51
|
Ferreira-Lazarte A, Fernández J, Gallego-Lobillo P, Villar CJ, Lombó F, Moreno FJ, Villamiel M. Behaviour of citrus pectin and modified citrus pectin in an azoxymethane/dextran sodium sulfate (AOM/DSS)-induced rat colorectal carcinogenesis model. Int J Biol Macromol 2020; 167:1349-1360. [PMID: 33202274 DOI: 10.1016/j.ijbiomac.2020.11.089] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 01/06/2023]
Abstract
Large intestine cancer is one of the most relevant chronic diseases taking place at present. Despite therapies have evolved very positively, this pathology is still under deep investigation. One of the recent approaches is the prevention by natural compounds such as pectin. In this paper, we have assessed the impact of citrus pectin and modified citrus pectin on colorectal cancer in rats (Rattus norvegicus F344) to which azoxymethane and DSS were supplied. The lowest intake of food and body weight were detected in animals fed with citrus pectin, together with an increase in the caecum weight, probably due to the viscosity, water retention capacity and bulking properties of pectin. The most striking feature was that, neither citrus pectin nor modified citrus pectin gave rise to a tumorigenesis prevention. Moreover, in both, more than 50% of rats with cancer died, probably ascribed to a severe dysbiosis state in the gut, as shown by the metabolism and metagenomics studies carried out. This was related to a decrease of pH in caecum lumen and increase in acetate and lactic acid levels together with the absence of propionic and butyric acids. A relevant increase in Proteobacteria (Enterobacteriaceae) were thought to be one of the reasons for enteric infection that could have provoked the death of rats and the lack of cancer prevention. However, a reduction of blood glucose and triacylglycerides level and an increase of Bifidobacterium and Lactobacillaceae were found in animals that intake pectin, as compared to universal and modified citrus pectin feeding.
Collapse
Affiliation(s)
- Alvaro Ferreira-Lazarte
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Javier Fernández
- Research Unit "Biotechnology in Nutraceuticals and Bioactive Compounds-BIONUC", Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Pablo Gallego-Lobillo
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Claudio J Villar
- Research Unit "Biotechnology in Nutraceuticals and Bioactive Compounds-BIONUC", Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Felipe Lombó
- Research Unit "Biotechnology in Nutraceuticals and Bioactive Compounds-BIONUC", Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mar Villamiel
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
52
|
Slowinski S, Ramirez I, Narayan V, Somayaji M, Para M, Pi S, Jadeja N, Karimzadegan S, Pees B, Shapira M. Interactions with a Complex Microbiota Mediate a Trade-Off between the Host Development Rate and Heat Stress Resistance. Microorganisms 2020; 8:microorganisms8111781. [PMID: 33202910 PMCID: PMC7697855 DOI: 10.3390/microorganisms8111781] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/28/2022] Open
Abstract
Animals and plants host diverse communities of microorganisms, and these microbiotas have been shown to influence host life history traits. Much has been said about the benefits that host-associated microbiotas bestow on the host. However, life history traits often demonstrate tradeoffs among one another. Raising Caenorhabditis elegans nematodes in compost microcosms emulating their natural environment, we examined how complex microbiotas affect host life history traits. We show that soil microbes usually increase the host development rate but decrease host resistance to heat stress, suggesting that interactions with complex microbiotas may mediate a tradeoff between host development and stress resistance. What element in these interactions is responsible for these effects is yet unknown, but experiments with live versus dead bacteria suggest that such effects may depend on bacterially provided signals.
Collapse
Affiliation(s)
- Samuel Slowinski
- Department of Integrative Biology, 3040 Valley Life Sciences Building, University of California, Berkeley, CA 94720-3140, USA; (I.R.); (V.N.); (M.S.); (M.P.); (S.P.); (N.J.); (S.K.); (B.P.)
- Department of Biology, 4223 Biology-Psychology Bldg., University of Maryland, College Park, MD 20742, USA
- Correspondence: (S.S.); (M.S.)
| | - Isabella Ramirez
- Department of Integrative Biology, 3040 Valley Life Sciences Building, University of California, Berkeley, CA 94720-3140, USA; (I.R.); (V.N.); (M.S.); (M.P.); (S.P.); (N.J.); (S.K.); (B.P.)
| | - Vivek Narayan
- Department of Integrative Biology, 3040 Valley Life Sciences Building, University of California, Berkeley, CA 94720-3140, USA; (I.R.); (V.N.); (M.S.); (M.P.); (S.P.); (N.J.); (S.K.); (B.P.)
| | - Medha Somayaji
- Department of Integrative Biology, 3040 Valley Life Sciences Building, University of California, Berkeley, CA 94720-3140, USA; (I.R.); (V.N.); (M.S.); (M.P.); (S.P.); (N.J.); (S.K.); (B.P.)
| | - Maya Para
- Department of Integrative Biology, 3040 Valley Life Sciences Building, University of California, Berkeley, CA 94720-3140, USA; (I.R.); (V.N.); (M.S.); (M.P.); (S.P.); (N.J.); (S.K.); (B.P.)
| | - Sarah Pi
- Department of Integrative Biology, 3040 Valley Life Sciences Building, University of California, Berkeley, CA 94720-3140, USA; (I.R.); (V.N.); (M.S.); (M.P.); (S.P.); (N.J.); (S.K.); (B.P.)
| | - Niharika Jadeja
- Department of Integrative Biology, 3040 Valley Life Sciences Building, University of California, Berkeley, CA 94720-3140, USA; (I.R.); (V.N.); (M.S.); (M.P.); (S.P.); (N.J.); (S.K.); (B.P.)
| | - Siavash Karimzadegan
- Department of Integrative Biology, 3040 Valley Life Sciences Building, University of California, Berkeley, CA 94720-3140, USA; (I.R.); (V.N.); (M.S.); (M.P.); (S.P.); (N.J.); (S.K.); (B.P.)
| | - Barbara Pees
- Department of Integrative Biology, 3040 Valley Life Sciences Building, University of California, Berkeley, CA 94720-3140, USA; (I.R.); (V.N.); (M.S.); (M.P.); (S.P.); (N.J.); (S.K.); (B.P.)
| | - Michael Shapira
- Department of Integrative Biology, 3040 Valley Life Sciences Building, University of California, Berkeley, CA 94720-3140, USA; (I.R.); (V.N.); (M.S.); (M.P.); (S.P.); (N.J.); (S.K.); (B.P.)
- Correspondence: (S.S.); (M.S.)
| |
Collapse
|
53
|
Kreuzer M, Hardt WD. How Food Affects Colonization Resistance Against Enteropathogenic Bacteria. Annu Rev Microbiol 2020; 74:787-813. [DOI: 10.1146/annurev-micro-020420-013457] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Food has a major impact on all aspects of health. Recent data suggest that food composition can also affect susceptibility to infections by enteropathogenic bacteria. Here, we discuss how food may alter the microbiota as well as mucosal defenses and how this can affect infection. Salmonella Typhimurium diarrhea serves as a paradigm, and complementary evidence comes from other pathogens. We discuss the effects of food composition on colonization resistance, host defenses, and the infection process as well as the merits and limitations of mouse models and experimental foods, which are available to decipher the underlying mechanisms.
Collapse
Affiliation(s)
- Markus Kreuzer
- Institute of Microbiology, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
54
|
Ren W, Bin P, Yin Y, Wu G. Impacts of Amino Acids on the Intestinal Defensive System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1265:133-151. [PMID: 32761574 DOI: 10.1007/978-3-030-45328-2_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The intestine interacts with a diverse community of antigens and bacteria. To keep its homeostasis, the gut has evolved with a complex defense system, including intestinal microbiota, epithelial layer and lamina propria. Various factors (e.g., nutrients) affect the intestinal defensive system and progression of intestinal diseases. This review highlights the current understanding about the role of amino acids (AAs) in protecting the intestine from harm. Amino acids (e.g., arginine, glutamine and tryptophan) are essential for the function of intestinal microbiota, epithelial cells, tight junction, goblet cells, Paneth cells and immune cells (e.g., macrophages, B cells and T cells). Through the modulation of the intestinal defensive system, AAs maintain the integrity and function of the intestinal mucosa and inhibit the progression of various intestinal diseases (e.g., intestinal infection and intestinal colitis). Thus, adequate intake of functional AAs is crucial for intestinal and whole-body health in humans and other animals.
Collapse
Affiliation(s)
- Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Peng Bin
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product, Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yulong Yin
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
55
|
Grembi JA, Lin A, Karim MA, Islam MO, Miah R, Arnold BF, McQuade ETR, Ali S, Rahman MZ, Hussain Z, Shoab AK, Famida SL, Hossen MS, Mutsuddi P, Rahman M, Unicomb L, Haque R, Taniuchi M, Liu J, Platts-Mills JA, Holmes SP, Stewart CP, Benjamin-Chung J, Colford JM, Houpt ER, Luby SP. Effect of water, sanitation, handwashing and nutrition interventions on enteropathogens in children 14 months old: a cluster-randomized controlled trial in rural Bangladesh. J Infect Dis 2020; 227:jiaa549. [PMID: 32861214 PMCID: PMC9891429 DOI: 10.1093/infdis/jiaa549] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/25/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND We evaluated the impact of low-cost water, sanitation, handwashing (WSH) and child nutrition interventions on enteropathogen carriage in the WASH Benefits cluster-randomized controlled trial in rural Bangladesh. METHODS We analyzed 1411 routine fecal samples from children 14±2 months old in the WSH (n = 369), nutrition counseling plus lipid-based nutrient supplement (n = 353), nutrition plus WSH (n = 360), and control (n = 329) arms for 34 enteropathogens using quantitative PCR. Outcomes included the number of co-occurring pathogens; cumulative quantity of four stunting-associated pathogens; and prevalence and quantity of individual pathogens. Masked analysis was by intention-to-treat. RESULTS 326 (99.1%) control children had one or more enteropathogens detected (mean 3.8±1.8). Children receiving WSH interventions had lower prevalence and quantity of individual viruses than controls (prevalence difference for norovirus: -11% [95% confidence interval [CI], -5 to -17%]; sapovirus: -9% [95%CI, -3 to -15%]; and adenovirus 40/41: -9% [95%CI, -2 to - 15%]). There was no difference in bacteria, parasites, or cumulative quantity of stunting-associated pathogens between controls and any intervention arm. CONCLUSIONS WSH interventions were associated with fewer enteric viruses in children aged 14 months. Different strategies are needed to reduce enteric bacteria and parasites at this critical young age.
