51
|
Rocchi A, Yamamoto S, Ting T, Fan Y, Sadleir K, Wang Y, Zhang W, Huang S, Levine B, Vassar R, He C. A Becn1 mutation mediates hyperactive autophagic sequestration of amyloid oligomers and improved cognition in Alzheimer's disease. PLoS Genet 2017; 13:e1006962. [PMID: 28806762 PMCID: PMC5570506 DOI: 10.1371/journal.pgen.1006962] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/24/2017] [Accepted: 08/07/2017] [Indexed: 12/31/2022] Open
Abstract
Impairment of the autophagy pathway has been observed during the pathogenesis of Alzheimer's disease (AD), a neurodegenerative disorder characterized by abnormal deposition of extracellular and intracellular amyloid β (Aβ) peptides. Yet the role of autophagy in Aβ production and AD progression is complex. To study whether increased basal autophagy plays a beneficial role in Aβ clearance and cognitive improvement, we developed a novel genetic model to hyperactivate autophagy in vivo. We found that knock-in of a point mutation F121A in the essential autophagy gene Beclin 1/Becn1 in mice significantly reduces the interaction of BECN1 with its inhibitor BCL2, and thus leads to constitutively active autophagy even under non-autophagy-inducing conditions in multiple tissues, including brain. Becn1F121A-mediated autophagy hyperactivation significantly decreases amyloid accumulation, prevents cognitive decline, and restores survival in AD mouse models. Using an immunoisolation method, we found biochemically that Aβ oligomers are autophagic substrates and sequestered inside autophagosomes in the brain of autophagy-hyperactive AD mice. In addition to genetic activation of autophagy by Becn1 gain-of-function, we also found that ML246, a small-molecule autophagy inducer, as well as voluntary exercise, a physiological autophagy inducer, exert similar Becn1-dependent protective effects on Aβ removal and memory in AD mice. Taken together, these results demonstrate that genetically disrupting BECN1-BCL2 binding hyperactivates autophagy in vivo, which sequestrates amyloid oligomers and prevents AD progression. The study establishes new approaches to activate autophagy in the brain, and reveals the important function of Becn1-mediated autophagy hyperactivation in the prevention of AD.
Collapse
Affiliation(s)
- Altea Rocchi
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Soh Yamamoto
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tabitha Ting
- Center for Autophagy Research, Department of Internal Medicine, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Yuying Fan
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Katherine Sadleir
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Yigang Wang
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Weiran Zhang
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Sui Huang
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Beth Levine
- Center for Autophagy Research, Department of Internal Medicine, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Robert Vassar
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Congcong He
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| |
Collapse
|
52
|
Lozano L, Guevara J, Lefebvre T, Ramos-Martinez I, Limón D, Díaz A, Cerón E, Zenteno E. Effect of amyloid-Β (25-35) in hyperglycemic and hyperinsulinemic rats, effects on phosphorylation and O-GlcNAcylation of tau protein. Neuropeptides 2017; 63:18-27. [PMID: 28427866 DOI: 10.1016/j.npep.2017.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/31/2017] [Accepted: 04/03/2017] [Indexed: 01/09/2023]
Abstract
Aggregation of the amyloid beta (Aβ) peptide and hyperphosphorylation of tau protein, which are markers of Alzheimer's disease (AD), have been reported also in diabetes mellitus (DM). One regulator of tau phosphorylation is O-GlcNAcylation, whereas for hyperphosphorylation it could be GSK3beta, which is activated in hyperglycemic conditions. With this in mind, both O-GlcNAcylation and phosphorylation of tau protein were evaluated in the brain of rats with streptozotocin (STZ)-induced hyperglycemia and hyperinsulinemia and treated with the Aß25-35 peptide in the hippocampal region CA1. Weight, glycated hemoglobin, glucose, and insulin were determined. Male Wistar rats were divided in groups (N=20): a) control, b) treated only with the Aβ25-35 peptide, c) treated with Aβ25-35 and STZ, and d) treated only with STZ. Results showed statistically significant differences in the mean weight, glucose levels, insulin concentration, and HbA1c percentage, between C- and D-treated groups and not STZ-treated A and B (P<0.05). Interestingly, our results showed diminution of O-GlcNAcylation and increase in P-tau-Ser-396 in the hippocampal area of the Aβ25-35- and STZ-treated groups; moreover, enhanced expression of GSK3beta was observed in this last group. Our results suggest that hyperinsulinemia-Aβ25-35-hyperglycemia is relevant for the down regulation of O-GlcNAcylation and up-regulation of the glycogen synthase kinase-3 beta (GSK3beta), favoring Aβ25-35-induced neurotoxicity in the brain of rats.
Collapse
Affiliation(s)
- Liliana Lozano
- Departamento de Bioquímica, Facultad de Medicina Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, C.P. 04510 Coyoacán, CDMX, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, C.P. 04510 Coyoacán, CDMX, Mexico
| | - Jorge Guevara
- Departamento de Bioquímica, Facultad de Medicina Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, C.P. 04510 Coyoacán, CDMX, Mexico
| | - Tony Lefebvre
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Ivan Ramos-Martinez
- Departamento de Bioquímica, Facultad de Medicina Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, C.P. 04510 Coyoacán, CDMX, Mexico
| | - Daniel Limón
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Alfonso Díaz
- Departamento de Farmacia, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Eduarda Cerón
- Instituto Nacional de Enfermedades Respiratorias, "Ismael Cosío Villegas", Department of Biochemistry, Calz. de Tlalpan 4502, C.P. 14080 CDMX, Mexico
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, C.P. 04510 Coyoacán, CDMX, Mexico.
| |
Collapse
|
53
|
Dey A, Hao S, Wosiski-Kuhn M, Stranahan AM. Glucocorticoid-mediated activation of GSK3β promotes tau phosphorylation and impairs memory in type 2 diabetes. Neurobiol Aging 2017; 57:75-83. [PMID: 28609678 DOI: 10.1016/j.neurobiolaging.2017.05.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 04/04/2017] [Accepted: 05/11/2017] [Indexed: 12/17/2022]
Abstract
Type 2 diabetes is increasingly recognized as a risk factor for Alzheimer's disease, but the underlying mechanisms remain poorly understood. Hyperphosphorylation of the microtubule-associated protein tau has been reported in rodent models of diabetes, including db/db mice, which exhibit insulin resistance and chronically elevated glucocorticoids due to leptin receptor insufficiency. In this report, we investigated endocrine mechanisms for hippocampal tau phosphorylation in db/db and wild-type mice. By separately manipulating peripheral and intrahippocampal corticosterone levels, we determined that hippocampal corticosteroid exposure promotes tau phosphorylation and activates glycogen synthase kinase 3β (GSK3β). Subsequent experiments in hippocampal slice preparations revealed evidence for a nongenomic interaction between glucocorticoids and GSK3β. To examine whether GSK3β activation mediates tau phosphorylation and impairs memory in diabetes, db/db and wild-type mice received intrahippocampal infusions of TDZD-8, a non-ATP competitive thiadiazolidinone inhibitor of GSK3β. Intrahippocampal TDZD-8 blocked tau hyperphosphorylation and normalized hippocampus-dependent memory in db/db mice, suggesting that pathological synergy between diabetes and Alzheimer's disease may involve glucocorticoid-mediated activation of GSK3β.
Collapse
Affiliation(s)
- Aditi Dey
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, USA
| | - Shuai Hao
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, USA
| | - Marlena Wosiski-Kuhn
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, USA
| | - Alexis M Stranahan
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, USA.
| |
Collapse
|
54
|
Licht-Murava A, Paz R, Vaks L, Avrahami L, Plotkin B, Eisenstein M, Eldar-Finkelman H. A unique type of GSK-3 inhibitor brings new opportunities to the clinic. Sci Signal 2016; 9. [DOI: 10.1126/scisignal.aah7102] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
A substrate peptide that the kinase GSK-3 converts into its own inhibitor improves symptoms and cognitive function in an Alzheimer’s disease model.
