51
|
Weger-Lucarelli J, Garcia SM, Rückert C, Byas A, O'Connor SL, Aliota MT, Friedrich TC, O'Connor DH, Ebel GD. Using barcoded Zika virus to assess virus population structure in vitro and in Aedes aegypti mosquitoes. Virology 2018; 521:138-148. [PMID: 29935423 DOI: 10.1016/j.virol.2018.06.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 01/12/2023]
Abstract
Arboviruses such as Zika virus (ZIKV, Flaviviridae; Flavivirus) must replicate in both mammalian and insect hosts possessing strong immune defenses. Accordingly, transmission between and replication within hosts involves genetic bottlenecks, during which viral population size and genetic diversity may be significantly reduced. To help quantify these bottlenecks and their effects, we constructed 4 "barcoded" ZIKV populations that theoretically contain thousands of barcodes each. After identifying the most diverse barcoded virus, we passaged this virus 3 times in 2 mammalian and mosquito cell lines and characterized the population using deep sequencing of the barcoded region of the genome. C6/36 maintain higher barcode diversity, even after 3 passages, than Vero. Additionally, field-caught mosquitoes exposed to the virus to assess bottlenecks in a natural host. A progressive reduction in barcode diversity occurred throughout systemic infection of these mosquitoes. Differences in bottlenecks during systemic spread were observed between different populations of Aedes aegypti.
Collapse
Affiliation(s)
- James Weger-Lucarelli
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States.
| | - Selene M Garcia
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Claudia Rückert
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Alex Byas
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Shelby L O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Matthew T Aliota
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Thomas C Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States; Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States; Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Gregory D Ebel
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States.
| |
Collapse
|
52
|
Kuca T, Passler T, Newcomer BW, Neill JD, Galik PK, Riddell KP, Zhang Y, Walz PH. Identification of Conserved Amino Acid Substitutions During Serial Infection of Pregnant Cattle and Sheep With Bovine Viral Diarrhea Virus. Front Microbiol 2018; 9:1109. [PMID: 29928264 PMCID: PMC5998738 DOI: 10.3389/fmicb.2018.01109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/09/2018] [Indexed: 11/13/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) is an economically important pathogen of cattle that can also infect a wide range of domestic and wild species including sheep, goats, deer, camelids, and pigs. BVDV isolates are genetically highly diverse and previous work demonstrated that many substitutions were introduced in the viral genome during acute infections in cattle. In contrast, only limited information exists regarding changes occurring during BVDV infections in species other than cattle. The purpose of this study was to determine the changes introduced in the open reading frame (ORF) of the BVDV genome during serial infection of pregnant cattle and sheep with an isolate of bovine origin. Serial experimental inoculations were performed in six pregnant heifers and six pregnant ewes using BVDV-1b isolate AU526 in the first heifer and ewe, and serum from the preceding acutely infected dam thereafter. Complete ORF sequences were determined for 23 BVDV-1b isolates including AU526, one isolate from each pregnant dam, and one isolate from each BVDV-positive offspring born to these dams. Sequence comparison revealed that greater numbers of substitutions occurred during serial infection of pregnant sheep than of pregnant cattle. Furthermore, multiple host-specific amino acid changes were gradually introduced and conserved. These changes were more abundant in ovine isolates and occurred primarily in the E2 coding region. These results suggest that BVDV infections in heterologous species may serve as a significant source of viral genetic diversity and may be associated with adaptive changes.
Collapse
Affiliation(s)
- Thibaud Kuca
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Thomas Passler
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Benjamin W. Newcomer
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - John D. Neill
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Patricia K. Galik
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Kay P. Riddell
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Yijing Zhang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Paul H. Walz
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
53
|
Aliota MT, Dudley DM, Newman CM, Weger-Lucarelli J, Stewart LM, Koenig MR, Breitbach ME, Weiler AM, Semler MR, Barry GL, Zarbock KR, Haj AK, Moriarty RV, Mohns MS, Mohr EL, Venturi V, Schultz-Darken N, Peterson E, Newton W, Schotzko ML, Simmons HA, Mejia A, Hayes JM, Capuano S, Davenport MP, Friedrich TC, Ebel GD, O’Connor SL, O’Connor DH. Molecularly barcoded Zika virus libraries to probe in vivo evolutionary dynamics. PLoS Pathog 2018; 14:e1006964. [PMID: 29590202 PMCID: PMC5891079 DOI: 10.1371/journal.ppat.1006964] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/09/2018] [Accepted: 03/08/2018] [Indexed: 12/15/2022] Open
Abstract
Defining the complex dynamics of Zika virus (ZIKV) infection in pregnancy and during transmission between vertebrate hosts and mosquito vectors is critical for a thorough understanding of viral transmission, pathogenesis, immune evasion, and potential reservoir establishment. Within-host viral diversity in ZIKV infection is low, which makes it difficult to evaluate infection dynamics. To overcome this biological hurdle, we constructed a molecularly barcoded ZIKV. This virus stock consists of a “synthetic swarm” whose members are genetically identical except for a run of eight consecutive degenerate codons, which creates approximately 64,000 theoretical nucleotide combinations that all encode the same amino acids. Deep sequencing this region of the ZIKV genome enables counting of individual barcodes to quantify the number and relative proportions of viral lineages present within a host. Here we used these molecularly barcoded ZIKV variants to study the dynamics of ZIKV infection in pregnant and non-pregnant macaques as well as during mosquito infection/transmission. The barcoded virus had no discernible fitness defects in vivo, and the proportions of individual barcoded virus templates remained stable throughout the duration of acute plasma viremia. ZIKV RNA also was detected in maternal plasma from a pregnant animal infected with barcoded virus for 67 days. The complexity of the virus population declined precipitously 8 days following infection of the dam, consistent with the timing of typical resolution of ZIKV in non-pregnant macaques and remained low for the subsequent duration of viremia. Our approach showed that synthetic swarm viruses can be used to probe the composition of ZIKV populations over time in vivo to understand vertical transmission, persistent reservoirs, bottlenecks, and evolutionary dynamics. Understanding the complex dynamics of Zika virus (ZIKV) infection during pregnancy and during transmission to and from vertebrate host and mosquito vector is critical for a thorough understanding of viral transmission, pathogenesis, immune evasion, and reservoir establishment. We sought to develop a virus model system for use in nonhuman primates and mosquitoes that allows for the genetic discrimination of molecularly cloned viruses. This “synthetic swarm” of viruses incorporates a molecular barcode that allows for tracking and monitoring individual viral lineages during infection. Here we infected rhesus macaques with this virus to study the dynamics of ZIKV infection in nonhuman primates as well as during mosquito infection/transmission. We found that the proportions of individual barcoded viruses remained relatively stable during acute infection in pregnant and nonpregnant animals. However, in a pregnant animal, the complexity of the virus population declined precipitously 8 days following infection, consistent with the timing of typical resolution of ZIKV in non-pregnant macaques and remained low for the subsequent duration of viremia.
Collapse
Affiliation(s)
- Matthew T. Aliota
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Dawn M. Dudley
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Christina M. Newman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - James Weger-Lucarelli
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Ft. Collins, Colorado, United States of America
| | - Laurel M. Stewart
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michelle R. Koenig
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Meghan E. Breitbach
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Andrea M. Weiler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Matthew R. Semler
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Gabrielle L. Barry
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Katie R. Zarbock
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Amelia K. Haj
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ryan V. Moriarty
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mariel S. Mohns
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Emma L. Mohr
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Vanessa Venturi
- Infection Analytics Program, Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, Australia
| | - Nancy Schultz-Darken
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Eric Peterson
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Wendy Newton
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michele L. Schotzko
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Heather A. Simmons
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Andres Mejia
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jennifer M. Hayes
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Miles P. Davenport
- Infection Analytics Program, Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, Australia
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Gregory D. Ebel
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Ft. Collins, Colorado, United States of America
| | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (DHO); (SLO)
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (DHO); (SLO)
| |
Collapse
|
54
|
Patterson EI, Khanipov K, Rojas MM, Kautz TF, Rockx-Brouwer D, Golovko G, Albayrak L, Fofanov Y, Forrester NL. Mosquito bottlenecks alter viral mutant swarm in a tissue and time-dependent manner with contraction and expansion of variant positions and diversity. Virus Evol 2018; 4:vey001. [PMID: 29479479 PMCID: PMC5814806 DOI: 10.1093/ve/vey001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Viral diversity is theorized to play a significant role during virus infections, particularly for arthropod-borne viruses (arboviruses) that must infect both vertebrate and invertebrate hosts. To determine how viral diversity influences mosquito infection and dissemination Culex taeniopus mosquitoes were infected with the Venezuelan equine encephalitis virus endemic strain 68U201. Bodies and legs/wings of the mosquitoes were collected individually and subjected to multi-parallel sequencing. Virus sequence diversity was calculated for each tissue. Greater diversity was seen in mosquitoes with successful dissemination versus those with no dissemination. Diversity across time revealed that bottlenecks influence diversity following dissemination to the legs/wings, but levels of diversity are restored by Day 12 post-dissemination. Specific minority variants were repeatedly identified across the mosquito cohort, some in nearly every tissue and time point, suggesting that certain variants are important in mosquito infection and dissemination. This study demonstrates that the interaction between the mosquito and the virus results in changes in diversity and the mutational spectrum and may be essential for successful transition of the bottlenecks associated with arbovirus infection.
Collapse
Affiliation(s)
- Edward I Patterson
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0610, USA
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-0617, USA
| | - Mark M Rojas
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-0617, USA
| | - Tiffany F Kautz
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0610, USA
| | - Dedeke Rockx-Brouwer
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0610, USA
| | - Georgiy Golovko
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-0617, USA
| | - Levent Albayrak
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-0617, USA
| | - Yuriy Fofanov
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-0617, USA
| | - Naomi L Forrester
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0610, USA
| |
Collapse
|
55
|
Nonstructural Proteins of Alphavirus-Potential Targets for Drug Development. Viruses 2018; 10:v10020071. [PMID: 29425115 PMCID: PMC5850378 DOI: 10.3390/v10020071] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/02/2018] [Accepted: 02/06/2018] [Indexed: 12/31/2022] Open
Abstract
Alphaviruses are enveloped, positive single-stranded RNA viruses, typically transmitted by arthropods. They often cause arthralgia or encephalitic diseases in infected humans and there is currently no targeted antiviral treatment available. The re-emergence of alphaviruses in Asia, Europe, and the Americas over the last decade, including chikungunya and o'nyong'nyong viruses, have intensified the search for selective inhibitors. In this review, we highlight key molecular determinants within the alphavirus replication complex that have been identified as viral targets, focusing on their structure and functionality in viral dissemination. We also summarize recent structural data of these viral targets and discuss how these could serve as templates to facilitate structure-based drug design and development of small molecule inhibitors.