Collapse
Affiliation(s)
- Jessica A Grembi
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - Audrie Lin
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Md Abdul Karim
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Md Ohedul Islam
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Rana Miah
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Benjamin F Arnold
- Francis I. Proctor Foundation, University of California, San Francisco, San Francisco, California, USA
| | - Elizabeth T Rogawski McQuade
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Shahjahan Ali
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Md Ziaur Rahman
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Zahir Hussain
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Abul K Shoab
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Syeda L Famida
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Md Saheen Hossen
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Palash Mutsuddi
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Mahbubur Rahman
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Leanne Unicomb
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Rashidul Haque
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Mami Taniuchi
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Jie Liu
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - James A Platts-Mills
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Susan P Holmes
- Department of Statistics, Stanford University, Stanford, California, USA
| | - Christine P Stewart
- Institute for Global Nutrition, University of California, Davis, Davis, California, USA
| | - Jade Benjamin-Chung
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - John M Colford
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Eric R Houpt
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Stephen P Luby
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
56
|
The Tripartite Interaction of Host Immunity- Bacillus thuringiensis Infection-Gut Microbiota. Toxins (Basel) 2020; 12:toxins12080514. [PMID: 32806491 PMCID: PMC7472377 DOI: 10.3390/toxins12080514] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Bacillus thuringiensis (Bt) is an important cosmopolitan bacterial entomopathogen, which produces various protein toxins that have been expressed in transgenic crops. The evolved molecular interaction between the insect immune system and gut microbiota is changed during the Bt infection process. The host immune response, such as the expression of induced antimicrobial peptides (AMPs), the melanization response, and the production of reactive oxygen species (ROS), varies with different doses of Bt infection. Moreover, B. thuringiensis infection changes the abundance and structural composition of the intestinal bacteria community. The activated immune response, together with dysbiosis of the gut microbiota, also has an important effect on Bt pathogenicity and insect resistance to Bt. In this review, we attempt to clarify this tripartite interaction of host immunity, Bt infection, and gut microbiota, especially the important role of key immune regulators and symbiotic bacteria in the Bt killing activity. Increasing the effectiveness of biocontrol agents by interfering with insect resistance and controlling symbiotic bacteria can be important steps for the successful application of microbial biopesticides.
Collapse
|
57
|
Kaur A, Chopra K, Kaur IP, Rishi P. Salmonella Strain Specificity Determines Post-typhoid Central Nervous System Complications: Intervention by Lactiplantibacillus plantarum at Gut-Brain Axis. Front Microbiol 2020; 11:1568. [PMID: 32793135 PMCID: PMC7393228 DOI: 10.3389/fmicb.2020.01568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
Neurological complications occurring due to Salmonella infection in some typhoid patients remain a relatively unexplored serious complication. This study firstly aimed to explore whether disseminative ability of Salmonella from gut to brain is strain specific or not and on the basis of bacterial load, histopathology, and behavioral changes, it was observed that Salmonella enterica serovar Typhimurium NCTC 74 did not cause brain infection in murine model in contrast to Salmonella Typhimurium SL1344. Simultaneously, alarming escalation in antimicrobial resistance, making the existing antibiotics treatment inefficacious, prompted us to evaluate other bio-compatible strategies as a potential treatment option. In this context, the role of gut microbiota in influencing behavior, brain neurochemistry, and physiology by modulating key molecules associated with gut-brain axis has captured the interest of the scientific community. Followed by in vitro screening of potential probiotic strains for beneficial attributes, efficacy of the selected strain was systematically evaluated at various levels of gut-brain axis against Salmonella induced brain infection. Analysis of behavioral (depression, anxiety, and locomotor), neurochemical [gamma amino butyric acid and acetylcholinesterase (AChE)], neuropathological (brain and intestinal histology; bacterial burden), and immunohistochemical studies (tight junction proteins expression) revealed its role in preventing serious manifestations and proving its potential as "psychobiotic." To the best of our knowledge, this is the first report elaborating strain specificity of Salmonella in causing post-typhoidal neurological manifestations and simultaneous use of probiotic in managing the same by influencing the pathophysiology at gut-brain axis.
Collapse
Affiliation(s)
- Amrita Kaur
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kanwaljit Chopra
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
58
|
Jepsen S, Jiang S. Two Dietary Metabolites Fuel Salmonella Colonization. Trends Microbiol 2020; 28:701-703. [PMID: 32653110 DOI: 10.1016/j.tim.2020.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 10/23/2022]
Abstract
Nguyen et al. used transposon sequencing analysis and competitive colonization assays to describe how aspartate/malate can trigger initial Salmonella Typhimurium gut-lumen colonization in mice, providing insight into the significance of certain key metabolites beyond the realm of Salmonella life. Metabolite-driven diagnostic and anti-infective strategies for preventing salmonellosis could rapidly emerge from this work.
Collapse
Affiliation(s)
- Sara Jepsen
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Shuai Jiang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| |
Collapse
|
59
|
De R, Mukhopadhyay AK, Dutta S. Metagenomic analysis of gut microbiome and resistome of diarrheal fecal samples from Kolkata, India, reveals the core and variable microbiota including signatures of microbial dark matter. Gut Pathog 2020; 12:32. [PMID: 32655699 PMCID: PMC7339541 DOI: 10.1186/s13099-020-00371-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Metagenomic analysis of the gut microbiome and resistome is instrumental for understanding the dynamics of diarrheal pathogenesis and antimicrobial resistance transmission (AMR). Metagenomic sequencing of 20 diarrheal fecal samples from Kolkata was conducted to understand the core and variable gut microbiota. Five of these samples were used for resistome analysis. The pilot study was conducted to determine a microbiota signature and the source of antimicrobial resistance genes (ARGs) in the diarrheal gut. RESULTS 16S rRNA amplicon sequencing was performed using Illumina MiSeq platform and analysed using the MGnify pipeline. The Genome Taxonomy Database (GTDB-Tk) was used for bacterial taxonomic identification. Diarrheal etiology was determined by culture method. Phylum Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria were consistently present in 20 samples. Firmicutes was the most abundant phylum in 11 samples. The Bacteroidetes/Firmicutes ratio was less than 1 in 18 samples. 584 genera were observed. 18 of these were present in all the 20 samples. Proteobacteria was the dominant phylum in 6 samples associated with Vibrio cholerae infection. Conservation of operational taxonomic units (OTUs) among all the samples indicated the existence of a core microbiome. Asymptomatic carriage of pathogens like Vibrio cholerae and Helicobacter pylori was found. Signature of Candidate phyla or "microbial dark matter" occurred. Significant correlation of relative abundance of bacterial families of commensals and pathogens were found. Whole-genome sequencing (WGS) on Illumina MiSeq system and assembly of raw reads using metaSPAdes v3.9.1 was performed to study the resistome of 5 samples. ABRicate was used to assign ARG function. 491 resistance determinants were identified. In 80% of the samples tetracycline resistance was the most abundant resistance determinant. High abundance of ARGs against β-lactams, aminoglycosides, quinolones and macrolides was found. Eschericia sp. was the major contributor of ARGs. CONCLUSIONS This is the first comparative study of the gut microbiome associated with different diarrheal pathogens. It presents the first catalogue of different bacterial taxa representing the core and variable microbiome in acute diarrheal patients. The study helped to define a trend in the gut microbiota signature associated with diarrhea and revealed which ARGs are abundantly present and the metagenome-assembled genomes (MAGs) contributing to AMR.
Collapse
Affiliation(s)
- Rituparna De
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | | - Shanta Dutta
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
60
|
Hao S, Fan Q, Bai Y, Fang H, Zhou J, Fukuda T, Gu J, Li M, Li W. Core Fucosylation of Intestinal Epithelial Cells Protects Against Salmonella Typhi Infection via Up-Regulating the Biological Antagonism of Intestinal Microbiota. Front Microbiol 2020; 11:1097. [PMID: 32528455 PMCID: PMC7266941 DOI: 10.3389/fmicb.2020.01097] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022] Open
Abstract
The fucosylated carbohydrate moieties on intestinal epithelial cells (IECs) are involved in the creation of an environmental niche for commensal and pathogenic bacteria. Core fucosylation catalyzed by fucosyltransferase 8 (Fut8) is the major fucosylation pattern on the N-glycans of the surface glycoproteins on IECs, however, the role of IECs core fucosylation during infection remains unclear. This study was conducted to investigate the interaction between IECs core fucosylation and gut microbiota, and the effects of this interaction on protecting Salmonella enterica subsp. enterica serovar Typhi (S. Typhi) infection. Firstly, the Fut8+/+ and Fut8+/– mice were infected with S. Typhi. The level of IECs core fucosylation and protein expression of intestinal mucosa were then detected by LCA blot and Western blot, respectively. The gut microbiota of Fut8+/+ and Fut8+/– mice before and after S. Typhi infection was assessed by 16S rRNA sequencing. Our results showed that core fucosylation was ubiquitous expressed on the intestinal mucosa of mice and had significant effects on their gut microbiota. Fut8+/– mice was more susceptive to S. Typhi infection than Fut8+/+ mice. Interestingly, infection of S. Typhi upregulated the core fucosylation level of IECs and increased the abundances of beneficial microorganisms such as Lactobacillus and Akkermansia spp. Further in vitro and in vivo studies demonstrated that Wnt/β-catenin signaling pathway mediated the elevation of IECs core fucosylation level upon infection of S. Typhi. Taken together, our data in this study revealed that the IECs core fucosylation plays an important role in protecting against S. Typhi infection via up-regulating the biological antagonism of intestinal microbiota.
Collapse
Affiliation(s)
- Sijia Hao
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qingjie Fan
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yaqiang Bai
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Hui Fang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jiaorui Zhou
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Tomohiko Fukuda
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Jianguo Gu
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Ming Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Wenzhe Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
61
|
Evolutionary causes and consequences of bacterial antibiotic persistence. Nat Rev Microbiol 2020; 18:479-490. [PMID: 32461608 DOI: 10.1038/s41579-020-0378-z] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Antibiotic treatment failure is of growing concern. Genetically encoded resistance is key in driving this process. However, there is increasing evidence that bacterial antibiotic persistence, a non-genetically encoded and reversible loss of antibiotic susceptibility, contributes to treatment failure and emergence of resistant strains as well. In this Review, we discuss the evolutionary forces that may drive the selection for antibiotic persistence. We review how some aspects of antibiotic persistence have been directly selected for whereas others result from indirect selection in disparate ecological contexts. We then discuss the consequences of antibiotic persistence on pathogen evolution. Persisters can facilitate the evolution of antibiotic resistance and virulence. Finally, we propose practical means to prevent persister formation and how this may help to slow down the evolution of virulence and resistance in pathogens.
Collapse
|
62
|
Han Y, Renu S, Patil V, Schrock J, Feliciano-Ruiz N, Selvaraj R, Renukaradhya GJ. Immune Response to Salmonella Enteritidis Infection in Broilers Immunized Orally With Chitosan-Based Salmonella Subunit Nanoparticle Vaccine. Front Immunol 2020; 11:935. [PMID: 32508828 PMCID: PMC7248282 DOI: 10.3389/fimmu.2020.00935] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/22/2020] [Indexed: 01/02/2023] Open
Abstract
Salmonella enterica serovar Enteritidis (S. Enteritidis, SE) infection in broilers causes a huge economic loss and public health risk. We previously demonstrated that orally delivered chitosan based (CS) Salmonella subunit nanoparticle (NP) vaccine containing immunogenic outer membrane proteins (OMP) and flagellin (FLA) of SE [CS-NP(OMP+FLA)] induces immune response in broilers. The objective of this study was to evaluate the dose- and age-dependent response and efficacy of CS-NP(OMP+FLA) vaccine in broilers. Three-day old birds were vaccinated and boosted once or twice. Additional groups were vaccinated at three weeks with no booster or boosted once a week later. Each dose of CS-NP vaccine had either 10 or 50 μg of OMP+FLA antigens. Our data revealed that two doses of vaccine were required to induce substantial immune response. Birds received 2 doses of CS-NP(OMP+FLA) vaccine at 3 days and 3 weeks of age with 10 μg antigens, and birds inoculated twice at 3 and 4 weeks of age with 50 μg antigens had lowest challenged bacterial load in the cecal contents with over 0.5 log10 reduction. In CS-NP(OMP+FLA) vaccinated birds, antigen-specific splenocyte proliferation, mucosal and systemic antibody response and the frequency of IFNγ-producing T cells were increased compared to control groups. At the molecular level, in the cecal tonsils of CS-NP(OMP+FLA) immunized birds, mRNA levels of toll-like receptor (TLR) 2 and TLR 4, and cytokines IL-4 and IL-10 were upregulated. The CS-NP(OMP+FLA) vaccine given orally has the potential to induce a protective immune response against SE infection in broilers.
