51
|
Abernathy ME, Dam KMA, Esswein SR, Jette CA, Bjorkman PJ. How Antibodies Recognize Pathogenic Viruses: Structural Correlates of Antibody Neutralization of HIV-1, SARS-CoV-2, and Zika. Viruses 2021; 13:2106. [PMID: 34696536 PMCID: PMC8537525 DOI: 10.3390/v13102106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
The H1N1 pandemic of 2009-2010, MERS epidemic of 2012, Ebola epidemics of 2013-2016 and 2018-2020, Zika epidemic of 2015-2016, and COVID-19 pandemic of 2019-2021, are recent examples in the long history of epidemics that demonstrate the enormous global impact of viral infection. The rapid development of safe and effective vaccines and therapeutics has proven vital to reducing morbidity and mortality from newly emerging viruses. Structural biology methods can be used to determine how antibodies elicited during infection or vaccination target viral proteins and identify viral epitopes that correlate with potent neutralization. Here we review how structural and molecular biology approaches have contributed to our understanding of antibody recognition of pathogenic viruses, specifically HIV-1, SARS-CoV-2, and Zika. Determining structural correlates of neutralization of viruses has guided the design of vaccines, monoclonal antibodies, and small molecule inhibitors in response to the global threat of viral epidemics.
Collapse
Affiliation(s)
- Morgan E. Abernathy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (M.E.A.); (K.-M.A.D.); (C.A.J.)
| | - Kim-Marie A. Dam
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (M.E.A.); (K.-M.A.D.); (C.A.J.)
| | - Shannon R. Esswein
- David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA;
| | - Claudia A. Jette
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (M.E.A.); (K.-M.A.D.); (C.A.J.)
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (M.E.A.); (K.-M.A.D.); (C.A.J.)
| |
Collapse
|
52
|
Nduati EW, Gorman MJ, Sein Y, Hermanus T, Yuan D, Oyaro I, Muema DM, Ndung’u T, Alter G, Moore PL. Coordinated Fc-effector and neutralization functions in HIV-infected children define a window of opportunity for HIV vaccination. AIDS 2021; 35:1895-1905. [PMID: 34115644 PMCID: PMC8462450 DOI: 10.1097/qad.0000000000002976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/04/2021] [Accepted: 06/02/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Antibody function has been extensively studied in HIV-infected adults but is relatively understudied in children. Emerging data suggests enhanced development of broadly neutralizing antibodies (bNAbs) in children but Fc effector functions in this group are less well defined. Here, we profiled overall antibody function in HIV-infected children. DESIGN Plasma samples from a cross-sectional study of 50 antiretroviral therapy-naive children (aged 1-11 years) vertically infected with HIV-1 clade A were screened for HIV-specific binding antibody levels and neutralizing and Fc-mediated functions. METHODS Neutralization breadth was determined against a globally representative panel of 12 viruses. HIV-specific antibody levels were determined using a multiplex assay. Fc-mediated antibody functions measured were antibody-dependent: cellular phagocytosis (ADCP); neutrophil phagocytosis (ADNP); complement deposition (ADCD) and natural killer function (ADNK). RESULTS All children had HIV gp120-specific antibodies, largely of the IgG1 subtype. Fifty-four percent of the children exhibited more than 50% neutralization breadth, with older children showing significantly broader neutralization activity. Apart from ADCC, observed only in 16% children, other Fc-mediated functions were common (>58% children). Neutralization breadth correlated with Fc-mediated functions suggesting shared determinants of enhanced antibody function exist. CONCLUSIONS These results are consistent with previous observations that children may develop high levels of neutralization breadth. Furthermore, the striking association between neutralization breadth and Fc effector function suggests that HIV vaccination in children could yield multifunctional antibodies. Paediatric populations may therefore provide an ideal window of opportunity for HIV vaccination strategies.
Collapse
Affiliation(s)
| | | | - Yiakon Sein
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Tandile Hermanus
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg
| | - Dansu Yuan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Ian Oyaro
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Daniel M. Muema
- Africa Health Research Institute, Durban
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Thumbi Ndung’u
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Africa Health Research Institute, Durban
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Max Planck Institute for Infection Biology, Berlin, Germany
- Division of Infection and Immunity, University College London, London, UK
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Penny L. Moore
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg
- Antibody Immunity Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
53
|
Evolution of antibodies to native trimeric envelope and their Fc dependent functions in untreated and treated primary HIV infection. J Virol 2021; 95:e0162521. [PMID: 34586863 DOI: 10.1128/jvi.01625-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
People living with HIV (PLWH) develop both anti-Envelope-specific antibodies, which bind the closed trimeric HIV Envelope present on infected cells and anti-gp120-specific antibodies, which bind gp120 monomers shed by infected cells and taken up by CD4 on uninfected bystander cells. Both antibodies have an Fc portion that binds to Fc Receptors on several types of innate immune cells and stimulates them to develop anti-viral functions. Among these Fc dependent functions (FcDFs) are antibody dependent (AD) cellular cytotoxicity (ADCC), AD cellular trogocytosis (ADCT) and AD phagocytosis (ADCP). Here, we assessed the evolution of total immunoglobulin G (IgG), anti-gp120 and anti-Envelope IgG antibodies and their FcDFs in plasma samples from anti-retroviral therapy (ART) naïve subjects during early HIV infection (28-194 days post infection [DPI]). We found that both the concentrations and FcDFs of anti-gp120 and anti-Envelope antibodies increased with time in ART-naïve PLWH. Although generated concurrently, anti-gp120-specific antibodies were 20.7-fold more abundant than anti-Envelpe-specific antibodies, both specificities being strongly correlated with each other and FcDFs. Among the FcDFs, only ADCP activity was inversely correlated with concurrent viral load. PLWH who started ART >90 DPI showed higher anti-Envelope-specific antibody levels, ADCT and ADCP activities than those starting ART <90 DPI. However, in longitudinally collected samples, ART initiation at >90 DPI was accompanied by a faster decline in anti-Envelope-specific antibody levels, which did not translate to a faster decline in FcDFs compared to those starting ART <90 DPI. IMPORTANCE Closed conformation Envelope is expressed on the surface of HIV-infected cells. Antibodies targeting this conformation and that support FcDFs have the potential to control HIV. This study tracks the timing of the appearance and evolution of antibodies to closed conformation Envelope, whose concentration increases over the first 6 mos of infection. Antiretroviral therapy (ART) initiation blunts further increases in the concentration of these antibodies and their and FcDFs. However, antibodies to open conformation Envelope also increase with DPI until ART initiation. These antibodies target uninfected bystander cells, which may contribute to loss of uninfected CD4 cells and pathogenicity. This manuscript presents, for the first time, the evolution of antibodies to closed conformation Envelope and their fate on-ART. This information may be useful in making decisions on the timing of ART initiation in early HIV infection.
Collapse
|
54
|
Richardson SI, Ayres F, Manamela NP, Oosthuysen B, Makhado Z, Lambson BE, Morris L, Moore PL. HIV Broadly Neutralizing Antibodies Expressed as IgG3 Preserve Neutralization Potency and Show Improved Fc Effector Function. Front Immunol 2021; 12:733958. [PMID: 34566999 PMCID: PMC8462932 DOI: 10.3389/fimmu.2021.733958] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/19/2021] [Indexed: 11/22/2022] Open
Abstract
The ability of several broadly neutralizing antibodies (bNAbs) to protect against HIV infection is enhanced through Fc receptor binding. Antibody isotype modulates this effect, with IgG3 associated with improved HIV control and vaccine efficacy. We recently showed that an IgG3 variant of bNAb CAP256-VRC26.25 exhibited more potent neutralization and phagocytosis than its IgG1 counterpart. Here, we expanded this analysis to include additional bNAbs targeting all major epitopes. A total of 15 bNAbs were expressed as IgG1 or IgG3, and pairs were assessed for neutralization potency against the multi-subtype global panel of 11 HIV strains. Binding to the neonatal Fc receptor (FcRn) and Fcγ receptors were measured using ELISA and antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis were measured using infectious viruses and global panel Env SOSIP trimers, respectively. IgG3 bNAbs generally showed similar or increased (up to 60 fold) neutralization potency than IgG1 versions, though the effect was virus-specific. This improvement was statistically significant for CAP256-VRC26.25, 35022, PGT135 and CAP255.G3. IgG3 bNAbs also showed significantly improved binding to FcγRIIa which correlated with enhanced phagocytosis of all trimeric Env antigens. Differences in ADCC were epitope-specific, with IgG3 bNAbs to the MPER, CD4 binding site and gp120-gp41 interface showing increased ADCC. We also explored the pH dependence of IgG1 and IgG3 variants for FcRn binding, as this determines the half-life of antibodies. We observed reduced pH dependence, associated with shorter half-lives for IgG3 bNAbs, with κ-light chains. However, IgG3 bNAbs that use λ-light chains showed similar pH dependence to their IgG1 counterparts. This study supports the manipulation of the constant region to improve both the neutralizing and Fc effector activity of bNAbs, and suggests that IgG3 versions of bNAbs may be preferable for passive immunity given their polyfunctionality.
Collapse
Affiliation(s)
- Simone I Richardson
- Centre for HIV and STI's, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa.,Medical Research Council (MRC) Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Frances Ayres
- Centre for HIV and STI's, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Nelia P Manamela
- Centre for HIV and STI's, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Brent Oosthuysen
- Centre for HIV and STI's, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Zanele Makhado
- Centre for HIV and STI's, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Bronwen E Lambson
- Centre for HIV and STI's, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa.,Medical Research Council (MRC) Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lynn Morris
- Centre for HIV and STI's, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa.,Medical Research Council (MRC) Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Penny L Moore
- Centre for HIV and STI's, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa.,Medical Research Council (MRC) Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
55
|
Phelps M, Balazs AB. Contribution to HIV Prevention and Treatment by Antibody-Mediated Effector Function and Advances in Broadly Neutralizing Antibody Delivery by Vectored Immunoprophylaxis. Front Immunol 2021; 12:734304. [PMID: 34603314 PMCID: PMC8479175 DOI: 10.3389/fimmu.2021.734304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/24/2021] [Indexed: 01/11/2023] Open
Abstract
HIV-1 broadly neutralizing antibodies (bNAbs) targeting the viral envelope have shown significant promise in both HIV prevention and viral clearance, including pivotal results against sensitive strains in the recent Antibody Mediated Prevention (AMP) trial. Studies of bNAb passive transfer in infected patients have demonstrated transient reduction of viral load at high concentrations that rebounds as bNAb is cleared from circulation. While neutralization is a crucial component of therapeutic efficacy, numerous studies have demonstrated that bNAbs can also mediate effector functions, such as antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and antibody-dependent complement deposition (ADCD). These functions have been shown to contribute towards protection in several models of HIV acquisition and in viral clearance during chronic infection, however the role of target epitope in facilitating these functions, as well as the contribution of individual innate functions in protection and viral clearance remain areas of active investigation. Despite their potential, the transient nature of antibody passive transfer limits the widespread use of bNAbs. To overcome this, we and others have demonstrated vectored antibody delivery capable of yielding long-lasting expression of bNAbs in vivo. Two clinical trials have shown that adeno-associated virus (AAV) delivery of bNAbs is safe and capable of sustained bNAb expression for over 18 months following a single intramuscular administration. Here, we review key concepts of effector functions mediated by bNAbs against HIV infection and the potential for vectored immunoprophylaxis as a means of producing bNAbs in patients.
Collapse
|
56
|
Rossignol E, Alter G, Julg B. Antibodies for Human Immunodeficiency Virus-1 Cure Strategies. J Infect Dis 2021; 223:22-31. [PMID: 33586772 DOI: 10.1093/infdis/jiaa165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human immunodeficiency virus (HIV) infection leads to the establishment of a long-lived latent cellular reservoir. One strategy to eliminate quiescent reservoir cells is to reactivate virus replication to induce HIV envelope glycoprotein (Env) expression on the cell surface exposing them to subsequent antibody targeting. Via the interactions between the antibody Fc domain and Fc-γ receptors (FcγRs) that are expressed on innate effector cells, such as natural killer cells, monocytes, and neutrophils, antibodies can mediate the elimination of infected cells. Over the last decade, a multitude of human monoclonal antibodies that are broadly neutralizing across many HIV-1 subtypes have been identified and are currently being explored for HIV eradication strategies. Antibody development also includes novel Fc engineering approaches to increase engagement of effector cells and optimize antireservoir efficacy. In this review, we discuss the usefulness of antibodies for HIV eradication approaches specifically focusing on antibody-mediated strategies to target latently infected cells and options to increase antibody efficacy.