Collapse
|
56
|
Mosquitoes Transmit Unique West Nile Virus Populations during Each Feeding Episode. Cell Rep 2018; 19:709-718. [PMID: 28445723 DOI: 10.1016/j.celrep.2017.03.076] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/26/2017] [Accepted: 03/28/2017] [Indexed: 11/23/2022] Open
Abstract
Arthropod-borne viruses (arboviruses), such as Zika virus, chikungunya virus, and West Nile virus (WNV), pose continuous threats to emerge and cause large epidemics. Often, these events are associated with novel virus variants optimized for local transmission that first arise as minorities within a host. Thus, the conditions that regulate the frequency of intrahost variants are important determinants of emergence. Here, we describe the dynamics of WNV genetic diversity during its transmission cycle. By temporally sampling saliva from individual mosquitoes, we demonstrate that virus populations expectorated by mosquitoes are highly diverse and unique to each feeding episode. After transmission to birds, however, most genetic diversity is removed by strong purifying selection. Further, transmission of potentially mosquito-adaptive WNV variants is strongly influenced by genetic drift in mosquitoes. These results highlight the complex evolutionary forces a novel virus variant must overcome to alter infection phenotypes at the population level.
Collapse
|
57
|
Wagar ZL, Tree MO, Mpoy MC, Conway MJ. Low density lipopolyprotein inhibits flavivirus acquisition in Aedes aegypti. INSECT MOLECULAR BIOLOGY 2017; 26:734-742. [PMID: 28718976 DOI: 10.1111/imb.12334] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Aedes aegypti is the primary vector of a number of human pathogens including dengue virus (DENV) and Zika virus (ZIKV). Ae. aegypti acquires these viruses during the processing of bloodmeals obtained from an infected vertebrate host. Vertebrate blood contains a number of factors that have the potential to modify virus acquisition in the mosquito. Interestingly, low density lipopolyprotein (LDL) levels are decreased during severe DENV infection. Accordingly, we hypothesized that LDL is a modifiable factor that can influence flavivirus acquisition in the mosquito. We found that LDL is endocytosed by Ae. aegypti cells in a dynamin-dependent manner. LDL is also endocytosed by midgut epithelial cells and accumulates at the luminal midgut epithelium during bloodmeal digestion. Importantly, pretreatment with LDL, but not high density lipopolyprotein (HDL), significantly inhibited both DENV and ZIKV infection in vitro, and LDL inhibited ZIKV infection in vivo. This study identifies human LDL or 'bad cholesterol' as a modifiable factor that can inhibit flavivirus acquisition in Ae. aegypti. Identification of modifiable blood factors and critical cellular interactions that mediate pathogen acquisition may lead to novel strategies to disrupt the transmission cycle of vector-borne diseases.
Collapse
Affiliation(s)
- Z L Wagar
- Foundational Sciences, Central Michigan University, College of Medicine, Mount Pleasant, MI, USA
| | - M O Tree
- Foundational Sciences, Central Michigan University, College of Medicine, Mount Pleasant, MI, USA
| | - M C Mpoy
- Foundational Sciences, Central Michigan University, College of Medicine, Mount Pleasant, MI, USA
| | - M J Conway
- Foundational Sciences, Central Michigan University, College of Medicine, Mount Pleasant, MI, USA
| |
Collapse
|
58
|
Lequime S, Richard V, Cao-Lormeau VM, Lambrechts L. Full-genome dengue virus sequencing in mosquito saliva shows lack of convergent positive selection during transmission by Aedes aegypti. Virus Evol 2017; 3:vex031. [PMID: 29497564 PMCID: PMC5782851 DOI: 10.1093/ve/vex031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Like other pathogens with high mutation and replication rates, within-host dengue virus
(DENV) populations evolve during infection of their main mosquito vector, Aedes
aegypti. Within-host DENV evolution during transmission provides opportunities
for adaptation and emergence of novel virus variants. Recent studies of DENV genetic
diversity failed to detect convergent evolution of adaptive mutations in mosquito tissues
such as midgut and salivary glands, suggesting that convergent positive selection is not a
major driver of within-host DENV evolution in the vector. However, it is unknown whether
this conclusion extends to the transmitted viral subpopulation because it is technically
difficult to sequence DENV genomes in mosquito saliva. Here, we achieved DENV full-genome
sequencing by pooling saliva samples collected non-sacrificially from 49 to 163 individual
Ae. aegypti mosquitoes previously infected with one of two DENV-1
genotypes. We compared the transmitted viral subpopulations found in the pooled saliva
samples collected in time series with the input viral population present in the infectious
blood meal. In all pooled saliva samples examined, the full-genome consensus sequence of
the input viral population was unchanged. Although the pooling strategy prevents analysis
of individual saliva samples, our results demonstrate the lack of strong convergent
positive selection during a single round of DENV transmission by Ae.
aegypti. This finding reinforces the idea that genetic drift and purifying
selection are the dominant evolutionary forces shaping within-host DENV genetic diversity
during transmission by mosquitoes.
Collapse
Affiliation(s)
- Sebastian Lequime
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, 28 rue du Docteur Roux, 75015 Paris, France.,Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, 25-28 rue du Docteur Roux, 75015 Paris, France.,Université Pierre et Marie Curie, Cellule Pasteur UPMC, 4 place Jussieu, 75005 Paris, France
| | - Vaea Richard
- Unit of Emerging Infectious Diseases, Institut Louis Malardé, BP 30, 98713 Papeete, Tahiti, French Polynesia
| | - Van-Mai Cao-Lormeau
- Unit of Emerging Infectious Diseases, Institut Louis Malardé, BP 30, 98713 Papeete, Tahiti, French Polynesia
| | - Louis Lambrechts
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, 28 rue du Docteur Roux, 75015 Paris, France.,Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, 25-28 rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
59
|
Genetic bottlenecks in intraspecies virus transmission. Curr Opin Virol 2017; 28:20-25. [PMID: 29107838 DOI: 10.1016/j.coviro.2017.10.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 02/06/2023]
Abstract
Ultimately, viral evolution is a consequence of mutations that arise within and spread between infected hosts. The transmission bottleneck determines how much of the viral diversity generated in one host passes to another during transmission. It therefore plays a vital role in linking within-host processes to larger evolutionary trends. Although many studies suggest that transmission severely restricts the amount of genetic diversity that passes between individuals, there are important exceptions to this rule. In many cases, the factors that determine the size of the transmission bottleneck are only beginning to be understood. Here, we review how transmission bottlenecks are measured, how they arise, and their consequences for viral evolution.
Collapse
|
60
|
Sobel Leonard A, Weissman DB, Greenbaum B, Ghedin E, Koelle K. Transmission Bottleneck Size Estimation from Pathogen Deep-Sequencing Data, with an Application to Human Influenza A Virus. J Virol 2017; 91:e00171-17. [PMID: 28468874 PMCID: PMC5487570 DOI: 10.1128/jvi.00171-17] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/21/2017] [Indexed: 12/19/2022] Open
Abstract
The bottleneck governing infectious disease transmission describes the size of the pathogen population transferred from the donor to the recipient host. Accurate quantification of the bottleneck size is particularly important for rapidly evolving pathogens such as influenza virus, as narrow bottlenecks reduce the amount of transferred viral genetic diversity and, thus, may decrease the rate of viral adaptation. Previous studies have estimated bottleneck sizes governing viral transmission by using statistical analyses of variants identified in pathogen sequencing data. These analyses, however, did not account for variant calling thresholds and stochastic viral replication dynamics within recipient hosts. Because these factors can skew bottleneck size estimates, we introduce a new method for inferring bottleneck sizes that accounts for these factors. Through the use of a simulated data set, we first show that our method, based on beta-binomial sampling, accurately recovers transmission bottleneck sizes, whereas other methods fail to do so. We then apply our method to a data set of influenza A virus (IAV) infections for which viral deep-sequencing data from transmission pairs are available. We find that the IAV transmission bottleneck size estimates in this study are highly variable across transmission pairs, while the mean bottleneck size of 196 virions is consistent with a previous estimate for this data set. Furthermore, regression analysis shows a positive association between estimated bottleneck size and donor infection severity, as measured by temperature. These results support findings from experimental transmission studies showing that bottleneck sizes across transmission events can be variable and influenced in part by epidemiological factors.IMPORTANCE The transmission bottleneck size describes the size of the pathogen population transferred from the donor to the recipient host and may affect the rate of pathogen adaptation within host populations. Recent advances in sequencing technology have enabled bottleneck size estimation from pathogen genetic data, although there is not yet a consistency in the statistical methods used. Here, we introduce a new approach to infer the bottleneck size that accounts for variant identification protocols and noise during pathogen replication. We show that failing to account for these factors leads to an underestimation of bottleneck sizes. We apply this method to an existing data set of human influenza virus infections, showing that transmission is governed by a loose, but highly variable, transmission bottleneck whose size is positively associated with the severity of infection of the donor. Beyond advancing our understanding of influenza virus transmission, we hope that this work will provide a standardized statistical approach for bottleneck size estimation for viral pathogens.
Collapse
Affiliation(s)
| | | | - Benjamin Greenbaum
- Tisch Cancer Institute, Departments of Medicine, Oncological Sciences, and Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Elodie Ghedin
- Center for Genomics and Systems Biology, Department of Biology, and College of Global Public Health, New York University, New York, New York, USA
| | - Katia Koelle
- Department of Biology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
61
|
Transposon Mutagenesis of the Zika Virus Genome Highlights Regions Essential for RNA Replication and Restricted for Immune Evasion. J Virol 2017; 91:JVI.00698-17. [PMID: 28515302 DOI: 10.1128/jvi.00698-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 05/08/2017] [Indexed: 12/11/2022] Open
Abstract
The molecular constraints affecting Zika virus (ZIKV) evolution are not well understood. To investigate ZIKV genetic flexibility, we used transposon mutagenesis to add 15-nucleotide insertions throughout the ZIKV MR766 genome and subsequently deep sequenced the viable mutants. Few ZIKV insertion mutants replicated, which likely reflects a high degree of functional constraints on the genome. The NS1 gene exhibited distinct mutational tolerances at different stages of the screen. This result may define regions of the NS1 protein that are required for the different stages of the viral life cycle. The ZIKV structural genes showed the highest degree of insertional tolerance. Although the envelope (E) protein exhibited particular flexibility, the highly conserved envelope domain II (EDII) fusion loop of the E protein was intolerant of transposon insertions. The fusion loop is also a target of pan-flavivirus antibodies that are generated against other flaviviruses and neutralize a broad range of dengue virus and ZIKV isolates. The genetic restrictions identified within the epitopes in the EDII fusion loop likely explain the sequence and antigenic conservation of these regions in ZIKV and among multiple flaviviruses. Thus, our results provide insights into the genetic restrictions on ZIKV that may affect the evolution of this virus.IMPORTANCE Zika virus recently emerged as a significant human pathogen. Determining the genetic constraints on Zika virus is important for understanding the factors affecting viral evolution. We used a genome-wide transposon mutagenesis screen to identify where mutations were tolerated in replicating viruses. We found that the genetic regions involved in RNA replication were mostly intolerant of mutations. The genes coding for structural proteins were more permissive to mutations. Despite the flexibility observed in these regions, we found that epitopes bound by broadly reactive antibodies were genetically constrained. This finding may explain the genetic conservation of these epitopes among flaviviruses.
