51
|
Alkharsah KR, Al-Afaleq AI. Serological Evidence of West Nile Virus Infection Among Humans, Horses, and Pigeons in Saudi Arabia. Infect Drug Resist 2022; 14:5595-5601. [PMID: 34992386 PMCID: PMC8711105 DOI: 10.2147/idr.s348648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/14/2021] [Indexed: 12/22/2022] Open
Abstract
Purpose This study was designed to investigate the seroprevalence of WNV antibodies in humans, horses, and pigeons in the Eastern Province of Saudi Arabia. Materials and Methods Blood samples were collected from 323 humans, 147 horses, and 282 pigeons from two regions, Al-Ahsa and Al-Qatif, in East of Saudi Arabia. Serum samples were tested for anti-WNV antibodies by ELISA. Results The percentage of anti-WNV antibodies in the human population was found to be 9.6% (3.1% in females and 6.5% in males). This percentage was much higher in horses, as 71.4% (105/147) of the horses had anti-WNV antibodies. However, no statistically significant difference in the anti-WNV antibody prevalence was found among horses from the two regions, Al-Ahsa (73.9%) and Al-Qatif (70.3%) (P value 0.665, 95% CI 0.37–1.82). No significant difference was found in the frequency of WNV antibodies among different age groups from humans or horses. Noticeably, 72.7% of the horses had detectable anti-WNV antibodies by the age of 1 year. In total, 53.19% (150/282) of the pigeons in the study had anti-WNV antibodies. Conclusion Our study provided the first evidence for anti-WNV antibody detection in humans and pigeons. This study further ascertained the high seroprevalence of the virus in horses as reported previously by Hemida et al 2019. Overall data indicates that WNV is endemic in Saudi Arabia. These findings suggest that more attention should be given to the diagnosis and reporting of WNV infections in human and animals and monitoring of virus circulation in the environment.
Collapse
Affiliation(s)
- Khaled R Alkharsah
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Kingdom of Saudi Arabia
| | - Adel I Al-Afaleq
- Department of Environmental Health, College of Public Health, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Kingdom of Saudi Arabia
| |
Collapse
|
52
|
Montine P, Kelly TR, Stoute S, da Silva AP, Crossley B, Corsiglia C, Shivaprasad HL, Gallardo RA. Infectious Bronchitis Virus Surveillance in Broilers in California (2012–20). Avian Dis 2021; 65:584-591. [DOI: 10.1637/aviandiseases-d-21-00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/12/2021] [Indexed: 11/05/2022]
Affiliation(s)
- P. Montine
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, 4008 VM3B, Davis, CA 95616
| | - T. R. Kelly
- One Health Institute & Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, University of California, Davis, CA 95616
| | - S. Stoute
- California Animal Health and Food Safety Lab, Turlock branch, University of California, Davis, 1550 N. Soderquist Road, Turlock, CA 95380
| | - A. P. da Silva
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, 4008 VM3B, Davis, CA 95616
| | - B. Crossley
- California Animal Health and Food Safety Lab, Davis branch, University of California, Davis, 620 Health Science Drive, Davis, CA 95616
| | - C. Corsiglia
- Foster Farms, 1000 Davis Street, Livingston, CA 95334
| | - H. L. Shivaprasad
- California Animal Health and Food Safety Lab, Tulare branch, University of California, Davis, 18760 Road 112, Tulare, CA 93274
| | - R. A. Gallardo
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, 4008 VM3B, Davis, CA 95616
| |
Collapse
|
53
|
McMillan JR, Harden CA, Burtis JC, Breban MI, Shepard JJ, Petruff TA, Misencik MJ, Bransfield AB, Poggi JD, Harrington LC, Andreadis TG, Armstrong PM. The community-wide effectiveness of municipal larval control programs for West Nile virus risk reduction in Connecticut, USA. PEST MANAGEMENT SCIENCE 2021; 77:5186-5201. [PMID: 34272800 PMCID: PMC9291174 DOI: 10.1002/ps.6559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/02/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Mosquito larval control through the use of insecticides is the most common strategy for suppressing West Nile virus (WNV) vector populations in Connecticut (CT), USA. To evaluate the ability of larval control to reduce entomological risk metrics associated with WNV, we performed WNV surveillance and assessments of municipal larvicide application programs in Milford and Stratford, CT in 2019 and 2020. Each town treated catch basins and nonbasin habitats (Milford only) with biopesticide products during both WNV transmission seasons. Adult mosquitoes were collected weekly with gravid and CO2 -baited light traps and tested for WNV; larvae and pupae were sampled weekly from basins within 500 m of trapping sites, and Culex pipiens larval mortality was determined with laboratory bioassays of catch basin water samples. RESULTS Declines in 4th instar larvae and pupae were observed in catch basins up to 2-week post-treatment, and we detected a positive relationship between adult female C. pipiens collections in gravid traps and pupal abundance in basins. We also detected a significant difference in total light trap collections between the two towns. Despite these findings, C. pipiens adult collections and WNV mosquito infection prevalence in gravid traps were similar between towns. CONCLUSION Larvicide applications reduced pupal abundance and the prevalence of host-seeking adults with no detectable impact on entomological risk metrics for WNV. Further research is needed to better determine the level of mosquito larval control required to reduce WNV transmission risk.
Collapse
Affiliation(s)
- Joseph R McMillan
- The Connecticut Agricultural Experiment StationNew HavenCTUSA
- The Northeast Regional Center of Excellence in Vector‐borne DiseasesCornell UniversityIthacaNew YorkUSA
| | | | - James C Burtis
- The Northeast Regional Center of Excellence in Vector‐borne DiseasesCornell UniversityIthacaNew YorkUSA
- Division of Vector‐borne DiseasesCenters for Disease Control and PreventionFort CollinsCOUSA
| | | | - John J Shepard
- The Connecticut Agricultural Experiment StationNew HavenCTUSA
| | - Tanya A Petruff
- The Connecticut Agricultural Experiment StationNew HavenCTUSA
| | | | | | - Joseph D Poggi
- The Northeast Regional Center of Excellence in Vector‐borne DiseasesCornell UniversityIthacaNew YorkUSA
- Cornell UniversityIthacaNYUSA
| | - Laura C Harrington
- The Northeast Regional Center of Excellence in Vector‐borne DiseasesCornell UniversityIthacaNew YorkUSA
- Cornell UniversityIthacaNYUSA
| | - Theodore G Andreadis
- The Connecticut Agricultural Experiment StationNew HavenCTUSA
- The Northeast Regional Center of Excellence in Vector‐borne DiseasesCornell UniversityIthacaNew YorkUSA
| | - Philip M Armstrong
- The Connecticut Agricultural Experiment StationNew HavenCTUSA
- The Northeast Regional Center of Excellence in Vector‐borne DiseasesCornell UniversityIthacaNew YorkUSA
| |
Collapse
|
54
|
Pappa S, Chaintoutis SC, Dovas CI, Papa A. PCR-based next-generation West Nile virus sequencing protocols. Mol Cell Probes 2021; 60:101774. [PMID: 34653595 DOI: 10.1016/j.mcp.2021.101774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/14/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022]
Abstract
The epidemiology of West Nile virus (WNV) is unpredictable and changing. Availability of whole genome sequences enables the detailed molecular epidemiology studies and the evaluation and design of diagnostic tools. In the present study we provide two PCR-based protocols which can be applied directly on biological samples from hosts infected by WNV strains belonging to lineage 1 or lineage 2. It was shown that the protocols worked successfully even on samples with relatively low viral load.
Collapse
Affiliation(s)
- Styliani Pappa
- National Reference Centre for Arboviruses, Department of Microbiology, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Serafeim C Chaintoutis
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Chrysostomos I Dovas
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Anna Papa
- National Reference Centre for Arboviruses, Department of Microbiology, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece.
| |
Collapse
|
55
|
Abstract
PURPOSE OF REVIEW The purpose of the review is to summarize recent advances in understanding the origins, drivers and clinical context of zoonotic disease epidemics and pandemics. In addition, we aimed to highlight the role of clinicians in identifying sentinel cases of zoonotic disease outbreaks. RECENT FINDINGS The majority of emerging infectious disease events over recent decades, including the COVID-19 pandemic, have been caused by zoonotic viruses and bacteria. In particular, coronaviruses, haemorrhagic fever viruses, arboviruses and influenza A viruses have caused significant epidemics globally. There have been recent advances in understanding the origins and drivers of zoonotic epidemics, yet there are gaps in diagnostic capacity and clinical training about zoonoses. SUMMARY Identifying the origins of zoonotic pathogens, understanding factors influencing disease transmission and improving the diagnostic capacity of clinicians will be crucial to early detection and prevention of further epidemics of zoonoses.
