 10.1016/j.clinthera.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE Currently available references provide evidence on the efficacy of probiotics strains but exclude product-specific information, making it challenging for health care professionals (HCPs) to provide consumers with suitable recommendations on probiotics. An online probiotics e-reference database was developed to assist HCPs in delivering evidence-based recommendations on probiotics to consumers. The usability and applicability of the database in health care practice were evaluated. METHODS Information on the efficacy of probiotics and probiotic products was collated using a PubMed literature search, and from local pharmacies and online supplement stores. A web database was compiled using various programming scripts and uploaded onto a web server. The database was beta-tested using an online self-administered questionnaire for community-based pharmacists, and responses were analyzed using descriptive statistics. FINDINGS The database comprised 584 clinical study excerpts, 449 probiotic products, and 1879 unique product-study links. Users can search for suitable probiotics based on their indication profile or for a specific probiotic product. Information provided includes the probiotic constituents, dosage regimen, and indications of the product, with supporting clinical evidence. Overall, all participants of the beta-test indicated that they were satisfied with the database and were willing to use it again (both, 13 participants [100%]). In addition, all participants indicated that they found the database intuitive to use and smooth functioning, without inconsistencies (both, 13 [100%]). The majority also indicated that they found the information provided to be clear, comprehensive, and useful in health care practice (12 [92.3%] each). IMPLICATIONS The probiotics e-reference database is an integrated resource that is user-friendly, and provides HCPs with ready access to clear and comprehensive information on probiotic products and clinical studies, so that HCPs can provide consumers with relevant and evidence-based recommendations on probiotics.
Collapse
Affiliation(s)
- Adison Dai Yong Goh
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Charmaine Sum May Ng
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Yhim Ghee Toh
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | | | - Eng-Hui Chew
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore.
| | - Kevin Yi-Lwern Yap
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore; Department of Public Health, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
88
|
Abstract
Viral infections represent a major health problem worldwide. Due to the wide variety of etiological agents and their increasing resistance to anti-virals and antibiotics treatments, new strategies for effective therapies need to be developed. Scientific evidence suggests that probiotics may have prophylactic and therapeutic effects in viral diseases. Indeed, these microorganisms interact harmoniously with the intestinal microbiota and protect the integrity of the intestinal barrier as well as modulate the host immune system. Currently, clinical trials with probiotics have been documented in respiratory tract infections, infections caused by human immunodeficiency viruses, herpes, human papillomavirus and hepatic encephalopathy. However, the benefits documented so far are difficult to extrapolate, due to the strain-dependent effect. In addition, the dose of the microorganism used as well as host characteristics are other parameters that should be consider when advocating the use of probiotics to treat viral infections. This review addresses the scientific evidence of the efficacy of probiotics in clinical strains perspective in viral infectious diseases in the last 10 years.
Collapse
|
89
|
Association of Primate Veterinarians' Guidelines for the Judicious Use of Antimicrobials. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2021; 60:601-606. [PMID: 34819207 PMCID: PMC9745741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Association of Primate Veterinarians (APV) recognizes that antimicrobials are commonly prescribed for prophylactic, therapeutic, and experimental management of nonhuman primates (NHP). While clinicians should use antimicrobials to treat documented cases of illness, the decision to prescribe antimicrobials must take into account the increasing resistance of bacterial populations, leading to decreasing efficacy of critical pharmaceuticals in both human and veterinary medicine. The intent of this document is to provide guidance to veterinarians, research staff, and institutional animal care and use committees (IACUCs) on the use of antimicrobials in NHP.