Collapse
Affiliation(s)
- Evan Rossignol
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Boris Julg
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA.,Massachusetts General Hospital, Infectious Disease Unit, Boston, Massachusetts, USA
| |
Collapse
|
57
|
Tan ZC, Murphy MC, Alpay HS, Taylor SD, Meyer AS. Tensor-structured decomposition improves systems serology analysis. Mol Syst Biol 2021; 17:e10243. [PMID: 34487431 PMCID: PMC8420856 DOI: 10.15252/msb.202110243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 01/04/2023] Open
Abstract
Systems serology provides a broad view of humoral immunity by profiling both the antigen-binding and Fc properties of antibodies. These studies contain structured biophysical profiling across disease-relevant antigen targets, alongside additional measurements made for single antigens or in an antigen-generic manner. Identifying patterns in these measurements helps guide vaccine and therapeutic antibody development, improve our understanding of diseases, and discover conserved regulatory mechanisms. Here, we report that coupled matrix-tensor factorization (CMTF) can reduce these data into consistent patterns by recognizing the intrinsic structure of these data. We use measurements from two previous studies of HIV- and SARS-CoV-2-infected subjects as examples. CMTF outperforms standard methods like principal components analysis in the extent of data reduction while maintaining equivalent prediction of immune functional responses and disease status. Under CMTF, model interpretation improves through effective data reduction, separation of the Fc and antigen-binding effects, and recognition of consistent patterns across individual measurements. Data reduction also helps make prediction models more replicable. Therefore, we propose that CMTF is an effective general strategy for data exploration in systems serology.
Collapse
Affiliation(s)
- Zhixin Cyrillus Tan
- Bioinformatics Interdepartmental ProgramUniversity of California, Los AngelesLos AngelesCAUSA
| | - Madeleine C Murphy
- Computational and Systems BiologyUniversity of California, Los AngelesLos AngelesCAUSA
| | - Hakan S Alpay
- Department of Computer ScienceUniversity of California, Los AngelesLos AngelesCAUSA
| | - Scott D Taylor
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCAUSA
| | - Aaron S Meyer
- Bioinformatics Interdepartmental ProgramUniversity of California, Los AngelesLos AngelesCAUSA
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCAUSA
- Jonsson Comprehensive Cancer CenterUniversity of California, Los AngelesLos AngelesCAUSA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell ResearchUniversity of California, Los AngelesLos AngelesCAUSA
| |
Collapse
|
58
|
Asao H. Interleukin-21 in Viral Infections. Int J Mol Sci 2021; 22:ijms22179521. [PMID: 34502427 PMCID: PMC8430989 DOI: 10.3390/ijms22179521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022] Open
Abstract
Interleukin (IL)-21 is a cytokine that affects the differentiation and function of lymphoid and myeloid cells and regulates both innate and adaptive immune responses. In addition to regulating the immune response to tumor and viral infections, IL-21 also has a profound effect on the development of autoimmune and inflammatory diseases. IL-21 is produced mainly from CD4+ T cells-in particular, follicular helper T (Tfh) cells-which have a great influence on the regulation of antibody production. It is also an important cytokine for the activation of CD8+ T cells, and its role in recovering the function of CD8+ T cells exhausted by chronic microbial infections and cancer has been clarified. Thus, IL-21 plays an extremely important role in viral infections, especially chronic viral infections. In this review, I will introduce the findings to date on how IL-21 is involved in some typical viral infections and the potential of treating viral diseases with IL-21.
Collapse
Affiliation(s)
- Hironobu Asao
- Department of Immunology, Faculty of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata City 990-9585, Japan
| |
Collapse
|
59
|
Kammers K, Chen A, Monaco DR, Hudelson SE, Grant-McAuley W, Moore RD, Alter G, Deeks SG, Morrison CS, Eller LA, Blankson JN, Laeyendecker O, Ruczinski I, Eshleman SH, Larman HB. HIV Antibody Profiles in HIV Controllers and Persons With Treatment-Induced Viral Suppression. Front Immunol 2021; 12:740395. [PMID: 34512672 PMCID: PMC8428532 DOI: 10.3389/fimmu.2021.740395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/10/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction Low HIV viral load is associated with delayed disease progression and reduced HIV transmission. HIV controllers suppress viral load to low levels in the absence of antiretroviral treatment (ART). We used an antibody profiling system, VirScan, to compare antibody reactivity and specificity in HIV controllers, non-controllers with treatment-induced viral suppression, and viremic non-controllers. Methods The VirScan library contains 3,384 phage-displayed peptides spanning the HIV proteome. Antibody reactivity to these peptides was measured in plasma from a Discovery Cohort that included 13 elite controllers, 27 viremic controllers, 12 viremic non-controllers, and 21 non-controllers who were virally suppressed on ART. Antibody reactivity to selected peptides was also assessed in an independent cohort of 29 elite controllers and 37 non-controllers who were virally suppressed on ART (Validation Cohort) and in a longitudinal cohort of non-controllers. Results In the Discovery Cohort, 62 peptides were preferentially targeted in HIV controllers compared to non-controllers who were virally suppressed on ART. These specificities were not significantly different when comparing controllers versus viremic non-controllers. Aggregate reactivity to these peptides was also high in elite controllers from the independent Validation Cohort. The 62 peptides formed seven clusters of homologous epitopes in env, gag, integrase, and vpu. Reactivity to one of these clusters located in gag p17 was inversely correlated with viral load set point in an independent cohort of non-controllers. Conclusions Antibody reactivity was low in non-controllers suppressed on ART, but remained high in viremic controllers despite viral suppression. Antibodies in controllers and viremic non-controllers were directed against epitopes in diverse HIV proteins; higher reactivity against p17 peptides was associated with lower viral load set point. Further studies are needed to determine if these antibodies play a role in regulation of HIV viral load.
Collapse
Affiliation(s)
- Kai Kammers
- Division of Biostatistics and Bioinformatics, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Athena Chen
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Daniel R. Monaco
- Department of Pathology and the Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sarah E. Hudelson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Wendy Grant-McAuley
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Richard D. Moore
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Galit Alter
- Department of Medicine, Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Charles S. Morrison
- Behavioral, Epidemiologic and Clinical Sciences, Family Health International (FHI) 360, Durham, NC, United States
| | - Leigh A. Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Joel N. Blankson
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Oliver Laeyendecker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States,Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, MD, United States
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Susan H. Eshleman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States,*Correspondence: H. Benjamin Larman, ; Susan H. Eshleman,
| | - H. Benjamin Larman
- Department of Pathology and the Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States,*Correspondence: H. Benjamin Larman, ; Susan H. Eshleman,
| |
Collapse
|
60
|
Md Zahid H, Kuwata T, Takahama S, Kaku Y, Biswas S, Matsumoto K, Tamamura H, Matsushita S. Functional analysis of a monoclonal antibody reactive against the C1C2 of Env obtained from a patient infected with HIV-1 CRF02_AG. Retrovirology 2021; 18:23. [PMID: 34419098 PMCID: PMC8379604 DOI: 10.1186/s12977-021-00568-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 08/09/2021] [Indexed: 11/23/2022] Open
Abstract
Background Recent data suggest the importance of non-neutralizing antibodies (nnAbs) in the development of vaccines against HIV-1 because two types of nnAbs that recognize the coreceptor binding site (CoRBS) and the C1C2 region mediate antibody-dependent cellular-cytotoxicity (ADCC) against HIV-1-infected cells. However, many studies have been conducted with nnAbs obtained from subtype B-infected individuals, with few studies in patients with non-subtype B infections. Results We isolated a monoclonal antibody 1E5 from a CRF02_AG-infected individual and constructed two forms of antibody with constant regions of IgG1 or IgG3. The epitope of 1E5 belongs to the C1C2 of gp120, and 1E5 binds to 27 out of 35 strains (77 %) across the subtypes. The 1E5 showed strong ADCC activity, especially in the form of IgG3 in the presence of small CD4-mimetic compounds (CD4mc) and 4E9C (anti-CoRBS antibody), but did not show any neutralizing activity even against the isolates with strong binding activities. The enhancement in the binding of A32, anti-C1C2 antibody isolated from a patient with subtype B infection, was observed in the presence of 1E5 and the combination of 1E5, A32 and 4E9C mediated a strong ADCC activity. Conclusions These results suggest that anti-C1C2 antibodies that are induced in patients with different HIV-1 subtype infections have common functional modality and may have unexpected interactions. These data may have implications for vaccine development against HIV-1. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12977-021-00568-y.
Collapse
Affiliation(s)
- Hasan Md Zahid
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Takeo Kuwata
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Shokichi Takahama
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan.,Laboratory of Immunosenescence, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Yu Kaku
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Shashwata Biswas
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Kaho Matsumoto
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shuzo Matsushita
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan.
| |
Collapse
|
61
|
Antibodies Elicited in Response to a Single Cycle Glycoprotein D Deletion Viral Vaccine Candidate Bind C1q and Activate Complement Mediated Neutralization and Cytolysis. Viruses 2021; 13:v13071284. [PMID: 34209320 PMCID: PMC8310317 DOI: 10.3390/v13071284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 01/30/2023] Open
Abstract
Herpes simplex virus (HSV) prevention is a global health priority but, despite decades of research, there is no effective vaccine. Prior efforts focused on generating glycoprotein D (gD) neutralizing antibodies, but clinical trial outcomes were disappointing. The deletion of gD yields a single-cycle candidate vaccine (∆gD-2) that elicits high titer polyantigenic non-gD antibodies that exhibit little complement-independent neutralization but mediate antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP). Active or passive immunization with DgD-2 completely protects mice from lethal disease and latency following challenge with clinical isolates of either serotype. The current studies evaluated the role of complement in vaccine-elicited protection. The immune serum from the DgD-2 vaccinated mice exhibited significantly greater C1q binding compared to the serum from the gD protein vaccinated mice with infected cell lysates from either serotype as capture antigens. The C1q-binding antibodies recognized glycoprotein B. This resulted in significantly greater antibody-mediated complement-dependent cytolysis and neutralization. Notably, complete protection was preserved when the DgD-2 immune serum was passively transferred into C1q knockout mice, suggesting that ADCC and ADCP are sufficient in mice. We speculate that the polyfunctional responses elicited by DgD-2 may prove more effective in preventing HSV, compared to the more restrictive responses elicited by adjuvanted gD protein vaccines.
Collapse
|
62
|
Duerr R, Crosse KM, Valero-Jimenez AM, Dittmann M. SARS-CoV-2 Portrayed against HIV: Contrary Viral Strategies in Similar Disguise. Microorganisms 2021; 9:1389. [PMID: 34198973 PMCID: PMC8307803 DOI: 10.3390/microorganisms9071389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
SARS-CoV-2 and HIV are zoonotic viruses that rapidly reached pandemic scale, causing global losses and fear. The COVID-19 and AIDS pandemics ignited massive efforts worldwide to develop antiviral strategies and characterize viral architectures, biological and immunological properties, and clinical outcomes. Although both viruses have a comparable appearance as enveloped viruses with positive-stranded RNA and envelope spikes mediating cellular entry, the entry process, downstream biological and immunological pathways, clinical outcomes, and disease courses are strikingly different. This review provides a systemic comparison of both viruses' structural and functional characteristics, delineating their distinct strategies for efficient spread.