Collapse
Affiliation(s)
- Yi Han
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Sankar Renu
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Veerupaxagouda Patil
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Jennifer Schrock
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Ninoshkaly Feliciano-Ruiz
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Ramesh Selvaraj
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
63
|
Development and Functions of the Infant Gut Microflora: Western vs. Indian Infants. Int J Pediatr 2020; 2020:7586264. [PMID: 32454840 PMCID: PMC7229554 DOI: 10.1155/2020/7586264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/07/2020] [Indexed: 12/29/2022] Open
Abstract
The human gut is colonized by trillions of bacteria as well as other microorganisms, collectively referred to as the “gut microflora.” This microflora plays an important role in metabolism as well as immunity, and alterations in its normal composition and pattern of colonization can disturb the development and functioning of the immune system, predisposing the individual to several diseases. Neonates acquire their gut microflora from the mother as well as the surroundings, and as the infant grows, the gut microflora undergoes several changes, ultimately acquiring an adult-like composition. Characterization of the gut microflora of healthy infants is important to protect infants from infectious diseases. Furthermore, formulation of prebiotics and probiotics for boosting infant immunity in a specific population also requires prior knowledge of the normal gut microflora in a healthy infant in that population. To this end, several studies have been performed on Western infants; however, the gut microflora of Indian infants is as yet insufficiently studied. Moreover, there has been no comparative analysis of the development and characteristics of the infant gut microflora between the two populations. In this review, we discuss the development and maturation of the infant gut microflora and its effect on immunity, as well as the factors affecting the patterns of colonization. In addition, we compare the patterns of colonization of gut microflora between Western and Indian infants based on the available literature in an attempt to identify the extent of similarity or difference between the two populations.
Collapse
|
64
|
Huang Y, Yu Y, Zhan S, Tomberlin JK, Huang D, Cai M, Zheng L, Yu Z, Zhang J. Dual oxidase Duox and Toll-like receptor 3 TLR3 in the Toll pathway suppress zoonotic pathogens through regulating the intestinal bacterial community homeostasis in Hermetia illucens L. PLoS One 2020; 15:e0225873. [PMID: 32352968 PMCID: PMC7192390 DOI: 10.1371/journal.pone.0225873] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/26/2020] [Indexed: 01/26/2023] Open
Abstract
Black soldier fly (BSF; Hermetia illucens L.) larvae can convert fresh pig manure into protein and fat-rich biomass, which can then be used as aquafeed for select species. Currently, BSF is the only approved insect for such purposes in Canada, USA, and the European Union. Pig manure could serve as a feed substrate for BSF; however, it is contaminated with zoonotic pathogens (e.g., Staphylococcus aureus and Salmonella spp.). Fortunately, BSF larvae inhibit many of these zoonotic pathogens; however, the mechanisms employed are unclear. We employed RNAi, qRT-PCR, and Illumina MiSeq 16S rDNA high-throughput sequencing to examine the interaction between two immune genes (Duox in Duox-reactive oxygen species [ROS] immune system and TLR3 in the Toll signaling pathway) and select pathogens common in pig manure to decipher the mechanisms resulting in pathogen suppression. Results indicate Bsf Duox-TLR3 RNAi increased bacterial load but decreased relative abundance of Providencia and Dysgonomonas, which are thought to be commensals in the BSF larval gut. Bsf Duox-TLR3 RNAi also inactivated the NF-κB signaling pathway, downregulated the expression of antimicrobial peptides, and diminished inhibitory effects on zoonotic pathogen. The resulting dysbiosis stimulated an immune response by activating BsfDuox and promoting ROS, which regulated the composition and structure of the gut bacterial community. Thus, BsfDuox and BsfTLR3 are important factors in regulating these key gut microbes, while inhibiting target zoonotic pathogens.
Collapse
Affiliation(s)
- Yaqing Huang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongqiang Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shuai Zhan
- Institute of Plant Physiology & Ecology, SIBS, CAS, Shanghai, China
| | | | - Dian Huang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Minmin Cai
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- * E-mail:
| |
Collapse
|
65
|
Pfister SP, Schären OP, Beldi L, Printz A, Notter MD, Mukherjee M, Li H, Limenitakis JP, Werren JP, Tandon D, Cuenca M, Hagemann S, Uster SS, Terrazos MA, Gomez de Agüero M, Schürch CM, Coelho FM, Curtiss R, Slack E, Balmer ML, Hapfelmeier S. Uncoupling of invasive bacterial mucosal immunogenicity from pathogenicity. Nat Commun 2020; 11:1978. [PMID: 32332737 PMCID: PMC7181798 DOI: 10.1038/s41467-020-15891-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 03/30/2020] [Indexed: 11/17/2022] Open
Abstract
There is the notion that infection with a virulent intestinal pathogen induces generally stronger mucosal adaptive immunity than the exposure to an avirulent strain. Whether the associated mucosal inflammation is important or redundant for effective induction of immunity is, however, still unclear. Here we use a model of auxotrophic Salmonella infection in germ-free mice to show that live bacterial virulence factor-driven immunogenicity can be uncoupled from inflammatory pathogenicity. Although live auxotrophic Salmonella no longer causes inflammation, its mucosal virulence factors remain the main drivers of protective mucosal immunity; virulence factor-deficient, like killed, bacteria show reduced efficacy. Assessing the involvement of innate pathogen sensing mechanisms, we show MYD88/TRIF, Caspase-1/Caspase-11 inflammasome, and NOD1/NOD2 nodosome signaling to be individually redundant. In colonized animals we show that microbiota metabolite cross-feeding may recover intestinal luminal colonization but not pathogenicity. Consequent immunoglobulin A immunity and microbial niche competition synergistically protect against Salmonella wild-type infection.
Collapse
Affiliation(s)
- Simona P Pfister
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School GCB, University of Bern, Bern, Switzerland
| | - Olivier P Schären
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School GCB, University of Bern, Bern, Switzerland
| | - Luca Beldi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Andrea Printz
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Matheus D Notter
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School GCB, University of Bern, Bern, Switzerland
| | - Mohana Mukherjee
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School GCB, University of Bern, Bern, Switzerland
| | - Hai Li
- Maurice Müller Laboratories (DBMR), Universitätsklinik für Viszerale Chirurgie und Medizin (UVCM) Inselspital, Bern, Switzerland
| | - Julien P Limenitakis
- Maurice Müller Laboratories (DBMR), Universitätsklinik für Viszerale Chirurgie und Medizin (UVCM) Inselspital, Bern, Switzerland
| | - Joel P Werren
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School GCB, University of Bern, Bern, Switzerland
| | - Disha Tandon
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School GCB, University of Bern, Bern, Switzerland
| | - Miguelangel Cuenca
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Stefanie Hagemann
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Stephanie S Uster
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Miguel A Terrazos
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Mercedes Gomez de Agüero
- Maurice Müller Laboratories (DBMR), Universitätsklinik für Viszerale Chirurgie und Medizin (UVCM) Inselspital, Bern, Switzerland
| | - Christian M Schürch
- Institute of Pathology, University of Bern, Bern, Switzerland
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Fernanda M Coelho
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Roy Curtiss
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Emma Slack
- Institute for Food, Nutrition and Health, D-HEST, ETH Zürich, Switzerland
| | - Maria L Balmer
- Department of Biomedicine, Immunobiology, University of Basel, Basel, Switzerland
| | | |
Collapse
|
66
|
Zahid D, Zhang N, Fang H, Gu J, Li M, Li W. Loss of core fucosylation suppressed the humoral immune response in Salmonella typhimurium infected mice. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 54:606-615. [PMID: 32146162 DOI: 10.1016/j.jmii.2020.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/12/2019] [Accepted: 02/10/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND The humoral immune response is pivotal to protect the host from Salmonella typhimurium (S. typhimurium) infection. Previously, we found that core fucosylation catalyzed by core fucosyltransferase (Fut8) could regulate the immune responses. However, the role of core fucosylation during S. typhimurium infection remains unclear. METHODS To demonstrate the role of Fut8 in S. typhimurium infection, we infected Fut8+/+ and Fut8-/- mice using S. typhimurium. The production of antiserum against the S. typhimurium was detected. The expression of T and B cell activation-related genes during S. typhimurium infection was analyzed. The role of core fucosylation on CD4+ T-B cell interaction and B cell generation was investigated during S. typhimurium infection. The production of sIgA was compared between Fut8+/+ and Fut8-/- mice. RESULTS Compared to Fut8+/+ mice, the number of S. typhimurium colonized in the cecum was markedly increased in Fut8-/- mice. The production of the IgG and sIgA specific for S. typhimurium was significantly decreased in Fut8-/- mice. Moreover, loss of Fut8 decreased the induction of Th2-type cytokines from splenic cells of Fut8-/- mice during S. typhimurium infection. In addition, we found that the core fucosylation regulated the interaction between B and T cells in the lipid raft formation. CONCLUSION Core fucosylation plays important roles in host defence against S. typhimurium infection.
Collapse
Affiliation(s)
- Danish Zahid
- College of Basic Medical Science, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, Liaoning, 116044, China
| | - Nianzhu Zhang
- College of Basic Medical Science, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, Liaoning, 116044, China
| | - Hui Fang
- College of Basic Medical Science, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, Liaoning, 116044, China
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Ming Li
- College of Basic Medical Science, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, Liaoning, 116044, China.
| | - Wenzhe Li
- College of Basic Medical Science, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, Liaoning, 116044, China.
| |
Collapse
|
67
|
Zhu W, Winter MG, Spiga L, Hughes ER, Chanin R, Mulgaonkar A, Pennington J, Maas M, Behrendt CL, Kim J, Sun X, Beiting DP, Hooper LV, Winter SE. Xenosiderophore Utilization Promotes Bacteroides thetaiotaomicron Resilience during Colitis. Cell Host Microbe 2020; 27:376-388.e8. [PMID: 32075741 DOI: 10.1016/j.chom.2020.01.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/02/2019] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
Abstract
During short-lived perturbations, such as inflammation, the gut microbiota exhibits resilience and reverts to its original configuration. Although microbial access to the micronutrient iron is decreased during colitis, pathogens can scavenge iron by using siderophores. How commensal bacteria acquire iron during gut inflammation is incompletely understood. Curiously, the human commensal Bacteroides thetaiotaomicron does not produce siderophores but grows under iron-limiting conditions using enterobacterial siderophores. Using RNA-seq, we identify B. thetaiotaomicron genes that were upregulated during Salmonella-induced gut inflammation and were predicted to be involved in iron uptake. Mutants in the xusABC locus (BT2063-2065) were defective for xenosiderophore-mediated iron uptake in vitro. In the normal mouse gut, the XusABC system was dispensable, while a xusA mutant colonized poorly during colitis. This work identifies xenosiderophore utilization as a critical mechanism for B. thetaiotaomicron to sustain colonization during inflammation and suggests a mechanism of how interphylum iron metabolism contributes to gut microbiota resilience.