Collapse
Affiliation(s)
- Avital Licht-Murava
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Rom Paz
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Lilach Vaks
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Limor Avrahami
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Batya Plotkin
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Miriam Eisenstein
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hagit Eldar-Finkelman
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
55
|
Kuruva CS, Reddy PH. Amyloid beta modulators and neuroprotection in Alzheimer's disease: a critical appraisal. Drug Discov Today 2016; 22:223-233. [PMID: 27794478 DOI: 10.1016/j.drudis.2016.10.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/16/2016] [Accepted: 10/21/2016] [Indexed: 12/26/2022]
Abstract
Multiple cellular changes have been identified as being involved in Alzheimer's disease (AD) pathogenesis, including mitochondrial damage, synaptic loss, amyloid beta (Aβ) production and/or accumulation, inflammatory responses, and phosphorylated tau formation and/or accumulation. Studies have established that Aβ-induced synaptic dysfunction is dependent on abnormal amyloid precursor protein (APP) processing caused by β- and γ-secretases, resulting in the generation of Aβ. The Aβ formed as a result of abnormal APP processing induces phosphorylated tau and activates glycogen synthase kinase-3β (GSK3β) and cyclin-dependent kinase-5 (CDK5). Here, we review the latest research on the development of Aβ modulators for neuroprotection in AD. We also review the use of molecular inhibitors as therapeutic targets in AD.
Collapse
Affiliation(s)
- Chandra Sekhar Kuruva
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA; Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA; Department of Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA; Department of Speech, Language and Hearing Sciences, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA; Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, 6630 S. Quaker Ste. E, MS 7495, Lubbock, TX 79413, USA.
| |
Collapse
|
56
|
Liang SH, Chen JM, Normandin MD, Chang JS, Chang GC, Taylor CK, Trapa P, Plummer MS, Para KS, Conn EL, Lopresti‐Morrow L, Lanyon LF, Cook JM, Richter KEG, Nolan CE, Schachter JB, Janat F, Che Y, Shanmugasundaram V, Lefker BA, Enerson BE, Livni E, Wang L, Guehl NJ, Patnaik D, Wagner FF, Perlis R, Holson EB, Haggarty SJ, El Fakhri G, Kurumbail RG, Vasdev N. Discovery of a Highly Selective Glycogen Synthase Kinase‐3 Inhibitor (PF‐04802367) That Modulates Tau Phosphorylation in the Brain: Translation for PET Neuroimaging. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201603797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Steven H. Liang
- Gordon Center for Medical Imaging & Nuclear Medicine and Molecular Imaging Massachusetts General Hospital & Department of Radiology Harvard Medical School Boston MA 02114 USA
| | - Jinshan Michael Chen
- Pfizer Worldwide Research and Development, Groton Laboratories Eastern Point Road Groton CT 06340 USA
| | - Marc D. Normandin
- Gordon Center for Medical Imaging & Nuclear Medicine and Molecular Imaging Massachusetts General Hospital & Department of Radiology Harvard Medical School Boston MA 02114 USA
| | - Jeanne S. Chang
- Pfizer Worldwide Research and Development, Groton Laboratories Eastern Point Road Groton CT 06340 USA
| | - George C. Chang
- Pfizer Worldwide Research and Development, Groton Laboratories Eastern Point Road Groton CT 06340 USA
| | - Christine K. Taylor
- Pfizer Worldwide Research and Development, Groton Laboratories Eastern Point Road Groton CT 06340 USA
| | - Patrick Trapa
- Pfizer Worldwide Research and Development 610 Main Street Cambridge MA 02139 USA
| | - Mark S. Plummer
- Pfizer Worldwide Research and Development, Groton Laboratories Eastern Point Road Groton CT 06340 USA
| | - Kimberly S. Para
- Pfizer Worldwide Research and Development, Groton Laboratories Eastern Point Road Groton CT 06340 USA
| | - Edward L. Conn
- Pfizer Worldwide Research and Development, Groton Laboratories Eastern Point Road Groton CT 06340 USA
| | - Lori Lopresti‐Morrow
- Pfizer Worldwide Research and Development, Groton Laboratories Eastern Point Road Groton CT 06340 USA
| | - Lorraine F. Lanyon
- Pfizer Worldwide Research and Development, Groton Laboratories Eastern Point Road Groton CT 06340 USA
| | - James M. Cook
- Pfizer Worldwide Research and Development, Groton Laboratories Eastern Point Road Groton CT 06340 USA
| | - Karl E. G. Richter
- Pfizer Worldwide Research and Development, Groton Laboratories Eastern Point Road Groton CT 06340 USA
| | - Charlie E. Nolan
- Pfizer Worldwide Research and Development, Groton Laboratories Eastern Point Road Groton CT 06340 USA
| | - Joel B. Schachter
- Pfizer Worldwide Research and Development, Groton Laboratories Eastern Point Road Groton CT 06340 USA
| | - Fouad Janat
- Pfizer Worldwide Research and Development, Groton Laboratories Eastern Point Road Groton CT 06340 USA
| | - Ye Che
- Pfizer Worldwide Research and Development, Groton Laboratories Eastern Point Road Groton CT 06340 USA
| | | | - Bruce A. Lefker
- Pfizer Worldwide Research and Development 610 Main Street Cambridge MA 02139 USA
| | - Bradley E. Enerson
- Pfizer Worldwide Research and Development, Groton Laboratories Eastern Point Road Groton CT 06340 USA
| | - Elijahu Livni
- Gordon Center for Medical Imaging & Nuclear Medicine and Molecular Imaging Massachusetts General Hospital & Department of Radiology Harvard Medical School Boston MA 02114 USA
| | - Lu Wang
- Gordon Center for Medical Imaging & Nuclear Medicine and Molecular Imaging Massachusetts General Hospital & Department of Radiology Harvard Medical School Boston MA 02114 USA
| | - Nicolas J. Guehl
- Gordon Center for Medical Imaging & Nuclear Medicine and Molecular Imaging Massachusetts General Hospital & Department of Radiology Harvard Medical School Boston MA 02114 USA
| | - Debasis Patnaik
- Departments of Neurology & Psychiatry Massachusetts General Hospital Harvard Medical School 185 Cambridge Street Boston MA 02114 USA
| | - Florence F. Wagner
- Stanley Center for Psychiatric Research Broad Institute 415 Main Street Cambridge MA o2142 USA
| | - Roy Perlis
- Stanley Center for Psychiatric Research Broad Institute 415 Main Street Cambridge MA o2142 USA
- Departments of Neurology & Psychiatry Massachusetts General Hospital Harvard Medical School 185 Cambridge Street Boston MA 02114 USA
| | - Edward B. Holson
- Stanley Center for Psychiatric Research Broad Institute 415 Main Street Cambridge MA o2142 USA
| | - Stephen J. Haggarty
- Departments of Neurology & Psychiatry Massachusetts General Hospital Harvard Medical School 185 Cambridge Street Boston MA 02114 USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging & Nuclear Medicine and Molecular Imaging Massachusetts General Hospital & Department of Radiology Harvard Medical School Boston MA 02114 USA
| | - Ravi G. Kurumbail
- Pfizer Worldwide Research and Development, Groton Laboratories Eastern Point Road Groton CT 06340 USA
| | - Neil Vasdev
- Gordon Center for Medical Imaging & Nuclear Medicine and Molecular Imaging Massachusetts General Hospital & Department of Radiology Harvard Medical School Boston MA 02114 USA
| |
Collapse
|
57
|
Liang SH, Chen JM, Normandin MD, Chang JS, Chang GC, Taylor CK, Trapa P, Plummer MS, Para KS, Conn EL, Lopresti-Morrow L, Lanyon LF, Cook JM, Richter KEG, Nolan CE, Schachter JB, Janat F, Che Y, Shanmugasundaram V, Lefker BA, Enerson BE, Livni E, Wang L, Guehl NJ, Patnaik D, Wagner FF, Perlis R, Holson EB, Haggarty SJ, El Fakhri G, Kurumbail RG, Vasdev N. Discovery of a Highly Selective Glycogen Synthase Kinase-3 Inhibitor (PF-04802367) That Modulates Tau Phosphorylation in the Brain: Translation for PET Neuroimaging. Angew Chem Int Ed Engl 2016; 55:9601-5. [PMID: 27355874 PMCID: PMC4983481 DOI: 10.1002/anie.201603797] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Indexed: 11/09/2022]
Abstract
Glycogen synthase kinase-3 (GSK-3) regulates multiple cellular processes in diabetes, oncology, and neurology. N-(3-(1H-1,2,4-triazol-1-yl)propyl)-5-(3-chloro-4-methoxyphenyl)oxazole-4-carboxamide (PF-04802367 or PF-367) has been identified as a highly potent inhibitor, which is among the most selective antagonists of GSK-3 to date. Its efficacy was demonstrated in modulation of tau phosphorylation in vitro and in vivo. Whereas the kinetics of PF-367 binding in brain tissues are too fast for an effective therapeutic agent, the pharmacokinetic profile of PF-367 is ideal for discovery of radiopharmaceuticals for GSK-3 in the central nervous system. A (11) C-isotopologue of PF-367 was synthesized and preliminary PET imaging studies in non-human primates confirmed that we have overcome the two major obstacles for imaging GSK-3, namely, reasonable brain permeability and displaceable binding.