Collapse
|
90
|
McFarland LV, Karakan T, Karatas A. Strain-specific and outcome-specific efficacy of probiotics for the treatment of irritable bowel syndrome: A systematic review and meta-analysis. EClinicalMedicine 2021; 41:101154. [PMID: 34712929 PMCID: PMC8529205 DOI: 10.1016/j.eclinm.2021.101154] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Consistent guidance for choosing an appropriate probiotic for the treatment of irritable bowel syndrome is lacking. METHODS Literature databases searched included: PubMed, Google Scholar and NIH registry of clinical trials from inception to June 2021. Inclusion criteria: randomized controlled trials (RCTs) enrolling adult or pediatric IBS patients comparing probiotics against controls and ≥ 2 RCTs with common IBS outcome measures within each type of probiotic. Five common measures of IBS symptoms (changes in global Irritable Bowel Syndrome Severity Scoring System or IBS-SSS scores, frequency of global responders, changes in bloating or abdominal pain scores and frequency of abdominal pain relief) were used. This study was registered at Prospero (#CRD42018109169). FINDINGS We screened 521 studies and included 42 randomized controlled trials (45 treatment arms, N = 3856). Four probiotics demonstrated significant reduction in abdominal pain relief: B. coagulans MTCC5260 (RR= 4.9, 95% C.I. 3.3, 7.3), L. plantarum 299v (RR= 4.6, 95% CI 1.9, 11.0), S. boulardii CNCM I-745 (RR= 1.5, 95% C.I. 1.1, 2.1) and S. cerevisiae CNCM I-3856 (RR= 1.3, 95% C.I. 1.04, 1.6). Mild-moderate adverse events were reported in 51% of the trials, none were more associated with the probiotic compared to controls. INTERPRETATION Although the analysis of probiotic efficacy was limited by the diversity of IBS outcomes used in trials and lack of confirmatory trials for some strains, six single-strain probiotics and three different types of probiotic mixtures showed significant efficacy for at least one IBS outcome measure. These results might be relevant to clinical practice and policy.
Collapse
Affiliation(s)
- Lynne V. McFarland
- Department Medicinal Chemistry, School of Pharmacy, University of Washington, 6047 38th Avenue NE, Seattle, WA 98195, United States
| | - Tarkan Karakan
- Department of Gastroenterology, Gazi University Faculty of Medicine, Beşevler, Ankara 06500, Turkey
| | - Ali Karatas
- Department of Gastroenterology, Gazi University Faculty of Medicine, Beşevler, Ankara 06500, Turkey
| |
Collapse
|
91
|
Snigdha S, Ha K, Tsai P, Dinan TG, Bartos JD, Shahid M. Probiotics: Potential novel therapeutics for microbiota-gut-brain axis dysfunction across gender and lifespan. Pharmacol Ther 2021; 231:107978. [PMID: 34492236 DOI: 10.1016/j.pharmthera.2021.107978] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/21/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
Probiotics are live microorganisms, which when administered in adequate amounts, present a health benefit for the host. While the beneficial effects of probiotics on gastrointestinal function are generally well recognized, new animal research and clinical studies have found that alterations in gut microbial communities can have a broad range of effects throughout the body. Non-intestinal sites impacted include the immune, endocrine, cardiovascular and the central nervous system (CNS). In particular, there has been a growing interest and appreciation about the role that gut microbiota may play in affecting CNS-related function through the 'microbiota-gut-brain axis'. Emerging evidence suggests potential therapeutic benefits of probiotics in several CNS conditions, such as anxiety, depression, autism spectrum disorders and Parkinson's disease. There may also be some gender-specific variances in terms of probiotic mediated effects, with the gut microbiota shaping and being concurrently molded by the hormonal environment governing differences between the sexes. Probiotics may influence the ability of the gut microbiome to affect a variety of biological processes in the host, including neurotransmitter activity, vagal neurotransmission, generation of neuroactive metabolites and inflammatory response mediators. Some of these may engage in cross talk with host sex hormones, such as estrogens, which could be of relevance in relation to their effects on stress response and cognitive health. This raises the possibility of gender-specific variation with regards to the biological action of probiotics, including that on the endocrine and central nervous systems. In this review we aim to describe the current understanding in relation to the role and use of probiotics in microbiota-gut-brain axis-related dysfunction. Furthermore, we will address the conceptualization and classification of probiotics in the context of gender and lifespan as well as how restoring gut microbiota composition by clinical or dietary intervention can help in supporting health outcomes other than those related to the gastrointestinal tract. We also evaluate how these new learnings may impact industrial effort in probiotic research and the discovery and development of novel and more personalized, condition-specific, beneficial probiotic therapeutic agents.
