51
|
Blunck BN, Rezende W, Piedra PA. Profile of respiratory syncytial virus prefusogenic fusion protein nanoparticle vaccine. Expert Rev Vaccines 2021; 20:351-364. [PMID: 33733995 DOI: 10.1080/14760584.2021.1903877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Respiratory Syncytial Virus (RSV) is a leading cause of acute lower respiratory infections worldwide. The RSV fusion (F) glycoprotein is a major focus of vaccine development. Despite over 60 years of research, there is no licensed vaccine for RSV. AREAS COVERED The primary focus of this review is a novel RSV-F recombinant nanoparticle vaccine from Novavax utilizing the F protein, a conserved and immunodominant surface glycoprotein. This RSV F recombinant nanoparticle vaccine adsorbed to 0.4 mg of aluminum phosphate was ultimately administered by a single intramuscular injection during the third trimester of pregnancy in an effort to induce passive immunity in newborns. Its mechanism, performance in clinical trials, and place in RSV vaccine history are discussed. EXPERT OPINION The vaccine was safe and well tolerated in pregnant women and the results suggest potential benefits with respect to other medically relevant end-point events involving RSV-associated respiratory and all-cause disease in infants. However, the RSV-F recombinant nanoparticle vaccine did not meet the pre-specified primary success criteria for efficacy against RSV-associated, medically significant lower respiratory tract infection in infants up to 90 days of life. The potential benefits to infants from maternal immunization and excellent safety profile warrant further confirmatory studies.
Collapse
Affiliation(s)
- Brittani N Blunck
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, USA
| | - Wanderson Rezende
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, USA.,Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, USA
| | - Pedro A Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, United States
| |
Collapse
|
52
|
The specific features of the developing T cell compartment of the neonatal lung are a determinant of respiratory syncytial virus immunopathogenesis. PLoS Pathog 2021; 17:e1009529. [PMID: 33909707 PMCID: PMC8109812 DOI: 10.1371/journal.ppat.1009529] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/10/2021] [Accepted: 04/05/2021] [Indexed: 11/19/2022] Open
Abstract
The human respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infections in infants, possibly due to the properties of the immature neonatal pulmonary immune system. Using the newborn lamb, a classical model of human lung development and a translational model of RSV infection, we aimed to explore the role of cell-mediated immunity in RSV disease during early life. Remarkably, in healthy conditions, the developing T cell compartment of the neonatal lung showed major differences to that seen in the mature adult lung. The most striking observation being a high baseline frequency of bronchoalveolar IL-4-producing CD4+ and CD8+ T cells, which declined progressively over developmental age. RSV infection exacerbated this pro-type 2 environment in the bronchoalveolar space, rather than inducing a type 2 response per se. Moreover, regulatory T cell suppressive functions occurred very early to dampen this pro-type 2 environment, rather than shutting them down afterwards, while γδ T cells dropped and failed to produce IL-17. Importantly, RSV disease severity was related to the magnitude of those unconventional bronchoalveolar T cell responses. These findings provide novel insights in the mechanisms of RSV immunopathogenesis in early life, and constitute a major step for the understanding of RSV disease severity.
Collapse
|
53
|
Martinez DR, Schaefer A, Gobeil S, Li D, De la Cruz G, Parks R, Lu X, Barr M, Manne K, Mansouri K, Edwards RJ, Yount B, Anasti K, Montgomery SA, Shen S, Zhou T, Kwong PD, Graham BS, Mascola JR, Montefiori DC, Alam M, Sempowski GD, Wiehe K, Saunders KO, Acharya P, Haynes BF, Baric RS. A broadly neutralizing antibody protects against SARS-CoV, pre-emergent bat CoVs, and SARS-CoV-2 variants in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.04.27.441655. [PMID: 33948590 PMCID: PMC8095197 DOI: 10.1101/2021.04.27.441655] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SARS-CoV in 2003, SARS-CoV-2 in 2019, and SARS-CoV-2 variants of concern (VOC) can cause deadly infections, underlining the importance of developing broadly effective countermeasures against Group 2B Sarbecoviruses, which could be key in the rapid prevention and mitigation of future zoonotic events. Here, we demonstrate the neutralization of SARS-CoV, bat CoVs WIV-1 and RsSHC014, and SARS-CoV-2 variants D614G, B.1.1.7, B.1.429, B1.351 by a receptor-binding domain (RBD)-specific antibody DH1047. Prophylactic and therapeutic treatment with DH1047 demonstrated protection against SARS-CoV, WIV-1, RsSHC014, and SARS-CoV-2 B1.351infection in mice. Binding and structural analysis showed high affinity binding of DH1047 to an epitope that is highly conserved among Sarbecoviruses. We conclude that DH1047 is a broadly neutralizing and protective antibody that can prevent infection and mitigate outbreaks caused by SARS-like strains and SARS-CoV-2 variants. Our results argue that the RBD conserved epitope bound by DH1047 is a rational target for pan Group 2B coronavirus vaccines.
Collapse
Affiliation(s)
- David R. Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- These authors contributed equally
| | - Alexandra Schaefer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- These authors contributed equally
| | - Sophie Gobeil
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- These authors contributed equally
| | - Dapeng Li
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- These authors contributed equally
| | - Gabriela De la Cruz
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Xiaozhi Lu
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Kartik Manne
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Robert J. Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Boyd Yount
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kara Anasti
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Stephanie A. Montgomery
- Department of Laboratory Medicine and Pathology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Shaunna Shen
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | | | - Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Gregory D. Sempowski
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Kevin O. Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
54
|
Martinez DR, Schaefer A, Leist SR, Li D, Gully K, Yount B, Feng JY, Bunyan E, Porter DP, Cihlar T, Montgomery SA, Haynes BF, Baric RS, Nussenzweig MC, Sheahan TP. Prevention and therapy of SARS-CoV-2 and the B.1.351 variant in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.27.428478. [PMID: 33532765 PMCID: PMC7852229 DOI: 10.1101/2021.01.27.428478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Improving the standard of clinical care for individuals infected with SARS-CoV-2 variants is a global health priority. Small molecule antivirals like remdesivir (RDV) and biologics such as human monoclonal antibodies (mAb) have demonstrated therapeutic efficacy against SARS-CoV-2, the causative agent of COVID-19. However, it is not known if combination RDV/mAb will improve outcomes over single agent therapies or whether antibody therapies will remain efficacious against variants. In kinetic studies in a mouse-adapted model of ancestral SARS-CoV-2 pathogenesis, we show that a combination of two mAbs in clinical trials, C144 and C135, have potent antiviral effects against even when initiated 48 hours after infection. The same antibody combination was also effective in prevention and therapy against the B.1.351 variant of concern (VOC). Combining RDV and antibodies provided a modest improvement in outcomes compared to single agents. These data support the continued use of RDV to treat SARS-CoV-2 infections and support the continued clinical development of the C144 and C135 antibody combination to treat patients infected with SARS-CoV-2 variants.
Collapse
Affiliation(s)
- David R. Martinez
- Department of Epidemiology, READDI Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Equal contribution
| | - Alexandra Schaefer
- Department of Epidemiology, READDI Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Equal contribution
| | - Sarah R. Leist
- Department of Epidemiology, READDI Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dapeng Li
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
| | - Kendra Gully
- Department of Epidemiology, READDI Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Boyd Yount
- Department of Epidemiology, READDI Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | | | - Stephanie A. Montgomery
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | - Ralph S. Baric
- Department of Epidemiology, READDI Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michel C. Nussenzweig
- The Rockefeller University, New York, NY, USA
- The Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Timothy P. Sheahan
- Department of Epidemiology, READDI Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
55
|
Stephens LM, Ross KA, Waldstein KA, Legge KL, McLellan JS, Narasimhan B, Varga SM. Prefusion F-Based Polyanhydride Nanovaccine Induces Both Humoral and Cell-Mediated Immunity Resulting in Long-Lasting Protection against Respiratory Syncytial Virus. THE JOURNAL OF IMMUNOLOGY 2021; 206:2122-2134. [PMID: 33827894 DOI: 10.4049/jimmunol.2100018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/19/2021] [Indexed: 11/19/2022]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection in both young children and in older adults. Despite the morbidity, mortality, and high economic burden caused by RSV worldwide, no licensed vaccine is currently available. We have developed a novel RSV vaccine composed of a prefusion-stabilized variant of the fusion (F) protein (DS-Cav1) and a CpG oligodeoxynucleotide adjuvant encapsulated within polyanhydride nanoparticles, termed RSVNanoVax. A prime-boost intranasal administration of RSVNanoVax in BALB/c mice significantly alleviated weight loss and pulmonary dysfunction in response to an RSV challenge, with protection maintained up to at least 6 mo postvaccination. In addition, vaccinated mice exhibited rapid viral clearance in the lungs as early as 2 d after RSV infection in both inbred and outbred populations. Vaccination induced tissue-resident memory CD4 and CD8 T cells in the lungs, as well as RSV F-directed neutralizing Abs. Based on the robust immune response elicited and the high level of durable protection observed, our prefusion RSV F nanovaccine is a promising new RSV vaccine candidate.
Collapse
Affiliation(s)
- Laura M Stephens
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA
| | - Kathleen A Ross
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA.,Nanovaccine Institute, Ames, IA
| | - Kody A Waldstein
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA
| | - Kevin L Legge
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA.,Nanovaccine Institute, Ames, IA.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA.,Department of Pathology, University of Iowa, Iowa City, IA; and
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA.,Nanovaccine Institute, Ames, IA
| | - Steven M Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA; .,Nanovaccine Institute, Ames, IA.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA.,Department of Pathology, University of Iowa, Iowa City, IA; and
| |
Collapse
|
56
|
Doulberis M, Papaefthymiou A, Kotronis G, Gialamprinou D, Soteriades ES, Kyriakopoulos A, Chatzimichael E, Kafafyllidou K, Liatsos C, Chatzistefanou I, Anagnostis P, Semenin V, Ntona S, Gkolia I, Papazoglou DD, Tsinonis N, Papamichos S, Kirbas H, Zikos P, Niafas D, Kountouras J. Does COVID-19 Vaccination Warrant the Classical Principle " ofelein i mi vlaptin"? MEDICINA (KAUNAS, LITHUANIA) 2021; 57:253. [PMID: 33803295 PMCID: PMC7999356 DOI: 10.3390/medicina57030253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022]
Abstract
The current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic warrants an imperative necessity for effective and safe vaccination, to restrain Coronavirus disease 2019 (COVID-19) including transmissibility, morbidity, and mortality. In this regard, intensive medical and biological research leading to the development of an arsenal of vaccines, albeit incomplete preconditioned evaluation, due to emergency. The subsequent scientific gap raises some concerns in the medical community and the general public. More specifically, the accelerated vaccine development downgraded the value of necessary pre-clinical studies to elicit medium- and long-term beneficial or harmful consequences. Previous experience and pathophysiological background of coronaviruses' infections and vaccine technologies, combined with the global vaccines' application, underlined the obligation of a cautious and qualitative approach, to illuminate potential vaccination-related adverse events. Moreover, the high SARS-CoV-2 mutation potential and the already aggregated genetical alterations provoke a rational vagueness and uncertainty concerning vaccines' efficacy against dominant strains and the respective clinical immunity. This review critically summarizes existing evidence and queries regarding SARS-CoV-2 vaccines, to motivate scientists' and clinicians' interest for an optimal, individualized, and holistic management of this unprecedented pandemic.
Collapse
Affiliation(s)
- Michael Doulberis
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54652 Thessaloniki, Greece; (M.D.); (A.P.); (S.P.)
| | - Apostolis Papaefthymiou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54652 Thessaloniki, Greece; (M.D.); (A.P.); (S.P.)