Collapse
Affiliation(s)
- Steven H Liang
- Gordon Center for Medical Imaging & Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Jinshan Michael Chen
- Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, CT, 06340, USA
| | - Marc D Normandin
- Gordon Center for Medical Imaging & Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Jeanne S Chang
- Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, CT, 06340, USA
| | - George C Chang
- Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, CT, 06340, USA
| | - Christine K Taylor
- Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, CT, 06340, USA
| | - Patrick Trapa
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, MA, 02139, USA
| | - Mark S Plummer
- Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, CT, 06340, USA
| | - Kimberly S Para
- Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, CT, 06340, USA
| | - Edward L Conn
- Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, CT, 06340, USA
| | - Lori Lopresti-Morrow
- Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, CT, 06340, USA
| | - Lorraine F Lanyon
- Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, CT, 06340, USA
| | - James M Cook
- Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, CT, 06340, USA
| | - Karl E G Richter
- Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, CT, 06340, USA
| | - Charlie E Nolan
- Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, CT, 06340, USA
| | - Joel B Schachter
- Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, CT, 06340, USA
| | - Fouad Janat
- Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, CT, 06340, USA
| | - Ye Che
- Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, CT, 06340, USA
| | - Veerabahu Shanmugasundaram
- Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, CT, 06340, USA
| | - Bruce A Lefker
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, MA, 02139, USA
| | - Bradley E Enerson
- Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, CT, 06340, USA
| | - Elijahu Livni
- Gordon Center for Medical Imaging & Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Lu Wang
- Gordon Center for Medical Imaging & Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Nicolas J Guehl
- Gordon Center for Medical Imaging & Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Debasis Patnaik
- Departments of Neurology & Psychiatry, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Florence F Wagner
- Stanley Center for Psychiatric Research, Broad Institute, 415 Main Street, Cambridge, MA, o2142, USA
| | - Roy Perlis
- Stanley Center for Psychiatric Research, Broad Institute, 415 Main Street, Cambridge, MA, o2142, USA
- Departments of Neurology & Psychiatry, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Edward B Holson
- Stanley Center for Psychiatric Research, Broad Institute, 415 Main Street, Cambridge, MA, o2142, USA
| | - Stephen J Haggarty
- Departments of Neurology & Psychiatry, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging & Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Ravi G Kurumbail
- Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, CT, 06340, USA.
| | - Neil Vasdev
- Gordon Center for Medical Imaging & Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
58
|
Dunning CJ, McGauran G, Willén K, Gouras GK, O’Connell DJ, Linse S. Direct High Affinity Interaction between Aβ42 and GSK3α Stimulates Hyperphosphorylation of Tau. A New Molecular Link in Alzheimer's Disease? ACS Chem Neurosci 2016; 7:161-70. [PMID: 26618561 PMCID: PMC4759616 DOI: 10.1021/acschemneuro.5b00262] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
![]()
Amyloid
β peptide (Aβ42) assemblies are considered central to
the development of Alzheimer’s disease, but the mechanism of
this toxicity remains unresolved. We screened protein microarrays
with on-pathway oligomeric Aβ42 to identify candidate proteins
interacting with toxic Aβ42 species. Samples prepared from Alexa546-Aβ42
and Aβ42 monomers at 1:5 molar ratio were incubated with the
array during a time window of the amyloid fibril formation reaction
during which the maximum number of transient oligomers exist in the
reaction flux. A specific interaction was detected between Aβ42
and glycogen synthase kinase 3α (GSK3α), a kinase previously
implicated in the disease pathology. This interaction was validated
with anti-GSK3α immunoprecipitation assays in neuronal cell
lysates. Confocal microscopy studies further identified colocalization
of Aβ42 and GSK3α in neurites of mature primary mouse
neurons. A high binding affinity (KD =
1 nM) was measured between Alexa488-Aβ42 and GSK3α in
solution using thermophoresis. An even lower apparent KD was estimated between GSK3α and dextran-immobilized
Aβ42 in surface plasmon resonance experiments. Parallel experiments
with GSK3β also identified colocalization and high affinity
binding to this isoform. GSK3α-mediated hyperphosphorylation
of the protein tau was found to be stimulated by Aβ42 in in vitro phosphorylation assays and identified a functional
relationship between the proteins. We uncover a direct and functional
molecular link between Aβ42 and GSK3α, which opens an
important avenue toward understanding the mechanism of Aβ42-mediated
neuronal toxicity in Alzheimer’s disease.
Collapse
Affiliation(s)
- Christopher J. Dunning
- Department of Biochemistry and Structural Biology, Chemical
Centre, Lund University, P O Box 124, SE22100 Lund, Sweden
- Department of Experimental Medical Science, Lund University, SE22100 Lund, Sweden
| | - Gavin McGauran
- School of Biomolecular & Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Katarina Willén
- Department of Experimental Medical Science, Lund University, SE22100 Lund, Sweden
| | - Gunnar K. Gouras
- Department of Experimental Medical Science, Lund University, SE22100 Lund, Sweden
| | - David J. O’Connell
- School of Biomolecular & Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Chemical
Centre, Lund University, P O Box 124, SE22100 Lund, Sweden
| |
Collapse
|
59
|
Pardo M, Abrial E, Jope RS, Beurel E. GSK3β isoform-selective regulation of depression, memory and hippocampal cell proliferation. GENES BRAIN AND BEHAVIOR 2016; 15:348-55. [PMID: 26749572 DOI: 10.1111/gbb.12283] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 01/05/2016] [Accepted: 01/05/2016] [Indexed: 01/10/2023]
Abstract
Abnormally active glycogen synthase kinase-3 (GSK3) contributes to pathological processes in multiple psychiatric and neurological disorders. Modeled in mice, this includes increasing susceptibility to dysregulation of mood-relevant behaviors, impairing performance in several cognitive tasks and impairing adult hippocampal neural precursor cell (NPC) proliferation. These deficits are all evident in GSK3α/β knockin mice, in which serine-to-alanine mutations block the inhibitory serine phosphorylation regulation of both GSK3 isoforms, leaving GSK3 hyperactive. It was unknown if both GSK3 isoforms perform redundant actions in these processes, or if hyperactivity of one GSK3 isoform has a predominant effect. To test this, we examined GSK3α or GSK3β knockin mice in which only one isoform was mutated to a hyperactive form. Only GSK3β, not GSK3α, knockin mice displayed heightened vulnerability to the learned helplessness model of depression-like behavior. Three cognitive measures impaired in GSK3α/β knockin mice showed differential regulation by GSK3 isoforms. Novel object recognition was impaired in GSK3β, not in GSK3α, knockin mice, whereas temporal order memory was not impaired in GSK3α or GSK3β knockin mice, and co-ordinate spatial processing was impaired in both GSK3α and GSK3β knockin mice. Adult hippocampal NPC proliferation was severely impaired in GSK3β knockin mice, but not impaired in GSK3α knockin mice. Increased activity of GSK3β, in the absence of overexpression or disease pathology, is sufficient to impair mood regulation, novel object recognition and hippocampal NPC proliferation, whereas hyperactive GSK3α individually does not impair these processes. These results show that hyperactivity of the two GSK3 isoforms execute non-redundant effects on these processes.
Collapse
Affiliation(s)
- M Pardo
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - E Abrial
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - R S Jope
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - E Beurel
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
60
|
|
61
|
Kandimalla R, Reddy PH. Multiple faces of dynamin-related protein 1 and its role in Alzheimer's disease pathogenesis. Biochim Biophys Acta Mol Basis Dis 2015; 1862:814-828. [PMID: 26708942 DOI: 10.1016/j.bbadis.2015.12.018] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/08/2015] [Accepted: 12/15/2015] [Indexed: 01/01/2023]
Abstract
Mitochondria play a large role in neuronal function by constantly providing energy, particularly at synapses. Recent studies suggest that amyloid beta (Aβ) and phosphorylated tau interact with the mitochondrial fission protein, dynamin-related protein 1 (Drp1), causing excessive fragmentation of mitochondria and leading to abnormal mitochondrial dynamics and synaptic degeneration in Alzheimer's disease (AD) neurons. Recent research also revealed Aβ-induced and phosphorylated tau-induced changes in mitochondria, particularly affecting mitochondrial shape, size, distribution and axonal transport in AD neurons. These changes affect mitochondrial health and, in turn, could affect synaptic function and neuronal damage and ultimately leading to memory loss and cognitive impairment in patients with AD. This article highlights recent findings in the role of Drp1 in AD pathogenesis. This article also highlights Drp1 and its relationships to glycogen synthase kinase 3, cyclin-dependent kinase 5, p53, and microRNAs in AD pathogenesis.