Collapse
Affiliation(s)
- Wenhan Zhu
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maria G Winter
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Luisella Spiga
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elizabeth R Hughes
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rachael Chanin
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Aditi Mulgaonkar
- Radiology and Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jenelle Pennington
- Radiology and Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michelle Maas
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cassie L Behrendt
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiwoong Kim
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiankai Sun
- Radiology and Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel P Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lora V Hooper
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sebastian E Winter
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
68
|
Gut Microbiota, Antibiotic Therapy and Antimicrobial Resistance: A Narrative Review. Microorganisms 2020; 8:microorganisms8020269. [PMID: 32079318 PMCID: PMC7074698 DOI: 10.3390/microorganisms8020269] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/08/2020] [Accepted: 02/08/2020] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial resistance is a major concern. Epidemiological studies have demonstrated direct relationships between antibiotic consumption and emergence/dissemination of resistant strains. Within the last decade, authors confounded spectrum activity and ecological effects and did not take into account several other factors playing important roles, such as impact on anaerobic flora, biliary elimination and sub-inhibitory concentration. The ecological impact of antibiotics on the gut microbiota by direct or indirect mechanisms reflects the breaking of the resistance barrier to colonization. To limit the impact of antibiotic therapy on gut microbiota, consideration of the spectrum of activity and route of elimination must be integrated into the decision. Various strategies to prevent (antimicrobial stewardship, action on residual antibiotics at colonic level) or cure dysbiosis (prebiotic, probiotic and fecal microbiota transplantation) have been introduced or are currently being developed.
Collapse
|
69
|
Larcombe S, Jiang JH, Hutton ML, Abud HE, Peleg AY, Lyras D. A mouse model of Staphylococcus aureus small intestinal infection. J Med Microbiol 2020; 69:290-297. [PMID: 32004137 PMCID: PMC7431102 DOI: 10.1099/jmm.0.001163] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Introduction Staphylococcus aureus is a recognised cause of foodborne intoxication and antibiotic-associated diarrhoea (AAD), which are both mediated by staphylococcal enterotoxins. However, unlike foodborne intoxication, AAD appears to require infection of the host. While S. aureus intoxication is widely studied, little is known about S. aureus pathogenesis in the context of gastrointestinal infection. Aim To develop a mouse model of S. aureus gastrointestinal infection. Methodology An established AAD mouse model was adapted for S. aureus infection, and damage observed via histopathological analysis and immunostaining of intestinal tissues. Results Various strains colonised the mouse model, and analysis showed that although clinical signs of disease were not seen, S. aureus infection induced damage in the small intestine, disrupting host structures essential for epithelial integrity. Studies using a staphylococcal enterotoxin B mutant showed that this toxin may contribute to damage during gastrointestinal infection. Conclusion This work presents a new mouse model of S. aureus gastrointestinal infection, while also providing insight into the pathogenesis of S. aureus in the gut.
Collapse
Affiliation(s)
- Sarah Larcombe
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Jhih-Hang Jiang
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Melanie L. Hutton
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Helen E. Abud
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Anton Y. Peleg
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
- *Correspondence: Dena Lyras,
| |
Collapse
|
70
|
Pabst O, Slack E. IgA and the intestinal microbiota: the importance of being specific. Mucosal Immunol 2020; 13:12-21. [PMID: 31740744 PMCID: PMC6914667 DOI: 10.1038/s41385-019-0227-4] [Citation(s) in RCA: 301] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 02/04/2023]
Abstract
Secretory IgA has long been a divisive molecule. Some immunologists point to the mild phenotype of IgA deficiency to justify ignoring it, while some consider its abundance and evolutionary history as grounds for its importance. Further, there is extensive and growing disagreement over the relative importance of affinity-matured, T cell-dependent IgA vs. "natural" and T cell-independent IgA in both microbiota and infection control. As with all good arguments, there is good data supporting different opinions. Here we revisit longstanding questions in IgA biology. We start the discussion from the question of intestinal IgA antigen specificity and critical definitions regarding IgA induction, specificity, and function. These definitions must then be tessellated with the cellular and molecular pathways shaping IgA responses, and the mechanisms by which IgA functions. On this basis we propose how IgA may contribute to the establishment and maintenance of beneficial interactions with the microbiota.
Collapse
Affiliation(s)
- Oliver Pabst
- 0000 0001 0728 696Xgrid.1957.aInstitute of Molecular Medicine, RWTH Aachen University, Aachen, Germany
| | - Emma Slack
- 0000 0001 2156 2780grid.5801.cInstitute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
71
|
Liu Y, Lou X. Type 2 diabetes mellitus-related environmental factors and the gut microbiota: emerging evidence and challenges. Clinics (Sao Paulo) 2020; 75:e1277. [PMID: 31939557 PMCID: PMC6945290 DOI: 10.6061/clinics/2020/e1277] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/04/2019] [Indexed: 01/15/2023] Open
Abstract
The gut microbiota is a group of over 38 trillion bacterial cells in the human microbiota that plays an important role in the regulation of human metabolism through its symbiotic relationship with the host. Changes in the gut microbial ecosystem are associated with increased susceptibility to metabolic disease in humans. However, the composition of the gut microbiota in those with type 2 diabetes mellitus and in the pathogenesis of metabolic diseases is not well understood. This article reviews the relationship between environmental factors and the gut microbiota in individuals with type 2 diabetes mellitus. Finally, we discuss the goal of treating type 2 diabetes mellitus by modifying the gut microbiota and the challenges that remain in this area.
Collapse
Affiliation(s)
- Yanfen Liu
- Jinhua Municipal Central Hospital, Department of Endocrinology Jinhua, 321000, China
| | - Xueyong Lou
- Jinhua Municipal Central Hospital, Department of Endocrinology Jinhua, 321000, China
- *Corresponding author. E-mail:
| |
Collapse
|
72
|
Hoces D, Arnoldini M, Diard M, Loverdo C, Slack E. Growing, evolving and sticking in a flowing environment: understanding IgA interactions with bacteria in the gut. Immunology 2020; 159:52-62. [PMID: 31777063 PMCID: PMC6904610 DOI: 10.1111/imm.13156] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023] Open
Abstract
Immunology research in the last 50 years has made huge progress in understanding the mechanisms of anti-bacterial defense of deep, normally sterile, tissues such as blood, spleen and peripheral lymph nodes. In the intestine, with its dense commensal microbiota, it seems rare that this knowledge can be simply translated. Here we put forward the idea that perhaps it is not always the theory of immunology that is lacking to explain mucosal immunity, but rather that we have overlooked crucial parts of the mucosal immunological language required for its translation: namely intestinal and bacterial physiology. We will try to explain this in the context of intestinal secretory antibodies (mainly secretory IgA), which have been described to prevent, to alter, to not affect, or to promote colonization of the intestine and gut-draining lymphoid tissues, and where effector mechanisms have remained elusive. In fact, these apparently contradictory outcomes can be generated by combining the basic premises of bacterial agglutination with an understanding of bacterial growth (i.e. secretory IgA-driven enchained growth), fluid handling and bacterial competition in the gut lumen.
Collapse
Affiliation(s)
- Daniel Hoces
- Department of Health Sciences and TechnologyInstitute of Food, Nutrition and HealthETH ZürichZürichSwitzerland
| | - Markus Arnoldini
- Department of Health Sciences and TechnologyInstitute of Food, Nutrition and HealthETH ZürichZürichSwitzerland
| | | | - Claude Loverdo
- Laboratoire Jean PerrinSorbonne Université/CNRSParisFrance
| | - Emma Slack
- Department of Health Sciences and TechnologyInstitute of Food, Nutrition and HealthETH ZürichZürichSwitzerland
| |
Collapse
|
73
|
Xia B, Yu J, He T, Liu X, Su J, Wang M, Wang J, Zhu Y. Lactobacillus johnsonii L531 ameliorates enteritis via elimination of damaged mitochondria and suppression of SQSTM1-dependent mitophagy in a Salmonella infantis model of piglet diarrhea. FASEB J 2019; 34:2821-2839. [PMID: 31908018 DOI: 10.1096/fj.201901445rrr] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 01/04/2023]
Abstract
Newly weaned piglets challenged with Salmonella infantis were particularly susceptible, whereas oral preadministration of Lactobacillus johnsonii L531 alleviated enteritis and promoted intestinal secretory IgA production. Salmonella infantis-induced activation of NLRC4 and NLRP3 inflammasomes and (nuclear factor kappa B) NF-κB signaling in the small intestine was also inhibited by L. johnsonii L531 pretreatment, thus limiting inflammation. An IPEC-J2 cell model of S. infantis infection yielded similar results. Salmonella infantis infection also resulted in mitochondrial damage and impaired mitophagy in the ileum and IPEC-J2 cells, as demonstrated by immunofluorescence colocalization of mitochondria with microtubule-binding protein light chain 3 (LC3) and high expression of autophagy-related proteins PTEN-induced putative kinase 1 (PINK1), sequestosome 1 (SQSTM1/p62), optineurin (OPTN), and LC3 by Western blotting analysis. However, L. johnsonii L531 pretreatment reduced both the extent of mitochondrial damage and autophagy-related protein expression. Our findings suggest that the amelioration of S. infantis-associated enteritis by L. johnsonii L531 is associated with regulation of NLRC4 and NLRP3 inflammasomes and NF-κB signaling pathway activation and suppression of mitochondrial damage. Amelioration of impaired mitophagy by L. johnsonii L531 could involve eliminating damaged mitochondria and regulating S. infantis-induced activation of the NF-κB-SQSTM1mitophagy signaling pathway in host cells to prevent the further mitochondrial damage and S. infantis dissemination.
Collapse
Affiliation(s)
- Bing Xia
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiao Yu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ting He
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiao Liu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jinhui Su
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Meijun Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiufeng Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yaohong Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
74
|
Stress-induced adaptations in Salmonella: A ground for shaping its pathogenesis. Microbiol Res 2019; 229:126311. [DOI: 10.1016/j.micres.2019.126311] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 12/12/2022]
|
75
|
Pradhan D, Negi VD. Repeated in-vitro and in-vivo exposure leads to genetic alteration, adaptations, and hypervirulence in Salmonella. Microb Pathog 2019; 136:103654. [DOI: 10.1016/j.micpath.2019.103654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 11/30/2022]
|
76
|
Yao Z, Ma Q, Cai Z, Raza MF, Bai S, Wang Y, Zhang P, Ma H, Zhang H. Similar Shift Patterns in Gut Bacterial and Fungal Communities Across the Life Stages of Bactrocera minax Larvae From Two Field Populations. Front Microbiol 2019; 10:2262. [PMID: 31649629 PMCID: PMC6794421 DOI: 10.3389/fmicb.2019.02262] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/17/2019] [Indexed: 01/28/2023] Open
Abstract
Bactrocera minax (Enderlein) (Diptera: Tephritidae) is an oligophagous insect pest that damages citrus fruit, especially in China. Due to larvae living within a highly septic environment, a wide variety of microorganisms exist in the larval gut of B. minax. However, a systematic study of the intestinal microbiota of this harmful insect pest is still lacking. Here, we comprehensively investigated the larval gut microbiota of B. minax in two field populations from Zigui (developed in orange) and Danjiangkou (developed in mandarin orange). We observed a dominance of Proteobacteria and Firmicutes in these bacterial communities, and Enterobacteriaceae was the predominant family throughout the larval stage. However, most of the identified fungal sequences were annotated as being from either Ascomycota or Basidiomycota phyla. Although there was a difference in the structure of the microbial communities between the two populations, the dynamic change patterns of most of the members of the microbiota were similar across the lifespan of larvae in both populations. The relative abundances of the Acetobacteraceae, Leuconostocaceae, and Lactobacillaceae gut bacteria as well as the Pichiaceae, Sebacinaceae, and Amanitaceae fungi increased throughout development, and these microorganisms stably resided in the larval gut. Furthermore, the dynamic changes of the functions of gut bacterial communities were inferred, and there was a significant increase in carbohydrate metabolism across the lifespan of larvae in both groups. Spearman correlation analysis showed that Acetobacteraceae, Lactobacillaceae, and Leuconostocaceae displayed a positive correlation with fructose and mannose metabolism, an important pathway of carbohydrate metabolism, highlighting the potential roles of these prevalent microbial communities in host biology.