- Department of Gastroenterology, University Hospital of Larisa, Mezourlo, 41110 Larisa, Greece
| | - Georgios Kotronis
- Department of Internal Medicine, General Hospital Aghios Pavlos of Thessaloniki, 55134 Thessaloniki, Greece;
| | - Dimitra Gialamprinou
- Second Neonatal Department and NICU, Aristotle University of Thessaloniki, Papageorgiou General Hospital, 56403 Thessaloniki, Greece;
| | - Elpidoforos S. Soteriades
- Healthcare Management Program, School of Economics and Management, Open University of Cyprus, Nicosia 2252, Cyprus;
- Department of Environmental Health, Environmental and Occupational Medicine and Epidemiology (EOME), Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Anthony Kyriakopoulos
- Nasco AD Biotechnology Laboratory, Department of Research and Development, 18536 Piraeus, Greece;
| | - Eleftherios Chatzimichael
- Center for Integrative Psychiatry, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital of Zurich, University of Zurich, 8032 Zurich, Switzerland;
| | - Kyriaki Kafafyllidou
- Department of Pediatrics, University Children’s Hospital of Zurich, 8032 Zurich, Switzerland;
| | - Christos Liatsos
- Department of Gastroenterology, 401 Army General Hospital of Athens, 11525 Athens, Greece;
| | - Ioannis Chatzistefanou
- Department of Maxillofacial Surgery, 424 General Military Hospital, Ring Road Efkarpia, 56429 Thessaloniki, Greece;
| | - Paul Anagnostis
- ORL and Psychiatry Private Practice, 8032 Zurich, Switzerland;
| | - Vitalii Semenin
- Neurology and Psychiatry Private Practice, 2502 Biel, Switzerland;
| | - Smaragda Ntona
- Alexandrovska University Hospital, Medical University Sofia, 1431 Sofia, Bulgaria;
| | - Ioanna Gkolia
- Psychiatric Hospital of Thessaloniki, Stavroupolis, 56429 Thessaloniki, Greece;
| | - Dimitrios David Papazoglou
- Department of General, Visceral and Thoracic Surgery, Bürgerspital Solothurn, 4500 Solothurn, Switzerland;
| | | | - Spyros Papamichos
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54652 Thessaloniki, Greece; (M.D.); (A.P.); (S.P.)
| | - Hristos Kirbas
- Department of Nuclear Medicine, “Thegeneio” Cancer Hospital, 54007 Thessaloniki, Greece;
| | - Petros Zikos
- Department of Oral and Maxillofacial Surgery, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | | | - Jannis Kountouras
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54652 Thessaloniki, Greece; (M.D.); (A.P.); (S.P.)
| |
Collapse
|
57
|
Shilovskiy IP, Yumashev KV, Nikolsky AA, Vishnyakova LI, Khaitov MR. Molecular and Cellular Mechanisms of Respiratory Syncytial Viral Infection: Using Murine Models to Understand Human Pathology. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:290-306. [PMID: 33838630 PMCID: PMC7957450 DOI: 10.1134/s0006297921030068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/18/2020] [Accepted: 10/18/2020] [Indexed: 12/28/2022]
Abstract
Respiratory syncytial virus (RSV) causes severe pathology of the lower respiratory tract in infants, immunocompromised people, and elderly. Despite decades of research, there is no licensed vaccine against RSV, and many therapeutic drugs are still under development. Detailed understanding of molecular and cellular mechanisms of the RSV infection pathology can accelerate the development of efficacious treatment. Current studies on the RSV pathogenesis are based on the analysis of biopsies from the infected patients; however deeper understanding of molecular and cellular mechanisms of the RSV pathology could be achieved using animal models. Mice are the most often used model for RSV infection because they exhibit manifestations similar to those observed in humans (bronchial obstruction, mucous hypersecretion, and pulmonary inflammation mediated by lymphocytes, macrophages, and neutrophils). Additionally, the use of mice is economically feasible, and many molecular tools are available for studying RSV infection pathogenesis at the molecular and cellular levels. This review summarizes new data on the pathogenesis of RSV infection obtained in mouse models, which demonstrated the role of T cells in both the antiviral defense and the development of lung immunopathology. T cells not only eliminate the infected cells, but also produce significant amounts of the proinflammatory cytokines TNFα and IFNγ. Recently, a new subset of tissue-resident memory T cells (TRM) was identified that provide a strong antiviral defense without induction of lung immunopathology. These cells accumulate in the lungs after local rather than systemic administration of RSV antigens, which suggests new approaches to vaccination. The studies in mouse models have revealed a minor role of interferons in the anti-RSV protection, as RSV possesses mechanisms to escape the antiviral action of type I and III interferons, which may explain the low efficacy of interferon-containing drugs. Using knockout mice, a significant breakthrough has been achieved in understanding the role of many pro-inflammatory cytokines in lung immunopathology. It was found that in addition to TNFα and IFNγ, the cytokines IL-4, IL-5, IL-13, IL-17A, IL-33, and TSLP mediate the major manifestations of the RSV pathogenesis, such as bronchial obstruction, mucus hyperproduction, and lung infiltration by pro-inflammatory cells, while IL-6, IL-10, and IL-27 exhibit the anti-inflammatory effect. Despite significant differences between the mouse and human immune systems, mouse models have made a significant contribution to the understanding of molecular and cellular mechanisms of the pathology of human RSV infection.
Collapse
Affiliation(s)
- Igor P Shilovskiy
- National Research Center, Institute of Immunology, Federal Medico-Biological Agency, Moscow, 115522, Russia.
| | - Kirill V Yumashev
- National Research Center, Institute of Immunology, Federal Medico-Biological Agency, Moscow, 115522, Russia
| | - Alexandr A Nikolsky
- National Research Center, Institute of Immunology, Federal Medico-Biological Agency, Moscow, 115522, Russia
| | - Liudmila I Vishnyakova
- National Research Center, Institute of Immunology, Federal Medico-Biological Agency, Moscow, 115522, Russia
| | - Musa R Khaitov
- National Research Center, Institute of Immunology, Federal Medico-Biological Agency, Moscow, 115522, Russia
| |
Collapse
|
58
|
Luangrath MA, Schmidt ME, Hartwig SM, Varga SM. Tissue-Resident Memory T Cells in the Lungs Protect against Acute Respiratory Syncytial Virus Infection. Immunohorizons 2021; 5:59-69. [PMID: 33536235 PMCID: PMC8299542 DOI: 10.4049/immunohorizons.2000067] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/12/2021] [Indexed: 01/01/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection in young children. The T cell response plays a critical role in facilitating clearance of an acute RSV infection, and memory T cell responses are vital for protection against secondary RSV exposures. Tissue-resident memory (TRM) T cells have been identified as a subset of memory T cells that reside in nonlymphoid tissues and are critical for providing long-term immunity. There is currently limited information regarding the establishment and longevity of TRM T cell responses elicited following an acute RSV infection as well as their role in protection against repeated RSV infections. In this study, we examined the magnitude, phenotype, and protective capacity of TRM CD4 and CD8 T cells in the lungs of BALB/c mice following an acute RSV infection. TRM CD4 and CD8 T cells were established within the lungs and waned by 149 d following RSV infection. To determine the protective capacity of TRMs, FTY720 administration was used to prevent trafficking of peripheral memory T cells into the lungs prior to challenge of RSV-immune mice, with a recombinant influenza virus expressing either an RSV-derived CD4 or CD8 T cell epitope. We observed enhanced viral clearance in RSV-immune mice, suggesting that TRM CD8 T cells can contribute to protection against a secondary RSV infection. Given the protective capacity of TRMs, future RSV vaccine candidates should focus on the generation of these cell populations within the lung to induce effective immunity against RSV infection.
Collapse
Affiliation(s)
- Mitchell A Luangrath
- Division of Critical Care, Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA 52242
| | - Megan E Schmidt
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242
| | - Stacey M Hartwig
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242; and
| | - Steven M Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242;
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242; and
- Department of Pathology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
59
|
Rey-Jurado E, Bohmwald K, Gálvez NMS, Becerra D, Porcelli SA, Carreño LJ, Kalergis AM. Contribution of NKT cells to the immune response and pathogenesis triggered by respiratory viruses. Virulence 2021; 11:580-593. [PMID: 32463330 PMCID: PMC7549913 DOI: 10.1080/21505594.2020.1770492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human respiratory syncytial virus (hRSV) and human metapneumovirus (hMPV) cause acute respiratory tract infections in children worldwide. Natural killer T (NKT) cells are unconventional T lymphocytes, and their TCRs recognize glycolipids bound to the MHC-I-like molecule, CD1d. These cells modulate the inflammatory response in viral infections. Here, we evaluated the contribution of NKT cells in both hRSV and hMPV infections. A significant decrease in the number of neutrophils, eosinophils, and CD103+DCs infiltrating to the lungs, as well as an increased production of IFN-γ, were observed upon hRSV-infection in CD1d-deficient BALB/c mice, as compared to wild-type control mice. However, this effect was not observed in the CD1d-deficient BALB/c group, upon infection with hMPV. Importantly, reduced expression of CD1d in CD11b+ DCs and epithelial cells was found in hRSV -but not hMPV-infected mice. Besides, a reduction in the expression of CD1d in alveolar macrophages of lungs from hRSV- and hMPV-infected mice was found. Such reduction of CD1d expression interfered with NKT cells activation, and consequently IL-2 secretion, as characterized by in vitro experiments for both hRSV and hMPV infections. Furthermore, increased numbers of NKT cells recruited to the lungs in response to hRSV- but not hMPV-infection was detected, resulting in a reduction in the expression of IFN-γ and IL-2 by these cells. In conclusion, both hRSV and hMPV might be differently impairing NKT cells function and contributing to the immune response triggered by these viruses.
Collapse
Affiliation(s)
- Emma Rey-Jurado
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago, Chile
| | - Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago, Chile
| | - Nicolás M S Gálvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago, Chile
| | - Daniela Becerra
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago, Chile
| | - Steven A Porcelli
- Department of Microbiology and Immunology, and Department of Medicine, Albert Einstein College of Medicine , Bronx, NY, USA
| | - Leandro J Carreño
- Millennium Institute on Immunology and Immunotherapy, Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile , Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile , Santiago, Chile
| |
Collapse
|
60
|
Liao WH, Henneberg M. Ecological Analysis of the Influence of ACEIs and ARBs on the COVID-19 Prevalence and Death from COVID-19. Health (London) 2021. [DOI: 10.4236/health.2021.135046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
61
|
Wali S, Flores JR, Jaramillo AM, Goldblatt DL, Pantaleón García J, Tuvim MJ, Dickey BF, Evans SE. Immune Modulation to Improve Survival of Viral Pneumonia in Mice. Am J Respir Cell Mol Biol 2020; 63:758-766. [PMID: 32853024 PMCID: PMC7790135 DOI: 10.1165/rcmb.2020-0241oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
Viral pneumonias remain global health threats, as exemplified in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, requiring novel treatment strategies both early and late in the disease process. We have reported that mice treated before or soon after infection with a combination of inhaled Toll-like receptor (TLR) 2/6 and 9 agonists (Pam2-ODN) are broadly protected against microbial pathogens including respiratory viruses, but the mechanisms remain incompletely understood. The objective of this study was to validate strategies for immune modulation in a preclinical model of viral pneumonia and determine their mechanisms. Mice were challenged with the Sendai paramyxovirus in the presence or absence of Pam2-ODN treatment. Virus burden and host immune responses were assessed to elucidate Pam2-ODN mechanisms of action and to identify additional opportunities for therapeutic intervention. Enhanced survival of Sendai virus pneumonia with Pam2-ODN treatment was associated with reductions in lung virus burden and with virus inactivation before internalization. We noted that mortality in sham-treated mice corresponded with CD8+ T-cell lung inflammation on days 11-12 after virus challenge, after the viral burden had declined. Pam2-ODN blocked this injurious inflammation by minimizing virus burden. As an alternative intervention, depleting CD8+ T cells 8 days after viral challenge also decreased mortality. Stimulation of local innate immunity within the lungs by TLR agonists early in disease or suppression of adaptive immunity by systemic CD8+ T-cell depletion late in disease improves outcomes of viral pneumonia in mice. These data reveal opportunities for targeted immunomodulation to protect susceptible human subjects.