Collapse
Affiliation(s)
- Ralf Duerr
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; (K.M.C.); (A.M.V.-J.); (M.D.)
| | | | | | | |
Collapse
|
63
|
Young WC, Carpp LN, Chaudhury S, Regules JA, Bergmann-Leitner ES, Ockenhouse C, Wille-Reece U, deCamp AC, Hughes E, Mahoney C, Pallikkuth S, Pahwa S, Dennison SM, Mudrak SV, Alam SM, Seaton KE, Spreng RL, Fallon J, Michell A, Ulloa-Montoya F, Coccia M, Jongert E, Alter G, Tomaras GD, Gottardo R. Comprehensive Data Integration Approach to Assess Immune Responses and Correlates of RTS,S/AS01-Mediated Protection From Malaria Infection in Controlled Human Malaria Infection Trials. Front Big Data 2021; 4:672460. [PMID: 34212134 PMCID: PMC8239149 DOI: 10.3389/fdata.2021.672460] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022] Open
Abstract
RTS,S/AS01 (GSK) is the world’s first malaria vaccine. However, despite initial efficacy of almost 70% over the first 6 months of follow-up, efficacy waned over time. A deeper understanding of the immune features that contribute to RTS,S/AS01-mediated protection could be beneficial for further vaccine development. In two recent controlled human malaria infection (CHMI) trials of the RTS,S/AS01 vaccine in malaria-naïve adults, MAL068 and MAL071, vaccine efficacy against patent parasitemia ranged from 44% to 87% across studies and arms (each study included a standard RTS,S/AS01 arm with three vaccine doses delivered in four-week-intervals, as well as an alternative arm with a modified version of this regimen). In each trial, RTS,S/AS01 immunogenicity was interrogated using a broad range of immunological assays, assessing cellular and humoral immune parameters as well as gene expression. Here, we used a predictive modeling framework to identify immune biomarkers measured at day-of-challenge that could predict sterile protection against malaria infection. Using cross-validation on MAL068 data (either the standard RTS,S/AS01 arm alone, or across both the standard RTS,S/AS01 arm and the alternative arm), top-performing univariate models identified variables related to Fc effector functions and titer of antibodies that bind to the central repeat region (NANP6) of CSP as the most predictive variables; all NANP6-related variables consistently associated with protection. In cross-study prediction analyses of MAL071 outcomes (the standard RTS,S/AS01 arm), top-performing univariate models again identified variables related to Fc effector functions of NANP6-targeting antibodies as highly predictive. We found little benefit–with this dataset–in terms of improved prediction accuracy in bivariate models vs. univariate models. These findings await validation in children living in malaria-endemic regions, and in vaccinees administered a fourth RTS,S/AS01 dose. Our findings support a “quality as well as quantity” hypothesis for RTS,S/AS01-elicited antibodies against NANP6, implying that malaria vaccine clinical trials should assess both titer and Fc effector functions of anti-NANP6 antibodies.
Collapse
Affiliation(s)
- William Chad Young
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Lindsay N Carpp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Sidhartha Chaudhury
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Jason A Regules
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Elke S Bergmann-Leitner
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | | | | | - Allan C deCamp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Ellis Hughes
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Celia Mahoney
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Suresh Pallikkuth
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Savita Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - S Moses Dennison
- Center for Human Systems Immunology, Duke University, Durham, NC, United States.,Departments of Surgery, Immunology, and Molecular Genetics and Microbiology, Duke University, Durham, NC, United States.,Duke Human Vaccine Institute, Duke University, Durham, NC, United States
| | - Sarah V Mudrak
- Center for Human Systems Immunology, Duke University, Durham, NC, United States.,Departments of Surgery, Immunology, and Molecular Genetics and Microbiology, Duke University, Durham, NC, United States.,Duke Human Vaccine Institute, Duke University, Durham, NC, United States
| | - S Munir Alam
- Center for Human Systems Immunology, Duke University, Durham, NC, United States.,Duke Human Vaccine Institute, Duke University, Durham, NC, United States.,Department of Pathology, Duke University, Durham, NC, United States
| | - Kelly E Seaton
- Center for Human Systems Immunology, Duke University, Durham, NC, United States.,Departments of Surgery, Immunology, and Molecular Genetics and Microbiology, Duke University, Durham, NC, United States.,Duke Human Vaccine Institute, Duke University, Durham, NC, United States
| | - Rachel L Spreng
- Center for Human Systems Immunology, Duke University, Durham, NC, United States.,Departments of Surgery, Immunology, and Molecular Genetics and Microbiology, Duke University, Durham, NC, United States.,Duke Human Vaccine Institute, Duke University, Durham, NC, United States
| | - Jon Fallon
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| | - Ashlin Michell
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| | | | | | | | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| | - Georgia D Tomaras
- Center for Human Systems Immunology, Duke University, Durham, NC, United States.,Departments of Surgery, Immunology, and Molecular Genetics and Microbiology, Duke University, Durham, NC, United States.,Duke Human Vaccine Institute, Duke University, Durham, NC, United States
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
64
|
Rossignol ED, Dugast AS, Compere H, Cottrell CA, Copps J, Lin S, Cizmeci D, Seaman MS, Ackerman ME, Ward AB, Alter G, Julg B. Mining HIV controllers for broad and functional antibodies to recognize and eliminate HIV-infected cells. Cell Rep 2021; 35:109167. [PMID: 34038720 PMCID: PMC8196545 DOI: 10.1016/j.celrep.2021.109167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 03/27/2021] [Accepted: 05/01/2021] [Indexed: 12/11/2022] Open
Abstract
HIV monoclonal antibodies for viral reservoir eradication strategies will likely need to recognize reactivated infected cells and potently drive Fc-mediated innate effector cell activity. We systematically characterize a library of 185 HIV-envelope-specific antibodies derived from 15 spontaneous HIV controllers (HCs) that selectively exhibit robust serum Fc functionality and compared them to broadly neutralizing antibodies (bNAbs) in clinical development. Within the 10 antibodies with the broadest cell-recognition capability, seven originated from HCs and three were bNAbs. V3-loop-targeting antibodies are enriched among the top cell binders, suggesting the V3-loop may be selectively exposed and accessible on the cell surface. Fc functionality is more variable across antibodies, which is likely influenced by distinct binding topology and corresponding Fc accessibility, highlighting not only the importance of target-cell recognition but also the need to optimize for Fc-mediated elimination. Ultimately, our results demonstrate that this comprehensive selection process can identify monoclonal antibodies poised to eliminate infected cells. Rossignol et al. characterize 185 HIV-envelope-specific antibodies derived from spontaneous HIV controllers, downselecting antibodies based on their ability to broadly recognize infected cells and potently drive Fc-mediated innate effector cell activity. This comprehensive selection process can identify monoclonal antibodies poised to eliminate infected cells for viral reservoir eradication strategies.
Collapse
Affiliation(s)
- Evan D Rossignol
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Anne-Sophie Dugast
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Hacheming Compere
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Christopher A Cottrell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Shu Lin
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Deniz Cizmeci
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | | | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA.
| | - Boris Julg
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA.
| |
Collapse
|
65
|
Abstract
INTRODUCTION Antibodies mediate pathogen neutralization in addition to several cytotoxic Fc functions through engaging cellular receptors and recruiting effector cells. Fc effector functions have been well described in disease control and protection against infectious diseases including HIV, Ebola, malaria, influenza and tuberculosis, making them attractive targets for vaccine design. AREAS COVERED We briefly summarize the role of Fc effector functions in disease control and protection in viral, bacterial and parasitic infectious diseases. We review Fc effector function in passive immunization and vaccination, and primarily focus on strategies to elicit and modulate these functions as part of a robust vaccine strategy. EXPERT OPINION Despite their known correlation with vaccine efficacy for several diseases, only recently have seminal studies addressed how these Fc effector functions can be elicited and modulated in vaccination. However, gaps remain in assay standardization and the precise mechanisms of diverse functional assays. Furthermore, there are inherent difficulties in the translation of findings from animal models to humans, given the difference in sequence, expression and function of Fc receptors and Fc portions of antibodies. However, overall it is clear that vaccine development to elicit Fc effector function is an important goal for optimal prevention against infectious disease.
Collapse
Affiliation(s)
- Simone I Richardson
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa.,Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Penny L Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa.,Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, KwaZulu-Natal, South Africa
| |
Collapse
|
66
|
Selva KJ, van de Sandt CE, Lemke MM, Lee CY, Shoffner SK, Chua BY, Davis SK, Nguyen THO, Rowntree LC, Hensen L, Koutsakos M, Wong CY, Mordant F, Jackson DC, Flanagan KL, Crowe J, Tosif S, Neeland MR, Sutton P, Licciardi PV, Crawford NW, Cheng AC, Doolan DL, Amanat F, Krammer F, Chappell K, Modhiran N, Watterson D, Young P, Lee WS, Wines BD, Mark Hogarth P, Esterbauer R, Kelly HG, Tan HX, Juno JA, Wheatley AK, Kent SJ, Arnold KB, Kedzierska K, Chung AW. Systems serology detects functionally distinct coronavirus antibody features in children and elderly. Nat Commun 2021; 12:2037. [PMID: 33795692 PMCID: PMC8016934 DOI: 10.1038/s41467-021-22236-7] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/26/2021] [Indexed: 02/08/2023] Open
Abstract
The hallmarks of COVID-19 are higher pathogenicity and mortality in the elderly compared to children. Examining baseline SARS-CoV-2 cross-reactive immunological responses, induced by circulating human coronaviruses (hCoVs), is needed to understand such divergent clinical outcomes. Here we show analysis of coronavirus antibody responses of pre-pandemic healthy children (n = 89), adults (n = 98), elderly (n = 57), and COVID-19 patients (n = 50) by systems serology. Moderate levels of cross-reactive, but non-neutralizing, SARS-CoV-2 antibodies are detected in pre-pandemic healthy individuals. SARS-CoV-2 antigen-specific Fcγ receptor binding accurately distinguishes COVID-19 patients from healthy individuals, suggesting that SARS-CoV-2 infection induces qualitative changes to antibody Fc, enhancing Fcγ receptor engagement. Higher cross-reactive SARS-CoV-2 IgA and IgG are observed in healthy elderly, while healthy children display elevated SARS-CoV-2 IgM, suggesting that children have fewer hCoV exposures, resulting in less-experienced but more polyreactive humoral immunity. Age-dependent analysis of COVID-19 patients, confirms elevated class-switched antibodies in elderly, while children have stronger Fc responses which we demonstrate are functionally different. These insights will inform COVID-19 vaccination strategies, improved serological diagnostics and therapeutics.
Collapse
Affiliation(s)
- Kevin J Selva
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Carolien E van de Sandt
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Melissa M Lemke
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Christina Y Lee
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Suzanne K Shoffner
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Brendon Y Chua
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Samantha K Davis
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Luca Hensen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Chinn Yi Wong
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Francesca Mordant
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - David C Jackson
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Katie L Flanagan
- Department of Infectious Diseases and Tasmanian Vaccine Trial Centre, Launceston General Hospital, Launceston, TAS, Australia
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
- School of Health and Biomedical Science, RMIT University, Melbourne, VIC, Australia
| | - Jane Crowe
- Deepdene Surgery, Deepdene, VIC, Australia
| | - Shidan Tosif
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of General Medicine, Royal Children's Hospital Melbourne, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Melanie R Neeland
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Philip Sutton
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Paul V Licciardi
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Nigel W Crawford
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Immunisation Service, Royal Children's Hospital Melbourne, Melbourne, VIC, Australia
| | - Allen C Cheng
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Infection Prevention & Healthcare Epidemiology Unit, Alfred Health, Melbourne, VIC, Australia
| | - Denise L Doolan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Keith Chappell
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Paul Young
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Bruce D Wines
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - P Mark Hogarth
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Robyn Esterbauer
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia
| | - Hannah G Kelly
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia
- Melbourne Sexual Health Centre, Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Kelly B Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
| | - Amy W Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
67
|
Production of HIV-1 Env-specific antibodies mediating innate immune functions depends on cognate IL-21- secreting CD4+ T cells. J Virol 2021; 95:JVI.02097-20. [PMID: 33504598 PMCID: PMC8103692 DOI: 10.1128/jvi.02097-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Antibodies with a functional Fc region were previously associated with protection from HIV-1 acquisition and spontaneous suppression of viral replication. Unlike broadly neutralizing antibodies, they are not restricted to neutralizing epitopes and do not require unconventional structural traits to exert their antiviral activity. They, therefore, develop earlier after infection and can be detected in the majority of cases. The conditions under which these antibodies are generated, however, remain largely unknown. Here we demonstrate that the generation of HIV-1 Env-specific antibodies facilitating Fc-dependent innate immune responses, including neutrophil phagocytosis (ADNP), complement deposition (ADCD), and NK cell activation, likely depends on help provided by CD4+ T and peripheral T follicular helper (pTfh) cells secreting IL-21. Other proteins, including CD40L, IFNγ, and IL-4/13, involved in crosstalk between B and T cells were linked to the production of antibodies with functional Fc region but only when co-expressed with IL-21. As a potential source of these antibodies, we identified a subset of Env-specific memory B cells known to be expanded in chronic HIV-1 infection. The frequency and level of Blimp-1 expression in Env-specific tissue-like memory B cells (TLM) correlated with the functional CD4+ T cell subsets associated with robust antibody-dependent innate responses. Thus, our data suggest a mechanism responsible for the generation of antibodies with functional Fc region in chronically HIV-1 infected individuals that is based on CD4+ T cell-induced activation of memory B cells.Importance To develop a vaccine or immunotherapy that would cure the HIV-1 infection it is important to identify helper T cells able to mount an efficient antibody response. Here, we demonstrate that the generation of HIV-1 Env-specific antibodies facilitating antibody-dependent innate immune responses likely depends on Env-specific IL-21-secreting CD4+ T and peripheral T follicular helper cells.