Collapse
Affiliation(s)
| | - Peter M Rabinowitz
- Department of Medicine
- Department of Environmental and Occupational Health Sciences, Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
56
|
Campbell EM, Boyles A, Shankar A, Kim J, Knyazev S, Cintron R, Switzer WM. MicrobeTrace: Retooling molecular epidemiology for rapid public health response. PLoS Comput Biol 2021; 17:e1009300. [PMID: 34492010 PMCID: PMC8491948 DOI: 10.1371/journal.pcbi.1009300] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 10/05/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Outbreak investigations use data from interviews, healthcare providers, laboratories and surveillance systems. However, integrated use of data from multiple sources requires a patchwork of software that present challenges in usability, interoperability, confidentiality, and cost. Rapid integration, visualization and analysis of data from multiple sources can guide effective public health interventions. We developed MicrobeTrace to facilitate rapid public health responses by overcoming barriers to data integration and exploration in molecular epidemiology. MicrobeTrace is a web-based, client-side, JavaScript application (https://microbetrace.cdc.gov) that runs in Chromium-based browsers and remains fully operational without an internet connection. Using publicly available data, we demonstrate the analysis of viral genetic distance networks and introduce a novel approach to minimum spanning trees that simplifies results. We also illustrate the potential utility of MicrobeTrace in support of contact tracing by analyzing and displaying data from an outbreak of SARS-CoV-2 in South Korea in early 2020. MicrobeTrace is developed and actively maintained by the Centers for Disease Control and Prevention. Users can email microbetrace@cdc.gov for support. The source code is available at https://github.com/cdcgov/microbetrace. Rapid advances in the fields of data science and bioinformatics have significantly improved molecular epidemiology tools used in public health and have led to major changes in the way outbreak investigation and pathogen transmission studies are conducted. However, the need for specialized computer skills often impedes the use of many of these tools in the public heath domain. We bridge this knowledge gap by development of an intuitive, standalone tool called MicrobeTrace to securely integrate, visualize and explore pathogen epidemiologic data. MicrobeTrace is an easy to use browser-based tool which can effectively merge contact tracing and/or microbial genomic data with demographic or behavioral information, resulting in elegant and informative networks as well as multiple customizable visualizations. MicrobeTrace can be used offline, with analyses being performed locally in the field, ensuring secure and confidential use of personally identifiable information (PII). We provide real world examples of how MicrobeTrace has been used in public health, including COVID outbreak investigations.
Collapse
Affiliation(s)
- Ellsworth M Campbell
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Anthony Boyles
- Northrup Grumman, Atlanta, Georgia, United States of America
| | - Anupama Shankar
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jay Kim
- Northrup Grumman, Atlanta, Georgia, United States of America
| | - Sergey Knyazev
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America.,Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States of America.,Department of Computer Science, Georgia State University, Atlanta, Georgia, United States of America
| | - Roxana Cintron
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - William M Switzer
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
57
|
Zhang YN, Li N, Zhang QY, Liu J, Zhan SL, Gao L, Zeng XY, Yu F, Zhang HQ, Li XD, Deng CL, Shi PY, Yuan ZM, Yuan SP, Ye HQ, Zhang B. Rational design of West Nile virus vaccine through large replacement of 3' UTR with internal poly(A). EMBO Mol Med 2021; 13:e14108. [PMID: 34351689 PMCID: PMC8422072 DOI: 10.15252/emmm.202114108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 11/29/2022] Open
Abstract
The genus Flavivirus comprises numerous emerging and re-emerging arboviruses causing human illness. Vaccines are the best approach to prevent flavivirus diseases. But pathogen diversities are always one of the major hindrances for timely development of new vaccines when confronting unpredicted flavivirus outbreaks. We used West Nile virus (WNV) as a model to develop a new live-attenuated vaccine (LAV), WNV-poly(A), by replacing 5' portion (corresponding to SL and DB domains in WNV) of 3'-UTR with internal poly(A) tract. WNV-poly(A) not only propagated efficiently in Vero cells, but also was highly attenuated in mouse model. A single-dose vaccination elicited robust and long-lasting immune responses, conferring full protection against WNV challenge. Such "poly(A)" vaccine strategy may be promising for wide application in the development of flavivirus LAVs because of its general target regions in flaviviruses.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Na Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Qiu-Yan Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Jing Liu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Shun-Li Zhan
- Beijing Shunlei Biotechnology Co. Ltd., Beijing, China
| | - Lei Gao
- Beijing Shunlei Biotechnology Co. Ltd., Beijing, China
| | - Xiang-Yue Zeng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Fang Yu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Hong-Qing Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Xiao-Dan Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Cheng-Lin Deng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Pei-Yong Shi
- University of Texas Medical Branch, Galveston, TX, USA
| | - Zhi-Ming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | | | - Han-Qing Ye
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
58
|
Warang A, Zhang M, Zhang S, Shen Z. A panel of real-time PCR assays for the detection of Bourbon virus, Heartland virus, West Nile virus, and Trypanosoma cruzi in major disease-transmitting vectors. J Vet Diagn Invest 2021; 33:1115-1122. [PMID: 34414840 DOI: 10.1177/10406387211039549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Vector-borne pathogens, such as Bourbon virus (BRBV), Heartland virus (HRTV), West Nile virus (WNV), and Trypanosoma cruzi (TCZ) are a great threat to public health and animal health. We developed a panel of TaqMan real-time PCR assays for pathogen surveillance. PCR targets were selected based on nucleic acid sequences deposited in GenBank. Primers and probes were either designed de novo or selected from publications. The coverages and specificities of the primers and probes were extensively evaluated by performing BLAST searches. Synthetic DNA or RNA fragments (gBlocks) were used as PCR templates in initial assay development and PCR positive controls in subsequent assay validation. For operational efficiency, the same thermocycling profile was used in BRBV, HRTV, and WNV reverse-transcription quantitative PCR (RT-qPCR) assays, and a similar thermocycling profile without the initial reverse-transcription step was used in TCZ qPCR. The assays were optimized by titrating primer and probe concentrations. The analytical sensitivities were 100, 100, 10, and 10 copies of gBlock per reaction for BRBV (Cq = 36.0 ± 0.7), HRTV (Cq = 36.6 ± 0.9), WNV (Cq = 35.5 ± 0.4), and TCZ (Cq = 38.8 ± 0.3), respectively. PCR sensitivities for vector genomic DNA or RNA spiked with gBlock reached 100, 100, 10, and 10 copies per reaction for BRBV, HRTV, WNV, and TCZ, respectively. PCR specificity evaluated against a panel of non-target pathogens showed no significant cross-reactivity. Our BRBV, HRTV, WNV, and TCZ PCR panel could support epidemiologic studies and pathogen surveillance.
Collapse
Affiliation(s)
- Anushri Warang
- Veterinary Medical Diagnostic Laboratory and Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, MO, USA
| | - Michael Zhang
- Veterinary Medical Diagnostic Laboratory and Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, MO, USA
| | - Shuping Zhang
- Veterinary Medical Diagnostic Laboratory and Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, MO, USA
| | - Zhenyu Shen
- Veterinary Medical Diagnostic Laboratory and Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, MO, USA
| |
Collapse
|
59
|
Gruel G, Diouf MB, Abadie C, Chilin-Charles Y, Etter EMC, Geffroy M, Herrmann Storck C, Meyer DF, Pagès N, Pressat G, Teycheney PY, Umber M, Vega-Rúa A, Pradel J. Critical Evaluation of Cross-Sectoral Collaborations to Inform the Implementation of the "One Health" Approach in Guadeloupe. Front Public Health 2021; 9:652079. [PMID: 34409004 PMCID: PMC8366749 DOI: 10.3389/fpubh.2021.652079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/02/2021] [Indexed: 11/17/2022] Open
Abstract
In Guadeloupe, a French overseas territory located in the Eastern Caribbean, infectious and non-infectious diseases, loss of biodiversity, natural disasters and global change threaten the health and well-being of animals, plants, and people. Implementing the “One Health” (OH) approach is crucial to reduce the archipelago's vulnerability to these health threats. However, OH remains underdeveloped in Guadeloupe, hampering efficient and effective intersectoral and transdisciplinary collaborations for disease surveillance and control. A multidisciplinary research group of volunteer researchers working in Guadeloupe, with collective expertise in infectious diseases, undertook a study to identify key attributes for OH operationalization by reviewing past and current local collaborative health initiatives and analyzing how much they mobilized the OH framework. The research group developed and applied an operational OH framework to assess critically collaborative initiatives addressing local health issues. Based on a literature review, a set of 13 opinion-based key criteria was defined. The criteria and associated scoring were measured through semi-directed interviews guided by a questionnaire to critically evaluate four initiatives in animal, human, plant, and environmental health research and epidemiological surveillance. Gaps, levers, and prospects were identified that will help health communities in Guadeloupe envision how to implement the OH approach to better address local health challenges. The methodology is simple, generic, and pragmatic and relies on existing resources. It can be transposed and adapted to other contexts to improve effectiveness and efficiency of OH initiatives, based on lessons-learned of local past or current multi-interdisciplinary and intersectoral initiatives.