Collapse
Affiliation(s)
| | - Kevin Ha
- MeriCal, 233 E Bristol St., Orange, CA, USA
| | - Paul Tsai
- MeriCal, 233 E Bristol St., Orange, CA, USA
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
92
|
Petersen AØ, Jokinen M, Plichta DR, Liebisch G, Gronwald W, Dettmer K, Oefner PJ, Vlamakis H, Chung DC, Ranki A, Xavier RJ. Cytokine-specific autoantibodies shape the gut microbiome in autoimmune polyendocrine syndrome type 1. J Allergy Clin Immunol 2021; 148:876-888. [PMID: 33819509 PMCID: PMC8429070 DOI: 10.1016/j.jaci.2021.03.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/23/2021] [Accepted: 03/24/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Gastrointestinal dysfunction is a frequent and disabling manifestation of autoimmune polyendocrine syndrome type 1 (APS-1), a rare monogenic multiorgan autoimmune disease caused by the loss of central AIRE-controlled immune tolerance. OBJECTIVES This study aimed to understand the role of the gut microbiome in APS-1 symptoms and potentially alleviate common gastrointestinal symptoms by probiotic intervention. METHODS This study characterized the fecal microbiomes of 28 patients with APS-1 and searched for associations with gastrointestinal symptoms, circulating anti-cytokine autoantibodies, and tryptophan-related metabolites. Additionally, daily doses of the probiotic Lactobacillus rhamnosus GG were administered for 3 months. RESULTS Of 581 metagenomic operational taxonomic units (mOTUs) characterized in total, 14 were significantly associated with patients with APS-1 compared with healthy controls, with 6 mOTUs depleted and 8 enriched in patients with APS-1. Four overabundant mOTUs were significantly associated with severity of constipation. Phylogenetically conserved microbial associations with autoantibodies against cytokines were observed. After the 3-month intervention with the probiotic L rhamnosus GG, a subset of gastrointestinal symptoms were alleviated. L rhamnosus GG abundance was increased postintervention and corresponded with decreased abundances of Alistipes onderdonkii and Collinsella aerofaciens, 2 species positively associated with severity of diarrhea in patients with APS-1. CONCLUSIONS The APS-1 microbiome correlates with several APS-1 symptoms, some of which are alleviated after a 3-month L rhamnosus GG intervention. Autoantibodies against cytokines appear to shape the gut microbiome by positively correlating with a taxonomically consistent group of bacteria.
Collapse
Affiliation(s)
- Anders Ø Petersen
- Broad Institute of MIT and Harvard, Cambridge, Mass; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Mass; Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Martta Jokinen
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Damian R Plichta
- Broad Institute of MIT and Harvard, Cambridge, Mass; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Mass
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Wolfram Gronwald
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Katja Dettmer
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Peter J Oefner
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Hera Vlamakis
- Broad Institute of MIT and Harvard, Cambridge, Mass; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Mass
| | - Daniel C Chung
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Annamari Ranki
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, Mass; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Mass; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Center for Computational and Integrative Biology and Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Mass.
| |
Collapse
|
93
|
Milner E, Stevens B, An M, Lam V, Ainsworth M, Dihle P, Stearns J, Dombrowski A, Rego D, Segars K. Utilizing Probiotics for the Prevention and Treatment of Gastrointestinal Diseases. Front Microbiol 2021; 12:689958. [PMID: 34434175 PMCID: PMC8381467 DOI: 10.3389/fmicb.2021.689958] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Probiotics are heavily advertised to promote a healthy gastrointestinal tract and boost the immune system. This review article summarizes the history and diversity of probiotics, outlines conventional in vitro assays and in vivo models, assesses the pharmacologic effects of probiotic and pharmaceutical co-administration, and the broad impact of clinical probiotic utilization for gastrointestinal disease indications.