Collapse
|
68
|
Abstract
Plasma viremia reoccurs in most HIV-infected individuals once antiretroviral therapy is interrupted, and interindividual differences in the kinetics of viral rebound have been associated with virological and immunological factors. Antibody features, including Fc functionality and Fc glycosylation, have been identified as sensitive surrogates for disease activity in multiple diseases. Plasma viremia reoccurs in most HIV-infected individuals once antiretroviral therapy (ART) is interrupted. The kinetics of viral rebound, specifically the time until plasma virus becomes detectable, differ quite substantially between individuals, and associations with virological and immunological factors have been suggested. Standard clinical measures, like CD4 T-cell counts and plasma HIV RNA levels, however, are poor predictive markers. Antibody features, including Fc functionality and Fc glycosylation have been identified as sensitive surrogates for disease activity in multiple diseases. Here, we analyzed HIV-specific antibody quantities and qualitative differences like antibody-mediated functions, Fc gamma receptor (FcγR) binding, and IgG Fc glycosylation as well as cytokine profiles and cellular HIV DNA and RNA levels in 23 ART-suppressed individuals prior to undergoing an analytical ART interruption (ATI). We found that antibodies with distinct functional properties and Fc glycan signatures separated individuals into early and delayed viral rebounders (≤4 weeks versus >4 weeks) and tracked with levels of inflammatory cytokines and transcriptional activity of the viral reservoir. Specifically, individuals with early viral rebound exhibited higher levels of total HIV-specific IgGs carrying inflammatory Fc glycans, while delayed rebounders showed an enrichment of highly functional antibodies. Overall, only four features, including enhanced antibody-mediated NK cell activation in delayed rebounders, were necessary to discriminate the groups. These data suggest that antibody features can be used as sensitive indicators of HIV disease activity and could be included in future ATI studies.
Collapse
|
69
|
Andreano E, Nicastri E, Paciello I, Pileri P, Manganaro N, Piccini G, Manenti A, Pantano E, Kabanova A, Troisi M, Vacca F, Cardamone D, De Santi C, Torres JL, Ozorowski G, Benincasa L, Jang H, Di Genova C, Depau L, Brunetti J, Agrati C, Capobianchi MR, Castilletti C, Emiliozzi A, Fabbiani M, Montagnani F, Bracci L, Sautto G, Ross TM, Montomoli E, Temperton N, Ward AB, Sala C, Ippolito G, Rappuoli R. Extremely potent human monoclonal antibodies from COVID-19 convalescent patients. Cell 2021; 184:1821-1835.e16. [PMID: 33667349 PMCID: PMC7901298 DOI: 10.1016/j.cell.2021.02.035] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/25/2021] [Accepted: 02/16/2021] [Indexed: 12/26/2022]
Abstract
Human monoclonal antibodies are safe, preventive, and therapeutic tools that can be rapidly developed to help restore the massive health and economic disruption caused by the coronavirus disease 2019 (COVID-19) pandemic. By single-cell sorting 4,277 SARS-CoV-2 spike protein-specific memory B cells from 14 COVID-19 survivors, 453 neutralizing antibodies were identified. The most potent neutralizing antibodies recognized the spike protein receptor-binding domain, followed in potency by antibodies that recognize the S1 domain, the spike protein trimer, and the S2 subunit. Only 1.4% of them neutralized the authentic virus with a potency of 1–10 ng/mL. The most potent monoclonal antibody, engineered to reduce the risk of antibody-dependent enhancement and prolong half-life, neutralized the authentic wild-type virus and emerging variants containing D614G, E484K, and N501Y substitutions. Prophylactic and therapeutic efficacy in the hamster model was observed at 0.25 and 4 mg/kg respectively in absence of Fc functions.
Collapse
Affiliation(s)
- Emanuele Andreano
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Emanuele Nicastri
- National Institute for Infectious Diseases Lazzaro Spallanzani, IRCCS, Rome, Italy
| | - Ida Paciello
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Piero Pileri
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Noemi Manganaro
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | | | | | - Elisa Pantano
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Anna Kabanova
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy; Tumour Immunology Unit, Fondazione Toscana Life Sciences, Siena, Italy
| | - Marco Troisi
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy; Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Fabiola Vacca
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy; Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Dario Cardamone
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy; University of Turin, Turin, Italy
| | - Concetta De Santi
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Jonathan L Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Hyesun Jang
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - Cecilia Di Genova
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Chatham, UK
| | - Lorenzo Depau
- MedBiotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Jlenia Brunetti
- MedBiotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Chiara Agrati
- National Institute for Infectious Diseases Lazzaro Spallanzani, IRCCS, Rome, Italy
| | | | - Concetta Castilletti
- National Institute for Infectious Diseases Lazzaro Spallanzani, IRCCS, Rome, Italy
| | - Arianna Emiliozzi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy; Department of Medical Sciences, Infectious and Tropical Diseases Unit, University Hospital of Siena, Siena, Italy
| | - Massimiliano Fabbiani
- Department of Medical Sciences, Infectious and Tropical Diseases Unit, University Hospital of Siena, Siena, Italy
| | - Francesca Montagnani
- Department of Medical Biotechnologies, University of Siena, Siena, Italy; Department of Medical Sciences, Infectious and Tropical Diseases Unit, University Hospital of Siena, Siena, Italy
| | - Luisa Bracci
- MedBiotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Giuseppe Sautto
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Emanuele Montomoli
- VisMederi S.r.l, Siena, Italy; VisMederi Research S.r.l., Siena, Italy; Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Chatham, UK
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Claudia Sala
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Giuseppe Ippolito
- National Institute for Infectious Diseases Lazzaro Spallanzani, IRCCS, Rome, Italy
| | - Rino Rappuoli
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy; Faculty of Medicine, Imperial College, London, UK.
| |
Collapse
|
70
|
Li H, Omange RW, Liang B, Toledo N, Hai Y, Liu LR, Schalk D, Crecente-Campo J, Dacoba TG, Lambe AB, Lim SY, Li L, Kashem MA, Wan Y, Correia-Pinto JF, Seaman MS, Liu XQ, Balshaw RF, Li Q, Schultz-Darken N, Alonso MJ, Plummer FA, Whitney JB, Luo M. Vaccine targeting SIVmac251 protease cleavage sites protects macaques against vaginal infection. J Clin Invest 2021; 130:6429-6442. [PMID: 32853182 DOI: 10.1172/jci138728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/20/2020] [Indexed: 01/03/2023] Open
Abstract
After over 3 decades of research, an effective anti-HIV vaccine remains elusive. The recently halted HVTN702 clinical trial not only further stresses the challenge to develop an effective HIV vaccine but also emphasizes that unconventional and novel vaccine strategies are urgently needed. Here, we report that a vaccine focusing the immune response on the sequences surrounding the 12 viral protease cleavage sites (PCSs) provided greater than 80% protection to Mauritian cynomolgus macaques against repeated intravaginal SIVmac251 challenges. The PCS-specific T cell responses correlated with vaccine efficacy. The PCS vaccine did not induce immune activation or inflammation known to be associated with increased susceptibility to HIV infection. Machine learning analyses revealed that the immune microenvironment generated by the PCS vaccine was predictive of vaccine efficacy. Our study demonstrates, for the first time to our knowledge, that a vaccine which targets only viral maturation, but lacks full-length Env and Gag immunogens, can prevent intravaginal infection in a stringent macaque/SIV challenge model. Targeting HIV maturation thus offers a potentially novel approach to developing an effective HIV vaccine.
Collapse
Affiliation(s)
- Hongzhao Li
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robert W Omange
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Binhua Liang
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nikki Toledo
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yan Hai
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lewis R Liu
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dane Schalk
- Scientific Protocol Implementation Unit, Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| | - Jose Crecente-Campo
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Tamara G Dacoba
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | | | - So-Yon Lim
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Lin Li
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Mohammad Abul Kashem
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yanmin Wan
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Jorge F Correia-Pinto
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiao Qing Liu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robert F Balshaw
- Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Nancy Schultz-Darken
- Scientific Protocol Implementation Unit, Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| | - Maria J Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Francis A Plummer
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.,National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - James B Whitney
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Ma Luo
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.,National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
71
|
van Gool MMJ, van Egmond M. IgA and FcαRI: Versatile Players in Homeostasis, Infection, and Autoimmunity. Immunotargets Ther 2021; 9:351-372. [PMID: 33447585 PMCID: PMC7801909 DOI: 10.2147/itt.s266242] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Mucosal surfaces constitute the frontiers of the body and are the biggest barriers of our body for the outside world. Immunoglobulin A (IgA) is the most abundant antibody class present at these sites. It passively contributes to mucosal homeostasis via immune exclusion maintaining a tight balance between tolerating commensals and providing protection against pathogens. Once pathogens have succeeded in invading the epithelial barriers, IgA has an active role in host-pathogen defense by activating myeloid cells through divers receptors, including its Fc receptor, FcαRI (CD89). To evade elimination, several pathogens secrete proteins that interfere with either IgA neutralization or FcαRI-mediated immune responses, emphasizing the importance of IgA-FcαRI interactions in preventing infection. Depending on the IgA form, either anti- or pro-inflammatory responses can be induced. Moreover, the presence of excessive IgA immune complexes can result in continuous FcαRI-mediated activation of myeloid cells, potentially leading to severe tissue damage. On the one hand, enhancing pathogen-specific mucosal and systemic IgA by vaccination may increase protective immunity against infectious diseases. On the other hand, interfering with the IgA-FcαRI axis by monovalent targeting or blocking FcαRI may resolve IgA-induced inflammation and tissue damage. This review describes the multifaceted role of FcαRI as immune regulator between anti- and pro-inflammatory responses of IgA, and addresses potential novel therapeutic strategies that target FcαRI in disease. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/xlijXy5W0xA
Collapse
Affiliation(s)
- Melissa Maria Johanna van Gool
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Amsterdam institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Amsterdam institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands.,Department of Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
72
|
Distinct Immunoglobulin Fc Glycosylation Patterns Are Associated with Disease Nonprogression and Broadly Neutralizing Antibody Responses in Children with HIV Infection. mSphere 2020; 5:5/6/e00880-20. [PMID: 33361123 PMCID: PMC7763548 DOI: 10.1128/msphere.00880-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To protect future generations against HIV, a vaccine will need to induce immunity by the time of sexual debut and hence requires immunization during childhood. Current strategies for a prophylactic HIV vaccine include the induction of a broadly neutralizing antibody response and the recruitment of potent effector functions of immune cells via the constant antibody Fc region. A prophylactic HIV vaccine would ideally induce protective immunity prior to sexual debut. Children develop broadly neutralizing antibody (bnAb) responses faster and at higher frequencies than adults, but little is known about the underlying mechanisms or the potential role of Fc-mediated effector functions in disease progression. We therefore performed systems immunology, with immunoglobulin profiling, on HIV-infected children with progressive and nonprogressive disease. Pediatric nonprogressors (PNPs) showed distinct immunoglobulin profiles with an increased ability to elicit potent Fc-mediated natural killer (NK)-cell effector functions. In contrast to previous reports in adults, both groups of children showed high levels of gp120-specific IgG Fc glycan sialylation compared to bulk IgG. Importantly, higher levels of Fc glycan sialylation were associated with increased bnAb breadth, providing the first evidence that Fc sialylation may drive affinity maturation of HIV-specific antibodies in children, a mechanism that could be exploited for vaccination strategies. IMPORTANCE To protect future generations against HIV, a vaccine will need to induce immunity by the time of sexual debut and hence requires immunization during childhood. Current strategies for a prophylactic HIV vaccine include the induction of a broadly neutralizing antibody response and the recruitment of potent effector functions of immune cells via the constant antibody Fc region. In this study, we show that nonprogressing HIV-infected children mounted antibody responses against HIV that were able to mediate potent Fc effector functions, which may contribute to the control of HIV replication. Children who had specific glycan structures on the Fc portion of antibodies against HIV were able to neutralize a broader range of HIV variants, providing evidence of a potential role of Fc glycovariation in the development of bnAbs against HIV. These findings complement our knowledge of the distinct immune landscape in early life that could be exploited in the development of vaccine strategies.