Collapse
Affiliation(s)
- Ramesh Kandimalla
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4(th) Street, MS 9424, Lubbock, TX 79430, United States
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4(th) Street, MS 9424, Lubbock, TX 79430, United States; Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, 3601 4(th) Street, MS 9424, Lubbock, TX 79430, United States; Department of Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, 3601 4(th) Street, MS 9424, Lubbock, TX 79430, United States; Department of Neurology, Texas Tech University Health Sciences Center, 3601 4(th) Street, MS 9424, Lubbock, TX 79430, United States; Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, 6630 S. Quaker Ste. E, MS 7495, Lubbock, TX 79413, United States.
| |
Collapse
|
62
|
Chang HT, Liu CC, Chen ST, Yap YV, Chang NS, Sze CI. WW domain-containing oxidoreductase in neuronal injury and neurological diseases. Oncotarget 2015; 5:11792-9. [PMID: 25537520 PMCID: PMC4322972 DOI: 10.18632/oncotarget.2961] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/09/2014] [Indexed: 12/29/2022] Open
Abstract
The human and mouse WWOX/Wwox gene encodes a candidate tumor suppressor WW domain-containing oxidoreductase protein. This gene is located on a common fragile site FRA16D. WWOX participates in a variety of cellular events and acts as a transducer in the many signal pathways, including TNF, chemotherapeutic drugs, UV irradiation, Wnt, TGF-β, C1q, Hyal-2, sex steroid hormones, and others. While transiently overexpressed WWOX restricts relocation of transcription factors to the nucleus for suppressing cancer survival, physiological relevance of this regard in vivo has not been confirmed. Unlike many tumor suppressor genes, mutation of WWOX is rare, raising a question whether WWOX is a driver for cancer initiation. WWOX/Wwox was initially shown to play a crucial role in neural development and in the pathogenesis of Alzheimer's disease and neuronal injury. Later on, WWOX/Wwox was shown to participate in the development of epilepsy, mental retardation, and brain developmental defects in mice, rats and humans. Up to date, most of the research and review articles have focused on the involvement of WWOX in cancer. Here, we review the role of WWOX in neural injury and neurological diseases, and provide perspectives for the WWOX-regulated neurodegeneration.
Collapse
Affiliation(s)
- Hsin-Tzu Chang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chan-Chuan Liu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shur-Tzu Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ye Vone Yap
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Nan-Shang Chang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan. Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan, Taiwan
| | - Chun-I Sze
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
63
|
Ma DL, Chen FQ, Xu WJ, Yue WZ, Yuan G, Yang Y. Early intervention with glucagon-like peptide 1 analog liraglutide prevents tau hyperphosphorylation in diabetic db/db mice. J Neurochem 2015; 135:301-8. [PMID: 26183127 DOI: 10.1111/jnc.13248] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 07/09/2015] [Accepted: 07/10/2015] [Indexed: 01/23/2023]
Abstract
Increasing evidence has shown that type 2 diabetes (T2D) is a risk factor for Alzheimer's disease. Neurofibrillary tangles, which consist of hyperphosphorylated tau and misfolded microtubules, is one of the neuropathological hallmarks of Alzheimer's disease. Db/db mice, a rodent model of T2D, also exhibited age-dependent tau hyperphosphorylation. Glucagon-like peptide-1 (GLP-1) mimetics, a type of drug used in T2D, has been found to have neuroprotective effects. The aim of this study was to explore the potential effects of liraglutide (a GLP-1 analog), or insulin, on tau phosphorylation in T2D animals. Male db/db mice (3-3.5 weeks) were daily injected subcutaneously with liraglutide (n = 27), insulin (n = 27), or saline (n = 26), and five to seven mice were killed every 2 weeks for analysis of plasma and cerebrospinal (CSF) insulin levels by ELISA, and protein levels in the hippocampal formation by western blot. We found that db/db mice treated with saline exhibited an age-dependent decrease in CSF insulin and an increase in hippocampal tau phosphorylation. Liraglutide injection reversed the CSF insulin to ~1 mIU/L by the end of 8 weeks treatment, and prevented the hyperphosphorylation of tau protein in the hippocampal formation. By contrast, insulin injection had no effects on CSF insulin or phosphorylation of tau protein. In summary, this study indicates that early GLP-1 analog intervention prevented the age-dependent tau hyperphosphorylation in T2D mice brain, probably by facilitating sequential activation in an insulin signaling pathway reflected in increased basal activation of Akt and basal suppression of glycogen synthase kinase-3 beta.
Collapse
Affiliation(s)
- De-Lin Ma
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fu-Qiong Chen
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei-Jie Xu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen-Zhu Yue
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Yuan
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Yang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
64
|
Krassnig S, Schweinzer C, Taub N, Havas D, Auer E, Flunkert S, Schreibmayer W, Hutter-Paier B, Windisch M. Influence of Lentiviral β-Synuclein Overexpression in the Hippocampus of a Transgenic Mouse Model of Alzheimer's Disease on Amyloid Precursor Protein Metabolism and Pathology. NEURODEGENER DIS 2015; 15:243-57. [PMID: 26111745 DOI: 10.1159/000430952] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 04/26/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND β-Synuclein (β-Syn) is a member of the highly homologous synuclein protein family. The most prominent family member, α-synuclein (α-Syn), abnormally accumulates in so-called Lewy bodies, one of the major pathological hallmarks of α-synucleinopathies. Notably, parts of the peptide backbone, called the nonamyloid component, are also found in amyloid plaques. However, β-Syn seems to have beneficial effects by reducing α-Syn aggregation, and amyloid antiaggregatory activity has been described. OBJECTIVE The aim of the study was to analyze if wild-type β-Syn can counteract functional and pathological changes in a murine Alzheimer model over different time periods. METHODS At the onset of pathology, lentiviral particles expressing human β-Syn were injected into the hippocampus of transgenic mice overexpressing human amyloid precursor protein with Swedish and London mutations (APPSL). An empty vector served as the control. Behavioral analyses were performed 1, 3 and 6 months after injection followed by biochemical and histological examinations of brain samples. RESULTS β-Syn expression was locally concentrated and rather modest, but nevertheless changed its effect on APP expression and plaque load in a time- and concentration-dependent manner. Interestingly, the phosphorylation of glycogen synthase kinase 3 beta was enhanced in APPSL mice expressing human β-Syn, but an inverse trend was observed in wild-type animals. CONCLUSION The initially reported beneficial effects of β-Syn could be partially reproduced, but locally elevated levels of β-Syn might also cause neurodegeneration. To enlighten the controversial pathological mechanism of β-Syn, further examinations considering the relationship between concentration and exposure time of β-Syn are needed.
Collapse
|
65
|
Aloni E, Shapira M, Eldar-Finkelman H, Barnea A. GSK-3β Inhibition Affects Singing Behavior and Neurogenesis in Adult Songbirds. BRAIN, BEHAVIOR AND EVOLUTION 2015; 85:233-44. [PMID: 26065821 DOI: 10.1159/000382029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 04/01/2015] [Indexed: 11/19/2022]
Abstract
GSK-3 (glycogen synthase kinase-3) is a serine/threonine kinase which is a critical regulator in neuronal signaling, cognition, and behavior. We have previously shown that unlike other vertebrates that harbor both α and β GSK-3 genes, the α gene is missing in birds. Therefore, birds can be used as a new animal model to study the roles of GSK-3β in behavior and in regulating adult neurogenesis. In the present study, we inhibited GSK-3β in brains of adult male zebra finches (Taeniopygia guttata) and accordingly investigated how this inhibition affects behavior and cell proliferation. Our results show that GSK-3 inhibition: (1) affects specific aspects of singing behavior, which might be related to social interactions in birds, and (2) differentially affects cell proliferation in various parts of the ventricular zone. Taken together, our study demonstrates a role of GSK-3β in regulating singing behavior and neuronal proliferation in birds and highlights the importance of GSK-3β in modulating cognitive abilities as well as social behavior.