Collapse
Affiliation(s)
- Gaëlle Gruel
- Laboratory for the Study of Microbial Ecosystem Interactions, Institut Pasteur of Guadeloupe, Unit Transmission Reservoir and Pathogens Diversity, Les Abymes, France
| | - Mame Boucar Diouf
- INRAE, UR ASTRO, F-97170, Petit-Bourg, France.,CIRAD, UMR AGAP Institut, F-97130, Capesterre Belle-Eau, France.,AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Catherine Abadie
- BGPI, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Yolande Chilin-Charles
- BGPI, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France.,CIRAD, UMR BGPI, F-97130, Capesterre Belle-Eau, France
| | - Eric Marcel Charles Etter
- CIRAD, UMR ASTRE, F-97170, Petit-Bourg, France.,ASTRE, Univ Montpellier, CIRAD INRAE, Montpellier, France
| | - Mariana Geffroy
- CIRAD, UMR ASTRE, F-97170, Petit-Bourg, France.,ASTRE, Univ Montpellier, CIRAD INRAE, Montpellier, France
| | - Cécile Herrmann Storck
- Centre Hospitalier Universitaire CHU de Guadeloupe, Laboratoire de Microbiologie Humaine et Environnementale, Les Abymes, France
| | - Damien F Meyer
- CIRAD, UMR ASTRE, F-97170, Petit-Bourg, France.,ASTRE, Univ Montpellier, CIRAD INRAE, Montpellier, France
| | - Nonito Pagès
- CIRAD, UMR ASTRE, F-97170, Petit-Bourg, France.,ASTRE, Univ Montpellier, CIRAD INRAE, Montpellier, France
| | - Gersende Pressat
- CIRAD, UMR AGAP Institut, F-97130, Capesterre Belle-Eau, France.,AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Pierre-Yves Teycheney
- CIRAD, UMR AGAP Institut, F-97130, Capesterre Belle-Eau, France.,AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Marie Umber
- INRAE, UR ASTRO, F-97170, Petit-Bourg, France
| | - Anubis Vega-Rúa
- Laboratory of Vector Control Research, Institut Pasteur of Guadeloupe, Unit Transmission Reservoir and Pathogens Diversity, Les Abymes, France
| | - Jennifer Pradel
- CIRAD, UMR ASTRE, F-97170, Petit-Bourg, France.,ASTRE, Univ Montpellier, CIRAD INRAE, Montpellier, France
| |
Collapse
|
60
|
Wertheim JO, Steel M, Sanderson MJ. Accuracy in near-perfect virus phylogenies. Syst Biol 2021; 71:426-438. [PMID: 34398231 PMCID: PMC8385947 DOI: 10.1093/sysbio/syab069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 11/26/2022] Open
Abstract
Phylogenetic trees from real-world data often include short edges with very few substitutions per site, which can lead to partially resolved trees and poor accuracy. Theory indicates that the number of sites needed to accurately reconstruct a fully resolved tree grows at a rate proportional to the inverse square of the length of the shortest edge. However, when inferred trees are partially resolved due to short edges, “accuracy” should be defined as the rate of discovering false splits (clades on a rooted tree) relative to the actual number found. Thus, accuracy can be high even if short edges are common. Specifically, in a “near-perfect” parameter space in which trees are large, the tree length ξ (the sum of all edge lengths) is small, and rate variation is minimal, the expected false positive rate is less than ξ∕3; the exact value depends on tree shape and sequence length. This expected false positive rate is far below the false negative rate for small ξ and often well below 5% even when some assumptions are relaxed. We show this result analytically for maximum parsimony and explore its extension to maximum likelihood using theory and simulations. For hypothesis testing, we show that measures of split “support” that rely on bootstrap resampling consistently imply weaker support than that implied by the false positive rates in near-perfect trees. The near-perfect parameter space closely fits several empirical studies of human virus diversification during outbreaks and epidemics, including Ebolavirus, Zika virus, and SARS-CoV-2, reflecting low substitution rates relative to high transmission/sampling rates in these viruses.
Collapse
Affiliation(s)
- Joel O Wertheim
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Mike Steel
- Biomathematics Research Center, School of Mathematics and Statistics, University of Canterbury, Christchurch, 8041, New Zealand
| | - Michael J Sanderson
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721 USA
| |
Collapse
|
61
|
Invasion, establishment, and spread of invasive mosquitoes from the Culex coronator complex in urban areas of Miami-Dade County, Florida. Sci Rep 2021; 11:14620. [PMID: 34272411 PMCID: PMC8285413 DOI: 10.1038/s41598-021-94202-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/01/2021] [Indexed: 01/01/2023] Open
Abstract
Species from the Culex coronator complex are Neotropical species and potential vectors of Saint Louis and West Nile viruses. Culex coronator was first described in Trinidad and Tobago in the early twentieth century and since then it has invaded and has been reported established in most countries of the Americas. Species from the Culex coronator complex were first detected in the United States in the state of Louisiana in 2004 and were subsequently detected in Florida in 2005, reaching Miami-Dade County in 2008. We hypothesize that species from the Cx. coronator complex are adapting to urban environments in Miami-Dade County, Florida, and are becoming more present and abundant in these areas. Therefore, our objective was to investigate the patterns of the presence and abundance of species from the Cx. coronator complex in the urban areas of Miami-Dade County. Here we used weekly data comprised of 32 CDC traps from 2012 to 2020 and 150 BG-Sentinel traps from 2016 to 2020. A total of 34,146 female mosquitoes from the Cx. coronator complex were collected, 26,138 by CDC traps and 8008 by BG-Sentinel traps. While the number of CDC traps that were positive was relatively constant at 26–30 positive traps per year, the number of positive BG-Sentinel traps varied substantially from 50 to 87 positive traps per year. Furthermore, the heat map and logistic general linear model for repeated measures analyses showed a significant increase in both the distribution and abundance of mosquitoes from the Cx. coronator complex, indicating that these species are becoming more common in anthropized habitats being able to thrive in highly urbanized areas. The increase in the distribution and abundance of species from the Cx. coronator complex is a major public health concern. The ability of species from the Cx. coronator complex to benefit from urbanization highlights the need to better understand the mechanisms of how invasive vector mosquito species are adapting and exploiting urban habitats.
Collapse
|
62
|
Yang B, Yang KD. Immunopathogenesis of Different Emerging Viral Infections: Evasion, Fatal Mechanism, and Prevention. Front Immunol 2021; 12:690976. [PMID: 34335596 PMCID: PMC8320726 DOI: 10.3389/fimmu.2021.690976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022] Open
Abstract
Different emerging viral infections may emerge in different regions of the world and pose a global pandemic threat with high fatality. Clarification of the immunopathogenesis of different emerging viral infections can provide a plan for the crisis management and prevention of emerging infections. This perspective article describes how an emerging viral infection evolves from microbial mutation, zoonotic and/or vector-borne transmission that progresses to a fatal infection due to overt viremia, tissue-specific cytotropic damage or/and immunopathology. We classified immunopathogenesis of common emerging viral infections into 4 categories: 1) deficient immunity with disseminated viremia (e.g., Ebola); 2) pneumocytotropism with/without later hyperinflammation (e.g., COVID-19); 3) augmented immunopathology (e.g., Hanta); and 4) antibody-dependent enhancement of infection with altered immunity (e.g., Dengue). A practical guide to early blocking of viral evasion, limiting viral load and identifying the fatal mechanism of an emerging viral infection is provided to prevent and reduce the transmission, and to do rapid diagnoses followed by the early treatment of virus neutralization for reduction of morbidity and mortality of an emerging viral infection such as COVID-19.
Collapse
Affiliation(s)
- Betsy Yang
- Department of Medicine, Kaiser Permanente Oakland Medical Center, Oakland, CA, United States
| | - Kuender D. Yang
- DIvision of Medical Research, Mackay Children’s Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming University, Taipei, Taiwan
- Department of Microbiology & Immunology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
63
|
Costa ÉA, Giovanetti M, Silva Catenacci L, Fonseca V, Aburjaile FF, Chalhoub FLL, Xavier J, Campos de Melo Iani F, da Cunha e Silva Vieira MA, Freitas Henriques D, Medeiros DBDA, Guedes MIMC, Senra Álvares da Silva Santos B, Gonçalves Silva AS, de Pino Albuquerque Maranhão R, da Costa Faria NR, Farinelli de Siqueira R, de Oliveira T, Ribeiro Leite Jardim Cavalcante K, Oliveira de Moura NF, Pecego Martins Romano A, Campelo de Albuquerque CF, Soares Feitosa LC, Martins Bayeux JJ, Bertoni Cavalcanti Teixeira R, Lisboa Lobato O, da Costa Silva S, Bispo de Filippis AM, Venâncio da Cunha R, Lourenço J, Alcantara LCJ. West Nile Virus in Brazil. Pathogens 2021; 10:896. [PMID: 34358046 PMCID: PMC8308589 DOI: 10.3390/pathogens10070896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 01/04/2023] Open
Abstract
Background: West Nile virus (WNV) was first sequenced in Brazil in 2019, when it was isolated from a horse in the Espírito Santo state. Despite multiple studies reporting serological evidence suggestive of past circulation since 2004, WNV remains a low priority for surveillance and public health, such that much is still unknown about its genomic diversity, evolution, and transmission in the country. Methods: A combination of diagnostic assays, nanopore sequencing, phylogenetic inference, and epidemiological modeling are here used to provide a holistic overview of what is known about WNV in Brazil. Results: We report new genetic evidence of WNV circulation in southern (Minas Gerais, São Paulo) and northeastern (Piauí) states isolated from equine red blood cells. A novel, climate-informed theoretical perspective of the potential transmission of WNV across the country highlights the state of Piauí as particularly relevant for WNV epidemiology in Brazil, although it does not reject possible circulation in other states. Conclusion: Our output demonstrates the scarceness of existing data, and that although there is sufficient evidence for the circulation and persistence of the virus, much is still unknown on its local evolution, epidemiology, and activity. We advocate for a shift to active surveillance, to ensure adequate preparedness for future epidemics with spill-over potential to humans.