Collapse
|
62
|
Stavrou A, Daly JM, Maddison B, Gough K, Tarlinton R. How is Europe positioned for a re-emergence of Schmallenberg virus? Vet J 2017; 230:45-51. [PMID: 28668462 DOI: 10.1016/j.tvjl.2017.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/23/2017] [Accepted: 04/17/2017] [Indexed: 11/30/2022]
Abstract
Schmallenberg virus (SBV) caused a large scale epidemic in Europe from 2011 to 2013, infecting ruminants and causing foetal deformities after infection of pregnant animals. The main impact of the virus was financial loss due to restrictions on trade of animals, meat and semen. Although effective vaccines were produced, their uptake was never high. Along with the subsequent decline in new SBV infections and natural replacement of previously exposed livestock, this has resulted in a decrease in the number of protected animals. Recent surveillance has shown that a large population of naïve animals is currently present in Europe and that the virus is circulating at a low level. These changes in animal status, in combination with favourable conditions for insect vectors, may open the door to the re-emergence of SBV and another large scale outbreak in Europe. This review details the potential and preparedness for SBV re-emergence in Europe, discusses possible co-ordinated sentinel monitoring programmes for ruminant seroconversion and the presence of SBV in the insect vectors, and provides an overview of the economic impact associated with diagnosis, control and the effects of non-vaccination.
Collapse
Affiliation(s)
- Anastasios Stavrou
- School of Veterinary Medicine and Science the University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom
| | - Janet M Daly
- School of Veterinary Medicine and Science the University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, United Kingdom
| | - Ben Maddison
- Biotechnology Group, ADAS, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, United Kingdom
| | - Kevin Gough
- School of Veterinary Medicine and Science the University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, United Kingdom
| | - Rachael Tarlinton
- School of Veterinary Medicine and Science the University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, United Kingdom.
| |
Collapse
|
63
|
Pietilä MK, Hellström K, Ahola T. Alphavirus polymerase and RNA replication. Virus Res 2017; 234:44-57. [DOI: 10.1016/j.virusres.2017.01.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/05/2017] [Accepted: 01/09/2017] [Indexed: 10/20/2022]
|
64
|
Kramer LD. Complexity of virus-vector interactions. Curr Opin Virol 2016; 21:81-86. [PMID: 27580489 PMCID: PMC5138088 DOI: 10.1016/j.coviro.2016.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 12/16/2022]
Abstract
The inter-relationships among viruses, vectors and vertebrate hosts are complex and dynamic and shaped by biotic (e.g., viral strain, vector genetics, host susceptibility) and abiotic (e.g., temperature, rainfall, human land use) factors. It is anticipated that changes in climate, as predicted by the most recent Report of the Intergovernmental Panel on Climate Change, will result in landscape changes and consequent changes in spatiotemporal patterns of arbovirus transmission. To anticipate evolving patterns of virus activity in a dynamically changing environment, it is important to understand how interconnectedness of mosquito and virus biology together with climate influence arbovirus transmission intensity. Vector competence, survivorship, and feeding behavior, among other aspects of vectorial capacity are intrinsically important to estimate risk and design control approaches.
Collapse
Affiliation(s)
- Laura D Kramer
- Wadsworth Center, NYSDOH, United States, Zoonotic Diseases, 5668 State Farm Rd, Slingerlands, NY 12159, USA; School of Public Health, SUNY Albany, One University Place, Rensselaer, NY 12144, USA.
| |
Collapse
|
65
|
Evolutionary dynamics of dengue virus populations within the mosquito vector. Curr Opin Virol 2016; 21:47-53. [DOI: 10.1016/j.coviro.2016.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 07/23/2016] [Accepted: 07/27/2016] [Indexed: 02/05/2023]
|
66
|
Zwart MP, Elena SF. Matters of Size: Genetic Bottlenecks in Virus Infection and Their Potential Impact on Evolution. Annu Rev Virol 2016; 2:161-79. [PMID: 26958911 DOI: 10.1146/annurev-virology-100114-055135] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
For virus infections of multicellular hosts, narrow genetic bottlenecks during transmission and within-host spread appear to be widespread. These bottlenecks will affect the maintenance of genetic variation in a virus population and the prevalence of mixed-strain infections, thereby ultimately determining the strength with which different random forces act during evolution. Here we consider different approaches for estimating bottleneck sizes and weigh their merits. We then review quantitative estimates of bottleneck size during cellular infection, within-host spread, horizontal transmission, and finally vertical transmission. In most cases we find that bottlenecks do regularly occur, although in many cases they appear to be virion-concentration dependent. Finally, we consider the evolutionary implications of genetic bottlenecks during virus infection. Although on average strong bottlenecks will lead to declines in fitness, we consider a number of scenarios in which bottlenecks could also be advantageous for viruses.
Collapse
Affiliation(s)
- Mark P Zwart
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politècnica de València, 46022 València, Spain; .,Institute of Theoretical Physics, University of Cologne, 50937 Cologne, Germany;
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politècnica de València, 46022 València, Spain; .,The Santa Fe Institute, Santa Fe, New Mexico 87501
| |
Collapse
|
67
|
Grubaugh ND, Rückert C, Armstrong PM, Bransfield A, Anderson JF, Ebel GD, Brackney DE. Transmission bottlenecks and RNAi collectively influence tick-borne flavivirus evolution. Virus Evol 2016; 2:vew033. [PMID: 28058113 PMCID: PMC5210029 DOI: 10.1093/ve/vew033] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Arthropod-borne RNA viruses exist within hosts as heterogeneous populations of viral variants and, as a result, possess great genetic plasticity. Understanding the micro-evolutionary forces shaping these viruses can provide insights into how they emerge, adapt, and persist in new and changing ecological niches. While considerable attention has been directed toward studying the population dynamics of mosquito-borne viruses, little is known about tick-borne virus populations. Therefore, using a mouse and Ixodes scapularis tick transmission model, we examined Powassan virus (POWV; Flaviviridae, Flavivirus) populations in and between both the vertebrate host and arthropod vector. We found that genetic bottlenecks, RNAi-mediated diversification, and selective constraints collectively influence POWV evolution. Together, our data provide a mechanistic explanation for the slow, long-term evolutionary trends of POWV, and suggest that all arthropod-borne viruses encounter similar selective pressures at the molecular level (i.e. RNAi), yet evolve much differently due to their unique rates and modes of transmission.
Collapse
Affiliation(s)
- Nathan D Grubaugh
- Department of Microbiology Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, CO, USA
| | - Claudia Rückert
- Department of Microbiology Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, CO, USA
| | - Philip M Armstrong
- The Connecticut Agricultural Experiment Station, Center for Vector Biology and Zoonotic Diseases, New Haven, CT, USA
| | - Angela Bransfield
- The Connecticut Agricultural Experiment Station, Center for Vector Biology and Zoonotic Diseases, New Haven, CT, USA
| | - John F Anderson
- The Connecticut Agricultural Experiment Station, Center for Vector Biology and Zoonotic Diseases, New Haven, CT, USA
| | - Gregory D Ebel
- Department of Microbiology Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, CO, USA
| | - Doug E Brackney
- The Connecticut Agricultural Experiment Station, Center for Vector Biology and Zoonotic Diseases, New Haven, CT, USA
| |
Collapse
|
68
|
Xia H, Beck AS, Gargili A, Forrester N, Barrett ADT, Bente DA. Transstadial Transmission and Long-term Association of Crimean-Congo Hemorrhagic Fever Virus in Ticks Shapes Genome Plasticity. Sci Rep 2016; 6:35819. [PMID: 27775001 PMCID: PMC5075774 DOI: 10.1038/srep35819] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 10/04/2016] [Indexed: 02/05/2023] Open
Abstract
The trade-off hypothesis, the current paradigm of arbovirus evolution, proposes that cycling between vertebrate and invertebrate hosts presents significant constraints on genetic change of arboviruses. Studying these constraints in mosquito-borne viruses has led to a new understanding of epizootics. The trade-off hypothesis is assumed to be applicable to tick-borne viruses too, although studies are lacking. Tick-borne Crimean-Congo hemorrhagic fever virus (CCHFV), a member of the family Bunyaviridae, is a major cause of severe human disease worldwide and shows an extraordinary amount of genetic diversity compared to other arboviruses, which has been linked to increased virulence and emergence in new environments. Using a transmission model for CCHFV, utilizing the main vector tick species and mice plus next generation sequencing, we detected a substantial number of consensus-level mutations in CCHFV recovered from ticks after only a single transstadial transmission, whereas none were detected in CCHFV obtained from the mammalian host. Furthermore, greater viral intra-host diversity was detected in the tick compared to the vertebrate host. Long-term association of CCHFV with its tick host for 1 year demonstrated mutations in the viral genome become fixed over time. These findings suggest that the trade-off hypothesis may not be accurate for all arboviruses.
Collapse
Affiliation(s)
- Han Xia
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Galveston National Laboratory, Galveston TX, USA.,Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Andrew S Beck
- Department of Pathology, and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Naomi Forrester
- Department of Pathology, and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, USA
| | - Alan D T Barrett
- Department of Pathology, and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, USA
| | - Dennis A Bente
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Galveston National Laboratory, Galveston TX, USA
| |
Collapse
|
69
|
Dynamics of West Nile virus evolution in mosquito vectors. Curr Opin Virol 2016; 21:132-138. [PMID: 27788400 DOI: 10.1016/j.coviro.2016.09.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 01/24/2023]
Abstract
West Nile virus remains the most common cause of arboviral encephalitis in North America. Since it was introduced, it has undergone adaptive genetic change as it spread throughout the continent. The WNV transmission cycle is relatively tractable in the laboratory. Thus the virus serves as a convenient model system for studying the population biology of mosquito-borne flaviviruses as they undergo transmission to and from mosquitoes and vertebrates. This review summarizes the current knowledge regarding the population dynamics of this virus within mosquito vectors.
Collapse
|
70
|
Ye YH, Chenoweth SF, Carrasco AM, Allen SL, Frentiu FD, van den Hurk AF, Beebe NW, McGraw EA. Evolutionary potential of the extrinsic incubation period of dengue virus in Aedes aegypti. Evolution 2016; 70:2459-2469. [PMID: 27530960 DOI: 10.1111/evo.13039] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 07/19/2016] [Accepted: 08/05/2016] [Indexed: 01/17/2023]
Abstract
Dengue fever is the most common arboviral disease worldwide. It is caused by dengue viruses (DENV) and the mosquito Aedes aegypti is its primary vector. One of the most powerful determinants of a mosquito's ability to transmit DENV is the length of the extrinsic incubation period (EIP), the time it takes for a virus to be transmitted by a mosquito after consuming an infected blood meal. Here, we repeatedly measured DENV load in the saliva of individual mosquitoes over their lifetime and used this in combination with a breeding design to determine the extent to which EIP might respond to the evolutionary forces of drift and selection. We demonstrated that genetic variation among mosquitoes contributes significantly to transmission potential and length of EIP. We reveal that shorter EIP is genetically correlated with reduced mosquito lifespan, highlighting negative life-history consequences for virus-infected mosquitoes. This work highlights the capacity for local genetic variation in mosquito populations to evolve and to dramatically affect the nature of human outbreaks. It also provides the impetus for isolating mosquito genes that determine EIP. More broadly, our dual experimental approach offers new opportunities for studying the evolutionary potential of transmission traits in other vector/pathogen systems.