Collapse
Affiliation(s)
- Shradha Wali
- UTHealth Graduate School of Biomedical Sciences and
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jose R. Flores
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ana M. Jaramillo
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David L. Goldblatt
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Michael J. Tuvim
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Burton F. Dickey
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Scott E. Evans
- UTHealth Graduate School of Biomedical Sciences and
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
62
|
Ko EJ, Lee Y, Lee YT, Hwang HS, Park Y, Kim KH, Kang SM. Natural Killer and CD8 T Cells Contribute to Protection by Formalin Inactivated Respiratory Syncytial Virus Vaccination under a CD4-Deficient Condition. Immune Netw 2020; 20:e51. [PMID: 33425436 PMCID: PMC7779866 DOI: 10.4110/in.2020.20.e51] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/18/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
Respiratory syncytial virus (RSV) causes severe pulmonary disease in infants, young children, and the elderly. Formalin inactivated RSV (FI-RSV) vaccine trials failed due to vaccine enhanced respiratory disease, but the underlying immune mechanisms remain not fully understood. In this study, we have used wild type C57BL/6 and CD4 knockout (CD4KO) mouse models to better understand the roles of the CD4 T cells and cellular mechanisms responsible for enhanced respiratory disease after FI-RSV vaccination and RSV infection. Less eosinophil infiltration and lower pro-inflammatory cytokine production were observed in FI-RSV vaccinated CD4KO mice after RSV infection compared to FI-RSV vaccinated C57BL/6 mice. NK cells and cytokine-producing CD8 T cells were recruited at high levels in the airways of CD4KO mice, correlating with reduced respiratory disease. Depletion studies provided evidence that virus control was primarily mediated by NK cells whereas CD8 T cells contributed to IFN-γ production and less eosinophilic lung inflammation. This study demonstrated the differential roles of effector CD4 and CD8 T cells as well as NK cells, in networking with other inflammatory infiltrates in RSV disease in immune competent and CD4-deficient condition.
Collapse
Affiliation(s)
- Eun-Ju Ko
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.,Department of Veterinary Medicine, College of Veterinary Medicine and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea
| | - Youri Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Young-Tae Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Hye Suk Hwang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.,Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Korea
| | - Yoonsuh Park
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Ki-Hye Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
63
|
Leist SR, Dinnon KH, Schäfer A, Tse LV, Okuda K, Hou YJ, West A, Edwards CE, Sanders W, Fritch EJ, Gully KL, Scobey T, Brown AJ, Sheahan TP, Moorman NJ, Boucher RC, Gralinski LE, Montgomery SA, Baric RS. A Mouse-Adapted SARS-CoV-2 Induces Acute Lung Injury and Mortality in Standard Laboratory Mice. Cell 2020; 183:1070-1085.e12. [PMID: 33031744 PMCID: PMC7510428 DOI: 10.1016/j.cell.2020.09.050] [Citation(s) in RCA: 500] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/04/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023]
Abstract
The SARS-CoV-2 pandemic has caused extreme human suffering and economic harm. We generated and characterized a new mouse-adapted SARS-CoV-2 virus that captures multiple aspects of severe COVID-19 disease in standard laboratory mice. This SARS-CoV-2 model exhibits the spectrum of morbidity and mortality of COVID-19 disease as well as aspects of host genetics, age, cellular tropisms, elevated Th1 cytokines, and loss of surfactant expression and pulmonary function linked to pathological features of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). This model can rapidly access existing mouse resources to elucidate the role of host genetics, underlying molecular mechanisms governing SARS-CoV-2 pathogenesis, and the protective or pathogenic immune responses related to disease severity. The model promises to provide a robust platform for studies of ALI and ARDS to evaluate vaccine and antiviral drug performance, including in the most vulnerable populations (i.e., the aged) using standard laboratory mice.
Collapse
Affiliation(s)
- Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth H Dinnon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Longping V Tse
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenichi Okuda
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yixuan J Hou
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ande West
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Caitlin E Edwards
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wes Sanders
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ethan J Fritch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kendra L Gully
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Trevor Scobey
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ariane J Brown
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nathaniel J Moorman
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Rapidly Emerging Antiviral Drug Discovery Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lisa E Gralinski
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephanie A Montgomery
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Rapidly Emerging Antiviral Drug Discovery Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
64
|
A gammaherpesvirus licenses CD8 T cells to protect the host from pneumovirus-induced immunopathologies. Mucosal Immunol 2020; 13:799-813. [PMID: 32424182 PMCID: PMC7116076 DOI: 10.1038/s41385-020-0293-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 02/04/2023]
Abstract
Human respiratory syncytial virus (RSV) is a pneumovirus that causes severe infections in infants worldwide. Despite intensive research, safe and effective vaccines against RSV have remained elusive. The main reason is that RSV infection of children previously immunized with formalin-inactivated-RSV vaccines has been associated with exacerbated pathology, a phenomenon called RSV vaccine-enhanced respiratory disease. In parallel, despite the high RSV prevalence, only a minor proportion of children develop severe diseases. Interestingly, variation in the immune responses against RSV or following RSV vaccination could be linked with differences of exposure to microbes during childhood. Gammaherpesviruses (γHVs), such as the Epstein-Barr virus, are persistent viruses that deeply influence the immune system of their host and could therefore affect the development of pneumovirus-induced immunopathologies for the long term. Here, we showed that a previous ɣHV infection protects against both pneumovirus vaccine-enhanced disease and pneumovirus primary infection and that CD8 T cells are essential for this protection. These observations shed a new light on the understanding of pneumovirus-induced diseases and open new perspectives for the development of vaccine strategies.
Collapse
|
65
|
Nguyen S, Sada-Japp A, Petrovas C, Betts MR. Jigsaw falling into place: A review and perspective of lymphoid tissue CD8+ T cells and control of HIV. Mol Immunol 2020; 124:42-50. [PMID: 32526556 PMCID: PMC7279761 DOI: 10.1016/j.molimm.2020.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/28/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
CD8+ T cells are crucial for immunity against viral infections, including HIV. Several characteristics of CD8+ T cells, such as polyfunctionality and cytotoxicity, have been correlated with effective control of HIV. However, most of these correlates have been established in the peripheral blood. Meanwhile, HIV primarily replicates in lymphoid tissues. Therefore, it is unclear which aspects of CD8+ T cell biology are shared and which are different between blood and lymphoid tissues in the context of HIV infection. In this review, we will recapitulate the latest advancements of our knowledge on lymphoid tissue CD8+ T cells during HIV infection and discuss the insights these advancements might provide for the development of a HIV cure.
Collapse
Affiliation(s)
- Son Nguyen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alberto Sada-Japp
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Constantinos Petrovas
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
66
|
Eichinger KM, Kosanovich JL, Gidwani SV, Zomback A, Lipp MA, Perkins TN, Oury TD, Petrovsky N, Marshall CP, Yondola MA, Empey KM. Prefusion RSV F Immunization Elicits Th2-Mediated Lung Pathology in Mice When Formulated With a Th2 (but Not a Th1/Th2-Balanced) Adjuvant Despite Complete Viral Protection. Front Immunol 2020; 11:1673. [PMID: 32849580 PMCID: PMC7403488 DOI: 10.3389/fimmu.2020.01673] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/23/2020] [Indexed: 12/19/2022] Open
Abstract
Respiratory syncytial virus (RSV) remains the most common cause of lower respiratory tract infections in children worldwide. Development of a vaccine has been hindered by the risk of developing enhanced respiratory disease (ERD) upon natural exposure to the virus. Generation of higher quality neutralizing antibodies with stabilized pre-fusion F protein antigens has been proposed as a strategy to prevent ERD. We sought to test whether there was evidence of ERD in naïve BALB/c mice immunized with an unadjuvanted, stabilized pre-fusion F protein, and challenged with RSV line 19. We further sought to determine the extent to which formulation with a Th2-biased (alum) or a more Th1/Th2-balanced (Advax-SM) adjuvant influenced cellular responses and lung pathology. When exposed to RSV, mice immunized with pre-fusion F protein alone (PreF) exhibited increased airway eosinophilia and mucus accumulation. This was further exacerbated by formulation of PreF with Alum (aluminum hydroxide). Conversely, formulation of PreF with a Th1/Th2-balanced adjuvant, Advax-SM, not only suppressed RSV viral replication, but also inhibited airway eosinophilia and mucus accumulation. This was associated with lower numbers of lung innate lymphocyte cells (ILC2s) and CD4+ T cells producing IL-5+ or IL-13+ and increased IFNγ+ CD4+ and CD8+ T cells, in addition to RSV F-specific CD8+ T cells. These data suggest that in the absence of preimmunity, stabilized PreF antigens may still be associated with aberrant Th2 responses that induce lung pathology in response to RSV infection, and can be prevented by formulation with more Th1/Th2-balanced adjuvants that enhance CD4+ and CD8+ IFNγ+ T cell responses. This may support the use of stabilized PreF antigens with Th1/Th2-balanced adjuvants like, Advax-SM, as safer alternatives to alum in RSV vaccine candidates.
Collapse
Affiliation(s)
- Katherine M Eichinger
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Clinical Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Medicine, Division of Internal Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jessica L Kosanovich
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Clinical Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Aaron Zomback
- Calder Biosciences, New York City, NY, United States
| | - Madeline A Lipp
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Timothy N Perkins
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Tim D Oury
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Nikolai Petrovsky
- Vaxine Pty Ltd., Bedford Park, SA, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | | | | | - Kerry M Empey
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Clinical Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Immunology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
67
|
Soto JA, Stephens LM, Waldstein KA, Canedo-Marroquín G, Varga SM, Kalergis AM. Current Insights in the Development of Efficacious Vaccines Against RSV. Front Immunol 2020; 11:1507. [PMID: 32765520 PMCID: PMC7379152 DOI: 10.3389/fimmu.2020.01507] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/09/2020] [Indexed: 01/24/2023] Open
Affiliation(s)
- Jorge A Soto
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Laura M Stephens
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
| | - Kody A Waldstein
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
| | - Gisela Canedo-Marroquín
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Steven M Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States.,Department of Pathology, University of Iowa, Iowa City, IA, United States
| | - Alexis M Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
68
|
Prospects and Challenges in the Development of Universal Influenza Vaccines. Vaccines (Basel) 2020; 8:vaccines8030361. [PMID: 32640619 PMCID: PMC7563311 DOI: 10.3390/vaccines8030361] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 01/19/2023] Open
Abstract
Current influenza vaccines offer suboptimal protection and depend on annual reformulation and yearly administration. Vaccine technology has rapidly advanced during the last decade, facilitating development of next-generation influenza vaccines that can target a broader range of influenza viruses. The development and licensure of a universal influenza vaccine could provide a game changing option for the control of influenza by protecting against all influenza A and B viruses. Here we review important findings and considerations regarding the development of universal influenza vaccines and what we can learn from this moving forward with a SARS-CoV-2 vaccine design.