Collapse
Affiliation(s)
- Zhichao Yao
- State Key Laboratory of Agricultural Microbiology, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qiongke Ma
- State Key Laboratory of Agricultural Microbiology, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhaohui Cai
- State Key Laboratory of Agricultural Microbiology, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Fahim Raza
- State Key Laboratory of Agricultural Microbiology, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shuai Bai
- State Key Laboratory of Agricultural Microbiology, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yichen Wang
- State Key Laboratory of Agricultural Microbiology, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ping Zhang
- State Key Laboratory of Agricultural Microbiology, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Haiquan Ma
- State Key Laboratory of Agricultural Microbiology, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- State Key Laboratory of Agricultural Microbiology, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
77
|
Quin C, Gibson DL. Dietary Fatty Acids and Host-Microbial Crosstalk in Neonatal Enteric Infection. Nutrients 2019; 11:E2064. [PMID: 31484327 PMCID: PMC6770655 DOI: 10.3390/nu11092064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/09/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022] Open
Abstract
Human milk is the best nutritional choice for infants. However, in instances where breastfeeding is not possible, infant formulas are used as alternatives. While formula manufacturers attempt to mimic the performance of human breast milk, formula-fed babies consistently have higher incidences of infection from diarrheal diseases than those breastfed. Differences in disease susceptibility, progression and severity can be attributed, in part, to nutritional fatty acid differences between breast milk and formula. Despite advances in our understanding of breast milk properties, formulas still present major differences in their fatty acid composition when compared to human breast milk. In this review, we highlight the role of distinct types of dietary fatty acids in modulating host inflammation, both directly and through the microbiome-immune nexus. We present evidence that dietary fatty acids influence enteric disease susceptibility and therefore, altering the fatty acid composition in formula may be a potential strategy to improve infectious outcomes in formula-fed infants.
Collapse
Affiliation(s)
- Candice Quin
- Department of Biology, Okanagan Campus, University of British Columbia, Okanagan Campus ASC 386, 3187 University Way, Kelowna, BC V1V 1V7, Canada
| | - Deanna L Gibson
- Department of Biology, Okanagan Campus, University of British Columbia, Okanagan Campus ASC 386, 3187 University Way, Kelowna, BC V1V 1V7, Canada.
- Department of Medicine, Faculty of Medicine, University of British Columbia, Kelowna, BC V1V 1V7, Canada.
| |
Collapse
|
78
|
Kwon HJ, Lim JH, Kang D, Lim S, Park SJ, Kim JH. Is stool frequency associated with the richness and community composition of gut microbiota? Intest Res 2019; 17:419-426. [PMID: 30704159 PMCID: PMC6667361 DOI: 10.5217/ir.2018.00149] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND/AIMS Recently, a number of studies have reported that the gut microbiota could contribute to human conditions, including obesity, inflammation, cancer development, and behavior. We hypothesized that the composition and distribution of gut microbiota are different according to stool frequency, and attempted to identify the association between gut microbiota and stool frequency. METHODS We collected fecal samples from healthy individuals divided into 3 groups according to stool frequency: group 1, a small number of defecation (≤2 times/wk); group 2, normal defecation (1 time/day or 1 time/2 day); and group 3, a large number of defecation (≥2-3 times/day). We evaluated the composition and distribution of the gut microbiota in each group via 16S rRNA-based taxonomic profiling of the fecal samples. RESULTS Fecal samples were collected from a total of 60 individuals (31 men and 29 women, aged 34.1±5.88 years), and each group comprised 20 individuals. The microbial richness of group 1 was significantly higher than that of group 3 and tended to decrease with increasing number of defecation (P<0.05). The biological community composition was fairly different according to the number of defecation, and Bacteroidetes to Firmicutes ratio was higher in group 1 than in the other groups. Moreover, we found specific strains at the family and genus levels in groups 1 and 3. CONCLUSIONS Bacteroidetes to Firmicutes ratio and the abundance of Bifidobacterium were different according to the stool frequency, and specific bacteria were identified in the subjects with large and small numbers of defecation, respectively. These findings suggest that stool frequency might be associated with the richness and community composition of the gut microbiota.
Collapse
Affiliation(s)
- Hye Jung Kwon
- Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
| | | | | | | | - Seun Ja Park
- Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
| | - Jae Hyun Kim
- Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
| |
Collapse
|
79
|
Li T, Qi M, Gatesoupe FJ, Tian D, Jin W, Li J, Lin Q, Wu S, Li H. Adaptation to Fasting in Crucian Carp (Carassius auratus): Gut Microbiota and Its Correlative Relationship with Immune Function. MICROBIAL ECOLOGY 2019; 78:6-19. [PMID: 30343437 DOI: 10.1007/s00248-018-1275-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
Fasting influences the overall physiology of fish, and the knowledge how the gut microbiota, growth performances, and immune function in response to intermittent and long-term fasting is still insufficient. Here, we characterized the effects of fasting on the host-gut microbiota in crucian carp, which would enhance our insight into physiological adaptation to fasting. To achieve this, we investigated the gut microbial communities of crucian carp with different fasting stress, and corresponding immune and growth parameters. The gut microbial communities were structured into four clusters according to different fasting stress, namely one control group (feed regularly), two intermittent fasting groups (fasting period and re-feeding period, respectively), and one long-term fasting group. Intermittent fasting significantly improved the activity of superoxide dismutase (SOD) and lysozyme (LZM) (ANOVA, p < 0.05) and significantly increased alpha diversity and ecosystem stability of gut microbiota (ANOVA, p < 0.05). Gut length (GL) and condition factor (CF) showed no significant difference between the control group (CG) and intermittent fasting group under re-feeding period (RIF) (ANOVA, p = 0.11), but relative gut length (RGL) in group RIF was higher than that in the CG (ANOVA, p = 0.00). The bacterial genera Bacteroides, Akkermansia, and Erysipelotrichaceae were enriched in fishes under intermittent fasting. Two Bacteroides OTUs (OTU50 and OTU1292) correlated positively with immune (SOD, complement, and LZM) and growth (GL and RGL) parameters. These results highlight the possible interplay between growth performances, immune function, and gut microbiota in response to fasting.
Collapse
Affiliation(s)
- Tongtong Li
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Mengting Qi
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | | | - Dongcan Tian
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Weihua Jin
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jun Li
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qiang Lin
- Key Laboratory of Environmental and Applied Microbiology, CAS; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Shijin Wu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Huan Li
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
80
|
Pathogen Colonization Resistance in the Gut and Its Manipulation for Improved Health. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1300-1310. [PMID: 31100210 DOI: 10.1016/j.ajpath.2019.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/15/2019] [Accepted: 03/05/2019] [Indexed: 02/07/2023]
Abstract
Mammals have coevolved with a large community of symbiotic, commensal, and some potentially pathogenic microbes. The trillions of bacteria and hundreds of species in our guts form a relatively stable community that resists invasion by outsiders, including pathogens. This powerful protective force is referred to as colonization resistance. We discuss the variety of proposed or demonstrated mechanisms that can mediate colonization resistance and some potential ways to manipulate them for improved human health. Instances in which certain bacterial pathogens can overcome colonization resistance are also discussed.
Collapse
|
81
|
Zhang W, Wu Q, Zhu Y, Yang G, Yu J, Wang J, Ji H. Probiotic Lactobacillus rhamnosus GG Induces Alterations in Ileal Microbiota With Associated CD3 -CD19 -T-bet +IFNγ +/- Cell Subset Homeostasis in Pigs Challenged With Salmonella enterica Serovar 4,[5],12:i:. Front Microbiol 2019; 10:977. [PMID: 31134022 PMCID: PMC6516042 DOI: 10.3389/fmicb.2019.00977] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 04/18/2019] [Indexed: 12/18/2022] Open
Abstract
Salmonella enterica serovar 4,[5],12:i:- (S. 4,[5],12:i:-) is an emerging foodborne pathogen causing salmonellosis in humans and animals. Probiotic Lactobacillus rhamnosus GG (LGG) is an effective strategy for controlling enteric infections through maintaining gut microbiota homeostasis and regulating the intestinal innate immune response. Here, LGG was orally administrated to newly weaned piglets for 1 week before S. 4,[5],12:i:- challenge. S. 4,[5],12:i:- challenge led to disturbed gut microbiota, characterized by increased levels of Psychrobacter, Chryseobacterium indoltheticum, and uncultured Corynebacteriaceae populations, as well as an aberrant correlation network in Prevotellaceae NK3B31 group-centric species. The beneficial effect of LGG correlated with attenuating the expansion of Prevotellaceae NK3B31 group. Fusobacterium only found in the pigs treated with LGG was positively correlated with Lactobacillus animalis and Propionibacterium. Administration of LGG induced the expansion of CD3-CD19-T-bet+IFNγ+ and CD3-CD19-T-bet+IFNγ- cell subsets in the peripheral blood at 24 h after a challenge of S. 4,[5],12:i:-. S. 4,[5],12:i:- infection increased the population of intraepithelial CD3-CD19-T-bet+IFNγ+ and CD3-CD19-T-bet+IFNγ- cells in the ileum; however, this increase was attenuated via LGG administration. Correlation analysis revealed that LGG enriched Flavobacterium frigidarium and Facklamia populations, which were negatively correlated with intraepithelial CD3-CD19-T-bet+IFNγ+ and CD3-CD19-T-bet+IFNγ- cells in the ileum. The present data suggest that probiotic LGG alters gut microbiota with associated CD3-CD19-T-bet+IFNγ+/- cell subset homeostasis in pigs challenged with S. enterica 4,[5],12:i:-. LGG may be used in potential gut microbiota-targeted therapy regimens to regulate the specific immune cell function and, consequently, control enteric infections.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Qiong Wu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yaohong Zhu
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guiyan Yang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiao Yu
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiufeng Wang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Haifeng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
82
|
Bansept F, Schumann-Moor K, Diard M, Hardt WD, Slack E, Loverdo C. Enchained growth and cluster dislocation: A possible mechanism for microbiota homeostasis. PLoS Comput Biol 2019; 15:e1006986. [PMID: 31050663 PMCID: PMC6519844 DOI: 10.1371/journal.pcbi.1006986] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 05/15/2019] [Accepted: 03/28/2019] [Indexed: 01/26/2023] Open
Abstract
Immunoglobulin A is a class of antibodies produced by the adaptive immune system and secreted into the gut lumen to fight pathogenic bacteria. We recently demonstrated that the main physical effect of these antibodies is to enchain daughter bacteria, i.e. to cross-link bacteria into clusters as they divide, preventing them from interacting with epithelial cells, thus protecting the host. These links between bacteria may break over time. We study several models using analytical and numerical calculations. We obtain the resulting distribution of chain sizes, that we compare with experimental data. We study the rate of increase in the number of free bacteria as a function of the replication rate of bacteria. Our models show robustly that at higher replication rates, bacteria replicate before the link between daughter bacteria breaks, leading to growing cluster sizes. On the contrary at low growth rates two daughter bacteria have a high probability to break apart. Thus the gut could produce IgA against all the bacteria it has encountered, but the most affected bacteria would be the fast replicating ones, that are more likely to destabilize the microbiota. Linking the effect of the immune effectors (here the clustering) with a property directly relevant to the potential bacterial pathogeneicity (here the replication rate) could avoid to make complex decisions about which bacteria to produce effectors against. Inside the organism, the immune system can fight generically against any bacteria. However, the gut lumen is home to a very important microbiota, so the host has to find alternative ways to fight dangerous bacteria while sparing beneficial ones. While many studies have focused on the complex molecular and cellular pathways that trigger an immune response, little is known about how the produced antibodies act once secreted into the intestinal lumen. We recently demonstrated that the main physical effect of these antibodies is to cross-link bacteria into clusters as they divide, preventing them from interacting with epithelial cells, thus protecting the host. These links between bacteria may break over time. Using analytical and numerical calculations, and comparing with experimental data, we studied the dynamics of these clusters. At higher replication rates, bacteria replicate before the link between daughter bacteria breaks, leading to growing cluster sizes, and conversely. Thus the gut could produce IgA against all the bacteria it has encountered, but the most affected bacteria would be the fast replicating ones, that are more likely to destabilize the microbiota. Studying the mechanisms of the immune response may uncover more such processes that enable to target properties hard to escape through evolution.