Collapse
Affiliation(s)
- Erin Milner
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Benjamin Stevens
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Martino An
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Victoria Lam
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Michael Ainsworth
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Preston Dihle
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Jocelyn Stearns
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Andrew Dombrowski
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Daniel Rego
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Katharine Segars
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| |
Collapse
|
94
|
Nordström EA, Teixeira C, Montelius C, Jeppsson B, Larsson N. Lactiplantibacillus plantarum 299v (LP299V ®): three decades of research. Benef Microbes 2021; 12:441-465. [PMID: 34365915 DOI: 10.3920/bm2020.0191] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review aims to provide a comprehensive overview of the in vitro, animal, and clinical studies with the bacterial strain Lactiplantibacillus plantarum 299v (L. plantarum 299v; formerly named Lactobacillus plantarum 299v) published up until June 30, 2020. L. plantarum 299v is the most documented L. plantarum strain in the world, described in over 170 scientific publications out of which more than 60 are human clinical studies. The genome sequence of L. plantarum 299v has been determined and is available in the public domain (GenBank Accession number: NZ_LEAV01000004). The probiotic strain L. plantarum 299v was isolated from healthy human intestinal mucosa three decades ago by scientists at Lund University, Sweden. Thirty years later, a wealth of data coming from in vitro, animal, and clinical studies exist, showing benefits primarily for gastrointestinal health, such as reduced flatulence and abdominal pain in patients with irritable bowel syndrome (IBS). Moreover, several clinical studies have shown positive effects of L. plantarum 299v on iron absorption and more recently also on iron status. L. plantarum 299v is safe for human consumption and does not confer antibiotic resistance. It survives the harsh conditions of the human gastrointestinal tract, adheres to mannose residues on the intestinal epithelial cells and has in some cases been re-isolated more than ten days after administration ceased. Besides studying health benefits, research groups around the globe have investigated L. plantarum 299v in a range of applications and processes. L. plantarum 299v is used in many different food applications as well as in various dietary supplements. In a freeze-dried format, L. plantarum 299v is robust and stable at room temperature, enabling long shelf-lives of consumer healthcare products such as capsules, tablets, or powder sachets. The strain is patent protected for a wide range of indications and applications worldwide as well as trademarked as LP299V®.
Collapse
Affiliation(s)
| | - C Teixeira
- Probi AB, Ideongatan 1A, 22370 Lund, Sweden
| | | | - B Jeppsson
- Department of Surgery, Lund University, Universitetssjukhuset, 22184 Lund, Sweden
| | - N Larsson
- Probi AB, Ideongatan 1A, 22370 Lund, Sweden
| |
Collapse
|
95
|
McFarland LV, Srinivasan R, Setty RP, Ganapathy S, Bavdekar A, Mitra M, Raju B, Mohan N. Specific Probiotics for the Treatment of Pediatric Acute Gastroenteritis in India: A Systematic Review and Meta-Analysis. JPGN REPORTS 2021; 2:e079. [PMID: 37205949 PMCID: PMC10191489 DOI: 10.1097/pg9.0000000000000079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/08/2021] [Indexed: 05/21/2023]
Abstract