Collapse
|
69
|
Matyushenko V, Kotomina T, Kudryavtsev I, Mezhenskaya D, Prokopenko P, Matushkina A, Sivak K, Muzhikyan A, Rudenko L, Isakova-Sivak I. Conserved T-cell epitopes of respiratory syncytial virus (RSV) delivered by recombinant live attenuated influenza vaccine viruses efficiently induce RSV-specific lung-localized memory T cells and augment influenza-specific resident memory T-cell responses. Antiviral Res 2020; 182:104864. [PMID: 32585323 PMCID: PMC7313889 DOI: 10.1016/j.antiviral.2020.104864] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/30/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022]
Abstract
Respiratory syncytial virus (RSV) can cause recurrent infection in people because it does not stimulate a long-lived immunological memory. There is an urgent need to develop a safe and efficacious vaccine against RSV that would induce immunological memory without causing immunopathology following natural RSV infection. We have previously generated two recombinant live attenuated influenza vaccine (LAIV) viruses that encode immunodominant T-cell epitopes of RSV M2 protein in the neuraminidase or NS1 genes. These chimeric vaccines afforded protection against influenza and RSV infection in mice, without causing pulmonary eosinophilia or inflammatory RSV disease. The current study assessed the formation of influenza-specific and RSV-specific CD4 and CD8 T-cell responses in the lungs of mice, with special attention to the lung tissue-resident memory T cell subsets (TRM). The RSV epitopes did not affect influenza-specific CD4 effector memory T cell (Tem) levels in the lungs. The majority of these cells formed by LAIV or LAIV-RSV viruses had CD69+CD103- phenotype. Both LAIV+NA/RSV and LAIV+NS/RSV recombinant viruses induced significant levels of RSV M282 epitope-specific lung-localized CD8 Tem cells expressing both CD69 and CD103 TRM markers. Surprisingly, the CD69+CD103+ influenza-specific CD8 Tem responses were augmented by the addition of RSV epitopes, possibly as a result of the local microenvironment formed by the RSV-specific memory T cells differentiating to TRM in the lungs of mice immunized with LAIV-RSV chimeric viruses. This study provides evidence that LAIV vector-based vaccination can induce robust lung-localized T-cell immunity to the inserted T-cell epitope of a foreign pathogen, without altering the immunogenicity of the viral vector itself. Two LAIV-RSV vaccine viruses induced RSV M282-specific effector memory CD8 T cells producing both IFNγ and TNFα cytokines. The inserted RSV epitopes did not affect influenza-specific CD4 Tem levels in the lungs of immunized mice. LAIV-RSV viruses induced RSV M282-specific lung-localized CD8 Tem cells expressing both CD69 and CD103 TRM markers. The magnitude of RSV M282-specific CD8 Tem responses correlates with protection against RSV-induced lung pathology. The addition of RSV epitopes into the LAIV strain augmented CD69+CD103+ influenza-specific CD8 Tem responses in the lungs.
Collapse
Affiliation(s)
- Victoria Matyushenko
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Tatiana Kotomina
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Igor Kudryavtsev
- Department of Immunology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Daria Mezhenskaya
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Polina Prokopenko
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Anastasia Matushkina
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Konstantin Sivak
- Smorodintsev Research Institute of Influenza, Saint Petersburg, Russia
| | - Arman Muzhikyan
- Smorodintsev Research Institute of Influenza, Saint Petersburg, Russia
| | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia.
| |
Collapse
|
70
|
Schmidt ME, Meyerholz DK, Varga SM. Pre-existing neutralizing antibodies prevent CD8 T cell-mediated immunopathology following respiratory syncytial virus infection. Mucosal Immunol 2020; 13:507-517. [PMID: 31844172 PMCID: PMC7181396 DOI: 10.1038/s41385-019-0243-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 11/05/2019] [Accepted: 11/23/2019] [Indexed: 02/04/2023]
Abstract
Despite being a leading cause of severe respiratory disease, there remains no licensed respiratory syncytial virus (RSV) vaccine. Neutralizing antibodies reduce the severity of RSV-associated disease, but are not sufficient for preventing reinfection. In contrast, the role of memory CD8 T cells in protecting against a secondary RSV infection is less established. We recently demonstrated that high-magnitude memory CD8 T cells efficiently reduced lung viral titers following RSV infection, but induced fatal immunopathology that was mediated by IFN-γ. To evaluate the ability of RSV-specific neutralizing antibodies to prevent memory CD8 T cell-mediated immunopathology, mice with high-magnitude memory CD8 T cell responses were treated with neutralizing antibodies prior to RSV challenge. Neutralizing antibody treatment significantly reduced morbidity and prevented mortality following RSV challenge compared with IgG-treated controls. Neutralizing antibody treatment restricted early virus replication, which caused a substantial reduction in memory CD8 T cell activation and IFN-γ production, directly resulting in survival. In contrast, therapeutic neutralizing antibody administration did not impact morbidity, mortality, or IFN-γ levels, despite significantly reducing lung viral titers. Therefore, only pre-existing neutralizing antibodies prevent memory CD8 T cell-mediated immunopathology following RSV infection. Overall, our results have important implications for the development of future RSV vaccines.
Collapse
Affiliation(s)
- Megan E Schmidt
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | - David K Meyerholz
- Department of Pathology, University of Iowa, Iowa City, IA, 52242, USA
| | - Steven M Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Pathology, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
71
|
de Alwis R, Chen S, Gan ES, Ooi EE. Impact of immune enhancement on Covid-19 polyclonal hyperimmune globulin therapy and vaccine development. EBioMedicine 2020; 55:102768. [PMID: 32344202 PMCID: PMC7161485 DOI: 10.1016/j.ebiom.2020.102768] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/05/2020] [Accepted: 04/09/2020] [Indexed: 01/08/2023] Open
Abstract
The pandemic spread of a novel coronavirus - SARS coronavirus-2 (SARS-CoV-2) as a cause of acute respiratory illness, named Covid-19, is placing the healthcare systems of many countries under unprecedented stress. Global economies are also spiraling towards a recession in fear of this new life-threatening disease. Vaccines that prevent SARS-CoV-2 infection and therapeutics that reduces the risk of severe Covid-19 are thus urgently needed. A rapid method to derive antiviral treatment for Covid-19 is the use of convalescent plasma derived hyperimmune globulin. However, both hyperimmune globulin and vaccine development face a common hurdle - the risk of antibody-mediated disease enhancement. The goal of this review is to examine the body of evidence supporting the hypothesis of immune enhancement that could be pertinent to Covid-19. We also discuss how this risk could be mitigated so that both hyperimmune globulin and vaccines could be rapidly translated to overcome the current global health crisis.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/adverse effects
- Antibodies, Viral/immunology
- COVID-19
- COVID-19 Vaccines
- Clinical Trials, Phase I as Topic
- Convalescence
- Coronavirus Infections/epidemiology
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Coronavirus Infections/therapy
- Dendritic Cells/virology
- Global Health
- Host Microbial Interactions/immunology
- Humans
- Immunization, Passive
- Macrophages/virology
- Models, Animal
- Monocytes/virology
- Pandemics/prevention & control
- Plasma
- Plasmapheresis
- Pneumonia, Viral/epidemiology
- Pneumonia, Viral/immunology
- Pneumonia, Viral/prevention & control
- Pneumonia, Viral/therapy
- Receptors, Fc/immunology
- Translational Research, Biomedical
- Viral Vaccines/immunology
- Virus Internalization
- COVID-19 Serotherapy
Collapse
Affiliation(s)
- Ruklanthi de Alwis
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore; Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore
| | - Shiwei Chen
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Esther S Gan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore; Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
72
|
Sheahan TP, Sims AC, Zhou S, Graham RL, Pruijssers AJ, Agostini ML, Leist SR, Schäfer A, Dinnon KH, Stevens LJ, Chappell JD, Lu X, Hughes TM, George AS, Hill CS, Montgomery SA, Brown AJ, Bluemling GR, Natchus MG, Saindane M, Kolykhalov AA, Painter G, Harcourt J, Tamin A, Thornburg NJ, Swanstrom R, Denison MR, Baric RS. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci Transl Med 2020; 12:eabb5883. [PMID: 32253226 PMCID: PMC7164393 DOI: 10.1126/scitranslmed.abb5883] [Citation(s) in RCA: 791] [Impact Index Per Article: 158.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/03/2020] [Indexed: 12/16/2022]
Abstract
Coronaviruses (CoVs) traffic frequently between species resulting in novel disease outbreaks, most recently exemplified by the newly emerged SARS-CoV-2, the causative agent of COVID-19. Here, we show that the ribonucleoside analog β-d-N4-hydroxycytidine (NHC; EIDD-1931) has broad-spectrum antiviral activity against SARS-CoV-2, MERS-CoV, SARS-CoV, and related zoonotic group 2b or 2c bat-CoVs, as well as increased potency against a CoV bearing resistance mutations to the nucleoside analog inhibitor remdesivir. In mice infected with SARS-CoV or MERS-CoV, both prophylactic and therapeutic administration of EIDD-2801, an orally bioavailable NHC prodrug (β-d-N4-hydroxycytidine-5'-isopropyl ester), improved pulmonary function and reduced virus titer and body weight loss. Decreased MERS-CoV yields in vitro and in vivo were associated with increased transition mutation frequency in viral, but not host cell RNA, supporting a mechanism of lethal mutagenesis in CoV. The potency of NHC/EIDD-2801 against multiple CoVs and oral bioavailability highlights its potential utility as an effective antiviral against SARS-CoV-2 and other future zoonotic CoVs.
Collapse
Affiliation(s)
- Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Amy C Sims
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shuntai Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rachel L Graham
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Andrea J Pruijssers
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Maria L Agostini
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kenneth H Dinnon
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura J Stevens
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James D Chappell
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xiaotao Lu
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Tia M Hughes
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Amelia S George
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Collin S Hill
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephanie A Montgomery
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ariane J Brown
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gregory R Bluemling
- Emory Institute of Drug Development (EIDD), Emory University, Atlanta, GA 30322, USA
- Drug Innovation Ventures at Emory (DRIVE), Atlanta, GA 30322, USA
| | - Michael G Natchus
- Emory Institute of Drug Development (EIDD), Emory University, Atlanta, GA 30322, USA
| | - Manohar Saindane
- Emory Institute of Drug Development (EIDD), Emory University, Atlanta, GA 30322, USA
| | - Alexander A Kolykhalov
- Emory Institute of Drug Development (EIDD), Emory University, Atlanta, GA 30322, USA
- Drug Innovation Ventures at Emory (DRIVE), Atlanta, GA 30322, USA
| | - George Painter
- Emory Institute of Drug Development (EIDD), Emory University, Atlanta, GA 30322, USA
- Drug Innovation Ventures at Emory (DRIVE), Atlanta, GA 30322, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA
| | - Jennifer Harcourt
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Azaibi Tamin
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Natalie J Thornburg
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Ronald Swanstrom
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark R Denison
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
73
|
Killikelly A, Tunis M, House A, Quach C, Vaudry W, Moore D. Overview of the respiratory syncytial virus vaccine candidate pipeline in Canada. CANADA COMMUNICABLE DISEASE REPORT = RELEVE DES MALADIES TRANSMISSIBLES AU CANADA 2020; 46:56-61. [PMID: 32510521 PMCID: PMC7273503 DOI: 10.14745/ccdr.v46i04a01] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
A vaccine for respiratory syncytial virus (RSV) has been actively sought for over 60 years due to the health impacts of RSV disease in infants, but currently the only available preventive measure in Canada and elsewhere is limited to passive immunization for high-risk infants and children with a monoclonal antibody. RSV vaccine development has faced many challenges, including vaccine-induced enhancement of RSV disease in infants. Several key developments in the last decade in the fields of cellular immunology and protein structure have led to new products entering late-stage clinical development. As of July 2019, RSV vaccine development is being pursued by 16 organizations in 121 clinical trials. Five technologies dominate the field of RSV vaccine development, four active immunizing agents (live-attenuated, particle-based, subunit-based and vector-based vaccines) and one new passive immunizing agent (monoclonal antibody). Phase 3 clinical trials of vaccine candidates for pregnant women, infants, children and older adults are under way. The next decade will see a dramatic transformation of the RSV prevention landscape.