Collapse
Affiliation(s)
- Florence Bansept
- Laboratoire Jean Perrin, Sorbonne Université / CNRS, Paris, France
| | | | - Médéric Diard
- Institute of Microbiology, Department of Biology, ETH Zürich, Switzerland
| | | | - Emma Slack
- Institute of Microbiology, Department of Biology, ETH Zürich, Switzerland
| | - Claude Loverdo
- Laboratoire Jean Perrin, Sorbonne Université / CNRS, Paris, France
- * E-mail:
| |
Collapse
|
83
|
Xavier R, Mazzei R, Pérez-Losada M, Rosado D, Santos JL, Veríssimo A, Soares MC. A Risky Business? Habitat and Social Behavior Impact Skin and Gut Microbiomes in Caribbean Cleaning Gobies. Front Microbiol 2019; 10:716. [PMID: 31024495 PMCID: PMC6467100 DOI: 10.3389/fmicb.2019.00716] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/21/2019] [Indexed: 11/21/2022] Open
Abstract
The broadstripe cleaning goby Elacatinus prochilos has two alternative ecotypes: sponge-dwellers, which live in large groups and feed mainly upon nematode parasites; and coral-dwellers, that live in small groups or in solitude and behave as cleaners. Recent studies focusing on the skin and gut microbiomes of tropical fish showed that microbial communities are influenced mainly by diet and host species. Here, we compare the skin and gut microbiomes of the Caribbean broadstripe cleaning goby E. prochilos alternative ecotypes (cleaners and non-cleaners) from Barbados and predict that different habitat use and behavior (cleaning vs. non-cleaning) will translate in different bacterial profiles between the two ecotypes. We found significant differences in both alpha- and beta-diversity of skin and gut microbiomes belonging to different ecotypes. Importantly, the skin microbiome of obligate cleaners showed greater intra-sample diversity and harbored a significantly higher prevalence of potential fish pathogens. Likewise, potential pathogens were also more prevalent in the gut of obligate cleaners. We suggest that habitat use, diet, but also direct contact with potential diseased clientele during cleaning, could be the cause for these patterns.
Collapse
Affiliation(s)
- Raquel Xavier
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Porto, Portugal
| | - Renata Mazzei
- Laboratoire d’Eco-Ethologie, Institut de Biologie, Université de Neuchâtel, Neuchâtel, Switzerland
| | - Marcos Pérez-Losada
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Porto, Portugal
- Computational Biology Institute, Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, The George Washington University, Ashburn, VA, United States
| | - Daniela Rosado
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Porto, Portugal
| | - Joana L. Santos
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Porto, Portugal
| | - Ana Veríssimo
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Porto, Portugal
| | - Marta C. Soares
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Porto, Portugal
| |
Collapse
|
84
|
Lo BC, Shin SB, Canals Hernaez D, Refaeli I, Yu HB, Goebeler V, Cait A, Mohn WW, Vallance BA, McNagny KM. IL-22 Preserves Gut Epithelial Integrity and Promotes Disease Remission during Chronic Salmonella Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:956-965. [PMID: 30617224 DOI: 10.4049/jimmunol.1801308] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2023]
Abstract
The cytokine IL-22 is rapidly induced at barrier surfaces where it regulates host-protective antimicrobial immunity and tissue repair but can also enhance disease severity in some chronic inflammatory settings. Using the chronic Salmonella gastroenteritis model, Ab-mediated neutralization of IL-22 impaired intestinal epithelial barrier integrity and, consequently, exaggerated expression of proinflammatory cytokines. As disease normally resolved, neutralization of IL-22 caused luminal narrowing of the cecum-a feature reminiscent of fibrotic strictures seen in Crohn disease patients. Corresponding to the exaggerated immunopathology caused by IL-22 suppression, Salmonella burdens in the gut were reduced. This enhanced inflammation and pathogen clearance was associated with alterations in gut microbiome composition, including the overgrowth of Bacteroides acidifaciens Our findings thus indicate that IL-22 plays a protective role by limiting infection-induced gut immunopathology but can also lead to persistent pathogen colonization.
Collapse
Affiliation(s)
- Bernard C Lo
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Samuel B Shin
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Diana Canals Hernaez
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Ido Refaeli
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Hong B Yu
- Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V6H 3V4, Canada
| | - Verena Goebeler
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; and
| | - Alissa Cait
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - William W Mohn
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Bruce A Vallance
- Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V6H 3V4, Canada
| | - Kelly M McNagny
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada;
| |
Collapse
|
85
|
Preska Steinberg A, Datta SS, Naragon T, Rolando JC, Bogatyrev SR, Ismagilov RF. High-molecular-weight polymers from dietary fiber drive aggregation of particulates in the murine small intestine. eLife 2019; 8:40387. [PMID: 30666958 PMCID: PMC6342521 DOI: 10.7554/elife.40387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/28/2018] [Indexed: 12/28/2022] Open
Abstract
The lumen of the small intestine (SI) is filled with particulates: microbes, therapeutic particles, and food granules. The structure of this particulate suspension could impact uptake of drugs and nutrients and the function of microorganisms; however, little is understood about how this suspension is re-structured as it transits the gut. Here, we demonstrate that particles spontaneously aggregate in SI luminal fluid ex vivo. We find that mucins and immunoglobulins are not required for aggregation. Instead, aggregation can be controlled using polymers from dietary fiber in a manner that is qualitatively consistent with polymer-induced depletion interactions, which do not require specific chemical interactions. Furthermore, we find that aggregation is tunable; by feeding mice dietary fibers of different molecular weights, we can control aggregation in SI luminal fluid. This work suggests that the molecular weight and concentration of dietary polymers play an underappreciated role in shaping the physicochemical environment of the gut. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Asher Preska Steinberg
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - Sujit S Datta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, United States
| | - Thomas Naragon
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - Justin C Rolando
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - Said R Bogatyrev
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Rustem F Ismagilov
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
86
|
Fu A, Mo Q, Wu Y, Wang B, Liu R, Tang L, Zeng Z, Zhang X, Li W. Protective effect of Bacillus amyloliquefaciens against Salmonella via polarizing macrophages to M1 phenotype directly and to M2 depended on microbiota. Food Funct 2019; 10:7653-7666. [DOI: 10.1039/c9fo01651a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bacillus amyloliquefaciens SC06 (BaSC06), a potential probiotic, plays a positive role in animal growth performance and immune function.
Collapse
Affiliation(s)
- Aikun Fu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry
- College of Animal Sciences
- Zhejiang University
- Hangzhou
- China
| | - Qiufen Mo
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry
- College of Animal Sciences
- Zhejiang University
- Hangzhou
- China
| | - Yanping Wu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry
- College of Animal Sciences
- Zhejiang University
- Hangzhou
- China
| | - Baikui Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry
- College of Animal Sciences
- Zhejiang University
- Hangzhou
- China
| | - Rongrong Liu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry
- College of Animal Sciences
- Zhejiang University
- Hangzhou
- China
| | - Li Tang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry
- College of Animal Sciences
- Zhejiang University
- Hangzhou
- China
| | - Zhonghua Zeng
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry
- College of Animal Sciences
- Zhejiang University
- Hangzhou
- China
| | - Xiaoping Zhang
- China National Bamboo Research Center
- Key Laboratory of Resources and Utilization of Bamboo of State Forestry Administration
- Hangzhou
- China
| | - Weifen Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry
- College of Animal Sciences
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
87
|
Gal-Mor O. Persistent Infection and Long-Term Carriage of Typhoidal and Nontyphoidal Salmonellae. Clin Microbiol Rev 2019; 32:e00088-18. [PMID: 30487167 PMCID: PMC6302356 DOI: 10.1128/cmr.00088-18] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The ability of pathogenic bacteria to affect higher organisms and cause disease is one of the most dramatic properties of microorganisms. Some pathogens can establish transient colonization only, but others are capable of infecting their host for many years or even for a lifetime. Long-term infection is called persistence, and this phenotype is fundamental for the biology of important human pathogens, including Helicobacter pylori, Mycobacterium tuberculosis, and Salmonella enterica Both typhoidal and nontyphoidal serovars of the species Salmonella enterica can cause persistent infection in humans; however, as these two Salmonella groups cause clinically distinct diseases, the characteristics of their persistent infections in humans differ significantly. Here, following a general summary of Salmonella pathogenicity, host specificity, epidemiology, and laboratory diagnosis, I review the current knowledge about Salmonella persistence and discuss the relevant epidemiology of persistence (including carrier rate, duration of shedding, and host and pathogen risk factors), the host response to Salmonella persistence, Salmonella genes involved in this lifestyle, as well as genetic and phenotypic changes acquired during prolonged infection within the host. Additionally, I highlight differences between the persistence of typhoidal and nontyphoidal Salmonella strains in humans and summarize the current gaps and limitations in our understanding, diagnosis, and curing of persistent Salmonella infections.
Collapse
Affiliation(s)
- Ohad Gal-Mor
- Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
88
|
Torres Soto M, Hammond S, Elshaboury RH, Johnson J, Hohmann EL. Recurrent Relatively Resistant Salmonella infantis Infection in 2 Immunocompromised Hosts Cleared With Prolonged Antibiotics and Fecal Microbiota Transplantation. Open Forum Infect Dis 2018; 6:ofy334. [PMID: 30648128 PMCID: PMC6329902 DOI: 10.1093/ofid/ofy334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/11/2018] [Indexed: 01/04/2023] Open
Abstract
Two immunocompromised patients with relapsing gastrointestinal infection with relatively resistant Salmonella infantis were cured with prolonged ertapenem followed by encapsulated fecal transplant.