Collapse
|
73
|
HIV Antibody Fc N-Linked Glycosylation Is Associated with Viral Rebound. Cell Rep 2020; 33:108502. [PMID: 33326789 DOI: 10.1016/j.celrep.2020.108502] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/22/2020] [Accepted: 11/18/2020] [Indexed: 01/01/2023] Open
Abstract
Changes in antibody glycosylation are linked to inflammation across several diseases. Alterations in bulk antibody galactosylation can predict rheumatic flares, act as a sensor for immune activation, predict gastric cancer relapse, track with biological age, shift with vaccination, change with HIV reservoir size on therapy, and decrease in HIV and HCV infections. However, whether changes in antibody Fc biology also track with reservoir rebound time remains unclear. The identification of a biomarker that could forecast viral rebound time could significantly accelerate the downselection and iterative improvement of promising HIV viral eradication strategies. Using a comprehensive antibody Fc-profiling approach, the level of HIV-specific antibody Fc N-galactosylation is significantly associated with time to rebound after treatment discontinuation across three independent cohorts. Thus virus-specific antibody glycosylation may represent a promising, simply measured marker to track reservoir reactivation.
Collapse
|
74
|
Fischinger S, Dolatshahi S, Jennewein MF, Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Michael N, Vasan S, Ackerman ME, Streeck H, Alter G. IgG3 collaborates with IgG1 and IgA to recruit effector function in RV144 vaccinees. JCI Insight 2020; 5:140925. [PMID: 33031099 PMCID: PMC7710302 DOI: 10.1172/jci.insight.140925] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/30/2020] [Indexed: 01/08/2023] Open
Abstract
While the RV144 HIV vaccine trial led to moderately reduced risk of HIV acquisition, emerging data from the HVTN702 trial point to the critical need to reexamine RV144-based correlates of reduced risk of protection. While in RV144, the induction of V2-binding, non-IgA, IgG3 antibody responses with nonneutralizing functions were linked to reduced risk of infection, the interactions between these signatures remain unclear. Thus, here we comprehensively profile the humoral immune response in 300 RV144 vaccinees to decipher the relationships between humoral biomarkers of protection. We found that vaccine-specific IgG1, IgG3, and IgA were highly correlated. However, ratios of IgG1:IgG3:IgA provided insights into subclass/isotype polyclonal functional regulation. For instance, in the absence of high IgG1 levels, IgG3 antibodies exhibited limited functional activity, pointing to IgG3 as a critical contributor, but not sole driver, of effective antiviral humoral immunity. Higher IgA levels were linked to enhanced antibody effector function, including neutrophil phagocytosis (ADNP), complement deposition (ADCD), and antibody-dependent NK degranulation (CD107a), some of which were increased in infected vaccinees in a case/control data set, suggesting that IgA-driven functions compromised immunity. These data highlight the interplay between IgG1, IgG3, and IgA, pointing to the need to profile the relationships between subclass/isotype selection. The induction of V2-binding, non-IgA, IgG3 antibody responses with non-neutralizing functions were linked to reduced risk of infection in RV144 vaccinees.
Collapse
Affiliation(s)
- Stephanie Fischinger
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA.,PhD Program of Virology and Immunology, University of Duisburg-Essen, Essen, Germany
| | | | | | | | | | | | | | - Sandhya Vasan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Hendrik Streeck
- Institute of Virology, Universitätsklinikum Bonn, Bonn, Germany
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
75
|
Ding M, Baker D. Recent advances in high-throughput flow cytometry for drug discovery. Expert Opin Drug Discov 2020; 16:303-317. [PMID: 33054417 DOI: 10.1080/17460441.2021.1826433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION High-throughput flow cytometry (HTFC) has proven to be an important technology in drug discovery. The use of HTFC enables multi-parametric screening of suspension cells containing heterogenous cell populations and coated particles for screening proteins of interest. Novel targets, novel cell markers and compound clusters for drug development have been identified from HTFC screens. AREAS COVERED In this article, the authors focus on reviewing the recent HTFC applications reported during the last 5-6 years, including drug discovery screens and studies for immune, immune-oncology, infectious and inflammatory diseases. The main HTFC approaches, development of HTFC systems, and automated sample preparation systems for HTFC are also discussed. EXPERT OPINION The advance of HTFC technology coupled with automated sample acquisition and sample preparation has demonstrated its utility in screening large numbers of compounds using suspension cells, facilitated screening of disease-relevant human primary cells, and enabled deep understanding of mechanism of action by analyzing multiple parameters. The authors see HTFC as a very valuable tool in immune, immune-oncology, infectious and inflammatory diseases where immune cells play essential roles.
Collapse
Affiliation(s)
- Mei Ding
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - David Baker
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
76
|
Mining for humoral correlates of HIV control and latent reservoir size. PLoS Pathog 2020; 16:e1008868. [PMID: 33048992 PMCID: PMC7553335 DOI: 10.1371/journal.ppat.1008868] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 08/06/2020] [Indexed: 11/19/2022] Open
Abstract
While antiretroviral therapy (ART) has effectively revolutionized HIV care, the virus is never fully eliminated. Instead, immune dysfunction, driven by persistent non-specific immune activation, ensues and progressively leads to premature immunologic aging. Current biomarkers monitoring immunologic changes encompass generic inflammatory biomarkers, that may also change with other infections or disease states, precluding the antigen-specific monitoring of HIV-infection associated changes in disease. Given our growing appreciation of the significant changes in qualitative and quantitative properties of disease-specific antibodies in HIV infection, we used a systems approach to explore humoral profiles associated with HIV control. We found that HIV-specific antibody profiles diverge by spontaneous control of HIV, treatment status, viral load and reservoir size. Specifically, HIV-specific antibody profiles representative of changes in viral load were largely quantitative, reflected by differential HIV-specific antibody levels and Fc-receptor binding. Conversely, HIV-specific antibody features that tracked with reservoir size exhibited a combination of quantitative and qualitative changes marked by more distinct subclass selection profiles and unique HIV-specific Fc-glycans. Our analyses suggest that HIV-specific antibody Fc-profiles provide antigen-specific resolution on both cell free and cell-associated viral loads, pointing to potentially novel biomarkers to monitor reservoir activity. Current combination antiretroviral therapy (ART) regimens have reversed the death sentence once associated with an HIV diagnosis. However, the virus is never fully eliminated. Rather, latently infected cells with integrated virus (latent reservoir) persist and the virus rebounds rapidly upon discontinuation of therapy. Further, even for those on ART, immune dysfunction, driven by persistent non-specific immune activation, ensues and progressively leads to premature immunologic aging. Current biomarkers monitoring these changes are non-specific–they focus on generic inflammatory changes that may also track with other infections or disease states. In this manuscript, we used an unbiased analytical systems approach to identify antigen-specific biomarkers of HIV disease state/treatment status, active viremia and the latent reservoir. By virtue of them being antigen-specific, these are robust context-specific biomarkers of HIV disease progression, viremia and reservoir size. Our framework highlights the strength of using systems approaches in identifying humoral biomarkers, and can be used in other contexts to identify antigen-specific correlates of infectious disease outcome.
Collapse
|
77
|
CD4 + T Cells Induced by Tuberculosis Subunit Vaccine H1 Can Improve the HIV-1 Env Humoral Response by Intrastructural Help. Vaccines (Basel) 2020; 8:vaccines8040604. [PMID: 33066267 PMCID: PMC7711721 DOI: 10.3390/vaccines8040604] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 01/25/2023] Open
Abstract
The induction of a potent and long-lasting, broadly neutralizing antibody response is one of the most promising approaches in HIV-1 vaccination. Recently, we demonstrated that Gag-specific T helper cells induced by DNA priming can enhance and modulate the HIV Env-specific B cell response upon virus-like particle (VLP) boost by intrastructural help (ISH). In order to minimize the induction of potentially harmful HIV specific TH cells, we explored the possibility to harness the heterologous TH cells induced by a recombinant tuberculosis subunit vaccine H1, which contains a fusion protein of Ag85B and ESAT-6 antigens in combination with the liposomal adjuvant CAF01. To provide ISH, immunodominant MHC-II restricted peptides from the H1 vaccine were genetically incorporated into the HIV 1 Gag protein and used for HIV VLP production. ISH effects on Env-specific antibody levels and B cell differentiation were analyzed in mice primed against H1 and boosted with VLPs. In contrast to non-primed mice, a significant increase of Env-specific IgG levels for up to 26 weeks after the last immunization was observed. This increase was largely caused by elevated IgG2b and IgG2c levels in mice that received H1 priming. Additionally, ISH enhanced the frequency of Env-specific long-lived plasma cells in the bone marrow. In this study, we were able to demonstrate that a heterologous prime-boost regimen consisting of the H1 tuberculosis subunit vaccine and T helper epitope modified HIV-1 VLPs resulted in enhanced HIV Env antibody and B cell responses, mediated by intrastructural help.
Collapse
|
78
|
Tuyishime M, Garrido C, Jha S, Moeser M, Mielke D, LaBranche C, Montefiori D, Haynes BF, Joseph S, Margolis DM, Ferrari G. Improved killing of HIV-infected cells using three neutralizing and non-neutralizing antibodies. J Clin Invest 2020; 130:5157-5170. [PMID: 32584790 PMCID: PMC7524508 DOI: 10.1172/jci135557] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/24/2020] [Indexed: 02/06/2023] Open
Abstract
The correlation of HIV-specific antibody-dependent cellular cytotoxicity (ADCC) responses with protection from and delayed progression of HIV-1 infection provides a rationale to leverage ADCC-mediating antibodies for treatment purposes. We evaluated ADCC mediated by different combinations of 2 to 6 neutralizing and non-neutralizing anti-HIV-1 Envelope (Env) mAbs, using concentrations ≤ 1 μg/mL, to identify combinations effective at targeting latent reservoir HIV-1 viruses from 10 individuals. We found that within 2 hours, combinations of 3 mAbs mediated more than 30% killing of HIV-infected primary CD4+ T cells in the presence of autologous NK cells, with the combination of A32 (C1C2), DH511.2K3 (MPER), and PGT121 (V3) mAbs being the most effective. Increasing the incubation of target and effector cells in the presence of mAb combinations from 2 to 24 hours resulted in increased specific killing of infected cells, even with neutralization-resistant viruses. The same combination eliminated reactivated latently HIV-1-infected cells in an ex vivo quantitative viral outgrowth assay. Therefore, administration of a combination of 3 mAbs should be considered in planning in vivo studies seeking to eliminate persistently HIV-1-infected cells.
Collapse
Affiliation(s)
- Marina Tuyishime
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Shalini Jha
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Matt Moeser
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dieter Mielke
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Celia LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - David Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine and
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Sarah Joseph
- UNC HIV Cure Center and
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology and
| | - David M. Margolis
- UNC HIV Cure Center and
- Department of Microbiology and Immunology and
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
79
|
Kant S, Zhang N, Barbé A, Routy JP, Tremblay C, Thomas R, Szabo J, Côté P, Trottier B, LeBlanc R, Rouleau D, Harris M, Dupuy FP, Bernard NF. Polyfunctional Fc Dependent Activity of Antibodies to Native Trimeric Envelope in HIV Elite Controllers. Front Immunol 2020; 11:583820. [PMID: 33101312 PMCID: PMC7555699 DOI: 10.3389/fimmu.2020.583820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/10/2020] [Indexed: 12/17/2022] Open
Abstract
Antibody dependent (AD) functions such as AD cellular cytotoxicity (ADCC) were associated with lower viral load (VL) in untreated HIV progressors and protection from HIV infection in the modestly protective RV144 HIV vaccine trial. Target cells used to measure ADCC, AD complement deposition (ADCD), and AD cellular trogocytosis (ADCT) have been either HIV envelope (Env) gp120-coated CEM.NKr.CCR5 cells or HIV infected cell cultures. In HIV infected cell cultures, uninfected bystander cells take up gp120 shed from infected cells. Both gp120-coated and gp120+ bystander cells expose CD4 induced (CD4i) epitopes, which are normally hidden in native trimeric Env expressed by genuinely HIV infected cells since Nef and Vpu downmodulate cell surface CD4. Antibody dependent assays using either of these target cells probe for CD4i Abs that are abundant in HIV+ plasma but that do not recognize HIV-infected cells. Here, we examined ADCC, ADCD, and ADCT functions using a target cell line, sorted HIV-infected cell line cells, whose HIV infection frequency nears 100% and that expresses HIV Env in a native trimeric closed conformation. Using sorted HIV-infected cells (siCEM) as targets, we probed the binding and AD functions of anti-gp120/Env Abs in plasma from HIV-infected untreated progressor (UTP, n = 18) and treated (TP, n = 24) subjects, compared to that in Elite controllers (EC, n = 37) and Viral Controllers (VC, n = 16), which are rare subsets of HIV-infected individuals who maintain undetectable or low VL, respectively, without treatment. Gp120-coated beads were used to measure AD cellular phagocytosis. Equivalent concentrations of input IgG in plasma from UTPs, ECs, and VCs supported higher levels of all AD functions tested than plasma from TPs. When AD activities were normalized to the concentration of anti-gp120/Env-specific Abs, between-group differences largely disappeared. This finding suggests that the anti-gp120/Env Abs concentrations and not their potency determined AD functional levels in these assays. Elite controllers did differ from the other groups by having AD functions that were highly polyfunctional and highly correlated with each other. PCR measurement of HIV reservoir size showed that ADCC activity was higher in ECs and VCs with a reservoir size below the limit of detection compared to those having a measurable HIV reservoir size.