Collapse
Affiliation(s)
- Érica Azevedo Costa
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (É.A.C.); (M.I.M.C.G.); (B.S.Á.d.S.S.); (A.S.G.S.)
| | - Marta Giovanetti
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (M.G.); (F.L.L.C.); (N.R.d.C.F.); (A.M.B.d.F.)
- Laboratório de Genética Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (V.F.); (F.F.A.); (J.X.)
| | - Lilian Silva Catenacci
- Departamento De Morfofisiologia Veterinária, Universidade Federal do Piauí, Teresina 64049-550, Brazil;
| | - Vagner Fonseca
- Laboratório de Genética Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (V.F.); (F.F.A.); (J.X.)
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa;
- Coordenação Geral dos Laboratórios de Saúde Pública/Secretaria de Vigilância em Saúde, Ministério da Saúde (CGLAB/SVS-MS), Brasília 70719-040, Brazil
| | - Flávia Figueira Aburjaile
- Laboratório de Genética Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (V.F.); (F.F.A.); (J.X.)
| | - Flávia L. L. Chalhoub
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (M.G.); (F.L.L.C.); (N.R.d.C.F.); (A.M.B.d.F.)
| | - Joilson Xavier
- Laboratório de Genética Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (V.F.); (F.F.A.); (J.X.)
| | | | | | - Danielle Freitas Henriques
- Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ministério da Saúde, Ananindeua 70058-900, Brazil; (D.F.H.); (D.B.d.A.M.)
| | - Daniele Barbosa de Almeida Medeiros
- Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ministério da Saúde, Ananindeua 70058-900, Brazil; (D.F.H.); (D.B.d.A.M.)
| | - Maria Isabel Maldonado Coelho Guedes
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (É.A.C.); (M.I.M.C.G.); (B.S.Á.d.S.S.); (A.S.G.S.)
| | - Beatriz Senra Álvares da Silva Santos
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (É.A.C.); (M.I.M.C.G.); (B.S.Á.d.S.S.); (A.S.G.S.)
| | - Aila Solimar Gonçalves Silva
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (É.A.C.); (M.I.M.C.G.); (B.S.Á.d.S.S.); (A.S.G.S.)
| | - Renata de Pino Albuquerque Maranhão
- Setor de Clínica de Equinos, Hospital Veterinário, Campus Pampulha, Universidade Federal de Minas Gerais Escola de Veterinária, Belo Horizonte 31270-901, Brazil;
| | - Nieli Rodrigues da Costa Faria
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (M.G.); (F.L.L.C.); (N.R.d.C.F.); (A.M.B.d.F.)
| | | | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa;
| | - Karina Ribeiro Leite Jardim Cavalcante
- Coordenacao Geral das Arboviroses, Secretaria de Vigilância em Saúde/Ministério da Saúde, Brasília 70058-900, Brazil; (K.R.L.J.C.); (N.F.O.d.M.); (A.P.M.R.)
| | - Noely Fabiana Oliveira de Moura
- Coordenacao Geral das Arboviroses, Secretaria de Vigilância em Saúde/Ministério da Saúde, Brasília 70058-900, Brazil; (K.R.L.J.C.); (N.F.O.d.M.); (A.P.M.R.)
| | - Alessandro Pecego Martins Romano
- Coordenacao Geral das Arboviroses, Secretaria de Vigilância em Saúde/Ministério da Saúde, Brasília 70058-900, Brazil; (K.R.L.J.C.); (N.F.O.d.M.); (A.P.M.R.)
| | | | - Lauro César Soares Feitosa
- Centro de Ciências Agrárias, Departamento de Clínica e Cirurgia Veterinária, Universidade Federal do Piauí, Teresina 64049-550, Brazil;
| | - José Joffre Martins Bayeux
- Faculdade de Ciências da Saúde, Medicina Veterinária, Urbanova, São José Dos Campos, UNIVAP-Universidade Vale do Paraíba, São Paulo 12245-720, Brazil;
| | | | - Osmaikon Lisboa Lobato
- Laboratório de Genética e Conservação de Germoplasma, Campus Prof. Cinobelina Elvas, Universidade Federal do Piauí, Bom Jesus, Piauí 64049-550, Brazil; (O.L.L.); (S.d.C.S.)
| | - Silvokleio da Costa Silva
- Laboratório de Genética e Conservação de Germoplasma, Campus Prof. Cinobelina Elvas, Universidade Federal do Piauí, Bom Jesus, Piauí 64049-550, Brazil; (O.L.L.); (S.d.C.S.)
| | - Ana Maria Bispo de Filippis
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (M.G.); (F.L.L.C.); (N.R.d.C.F.); (A.M.B.d.F.)
| | - Rivaldo Venâncio da Cunha
- Coordenacao dos Laboratorios de Referencia, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil;
| | - José Lourenço
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK;
| | - Luiz Carlos Junior Alcantara
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (M.G.); (F.L.L.C.); (N.R.d.C.F.); (A.M.B.d.F.)
- Laboratório de Genética Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (V.F.); (F.F.A.); (J.X.)
| |
Collapse
|
64
|
Geffroy M, Pagès N, Chavernac D, Dereeper A, Aubert L, Herrmann-Storck C, Vega-Rúa A, Lecollinet S, Pradel J. Shifting From Sectoral to Integrated Surveillance by Changing Collaborative Practices: Application to West Nile Virus Surveillance in a Small Island State of the Caribbean. Front Public Health 2021; 9:649190. [PMID: 34178915 PMCID: PMC8222804 DOI: 10.3389/fpubh.2021.649190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
After spreading in the Americas, West Nile virus was detected in Guadeloupe (French West Indies) for the first time in 2002. Ever since, several organizations have conducted research, serological surveys, and surveillance activities to detect the virus in horses, birds, mosquitoes, and humans. Organizations often carried them out independently, leading to knowledge gaps within the current virus' situation. Nearly 20 years after the first evidence of West Nile virus in the archipelago, it has not yet been isolated, its impact on human and animal populations is unknown, and its local epidemiological cycle is still poorly understood. Within the framework of a pilot project started in Guadeloupe in 2019, West Nile virus was chosen as a federative model to apply the "One Health" approach for zoonotic epidemiological surveillance and shift from a sectorial to an integrated surveillance system. Human, animal, and environmental health actors involved in both research and surveillance were considered. Semi-directed interviews and a Social Network Analysis were carried out to learn about the surveillance network structure and actors, analyze information flows, and identify communication challenges. An information system was developed to fill major gaps: users' needs and main functionalities were defined through a participatory process where actors also tested and validated the tool. Additionally, all actors shared their data, which were digitized, cataloged, and centralized, to be analyzed later. An R Shiny server was integrated into the information system, allowing an accessible and dynamic display of data showcasing all of the partners' information. Finally, a series of virtual workshops were organized among actors to discuss preliminary results and plan the next steps to improve West Nile Virus and vector-borne or emerging zoonosis surveillance. The actors are willing to build a more resilient and cooperative network in Guadeloupe with improved relevance, efficiency, and effectiveness of their work.
Collapse
Affiliation(s)
- Mariana Geffroy
- CIRAD, UMR, ASTRE, Petit-Bourg, France.,ASTRE, CIRAD, INRAE. Univ Montpellier, Montpellier, France
| | - Nonito Pagès
- ASTRE, CIRAD, INRAE. Univ Montpellier, Montpellier, France
| | | | - Alexis Dereeper
- CIRAD, UMR, ASTRE, Petit-Bourg, France.,ASTRE, CIRAD, INRAE. Univ Montpellier, Montpellier, France
| | - Lydéric Aubert
- CIRE Antilles, Santé Publique France, Pointe-à-Pitre, France
| | - Cecile Herrmann-Storck
- Centre Hospitalier Universitaire, Department of Bacteriology, Virology and Parasitology, Pointe-à-Pitre, France
| | - Anubis Vega-Rúa
- Institut Pasteur de Guadeloupe, Laboratory of Vector Control Research, Unit Transmission, Reservoirs and Pathogen Diversity, Les Abymes, France
| | - Sylvie Lecollinet
- Anses, Laboratory for Animal Health, UMR1161 Virology, INRAE, Anses, ENVA, Maisons-Alfort, France
| | - Jennifer Pradel
- CIRAD, UMR, ASTRE, Petit-Bourg, France.,ASTRE, CIRAD, INRAE. Univ Montpellier, Montpellier, France
| |
Collapse
|
65
|
VilÀ M, Dunn AM, Essl F, GÓmez-DÍaz E, Hulme PE, Jeschke JM, NÚÑez MA, Ostfeld RS, Pauchard A, Ricciardi A, Gallardo B. Viewing Emerging Human Infectious Epidemics through the Lens of Invasion Biology. Bioscience 2021. [DOI: 10.1093/biosci/biab047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Invasion biology examines species originated elsewhere and moved with the help of humans, and those species’ impacts on biodiversity, ecosystem services, and human well-being. In a globalized world, the emergence and spread of many human infectious pathogens are quintessential biological invasion events. Some macroscopic invasive species themselves contribute to the emergence and transmission of human infectious agents. We review conceptual parallels and differences between human epidemics and biological invasions by animals and plants. Fundamental concepts in invasion biology regarding the interplay of propagule pressure, species traits, biotic interactions, eco-evolutionary experience, and ecosystem disturbances can help to explain transitions between stages of epidemic spread. As a result, many forecasting and management tools used to address epidemics could be applied to biological invasions and vice versa. Therefore, we advocate for increasing cross-fertilization between the two disciplines to improve prediction, prevention, treatment, and mitigation of invasive species and infectious disease outbreaks, including pandemics.