Collapse
Affiliation(s)
- Etay Aloni
- Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
66
|
Zhang Y, Yang HQ, Fang F, Song LL, Jiao YY, Wang H, Peng XL, Zheng YP, Wang J, He JS, Hung T. Single chain variable fragment against aβ expressed in baculovirus inhibits abeta fibril elongation and promotes its disaggregation. PLoS One 2015; 10:e0124736. [PMID: 25919299 PMCID: PMC4412524 DOI: 10.1371/journal.pone.0124736] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/03/2015] [Indexed: 12/20/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of age-related dementia, and the most urgent problem is that it is currently incurable. Amyloid-β (Aβ) peptide is believed to play a major role in the pathogenesis of AD. We previously reported that an Aβ N-terminal amino acid targeting monoclonal antibody (MAb), A8, inhibits Aβ fibril formation and has potential as an immunotherapy for AD based on a mouse model. To further study the underlying mechanisms, we tested our hypothesis that the single chain fragment variable (scFv) without the Fc fragment is capable of regulating either Aβ aggregation or disaggregation in vitro. Here, a model of cell-free Aβ “on-pathway” aggregation was established and identified using PCR, Western blot, ELISA, transmission electron microscopy (TEM) and thioflavin T (ThT) binding analyses. His-tagged A8 scFvs was cloned and solubly expressed in baculovirus. Our data demonstrated that the Ni-NTA agarose affinity-purified A8 scFv inhibited the forward reaction of “on-pathway” aggregation and Aβ fibril maturation. The effect of A8 scFv on Aβ fibrillogenesis was markedly more significant when administered at the start of the Aβ folding reaction. Furthermore, the results also showed that pre-formed Aβ fibrils could be disaggregated via incubation with purified A8 scFv, which suggested that A8 scFv is involved in the reverse reaction of Aβ aggregation. Therefore, A8 scFv was capable of both inhibiting fibrillogenesis and disaggregating matured fibrils. Our present study provides valuable insight into the regulators of ultrastructural dynamics of cell-free “on-pathway” Aβ aggregation and will assist in the development of therapeutic strategies for AD.
Collapse
Affiliation(s)
- Ying Zhang
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
- * E-mail:
| | - Hai-Qiang Yang
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Fang Fang
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Lin-Lin Song
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Yue-Ying Jiao
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - He Wang
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Xiang-Lei Peng
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Yan-Peng Zheng
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Jun Wang
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Jin-Sheng He
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Tao Hung
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
- Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| |
Collapse
|
67
|
Lin C, Lin HY, Chen JH, Tseng WP, Ko PY, Liu YS, Yeh WL, Lu DY. Effects of paeonol on anti-neuroinflammatory responses in microglial cells. Int J Mol Sci 2015; 16:8844-60. [PMID: 25906473 PMCID: PMC4425112 DOI: 10.3390/ijms16048844] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/07/2015] [Accepted: 04/14/2015] [Indexed: 12/17/2022] Open
Abstract
Increasing studies suggest that inflammatory processes in the central nervous system mediated by microglial activation plays an important role in numerous neurodegenerative diseases. Development of planning for microglial suppression is considered a key strategy in the search for neuroprotection. Paeonol is a major phenolic component of Moutan Cortex, widely used as a nutrient supplement in Chinese medicine. In this study, we investigated the effects of paeonol on microglial cells stimulated by inflammagens. Paeonol significantly inhibited the release of nitric oxide (NO) and the expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Treatment with paeonol also reduced reactive oxygen species (ROS) production and inhibited an ATP-induced increased cell migratory activity. Furthermore, the inhibitory effects of neuroinflammation by paeonol were found to be regulated by phosphorylated adenosine monophosphate-activated protein kinase-α (AMPK-α) and glycogen synthase kinase 3 α/β (GSK 3α/β). Treatment with AMPK or GSK3 inhibitors reverse the inhibitory effect of neuroinflammation by paeonol in microglial cells. Furthermore, paeonol treatment also showed significant improvement in the rotarod performance and microglial activation in the mouse model as well. The present study is the first to report a novel inhibitory role of paeonol on neuroinflammation, and presents a new candidate agent for the development of therapies for inflammation-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Chingju Lin
- Department of Physiology, School of Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Hsiao-Yun Lin
- Graduate Institute of Neural and Cognitive Sciences, China Medical University, Taichung 40402, Taiwan.
| | - Jia-Hong Chen
- Department of General Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 42743, Taiwan.
| | - Wen-Pei Tseng
- Graduate Institute of Sports and Health, National Changhua University of Education, Changhua 500, Taiwan.
| | - Pei-Ying Ko
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan.
| | - Yu-Shu Liu
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.
| | - Wei-Lan Yeh
- Department of Cell and Tissue Engineering, Changhua Christian Hospital, Changhua 500, Taiwan.
| | - Dah-Yuu Lu
- Graduate Institute of Neural and Cognitive Sciences, China Medical University, Taichung 40402, Taiwan.
- Department of Photonics and Communication Engineering, Asia University, Taichung 40402, Taiwan.
| |
Collapse
|
68
|
Besing RC, Paul JR, Hablitz LM, Rogers CO, Johnson RL, Young ME, Gamble KL. Circadian rhythmicity of active GSK3 isoforms modulates molecular clock gene rhythms in the suprachiasmatic nucleus. J Biol Rhythms 2015; 30:155-60. [PMID: 25724980 PMCID: PMC4586074 DOI: 10.1177/0748730415573167] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The suprachiasmatic nucleus (SCN) drives and synchronizes daily rhythms at the cellular level via transcriptional-translational feedback loops comprising clock genes such as Bmal1 and Period (Per). Glycogen synthase kinase 3 (GSK3), a serine/threonine kinase, phosphorylates at least 5 core clock proteins and shows diurnal variation in phosphorylation state (inactivation) of the GSK3β isoform. Whether phosphorylation of the other primary isoform (GSK3α) varies across the subjective day-night cycle is unknown. The purpose of this study was to determine if the endogenous rhythm of GSK3 (α and β) phosphorylation is critical for rhythmic BMAL1 expression and normal amplitude and periodicity of the molecular clock in the SCN. Significant circadian rhythmicity of phosphorylated GSK3 (α and β) was observed in the SCN from wild-type mice housed in constant darkness for 2 weeks. Importantly, chronic activation of both GSK3 isoforms impaired rhythmicity of the GSK3 target BMAL1. Furthermore, chronic pharmacological inhibition of GSK3 with 20 µM CHIR-99021 enhanced the amplitude and shortened the period of PER2::luciferase rhythms in organotypic SCN slice cultures. These results support the model that GSK3 activity status is regulated by the circadian clock and that GSK3 feeds back to regulate the molecular clock amplitude in the SCN.
Collapse
Affiliation(s)
| | - Jodi R Paul
- Department of Psychiatry and Behavioral Neurobiology
| | | | | | | | - Martin E Young
- Division of Cardiovascular Diseases, Department of Medicine; University of Alabama at Birmingham, Birmingham, Alabama
| | | |
Collapse
|
69
|
O'Leary O, Nolan Y. Glycogen synthase kinase-3 as a therapeutic target for cognitive dysfunction in neuropsychiatric disorders. CNS Drugs 2015; 29:1-15. [PMID: 25380674 DOI: 10.1007/s40263-014-0213-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The serine/threonine kinase glycogen synthase kinase-3 (GSK-3) is involved in a broad range of cellular processes including cell proliferation, apoptosis and inflammation. It is now also increasingly acknowledged as having a role to play in cognitive-related processes such as neurogenesis, synaptic plasticity and neural cell survival. Cognitive impairment represents a major debilitating feature of many neurodegenerative and psychiatric disorders, including Alzheimer's disease, mood disorders, schizophrenia and fragile X syndrome, as well as being a result of traumatic brain injury or cranial irradiation. Accordingly, GSK-3 has been identified as an important therapeutic target for cognitive impairment, and recent preclinical studies have yielded important evidence demonstrating that GSK-3 inhibitors may be useful therapeutic interventions for restoring cognitive function in some of these brain disorders. The current review summarises the role of GSK-3 as a regulator of cognitive-dependent functions, examines current preclinical and clinical evidence of the potential of GSK-3 inhibitors as therapeutic agents for cognitive impairments in neuropsychiatric disorders, and offers some insight into the current obstacles that are impeding the clinical use of selective GSK-3 inhibitors in the treatment of cognitive impairment.