Collapse
Affiliation(s)
- Sanket Kant
- Research Institute of the McGill University Health Centre Montreal, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Ningyu Zhang
- Research Institute of the McGill University Health Centre Montreal, Montreal, QC, Canada.,Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Alexandre Barbé
- Research Institute of the McGill University Health Centre Montreal, Montreal, QC, Canada.,Faculté de Médecine de l'Université de Lille Henri Warembourg, Lille, France.,Ophthalmology Department, Lille University Hospital, Lille, France
| | - Jean-Pierre Routy
- Research Institute of the McGill University Health Centre Montreal, Montreal, QC, Canada.,Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Division of Hematology, McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Cécile Tremblay
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada.,Départment de Microbiologie Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | | | - Jason Szabo
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,Clinique Médicale l'Actuel, Montreal, QC, Canada
| | - Pierre Côté
- Clinique de Médecine Urbaine du Quartier Latin, Montreal, QC, Canada
| | - Benoit Trottier
- Clinique de Médecine Urbaine du Quartier Latin, Montreal, QC, Canada
| | | | - Danielle Rouleau
- Départment de Microbiologie Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Marianne Harris
- British Columbia Center for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Franck P Dupuy
- Research Institute of the McGill University Health Centre Montreal, Montreal, QC, Canada.,Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Nicole F Bernard
- Research Institute of the McGill University Health Centre Montreal, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,Division of Clinical Immunology, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
80
|
Boudreau CM, Yu WH, Suscovich TJ, Talbot HK, Edwards KM, Alter G. Selective induction of antibody effector functional responses using MF59-adjuvanted vaccination. J Clin Invest 2020; 130:662-672. [PMID: 31845904 DOI: 10.1172/jci129520] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/15/2019] [Indexed: 12/14/2022] Open
Abstract
Seasonal and pandemic influenza infection remains a major public health concern worldwide. Driving robust humoral immunity has been a challenge given preexisting, often cross-reactive, immunity and in particular, poorly immunogenic avian antigens. To overcome immune barriers, the adjuvant MF59 has been used in seasonal influenza vaccines to increase antibody titers and improve neutralizing activity, translating to a moderate increase in protection in vulnerable populations. However, its effects on stimulating antibody effector functions, including NK cell activation, monocyte phagocytosis, and complement activity, all of which have been implicated in protection against influenza, have yet to be defined. Using systems serology, we assessed changes in antibody functional profiles in individuals who received H5N1 avian influenza vaccine administered with MF59, with alum, or delivered unadjuvanted. MF59 elicited antibody responses that stimulated robust neutrophil phagocytosis and complement activity. Conversely, vaccination with MF59 recruited NK cells poorly and drove moderate monocyte phagocytic activity, both likely compromised because of the induction of antibodies that did not bind FCGR3A. Collectively, defining the humoral antibody functions induced by distinct adjuvants may provide a path to designing next-generation vaccines that can selectively leverage the humoral immune functions, beyond binding and neutralization, resulting in better protection from infection.
Collapse
Affiliation(s)
- Carolyn M Boudreau
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA.,PhD program in Virology, Division of Medical Sciences, Harvard University, Boston, Massachusetts, USA
| | - Wen-Han Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Todd J Suscovich
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - H Keipp Talbot
- Department of Medicine.,Department of Health Policy, and
| | - Kathryn M Edwards
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
81
|
Abstract
Despite the success of anti-retroviral therapy (ART) in transforming HIV into a manageable disease, it has become evident that long-term ART will not eliminate the HIV reservoir and cure the infection. Alternative strategies to eradicate HIV infection, or at least induce a state of viral control and drug-free remission are therefore needed. Therapeutic vaccination aims to induce or enhance immunity to alter the course of a disease. In this review we provide an overview of the current state of therapeutic HIV vaccine research and summarize the obstacles that the field faces while highlighting potential ways forward for a strategy to cure HIV infection.
Collapse
|
82
|
Jennewein MF, Mabuka J, Papia CL, Boudreau CM, Dong KL, Ackerman ME, Ndung'u T, Alter G. Tracking the Trajectory of Functional Humoral Immune Responses Following Acute HIV Infection. Front Immunol 2020; 11:1744. [PMID: 32849622 PMCID: PMC7426367 DOI: 10.3389/fimmu.2020.01744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence points to a role for antibody-mediated effector functions in preventing and controlling HIV infection. However, less is known about how these antibody effector functions evolve following infection. Moreover, how the humoral immune response is naturally tuned to recruit the antiviral activity of the innate immune system, and the extent to which these functions aid in the control of infection, are poorly understood. Using plasma samples from 10 hyper-acute HIV-infected South African women, identified in Fiebig stage I (the FRESH cohort), systems serology was performed to evaluate the functional and biophysical properties of gp120-, gp41-, and p24- specific antibody responses during the first year of infection. Significant changes were observed in both the functional and biophysical characteristics of the humoral immune response following acute HIV infection. Antibody Fc-functionality increased over the course of infection, with increases in antibody-mediated phagocytosis, NK activation, and complement deposition occurring in an antigen-specific manner. Changes in both antibody subclass and antibody Fc-glycosylation drove the evolution of antibody effector activity, highlighting natural modifications in the humoral immune response that may enable the directed recruitment of the innate immune system to target and control HIV. Moreover, enhanced antibody functionality, particularly gp120-specific polyfunctionality, was tied to improvements in clinical course of infection, supporting a role for functional antibodies in viral control.
Collapse
Affiliation(s)
- Madeleine F Jennewein
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
| | - Jennifer Mabuka
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States.,Africa Health Research Institute, Durban, South Africa.,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Cassidy L Papia
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Carolyn M Boudreau
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
| | - Krista L Dong
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
| | | | - Thumbi Ndung'u
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States.,Africa Health Research Institute, Durban, South Africa.,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.,Max Planck Institute for Infection Biology, Berlin, Germany.,Division of Infection and Immunity, University College London, London, United Kingdom
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
| |
Collapse
|
83
|
A FcɣRIIa polymorphism has a HLA-B57 and HLA-B27 independent effect on HIV disease outcome. Genes Immun 2020; 21:263-268. [PMID: 32759994 DOI: 10.1038/s41435-020-0106-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 11/09/2022]
Abstract
Fcɣ receptors (FcɣRs) are key immune regulatory receptors that connect antibody-mediated immune responses to cellular effector functions. They are involved in the control of various immune functions including responses to infections. Genetic polymorphisms of FcɣRs coding genes (FCGR) have been associated with the regulation of HIV infection and progression. In this study, we analyzed the potential impact of five candidate FcɣR SNPs on viral control by genotyping 251 HIV controllers and 250 progressors. The rs10800309 AA genotype of the FcɣRIIa coding gene FCGR2A was found to be significantly associated with HIV control and this association was independent of HLA-B57 and HLA-B27 (OR, 2.84; 95% CI, 1.20-6.89; Pcor = 0.033). We further confirmed the functional role of this polymorphism by showing an association of this same AA genotype with an increased in vitro FcɣRII expression on myeloid cells including dendritic cells (P = 0.0032). Together, these results suggest that the AA genotype of rs10800309 confers an improved immune response through FcɣRII upregulation and that this polymorphism may serve as an additional predictive marker of HIV control.
Collapse
|
84
|
Fisher KL, Mabuka JM, Sivro A, Ngcapu S, Passmore JAS, Osman F, Ndlovu B, Abdool Karim Q, Abdool Karim SS, Chung AW, Baxter C, Archary D. Topical Tenofovir Pre-exposure Prophylaxis and Mucosal HIV-Specific Fc-Mediated Antibody Activities in Women. Front Immunol 2020; 11:1274. [PMID: 32733445 PMCID: PMC7357346 DOI: 10.3389/fimmu.2020.01274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 05/20/2020] [Indexed: 01/07/2023] Open
Abstract
The RV144 HIV-vaccine trial highlighted the importance of envelope-specific non-neutralizing antibody (nNAb) Fc-mediated functions as immune correlates of reduced risk of infection. Since pre-exposure prophylaxis (PrEP) and HIV-vaccines are being used as a combination prevention strategy in at risk populations, the effects of PrEP on nNAb functions both mucosally and systemically remain undefined. Previous animal and human studies demonstrated reduced HIV-specific antibody binding avidity post-HIV seroconversion with PrEP, which in turn may affect antibody functionality. In seroconverters from the CAPRISA 004 tenofovir gel trial, we previously reported significantly higher detection and titres of HIV-specific binding antibodies in the plasma and genital tract (GT) that distinguished the tenofovir from the placebo arm. We hypothesized that higher HIV-specific antibody titres and detection reflected corresponding increased antibody-dependent neutrophil-mediated phagocytosis (ADNP) and NK-cell-activated antibody-dependent cellular cytotoxic (ADCC) activities. HIV-specific V1V2-gp70, gp120, gp41, p66, and p24 antibodies in GT and plasma samples of 48 seroconverters from the CAPRISA 004 tenofovir gel trial were tested for ADCP and ADCC at 3, 6- and 12-months post-HIV-infection. GT gp41- and p24-specific ADNP were significantly higher in the tenofovir than the placebo arm at 6 and 12 months respectively (p < 0.05). Plasma gp120-, gp41-, and p66-specific ADNP, and GT gp41-specific ADCC increased significantly over time (p < 0.05) in the tenofovir arm. In the tenofovir arm only, significant inverse correlations were observed between gp120-specific ADCC and gp120-antibody titres (r = −0.54; p = 0.009), and gp41-specific ADNP and gp41-specific antibody titres at 6 months post-infection (r = −0.50; p = 0.015). In addition, in the tenofovir arm, gp41-specific ADCC showed significant direct correlations between the compartments (r = 0.53; p = 0.045). Certain HIV-specific nNAb activities not only dominate specific immunological compartments but can also exhibit diverse functions within the same compartment. Our previous findings of increased HIV specific antibody detection and titres in women who used tenofovir gel, and the limited differences in nNAb activities between the arms, suggest that prior PrEP did not modulate these nNAb functions post-HIV seroconversion. Together these data provide insight into envelope-specific-nNAb Fc-mediated functions at the site of exposure which may inform on ensuing immunity during combination HIV prevention strategies including PrEP and HIV vaccines.
Collapse
Affiliation(s)
- Kimone Leigh Fisher
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Jennifer M Mabuka
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa.,HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Aida Sivro
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa.,Department of Medical Microbiology, University of KwaZulu-Natal, Durban, South Africa
| | - Sinaye Ngcapu
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa.,Department of Medical Microbiology, University of KwaZulu-Natal, Durban, South Africa
| | - Jo-Ann Shelley Passmore
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa.,Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, and National Health Laboratory Service, Cape Town, South Africa
| | - Farzana Osman
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Bongiwe Ndlovu
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Quarraisha Abdool Karim
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa.,Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa.,Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Amy W Chung
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Cheryl Baxter
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa.,Department of Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Derseree Archary
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa.,Department of Medical Microbiology, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
85
|
Cavarelli M, Le Grand R. The importance of semen leukocytes in HIV-1 transmission and the development of prevention strategies. Hum Vaccin Immunother 2020; 16:2018-2032. [PMID: 32614649 PMCID: PMC7553688 DOI: 10.1080/21645515.2020.1765622] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
HIV-1 sexual transmission occurs mostly through contaminated semen, which is a complex mixture of soluble factors with immunoregulatory functions and cells. It is well established that semen cells from HIV-1-infected men are able to produce the virus and that are harnessed to efficiently interact with mucosal barriers exposed during sexual intercourse. Several cofactors contribute to semen infectivity and may enhance the risk of HIV-1 transmission to a partner by increasing local HIV-1 replication in the male genital tract, thereby increasing the number of HIV-1-infected cells and the local HIV-1 shedding in semen. The introduction of combination antiretroviral therapy has improved the life expectancy of HIV-1 infected individuals; however, there is evidence that systemic viral suppression does not always reflect full viral suppression in the seminal compartment. This review focus on the role semen leukocytes play in HIV-1 transmission and discusses implications of the increased resistance of cell-mediated transmission to immune-based prevention strategies.