Collapse
Affiliation(s)
- Montserrat VilÀ
- Department of Plant Biology and Ecology, University of Sevilla, Sevilla, Spain
| | | | - Franz Essl
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Elena GÓmez-DÍaz
- Institute of Parasitology and Biomedicine Lopez-Neyra, Granada, Spain
| | - Philip E Hulme
- Bio-Protection Research Centre, Lincoln University, Canterbury, New Zealand
| | - Jonathan M Jeschke
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, with the Institute of Biology, Freie Universität Berlin, and with the Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - MartÍn A NÚÑez
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States
| | - Richard S Ostfeld
- Cary Institute of Ecosystem Studies, Millbrook, New York, United States
| | - AnÍbal Pauchard
- Laboratorio de Invasiones Biológicas, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile, and with the Institute of Ecology and Biodiversity, Santiago, Chile
| | | | - Belinda Gallardo
- Pyrenean Institute of Ecology, Zaragoza, Spain, and with the BioRISC (Biosecurity Research Initiative at St Catharine's), at St Catharine's College, Cambridge, United Kingdom
| |
Collapse
|
66
|
Ronca SE, Ruff JC, Murray KO. A 20-year historical review of West Nile virus since its initial emergence in North America: Has West Nile virus become a neglected tropical disease? PLoS Negl Trop Dis 2021; 15:e0009190. [PMID: 33956816 PMCID: PMC8101735 DOI: 10.1371/journal.pntd.0009190] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
After the unexpected arrival of West Nile virus (WNV) in the United States in 1999, the mosquito-borne virus quickly spread throughout North America. Over the past 20 years, WNV has become endemic, with sporadic epizootics. Concerns about the economic impact of infection in horses lead to the licensure of an equine vaccine as early as 2005, but few advances regarding human vaccines or treatments have since been made. There is a high level of virus transmission in hot/humid, subtropical climates, and high morbidity that may disproportionately affect vulnerable populations including the homeless, elderly, and those with underlying health conditions. Although WNV continues to cause significant morbidity and mortality at great cost, funding and research have declined in recent years. These factors, combined with neglect by policy makers and amenability of control measures, indicate that WNV has become a neglected tropical disease.
Collapse
Affiliation(s)
- Shannon E. Ronca
- Department of Pediatrics, Section of Pediatric Tropical Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas, United States of America
- William T. Shearer Center for Human Immunobiology, Texas Children’s Hospital, Houston, Texas, United States of America
- National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jeanne C. Ruff
- Department of Pediatrics, Section of Pediatric Tropical Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas, United States of America
- William T. Shearer Center for Human Immunobiology, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Kristy O. Murray
- Department of Pediatrics, Section of Pediatric Tropical Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas, United States of America
- William T. Shearer Center for Human Immunobiology, Texas Children’s Hospital, Houston, Texas, United States of America
- National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
67
|
Kinganda-Lusamaki E, Black A, Mukadi DB, Hadfield J, Mbala-Kingebeni P, Pratt CB, Aziza A, Diagne MM, White B, Bisento N, Nsunda B, Akonga M, Faye M, Faye O, Edidi-Atani F, Matondo-Kuamfumu M, Mambu-Mbika F, Bulabula J, Di Paola N, Pauthner MG, Andersen KG, Palacios G, Delaporte E, Sall AA, Peeters M, Wiley MR, Ahuka-Mundeke S, Bedford T, Tamfum JJM. Integration of genomic sequencing into the response to the Ebola virus outbreak in Nord Kivu, Democratic Republic of the Congo. Nat Med 2021; 27:710-716. [PMID: 33846610 PMCID: PMC8549801 DOI: 10.1038/s41591-021-01302-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 03/02/2021] [Indexed: 12/29/2022]
Abstract
On 1 August 2018, the Democratic Republic of the Congo (DRC) declared its tenth Ebola virus disease (EVD) outbreak. To aid the epidemiologic response, the Institut National de Recherche Biomédicale (INRB) implemented an end-to-end genomic surveillance system, including sequencing, bioinformatic analysis and dissemination of genomic epidemiologic results to frontline public health workers. We report 744 new genomes sampled between 27 July 2018 and 27 April 2020 generated by this surveillance effort. Together with previously available sequence data (n = 48 genomes), these data represent almost 24% of all laboratory-confirmed Ebola virus (EBOV) infections in DRC in the period analyzed. We inferred spatiotemporal transmission dynamics from the genomic data as new sequences were generated, and disseminated the results to support epidemiologic response efforts. Here we provide an overview of how this genomic surveillance system functioned, present a full phylodynamic analysis of 792 Ebola genomes from the Nord Kivu outbreak and discuss how the genomic surveillance data informed response efforts and public health decision making.
Collapse
Affiliation(s)
- Eddy Kinganda-Lusamaki
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo.
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, Kinshasa, Democratic Republic of the Congo.
| | - Allison Black
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Daniel B Mukadi
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - James Hadfield
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Placide Mbala-Kingebeni
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Catherine B Pratt
- Department of Environmental, Agricultural, and Occupational Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Amuri Aziza
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
| | | | - Bailey White
- Department of Environmental, Agricultural, and Occupational Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nella Bisento
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
| | - Bibiche Nsunda
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
| | - Marceline Akonga
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
| | | | | | - Francois Edidi-Atani
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Meris Matondo-Kuamfumu
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Fabrice Mambu-Mbika
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Junior Bulabula
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Nicholas Di Paola
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Matthias G Pauthner
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Kristian G Andersen
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Gustavo Palacios
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Eric Delaporte
- TransVIHMI, Institut de Recherche pour le Développement, Institut National de la Santé et de la Recherche Médicale, Université de Montpellier, Montpellier, France
| | | | - Martine Peeters
- TransVIHMI, Institut de Recherche pour le Développement, Institut National de la Santé et de la Recherche Médicale, Université de Montpellier, Montpellier, France
| | - Michael R Wiley
- Department of Environmental, Agricultural, and Occupational Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Steve Ahuka-Mundeke
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Trevor Bedford
- Department of Epidemiology, University of Washington, Seattle, WA, USA.
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Jean-Jacques Muyembe Tamfum
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, Kinshasa, Democratic Republic of the Congo
| |
Collapse
|
68
|
Buist Y, Bekker M, Vaandrager L, Koelen M. Understanding Public Health Adaptation to Climate Change: An Explorative Study on the Development of Adaptation Strategies Relating to the Oak Processionary Moth in The Netherlands. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3080. [PMID: 33802715 PMCID: PMC8002434 DOI: 10.3390/ijerph18063080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/23/2021] [Accepted: 03/14/2021] [Indexed: 11/27/2022]
Abstract
Understanding of public health adaptation (PHA) to climate change and implementation is limited. This study therefore focuses on one specific PHA issue: adaptation to the oak processionary moth (OPM). The aim is to examine the development of OPM adaptation in order to offer a problem description of the complexities involved in OPM adaptation. In this explorative case study, we investigate adaptation strategies based on semi-structured interviews with 26 actors involved in OPM adaptation in The Netherlands. The results indicate that the context of OPM adaptation is relatively complex, given the involvement of many interdependent actors. OPM adaptation was developed with limited knowledge and strategies were based on ad hoc approaches in which there was ambiguity about tasks and expertise. In addition, different actors have different perceptions and values concerning health, sustainability, risks and responsibilities influencing decision-making processes, while also posing a challenge to collaboration and the development of a coordinated approach. The generation of knowledge and its translation into practical strategies calls for interdisciplinary cooperation in knowledge development. PHA adaptation involves more than technical and organisational solutions alone. It also entails the development of a shared problem perception and solution space in which citizens are also engaged.
Collapse
Affiliation(s)
- Yvette Buist
- Department of Social Sciences, Health and Society, Wageningen University & Research, P.O. Box 8130, Bode 60, 6700 EW Wageningen, The Netherlands; (M.B.); (L.V.); (M.K.)
| | | | | | | |
Collapse
|
69
|
Siconelli MJL, Jorge DMDM, Castro-Jorge LAD, Fonseca-Júnior AA, Nascimento ML, Floriano VG, Souza FRD, Queiroz-Júnior EMD, Camargos MF, Costa EDL, Carvalho AAB, Fonseca BALD. Evidence for current circulation of an ancient West Nile virus strain (NY99) in Brazil. Rev Soc Bras Med Trop 2021; 54:S0037-86822021000100630. [PMID: 33681933 PMCID: PMC8008906 DOI: 10.1590/0037-8682-0687-2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/05/2021] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION: In Brazil, West Nile virus (WNV) was first detected, in 2018, in horses with neurological disease. AIM: We report the first case of WNV infection in a horse from Ceará state and the complete genome sequence of an isolate from Espírito Santo state. Both infections occurred in 2019. METHODS: WNV was isolated from the tissues of a horse with neurological signs in Espírito Santo and sequenced by MiSeq. RESULTS: Phylogenetic analysis revealed that the isolate belongs to lineage 1a, clustering with the NY99 strain, a strain that has not circulated in the USA since 2005. CONCLUSIONS: Our findings reinforce the hypothesis that WNV has been silently circulating in Brazil for many years.