Collapse
Affiliation(s)
- Yixin H Ye
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Stephen F Chenoweth
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Alison M Carrasco
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Scott L Allen
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Francesca D Frentiu
- Institute for Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia
| | - Andrew F van den Hurk
- Public Health Virology, Communicable Diseases Unit, Queensland Health and Forensic and Scientific Services, Coopers Plains, QLD, 4108, Australia
| | - Nigel W Beebe
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,CSIRO Biosecurity Flagship, Ecosciences Precinct, Dutton Park, QLD, 4102, Australia
| | - Elizabeth A McGraw
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
71
|
Transmission and evolution of tick-borne viruses. Curr Opin Virol 2016; 21:67-74. [PMID: 27569396 DOI: 10.1016/j.coviro.2016.08.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 02/05/2023]
Abstract
Ticks transmit a diverse array of viruses such as tick-borne encephalitis virus, Powassan virus, and Crimean-Congo hemorrhagic fever virus that are reemerging in many parts of the world. Most tick-borne viruses (TBVs) are RNA viruses that replicate using error-prone polymerases and produce genetically diverse viral populations that facilitate their rapid evolution and adaptation to novel environments. This article reviews the mechanisms of virus transmission by tick vectors, the molecular evolution of TBVs circulating in nature, and the processes shaping viral diversity within hosts to better understand how these viruses may become public health threats. In addition, remaining questions and future directions for research are discussed.
Collapse
|
72
|
Frise R, Bradley K, van Doremalen N, Galiano M, Elderfield RA, Stilwell P, Ashcroft JW, Fernandez-Alonso M, Miah S, Lackenby A, Roberts KL, Donnelly CA, Barclay WS. Contact transmission of influenza virus between ferrets imposes a looser bottleneck than respiratory droplet transmission allowing propagation of antiviral resistance. Sci Rep 2016; 6:29793. [PMID: 27430528 PMCID: PMC4949428 DOI: 10.1038/srep29793] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 06/20/2016] [Indexed: 12/19/2022] Open
Abstract
Influenza viruses cause annual seasonal epidemics and occasional pandemics. It is important to elucidate the stringency of bottlenecks during transmission to shed light on mechanisms that underlie the evolution and propagation of antigenic drift, host range switching or drug resistance. The virus spreads between people by different routes, including through the air in droplets and aerosols, and by direct contact. By housing ferrets under different conditions, it is possible to mimic various routes of transmission. Here, we inoculated donor animals with a mixture of two viruses whose genomes differed by one or two reverse engineered synonymous mutations, and measured the transmission of the mixture to exposed sentinel animals. Transmission through the air imposed a tight bottleneck since most recipient animals became infected by only one virus. In contrast, a direct contact transmission chain propagated a mixture of viruses suggesting the dose transferred by this route was higher. From animals with a mixed infection of viruses that were resistant and sensitive to the antiviral drug oseltamivir, resistance was propagated through contact transmission but not by air. These data imply that transmission events with a looser bottleneck can propagate minority variants and may be an important route for influenza evolution.
Collapse
Affiliation(s)
- Rebecca Frise
- Imperial College London, Faculty of Medicine, Division of Infectious Disease, Norfolk Place, London, W2 1PG, United Kingdom
| | - Konrad Bradley
- Imperial College London, Faculty of Medicine, Division of Infectious Disease, Norfolk Place, London, W2 1PG, United Kingdom
| | - Neeltje van Doremalen
- Imperial College London, Faculty of Medicine, Division of Infectious Disease, Norfolk Place, London, W2 1PG, United Kingdom
| | - Monica Galiano
- Public Health England, Colindale, London, United Kingdom
| | - Ruth A. Elderfield
- Imperial College London, Faculty of Medicine, Division of Infectious Disease, Norfolk Place, London, W2 1PG, United Kingdom
| | - Peter Stilwell
- Imperial College London, Faculty of Medicine, Division of Infectious Disease, Norfolk Place, London, W2 1PG, United Kingdom
| | - Jonathan W. Ashcroft
- Imperial College London, Faculty of Medicine, Division of Infectious Disease, Norfolk Place, London, W2 1PG, United Kingdom
| | | | - Shahjahan Miah
- Public Health England, Colindale, London, United Kingdom
| | - Angie Lackenby
- Public Health England, Colindale, London, United Kingdom
| | - Kim L. Roberts
- Imperial College London, Faculty of Medicine, Division of Infectious Disease, Norfolk Place, London, W2 1PG, United Kingdom
| | - Christl A. Donnelly
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, United Kingdom
| | - Wendy S. Barclay
- Imperial College London, Faculty of Medicine, Division of Infectious Disease, Norfolk Place, London, W2 1PG, United Kingdom
| |
Collapse
|
73
|
Importance of mosquito "quasispecies" in selecting an epidemic arthropod-borne virus. Sci Rep 2016; 6:29564. [PMID: 27383735 PMCID: PMC4935986 DOI: 10.1038/srep29564] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/16/2016] [Indexed: 11/08/2022] Open
Abstract
Most arthropod-borne viruses (arboviruses), perpetuated by alternation between a vertebrate host and an insect vector, are likely to emerge through minor genetic changes enabling the virus to adapt to new hosts. In the past decade, chikungunya virus (CHIKV; Alphavirus, Togaviridae) has emerged on La Réunion Island following the selection of a unique substitution in the CHIKV E1 envelope glycoprotein (E1-A226V) of an East-Central-South African (ECSA) genotype conferring a higher transmission rate by the mosquito Aedes albopictus. Assumed to have occurred independently on at least four separate occasions, this evolutionary convergence was suspected to be responsible for CHIKV worldwide expansion. However, assumptions on CHIKV emergence were mainly based on viral genetic changes and the role of the mosquito population quasispecies remained unexplored. Here we show that the nature of the vector population is pivotal in selecting the epidemic CHIKV. We demonstrate using microsatellites mosquito genotyping that Ae. albopictus populations are genetically differentiated, contributing to explain their differential ability to select the E1-226V mutation. Aedes albopictus, newly introduced in Congo coinciding with the first CHIKV outbreak, was not able to select the substitution E1-A226V nor to preferentially transmit a CHIKV clone harboring the E1-226V as did Ae. albopictus from La Réunion.
Collapse
|
74
|
Lequime S, Fontaine A, Ar Gouilh M, Moltini-Conclois I, Lambrechts L. Genetic Drift, Purifying Selection and Vector Genotype Shape Dengue Virus Intra-host Genetic Diversity in Mosquitoes. PLoS Genet 2016; 12:e1006111. [PMID: 27304978 PMCID: PMC4909269 DOI: 10.1371/journal.pgen.1006111] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/17/2016] [Indexed: 01/15/2023] Open
Abstract
Due to their error-prone replication, RNA viruses typically exist as a diverse population of closely related genomes, which is considered critical for their fitness and adaptive potential. Intra-host demographic fluctuations that stochastically reduce the effective size of viral populations are a challenge to maintaining genetic diversity during systemic host infection. Arthropod-borne viruses (arboviruses) traverse several anatomical barriers during infection of their arthropod vectors that are believed to impose population bottlenecks. These anatomical barriers have been associated with both maintenance of arboviral genetic diversity and alteration of the variant repertoire. Whether these patterns result from stochastic sampling (genetic drift) rather than natural selection, and/or from the influence of vector genetic heterogeneity has not been elucidated. Here, we used deep sequencing of full-length viral genomes to monitor the intra-host evolution of a wild-type dengue virus isolate during infection of several mosquito genetic backgrounds. We estimated a bottleneck size ranging from 5 to 42 founding viral genomes at initial midgut infection, irrespective of mosquito genotype, resulting in stochastic reshuffling of the variant repertoire. The observed level of genetic diversity increased following initial midgut infection but significantly differed between mosquito genetic backgrounds despite a similar initial bottleneck size. Natural selection was predominantly negative (purifying) during viral population expansion. Taken together, our results indicate that dengue virus intra-host genetic diversity in the mosquito vector is shaped by genetic drift and purifying selection, and point to a novel role for vector genetic factors in the genetic breadth of virus populations during infection. Identifying the evolutionary forces acting on arboviral populations within their arthropod vector provides novel insights into arbovirus evolution. During infection of their arthropod vectors, arthropod-borne viruses (arboviruses) such as dengue viruses traverse several anatomical barriers that are believed to cause dramatic reductions in population size. Such population bottlenecks challenge the maintenance of viral genetic diversity, which is considered critical for fitness and adaptability of arboviruses. Anatomical barriers in the vector were previously associated with both maintenance of arboviral genetic diversity and alteration of the variant repertoire. However, the relative role of random processes and natural selection, and the influence of vector genetic heterogeneity have not been elucidated. In this study, we used high-throughput sequencing to monitor dengue virus genetic diversity during infection of several genetic backgrounds of their mosquito vector. Our results show that initial infection of the vector is randomly founded by only a few tens of individual virus genomes. The overall level of viral genetic diversity generated during infection was predominantly under purifying selection but differed significantly between mosquito genetic backgrounds. Thus, in addition to random evolutionary forces and the purging of deleterious mutations that shape dengue virus genetic diversity during vector infection, our results also point to a novel role for vector genetic factors in the genetic breadth of virus populations.
Collapse
Affiliation(s)
- Sebastian Lequime
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Paris, France
- Université Pierre et Marie Curie, Cellule Pasteur UPMC, Paris, France
- * E-mail: (SL); (LL)
| | - Albin Fontaine
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Paris, France
- Equipe Résidente de Recherche d’Infectiologie Tropicale, Division Expertise, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Meriadeg Ar Gouilh
- Unité Environnement et Risques Infectieux, Cellule d’Intervention Biologique d’Urgence, Department of Infection and Epidemiology, Institut Pasteur, Paris, France
- EA4655, Unité Risques Microbiens U2RM, Université de Caen Normandie, Caen, France
| | - Isabelle Moltini-Conclois
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Paris, France
| | - Louis Lambrechts
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Paris, France
- * E-mail: (SL); (LL)
| |
Collapse
|
75
|
Coffey LL, Reisen WK. West Nile Virus Fitness Costs in Different Mosquito Species. Trends Microbiol 2016; 24:429-430. [PMID: 27108207 DOI: 10.1016/j.tim.2016.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 11/25/2022]
Abstract
West Nile virus (WNV) remains an important public health problem causing annual epidemics in the United States. Grubaugh et al. observed that WNV genetic divergence is dependent on the vector mosquito species. This suggests that specific WNV vector-bird species pairings may generate novel genotypes that could promote outbreaks.
Collapse
Affiliation(s)
- Lark L Coffey
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | - William K Reisen
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
76
|
Grubaugh ND, Weger-Lucarelli J, Murrieta RA, Fauver JR, Garcia-Luna SM, Prasad AN, Black WC, Ebel GD. Genetic Drift during Systemic Arbovirus Infection of Mosquito Vectors Leads to Decreased Relative Fitness during Host Switching. Cell Host Microbe 2016; 19:481-92. [PMID: 27049584 DOI: 10.1016/j.chom.2016.03.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/19/2016] [Accepted: 03/07/2016] [Indexed: 11/30/2022]
Abstract
The emergence of mosquito-borne RNA viruses, such as West Nile virus (WNV), is facilitated by genetically complex virus populations within hosts. Here, we determine whether WNV enzootic (Culex tarsalis, Cx. quinquefasciatus, and Cx. pipiens) and bridge vectors (Aedes aegypti) have differential impacts on viral mutational diversity and fitness. During systemic mosquito infection, WNV faced stochastic reductions in genetic diversity that rapidly was recovered during intra-tissue population expansions. Interestingly, this intrahost selection and diversification was mosquito species dependent with Cx. tarsalis and Cx. quinquefasciatus exhibiting greater WNV divergence. However, recovered viral populations contained a preponderance of potentially deleterious mutations (i.e., high mutational load) and had lower relative fitness in avian cells compared to input virus. These findings demonstrate that the adaptive potential associated with mosquito transmission varies depending on the mosquito species and carries a significant fitness cost in vertebrates.