Collapse
Affiliation(s)
- April Killikelly
- Centre for Immunization and Respiratory Infectious Diseases, Public Health Agency of Canada, Ottawa, ON
| | - Matthew Tunis
- Centre for Immunization and Respiratory Infectious Diseases, Public Health Agency of Canada, Ottawa, ON
| | - Althea House
- Centre for Immunization and Respiratory Infectious Diseases, Public Health Agency of Canada, Ottawa, ON
| | - Caroline Quach
- Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montreal, QC
| | - Wendy Vaudry
- Stollery Children's Hospital, University of Alberta, Edmonton, AB
| | | |
Collapse
|
74
|
Sheahan TP, Sims AC, Leist SR, Schäfer A, Won J, Brown AJ, Montgomery SA, Hogg A, Babusis D, Clarke MO, Spahn JE, Bauer L, Sellers S, Porter D, Feng JY, Cihlar T, Jordan R, Denison MR, Baric RS. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun 2020. [PMID: 31924756 DOI: 10.1038/s41467-019-13940-6.] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is the causative agent of a severe respiratory disease associated with more than 2468 human infections and over 851 deaths in 27 countries since 2012. There are no approved treatments for MERS-CoV infection although a combination of lopinavir, ritonavir and interferon beta (LPV/RTV-IFNb) is currently being evaluated in humans in the Kingdom of Saudi Arabia. Here, we show that remdesivir (RDV) and IFNb have superior antiviral activity to LPV and RTV in vitro. In mice, both prophylactic and therapeutic RDV improve pulmonary function and reduce lung viral loads and severe lung pathology. In contrast, prophylactic LPV/RTV-IFNb slightly reduces viral loads without impacting other disease parameters. Therapeutic LPV/RTV-IFNb improves pulmonary function but does not reduce virus replication or severe lung pathology. Thus, we provide in vivo evidence of the potential for RDV to treat MERS-CoV infections.
Collapse
Affiliation(s)
- Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Amy C Sims
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John Won
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ariane J Brown
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephanie A Montgomery
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | | - Joy Y Feng
- Gilead Sciences, Inc, Foster City, CA, USA
| | | | | | - Mark R Denison
- Department of Pediatrics-Infectious Diseases, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
75
|
Sheahan TP, Sims AC, Leist SR, Schäfer A, Won J, Brown AJ, Montgomery SA, Hogg A, Babusis D, Clarke MO, Spahn JE, Bauer L, Sellers S, Porter D, Feng JY, Cihlar T, Jordan R, Denison MR, Baric RS. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun 2020; 11:222. [PMID: 31924756 PMCID: PMC6954302 DOI: 10.1038/s41467-019-13940-6] [Citation(s) in RCA: 1151] [Impact Index Per Article: 230.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 12/07/2019] [Indexed: 01/13/2023] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is the causative agent of a severe respiratory disease associated with more than 2468 human infections and over 851 deaths in 27 countries since 2012. There are no approved treatments for MERS-CoV infection although a combination of lopinavir, ritonavir and interferon beta (LPV/RTV-IFNb) is currently being evaluated in humans in the Kingdom of Saudi Arabia. Here, we show that remdesivir (RDV) and IFNb have superior antiviral activity to LPV and RTV in vitro. In mice, both prophylactic and therapeutic RDV improve pulmonary function and reduce lung viral loads and severe lung pathology. In contrast, prophylactic LPV/RTV-IFNb slightly reduces viral loads without impacting other disease parameters. Therapeutic LPV/RTV-IFNb improves pulmonary function but does not reduce virus replication or severe lung pathology. Thus, we provide in vivo evidence of the potential for RDV to treat MERS-CoV infections.
Collapse
Affiliation(s)
- Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Amy C Sims
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John Won
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ariane J Brown
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephanie A Montgomery
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | | - Joy Y Feng
- Gilead Sciences, Inc, Foster City, CA, USA
| | | | | | - Mark R Denison
- Department of Pediatrics-Infectious Diseases, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
76
|
Zhang S, Zhao G, Su C, Li C, Zhou X, Zhao W, Zhong Y, He Z, Peng H, Dong A, Wang B. Neonatal priming and infancy boosting with a novel respiratory syncytial virus vaccine induces protective immune responses without concomitant respiratory disease upon RSV challenge. Hum Vaccin Immunother 2019; 16:664-672. [PMID: 31545125 PMCID: PMC7227690 DOI: 10.1080/21645515.2019.1671134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although respiratory syncytial virus (RSV) infection in infants and young children is a global public health issue, development of a safe RSV vaccine has been impeded by formalin-inactivated RSV-enhanced respiratory disease (ERD). In developing a safer yet effective RSV vaccine for children, a strategy to decrease over-reactive T cells and increase neutralizing anti-RSV antibodies should be considered. We previously demonstrated that adult mice immunized with RSV recombinant G protein plus low-dose Cyclosporine A (G+ CsA) could, upon subsequent RSV challenge, produce increased levels of antigen-specific T regulatory cells in lungs that overcame the ERD. Neutralizing anti-RSV antibodies that prevented viral infection were also elicited. In this study, we investigated if such a G+ CsA vaccine could provide infant mice with the same protection from RSV infection without ERD. The results showed that the G+ CsA vaccine could prevent RSV infection with only a mild loss of body weight. Importantly, there was nearly normal morphology and no mucus appearance in lung tissues after RSV challenge. These results demonstrate that the G+ CsA vaccine strategy achieved similar benefits in the neonatal prime and infancy boost model as in the adult mouse model. The G+ CsA immunization strategy is potentially safe and effective in neonates and infants because it suppresses the devastating ERD.
Collapse
Affiliation(s)
- Shuren Zhang
- Key Laboratory of Medical Molecular Virology of MOH and MOE and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Gan Zhao
- Key Laboratory of Medical Molecular Virology of MOH and MOE and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Caixia Su
- Key Laboratory of Medical Molecular Virology of MOH and MOE and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chaofan Li
- Key Laboratory of Medical Molecular Virology of MOH and MOE and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xian Zhou
- Key Laboratory of Medical Molecular Virology of MOH and MOE and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Weidong Zhao
- Key Laboratory of Medical Molecular Virology of MOH and MOE and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yiwei Zhong
- Key Laboratory of Medical Molecular Virology of MOH and MOE and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | | | | | - Aihua Dong
- Advaccine Biotechnology Co. LTD, Beijing, China
| | - Bin Wang
- Key Laboratory of Medical Molecular Virology of MOH and MOE and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
77
|
Retamal-Díaz A, Covián C, Pacheco GA, Castiglione-Matamala AT, Bueno SM, González PA, Kalergis AM. Contribution of Resident Memory CD8 + T Cells to Protective Immunity Against Respiratory Syncytial Virus and Their Impact on Vaccine Design. Pathogens 2019; 8:pathogens8030147. [PMID: 31514485 PMCID: PMC6789444 DOI: 10.3390/pathogens8030147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 12/17/2022] Open
Abstract
Worldwide, human respiratory syncytial virus (RSV) is the most common etiological agent for acute lower respiratory tract infections (ALRI). RSV-ALRI is the major cause of hospital admissions in young children, and it can cause in-hospital deaths in children younger than six months old. Therefore, RSV remains one of the pathogens deemed most important for the generation of a vaccine. On the other hand, the effectiveness of a vaccine depends on the development of immunological memory against the pathogenic agent of interest. This memory is achieved by long-lived memory T cells, based on the establishment of an effective immune response to viral infections when subsequent exposures to the pathogen take place. Memory T cells can be classified into three subsets according to their expression of lymphoid homing receptors: central memory cells (TCM), effector memory cells (TEM) and resident memory T cells (TRM). The latter subset consists of cells that are permanently found in non-lymphoid tissues and are capable of recognizing antigens and mounting an effective immune response at those sites. TRM cells activate both innate and adaptive immune responses, thus establishing a robust and rapid response characterized by the production of large amounts of effector molecules. TRM cells can also recognize antigenically unrelated pathogens and trigger an innate-like alarm with the recruitment of other immune cells. It is noteworthy that this rapid and effective immune response induced by TRM cells make these cells an interesting aim in the design of vaccination strategies in order to establish TRM cell populations to prevent respiratory infectious diseases. Here, we discuss the biogenesis of TRM cells, their contribution to the resolution of respiratory viral infections and the induction of TRM cells, which should be considered for the rational design of new vaccines against RSV.
Collapse
Affiliation(s)
- Angello Retamal-Díaz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Camila Covián
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Gaspar A Pacheco
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Angelo T Castiglione-Matamala
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile.
- Departamento de Endocrinología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile.
| |
Collapse
|
78
|
Pardy RD, Richer MJ. Protective to a T: The Role of T Cells during Zika Virus Infection. Cells 2019; 8:cells8080820. [PMID: 31382545 PMCID: PMC6721718 DOI: 10.3390/cells8080820] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 12/22/2022] Open
Abstract
CD4 and CD8 T cells are an important part of the host's capacity to defend itself against viral infections. During flavivirus infections, T cells have been implicated in both protective and pathogenic responses. Given the recent emergence of Zika virus (ZIKV) as a prominent global health threat, the question remains as to how T cells contribute to anti-ZIKV immunity. Furthermore, high homology between ZIKV and other, co-circulating flaviviruses opens the possibility of positive or negative effects of cross-reactivity due to pre-existing immunity. In this review, we will discuss the CD4 and CD8 T cell responses to ZIKV, and the lessons we have learned from both mouse and human infections. In addition, we will consider the possibility of whether T cells, in the context of flavivirus-naïve and flavivirus-immune subjects, play a role in promoting ZIKV pathogenesis during infection.
Collapse
Affiliation(s)
- Ryan D Pardy
- Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 2B4, Canada
- Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Martin J Richer
- Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 2B4, Canada.
- Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
79
|
Hemann EA, Green R, Turnbull JB, Langlois RA, Savan R, Gale M. Interferon-λ modulates dendritic cells to facilitate T cell immunity during infection with influenza A virus. Nat Immunol 2019; 20:1035-1045. [PMID: 31235953 PMCID: PMC6642690 DOI: 10.1038/s41590-019-0408-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 04/29/2019] [Indexed: 12/12/2022]
Abstract
Type III interferon (IFN-λ) is important for innate immune protection at mucosal surfaces and has therapeutic benefit against influenza A virus (IAV) infection. However, the mechanisms by which IFN-λ programs adaptive immune protection against IAV are undefined. Here we found that IFN-λ signaling in dendritic cell (DC) populations was critical for the development of protective IAV-specific CD8+ T cell responses. Mice lacking the IFN-λ receptor (Ifnlr1-/-) had blunted CD8+ T cell responses relative to wild type and exhibited reduced survival after heterosubtypic IAV re-challenge. Analysis of DCs revealed IFN-λ signaling directed the migration and function of CD103+ DCs for development of optimal antiviral CD8+ T cell responses, and bioinformatic analyses identified IFN-λ regulation of a DC IL-10 immunoregulatory network. Thus, IFN-λ serves a critical role in bridging innate and adaptive immunity from lung mucosa to lymph nodes to program DCs to direct effective T cell immunity against IAV.