Collapse
Affiliation(s)
- Márcio Junio Lima Siconelli
- Universidade São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Clínica Médica, Ribeirão Preto, SP, Brasil
| | - Daniel Macedo de Melo Jorge
- Universidade São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Biologia Celular e Molecular, Ribeirão Preto, SP, Brasil
| | - Luiza Antunes de Castro-Jorge
- Universidade São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Clínica Médica, Ribeirão Preto, SP, Brasil
| | - Antônio Augusto Fonseca-Júnior
- Ministério da Agricultura, Pecuária e Abastecimento, Laboratório Federal de Defesa Agropecuária de Minas Gerais, Pedro Leopoldo, MG, Brasil
| | - Mateus Laguardia Nascimento
- Ministério da Agricultura, Pecuária e Abastecimento, Laboratório Federal de Defesa Agropecuária de Minas Gerais, Pedro Leopoldo, MG, Brasil
| | - Vitor Gonçalves Floriano
- Universidade São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Clínica Médica, Ribeirão Preto, SP, Brasil
| | | | | | - Marcelo Fernandes Camargos
- Ministério da Agricultura, Pecuária e Abastecimento, Laboratório Federal de Defesa Agropecuária de Minas Gerais, Pedro Leopoldo, MG, Brasil
| | - Eliana Dea Lara Costa
- Ministério da Agricultura, Pecuária e Abastecimento, Departamento de Saúde Animal, Brasília, DF, Brasil
| | - Adolorata Aparecida Bianco Carvalho
- Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Departamento de Patologia, Reprodução e Saúde Única, Jaboticabal, SP, Brasil
| | | |
Collapse
|
70
|
Kelly JA, Woodside MT, Dinman JD. Programmed -1 Ribosomal Frameshifting in coronaviruses: A therapeutic target. Virology 2021; 554:75-82. [PMID: 33387787 PMCID: PMC7833279 DOI: 10.1016/j.virol.2020.12.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/15/2023]
Abstract
Human population growth, climate change, and globalization are accelerating the emergence of novel pathogenic viruses. In the past two decades alone, three such members of the coronavirus family have posed serious threats, spurring intense efforts to understand their biology as a way to identify targetable vulnerabilities. Coronaviruses use a programmed -1 ribosomal frameshift (-1 PRF) mechanism to direct synthesis of their replicase proteins. This is a critical switch in their replication program that can be therapeutically targeted. Here, we discuss how nearly half a century of research into -1 PRF have provided insight into the virological importance of -1 PRF, the molecular mechanisms that drive it, and approaches that can be used to manipulate it towards therapeutic outcomes with particular emphasis on SARS-CoV-2.
Collapse
Affiliation(s)
- Jamie A Kelly
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
71
|
Christy MP, Uekusa Y, Gerwick L, Gerwick WH. Natural Products with Potential to Treat RNA Virus Pathogens Including SARS-CoV-2. JOURNAL OF NATURAL PRODUCTS 2021; 84:161-182. [PMID: 33352046 PMCID: PMC7771248 DOI: 10.1021/acs.jnatprod.0c00968] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Indexed: 05/03/2023]
Abstract
Three families of RNA viruses, the Coronaviridae, Flaviviridae, and Filoviridae, collectively have great potential to cause epidemic disease in human populations. The current SARS-CoV-2 (Coronaviridae) responsible for the COVID-19 pandemic underscores the lack of effective medications currently available to treat these classes of viral pathogens. Similarly, the Flaviviridae, which includes such viruses as Dengue, West Nile, and Zika, and the Filoviridae, with the Ebola-type viruses, as examples, all lack effective therapeutics. In this review, we present fundamental information concerning the biology of these three virus families, including their genomic makeup, mode of infection of human cells, and key proteins that may offer targeted therapies. Further, we present the natural products and their derivatives that have documented activities to these viral and host proteins, offering hope for future mechanism-based antiviral therapeutics. By arranging these potential protein targets and their natural product inhibitors by target type across these three families of virus, new insights are developed, and crossover treatment strategies are suggested. Hence, natural products, as is the case for other therapeutic areas, continue to be a promising source of structurally diverse new anti-RNA virus therapeutics.
Collapse
Affiliation(s)
- Mitchell P. Christy
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Yoshinori Uekusa
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Lena Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
72
|
Culex quinquefasciatus carrying Wolbachia is less susceptible to entomopathogenic bacteria. Sci Rep 2021; 11:1094. [PMID: 33441735 PMCID: PMC7806911 DOI: 10.1038/s41598-020-80034-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/16/2020] [Indexed: 01/29/2023] Open
Abstract
In an attempt to evaluate the susceptibility of the mosquito Culex quinquefasciatus to bacterial agents, a population naturally infected with a Wolbachia pipientis wPipSJ native strain was tested against the action of three bacterial mosquitocides, Bacillus thuringiensis subsp. israelensis, Bacillus wiedmannii biovar thuringiensis and Lysinibacillus sphaericus. Tests were carried out on mosquito larvae with and without Wolbachia (controls). Cx. quinquefasciatus naturally infected with the native wPipSJ strain proved to be more resistant to the pathogenic action of the three mosquitocidal bacterial strains. Additionally, wPipSJ was fully characterised using metagenome-assembled genomics, PCR-RFLP (PCR-Restriction Fragment Length Polymorphism) and MLST (MultiLocus Sequence Typing) analyses. This Wolbachia strain wPipSJ belongs to haplotype I, group wPip-III and supergroup B, clustering with other mosquito wPip strains, such as wPip PEL, wPip JHB, wPip Mol, and wAlbB; showing the southernmost distribution in America. The cytoplasmic incompatibility phenotype of this strain was revealed via crosses between wildtype (Wolbachia+) and antibiotic treated mosquito populations. The results of the tests with the bacterial agents suggest that Cx. quinquefasciatus naturally infected with wPipSJ is less susceptible to the pathogenic action of mosquitocidal bacterial strains when compared with the antibiotic-treated mosquito isoline, and is more susceptible to B. thuringiensis subsp. israelensis than to the other two mosquitocidal agents.
Collapse
|
73
|
Deguenon JM, Riegel C, Cloherty-Duvernay ER, Chen K, Stewart DA, Wang B, Gittins D, Tihomirov L, Apperson CS, McCord MG, Roe RM. New Mosquitocide Derived From Volcanic Rock. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:458-464. [PMID: 32808667 DOI: 10.1093/jme/tjaa141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Malaria, dengue, yellow fever, and the Zika and West Nile Viruses are major vector-borne diseases of humans transmitted by mosquitoes. According to the World Health Organization, over 80% of the world's population is at risk of contacting these diseases. Insecticides are critical for mosquito control and disease prevention, and insect insecticide resistance is on the increase; new alternatives with potentially different modes of action from current chemistry are needed. During laboratory screening of industrial minerals for insecticide activity against Anopheles gambiae (Giles) (Diptera: Culicidae) we discovered a novel mechanical insecticide derived from volcanic rock (MIVR) with potential use as a residual spray. In modified WHO cone tests, the time to 50% mortality was 5 h under high-humidity conditions. MIVR treated surfaces demonstrated no mosquito repellency. In field studies where the mechanical insecticide was applied to wood using standard spray equipment and then placed under stilt homes in New Orleans, LA, the residual activity was >80% after 9 wk against Aedes aegypti (L.) (Diptera: Culicidae), Aedes albopictus (Skuse) (Diptera: Culicidae) and Culex quinquefasciatus (Say) (Diptera: Culicidae) (with similar efficacy to a positive chemical insecticide control). In scanning electron microcopy studies, the MIVR was transferred as particles mostly to the legs of the mosquito. This wettable powder made from volcanic rock is a mechanical insecticide representing a potential new mode of action different from current chemistry for mosquito control and is in commercial development under the trade name Imergard™WP as an indoor and outdoor residual spray.
Collapse
Affiliation(s)
- Jean M Deguenon
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC
| | - Claudia Riegel
- New Orleans Mosquito, Termite and Rodent Control Board Laboratory, New Orleans, LA
| | | | - Kaiying Chen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC
| | | | - Bo Wang
- Imerys Filtration Minerals, Inc., Roswell, GA
| | | | | | - Charles S Apperson
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC
| | - Marian G McCord
- College of Natural Resources, North Carolina State University, Raleigh, NC
| | - R Michael Roe
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC
| |
Collapse
|
74
|
Carro SD, Cherry S. Beyond the Surface: Endocytosis of Mosquito-Borne Flaviviruses. Viruses 2020; 13:E13. [PMID: 33374822 PMCID: PMC7824540 DOI: 10.3390/v13010013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023] Open
Abstract
Flaviviruses are a group of positive-sense RNA viruses that are primarily transmitted through arthropod vectors and are capable of causing a broad spectrum of diseases. Many of the flaviviruses that are pathogenic in humans are transmitted specifically through mosquito vectors. Over the past century, many mosquito-borne flavivirus infections have emerged and re-emerged, and are of global importance with hundreds of millions of infections occurring yearly. There is a need for novel, effective, and accessible vaccines and antivirals capable of inhibiting flavivirus infection and ameliorating disease. The development of therapeutics targeting viral entry has long been a goal of antiviral research, but most efforts are hindered by the lack of broad-spectrum potency or toxicities associated with on-target effects, since many host proteins necessary for viral entry are also essential for host cell biology. Mosquito-borne flaviviruses generally enter cells by clathrin-mediated endocytosis (CME), and recent studies suggest that a subset of these viruses can be internalized through a specialized form of CME that has additional dependencies distinct from canonical CME pathways, and antivirals targeting this pathway have been discovered. In this review, we discuss the role and contribution of endocytosis to mosquito-borne flavivirus entry as well as consider past and future efforts to target endocytosis for therapeutic interventions.