Collapse
Affiliation(s)
- Nathan D Grubaugh
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - James Weger-Lucarelli
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Reyes A Murrieta
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Joseph R Fauver
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Selene M Garcia-Luna
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Abhishek N Prasad
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - William C Black
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Gregory D Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
77
|
Hapuarachchi HC, Koo C, Kek R, Xu H, Lai YL, Liu L, Kok SY, Shi Y, Chuen RLT, Lee KS, Maurer-Stroh S, Ng LC. Intra-epidemic evolutionary dynamics of a Dengue virus type 1 population reveal mutant spectra that correlate with disease transmission. Sci Rep 2016; 6:22592. [PMID: 26940650 PMCID: PMC4778070 DOI: 10.1038/srep22592] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/17/2016] [Indexed: 12/26/2022] Open
Abstract
Dengue virus (DENV) is currently the most prevalent mosquito-borne viral pathogen. DENVs naturally exist as highly heterogeneous populations. Even though the descriptions on DENV diversity are plentiful, only a few studies have narrated the dynamics of intra-epidemic virus diversity at a fine scale. Such accounts are important to decipher the reciprocal relationship between viral evolutionary dynamics and disease transmission that shape dengue epidemiology. In the current study, we present a micro-scale genetic analysis of a monophyletic lineage of DENV-1 genotype III (epidemic lineage) detected from November 2012 to May 2014. The lineage was involved in an unprecedented dengue epidemic in Singapore during 2013–2014. Our findings showed that the epidemic lineage was an ensemble of mutants (variants) originated from an initial mixed viral population. The composition of mutant spectrum was dynamic and positively correlated with case load. The close interaction between viral evolution and transmission intensity indicated that tracking genetic diversity through time is potentially a useful tool to infer DENV transmission dynamics and thereby, to assess the epidemic risk in a disease control perspective. Moreover, such information is salient to understand the viral basis of clinical outcome and immune response variations that is imperative to effective vaccine design.
Collapse
Affiliation(s)
| | - Carmen Koo
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Relus Kek
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Helen Xu
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Yee Ling Lai
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Lilac Liu
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Suet Yheng Kok
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Yuan Shi
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Raphael Lee Tze Chuen
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix Building, Singapore 138671
| | - Kim-Sung Lee
- School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Block 83, #04-00, 535 Clementi Road, Singapore 599489
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix Building, Singapore 138671.,School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551.,National Public Health Laboratory (NPHL), Ministry of Health (MOH), 3 Biopolis Drive, #05-14 to 16, Synapse, Singapore 138623
| | - Lee Ching Ng
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667.,School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
78
|
Conway MJ. Identification of a Flavivirus Sequence in a Marine Arthropod. PLoS One 2015; 10:e0146037. [PMID: 26717191 PMCID: PMC4699914 DOI: 10.1371/journal.pone.0146037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/11/2015] [Indexed: 01/12/2023] Open
Abstract
Phylogenetic analysis has yet to uncover the early origins of flaviviruses. In this study, I mined a database of expressed sequence tags in order to discover novel flavivirus sequences. Flavivirus sequences were identified in a pool of mRNA extracted from the sea spider Endeis spinosa (Pycnogonida, Pantopoda). Reconstruction of the translated sequences and BLAST analysis matched the sequence to the flavivirus NS5 gene. Additional sequences corresponding to envelope and the NS5 MTase domain were also identified. Phylogenetic analysis of homologous NS5 sequences revealed that Endeis spinosa NS5 (ESNS5) is likely related to classical insect-specific flaviviruses. It is unclear if ESNS5 represents genetic material from an active viral infection or an integrated viral genome. These data raise the possibility that classical insect-specific flaviviruses and perhaps medically relevant flaviviruses, evolved from progenitors that infected marine arthropods.
Collapse
Affiliation(s)
- Michael J. Conway
- Foundational Sciences, Central Michigan University, College of Medicine, Mt. Pleasant, Michigan, 48859, United States of America
| |
Collapse
|
79
|
Stapleford KA, Coffey LL, Lay S, Bordería AV, Duong V, Isakov O, Rozen-Gagnon K, Arias-Goeta C, Blanc H, Beaucourt S, Haliloğlu T, Schmitt C, Bonne I, Ben-Tal N, Shomron N, Failloux AB, Buchy P, Vignuzzi M. Emergence and transmission of arbovirus evolutionary intermediates with epidemic potential. Cell Host Microbe 2015; 15:706-16. [PMID: 24922573 DOI: 10.1016/j.chom.2014.05.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/19/2014] [Accepted: 04/22/2014] [Indexed: 01/14/2023]
Abstract
The high replication and mutation rates of RNA viruses can result in the emergence of new epidemic variants. Thus, the ability to follow host-specific evolutionary trajectories of viruses is essential to predict and prevent epidemics. By studying the spatial and temporal evolution of chikungunya virus during natural transmission between mosquitoes and mammals, we have identified viral evolutionary intermediates prior to emergence. Analysis of virus populations at anatomical barriers revealed that the mosquito midgut and salivary gland pose population bottlenecks. By focusing on virus subpopulations in the saliva of multiple mosquito strains, we recapitulated the emergence of a recent epidemic strain of chikungunya and identified E1 glycoprotein mutations with potential to emerge in the future. These mutations confer fitness advantages in mosquito and mammalian hosts by altering virion stability and fusogenic activity. Thus, virus evolutionary trajectories can be predicted and studied in the short term before new variants displace currently circulating strains.
Collapse
Affiliation(s)
- Kenneth A Stapleford
- Viral Populations and Pathogenesis Unit, Institut Pasteur, Centre National de la Recherche Scientifique UMR 3569, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Lark L Coffey
- Center for Vectorborne Diseases, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, 5327 VM3A, Davis, CA 95616, USA
| | - Sreyrath Lay
- Virology Unit, Institut Pasteur in Cambodia 5, Monivong Boulevard, PO Box 983, Phnom Penh, Cambodia
| | - Antonio V Bordería
- Viral Populations and Pathogenesis Unit, Institut Pasteur, Centre National de la Recherche Scientifique UMR 3569, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Veasna Duong
- Virology Unit, Institut Pasteur in Cambodia 5, Monivong Boulevard, PO Box 983, Phnom Penh, Cambodia
| | - Ofer Isakov
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Kathryn Rozen-Gagnon
- Viral Populations and Pathogenesis Unit, Institut Pasteur, Centre National de la Recherche Scientifique UMR 3569, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Camilo Arias-Goeta
- Arboviruses and Insect Vectors Lab, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Hervé Blanc
- Viral Populations and Pathogenesis Unit, Institut Pasteur, Centre National de la Recherche Scientifique UMR 3569, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Stéphanie Beaucourt
- Viral Populations and Pathogenesis Unit, Institut Pasteur, Centre National de la Recherche Scientifique UMR 3569, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Türkan Haliloğlu
- Department of Chemical Engineering and Polymer Research Center, Boğaziçi University, Bebek 34342, Istanbul, Turkey
| | - Christine Schmitt
- Ultrastructural Microscopy Platform, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Isabelle Bonne
- Ultrastructural Microscopy Platform, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Noam Shomron
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Anna-Bella Failloux
- Arboviruses and Insect Vectors Lab, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Philippe Buchy
- Virology Unit, Institut Pasteur in Cambodia 5, Monivong Boulevard, PO Box 983, Phnom Penh, Cambodia
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, Institut Pasteur, Centre National de la Recherche Scientifique UMR 3569, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
80
|
Franz AWE, Kantor AM, Passarelli AL, Clem RJ. Tissue Barriers to Arbovirus Infection in Mosquitoes. Viruses 2015; 7:3741-67. [PMID: 26184281 PMCID: PMC4517124 DOI: 10.3390/v7072795] [Citation(s) in RCA: 302] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 07/01/2015] [Accepted: 07/03/2015] [Indexed: 12/24/2022] Open
Abstract
Arthropod-borne viruses (arboviruses) circulate in nature between arthropod vectors and vertebrate hosts. Arboviruses often cause devastating diseases in vertebrate hosts, but they typically do not cause significant pathology in their arthropod vectors. Following oral acquisition of a viremic bloodmeal from a vertebrate host, the arbovirus disease cycle requires replication in the cellular environment of the arthropod vector. Once the vector has become systemically and persistently infected, the vector is able to transmit the virus to an uninfected vertebrate host. In order to systemically infect the vector, the virus must cope with innate immune responses and overcome several tissue barriers associated with the midgut and the salivary glands. In this review we describe, in detail, the typical arbovirus infection route in competent mosquito vectors. Based on what is known from the literature, we explain the nature of the tissue barriers that arboviruses are confronted with in a mosquito vector and how arboviruses might surmount these barriers. We also point out controversial findings to highlight particular areas that are not well understood and require further research efforts.
Collapse
Affiliation(s)
- Alexander W E Franz
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA.
| | - Asher M Kantor
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA.
| | | | - Rollie J Clem
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
81
|
Ye YH, Carrasco AM, Frentiu FD, Chenoweth SF, Beebe NW, van den Hurk AF, Simmons CP, O’Neill SL, McGraw EA. Wolbachia Reduces the Transmission Potential of Dengue-Infected Aedes aegypti. PLoS Negl Trop Dis 2015; 9:e0003894. [PMID: 26115104 PMCID: PMC4482661 DOI: 10.1371/journal.pntd.0003894] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 06/09/2015] [Indexed: 12/03/2022] Open
Abstract
Background Dengue viruses (DENV) are the causative agents of dengue, the world’s most prevalent arthropod-borne disease with around 40% of the world’s population at risk of infection annually. Wolbachia pipientis, an obligate intracellular bacterium, is being developed as a biocontrol strategy against dengue because it limits replication of the virus in the mosquito. The Wolbachia strain wMel, which has been introduced into the mosquito vector, Aedes aegypti, has been shown to invade and spread to near fixation in field releases. Standard measures of Wolbachia’s efficacy for blocking virus replication focus on the detection and quantification of virus in mosquito tissues. Examining the saliva provides a more accurate measure of transmission potential and can reveal the extrinsic incubation period (EIP), that is, the time it takes virus to arrive in the saliva following the consumption of DENV viremic blood. EIP is a key determinant of a mosquito’s ability to transmit DENVs, as the earlier the virus appears in the saliva the more opportunities the mosquito will have to infect humans on subsequent bites. Methodology/Principal Findings We used a non-destructive assay to repeatedly quantify DENV in saliva from wMel-infected and Wolbachia-free wild-type control mosquitoes following the consumption of a DENV-infected blood meal. We show that wMel lengthens the EIP, reduces the frequency at which the virus is expectorated and decreases the dengue copy number in mosquito saliva as compared to wild-type mosquitoes. These observations can at least be partially explained by an overall reduction in saliva produced by wMel mosquitoes. More generally, we found that the concentration of DENV in a blood meal is a determinant of the length of EIP, saliva virus titer and mosquito survival. Conclusions/Significance The saliva-based traits reported here offer more disease-relevant measures of Wolbachia’s effects on the vector and the virus. The lengthening of EIP highlights another means, in addition to the reduction of infection frequencies and DENV titers in mosquitoes, by which Wolbachia should operate to reduce DENV transmission in the field. Dengue is endemic in more than 100 countries and is transmitted by the mosquito Aedes aegypti. The use of the symbiotic bacterium Wolbachia has become a potential biocontrol approach against dengue virus for two reasons. First, Wolbachia spreads rapidly through populations by manipulating host reproduction to its advantage. Second, Wolbachia limits viral replication in the mosquito by competing with the virus for essential host resources. Following field release in Cairns, Australia in 2011, the wMel strain of Wolbachia has successfully invaded wild mosquito populations, infecting nearly all individuals. To test whether limited dengue replication in wMel mosquitoes translates to a reduction in dengue transmission potential, we used a non-destructive assay to repeatedly quantify dengue virus in mosquito saliva. We found that wMel significantly delayed the time it took for mosquito saliva to become infectious, reduced the frequency of dengue virus that was expectorated by mosquitoes and lowered the virus titer in mosquito saliva. We also showed that wMel infection suppresses saliva production in mosquitoes that may, in part, explain our findings. The saliva-based nature of the work provides a more accurate assessment of Wolbachia’s ability to limit disease transmission and suggests that Wolbachia may have positive impacts on transmission not only by reducing the number of infectious mosquitoes in a population but also delaying the arrival of virus in the saliva.