Collapse
Affiliation(s)
- Emily A Hemann
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, USA
| | - Richard Green
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, USA
| | - J Bryan Turnbull
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, USA
| | - Ryan A Langlois
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Ram Savan
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, USA
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, USA.
| |
Collapse
|
80
|
Kotomina T, Isakova-Sivak I, Matyushenko V, Kim KH, Lee Y, Jung YJ, Kang SM, Rudenko L. Recombinant live attenuated influenza vaccine viruses carrying CD8 T-cell epitopes of respiratory syncytial virus protect mice against both pathogens without inflammatory disease. Antiviral Res 2019; 168:9-17. [PMID: 31075351 PMCID: PMC6620116 DOI: 10.1016/j.antiviral.2019.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 12/29/2022]
Abstract
Respiratory syncytial virus (RSV) is the most common cause of lower respiratory disease in young children, elderly and immunocompromised adults. There is no licensed vaccine against RSV although development of an effective and safe RSV vaccine has been a high priority for several decades. Among the various vaccine platforms, the viral-vectored RSV vaccines based on licensed cold-adapted live attenuated influenza vaccine (LAIV) might offer an advantage of inducing adequate mucosal CD8 T cell immunity at the infection site of respiratory pathogens. We constructed two recombinant LAIV viruses expressing immunodominant T-cell epitopes of RSV M2-1 protein. The results in this study provide evidence that RSV CD8 T cell epitopes delivered by LAIV viral vector could confer protection against RSV infection without causing pulmonary eosinophilia and inflammatory RSV disease in mice. In addition, these chimeric LAIV-RSV vaccines retained their attenuated phenotype and ability to protect against virulent influenza virus, thus providing a unique approach to fight against two dangerous respiratory viral pathogens using a single vaccine preparation.
Collapse
Affiliation(s)
- Tatiana Kotomina
- Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, 197376, Russia
| | - Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, 197376, Russia.
| | - Victoria Matyushenko
- Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, 197376, Russia
| | - Ki-Hye Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Youri Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Yu-Jin Jung
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, 197376, Russia
| |
Collapse
|
81
|
Muralidharan A, Russell MS, Larocque L, Gravel C, Sauvé S, Chen Z, Li C, Chen W, Cyr T, Rosu-Myles M, Wang L, Li X. Chitosan alters inactivated respiratory syncytial virus vaccine elicited immune responses without affecting lung histopathology in mice. Vaccine 2019; 37:4031-4039. [DOI: 10.1016/j.vaccine.2019.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022]
|
82
|
Fiege JK, Stone IA, Fay EJ, Markman MW, Wijeyesinghe S, Macchietto MG, Shen S, Masopust D, Langlois RA. The Impact of TCR Signal Strength on Resident Memory T Cell Formation during Influenza Virus Infection. THE JOURNAL OF IMMUNOLOGY 2019; 203:936-945. [PMID: 31235552 DOI: 10.4049/jimmunol.1900093] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/08/2019] [Indexed: 02/01/2023]
Abstract
Resident memory T cells (TRM) in the lung are vital for heterologous protection against influenza A virus (IAV). Environmental factors are necessary to establish lung TRM; however, the role of T cell-intrinsic factors like TCR signal strength have not been elucidated. In this study, we investigated the impact of TCR signal strength on the generation and maintenance of lung TRM after IAV infection. We inserted high- and low-affinity OT-I epitopes into IAV and infected mice after transfer of OT-I T cells. We uncovered a bias in TRM formation in the lung elicited by lower affinity TCR stimulation. TCR affinity did not impact the overall phenotype or long-term maintenance of lung TRM Overall, these findings demonstrate that TRM formation is negatively correlated with increased TCR signal strength. Lower affinity cells may have an advantage in forming TRM to ensure diversity in the Ag-specific repertoire in tissues.
Collapse
Affiliation(s)
- Jessica K Fiege
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Ian A Stone
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Elizabeth J Fay
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455.,Biochemistry, Molecular Biology and Biophysics Graduate Program, University of Minnesota, Minneapolis, MN 55455; and
| | - Matthew W Markman
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Sathi Wijeyesinghe
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Marissa G Macchietto
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455
| | - Steven Shen
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455
| | - David Masopust
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Ryan A Langlois
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455; .,Center for Immunology, University of Minnesota, Minneapolis, MN 55455.,Biochemistry, Molecular Biology and Biophysics Graduate Program, University of Minnesota, Minneapolis, MN 55455; and
| |
Collapse
|
83
|
Suarez-Ramirez JE, Chandiran K, Brocke S, Cauley LS. Immunity to Respiratory Infection Is Reinforced Through Early Proliferation of Lymphoid T RM Cells and Prompt Arrival of Effector CD8 T Cells in the Lungs. Front Immunol 2019; 10:1370. [PMID: 31258537 PMCID: PMC6587114 DOI: 10.3389/fimmu.2019.01370] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022] Open
Abstract
Cross-protection between serologically distinct strains of influenza A virus (IAV) is mediated by memory CD8 T cells that recognize epitopes from conserved viral proteins. Early viral control begins with activation of tissue-resident memory CD8 T cells (TRM) cells at the site of viral replication. These CD8 T cells do not act in isolation, as protection against disseminated infection is reinforced by multiple waves of effector cells (TEFF) that enter the lungs with different kinetics. To define how a protective CTL response evolves, we compared the functional properties of antiviral CD8 T cells in the respiratory tract and local lymphoid tissues. When analyzed 30 dpi, large numbers of antiviral CD8 T cells in the lungs and mediastinal lymph nodes (MLNs) expressed canonical markers of TRM cells (CD69 and/or CD103). The check point inhibitor PD-1 was also highly expressed on NP-specific CD8 T cells in the lungs, while the ratios of CD8 T cells expressing CD69 and CD103 varied according to antigen specificity. We next used in vitro experiments to identify conditions that induce a canonical TRM phenotype and found that that naïve and newly activated CD8 T cells maintain CD103 expression during culture with transforming growth factor-beta (TGFβ), while central memory CD8 T cells (TCM) do not express CD103 under similar conditions. In vivo experiments showed that the distribution of antiviral CTLs in the MLN changed when immune mice were treated with reagents that block interactions with PD-L1. Importantly, the lymphoid TRM cells were poised for early proliferation upon reinfection with a different strain of IAV and defenses in the lungs were augmented by a transient increase in numbers of TEFF cells at the site of infection. As the interval between infections increased, lymphoid TRM cells were replaced with TCM cells which proliferated with delayed kinetics and contributed to an exaggerated inflammatory response in the lungs.
Collapse
Affiliation(s)
- Jenny E Suarez-Ramirez
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, United States
| | - Karthik Chandiran
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, United States
| | - Stefan Brocke
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, United States
| | - Linda S Cauley
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, United States
| |
Collapse
|
84
|
Kwon YM, Hwang HS, Lee YT, Kim KH, Lee Y, Kim MC, Lee YN, Quan FS, Moore ML, Kang SM. Respiratory Syncytial Virus Fusion Protein-encoding DNA Vaccine Is Less Effective in Conferring Protection against Inflammatory Disease than a Virus-like Particle Platform. Immune Netw 2019; 19:e18. [PMID: 31281715 PMCID: PMC6597443 DOI: 10.4110/in.2019.19.e18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/17/2022] Open
Abstract
Formalin-inactivated respiratory syncytial virus (RSV) vaccination causes vaccine-enhanced disease (VED) after RSV infection. It is considered that vaccine platforms enabling endogenous synthesis of RSV immunogens would induce favorable immune responses than non-replicating subunit vaccines in avoiding VED. Here, we investigated the immunogenicity, protection, and disease in mice after vaccination with RSV fusion protein (F) encoding plasmid DNA (F-DNA) or virus-like particles presenting RSV F (F-VLP). F-DNA vaccination induced CD8 T cells and RSV neutralizing Abs, whereas F-VLP elicited higher levels of IgG2a isotype and neutralizing Abs, and germinal center B cells, contributing to protection by controlling lung viral loads after RSV challenge. However, mice that were immunized with F-DNA displayed weight loss and pulmonary histopathology, and induced F specific CD8 T cell responses and recruitment of monocytes and plasmacytoid dendritic cells into the lungs. These innate immune parameters, RSV disease, and pulmonary histopathology were lower in mice that were immunized with F-VLP after challenge. This study provides important insight into developing effective and safe RSV vaccines.
Collapse
Affiliation(s)
- Young-Man Kwon
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Hye Suk Hwang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.,Department of Microbiology, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Young-Tae Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.,Green Cross Cell Corp., Yongin 16924, Korea
| | - Ki-Hye Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Youri Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Min-Chul Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.,Komipharm Co., Ltd., Siheung 15094, Korea
| | - Yu-Na Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.,Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Fu-Shi Quan
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.,Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul 02447, Korea
| | | | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
85
|
Li N, Zhang L, Zheng B, Li W, Liu J, Zhang H, Zeng R. RSV recombinant candidate vaccine G1F/M2 with CpG as an adjuvant prevents vaccine-associated lung inflammation, which may be associated with the appropriate types of immune memory in spleens and lungs. Hum Vaccin Immunother 2019; 15:2684-2694. [PMID: 31021703 DOI: 10.1080/21645515.2019.1596710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major respiratory pathogen in infants. The early formalin-inactivated RSV not only failed to protect infants against infection, but also was associated with enhanced pulmonary inflammatory disease upon natural infection. A safe and effective vaccine should prevent the inflammatory disease and provide protection. Immune memory is the cornerstone of vaccines. In this study, we evaluated three types of immune memory T cells, antibodies, and lung inflammation of a vaccine candidate G1F/M2, which includes a neutralizing epitope fragment of RSV G protein and a cytotoxic T lymphocyte epitope of M2 protein, with toll-like receptor 9 agonist CpG2006 as an adjuvant by intranasal (i.n.) and intraperitoneal (i.p.) immunization protocols. The results indicated that immunization of mice with G1F/M2 + CpG i.p. induced significantly higher level of CD4+ or CD8+ central memory (TCM), Th1-type effector memory (TEM), and balanced ratio of IgG1/IgG2a, but lower level of lung tissue-resident memory (TRM), compared with immunization with G1F/M2 + CpG i.n., G1F/M2 i.n., or G1F/M2 i.p. Following RSV challenge, the mice immunized with G1F/M2 + CpG i.p. showed higher level of Th1-type responses, remarkably suppressed inflammatory cytokines and histopathology in lungs, compared with mice immunized with G1F/M2 + CpG i.n., G1F/M2 i.n., or G1F/M2 i.p. These results suggested that high level of TCM and Th1 type of TEM in spleens may contribute to inhibition of lung inflammation, while high level of TRM in lungs and lack of or weak Th1-type immune memory in spleens may promote lung inflammation following RSV challenge.
Collapse
Affiliation(s)
- Na Li
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, PR China.,Department of Microbiology and Immunology, Xingtai Medical College, Xingtai, Hebei, PR China
| | - Ling Zhang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Boyang Zheng
- Basic Medical College, Hebei Medical University, Hebei, China
| | - Wenjian Li
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Jianxun Liu
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, PR China.,Department of Microbiology and Immunology, Xingtai Medical College, Xingtai, Hebei, PR China
| | - Huixian Zhang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Ruihong Zeng
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, PR China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei, China
| |
Collapse
|
86
|
Graham BS. Immunological goals for respiratory syncytial virus vaccine development. Curr Opin Immunol 2019; 59:57-64. [PMID: 31029910 DOI: 10.1016/j.coi.2019.03.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 12/26/2022]
Abstract
Defining the immunological goals for respiratory syncytial virus (RSV) vaccination requires understanding of RSV biology and tropism, mechanisms of cell-to-cell spread and immunity, epidemiology, and transmission dynamics. The immunological goals for a particular vaccine would be product-specific based on antigen selection, delivery approach, and target population. There are many ways to achieve immunity against RSV infection involving innate and adaptive responses, humoral, and cellular effector mechanisms, and mucosal and systemic responses. Both protective and pathological immune response patterns have been demonstrated in animal models and humans. In this short commentary, the entire information matrix that may inform the design of particular vaccine candidates cannot be fully reviewed, but the rationale behind the major vaccine approaches in key target populations will be discussed.