Collapse
Affiliation(s)
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
75
|
The Cutaneous Wound Innate Immunological Microenvironment. Int J Mol Sci 2020; 21:ijms21228748. [PMID: 33228152 PMCID: PMC7699544 DOI: 10.3390/ijms21228748] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022] Open
Abstract
The skin represents the first line of defense and innate immune protection against pathogens. Skin normally provides a physical barrier to prevent infection by pathogens; however, wounds, microinjuries, and minor barrier impediments can present open avenues for invasion through the skin. Accordingly, wound repair and protection from invading pathogens are essential processes in successful skin barrier regeneration. To repair and protect wounds, skin promotes the development of a specific and complex immunological microenvironment within and surrounding the disrupted tissue. This immune microenvironment includes both innate and adaptive processes, including immune cell recruitment to the wound and secretion of extracellular factors that can act directly to promote wound closure and wound antimicrobial defense. Recent work has shown that this immune microenvironment also varies according to the specific context of the wound: the microbiome, neuroimmune signaling, environmental effects, and age play roles in altering the innate immune response to wounding. This review will focus on the role of these factors in shaping the cutaneous microenvironment and how this ultimately impacts the immune response to wounding.
Collapse
|
76
|
Dellicour S, Lequime S, Vrancken B, Gill MS, Bastide P, Gangavarapu K, Matteson NL, Tan Y, du Plessis L, Fisher AA, Nelson MI, Gilbert M, Suchard MA, Andersen KG, Grubaugh ND, Pybus OG, Lemey P. Epidemiological hypothesis testing using a phylogeographic and phylodynamic framework. Nat Commun 2020; 11:5620. [PMID: 33159066 PMCID: PMC7648063 DOI: 10.1038/s41467-020-19122-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/30/2020] [Indexed: 01/05/2023] Open
Abstract
Computational analyses of pathogen genomes are increasingly used to unravel the dispersal history and transmission dynamics of epidemics. Here, we show how to go beyond historical reconstructions and use spatially-explicit phylogeographic and phylodynamic approaches to formally test epidemiological hypotheses. We illustrate our approach by focusing on the West Nile virus (WNV) spread in North America that has substantially impacted public, veterinary, and wildlife health. We apply an analytical workflow to a comprehensive WNV genome collection to test the impact of environmental factors on the dispersal of viral lineages and on viral population genetic diversity through time. We find that WNV lineages tend to disperse faster in areas with higher temperatures and we identify temporal variation in temperature as a main predictor of viral genetic diversity through time. By contrasting inference with simulation, we find no evidence for viral lineages to preferentially circulate within the same migratory bird flyway, suggesting a substantial role for non-migratory birds or mosquito dispersal along the longitudinal gradient.
Collapse
Affiliation(s)
- Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, CP160/12, 50 Avenue FD Roosevelt, 1050, Bruxelles, Belgium.
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Sebastian Lequime
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Bram Vrancken
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Mandev S Gill
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Paul Bastide
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Karthik Gangavarapu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Nathaniel L Matteson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Yi Tan
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
| | | | - Alexander A Fisher
- Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Martha I Nelson
- Fogarty International Center, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Marius Gilbert
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, CP160/12, 50 Avenue FD Roosevelt, 1050, Bruxelles, Belgium
| | - Marc A Suchard
- Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Kristian G Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Scripps Research Translational Institute, La Jolla, CA, 92037, USA
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | | | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
77
|
Miller D, Martin MA, Harel N, Tirosh O, Kustin T, Meir M, Sorek N, Gefen-Halevi S, Amit S, Vorontsov O, Shaag A, Wolf D, Peretz A, Shemer-Avni Y, Roif-Kaminsky D, Kopelman NM, Huppert A, Koelle K, Stern A. Full genome viral sequences inform patterns of SARS-CoV-2 spread into and within Israel. Nat Commun 2020; 11:5518. [PMID: 33139704 DOI: 10.1101/2020.05.21.20104521] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/02/2020] [Indexed: 05/22/2023] Open
Abstract
Full genome sequences are increasingly used to track the geographic spread and transmission dynamics of viral pathogens. Here, with a focus on Israel, we sequence 212 SARS-CoV-2 sequences and use them to perform a comprehensive analysis to trace the origins and spread of the virus. We find that travelers returning from the United States of America significantly contributed to viral spread in Israel, more than their proportion in incoming infected travelers. Using phylodynamic analysis, we estimate that the basic reproduction number of the virus was initially around 2.5, dropping by more than two-thirds following the implementation of social distancing measures. We further report high levels of transmission heterogeneity in SARS-CoV-2 spread, with between 2-10% of infected individuals resulting in 80% of secondary infections. Overall, our findings demonstrate the effectiveness of social distancing measures for reducing viral spread.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Base Sequence
- Basic Reproduction Number/statistics & numerical data
- Betacoronavirus/genetics
- COVID-19
- Child
- Child, Preschool
- Communicable Diseases, Imported/epidemiology
- Communicable Diseases, Imported/virology
- Coronavirus Infections/epidemiology
- Coronavirus Infections/prevention & control
- Coronavirus Infections/transmission
- Female
- Genome, Viral/genetics
- Humans
- Infant
- Infant, Newborn
- Israel/epidemiology
- Male
- Middle Aged
- Pandemics/prevention & control
- Phylogeny
- Pneumonia, Viral/epidemiology
- Pneumonia, Viral/prevention & control
- Pneumonia, Viral/transmission
- Psychological Distance
- RNA, Viral/genetics
- SARS-CoV-2
- Sequence Analysis, RNA
- United States
- Young Adult
Collapse
Affiliation(s)
- Danielle Miller
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Michael A Martin
- Department of Biology, Emory University, Atlanta, GA, USA
- Population Biology, Ecology, and Evolution Graduate Program, Laney Graduate School, Emory University, Atlanta, GA, USA
| | - Noam Harel
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Omer Tirosh
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Talia Kustin
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Moran Meir
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nadav Sorek
- Microbiology Laboratory, Assuta Ashdod University-Affiliated Hospital, Ashdod, Israel
| | | | - Sharon Amit
- Clinical Microbiology Laboratory, Sheba Medical Center, Ramat-Gan, Israel
| | - Olesya Vorontsov
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Avraham Shaag
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Dana Wolf
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Avi Peretz
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Clinical Microbiology Laboratory, The Baruch Padeh Medical Center, Poriya, Tiberias, Israel
| | - Yonat Shemer-Avni
- Clinical Virology Laboratory, Soroka Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Naama M Kopelman
- Department of Computer Science, Holon Institute of Technology, Holon, Israel
| | - Amit Huppert
- Bio-statistical and Bio-mathematical Unit, The Gertner Institute for Epidemiology and Health Policy Research, Chaim Sheba Medical Center, 52621, Tel Hashomer, Israel
- School of Public Health, The Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel Aviv, Israel
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, GA, USA
- Emory-UGA Center of Excellence of Influenza Research and Surveillance (CEIRS), Atlanta, GA, USA
| | - Adi Stern
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
78
|
Miller D, Martin MA, Harel N, Tirosh O, Kustin T, Meir M, Sorek N, Gefen-Halevi S, Amit S, Vorontsov O, Shaag A, Wolf D, Peretz A, Shemer-Avni Y, Roif-Kaminsky D, Kopelman NM, Huppert A, Koelle K, Stern A. Full genome viral sequences inform patterns of SARS-CoV-2 spread into and within Israel. Nat Commun 2020; 11:5518. [PMID: 33139704 PMCID: PMC7606475 DOI: 10.1038/s41467-020-19248-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022] Open
Abstract
Full genome sequences are increasingly used to track the geographic spread and transmission dynamics of viral pathogens. Here, with a focus on Israel, we sequence 212 SARS-CoV-2 sequences and use them to perform a comprehensive analysis to trace the origins and spread of the virus. We find that travelers returning from the United States of America significantly contributed to viral spread in Israel, more than their proportion in incoming infected travelers. Using phylodynamic analysis, we estimate that the basic reproduction number of the virus was initially around 2.5, dropping by more than two-thirds following the implementation of social distancing measures. We further report high levels of transmission heterogeneity in SARS-CoV-2 spread, with between 2-10% of infected individuals resulting in 80% of secondary infections. Overall, our findings demonstrate the effectiveness of social distancing measures for reducing viral spread.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Base Sequence
- Basic Reproduction Number/statistics & numerical data
- Betacoronavirus/genetics
- COVID-19
- Child
- Child, Preschool
- Communicable Diseases, Imported/epidemiology
- Communicable Diseases, Imported/virology
- Coronavirus Infections/epidemiology
- Coronavirus Infections/prevention & control
- Coronavirus Infections/transmission
- Female
- Genome, Viral/genetics
- Humans
- Infant
- Infant, Newborn
- Israel/epidemiology
- Male
- Middle Aged
- Pandemics/prevention & control
- Phylogeny
- Pneumonia, Viral/epidemiology
- Pneumonia, Viral/prevention & control
- Pneumonia, Viral/transmission
- Psychological Distance
- RNA, Viral/genetics
- SARS-CoV-2
- Sequence Analysis, RNA
- United States
- Young Adult
Collapse
Affiliation(s)
- Danielle Miller