Collapse
Affiliation(s)
- Olivia O'Leary
- Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork, Room 4.10, Cork, Ireland
| | | |
Collapse
|
70
|
Serrano FG, Tapia-Rojas C, Carvajal FJ, Hancke J, Cerpa W, Inestrosa NC. Andrographolide reduces cognitive impairment in young and mature AβPPswe/PS-1 mice. Mol Neurodegener 2014; 9:61. [PMID: 25524173 PMCID: PMC4414355 DOI: 10.1186/1750-1326-9-61] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 12/06/2014] [Indexed: 12/29/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder in which the amyloid-β (Aβ) oligomers are a key factor in synaptic impairment and in spatial memory decline associated with neuronal dysfunction. This impairment includes synaptic failure associated with the loss of synaptic proteins that contribute to AD progression. Interestingly, the use of natural compounds is an emergent conceptual strategy in the search for drugs with therapeutic potentials for treating neurodegenerative disorders. In the present study, we report that andrographolide (ANDRO), which is a labdane diterpene extracted from Andrographis paniculata, increases slope of field excitatory postsynaptic potentials (fEPSP) in the CA1 region of hippocampal slices and inhibits long-term depression (LTD), protecting the long-term potentiation (LTP) against the damage induced by Aβ oligomers in vitro, most likely by inhibiting glycogen synthase kinase-3β (GSK-3β). Additionally, ANDRO prevents changes in neuropathology in two different age groups (7- and 12-month-old mice) of an AβPPswe/PS-1 Alzheimer’s model. ANDRO reduces the Aβ levels, changing the ontogeny of amyloid plaques in hippocampi and cortices in 7-month-old mice, and reduces tau phosphorylation around the Aβ oligomeric species in both age groups. Additionally, we observed that ANDRO recovers spatial memory functions that correlate with protecting synaptic plasticity and synaptic proteins in two different age groups. Our results suggest that ANDRO could be used in a potential preventive therapy during AD progression.
Collapse
Affiliation(s)
- Felipe G Serrano
- Centro de Envejecimiento y Regeneración (CARE), Santiago, Chile.
| | | | - Francisco J Carvajal
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Juan Hancke
- Instituto de Farmacología y Morfofisiología, Universidad Austral de Chile, Valdivia, Chile.
| | - Waldo Cerpa
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Santiago, Chile. .,Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Center of Healthy Brain Aging, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia. .,Centro UC Síndrome de Down, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile. .,CARE Biomedical Center, P. Catholic University of Chile, Postal code 8331150, PO Box 114-D, Santiago, Chile.
| |
Collapse
|
71
|
Beurel E, Grieco SF, Jope RS. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther 2014; 148:114-31. [PMID: 25435019 DOI: 10.1016/j.pharmthera.2014.11.016] [Citation(s) in RCA: 1239] [Impact Index Per Article: 112.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 11/18/2014] [Indexed: 12/23/2022]
Abstract
Glycogen synthase kinase-3 (GSK3) may be the busiest kinase in most cells, with over 100 known substrates to deal with. How does GSK3 maintain control to selectively phosphorylate each substrate, and why was it evolutionarily favorable for GSK3 to assume such a large responsibility? GSK3 must be particularly adaptable for incorporating new substrates into its repertoire, and we discuss the distinct properties of GSK3 that may contribute to its capacity to fulfill its roles in multiple signaling pathways. The mechanisms regulating GSK3 (predominantly post-translational modifications, substrate priming, cellular trafficking, protein complexes) have been reviewed previously, so here we focus on newly identified complexities in these mechanisms, how each of these regulatory mechanism contributes to the ability of GSK3 to select which substrates to phosphorylate, and how these mechanisms may have contributed to its adaptability as new substrates evolved. The current understanding of the mechanisms regulating GSK3 is reviewed, as are emerging topics in the actions of GSK3, particularly its interactions with receptors and receptor-coupled signal transduction events, and differential actions and regulation of the two GSK3 isoforms, GSK3α and GSK3β. Another remarkable characteristic of GSK3 is its involvement in many prevalent disorders, including psychiatric and neurological diseases, inflammatory diseases, cancer, and others. We address the feasibility of targeting GSK3 therapeutically, and provide an update of its involvement in the etiology and treatment of several disorders.
Collapse
Affiliation(s)
- Eleonore Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Steven F Grieco
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Richard S Jope
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States.
| |
Collapse
|
72
|
Stancu IC, Vasconcelos B, Terwel D, Dewachter I. Models of β-amyloid induced Tau-pathology: the long and "folded" road to understand the mechanism. Mol Neurodegener 2014; 9:51. [PMID: 25407337 PMCID: PMC4255655 DOI: 10.1186/1750-1326-9-51] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 10/14/2014] [Indexed: 02/28/2023] Open
Abstract
The amyloid cascade hypothesis has been the prevailing hypothesis in Alzheimer’s Disease research, although the final and most wanted proof i.e. fully successful anti-amyloid clinical trials in patients, is still lacking. This may require a better in depth understanding of the cascade. Particularly, the exact toxic forms of Aβ and Tau, the molecular link between them and their respective contributions to the disease process need to be identified in detail. Although the lack of final proof has raised substantial criticism on the hypothesis per se, accumulating experimental evidence in in vitro models, in vivo models and from biomarkers analysis in patients supports the amyloid cascade and particularly Aβ-induced Tau-pathology, which is the focus of this review. We here discuss available models that recapitulate Aβ-induced Tau-pathology and review some potential underlying mechanisms. The availability and diversity of these models that mimic the amyloid cascade partially or more complete, provide tools to study remaining questions, which are crucial for development of therapeutic strategies for Alzheimer’s Disease.
Collapse
Affiliation(s)
| | | | | | - Ilse Dewachter
- Catholic University of Louvain, Institute of Neuroscience, Alzheimer Dementia, Av, E, Mounier 53, Av, Hippocrate 54, B-1200 Brussels, Belgium.
| |
Collapse
|
73
|
Abstract
Understanding the molecular signaling pathways that go awry in Alzheimer's disease (AD) would provide insights into developing novel therapies for this devastating neurodegenerative disease. Previous work has established that hyperactive glycogen synthase kinase-3 (GSK3) is linked to both "sporadic" and "genetic" forms of AD, suggesting a crucial role of GSK3 in AD pathogenesis. Therefore, inhibition of GSK3 activity has been intensely investigated as a potential therapeutic intervention for AD. GSK3 exists in two isoforms: GSK3α and GSK3β. Markedly, recent studies indicate specific contributions of each of the α and β isoforms of GSK3 to AD pathogenesis, suggesting a role of both isoforms in the disease. Here I review recent relevant work investigating isoform-specific roles of GSK3 in AD pathophysiology, highlighting the emerging role of GSK3α, which has been largely overlooked in favor of the more extensive studies of GSK3β.
Collapse
Affiliation(s)
- Tao Ma
- Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
74
|
Lim S, Haque MM, Kim D, Kim DJ, Kim YK. Cell-based Models To Investigate Tau Aggregation. Comput Struct Biotechnol J 2014; 12:7-13. [PMID: 25505502 PMCID: PMC4262059 DOI: 10.1016/j.csbj.2014.09.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/20/2014] [Accepted: 09/24/2014] [Indexed: 12/14/2022] Open
Abstract
Accumulation of abnormal tau aggregates in neuron is an important pathological signature in multiple neurodegenerative disorders including Alzheimer's disease. Tau is a neuron specific microtubule-associated protein that regulates microtubule stability, which is critical for axonal outgrowth and synaptic plasticity. In a pathological condition, tau dissociates from microtubules and forms insoluble aggregates called neurofibrillary tangles (NFTs). The accumulation of NFTs in neuron directly correlates with microtubule dysfunction and neuronal degeneration. Due to the pathophysiological importance of tau, great efforts have been made to understand tau aggregation processes and find therapeutics to halt or reverse the processes. However, progress has been slow due to the lack of a suitable method for monitoring tau aggregation. In this mini-review, we will review the conventional methods for studying tau aggregation, and introduce recent cell-based sensor approaches that allow monitoring tau aggregation in living cells.