Collapse
Affiliation(s)
- Mariangela Cavarelli
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT) , Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT) , Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| |
Collapse
|
86
|
Fischinger S, Shin S, Boudreau CM, Ackerman M, Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Kim JH, Robb ML, Michael NL, O’Connell RJ, Vasan S, Streeck H, Alter G. Protein-based, but not viral vector alone, HIV vaccine boosting drives an IgG1-biased polyfunctional humoral immune response. JCI Insight 2020; 5:135057. [PMID: 32554928 PMCID: PMC7406243 DOI: 10.1172/jci.insight.135057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
The RV144 HIV-1 vaccine trial results showed moderate reduction in viral infections among vaccinees as well as induction of antibody-dependent cellular cytotoxicity and vaccine-specific IgG and IgG3 responses directed at variable loop regions 1 and 2 of the HIV envelope protein. However, with the recent failure of the HVTN 702 clinical trial, comprehensive profiling of humoral immune responses may provide insight for these disappointing results. One of the changes included in the HVTN 702 study was the addition of a late boost, aimed at augmenting peak immunity and durability. The companion vaccine trial RV305 was designed to permit the evaluation of the immunologic impact of late boosting with either the boosting protein antigen alone, the canarypox viral vector ALVAC alone, or a combination of both. Although previous data showed elevated levels of IgG antibodies in both boosting arms, regardless of ALVAC-HIV vector incorporation, the effect on shaping antibody effector function remains unclear. Thus, here we analyzed the antibody and functional profile induced by RV305 boosting regimens and found that although IgG1 levels increased in both arms that included protein boosting, IgG3 levels were reduced compared with the original RV144 vaccine strategy. Most functional responses increased upon protein boosting, regardless of the viral vector-priming agent incorporation. These data suggest that the addition of a late protein boost alone is sufficient to increase functionally potent vaccine-specific antibodies previously associated with reduced risk of infection with HIV.
Collapse
Affiliation(s)
- Stephanie Fischinger
- Ragon Institute of MGH, Harvard and MGH, Cambridge, Massachusetts, USA
- Institut für HIV Forschung, Universität Duisburg-Essen, Essen, Germany
| | - Sally Shin
- Ragon Institute of MGH, Harvard and MGH, Cambridge, Massachusetts, USA
| | - Carolyn M. Boudreau
- Ragon Institute of MGH, Harvard and MGH, Cambridge, Massachusetts, USA
- PhD Program in Virology, Harvard University, Boston, Massachusetts, USA
| | - Margaret Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | | | - Punnee Pitisuttithum
- Vaccine Trial Centre, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | | - Merlin L. Robb
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Nelson L. Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Robert J. O’Connell
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Sandhya Vasan
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Hendrik Streeck
- Institut für HIV Forschung, Universität Duisburg-Essen, Essen, Germany
- Institute of Virology, Universitätsklinikum Bonn, Bonn, Germany
| | - Galit Alter
- Ragon Institute of MGH, Harvard and MGH, Cambridge, Massachusetts, USA
| |
Collapse
|
87
|
Abstract
PURPOSE OF REVIEW Rare patients naturally control HIV replication without antiretroviral therapy. Understanding the mechanisms implicated in natural HIV control will inform the development of immunotherapies against HIV. Elite controllers are known for developing efficient antiviral T-cell responses, but recent findings suggest that antibody responses also play a significant role in HIV control. We review the key studies that uncovered a potent memory B-cell response and highly functional anti-HIV antibodies in elite controllers, and explore the mechanisms that may account for the distinct properties of their humoral response. RECENT FINDINGS Elite controllers maintain a large HIV-specific memory B-cell pool that is sustained by efficient T follicular helper function. Neutralizing antibody rarely show high titers in controllers, but seem capable, at least in certain cases, of neutralizing contemporaneous viral strains. In addition, elite controllers display a unique HIV-specific antibody profile in terms of isotype, antigen specificity, and glycosylation pattern, resulting in polyfunctional antibody effector functions that may promote infected cell lysis and prime effectors of the antiviral immune response. SUMMARY Lessons from elite controller studies argue for the importance of integrating the many parameters defining a polyfunctional antibody response when evaluating candidate vaccines and immunotherapeutic approaches directed at HIV.
Collapse
|
88
|
Systems serology for decoding infection and vaccine-induced antibody responses to HIV-1. Curr Opin HIV AIDS 2020; 14:253-264. [PMID: 31033729 DOI: 10.1097/coh.0000000000000558] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Experimental and analytical advances have enabled systematic, high-resolution studies of humoral immune responses, and are beginning to define mechanisms of immunity to HIV. RECENT FINDINGS High-throughput, information-rich experimental and analytical methods, whether genomic, proteomic, or transcriptomic, have firmly established their value across a diversity of fields. Consideration of these tools as trawlers in 'fishing expeditions' has faded as 'data-driven discovery' has come to be valued as an irreplaceable means to develop fundamental understanding of biological systems. Collectively, studies of HIV-1 infection and vaccination including functional, biophysical, and biochemical humoral profiling approaches have provided insights into the phenotypic characteristics of individual and pools of antibodies. Relating these measures to clinical status, protection/efficacy outcomes, and cellular profiling data using machine learning has offered the possibility of identifying unanticipated mechanisms of action and gaining insights into fundamental immunological processes that might otherwise be difficult to decipher. SUMMARY Recent evidence establishes that systematic data collection and application of machine learning approaches can identify humoral immune correlates that are generalizable across distinct HIV-1 immunogens and vaccine regimens and translatable between model organisms and the clinic. These outcomes provide a strong rationale supporting the utility and further expansion of these approaches both in support of vaccine development and more broadly in defining mechanisms of immunity.
Collapse
|
89
|
Abstract
PURPOSE OF REVIEW In the absence of a protective vaccine against HIV-1, passive immunization using novel broadly neutralizing antibodies (bNAbs) is an attractive concept for HIV-1 prevention. Here, we summarize the results of preclinical and clinical studies of bNAbs, discuss strategies for optimizing bNAb efficacy and lay out current pathways for the development of bNAbs as prophylaxis. RECENT FINDINGS Passive transfer of second-generation bNAbs results inpotent protection against infection in preclinical animal models. Furthermore, multiple bNAbs targeting different epitopes on the HIV-1 envelope trimer are in clinical evaluation and have demonstrated favorable safety profiles and robust antiviral activity in chronically infected individuals. The confirmation that passive immunization with bNAb(s) will prevent HIV-1 acquisition in humans is pending and the focus of ongoing investigations. Given the global diversity of HIV-1, bNAb combinations or multispecific antibodies will most likely be required to produce the necessary breadth for effective protection. SUMMARY Encouraging results from preclinical and clinical studies support the development of bNAbs for prevention and a number of antibodies with exceptional breadth and potency are available for clinical evaluation. Further optimization of viral coverage and antibody half-life will accelerate the clinical implementation of bNAbs as a critical tool for HIV-1 prevention strategies.
Collapse
|
90
|
Abstract
PURPOSE OF REVIEW Although the goal of preventive HIV vaccine design is primarily the induction of broadly neutralizing antibodies (bNAbs), recent evidence suggests that a protective response will also benefit from Fc effector functions. Here, we provide an update on the antibody response to HIV infection, including both Fab and Fc-mediated antibody responses. We also highlight recent studies showing the interplay between these functions, focusing primarily on studies published in the last year. RECENT FINDINGS Identification and characterization of bNAb donors continues to provide insights into viral factors that are potentially translatable to vaccine design. Improved and more diverse measures of Fc effector function, and modulators thereof, are enabling a deeper understanding of their role in infection. New data providing mechanistic links between the innate and adaptive humoral immune responses are creating exciting opportunities for vaccine strategies, with the aim of eliciting a polyfunctional protective response. SUMMARY New insights into the overall humoral response to HIV infection are defining diverse and synergistic mechanisms required for antibody protection from HIV through vaccination.
Collapse
|
91
|
Abstract
PURPOSE OF REVIEW Broadly neutralizing antibodies (bnAbs) are considered a key component of an effective HIV-1 vaccine, but despite intensive efforts, induction of bnAbs by vaccination has thus far not been possible. Potent bnAb activity is rare in natural infection and a deeper understanding of factors that promote or limit bnAb evolution is critical to guide bnAb vaccine development. This review reflects on recent key discoveries on correlates of bnAb development and discusses what further insights are needed to move forward. RECENT FINDINGS An increasing number of parameters have been implicated to influence bnAb development in natural infection. Most recent findings highlight a range of immune factors linked with bnAb evolution. Novel approaches have brought exciting progress in defining signatures of the viral envelope associated with bnAb activity. SUMMARY Focused efforts of recent years have unraveled a multiply layered process of HIV-1 bnAb development. As it is understood today, bnAb evolution can be triggered and influenced by a range of factors and several different pathways may exist how bnAb induction and maturation can occur. To capitalize on the gained knowledge, future research needs to validate factors to identify independent drivers of bnAb induction to advance vaccine design.
Collapse
|
92
|
Abstract
PURPOSE OF REVIEW The review recalls recent findings regarding the induction of vaccinal effects by HIV-1 broadly neutralizing antibodies (bNAbs) and highlights potential therapeutic strategies to exploit such immunomodulatory properties. RECENT FINDINGS Studies in different animal models have shown that mAbs can generate long-lasting protective immunity. Induction of this vaccinal effect by HIV-1 bNAbs has also been more recently reported in animal models of HIV-1 infection. Notably, bNAbs treatment of macaques infected with the chimeric simian-human immunodeficiency virus (SHIV) improved both humoral and cellular adaptive immune responses that contributed to disease control. Importantly, this concept has been extended to HIV-1-infected patients as enhancement of humoral responses was recently reported in HIV-1 patients treated with bNAbs. Studies aiming at elucidating the mechanisms underlying these immunomodulatory properties of bNAbs have identified a role for immune complexes in shaping immune responses against HIV-1. They also highlight different Fc (fragment crystallizable) region effector functions that might be required for the enhancement of HIV-1 immune responses upon bNAbs treatment. SUMMARY HIV-1 bNAbs can elicit protective adaptive immune responses through mechanisms involving multiple cellular and molecular actors of the immune system. Harnessing these mechanisms will be crucial to achieve protective immunity against HIV-1 infection by bNAbs.
Collapse
|
93
|
Ruiz-Mateos E, Poveda E, Lederman MM. Antiretroviral Treatment for HIV Elite Controllers? Pathog Immun 2020; 5:121-133. [PMID: 32582872 PMCID: PMC7307444 DOI: 10.20411/pai.v5i1.364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
Abstract
In most HIV-infected persons, the natural history of untreated infection is one of sustained viremia, progressive CD4 T cell depletion with resultant morbidity and mortality. The advent of effective combination antiretroviral therapy (ART) that controls HIV replication has altered this landscape dramatically. Yet a rare population of HIV-infected persons-elite controllers (EC)-can control HIV replication such that plasma levels of virus are "undetectable" without ART. The EC phenotype is heterogeneous, with some subjects durably controlling the virus-persistent elite controllers-and some eventually losing viral control-transient elite controllers. Overall, EC tend to have robust HIV-specific T cell responses and in some cases, mainly in transient elite controllers, elevated activation and inflammation indices that diminish with ART suggesting that endogenous defenses against this persistent pathogen come at the cost of heightened activation/inflammation. A limited data set suggests that cardiovascular disease risk as well as the occur-rence of other morbid events may be greater in the overall EC population than in treated HIV infection. ART in EC decreases activation indices but does not appear to increase circulating CD4 T cell numbers nor do we know if it alters clinical outcomes. Thus, it is difficult to recommend or discourage a decision to start ART in the EC population but the authors lean toward treatment particularly in those EC whose activation indices are high and those who are progressively losing circulating CD4 T cell numbers. Biomarkers that can reliably predict loss of virologic control and immune failure are needed.