Pediatric acute gastroenteritis (PAGE) is a significant cause of morbidity, mortality and healthcare costs in many countries, but differences in PAGE vary from country-to-country; thus, we limited our analysis to 1 country. Probiotics have been recommended as an adjunct to standard treatment, but the choice of probiotic is unclear. PubMed, Google Scholar, and reviews were searched from inception to May 2020 for randomized controlled trials (RCTs) in India using probiotics for a treatment for PAGE. Meta-analyses using subgroups of identical probiotic types (≥2 RCT/type) were conducted for primary outcomes (duration of diarrhea, cured by day 3, rapidity of response, and length of hospital stay). Twenty-two RCTs were included in the systematic review (N = 4059 participants) including 5 single-strained probiotics and 3 multi-strained mixtures. For the meta-analyses, 17 RCT (20 treatment arms) were included. Saccharomyces boulardii CNCM I-745 had the strongest effect on shortening the duration of diarrhea (standardized mean difference, -1.86 d; 95% confidence interval, -2.8 to -0.9), while both Lactobacillus rhamnosus GG and a mixture of 4 Bacillus clausii strains (O/C, SIN, N/R, T) significantly reduced the duration of diarrhea (-1.7 and -1.4 d, respectively). S. boulardii and L. rhamnosus GG significantly reduced hospital stays (-1.8 and -1.1 d, respectively), while B. clausii had no effect. The frequency of stools/day was significantly reduced by day 4 for S. boulardii and by day 5 for L. rhamnosus GG. In India, 2 types of probiotics (S. boulardii CNCM I-745 and L. rhamnosus GG) significantly shortened both the duration of diarrhea and hospitalization stays in pediatric patients with PAGE. While these 2 probiotic strains were safe and effective for children in India, further research is needed to confirm if other probiotic strains or mixtures may be effective.
Collapse
Affiliation(s)
- Lynne V. McFarland
- From the Department of Medicinal Chemistry, University of Washington, Seattle, WA
| | - Ramesh Srinivasan
- Department of Gastroenterology, Apollo Hospitals, Jubilee Hills, Hyderabad, India
| | - Rajendra P. Setty
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Pure Bliss Hospital, Panchkula, India
| | | | | | - Monjori Mitra
- Department of Pediatrics, Institute of Child Health, Kolkata, India
| | - Bhaskar Raju
- Department of Gastroenterology, Dr. Mehta’s Children’s Hospital, Chennai, India
| | - Neelam Mohan
- Department of Pediatric Gastroenterology, Medanta Medicity, Gurgaon, India
| |
Collapse
|
96
|
Validity and safety of ID-JPL934 in lower gastrointestinal symptom improvement. Sci Rep 2021; 11:13046. [PMID: 34158518 PMCID: PMC8219743 DOI: 10.1038/s41598-021-92007-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
The study evaluated the efficacy of ID-JPL934, a probiotic preparation containing Lactobacillus johnsonii IDCC 9203, Lactobacillus plantarum IDCC 3501 and Bifidobacterium lactis IDCC 4301, in relieving lower gastrointestinal symptoms. A total of 112 subjects with lower gastrointestinal symptoms were consecutively enrolled. They were randomized into either ID-JPL934 administration group or placebo group. Bristol stool form, stool frequency, and abnormal bowel movement symptoms were recorded at baseline and week 2, 6, and 8. Primary endpoint was improvement in overall symptoms at week 8. Fecal samples were collected to measure the probiotic levels in feces using quantitative polymerase chain reaction (qPCR), and to perform metagenomic analysis of microbiome originating from bacteria-derived extracellular vesicles and bacterial cells via 16S rDNA sequencing. Of the 112 subjects, 104 (54 in ID-JPL934 group and 50 in placebo group) completed the entire study protocol. A higher relief of overall symptoms was found in ID-JPL934 group than in placebo group (p = 0.016). Among lower gastrointestinal symptoms, abdominal pain and bloating scores were more decreased in ID-JPL934 group than in placebo group (p < 0.05). The fecal microbiome profiles of the two groups did not differ. However, the qPCR analysis showed significant increase in the levels of Lactobacillus johnsonii and Bifidobacterium lactis in feces post-treatment in ID-JPL934 group than in placebo group (p < 0.05 by repeated measure ANOVA). In conclusion, ID-JPL934 is effective in relieving lower gastrointestinal symptoms. Exposure to ID-JPL934 may increase the abundance of Lactobacillus johnsonii and Bifidobacterium lactis in the gut. Trial registration: ClinicalTrials.gov number, NCT03395626.