Collapse
Affiliation(s)
- Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
87
|
Schmidt ME, Oomens AGP, Varga SM. Vaccination with a Single-Cycle Respiratory Syncytial Virus Is Immunogenic and Protective in Mice. THE JOURNAL OF IMMUNOLOGY 2019; 202:3234-3245. [PMID: 31004010 DOI: 10.4049/jimmunol.1900050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of severe respiratory tract infection in infants and young children, but no vaccine is currently available. Live-attenuated vaccines represent an attractive immunization approach; however, balancing attenuation while retaining sufficient immunogenicity and efficacy has prevented the successful development of such a vaccine. Recently, a recombinant RSV strain lacking the gene that encodes the matrix (M) protein (RSV M-null) was developed. The M protein is required for virion assembly following infection of a host cell but is not necessary for either genome replication or gene expression. Therefore, infection with RSV M-null produces all viral proteins except M but does not generate infectious virus progeny, resulting in a single-cycle infection. We evaluated RSV M-null as a potential vaccine candidate by determining its pathogenicity, immunogenicity, and protective capacity in BALB/c mice compared with its recombinant wild-type control virus (RSV recWT). RSV M-null-infected mice exhibited significantly reduced lung viral titers, weight loss, and pulmonary dysfunction compared with mice infected with RSV recWT. Despite its attenuation, RSV M-null infection induced robust immune responses of similar magnitude to that elicited by RSV recWT. Additionally, RSV M-null infection generated serum Ab and memory T cell responses that were similar to those induced by RSV recWT. Importantly, RSV M-null immunization provided protection against secondary viral challenge by reducing lung viral titers as efficiently as immunization with RSV recWT. Overall, our results indicate that RSV M-null combines attenuation with high immunogenicity and efficacy and represents a promising novel live-attenuated RSV vaccine candidate.
Collapse
Affiliation(s)
- Megan E Schmidt
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242
| | - Antonius G P Oomens
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078
| | - Steven M Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242; .,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242; and.,Department of Pathology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
88
|
Baral S, Raja R, Sen P, Dixit NM. Towards multiscale modeling of the CD8 + T cell response to viral infections. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2019; 11:e1446. [PMID: 30811096 PMCID: PMC6614031 DOI: 10.1002/wsbm.1446] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 12/22/2022]
Abstract
The CD8+ T cell response is critical to the control of viral infections. Yet, defining the CD8+ T cell response to viral infections quantitatively has been a challenge. Following antigen recognition, which triggers an intracellular signaling cascade, CD8+ T cells can differentiate into effector cells, which proliferate rapidly and destroy infected cells. When the infection is cleared, they leave behind memory cells for quick recall following a second challenge. If the infection persists, the cells may become exhausted, retaining minimal control of the infection while preventing severe immunopathology. These activation, proliferation and differentiation processes as well as the mounting of the effector response are intrinsically multiscale and collective phenomena. Remarkable experimental advances in the recent years, especially at the single cell level, have enabled a quantitative characterization of several underlying processes. Simultaneously, sophisticated mathematical models have begun to be constructed that describe these multiscale phenomena, bringing us closer to a comprehensive description of the CD8+ T cell response to viral infections. Here, we review the advances made and summarize the challenges and opportunities ahead. This article is categorized under: Analytical and Computational Methods > Computational Methods Biological Mechanisms > Cell Fates Biological Mechanisms > Cell Signaling Models of Systems Properties and Processes > Mechanistic Models.
Collapse
Affiliation(s)
- Subhasish Baral
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| | - Rubesh Raja
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| | - Pramita Sen
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| | - Narendra M Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
89
|
Kim MH, Kang JO, Kim JY, Jung HE, Lee HK, Chang J. Single mucosal vaccination targeting nucleoprotein provides broad protection against two lineages of influenza B virus. Antiviral Res 2019; 163:19-28. [PMID: 30639307 DOI: 10.1016/j.antiviral.2019.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/04/2018] [Accepted: 01/07/2019] [Indexed: 12/27/2022]
Abstract
Nucleoprotein is highly conserved among each type of influenza viruses (A and B) and has received significant attention as a good target for universal influenza vaccine. In this study, we determined whether a recombinant adenovirus encoding nucleoprotein of type B influenza virus (rAd/B-NP) confers protection against influenza virus infection in mice. We also identified a cytotoxic T lymphocyte epitope in the nucleoprotein to determine B-NP-specific CD8 T-cell responses. We found that B-NP-specific CD8 T cells induced by rAd/B-NP immunization played a major role in protection following influenza B virus infection using CD8 knockout mice. To assess the effects of the administration routes on protective immunity, we immunized mice with rAd/B-NP via intranasal or intramuscular routes. Both groups showed strong NP-specific humoral and CD8 T-cell responses, but only intranasal immunization provided complete protection against both lineages of influenza B virus challenge. Intranasal but not intramuscular administration established resident memory CD8 T cells in the airway and lung parenchyma, which were required for efficient protection. Furthermore, rAd/B-NP in combination with rAd/A-NP protected mice against lethal infection with both influenza A and B viruses. These findings demonstrate that rAd/B-NP could be further developed as a universal vaccine against influenza.
Collapse
Affiliation(s)
- Myung Hee Kim
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Jung-Ok Kang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Joo-Young Kim
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Hi Eun Jung
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Heung Kyu Lee
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jun Chang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
90
|
Monette A, Mouland AJ. T Lymphocytes as Measurable Targets of Protection and Vaccination Against Viral Disorders. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 342:175-263. [PMID: 30635091 PMCID: PMC7104940 DOI: 10.1016/bs.ircmb.2018.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Continuous epidemiological surveillance of existing and emerging viruses and their associated disorders is gaining importance in light of their abilities to cause unpredictable outbreaks as a result of increased travel and vaccination choices by steadily growing and aging populations. Close surveillance of outbreaks and herd immunity are also at the forefront, even in industrialized countries, where previously eradicated viruses are now at risk of re-emergence due to instances of strain recombination, contractions in viral vector geographies, and from their potential use as agents of bioterrorism. There is a great need for the rational design of current and future vaccines targeting viruses, with a strong focus on vaccine targeting of adaptive immune effector memory T cells as the gold standard of immunity conferring long-lived protection against a wide variety of pathogens and malignancies. Here, we review viruses that have historically caused large outbreaks and severe lethal disorders, including respiratory, gastric, skin, hepatic, neurologic, and hemorrhagic fevers. To observe trends in vaccinology against these viral disorders, we describe viral genetic, replication, transmission, and tropism, host-immune evasion strategies, and the epidemiology and health risks of their associated syndromes. We focus on immunity generated against both natural infection and vaccination, where a steady shift in conferred vaccination immunogenicity is observed from quantifying activated and proliferating, long-lived effector memory T cell subsets, as the prominent biomarkers of long-term immunity against viruses and their associated disorders causing high morbidity and mortality rates.
Collapse
|
91
|
Han M, Rajput C, Ishikawa T, Jarman CR, Lee J, Hershenson MB. Small Animal Models of Respiratory Viral Infection Related to Asthma. Viruses 2018; 10:E682. [PMID: 30513770 PMCID: PMC6316391 DOI: 10.3390/v10120682] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/21/2018] [Accepted: 11/29/2018] [Indexed: 12/20/2022] Open
Abstract
Respiratory viral infections are strongly associated with asthma exacerbations. Rhinovirus is most frequently-detected pathogen; followed by respiratory syncytial virus; metapneumovirus; parainfluenza virus; enterovirus and coronavirus. In addition; viral infection; in combination with genetics; allergen exposure; microbiome and other pathogens; may play a role in asthma development. In particular; asthma development has been linked to wheezing-associated respiratory viral infections in early life. To understand underlying mechanisms of viral-induced airways disease; investigators have studied respiratory viral infections in small animals. This report reviews animal models of human respiratory viral infection employing mice; rats; guinea pigs; hamsters and ferrets. Investigators have modeled asthma exacerbations by infecting mice with allergic airways disease. Asthma development has been modeled by administration of virus to immature animals. Small animal models of respiratory viral infection will identify cell and molecular targets for the treatment of asthma.
Collapse
Affiliation(s)
- Mingyuan Han
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Charu Rajput
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Tomoko Ishikawa
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Caitlin R Jarman
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Julie Lee
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Marc B Hershenson
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
92
|
Muralidharan A, Russell M, Larocque L, Gravel C, Li C, Chen W, Cyr T, Lavoie JR, Farnsworth A, Rosu-Myles M, Wang L, Li X. Targeting CD40 enhances antibody- and CD8-mediated protection against respiratory syncytial virus infection. Sci Rep 2018; 8:16648. [PMID: 30413743 PMCID: PMC6226510 DOI: 10.1038/s41598-018-34999-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/24/2018] [Indexed: 01/01/2023] Open
Abstract
Respiratory Syncytial Virus (RSV) infects almost all children under the age of one and is the leading cause of hospitalization among infants. Despite several decades of research with dozens of candidate vaccines being vigorously evaluated in pre-clinical and clinical studies, there is no licensed vaccine available to date. Here, the RSV fusion protein (F) was fused with CD40 ligand and delivered by an adenoviral vector into BALB/c mice where the CD40 ligand serves two vital functions as a molecular adjuvant and an antigen-targeting molecule. In contrast to a formaldehyde-inactivated vaccine, the vectored vaccine effectively protected animals against RSV without inducing enhanced respiratory disease. This protection involved a robust induction of neutralizing antibodies and memory CD8 T cells, which were not observed in the inactivated vaccine group. Finally, the vectored vaccine was able to elicit long-lasting protection against RSV, one of the most challenging issues in RSV vaccine development. Further studies indicate that the long lasting protection elicited by the CD40 ligand targeted vaccine was mediated by increased levels of effector memory CD8 T cell 3 months post-vaccination.
Collapse
Affiliation(s)
- Abenaya Muralidharan
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Marsha Russell
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Louise Larocque
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Caroline Gravel
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Changgui Li
- National Institute for Food and Drug Control and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Wangxue Chen
- Human Therapeutics Portfolio, National Research Council of Canada, Ottawa, ON, Canada
| | - Terry Cyr
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Jessie R Lavoie
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Aaron Farnsworth
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Michael Rosu-Myles
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Xuguang Li
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada.
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
93
|
Vittucci AC, Zangari P, Ciarlitto C, Di Camillo C, Grandin A, Cotugno N, Marchili MR, Villani A. Active prophylaxis for respiratory syncytial virus: current knowledge and future perspectives. Minerva Pediatr 2018; 70:566-578. [PMID: 30334621 DOI: 10.23736/s0026-4946.18.05305-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Respiratory syncytial virus (RSV) is the most common respiratory pathogen in infants and young children but represents also an important cause of morbidity in adults, particularly in the elderly and immunocompromised persons. Despite its global impact on human health, no effective treatment is available except for supportive care and no safe vaccine has been licensed yet. Vaccine development has been hindered by several factors including vaccine enhanced disease associated with formalin-inactivated RSV vaccine, ethical concerns and lack of consensus concerning the most appropriate target antigen. In this review, we analyze history of RSV vaccine and current approaches for preventing RSV including live-attenuated, vector-based, subunit, nucleic acid-based, particle-based vaccines and we debate about concerns on target population, correlates of protection and obstacles that are slowing the progress toward a successful RSV vaccination strategy.