Collapse
Affiliation(s)
- Yixin H. Ye
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Alison M. Carrasco
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Francesca D. Frentiu
- Institute for Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Stephen F. Chenoweth
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Nigel W. Beebe
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
- CSIRO Biosecurity Flagship, Ecosciences Precinct, Dutton Park, Queensland, Australia
| | - Andrew F. van den Hurk
- Virology, Public and Environmental Health, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, Queensland, Australia
| | - Cameron P. Simmons
- Nossal Institute of Global Health, University of Melbourne, Parkville, Victoria, Australia
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Scott L. O’Neill
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Elizabeth A. McGraw
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
82
|
Rapid selection against arbovirus-induced apoptosis during infection of a mosquito vector. Proc Natl Acad Sci U S A 2015; 112:E1152-61. [PMID: 25713358 DOI: 10.1073/pnas.1424469112] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Millions of people are infected each year by arboviruses (arthropod-borne viruses) such as chikungunya, dengue, and West Nile viruses, yet for reasons that are largely unknown, only a relatively small number of mosquito species are able to transmit arboviruses. Understanding the complex factors that determine vector competence could facilitate strategies for controlling arbovirus infections. Apoptosis is a potential antiviral defense response that has been shown to be important in other virus-host systems. However, apoptosis is rarely seen in arbovirus-infected mosquito cells, raising questions about its importance as an antiviral defense in mosquitoes. We tested the effect of stimulating apoptosis during arbovirus infection by infecting Aedes aegypti mosquitoes with a Sindbis virus (SINV) clone called MRE/Rpr, in which the MRE-16 strain of SINV was engineered to express the proapoptotic gene reaper from Drosophila. MRE/Rpr exhibited an impaired infection phenotype that included delayed midgut infection, delayed virus replication, and reduced virus accumulation in saliva. Nucleotide sequencing of the reaper insert in virus populations isolated from individual mosquitoes revealed evidence of rapid and strong selection against maintenance of Reaper expression in MRE/Rpr-infected mosquitoes. The impaired phenotype of MRE/Rpr, coupled with the observed negative selection against Reaper expression, indicates that apoptosis is a powerful defense against arbovirus infection in mosquitoes and suggests that arboviruses have evolved mechanisms to avoid stimulating apoptosis in mosquitoes that serve as vectors.
Collapse
|
83
|
Demographics of natural oral infection of mosquitos by Venezuelan equine encephalitis virus. J Virol 2015; 89:4020-2. [PMID: 25589654 DOI: 10.1128/jvi.03265-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The within-host diversity of virus populations can be drastically limited during between-host transmission, with primary infection of hosts representing a major constraint to diversity maintenance. However, there is an extreme paucity of quantitative data on the demographic changes experienced by virus populations during primary infection. Here, the multiplicity of cellular infection (MOI) and population bottlenecks were quantified during primary mosquito infection by Venezuelan equine encephalitis virus, an arbovirus causing neurological disease in humans and equids.
Collapse
|
84
|
Poo YS, Rudd PA, Gardner J, Wilson JAC, Larcher T, Colle MA, Le TT, Nakaya HI, Warrilow D, Allcock R, Bielefeldt-Ohmann H, Schroder WA, Khromykh AA, Lopez JA, Suhrbier A. Multiple immune factors are involved in controlling acute and chronic chikungunya virus infection. PLoS Negl Trop Dis 2014; 8:e3354. [PMID: 25474568 PMCID: PMC4256279 DOI: 10.1371/journal.pntd.0003354] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/15/2014] [Indexed: 12/18/2022] Open
Abstract
The recent epidemic of the arthritogenic alphavirus, chikungunya virus (CHIKV) has prompted a quest to understand the correlates of protection against virus and disease in order to inform development of new interventions. Herein we highlight the propensity of CHIKV infections to persist long term, both as persistent, steady-state, viraemias in multiple B cell deficient mouse strains, and as persistent RNA (including negative-strand RNA) in wild-type mice. The knockout mouse studies provided evidence for a role for T cells (but not NK cells) in viraemia suppression, and confirmed the role of T cells in arthritis promotion, with vaccine-induced T cells also shown to be arthritogenic in the absence of antibody responses. However, MHC class II-restricted T cells were not required for production of anti-viral IgG2c responses post CHIKV infection. The anti-viral cytokines, TNF and IFNγ, were persistently elevated in persistently infected B and T cell deficient mice, with adoptive transfer of anti-CHIKV antibodies unable to clear permanently the viraemia from these, or B cell deficient, mice. The NOD background increased viraemia and promoted arthritis, with B, T and NK deficient NOD mice showing high-levels of persistent viraemia and ultimately succumbing to encephalitic disease. In wild-type mice persistent CHIKV RNA and negative strand RNA (detected for up to 100 days post infection) was associated with persistence of cellular infiltrates, CHIKV antigen and stimulation of IFNα/β and T cell responses. These studies highlight that, secondary to antibodies, several factors are involved in virus control, and suggest that chronic arthritic disease is a consequence of persistent, replicating and transcriptionally active CHIKV RNA. The largest epidemic ever recorded for chikungunya virus (CHIKV) started in 2004 in Africa, then spread across Asia and recently caused tens of thousands of cases in Papua New Guinea and the Caribbean. This mosquito-borne alphavirus primarily causes an often debilitating, acute and chronic polyarthritis/polyarthalgia. Despite robust anti-viral immune responses CHIKV is able to persist, with such persistence poorly understood and the likely cause of chronic disease. Herein we highlight the propensity of CHIKV to persist long term, both as a persistent viraemia in different B cell deficient mouse strains, but also as persistent viral RNA in wild-type mice. These studies suggest that, aside from antibodies, other immune factors, such as CD4 T cells and TNF, are active in viraemia control. The work also supports the notion that CHIKV disease, with the exception of encephalitis, is largely an immunopathology. Persistent CHIKV RNA in wild-type mice continues to stimulate type I interferon and T cell responses, with this model of chronic disease recapitulating many of the features seen in chronic CHIKV patients.
Collapse
Affiliation(s)
- Yee Suan Poo
- QIMR Berghofer Medical Research Institute, and the Australian Infectious Diseases Research Centre, Brisbane, Queensland, Australia
- School of Medicine/School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Penny A. Rudd
- QIMR Berghofer Medical Research Institute, and the Australian Infectious Diseases Research Centre, Brisbane, Queensland, Australia
- School of Medicine/School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Joy Gardner
- QIMR Berghofer Medical Research Institute, and the Australian Infectious Diseases Research Centre, Brisbane, Queensland, Australia
| | - Jane A. C. Wilson
- QIMR Berghofer Medical Research Institute, and the Australian Infectious Diseases Research Centre, Brisbane, Queensland, Australia
- School of Medicine/School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Thibaut Larcher
- Institut National de Recherche Agronomique, Unité Mixte de Recherche 703, Oniris, Nantes, France
| | - Marie-Anne Colle
- Institut National de Recherche Agronomique, Unité Mixte de Recherche 703, Oniris, Nantes, France
| | - Thuy T. Le
- QIMR Berghofer Medical Research Institute, and the Australian Infectious Diseases Research Centre, Brisbane, Queensland, Australia
| | - Helder I. Nakaya
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - David Warrilow
- Public Health Virology Laboratory, Department of Health, Queensland Government, Brisbane, Queensland, Australia
| | - Richard Allcock
- Lotterywest State Biomedical Facility Genomics, Royal Perth Hospital, Perth, Western Australia, Australia
| | | | - Wayne A. Schroder
- QIMR Berghofer Medical Research Institute, and the Australian Infectious Diseases Research Centre, Brisbane, Queensland, Australia
| | - Alexander A. Khromykh
- School of Medicine/School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - José A. Lopez
- QIMR Berghofer Medical Research Institute, and the Australian Infectious Diseases Research Centre, Brisbane, Queensland, Australia
- School of Natural Sciences, Griffith University, Nathan, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, and the Australian Infectious Diseases Research Centre, Brisbane, Queensland, Australia
- School of Medicine/School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland, Australia
- School of Natural Sciences, Griffith University, Nathan, Australia
- * E-mail:
| |
Collapse
|
85
|
Kenney JL, Brault AC. The role of environmental, virological and vector interactions in dictating biological transmission of arthropod-borne viruses by mosquitoes. Adv Virus Res 2014; 89:39-83. [PMID: 24751194 DOI: 10.1016/b978-0-12-800172-1.00002-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Arthropod-borne viruses (arboviruses) are transmitted between vertebrate hosts and arthropod vectors. An inherently complex interaction among virus, vector, and the environment determines successful transmission of the virus. Once believed to be "flying syringes," recent advances in the field have demonstrated that mosquito genetics, microbiota, salivary components, and mosquito innate immune responses all play important roles in modulating arbovirus transmissibility. The literature on the interaction among virus, mosquito, and environment has expanded dramatically in the preceding decade and the utilization of next-generation sequencing and transgenic vector methodologies assuredly will increase the pace of knowledge acquisition in this field. This chapter outlines the interplay among the three factors in both direct physical and biochemical manners as well as indirectly through superinfection barriers and altered induction of innate immune responses in mosquito vectors. The culmination of the aforementioned interactions and the arms race between the mosquito innate immune response and the capacity of arboviruses to antagonize such a response ultimately results in the subjugation of mosquito cells for viral replication and subsequent transmission.
Collapse
Affiliation(s)
- Joan L Kenney
- Arbovirus Research Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Aaron C Brault
- Arbovirus Research Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, Colorado, USA.
| |
Collapse
|
86
|
Coffey LL, Failloux AB, Weaver SC. Chikungunya virus-vector interactions. Viruses 2014; 6:4628-63. [PMID: 25421891 PMCID: PMC4246241 DOI: 10.3390/v6114628] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/10/2014] [Accepted: 11/10/2014] [Indexed: 12/25/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes chikungunya fever, a severe, debilitating disease that often produces chronic arthralgia. Since 2004, CHIKV has emerged in Africa, Indian Ocean islands, Asia, Europe, and the Americas, causing millions of human infections. Central to understanding CHIKV emergence is knowledge of the natural ecology of transmission and vector infection dynamics. This review presents current understanding of CHIKV infection dynamics in mosquito vectors and its relationship to human disease emergence. The following topics are reviewed: CHIKV infection and vector life history traits including transmission cycles, genetic origins, distribution, emergence and spread, dispersal, vector competence, vector immunity and microbial interactions, and co-infection by CHIKV and other arboviruses. The genetics of vector susceptibility and host range changes, population heterogeneity and selection for the fittest viral genomes, dual host cycling and its impact on CHIKV adaptation, viral bottlenecks and intrahost diversity, and adaptive constraints on CHIKV evolution are also discussed. The potential for CHIKV re-emergence and expansion into new areas and prospects for prevention via vector control are also briefly reviewed.