Collapse
Affiliation(s)
- Ezequiel Ruiz-Mateos
- Clinic Unit of Infectious Diseases; Microbiology and Preventive Medicine; Institute of Biomedicine of Seville; Virgen del Rocío University Hospital/CSIC/University of Seville, Spain
| | - Eva Poveda
- Group of Virology and Pathogenesis; Galicia Sur Health Research Institute (IIS Galicia Sur)-Complexo Hospitalario Universitario de Vigo; SERGAS-UVigo; Vigo, Spain
| | - Michael M. Lederman
- Division of Infectious Diseases; Center for AIDS Research; Case Western Reserve University and University Hospitals; Cleveland Medical Center; Cleveland, Ohio
| |
Collapse
|
94
|
Goldberg BS, Ackerman ME. Antibody-mediated complement activation in pathology and protection. Immunol Cell Biol 2020; 98:305-317. [PMID: 32142167 DOI: 10.1111/imcb.12324] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 01/10/2023]
Abstract
Antibody-dependent complement activity is associated not only with autoimmune morbidity, but also with antitumor efficacy. In infectious disease, both recombinant monoclonal antibodies and polyclonal antibodies generated in natural adaptive responses can mediate complement activity to protective, therapeutic or disease-enhancing effect. Recent advances have contributed to the structural resolution of molecular complexes involved in antibody-mediated complement activation, defining the avid nature of participating interactions and pointing to how antibody isotype, subclass, hinge flexibility, glycosylation state, amino acid sequence and the contextual nature of the cognate antigen/epitope are all factors that can determine complement activity through impact on antibody multimerization and subsequent recruitment of complement component 1q. Beyond the efficiency of activation, complement activation products interact with various cell types that mediate immune adherence, trafficking, immune education and innate functions. Similarly, depending on the anatomical location and extent of activation, complement can support homeostatic restoration or be leveraged by pathogens or neoplasms to enhance infection or promote tumorigenic microenvironments, respectively. Advances in means to suppress complement activation by intravenous immunoglobulin (IVIG), IVIG mimetics and complement-intervening antibodies represent proven and promising exploratory therapeutic strategies, while antibody engineering has likewise offered frameworks to enhance, eliminate or isolate complement activation to interrogate in vivo mechanisms of action. Such strategies promise to support the optimization of antibody-based drugs that are able to tackle emerging and difficult-to-treat diseases by improving our understanding of the synergistic and antagonistic relationships between antibody mechanisms mediated by Fc receptors, direct binding and the products of complement activation.
Collapse
Affiliation(s)
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.,Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
95
|
Titanji B, Kelley CF. What's Hot in HIV in 2019-A Basic and Translational Science Summary for Clinicians From IDWeek 2019. Open Forum Infect Dis 2020; 7:ofaa053. [PMID: 32154324 PMCID: PMC7052744 DOI: 10.1093/ofid/ofaa053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/10/2020] [Indexed: 11/17/2022] Open
Abstract
The field of HIV research is constantly evolving, and every year brings advances that draw us closer to ending the HIV epidemic. Here, we present a nonexhaustive overview of select notable studies in HIV prevention, cure, and treatment, published in the last year as presented at IDWeek 2019: What’s Hot in HIV Basic Science. The past year brought interesting results on the use of broadly neutralizing antibodies for treatment and prevention, gene-editing approaches to HIV cure, and new ways to measure the HIV reservoir. We also saw encouraging results on novel HIV vaccine delivery strategies and how these may influence effective immune responses. Lastly, in the area of inflammation, some mechanistic insights were made into the contribution of cotrimoxazole prophylaxis and potential new targets to reduce HIV-associated chronic inflammation. The future from where we stand is bright for HIV research, with much more to look forward to in 2020.
Collapse
Affiliation(s)
- Boghuma Titanji
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Colleen F Kelley
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
96
|
Abstract
HIV infection can be effectively treated by lifelong administration of combination antiretroviral therapy, but an effective vaccine will likely be required to end the HIV epidemic. Although the majority of current vaccine strategies focus on the induction of neutralizing antibodies, there is substantial evidence that cellular immunity mediated by CD8+ T cells can sustain long-term disease-free and transmission-free HIV control and may be harnessed to induce both therapeutic and preventive antiviral effects. In this Review, we discuss the increasing evidence derived from individuals who spontaneously control infection without antiretroviral therapy as well as preclinical immunization studies that provide a clear rationale for renewed efforts to develop a CD8+ T cell-based HIV vaccine in conjunction with B cell vaccine efforts. Further, we outline the remaining challenges in translating these findings into viable HIV prevention, treatment and cure strategies. Recently, antibody-mediated control of HIV infection has received considerable attention. Here, the authors discuss the importance of CD8+ T cells in HIV infection and suggest that efforts to develop vaccines that target these cells in conjunction with B cells should be renewed.
Collapse
|
97
|
Vanderven HA, Kent SJ. The protective potential of Fc-mediated antibody functions against influenza virus and other viral pathogens. Immunol Cell Biol 2020; 98:253-263. [PMID: 31914207 DOI: 10.1111/imcb.12312] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 01/08/2023]
Abstract
In recent years, there has been a renewed interest in utilizing antibody fragment crystallizable (Fc) functions to prevent and control viral infections. The protective and therapeutic potential of Fc-mediated antibody functions have been assessed for some clinically important human viruses, including HIV, hemorrhagic fever viruses and influenza virus. There is mounting evidence that influenza-specific antibodies with Fc-mediated functions, such as antibody-dependent cellular cytotoxicity and antibody-dependent phagocytosis, can aid in the clearance of influenza virus infection. Recent influenza challenge studies and intravenous immunoglobulin G therapy studies in humans suggest a protective role for Fc effector functions in vivo. Broadly reactive influenza antibodies with Fc-mediated functions are prevalent in the human population and could inform the development of a universally protective influenza vaccine or therapy. In this review, we explore the utility of antibodies with Fc-mediated effector functions against viral infections with a focus on influenza virus.
Collapse
Affiliation(s)
- Hillary A Vanderven
- Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia.,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia.,Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, VIC, Australia.,Melbourne Sexual Health Centre, Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Clayton, VIC, Australia
| |
Collapse
|
98
|
Chu TH, Crowley AR, Backes I, Chang C, Tay M, Broge T, Tuyishime M, Ferrari G, Seaman MS, Richardson SI, Tomaras GD, Alter G, Leib D, Ackerman ME. Hinge length contributes to the phagocytic activity of HIV-specific IgG1 and IgG3 antibodies. PLoS Pathog 2020; 16:e1008083. [PMID: 32092122 PMCID: PMC7058349 DOI: 10.1371/journal.ppat.1008083] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 03/05/2020] [Accepted: 09/16/2019] [Indexed: 12/13/2022] Open
Abstract
Antibody functions such as neutralization require recognition of antigen by the Fab region, while effector functions are additionally mediated by interactions of the Fc region with soluble factors and cellular receptors. The efficacy of individual antibodies varies based on Fab domain characteristics, such as affinity for antigen and epitope-specificity, and on Fc domain characteristics that include isotype, subclass, and glycosylation profile. Here, a series of HIV-specific antibody subclass and hinge variants were constructed and tested to define those properties associated with differential effector function. In the context of the broadly neutralizing CD4 binding site-specific antibody VRC01 and the variable loop (V3) binding antibody 447-52D, hinge truncation and extension had a considerable impact on the magnitude of phagocytic activity of both IgG1 and IgG3 subclasses. The improvement in phagocytic potency of antibodies with extended hinges could not be attributed to changes in either intrinsic antigen or antibody receptor affinity. This effect was specific to phagocytosis and was generalizable to different phagocytes, at different effector cell to target ratios, for target particles of different size and composition, and occurred across a range of antibody concentrations. Antibody dependent cellular cytotoxicity and neutralization were generally independent of hinge length, and complement deposition displayed variable local optima. In vivo stability testing showed that IgG molecules with altered hinges can exhibit similar biodistribution and pharmacokinetic profiles as IgG1. Overall, these results suggest that when high phagocytic activity is desirable, therapeutic antibodies may benefit from being formatted as human IgG3 or engineered IgG1 forms with elongated hinges.
Collapse
Affiliation(s)
- Thach H. Chu
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Andrew R. Crowley
- The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Iara Backes
- The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Cheryl Chang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Matthew Tay
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Thomas Broge
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Marina Tuyishime
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Michael S. Seaman
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Simone I. Richardson
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - David Leib
- The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Margaret E. Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
- The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| |
Collapse
|
99
|
Talathi S, Bagul R, Ghate M, Kulkarni S, Thakar M. Higher Baseline ADCC Responses in Chronic Nonprogressive HIV Infection Are Associated with Reduced HIV Burden in Later Course of Disease. Viral Immunol 2020; 33:77-85. [PMID: 31976826 DOI: 10.1089/vim.2019.0137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The importance of anti-HIV antibodies mediating antibody-dependent cell-mediated cytotoxicity (ADCC) in protective immunity against HIV is recognized recently. The purpose of this study was to measure the functional ADCC response at different stages of HIV infection in a well-defined HIV+ cohort, including 20 recently infected individuals, 30 with long-term slow-progressive, 24 with short-term slow-progressive and 32 with progressive HIV infection using a rapid fluorometric ADCC assay. The antibodies mediating ADCC were found in all disease stages. These antibodies were detectable at as early as 25 days after the estimated date of infection, however, did not influence the viral load set point probably indicating no major influence on the early course of the disease. However, the frequency and magnitude of functional ADCC responses were associated with higher CD4+T cell count and lower viral load and were significantly lower in progressors compared with other groups. The usefulness of the ADCC responses in longer viral control was assessed in a subset of participants with slowly progressing HIV infection. In these individuals, the ADCC responses observed at the visit 1 were found to be increased over time and were associated with lower plasma viral load estimated 4 to 15 years later in the disease course. Overall, the study findings confirm the role of ADCC antibodies in reducing the viral burden and also indicate the probable role of sustained functional ADCC responses in reducing the viral burden during the later period of HIV infection.
Collapse
Affiliation(s)
- Sneha Talathi
- ICMR-National AIDS Research Institute, Pune, Maharashtra, India
| | - Rajani Bagul
- ICMR-National AIDS Research Institute, Pune, Maharashtra, India
| | - Manisha Ghate
- ICMR-National AIDS Research Institute, Pune, Maharashtra, India
| | - Smita Kulkarni
- ICMR-National AIDS Research Institute, Pune, Maharashtra, India
| | - Madhuri Thakar
- ICMR-National AIDS Research Institute, Pune, Maharashtra, India
| |
Collapse
|
100
|
Modulation of Vaccine-Induced HIV-1-Specific Immune Responses by Co-Electroporation of PD-L1 Encoding DNA. Vaccines (Basel) 2020; 8:vaccines8010027. [PMID: 31947643 PMCID: PMC7157229 DOI: 10.3390/vaccines8010027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/31/2022] Open
Abstract
The importance of a balanced TH1/TH2 humoral immune response against the HIV-1 envelope protein (Env) for antibody-mediated HIV-1 control is increasingly recognized. However, there is no defined vaccination strategy to raise it. Since immune checkpoints are involved in the induction of adoptive immunity and their inhibitors (monoclonal antibodies) are licensed for cancer therapy, we investigated the effect of checkpoint blockade after HIV-1 genetic vaccination on enhancement and modulation of antiviral antibody responses. By intraperitoneal administration of checkpoint antibodies in mice we observed an induction of anti-drug antibodies which may interfere with immunomodulation by checkpoint inhibitors. Therefore, we blocked immune checkpoints locally by co-electroporation of DNA vaccines encoding the active soluble ectodomains of programmed cell death protein-1 (PD-1) or its ligand (PD-L1), respectively. Plasmid-encoded immune checkpoints did not elicit a detectable antibody response, suggesting no interference with their immunomodulatory effects. Co-electroporation of a HIV-1 DNA vaccine formulation with soluble PD-L1 ectodomain increased HIV-1 Env-specific TH1 CD4 T cell and IgG2a antibody responses. The overall antibody response was hereby shifted towards a more TH1/TH2 balanced subtype pattern. These findings indicate that co-electroporation of soluble checkpoint ectodomains together with DNA-based vaccines has modulatory effects on vaccine-induced immune responses that could improve vaccine efficacies.
Collapse
|