Collapse
Affiliation(s)
- Mariam Torres Soto
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts
| | - Sarah Hammond
- Division of Infectious Diseases, Brigham and Womens Hospital, Boston, Massachusetts
| | - Ramy H Elshaboury
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts
| | - Jacob Johnson
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts
| | - Elizabeth L Hohmann
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
89
|
Vonaesch P, Anderson M, Sansonetti PJ. Pathogens, microbiome and the host: emergence of the ecological Koch's postulates. FEMS Microbiol Rev 2018; 42:273-292. [PMID: 29325027 DOI: 10.1093/femsre/fuy003] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Indexed: 02/07/2023] Open
Abstract
Even though tremendous progress has been made in the last decades to elucidate the mechanisms of intestinal homeostasis, dysbiosis and disease, we are only at the beginning of understanding the complexity of the gut ecosystem and the underlying interaction networks. We are also only starting to unravel the mechanisms that pathogens have evolved to overcome the barriers imposed by the microbiota and host to exploit the system to their own benefit. Recent work in these domains clearly indicates that the 'traditional Koch's postulates', which state that a given pathogen leads to a distinct disease, are not valid for all 'infectious' diseases, but that a more complete and complex interpretation of Koch's postulates is needed in order to understand and explain them. This review summarises the current understanding of what defines a healthy gut ecosystem and highlights recent progress in uncovering the interplay between the host, its microbiota and invading intestinal pathogens. Based on these recent findings, we propose a new interpretation of Koch's postulates that we term 'ecological Koch's postulates'.
Collapse
Affiliation(s)
- Pascale Vonaesch
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 28 Rue du Dr. Roux, Paris 75015, France
| | - Mark Anderson
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 28 Rue du Dr. Roux, Paris 75015, France
| | - Philippe J Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 28 Rue du Dr. Roux, Paris 75015, France
| |
Collapse
|
90
|
Tat-exported peptidoglycan amidase-dependent cell division contributes to Salmonella Typhimurium fitness in the inflamed gut. PLoS Pathog 2018; 14:e1007391. [PMID: 30379938 PMCID: PMC6231687 DOI: 10.1371/journal.ppat.1007391] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/12/2018] [Accepted: 10/07/2018] [Indexed: 12/11/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Tm) is a cause of food poisoning accompanied with gut inflammation. Although mucosal inflammation is generally thought to be protective against bacterial infection, S. Tm exploits the inflammation to compete with commensal microbiota, thereby growing up to high densities in the gut lumen and colonizing the gut continuously at high levels. However, the molecular mechanisms underlying the beneficial effect of gut inflammation on S. Tm competitive growth are poorly understood. Notably, the twin-arginine translocation (Tat) system, which enables the transport of folded proteins outside bacterial cytoplasm, is well conserved among many bacterial pathogens, with Tat substrates including virulence factors and virulence-associated proteins. Here, we show that Tat and Tat-exported peptidoglycan amidase, AmiA- and AmiC-dependent cell division contributes to S. Tm competitive fitness advantage in the inflamed gut. S. Tm tatC or amiA amiC mutants feature a gut colonization defect, wherein they display a chain form of cells. The chains are attributable to a cell division defect of these mutants and occur in inflamed but not in normal gut. We demonstrate that attenuated resistance to bile acids confers the colonization defect on the S. Tm amiA amiC mutant. In particular, S. Tm cell chains are highly sensitive to bile acids as compared to single or paired cells. Furthermore, we show that growth media containing high concentrations of NaCl and sublethal concentrations of antimicrobial peptides induce the S. Tm amiA amiC mutant chain form, suggesting that gut luminal conditions such as high osmolarity and the presence of antimicrobial peptides impose AmiA- and AmiC-dependent cell division on S. Tm. Together, our data indicate that Tat and the Tat-exported amidases, AmiA and AmiC, are required for S. Tm luminal fitness in the inflamed gut, suggesting that these proteins might comprise effective targets for novel antibacterial agents against infectious diarrhea. For proteins residing outside the bacterial cytoplasm, transport is an essential step for adequate function. The twin-arginine translocation (Tat) system enables the transport of folded proteins across the cytoplasmic membrane in prokaryotes. It has recently become clear that this system plays a pivotal role in the detrimental effects of many bacterial pathogens, suggesting Tat as a novel therapeutic target against their infection. In particular, the bacterial enteropathogen Salmonella Typhimurium causes foodborne diarrhea by colonizing the gut interior space. Here, we describe that the S. Typhimurium Tat system contributes to intestinal infection by facilitating colonization of the gut by this pathogen. We also identify that two Tat-exported enzymes, peptidoglycan amidase AmiA and AmiC, are responsible for the Tat-dependent colonization. S. Typhimurium strains having nonfunctional Tat systems or lacking these enzymes undergo filamentous growth in the gut interior owing to defective cell division. Notably, this chain form of S. Typhimurium cells is highly sensitive to bile acids, rendering it less competitive with native bacteria in the gut. The data presented here suggest that the Tat system and associated amidases may comprise promising therapeutic targets for Salmonella diarrhea, and that controlling bacterial shape might be new strategy for regulating intestinal enteropathogen infection.
Collapse
|
91
|
Ma Y, Wang W, Zhang H, Wang J, Zhang W, Gao J, Wu S, Qi G. Supplemental Bacillus subtilis DSM 32315 manipulates intestinal structure and microbial composition in broiler chickens. Sci Rep 2018; 8:15358. [PMID: 30337568 PMCID: PMC6194052 DOI: 10.1038/s41598-018-33762-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/05/2018] [Indexed: 01/16/2023] Open
Abstract
Knowledge about the modulation of gut microbiota improves our understanding of the underlying mechanism by which probiotic treatment benefits the chickens. This study examined the effects of Bacillus subtilis DSM 32315 on intestinal structure and microbial composition in broilers. Broiler chicks were fed basal diets without or with B. subtilis supplementation (1.0 × 109 spores/kg of diet). Supplemental B. subtilis increased average body weight and average daily gain, as well as elevated villus height and villus height to crypt depth ratio of ileum in broilers. Multi-dimension analysis showed a certain degree of separation between the cecal microbiota from treatment and control groups. Increased Firmicutes abundance and reduced Bacteroidetes abundance in cecum were observed responded to B. subtilis addition, which also increased the abundances of Christensenellaceae and Caulobacteraceae, and simultaneously decreased the abundances of potentially harmful bacteria such as Vampirovibrio, Escherichia/Shigella and Parabacteroides. Network analysis signified that B. subtilis addition improved the interaction pattern within cecal microbiota of broilers, however, it exerted little influence on the metabolic pathways of cecal microbiota by comparison of the functional prediction of metagenomes. In conclusion, supplemental B. subtilis DSM 32315 improved growth performance and intestinal structure of broilers, which could be at least partially responsible by the manipulation of cecal microbial composition.
Collapse
Affiliation(s)
- Youbiao Ma
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weiwei Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haijun Zhang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenming Zhang
- Evonik Degussa (China) Co. Ltd., Beijing, 100026, China
| | - Jun Gao
- Evonik Degussa (China) Co. Ltd., Beijing, 100026, China
| | - Shugeng Wu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Guanghai Qi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
92
|
Attri S, Nagpal R, Goel G. High throughput sequence profiling of gut microbiome in Northern Indian infants during the first four months and its global comparison. Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
93
|
Menanteau P, Kempf F, Trotereau J, Virlogeux-Payant I, Gitton E, Dalifard J, Gabriel I, Rychlik I, Velge P. Role of systemic infection, cross contaminations and super-shedders in Salmonella carrier state in chicken. Environ Microbiol 2018; 20:3246-3260. [PMID: 29921019 DOI: 10.1111/1462-2920.14294] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/20/2017] [Accepted: 05/23/2018] [Indexed: 12/13/2022]
Abstract
Carriage of Salmonella is often associated with a high level of bacterial excretion and generally occurs after a short systemic infection. However, we do not know whether this systemic infection is required or whether the carrier-state corresponds to continuous reinfection or real persistence in caecal tissue. The use of a Salmonella Enteritidis bamB mutant demonstrated that a carrier-state could be obtained in chicken in the absence of systemic infection. The development of a new infection model in isolator showed that a marked decrease in animal reinfection and host-to-host transmission between chicks led to a heterogeneity of S. Enteritidis excretion and colonization contrary to what was observed in cages. This heterogeneity of infection was characterized by the presence of super-shedders, which constantly disseminated Salmonella to the low-shedder chicks, mainly through airborne movements of contaminated dust particles. The presence of super-shedders, in the absence of host-to-host transmission, demonstrated that constant reinfection was not required to induce a carrier-state. Finally, our results suggest that low-shedder chicks do not have a higher capability to destroy Salmonella but instead can block initial Salmonella colonization. This new paradigm opens new avenues to improve understanding of the carrier-state mechanisms and to define new strategies to control Salmonella infections.© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Pierrette Menanteau
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, 37380, Nouzilly, France
| | - Florent Kempf
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, 37380, Nouzilly, France
| | - Jérôme Trotereau
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, 37380, Nouzilly, France
| | | | - Edouard Gitton
- Plate-Forme d'Infectiologie Expérimentale, INRA, 37380, Nouzilly, France
| | - Julie Dalifard
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, 37380, Nouzilly, France
| | | | - Ivan Rychlik
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| | - Philippe Velge
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, 37380, Nouzilly, France
| |
Collapse
|
94
|
Salmonella enterica Serovar Typhimurium CpxRA Two-Component System Contributes to Gut Colonization in Salmonella-Induced Colitis. Infect Immun 2018; 86:IAI.00280-18. [PMID: 29685984 DOI: 10.1128/iai.00280-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/13/2022] Open
Abstract
Salmonella enterica, a common cause of diarrhea, has to colonize the gut lumen to elicit disease. In the gut, the pathogen encounters a vast array of environmental stresses that cause perturbations in the bacterial envelope. The CpxRA two-component system monitors envelope perturbations and responds by altering the bacterial gene expression profile. This allows Salmonella to survive under such harmful conditions. Therefore, CpxRA activation is likely to contribute to Salmonella gut infection. However, the role of the CpxRA-mediated envelope stress response in Salmonella-induced diarrhea is unclear. Here, we show that CpxRA is dispensable for the induction of colitis by S. enterica serovar Typhimurium, whereas it is required for gut colonization. We prove that CpxRA is expressed during gut infection and that the presence of antimicrobial peptides in growth media activates the expression of CpxRA-regulated genes. In addition, we demonstrate that a S Typhimurium strain lacking the cpxRA gene is able to cause colitis but is unable to continuously colonize the gut. Finally, we show that CpxRA-dependent gut colonization requires the host gut inflammatory response, while DegP, a CpxRA-regulated protease, is dispensable. Our findings reveal that the CpxRA-mediated envelope stress response plays a crucial role in Salmonella gut infection, suggesting that CpxRA might be a promising therapeutic target for infectious diarrhea.