Collapse
Affiliation(s)
- Sungsu Lim
- Center for Neuro-medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 136-791, Republic of Korea
| | - Md Mamunul Haque
- Center for Neuro-medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 136-791, Republic of Korea ; Biological Chemistry, University of Science and Technology, Daejon 305-333, Republic of Korea
| | - Dohee Kim
- Center for Neuro-medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 136-791, Republic of Korea ; Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Dong Jin Kim
- Center for Neuro-medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 136-791, Republic of Korea
| | - Yun Kyung Kim
- Center for Neuro-medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 136-791, Republic of Korea
| |
Collapse
|
75
|
Llorens-Martín M, Jurado J, Hernández F, Avila J. GSK-3β, a pivotal kinase in Alzheimer disease. Front Mol Neurosci 2014; 7:46. [PMID: 24904272 PMCID: PMC4033045 DOI: 10.3389/fnmol.2014.00046] [Citation(s) in RCA: 253] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/02/2014] [Indexed: 01/10/2023] Open
Abstract
Alzheimer disease (AD) is the most common form of age-related dementia. The etiology of AD is considered to be multifactorial as only a negligible percentage of cases have a familial or genetic origin. Glycogen synthase kinase-3 (GSK-3) is regarded as a critical molecular link between the two histopathological hallmarks of the disease, namely senile plaques and neurofibrillary tangles. In this review, we summarize current data regarding the involvement of this kinase in several aspects of AD development and progression, as well as key observations highlighting GSK-3 as one of the most relevant targets for AD treatment.
Collapse
Affiliation(s)
| | - Jerónimo Jurado
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid Madrid, Spain ; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III Madrid, Spain
| | - Félix Hernández
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid Madrid, Spain ; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III Madrid, Spain ; Biology Faculty, Autónoma University Madrid, Spain
| | - Jesús Avila
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid Madrid, Spain ; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III Madrid, Spain
| |
Collapse
|
76
|
Fermenting soybeans with Bacillus licheniformis potentiates their capacity to improve cognitive function and glucose homeostaisis in diabetic rats with experimental Alzheimer’s type dementia. Eur J Nutr 2014; 54:77-88. [DOI: 10.1007/s00394-014-0687-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 03/11/2014] [Indexed: 01/07/2023]
|
77
|
Stancu IC, Ris L, Vasconcelos B, Marinangeli C, Goeminne L, Laporte V, Haylani LE, Couturier J, Schakman O, Gailly P, Pierrot N, Kienlen-Campard P, Octave JN, Dewachter I. Tauopathy contributes to synaptic and cognitive deficits in a murine model for Alzheimer's disease. FASEB J 2014; 28:2620-31. [PMID: 24604080 DOI: 10.1096/fj.13-246702] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tau alterations are now considered an executor of neuronal demise and cognitive dysfunction in Alzheimer's disease (AD). Mouse models combining amyloidosis and tauopathy and their parental counterparts are important tools to further investigate the interplay of abnormal amyloid-β (Aβ) and Tau species in pathogenesis, synaptic and neuronal dysfunction, and cognitive decline. Here, we crossed APP/PS1 mice with 5 early-onset familial AD mutations (5xFAD) and TauP301S (PS19) transgenic mice, denoted F(+)/T(+) mice, and phenotypically compared them to their respective parental strains, denoted F(+)/T(-) and F(-)/T(+) respectively, as controls. We found dramatically aggravated tauopathy (~10-fold) in F(+)/T(+) mice compared to the parental F(-)/T(+) mice. In contrast, amyloidosis was unaltered compared to the parental F(+)/T(-) mice. Tauopathy was invariably and very robustly aggravated in hippocampal and cortical brain regions. Most important, F(+)/T(+) displayed aggravated cognitive deficits in a hippocampus-dependent spatial navigation task, compared to the parental F(+)/T(-) strain, while parental F(-)/T(+) mice did not display cognitive impairment. Basal synaptic transmission was impaired in F(+)/T(+) mice compared to nontransgenic mice and the parental strains (≥40%). Finally, F(+)/T(+) mice displayed a significant hippocampal atrophy (~20%) compared to nontransgenic mice, in contrast to the parental strains. Our data indicate for the first time that pathological Aβ species (or APP/PS1) induced changes in Tau contribute to cognitive deficits correlating with synaptic deficits and hippocampal atrophy in an AD model. Our data lend support to the amyloid cascade hypothesis with a role of pathological Aβ species as initiator and pathological Tau species as executor.
Collapse
Affiliation(s)
| | - Laurence Ris
- Department of Neurosciences, University of Mons, Mons, Belgium
| | | | | | | | | | | | | | - Olivier Schakman
- Department of Cell Physiology, Institute of Neuroscience, Catholic University of Louvain, Brussels, Belgium; and
| | - Philippe Gailly
- Department of Cell Physiology, Institute of Neuroscience, Catholic University of Louvain, Brussels, Belgium; and
| | | | | | | | | |
Collapse
|
78
|
Ahn J, Jang J, Choi J, Lee J, Oh SH, Lee J, Yoon K, Kim S. GSK3β, but not GSK3α, inhibits the neuronal differentiation of neural progenitor cells as a downstream target of mammalian target of rapamycin complex1. Stem Cells Dev 2014; 23:1121-33. [PMID: 24397546 DOI: 10.1089/scd.2013.0397] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3) acts as an important regulator during the proliferation and differentiation of neural progenitor cells (NPCs), but the roles of the isoforms of this molecule (GSK3α and GSK3β) have not been clearly defined. In this study, we investigated the functions of GSK3α and GSK3β in the context of neuronal differentiation of murine NPCs. Treatment of primary NPCs with a GSK3 inhibitor (SB216763) resulted in an increase in the percentage of TuJ1-positive immature neurons, suggesting an inhibitory role of GSK3 in embryonic neurogenesis. Downregulation of GSK3β expression increased the percentage of TuJ1-positive cells, while knock-down of GSK3α seemed to have no effect. When primary NPCs were engineered to stably express either isoform of GSK3 using retroviral vectors, GSK3β, but not GSK3α, inhibited neuronal differentiation and helped the cells to maintain the characteristics of NPCs. Mutant GSK3β (Y216F) failed to suppress neuronal differentiation, indicating that the kinase activity of GSK3β is important for this regulatory function. Similar results were obtained in vivo when a retroviral vector expressing GSK3β was delivered to E9.5 mouse brains using the ultrasound image-guided gene delivery technique. In addition, SB216763 was found to block the rapamycin-mediated inhibition of neuronal differentiation of NPCs. Taken together, our results demonstrate that GSK3β, but not GSK3α, negatively controls the neuronal differentiation of progenitor cells and that GSK3β may act downstream of the mammalian target of rapamycin complex1 signaling pathway.
Collapse
Affiliation(s)
- Jyhyun Ahn
- 1 School of Biological Sciences, Seoul National University , Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Farr SA, Ripley JL, Sultana R, Zhang Z, Niehoff ML, Platt TL, Murphy MP, Morley JE, Kumar V, Butterfield DA. Antisense oligonucleotide against GSK-3β in brain of SAMP8 mice improves learning and memory and decreases oxidative stress: Involvement of transcription factor Nrf2 and implications for Alzheimer disease. Free Radic Biol Med 2014; 67:387-95. [PMID: 24355211 PMCID: PMC3945161 DOI: 10.1016/j.freeradbiomed.2013.11.014] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 11/12/2013] [Accepted: 11/14/2013] [Indexed: 12/30/2022]
Abstract
Glycogen synthase kinase (GSK)-3β is a multifunctional protein that has been implicated in the pathological characteristics of Alzheimer's disease (AD), including the heightened levels of neurofibrillary tangles, amyloid-beta (Aβ), and neurodegeneration. In this study we used 12-month-old SAMP8 mice, an AD model, to examine the effects GSK-3β may cause regarding the cognitive impairment and oxidative stress associated with AD. To suppress the level of GSK-3β, SAMP8 mice were treated with an antisense oligonucleotide (GAO) directed at this kinase. We measured a decreased level of GSK-3β in the cortex of the mice, indicating the success of the antisense treatment. Learning and memory assessments of the SAMP8 mice were tested post-antisense treatment using an aversive T-maze and object recognition test, both of which observably improved. In cortex samples of the SAMP8 mice, decreased levels of protein carbonyl and protein-bound HNE were measured, indicating decreased oxidative stress. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a transcription factor known to increase the level of many antioxidants, including glutathione-S transferase (GST), and is negatively regulated by the activity of GSK-3β. Our results indicated the increased nuclear localization of Nrf2 and level of GST, suggesting the increased activity of the transcription factor as a result of GSK-3β suppression, consistent with the decreased oxidative stress observed. Consistent with the improved learning and memory, and consistent with GSK-3b being a tau kinase, we observed decreased tau phosphorylation in brain of GAO-treated SAMP8 mice compared to that of RAO-treated SAMP8 mice. Lastly, we examined the ability of GAO to cross the blood-brain barrier and determined it to be possible. The results presented in this study demonstrate that reducing GSK-3 with a phosphorothionated antisense against GSK-3 improves learning and memory, reduces oxidative stress, possibly coincident with increased levels of the antioxidant transcriptional activity of Nrf2, and decreases tau phosphorylation. Our study supports the notion of GAO as a possible treatment for AD.