Collapse
|
97
|
The role of the microbiome in gastrointestinal inflammation. Biosci Rep 2021; 41:228872. [PMID: 34076695 PMCID: PMC8201460 DOI: 10.1042/bsr20203850] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
The microbiome plays an important role in maintaining human health. Despite multiple factors being attributed to the shaping of the human microbiome, extrinsic factors such diet and use of medications including antibiotics appear to dominate. Mucosal surfaces, particularly in the gut, are highly adapted to be able to tolerate a large population of microorganisms whilst still being able to produce a rapid and effective immune response against infection. The intestinal microbiome is not functionally independent from the host mucosa and can, through presentation of microbe-associated molecular patterns (MAMPs) and generation of microbe-derived metabolites, fundamentally influence mucosal barrier integrity and modulate host immunity. In a healthy gut there is an abundance of beneficial bacteria that help to preserve intestinal homoeostasis, promote protective immune responses, and limit excessive inflammation. The importance of the microbiome is further highlighted during dysbiosis where a loss of this finely balanced microbial population can lead to mucosal barrier dysfunction, aberrant immune responses, and chronic inflammation that increases the risk of disease development. Improvements in our understanding of the microbiome are providing opportunities to harness members of a healthy microbiota to help reverse dysbiosis, reduce inflammation, and ultimately prevent disease progression.
Collapse
|
98
|
Arnal ME, Denis S, Uriot O, Lambert C, Holowacz S, Paul F, Kuylle S, Pereira B, Alric M, Blanquet-Diot S. Impact of oral galenic formulations of Lactobacillus salivarius on probiotic survival and interactions with microbiota in human in vitro gut models. Benef Microbes 2021; 12:75-90. [PMID: 34109893 DOI: 10.3920/bm2020.0187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Health benefits of probiotics in humans essentially depend on their ability to survive during gastrointestinal (GI) transit and to modulate gut microbiota. To date, there is few data on the impact of galenic formulations of probiotics on these parameters. Even if clinical studies remain the gold standard to evaluate the efficacy of galenic forms, they stay hampered by technical, ethical and cost reasons. As an alternative approach, we used two complementary in vitro models of the human gut, the TNO gastrointestinal (TIM-1) model and the Artificial Colon (ARCOL), to study the effect of three oral formulations of a Lactobacillus salivarius strain (powder, capsule and sustained-release tablet) on its viability and interactions with gut microbiota. In the TIM-1 stomach, no or low numbers of bacteria were respectively released from the capsule and tablet, confirming their gastro-resistance. The capsule was disintegrated in the jejunum on average 76 min after administration while the core of sustained-release tablet was still intact at the end of digestion. Viability in TIM-1 was significantly influenced by the galenic form with survival percentages of 0.003±0.004%, 2.8±0.6% and 17.0±1.8% (n=3) for powder, capsule and tablet, respectively. In the ARCOL, the survival of the strain tended to be higher in the post-treatment phase with the tablet compared to capsule, but gut microbiota composition and activity were not differently modulated by the two formulations. In conclusion, the sustained-release tablet emerged as the formulation that most effectively preserved viability of the tested strain during GI passage. This study highlights the usefulness of in vitro gut models for the pre-screening of probiotic pharmaceutical forms. Their use could also easily be extended to the evaluation of the effects of food matrices and age on probiotic survival and activity during GI transit.