Collapse
Affiliation(s)
- Anna C Vittucci
- Unit of Pediatric Infectious Diseases, Department of Pediatrics, Bambino Gesù Children's Hospital (OPBG), Rome, Italy -
| | - Paola Zangari
- Congenital and Perinatal Infections Research Unit, Division of Immune and Infectious Diseases, Department of Pediatrics, Bambino Gesù Children's Hospital (OPBG), Rome, Italy
| | | | - Chiara Di Camillo
- Unit of Pediatric Infectious Diseases, Department of Pediatrics, Bambino Gesù Children's Hospital (OPBG), Rome, Italy
| | - Annalisa Grandin
- Unit of Pediatric Infectious Diseases, Department of Pediatrics, Bambino Gesù Children's Hospital (OPBG), Rome, Italy
| | - Nicola Cotugno
- Congenital and Perinatal Infections Research Unit, Division of Immune and Infectious Diseases, Department of Pediatrics, Bambino Gesù Children's Hospital (OPBG), Rome, Italy
| | - Maria R Marchili
- Unit of Pediatric Infectious Diseases, Department of Pediatrics, Bambino Gesù Children's Hospital (OPBG), Rome, Italy
| | - Alberto Villani
- Unit of Pediatric Infectious Diseases, Department of Pediatrics, Bambino Gesù Children's Hospital (OPBG), Rome, Italy
| |
Collapse
|
94
|
Feng S, Zeng D, Zheng J, Zhao D. MicroRNAs: Mediators and Therapeutic Targets to Airway Hyper Reactivity After Respiratory Syncytial Virus Infection. Front Microbiol 2018; 9:2177. [PMID: 30254626 PMCID: PMC6141694 DOI: 10.3389/fmicb.2018.02177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/24/2018] [Indexed: 12/21/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the most important pathogen correlated to the first-time infant wheezing and later recurrence after its primary infection. RSV infection promotes the bronchial smooth muscle sensitivity to leukotrienes (LTs) in acute stage, causes the extensive inflammatory reaction and the aggregation of Th2-like cells during respiratory tract obstruction. Infants and young children infected with RSV exhibit an increased susceptibility to the exposure of exogenous allergens, easy to suffer from the recurrent wheezing, which prompts that the body is still in a state of inflammation or immunological bias. However, the pathological mechanism is unclear. The recent researches demonstrate that abnormal expression of non-coding microRNAs (miRNAs) can be detected from the peripheral blood and airway tract epithelial of RSV infected infants, which participate the regulation of immune cells polarization and LTs synthesis. Improving the immune tolerance can significantly relieve the airway inflammation and broncho-spasm caused by RSV. In this review, we discuss recent advances in understanding the mechanism of RSV-induced inflammatory reaction and immune dysfunction leading to airway hyper-reactivity. Further, we summarize the potential molecular basis that, in this process, miRNAs, which are produced by airway epithelial cells or peripheral blood mononuclear cells, directly or in the form of exosome to regulate the inflammation programs as well as the function, differentiation and proliferation of immune cells. miRNAs may become a potential bio-marker of detecting severe RSV infection and a novel target of early intervention and therapeutic strategy in recurrent wheezing or asthma related to RSV infection.
Collapse
Affiliation(s)
| | | | | | - Dongchi Zhao
- Department of Pediatrics, Children’s Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
95
|
Schmidt ME, Varga SM. Cytokines and CD8 T cell immunity during respiratory syncytial virus infection. Cytokine 2018; 133:154481. [PMID: 30031680 PMCID: PMC6551303 DOI: 10.1016/j.cyto.2018.07.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/07/2018] [Indexed: 01/10/2023]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection and hospitalization in infants. In spite of the enormous clinical burden caused by RSV infections, there remains no efficacious RSV vaccine. CD8 T cells mediate viral clearance as well as provide protection against a secondary RSV infection. However, RSV-specific CD8 T cells may also induce immunopathology leading to exacerbated morbidity and mortality. Many of the crucial functions performed by CD8 T cells are mediated by the cytokines they produce. IFN-γ and TNF are produced by CD8 T cells following RSV infection and contribute to both the acceleration of viral clearance and the induction of immunopathology. To prevent immunopathology, regulatory mechanisms are in place within the immune system to inhibit CD8 T cell effector functions after the infection has been cleared. The actions of a variety of cytokines, including IL-10 and IL-4, play a critical role in the regulation of CD8 T cell effector activity. Herein, we review the current literature on CD8 T cell responses and the functions of the cytokines they produce following RSV infection. Additionally, we discuss the regulation of CD8 T cell activation and effector functions through the actions of various cytokines.
Collapse
Affiliation(s)
- Megan E Schmidt
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - Steven M Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA; Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA; Department of Pathology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
96
|
Wilcox CR, Jones CE. Beyond Passive Immunity: Is There Priming of the Fetal Immune System Following Vaccination in Pregnancy and What Are the Potential Clinical Implications? Front Immunol 2018; 9:1548. [PMID: 30061881 PMCID: PMC6054988 DOI: 10.3389/fimmu.2018.01548] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023] Open
Abstract
Infection is responsible for over half a million neonatal deaths worldwide every year, and vaccination in pregnancy is becoming increasingly recognized as an important strategy for the protection of young infants. Increasing evidence suggests that exposure to maternal infection in utero may "prime" the developing immune system, even in the absence of infant infection. It is also possible that in utero priming may occur following maternal vaccination, with antigen-specific cellular immune responses detectable in utero and at birth. However, this remains a topic of some controversy. This review focuses on the evidence for in utero priming and the clinical implications for vaccination in pregnancy, considering whether in utero priming following vaccination could provide protection independent of antibody-mediated passive immunity, the possible effects of vaccination on subsequent infant vaccinations, their potential "non-specific" effects, and how the design and timing of vaccination might affect prenatal priming. Looking forward, we describe other possible options for quantifying antigen-specific cellular responses, including MHC tetramers, novel proliferation and cytokine-based assays, and animal models. Together, these may help us address future research questions and establish more robust evidence of fetal immune system priming.
Collapse
Affiliation(s)
- Christopher R. Wilcox
- NIHR Clinical Research Facility, Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Christine E. Jones
- Faculty of Medicine, Institute for Life Sciences, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| |
Collapse
|
97
|
Muruganandah V, Sathkumara HD, Navarro S, Kupz A. A Systematic Review: The Role of Resident Memory T Cells in Infectious Diseases and Their Relevance for Vaccine Development. Front Immunol 2018; 9:1574. [PMID: 30038624 PMCID: PMC6046459 DOI: 10.3389/fimmu.2018.01574] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022] Open
Abstract
Background Resident memory T cells have emerged as key players in the immune response generated against a number of pathogens. Their ability to take residence in non-lymphoid peripheral tissues allows for the rapid deployment of secondary effector responses at the site of pathogen entry. This ability to provide enhanced regional immunity has gathered much attention, with the generation of resident memory T cells being the goal of many novel vaccines. Objectives This review aimed to systematically analyze published literature investigating the role of resident memory T cells in human infectious diseases. Known effector responses mounted by these cells are summarized and key strategies that are potentially influential in the rational design of resident memory T cell inducing vaccines have also been highlighted. Methods A Boolean search was applied to Medline, SCOPUS, and Web of Science. Studies that investigated the effector response generated by resident memory T cells and/or evaluated strategies for inducing these cells were included irrespective of published date. Studies must have utilized an established technique for identifying resident memory T cells such as T cell phenotyping. Results While over 600 publications were revealed by the search, 147 articles were eligible for inclusion. The reference lists of included articles were also screened for other eligible publications. This resulted in the inclusion of publications that studied resident memory T cells in the context of over 25 human pathogens. The vast majority of studies were conducted in mouse models and demonstrated that resident memory T cells mount protective immune responses. Conclusion Although the role resident memory T cells play in providing immunity varies depending on the pathogen and anatomical location they resided in, the evidence overall suggests that these cells are vital for the timely and optimal protection against a number of infectious diseases. The induction of resident memory T cells should be further investigated and seriously considered when designing new vaccines.
Collapse
Affiliation(s)
- Visai Muruganandah
- Centre for Biosecurity and Tropical Infectious Diseases, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Harindra D Sathkumara
- Centre for Biosecurity and Tropical Infectious Diseases, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Severine Navarro
- Centre for Biosecurity and Tropical Infectious Diseases, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Andreas Kupz
- Centre for Biosecurity and Tropical Infectious Diseases, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
98
|
Souquette A, Thomas PG. Past Life and Future Effects-How Heterologous Infections Alter Immunity to Influenza Viruses. Front Immunol 2018; 9:1071. [PMID: 29872429 PMCID: PMC5972221 DOI: 10.3389/fimmu.2018.01071] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Influenza virus frequently mutates due to its error-prone polymerase. This feature contributes to influenza virus’s ability to evade pre-existing immunity, leading to annual epidemics and periodic pandemics. T cell memory plays a key protective role in the face of an antigenically distinct influenza virus strain because T cell targets are often derived from conserved internal proteins, whereas humoral immunity targets are often sites of increased mutation rates that are tolerated by the virus. Most studies of influenza T cell memory are conducted in naive, specific pathogen free mice and do not account for repetitive influenza infection throughout a lifetime, sequential acute heterologous infections between influenza infections, or heterologous chronic co-infections. By contrast to these mouse models, humans often experience numerous influenza infections, encounter heterologous acute infections between influenza infections, and are infected with at least one chronic virus. In this review, we discuss recent advances in understanding the effects of heterologous infections on the establishment and maintenance of CD8+ T cell immunological memory. Understanding the various factors that affect immune memory can provide insights into the development of more effective vaccines and increase reproducibility of translational studies between animal models and clinical results.
Collapse
Affiliation(s)
- Aisha Souquette
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
99
|
Schmidt ME, Varga SM. The CD8 T Cell Response to Respiratory Virus Infections. Front Immunol 2018; 9:678. [PMID: 29686673 PMCID: PMC5900024 DOI: 10.3389/fimmu.2018.00678] [Citation(s) in RCA: 264] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022] Open
Abstract
Humans are highly susceptible to infection with respiratory viruses including respiratory syncytial virus (RSV), influenza virus, human metapneumovirus, rhinovirus, coronavirus, and parainfluenza virus. While some viruses simply cause symptoms of the common cold, many respiratory viruses induce severe bronchiolitis, pneumonia, and even death following infection. Despite the immense clinical burden, the majority of the most common pulmonary viruses lack long-lasting efficacious vaccines. Nearly all current vaccination strategies are designed to elicit broadly neutralizing antibodies, which prevent severe disease following a subsequent infection. However, the mucosal antibody response to many respiratory viruses is not long-lasting and declines with age. CD8 T cells are critical for mediating clearance following many acute viral infections in the lung. In addition, memory CD8 T cells are capable of providing protection against secondary infections. Therefore, the combined induction of virus-specific CD8 T cells and antibodies may provide optimal protective immunity. Herein, we review the current literature on CD8 T cell responses induced by respiratory virus infections. Additionally, we explore how this knowledge could be utilized in the development of future vaccines against respiratory viruses, with a special emphasis on RSV vaccination.
Collapse
Affiliation(s)
- Megan E Schmidt
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
| | - Steven M Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States.,Department of Pathology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|