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Michael A Martin
- Department of Biology, Emory University, Atlanta, GA, USA
- Population Biology, Ecology, and Evolution Graduate Program, Laney Graduate School, Emory University, Atlanta, GA, USA
| | - Noam Harel
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Omer Tirosh
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Talia Kustin
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Moran Meir
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nadav Sorek
- Microbiology Laboratory, Assuta Ashdod University-Affiliated Hospital, Ashdod, Israel
| | | | - Sharon Amit
- Clinical Microbiology Laboratory, Sheba Medical Center, Ramat-Gan, Israel
| | - Olesya Vorontsov
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Avraham Shaag
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Dana Wolf
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Avi Peretz
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Clinical Microbiology Laboratory, The Baruch Padeh Medical Center, Poriya, Tiberias, Israel
| | - Yonat Shemer-Avni
- Clinical Virology Laboratory, Soroka Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Naama M Kopelman
- Department of Computer Science, Holon Institute of Technology, Holon, Israel
| | - Amit Huppert
- Bio-statistical and Bio-mathematical Unit, The Gertner Institute for Epidemiology and Health Policy Research, Chaim Sheba Medical Center, 52621, Tel Hashomer, Israel
- School of Public Health, The Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel Aviv, Israel
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, GA, USA
- Emory-UGA Center of Excellence of Influenza Research and Surveillance (CEIRS), Atlanta, GA, USA
| | - Adi Stern
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
79
|
Snyder RE, Feiszli T, Foss L, Messenger S, Fang Y, Barker CM, Reisen WK, Vugia DJ, Padgett KA, Kramer VL. West Nile virus in California, 2003-2018: A persistent threat. PLoS Negl Trop Dis 2020; 14:e0008841. [PMID: 33206634 PMCID: PMC7710070 DOI: 10.1371/journal.pntd.0008841] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 12/02/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
The California Arbovirus Surveillance Program was initiated over 50 years ago to track endemic encephalitides and was enhanced in 2000 to include West Nile virus (WNV) infections in humans, mosquitoes, sentinel chickens, dead birds and horses. This comprehensive statewide program is a function of strong partnerships among the California Department of Public Health (CDPH), the University of California, and local vector control and public health agencies. This manuscript summarizes WNV surveillance data in California since WNV was first detected in 2003 in southern California. From 2003 through 2018, 6,909 human cases of WNV disease, inclusive of 326 deaths, were reported to CDPH, as well as 730 asymptomatic WNV infections identified during screening of blood and organ donors. Of these, 4,073 (59.0%) were reported as West Nile neuroinvasive disease. California's WNV disease burden comprised 15% of all cases that were reported to the U.S. Centers for Disease Control and Prevention during this time, more than any other state. Additionally, 1,299 equine WNV cases were identified, along with detections of WNV in 23,322 dead birds, 31,695 mosquito pools, and 7,340 sentinel chickens. Annual enzootic detection of WNV typically preceded detection in humans and prompted enhanced intervention to reduce the risk of WNV transmission. Peak WNV activity occurred from July through October in the Central Valley and southern California. Less than five percent of WNV activity occurred in other regions of the state or outside of this time. WNV continues to be a major threat to public and wild avian health in California, particularly in southern California and the Central Valley during summer and early fall months. Local and state public health partners must continue statewide human and mosquito surveillance and facilitate effective mosquito control and bite prevention measures.
Collapse
Affiliation(s)
- Robert E. Snyder
- California Department of Public Health, Vector-Borne Disease Section, Richmond and Sacramento, California, United States of America
| | - Tina Feiszli
- California Department of Public Health, Vector-Borne Disease Section, Richmond and Sacramento, California, United States of America
| | - Leslie Foss
- California Department of Public Health, Vector-Borne Disease Section, Richmond and Sacramento, California, United States of America
| | - Sharon Messenger
- California Department of Public Health, Division of Communicable Disease Control, Richmond, California, United States of America
| | - Ying Fang
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Christopher M. Barker
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - William K. Reisen
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Duc J. Vugia
- California Department of Public Health, Division of Communicable Disease Control, Richmond, California, United States of America
| | - Kerry A. Padgett
- California Department of Public Health, Vector-Borne Disease Section, Richmond and Sacramento, California, United States of America
| | - Vicki L. Kramer
- California Department of Public Health, Vector-Borne Disease Section, Richmond and Sacramento, California, United States of America
| |
Collapse
|
80
|
Divergent Mutational Landscapes of Consensus and Minority Genotypes of West Nile Virus Demonstrate Host and Gene-Specific Evolutionary Pressures. Genes (Basel) 2020; 11:genes11111299. [PMID: 33143358 PMCID: PMC7692055 DOI: 10.3390/genes11111299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/19/2020] [Accepted: 10/29/2020] [Indexed: 01/12/2023] Open
Abstract
Our current understanding of the natural evolution of RNA viruses comes largely from consensus level genetic analyses which ignore the diverse mutant swarms that comprise within-host viral populations. The breadth and composition of viral mutant swarms impact viral fitness and adaptation, and the capacity for swarm plasticity is likely to be particularly important for arthropod-borne viruses (arboviruses) that cycle between taxonomically divergent hosts. Despite this, characterization of the relationship between the selective pressures and genetic signatures of the mutant swarm and consensus sequences is lacking. To clarify this, we analyzed previously generated whole genome, deep-sequencing data from 548 West Nile virus samples isolated from avian tissues or mosquitoes in New York State from 1999-2018. Both consensus level (interhost) and minority level (intrahost) nucleotide and amino acid sequences were analyzed, and diversity at each position was calculated across the genome in order to assess the relationship between minority and consensus sequences for individual genes and hosts. Our results indicate that consensus sequences are an inept representation of the overall genetic diversity. Unique host and gene-specific signatures and selective pressures were identified. These data demonstrate that an accurate and comprehensive understanding of arbovirus evolution and adaptation within and between hosts requires consideration of minority genotypes.
Collapse
|
81
|
Smith RC. Highlights in Medical Entomology, 2019: Familiar Foes and New Frontiers. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1349-1353. [PMID: 32667035 PMCID: PMC7716807 DOI: 10.1093/jme/tjaa120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Indexed: 06/11/2023]
Abstract
The 2019 Entomological Society of America annual meeting was held in St. Louis, Missouri, just blocks away from the iconic Gateway Arch. Representing a 'gateway to the West', this inspired the theme of the Highlights in Medical Entomology to reflect on the accomplishments of the past year as we move into a 'new frontier' of vector biology research. Papers were selected broadly across arthropods that influence public health, focusing on topics ranging from West Nile virus transmission, ticks and tick-borne disease, to advances in genetics and 'big data' studies. This included current perspectives on West Nile virus ecology and epidemiology, which has now been endemic in the United States for 20 yr. Additional topics such as the advantages of citizen science and the importance of scientific communication were also discussed. Together, these papers demonstrate the achievements of the vector community while emphasizing the challenges that we collectively face to reduce the burden of vector-borne disease.
Collapse
Affiliation(s)
- Ryan C Smith
- Department of Entomology, Iowa State University, Ames, IA
| |
Collapse
|
82
|
Flavivirus Envelope Protein Glycosylation: Impacts on Viral Infection and Pathogenesis. J Virol 2020; 94:JVI.00104-20. [PMID: 32161171 DOI: 10.1128/jvi.00104-20] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
Flaviviruses encode one, two, or no N-linked glycosylation sites on their envelope proteins. Glycosylation can impact virus interactions with cell surface attachment factors and also may impact virion stability and virus replication. Envelope protein glycosylation has been identified as a virulence determinant for multiple flaviviruses, but the mechanisms by which glycosylation mediates pathogenesis remain unclear. In this Gem, we summarize current knowledge on flavivirus envelope protein glycosylation and its impact on viral infection and pathogenesis.
Collapse
|
83
|
Fontenille D, Powell JR. From Anonymous to Public Enemy: How Does a Mosquito Become a Feared Arbovirus Vector? Pathogens 2020; 9:E265. [PMID: 32260491 PMCID: PMC7238163 DOI: 10.3390/pathogens9040265] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 01/17/2023] Open
Abstract
The past few decades have seen the emergence of several worldwide arbovirus epidemics (chikungunya, Zika), the expansion or recrudescence of historical arboviruses (dengue, yellow fever), and the modification of the distribution area of major vector mosquitoes such as Aedes aegypti and Ae. albopictus, raising questions about the risk of appearance of new vectors and new epidemics. In this opinion piece, we review the factors that led to the emergence of yellow fever in the Americas, define the conditions for a mosquito to become a vector, analyse the recent example of the new status of Aedes albopictus from neglected mosquito to major vector, and propose some scenarios for the future.
Collapse
Affiliation(s)
- Didier Fontenille
- MIVEGEC unit, Université de Montpellier, Institut de Recherche pour le Développement (IRD), CNRS, BP 64501, 34394 Montpellier, France
| | - Jeffrey R. Powell
- Department of Ecology and Evolutionary Biology, Yale University, 21 Sachem Street, New Haven, CT 06511-8934, USA;
| |
Collapse
|