Collapse
Affiliation(s)
- M E Arnal
- Université Clermont Auvergne, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, 28 place Henri Dunant, 63000 Clermont-Ferrand, France
| | - S Denis
- Université Clermont Auvergne, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, 28 place Henri Dunant, 63000 Clermont-Ferrand, France
| | - O Uriot
- Université Clermont Auvergne, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, 28 place Henri Dunant, 63000 Clermont-Ferrand, France
| | - C Lambert
- University Hospital Clermont-Ferrand, Biostatistics Units, 58, rue Montalembert, 63000 Clermont-Ferrand, France
| | - S Holowacz
- PiLeJe Industrie, Parc Naturopôle, Les Tiolans 03800 Saint-Bonnet de Rochefort, France
| | - F Paul
- Genibio, Le Pradas, ZI du Couserans, 09190 Lorp-Sentaraille, France
| | - S Kuylle
- Genibio, Le Pradas, ZI du Couserans, 09190 Lorp-Sentaraille, France
| | - B Pereira
- University Hospital Clermont-Ferrand, Biostatistics Units, 58, rue Montalembert, 63000 Clermont-Ferrand, France
| | - M Alric
- Université Clermont Auvergne, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, 28 place Henri Dunant, 63000 Clermont-Ferrand, France
| | - S Blanquet-Diot
- Université Clermont Auvergne, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, 28 place Henri Dunant, 63000 Clermont-Ferrand, France
| |
Collapse
|
99
|
Koch M, Capurso L. Downgrading Certainty in Evidence for Probiotic Medicine Is Partially Incorrect. Gastroenterology 2021; 160:2632-2633. [PMID: 33385436 DOI: 10.1053/j.gastro.2020.08.066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/14/2020] [Indexed: 12/02/2022]
Affiliation(s)
- Maurizio Koch
- Gastroenterology & Liver Unit, General Hospital s. Filippo Neri and, Club for Evidence Based Gastroenterology & Hepatology, Rome, Italy
| | - Lucio Capurso
- Gastroenterology & Liver Unit, General Hospital s. Filippo Neri and, Club for Evidence Based Gastroenterology & Hepatology, Rome, Italy
| |
Collapse
|
100
|
Mørch MGM, Møller KV, Hesselager MO, Harders RH, Kidmose CL, Buhl T, Fuursted K, Bendixen E, Shen C, Christensen LG, Poulsen CH, Olsen A. The TGF-β ligand DBL-1 is a key player in a multifaceted probiotic protection against MRSA in C. elegans. Sci Rep 2021; 11:10717. [PMID: 34021197 PMCID: PMC8139972 DOI: 10.1038/s41598-021-89831-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/30/2021] [Indexed: 02/04/2023] Open
Abstract
Worldwide the increase in multi-resistant bacteria due to misuse of traditional antibiotics is a growing threat for our health. Finding alternatives to traditional antibiotics is thus timely. Probiotic bacteria have numerous beneficial effects and could offer safer alternatives to traditional antibiotics. Here, we use the nematode Caenorhabditis elegans (C. elegans) to screen a library of different lactobacilli to identify potential probiotic bacteria and characterize their mechanisms of action. We show that pretreatment with the Lactobacillus spp. Lb21 increases lifespan of C. elegans and results in resistance towards pathogenic methicillin-resistant Staphylococcus aureus (MRSA). Using genetic analysis, we find that Lb21-mediated MRSA resistance is dependent on the DBL-1 ligand of the TGF-β signaling pathway in C. elegans. This response is evolutionarily conserved as we find that Lb21 also induces the TGF-β pathway in porcine epithelial cells. We further characterize the host responses in an unbiased proteome analysis and identify 474 proteins regulated in worms fed Lb21 compared to control food. These include fatty acid CoA synthetase ACS-22, aspartic protease ASP-6 and vitellogenin VIT-2 which are important for Lb21-mediated MRSA resistance. Thus, Lb21 exerts its probiotic effect on C. elegans in a multifactorial manner. In summary, our study establishes a mechanistic basis for the antimicrobial potential of lactobacilli.
Collapse
Affiliation(s)
- Maria G M Mørch
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Katrine V Møller
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | - Rikke H Harders
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Caroline L Kidmose
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Therese Buhl
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | - Emøke Bendixen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Chong Shen
- Gut Immunology Lab, Health & Biosciences , IFF , Brabrand , Denmark
| | | | | | - Anders Olsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| |
Collapse
|