Collapse
Affiliation(s)
- Lark L Coffey
- Center for Vectorborne Diseases, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | - Anna-Bella Failloux
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur, 25-28 rue du Dr. Roux, 75724 Paris cedex 15, France.
| | - Scott C Weaver
- Institute for Human Infections and Immunity, Center for Tropical Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
87
|
Reif KE, Palmer GH, Crowder DW, Ueti MW, Noh SM. Restriction of Francisella novicida genetic diversity during infection of the vector midgut. PLoS Pathog 2014; 10:e1004499. [PMID: 25392914 PMCID: PMC4231110 DOI: 10.1371/journal.ppat.1004499] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 10/02/2014] [Indexed: 11/26/2022] Open
Abstract
The genetic diversity of pathogens, and interactions between genotypes, can strongly influence pathogen phenotypes such as transmissibility and virulence. For vector-borne pathogens, both mammalian hosts and arthropod vectors may limit pathogen genotypic diversity (number of unique genotypes circulating in an area) by preventing infection or transmission of particular genotypes. Mammalian hosts often act as “ecological filters” for pathogen diversity, where novel variants are frequently eliminated because of stochastic events or fitness costs. However, whether vectors can serve a similar role in limiting pathogen diversity is less clear. Here we show using Francisella novicida and a natural tick vector of Francisella spp. (Dermacentor andersoni), that the tick vector acted as a stronger ecological filter for pathogen diversity compared to the mammalian host. When both mice and ticks were exposed to mixtures of F. novicida genotypes, significantly fewer genotypes co-colonized ticks compared to mice. In both ticks and mice, increased genotypic diversity negatively affected the recovery of available genotypes. Competition among genotypes contributed to the reduction of diversity during infection of the tick midgut, as genotypes not recovered from tick midguts during mixed genotype infections were recovered from tick midguts during individual genotype infection. Mediated by stochastic and selective forces, pathogen genotype diversity was markedly reduced in the tick. We incorporated our experimental results into a model to demonstrate how vector population dynamics, especially vector-to-host ratio, strongly affected pathogen genotypic diversity in a population over time. Understanding pathogen genotypic population dynamics will aid in identification of the variables that most strongly affect pathogen transmission and disease ecology. Co-infection, the presence of multiple genotypes of the same pathogen species within an infected individual, is common. Genotype diversity, defined as the number of unique genotypes, and the interaction between genotypes, can strongly influence virulence and pathogen transmission. Understanding how genotypic diversity affects transmission of pathogens that naturally cycle among disparate hosts, such as vector-borne pathogens, is especially important as the capacity of the host and vector to sustain genotypic diversity may differ. To address this, we exposed Dermacentor andersoni ticks, via infected mice, to variably diverse populations of Francisella novicida genotypes. Interestingly, we found that ticks served as greater ecological filters for genotypic diversity compared to mice. This loss in genotypic diversity was due to both stochastic and selective forces. Based on these data and a model, we determined that high numbers of ticks in an environment support high genotypic diversity, while genotypic diversity will be lost rapidly in environments with low tick numbers. Together, these results provide evidence that vector population dynamics, vector-to-host ratios, and competition among pathogen genotypes play critical roles in the maintenance of pathogen genotypic diversity.
Collapse
Affiliation(s)
- Kathryn E. Reif
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, and Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
- Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, Washington, United States of America
- * E-mail:
| | - Guy H. Palmer
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, and Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
| | - David W. Crowder
- Department of Entomology, Washington State University, Pullman, Washington, United States of America
| | - Massaro W. Ueti
- Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, Washington, United States of America
| | - Susan M. Noh
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, and Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
- Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, Washington, United States of America
| |
Collapse
|
88
|
Arboviral bottlenecks and challenges to maintaining diversity and fitness during mosquito transmission. Viruses 2014; 6:3991-4004. [PMID: 25341663 PMCID: PMC4213574 DOI: 10.3390/v6103991] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/18/2014] [Accepted: 10/20/2014] [Indexed: 12/23/2022] Open
Abstract
The term arbovirus denotes viruses that are transmitted by arthropods, such as ticks, mosquitoes, and other biting arthropods. The infection of these vectors produces a certain set of evolutionary pressures on the virus; involving migration from the midgut, where the blood meal containing the virus is processed, to the salivary glands, in order to transmit the virus to the next host. During this process the virus is subject to numerous bottlenecks, stochastic events that significantly reduce the number of viral particles that are able to infect the next stage. This article reviews the latest research on the bottlenecks that occur in arboviruses and the way in which these affect the evolution and fitness of these viruses. In particular we focus on the latest research on three important arboviruses, West Nile virus, Venezuelan equine encephalitis virus and Chikungunya viruses and compare the differing effects of the mosquito bottlenecks on these viruses as well as other evolutionary pressures that affect their evolution and transmission.
Collapse
|
89
|
Varble A, Albrecht RA, Backes S, Crumiller M, Bouvier NM, Sachs D, García-Sastre A, tenOever BR. Influenza A virus transmission bottlenecks are defined by infection route and recipient host. Cell Host Microbe 2014; 16:691-700. [PMID: 25456074 DOI: 10.1016/j.chom.2014.09.020] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/19/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
Abstract
Despite its global relevance, our understanding of how influenza A virus transmission impacts the overall population dynamics of this RNA virus remains incomplete. To define this dynamic, we inserted neutral barcodes into the influenza A virus genome to generate a population of viruses that can be individually tracked during transmission events. We find that physiological bottlenecks differ dramatically based on the infection route and level of adaptation required for efficient replication. Strong genetic pressures are responsible for bottlenecks during adaptation across different host species, whereas transmission between susceptible hosts results in bottlenecks that are not genetically driven and occur at the level of the recipient. Additionally, the infection route significantly influences the bottleneck stringency, with aerosol transmission imposing greater selection than direct contact. These transmission constraints have implications in understanding the global migration of virus populations and provide a clearer perspective on the emergence of pandemic strains.
Collapse
Affiliation(s)
- Andrew Varble
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Randy A Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Simone Backes
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marshall Crumiller
- The Laboratory of Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Nicole M Bouvier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David Sachs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benjamin R tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
90
|
Rego ROM, Bestor A, Štefka J, Rosa PA. Population bottlenecks during the infectious cycle of the Lyme disease spirochete Borrelia burgdorferi. PLoS One 2014; 9:e101009. [PMID: 24979342 PMCID: PMC4076273 DOI: 10.1371/journal.pone.0101009] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/30/2014] [Indexed: 12/16/2022] Open
Abstract
Borrelia burgdorferi is a zoonotic pathogen whose maintenance in nature depends upon an infectious cycle that alternates between a tick vector and mammalian hosts. Lyme disease in humans results from transmission of B. burgdorferi by the bite of an infected tick. The population dynamics of B. burgdorferi throughout its natural infectious cycle are not well understood. We addressed this topic by assessing the colonization, dissemination and persistence of B. burgdorferi within and between the disparate mammalian and tick environments. To follow bacterial populations during infection, we generated seven isogenic but distinguishable B. burgdorferi clones, each with a unique sequence tag. These tags resulted in no phenotypic changes relative to wild type organisms, yet permitted highly sensitive and specific detection of individual clones by PCR. We followed the composition of the spirochete population throughout an experimental infectious cycle that was initiated with a mixed inoculum of all clones. We observed heterogeneity in the spirochete population disseminating within mice at very early time points, but all clones displayed the ability to colonize most mouse tissues by 3 weeks of infection. The complexity of clones subsequently declined as murine infection persisted. Larval ticks typically acquired a reduced and variable number of clones relative to what was present in infected mice at the time of tick feeding, and maintained the same spirochete population through the molt to nymphs. However, only a random subset of infectious spirochetes was transmitted to naïve mice when these ticks next fed. Our results clearly demonstrate that the spirochete population experiences stochastic bottlenecks during both acquisition and transmission by the tick vector, as well as during persistent infection of its murine host. The experimental system that we have developed can be used to further explore the forces that shape the population of this vector-borne bacterial pathogen throughout its infectious cycle.
Collapse
Affiliation(s)
- Ryan O. M. Rego
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Aaron Bestor
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Jan Štefka
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Parasitology, ASCR, Biology Centre, České Budějovice, Czech Republic
| | - Patricia A. Rosa
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| |
Collapse
|
91
|
Abstract
Many arboviral diseases are uncontrolled, and the viruses that cause them are globally emerging or reemerging pathogens that produce significant disease throughout the world. The increased spread and prevalence of disease are occurring during a period of substantial scientific growth in the vector-borne disease research community. This growth has been supported by advances in genomics and proteomics, and by the ability to genetically alter disease vectors. For the first time, researchers are elucidating the molecular details of vector host-seeking behavior, the susceptibility of disease vectors to arboviruses, the immunological control of infection in disease vectors, and the determinants that facilitate transmission of arboviruses from a vector to a host. These discoveries are facilitating the development of novel strategies to combat arboviral disease, including the release of transgenic mosquitoes harboring dominant lethal genes, the introduction of arbovirus-blocking microbes into mosquito populations, and the development of acquisition- and transmission-blocking therapeutics. Understanding the role of the vector in arbovirus transmission has provided critical practical and theoretical tools to control arboviral disease.