Collapse
|
95
|
Hu J, Chen L, Tang Y, Xie C, Xu B, Shi M, Zheng W, Zhou S, Wang X, Liu L, Yan Y, Yang T, Niu Y, Hou Q, Xu X, Yan X. Standardized Preparation for Fecal Microbiota Transplantation in Pigs. Front Microbiol 2018; 9:1328. [PMID: 29971061 PMCID: PMC6018536 DOI: 10.3389/fmicb.2018.01328] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/30/2018] [Indexed: 12/26/2022] Open
Abstract
The intestine of pigs harbors a mass of microorganisms which are essential for intestinal homeostasis and host health. Intestinal microbial disorders induce enteric inflammation and metabolic dysfunction, thereby causing adverse effects on the growth and health of pigs. In the human medicine, fecal microbiota transplantation (FMT), which engrafts the fecal microbiota from a healthy donor into a patient recipient, has shown efficacy in intestinal microbiota restoration. In addition, it has been used widely in therapy for human gastrointestinal diseases, including Clostridium difficile infection, inflammatory bowel diseases, and irritable bowel syndrome. Given that pigs share many similarities with humans, in terms of anatomy, nutritional physiology, and intestinal microbial compositions, FMT may also be used to restore the normal intestinal microbiota of pigs. However, feasible procedures for performing FMT in pigs remains unclear. Here, we summarize a standardized preparation for FMT in pigs by combining the standard methodology for human FMT with pig production. The key issues include the donor selection, fecal material preparation, fecal material transfer, stool bank establishment, and the safety for porcine FMT. Optimal donors should be selected to ensure the efficacy of porcine FMT and reduce the risks of transmitting infectious diseases to recipients during FMT. Preparing for fresh fecal material is highly recommended. Alternatively, frozen fecal suspension can also be prepared as an optimal choice because it is convenient and has similar efficacy. Oral administration of fecal suspension could be an optimal method for porcine fecal material transfer. Furthermore, the dilution ratio of fecal materials and the frequency of fecal material transfer could be adjusted according to practical situations in the pig industry. To meet the potential large-scale requirement in the pig industry, it is important to establish a stool bank to make porcine FMT readily available. Future studies should also focus on providing more robust safety data on FMT to improve the safety and tolerability of the recipient pigs. This standardized preparation for porcine FMT can facilitate the development of microbial targeted therapies and improve the intestinal health of pigs.
Collapse
Affiliation(s)
- Jun Hu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Lingli Chen
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Yimei Tang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Chunlin Xie
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Baoyang Xu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Min Shi
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Wenyong Zheng
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Shuyi Zhou
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Xinkai Wang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Liu Liu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Yiqin Yan
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Tao Yang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Yaorong Niu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Qiliang Hou
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Xiaofan Xu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Xianghua Yan
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| |
Collapse
|
96
|
Betz KJ, Maier EA, Amarachintha S, Wu D, Karmele EP, Kinder JM, Steinbrecher KA, McNeal MM, Luzader DH, Hogan SP, Moore SR. Enhanced survival following oral and systemic Salmonella enterica serovar Typhimurium infection in polymeric immunoglobulin receptor knockout mice. PLoS One 2018; 13:e0198434. [PMID: 29856838 PMCID: PMC5983570 DOI: 10.1371/journal.pone.0198434] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 05/20/2018] [Indexed: 12/12/2022] Open
Abstract
Background Polymeric immunoglobulin receptor (pIgR) transport of secretory immunoglobulin A (SIgA) to mucosal surfaces is thought to promote gut integrity and immunity to Salmonella enterica serovar Typhimurium (S. Typhimurium), an invasive pathogen in mice. To elucidate potential mechanisms, we assessed intestinal barrier function and both oral and systemic S. Typhimurium virulence in pIgR knockout (KO) and wildtype (WT) mice. Methods In uninfected animals, we harvested jejunal segments for Ussing chamber analyses of transepithelial resistance (TER); mesenteric lymph nodes (mLN) for bacterial culture; and serum and stool for IgA. Separately, we infected mice either orally or intravenously (IV) with S. Typhimurium to compare colonization, tissue dynamics, and inflammation between KOs and WTs. Results Uninfected KOs displayed decreased TER and dramatically increased serum IgA and decreased fecal IgA vs. WT; however, KO mLNs yielded fewer bacterial counts. Remarkably, WTs challenged orally with S. Typhimurium exhibited increased splenomegaly, tissue colonization, and pro-inflammatory cytokines vs. pIgR KOs, which showed increased survival following either oral or IV infection. Conclusions Absence of pIgR compromises gut integrity but does not exacerbate bacterial translocation nor S. Typhimurium infection. These findings raise the possibility that immune adaptation to increased gut permeability and elevated serum IgA in the setting of SIgA deficiency provides compensatory protection against invasive gut pathogens.
Collapse
Affiliation(s)
- Kristina J. Betz
- Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| | - Elizabeth A. Maier
- Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Surya Amarachintha
- Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - David Wu
- Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Erik P. Karmele
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Jeremy M. Kinder
- Infectious Disease, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Kris A. Steinbrecher
- Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Monica M. McNeal
- Infectious Disease, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Deborah H. Luzader
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Simon P. Hogan
- Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Sean R. Moore
- Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| |
Collapse
|
97
|
Azad MAK, Sarker M, Li T, Yin J. Probiotic Species in the Modulation of Gut Microbiota: An Overview. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9478630. [PMID: 29854813 PMCID: PMC5964481 DOI: 10.1155/2018/9478630] [Citation(s) in RCA: 435] [Impact Index Per Article: 62.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 03/29/2018] [Indexed: 12/12/2022]
Abstract
Probiotics are microbial strains that are beneficial to health, and their potential has recently led to a significant increase in research interest in their use to modulate the gut microbiota. The animal gut is a complex ecosystem of host cells, microbiota, and available nutrients, and the microbiota prevents several degenerative diseases in humans and animals via immunomodulation. The gut microbiota and its influence on human nutrition, metabolism, physiology, and immunity are addressed, and several probiotic species and strains are discussed to improve the understanding of modulation of gut microbiota. This paper provides a broad review of several Lactobacillus spp., Bifidobacterium spp., and other coliform bacteria as the most promising probiotic species and their role in the prevention of degenerative diseases, such as obesity, diabetes, cancer, cardiovascular diseases, malignancy, liver disease, and inflammatory bowel disease. This review also discusses a recent study of Saccharomyces spp. in which inflammation was prevented by promotion of proinflammatory immune function via the production of short-chain fatty acids. A summary of gut microbiota alteration with future perspectives is also provided.
Collapse
Affiliation(s)
- Md. Abul Kalam Azad
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Manobendro Sarker
- Department of Food Engineering and Technology, State University of Bangladesh, Dhaka 1205, Bangladesh
| | - Tiejun Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Jie Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
98
|
Salmonella-Mediated Inflammation Eliminates Competitors for Fructose-Asparagine in the Gut. Infect Immun 2018; 86:IAI.00945-17. [PMID: 29483291 DOI: 10.1128/iai.00945-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/20/2018] [Indexed: 01/05/2023] Open
Abstract
Salmonella enterica elicits intestinal inflammation to gain access to nutrients. One of these nutrients is fructose-asparagine (F-Asn). The availability of F-Asn to Salmonella during infection is dependent upon Salmonella pathogenicity islands 1 and 2, which in turn are required to provoke inflammation. Here, we determined that F-Asn is present in mouse chow at approximately 400 pmol/mg (dry weight). F-Asn is also present in the intestinal tract of germfree mice at 2,700 pmol/mg (dry weight) and in the intestinal tract of conventional mice at 9 to 28 pmol/mg. These findings suggest that the mouse intestinal microbiota consumes F-Asn. We utilized heavy-labeled precursors of F-Asn to monitor its formation in the intestine, in the presence or absence of inflammation, and none was observed. Finally, we determined that some members of the class Clostridia encode F-Asn utilization pathways and that they are eliminated from highly inflamed Salmonella-infected mice. Collectively, our studies identify the source of F-Asn as the diet and that Salmonella-mediated inflammation is required to eliminate competitors and allow the pathogen nearly exclusive access to this nutrient.
Collapse
|
99
|
Macpherson AJ. Do the Microbiota Influence Vaccines and Protective Immunity to Pathogens? Issues of Sovereignty, Federalism, and Points-Testing in the Prokaryotic and Eukaryotic Spaces of the Host-Microbial Superorganism. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a029363. [PMID: 28432128 DOI: 10.1101/cshperspect.a029363] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In contrast to live attenuated vaccines, which are designed to induce immunity through a time-limited bloom in systemic tissues, the microbiota is a persistent feature of body surfaces, especially the intestine. The immune responses to the microbiota are idiosyncratic depending on the niche intimacy of different taxa and generally adapt the host to avoid overgrowth and maintain mutualism rather than to eliminate the organisms of that taxon. Both the microbiota and the host have so much molecular cross talk controlling each other, that the prokaryotic and the eukaryotic spaces of the host-microbial superorganism are federal rather than sovereign. This molecular cross talk is vital for the immune system to develop its mature form. Nevertheless, the microbiota/host biomass spaces are rather well separated: The microbiota also limits colonization and penetration of pathogens through intense metabolic competition. Immune responses to those members of the microbiota mutually adapted to intimate association at mucosal surfaces have attractive potential durability, but for clinical use as persistent vehicles they would require personalization and engineered reversibility to manage the immune context and complications in individual human subjects.
Collapse
Affiliation(s)
- Andrew J Macpherson
- Maurice Müller Laboratories (DKF), Universitätsklinik für Viszerale Chirurgie und Medizin (UVCM), Inselspital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
100
|
Zhang W, Zhu YH, Yang GY, Liu X, Xia B, Hu X, Su JH, Wang JF. Lactobacillus rhamnosus GG Affects Microbiota and Suppresses Autophagy in the Intestines of Pigs Challenged with Salmonella Infantis. Front Microbiol 2018; 8:2705. [PMID: 29403451 PMCID: PMC5785727 DOI: 10.3389/fmicb.2017.02705] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/29/2017] [Indexed: 12/20/2022] Open
Abstract
Salmonella enterica serovar Infantis (S. Infantis) is a common source of foodborne gastroenteritis worldwide. Here, Lactobacillus rhamnosus GG (LGG) was administrated to weaned piglets for 1 week before S. Infantis challenge. S. Infantis caused decreased ileal mucosal microbiota diversity, a dramatic Lactobacillus amylovorus bloom, and decreased abundance of Arsenicicoccus, Janibacter, Kocuria, Nocardioides, Devosia, Paracoccus, Psychrobacter, and Weissella. The beneficial effect of LGG correlated with the moderate expansion of L. amylovorus, L. agilis, and several members of the phyla Proteobacteria, Firmicutes, and Bacteroidetes. S. Infantis translocation to the liver was decreased in the LGG-pretreated piglets. An in vitro model of LGG and S. Infantis co-incubation (involving the porcine intestinal epithelial cell line IPEC-J2) was established, and nalidixic acid was used to kill the extracellular S. Infantis. LGG suppressed the initial S. Infantis invasion in the IPEC-J2 cells and deceased the rate of cell death. LGG inhibited S. Infantis-induced autophagy and promoted epidermal growth factor receptor (EGFR) and Akt phosphorylation in both the ileum and IPEC-J2 cells. Our findings suggest that LGG inhibited S. Infantis-induced autophagy by promoting EGFR-mediated activation of the negative mediator Akt, which, in turn, suppressed intestinal epithelial cell death and thus restricted systemic S. Infantis infection. LGG can restore the gut microbiota balance and preserve the autophagy-related intestinal epithelial barrier, thereby controlling infections.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yao-Hong Zhu
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Gui-Yan Yang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiao Liu
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bing Xia
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiong Hu
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jin-Hui Su
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiu-Feng Wang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|