Collapse
Affiliation(s)
- Michael J Conway
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, Michigan 48859
| | - Tonya M Colpitts
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana 70112
| | - Erol Fikrig
- Department of Internal Medicine, Infectious Diseases Section, Yale University School of Medicine, New Haven, Connecticut 06520; .,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| |
Collapse
|
92
|
Rozen-Gagnon K, Stapleford KA, Mongelli V, Blanc H, Failloux AB, Saleh MC, Vignuzzi M. Alphavirus mutator variants present host-specific defects and attenuation in mammalian and insect models. PLoS Pathog 2014; 10:e1003877. [PMID: 24453971 PMCID: PMC3894214 DOI: 10.1371/journal.ppat.1003877] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/25/2013] [Indexed: 01/26/2023] Open
Abstract
Arboviruses cycle through both vertebrates and invertebrates, which requires them to adapt to disparate hosts while maintaining genetic integrity during genome replication. To study the genetic mechanisms and determinants of these processes, we use chikungunya virus (CHIKV), a re-emerging human pathogen transmitted by the Aedes mosquito. We previously isolated a high fidelity (or antimutator) polymerase variant, C483Y, which had decreased fitness in both mammalian and mosquito hosts, suggesting this residue may be a key molecular determinant. To further investigate effects of position 483 on RNA-dependent RNA-polymerase (RdRp) fidelity, we substituted every amino acid at this position. We isolated novel mutators with decreased replication fidelity and higher mutation frequencies, allowing us to examine the fitness of error-prone arbovirus variants. Although CHIKV mutators displayed no major replication defects in mammalian cell culture, they had reduced specific infectivity and were attenuated in vivo. Unexpectedly, mutator phenotypes were suppressed in mosquito cells and the variants exhibited significant defects in RNA synthesis. Consequently, these replication defects resulted in strong selection for reversion during infection of mosquitoes. Since residue 483 is conserved among alphaviruses, we examined the analogous mutations in Sindbis virus (SINV), which also reduced polymerase fidelity and generated replication defects in mosquito cells. However, replication defects were mosquito cell-specific and were not observed in Drosophila S2 cells, allowing us to evaluate the potential attenuation of mutators in insect models where pressure for reversion was absent. Indeed, the SINV mutator variant was attenuated in fruit flies. These findings confirm that residue 483 is a determinant regulating alphavirus polymerase fidelity and demonstrate proof of principle that arboviruses can be attenuated in mammalian and insect hosts by reducing fidelity. Chikungunya (CHIKV) is a re-emerging mosquito-borne virus that constitutes a major and growing human health burden. Like all RNA viruses, during viral replication CHIKV copies its genome using a polymerase that makes an average of one mistake per replication cycle. Therefore, a single virus generates millions of viral progeny that carry a multitude of distinct mutations in their genomes. In this study, we isolated CHIKV mutators (strains that make more errors than the wildtype virus), to study how higher mutation rates affect fitness in arthropod-borne viruses (arboviruses). CHIKV mutators have reduced virulence in mice and severe replication defects in Aedes mosquito cells. However, these replication defects result in selective pressure for reversion of mutators to a wildtype polymerase in mosquito hosts. To examine how mutators would behave in an insect model in absence of this genetic instability, we isolated mutators of a related virus, Sindbis virus (SINV). SINV mutators had no replication defect in fruit fly (Drosophila) cells, and a SINV mutator strain was stable and attenuated in fruit flies. This work shows proof of principle that arbovirus mutators can exhibit attenuation in both mammalian and insect hosts, and may remain a viable vaccine strategy.
Collapse
Affiliation(s)
- Kathryn Rozen-Gagnon
- Institut Pasteur, Viral Populations and Pathogenesis, CNRS UMR 3569, Paris, France
- University Paris Diderot, Sorbonne Paris Cite, Cellule Pasteur, Paris, France
| | | | - Vanesa Mongelli
- Institut Pasteur, Viruses and RNA Interference, UMR 3569, Paris, France
| | - Hervé Blanc
- Institut Pasteur, Viral Populations and Pathogenesis, CNRS UMR 3569, Paris, France
| | | | - Maria-Carla Saleh
- Institut Pasteur, Viruses and RNA Interference, UMR 3569, Paris, France
| | - Marco Vignuzzi
- Institut Pasteur, Viral Populations and Pathogenesis, CNRS UMR 3569, Paris, France
- * E-mail:
| |
Collapse
|
93
|
Ye YH, Ng TS, Frentiu FD, Walker T, van den Hurk AF, O'Neill SL, Beebe NW, McGraw EA. Comparative susceptibility of mosquito populations in North Queensland, Australia to oral infection with dengue virus. Am J Trop Med Hyg 2014; 90:422-30. [PMID: 24420782 DOI: 10.4269/ajtmh.13-0186] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Dengue is the most prevalent arthropod-borne virus, with at least 40% of the world's population at risk of infection each year. In Australia, dengue is not endemic, but viremic travelers trigger outbreaks involving hundreds of cases. We compared the susceptibility of Aedes aegypti mosquitoes from two geographically isolated populations to two strains of dengue virus serotype 2. We found, interestingly, that mosquitoes from a city with no history of dengue were more susceptible to virus than mosquitoes from an outbreak-prone region, particularly with respect to one dengue strain. These findings suggest recent evolution of population-based differences in vector competence or different historical origins. Future genomic comparisons of these populations could reveal the genetic basis of vector competence and the relative role of selection and stochastic processes in shaping their differences. Lastly, we show the novel finding of a correlation between midgut dengue titer and titer in tissues colonized after dissemination.
Collapse
Affiliation(s)
- Yixin H Ye
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia; Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia; Public Health Virology, Forensic and Scientific Services, Department of Health, Coopers Plains, Queensland, Australia; School of Biological Sciences, University of Queensland, St. Lucia, Queensland, Australia
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Erickson AK, Pfeiffer JK. Dynamic viral dissemination in mice infected with yellow fever virus strain 17D. J Virol 2013; 87:12392-7. [PMID: 24027319 PMCID: PMC3807901 DOI: 10.1128/jvi.02149-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/04/2013] [Indexed: 11/20/2022] Open
Abstract
Arboviruses such as yellow fever virus (YFV) are transmitted between arthropod vectors and vertebrate hosts. While barriers limiting arbovirus population diversity have been observed in mosquitoes, whether barriers exist in vertebrate hosts is unclear. To investigate whether arboviruses encounter bottlenecks during dissemination in the vertebrate host, we infected immunocompetent mice and immune-deficient mice lacking alpha/beta interferon (IFN-α/β) receptors (IFNAR⁻/⁻ mice) with a pool of genetically marked viruses to evaluate dissemination and host barriers. We used the live attenuated vaccine strain YFV-17D, which contains many mutations compared with virulent YFV. We found that intramuscularly injected immunocompetent mice did not develop disease and that viral dissemination was restricted. Conversely, 32% of intramuscularly injected IFNAR⁻/⁻ mice developed disease. By following the genetically marked viruses over time, we found broad dissemination in IFNAR⁻/⁻ mice followed by clearance. The patterns of viral dissemination were similar in mice that developed disease and mice that did not develop disease. Unlike our previous results with poliovirus, these results suggest that YFV-17D encounters no major barriers during dissemination within a vertebrate host in the absence of the type I IFN response.
Collapse
Affiliation(s)
- Andrea K Erickson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | |
Collapse
|
95
|
ERK signaling couples nutrient status to antiviral defense in the insect gut. Proc Natl Acad Sci U S A 2013; 110:15025-30. [PMID: 23980175 DOI: 10.1073/pnas.1303193110] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A unique facet of arthropod-borne virus (arbovirus) infection is that the pathogens are orally acquired by an insect vector during the taking of a blood meal, which directly links nutrient acquisition and pathogen challenge. We show that the nutrient responsive ERK pathway is both induced by and restricts disparate arboviruses in Drosophila intestines, providing insight into the molecular determinants of the antiviral "midgut barrier." Wild-type flies are refractory to oral infection by arboviruses, including Sindbis virus and vesicular stomatitis virus, but this innate restriction can be overcome chemically by oral administration of an ERK pathway inhibitor or genetically via the specific loss of ERK in Drosophila intestinal epithelial cells. In addition, we found that vertebrate insulin, which activates ERK in the mosquito gut during a blood meal, restricts viral infection in Drosophila cells and against viral invasion of the insect gut epithelium. We find that ERK's antiviral signaling activity is likely conserved in Aedes mosquitoes, because genetic or pharmacologic manipulation of the ERK pathway affects viral infection of mosquito cells. These studies demonstrate that ERK signaling has a broadly antiviral role in insects and suggest that insects take advantage of cross-species signals in the meal to trigger antiviral immunity.
Collapse
|
96
|
Hall JPJ, Harrison E, Brockhurst MA. Viral host-adaptation: insights from evolution experiments with phages. Curr Opin Virol 2013; 3:572-7. [PMID: 23890845 DOI: 10.1016/j.coviro.2013.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 06/27/2013] [Accepted: 07/01/2013] [Indexed: 11/26/2022]
Abstract
Phages, viral parasites of bacteria, share fundamental features of pathogenic animal and plant viruses and represent a highly tractable empirical model system to understand viral evolution and in particular viral host-adaptation. Phage adaptation to a particular host genotype often results in improved fitness by way of parallel evolution whereby independent lineages hit upon identical adaptive solutions. By contrast, phage adaptation to an evolving host population leads to the evolution of increasing host-range over time and correlated phenotypic and genetic divergence between populations. Phage host-range expansion frequently occurs by a process of stepwise evolution of multiple mutations, and host-shifts are often constrained by mutational availability, pleiotropic costs or ecological conditions.
Collapse
Affiliation(s)
- James P J Hall
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom
| | | | | |
Collapse
|
97
|
Coffey LL, Forrester N, Tsetsarkin K, Vasilakis N, Weaver SC. Factors shaping the adaptive landscape for arboviruses: implications for the emergence of disease. Future Microbiol 2013; 8:155-76. [PMID: 23374123 DOI: 10.2217/fmb.12.139] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Many examples of the emergence or re-emergence of infectious diseases involve the adaptation of zoonotic viruses to new amplification hosts or to humans themselves. These include several instances of simple mutational adaptations, often to hosts closely related to the natural reservoirs. However, based on theoretical grounds, arthropod-borne viruses, or arboviruses, may face several challenges for adaptation to new hosts. Here, we review recent findings regarding adaptive evolution of arboviruses and its impact on disease emergence. We focus on the zoonotic alphaviruses Venezuelan equine encephalitis and chikungunya viruses, which have undergone adaptive evolution that mediated recent outbreaks of disease, as well as the flaviviruses dengue and West Nile viruses, which have emerged via less dramatic adaptive mechanisms.
Collapse
Affiliation(s)
- Lark L Coffey
- Blood Systems Research Institute, Department of Laboratory Medicine University of California, San Francisco, San Francisco, CA 94118, USA
| | | | | | | | | |
Collapse
|
98
|
Ciota AT, Ehrbar DJ, Matacchiero AC, Van Slyke GA, Kramer LD. The evolution of virulence of West Nile virus in a mosquito vector: implications for arbovirus adaptation and evolution. BMC Evol Biol 2013; 13:71. [PMID: 23514328 PMCID: PMC3626576 DOI: 10.1186/1471-2148-13-71] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/11/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Virulence is often coupled with replicative fitness of viruses in vertebrate systems, yet the relationship between virulence and fitness of arthropod-borne viruses (arboviruses) in invertebrates has not been evaluated. Although the interactions between vector-borne pathogens and their invertebrate hosts have been characterized as being largely benign, some costs of arbovirus exposure have been identified for mosquitoes. The extent to which these costs may be strain-specific and the subsequent consequences of these interactions on vector and virus evolution has not been adequately explored. RESULTS Using West Nile virus (WNV) and Culex pipiens mosquitoes, we tested the hypothesis that intrahost fitness is correlated with virulence in mosquitoes by evaluating life history traits following exposure to either non-infectious bloodmeals or bloodmeals containing wildtype (WNV WT) or the high fitness, mosquito-adapted strain, WNV MP20 derived from WNV WT. Our results demonstrate strain-specific effects on mosquito survival, fecundity, and blood feeding behavior. Specifically, both resistance to and infection with WNV MP20, but not WNV WT, decreased survival of Cx. pipiens and altered fecundity and bloodfeeding such that early egg output was enhanced at a later cost. CONCLUSIONS As predicted by the trade-off hypothesis of virulence, costs of infection with WNV MP20 in terms of survival were directly correlated to viral load, yet resistance to infection with this virulent strain was equally costly. Taken together, these results demonstrate that WNV MP20 infection decreases the transmission potential of Cx. pipiens populations despite the increased intrahost fitness of this strain, indicating that a virulence-transmission trade-off in invertebrates could contribute significantly to the adaptive and evolutionary constraint of arboviruses.
Collapse
Affiliation(s)
- Alexander T Ciota
- Wadsworth Center, Arbovirus laboratory, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159, USA.
| | | | | | | | | |
Collapse
|