Collapse
Affiliation(s)
- Susan A Farr
- Research & Development Service, VA Medical Center, St. Louis, MO, USA
| | - Jessica L Ripley
- Department of Chemistry, Center of Membrane Sciences, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Rukhsana Sultana
- Department of Chemistry, Center of Membrane Sciences, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Zhaoshu Zhang
- Department of Chemistry, Center of Membrane Sciences, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Michael L Niehoff
- Research & Development Service, VA Medical Center, St. Louis, MO, USA
| | - Thomas L Platt
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - M Paul Murphy
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - John E Morley
- Research & Development Service, VA Medical Center, St. Louis, MO, USA; Division of Endocrinology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Vijaya Kumar
- Research & Development Service, VA Medical Center, St. Louis, MO, USA; Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
80
|
Medina M, Avila J. Understanding the relationship between GSK-3 and Alzheimer’s disease: a focus on how GSK-3 can modulate synaptic plasticity processes. Expert Rev Neurother 2014; 13:495-503. [DOI: 10.1586/ern.13.39] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
81
|
King MK, Pardo M, Cheng Y, Downey K, Jope RS, Beurel E. Glycogen synthase kinase-3 inhibitors: Rescuers of cognitive impairments. Pharmacol Ther 2014; 141:1-12. [PMID: 23916593 PMCID: PMC3867580 DOI: 10.1016/j.pharmthera.2013.07.010] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 07/18/2013] [Indexed: 01/02/2023]
Abstract
Impairment of cognitive processes is a devastating outcome of many diseases, injuries, and drugs affecting the central nervous system (CNS). Most often, very little can be done by available therapeutic interventions to improve cognitive functions. Here we review evidence that inhibition of glycogen synthase kinase-3 (GSK3) ameliorates cognitive deficits in a wide variety of animal models of CNS diseases, including Alzheimer's disease, Fragile X syndrome, Down syndrome, Parkinson's disease, spinocerebellar ataxia type 1, traumatic brain injury, and others. GSK3 inhibitors also improve cognition following impairments caused by therapeutic interventions, such as cranial irradiation for brain tumors. These findings demonstrate that GSK3 inhibitors are able to ameliorate cognitive impairments caused by a diverse array of diseases, injury, and treatments. The improvements in impaired cognition instilled by administration of GSK3 inhibitors appear to involve a variety of different mechanisms, such as supporting long-term potentiation and diminishing long-term depression, promotion of neurogenesis, reduction of inflammation, and increasing a number of neuroprotective mechanisms. The potential for GSK3 inhibitors to repair cognitive deficits associated with many conditions warrants further investigation of their potential for therapeutic interventions, particularly considering the current dearth of treatments available to reduce loss of cognitive functions.
Collapse
Affiliation(s)
- Margaret K King
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Marta Pardo
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Yuyan Cheng
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Kimberlee Downey
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Richard S Jope
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
82
|
Bartman CM, Egelston J, Kattula S, Zeidner LC, D’Ippolito A, Doble BW, Phiel CJ. Gene Expression Profiling in Mouse Embryonic Stem Cells Reveals Glycogen Synthase Kinase-3-Dependent Targets of Phosphatidylinositol 3-Kinase and Wnt/β-Catenin Signaling Pathways. Front Endocrinol (Lausanne) 2014; 5:133. [PMID: 25165462 PMCID: PMC4131280 DOI: 10.3389/fendo.2014.00133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/28/2014] [Indexed: 11/13/2022] Open
Abstract
Glycogen synthase kinase-3 (Gsk-3) activity is an important regulator of numerous signal transduction pathways. Gsk-3 activity is the sum of two largely redundant proteins, Gsk-3α and Gsk-3β, and in general, Gsk-3 is a negative regulator of cellular signaling. Genetic deletion of both Gsk-3α and Gsk-3β in mouse embryonic stem cells (ESCs) has previously been shown to lead to the constitutive activation of the Wnt/β-catenin signaling pathway. However, in addition to Wnt signaling, all Gsk-3-regulated pathways, such as insulin signaling, are also affected simultaneously in Gsk-3α(-) (/) (-); Gsk-3β(-) (/) (-)ESCs. In an effort to better understand how specific signaling pathways contribute to the global pattern of gene expression in Gsk-3α(-) (/) (-); Gsk-3β(-) (/) (-)ESCs, we compared the gene expression profiles in Gsk-3α(-) (/) (-); Gsk-3β(-) (/) (-) ESCs to mouse ESCs in which either Wnt/β-catenin signaling or phosphatidylinositol 3-kinase (PI3K)-dependent insulin signaling are constitutively active. Our results show that Wnt signaling has a greater effect on up-regulated genes in the Gsk-3α(-) (/) (-); Gsk-3β(-) (/) (-)ESCs, whereas PI3K-dependent insulin signaling is more responsible for the down-regulation of genes in the same cells. These data show the importance of Gsk-3 activity on gene expression in mouse ESCs, and that these effects are due to the combined effects of multiple signaling pathways.
Collapse
Affiliation(s)
- Colleen M. Bartman
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
| | - Jennifer Egelston
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
| | - Sravya Kattula
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
| | - Leigh C. Zeidner
- Center for Human and Molecular Genetics, Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Anthony D’Ippolito
- Center for Human and Molecular Genetics, Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Bradley W. Doble
- Stem Cell and Cancer Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Christopher J. Phiel
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
- *Correspondence: Christopher J. Phiel, Department of Integrative Biology, University of Colorado Denver, Campus Box 171, P.O. Box 173364, Denver, CO 80217-3364, USA e-mail:
| |
Collapse
|
83
|
Holland JP, Liang SH, Rotstein BH, Collier TL, Stephenson NA, Greguric I, Vasdev N. Alternative approaches for PET radiotracer development in Alzheimer's disease: imaging beyond plaque. J Labelled Comp Radiopharm 2013; 57:323-31. [PMID: 24327420 DOI: 10.1002/jlcr.3158] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/29/2013] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) and related dementias show increasing clinical prevalence, yet our understanding of the etiology and pathobiology of disease-related neurodegeneration remains limited. In this regard, noninvasive imaging with radiotracers for positron emission tomography (PET) presents a unique tool for quantifying spatial and temporal changes in characteristic biological markers of brain disease and for assessing potential drug efficacy. PET radiotracers targeting different protein markers are being developed to address questions pertaining to the molecular and/or genetic heterogeneity of AD and related dementias. For example, radiotracers including [(11) C]-PiB and [(18) F]-AV-45 (Florbetapir) are being used to measure the density of Aβ-plaques in AD patients and to interrogate the biological mechanisms of disease initiation and progression. Our focus is on the development of novel PET imaging agents, targeting proteins beyond Aβ-plaques, which can be used to investigate the broader mechanism of AD pathogenesis. Here, we present the chemical basis of various radiotracers which show promise in preclinical or clinical studies for use in evaluating the phenotypic or biochemical characteristics of AD. Radiotracers for PET imaging neuroinflammation, metal ion association with Aβ-plaques, tau protein, cholinergic and cannabinoid receptors, and enzymes including glycogen-synthase kinase-3β and monoamine oxidase B amongst others, and their connection to AD are highlighted.
Collapse
Affiliation(s)
- Jason P Holland
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Department of Radiology, Harvard Medical School, 55 Fruit St., White 427, Boston, Massachusetts, 02114, USA; Life Sciences, Australian Nuclear Science and Technology Organisation, Kirrawee, New South Wales, 2232, Australia
| | | | | | | | | | | | | |
Collapse
|
84
|
De Montigny A, Elhiri I, Allyson J, Cyr M, Massicotte G. NMDA reduces Tau phosphorylation in rat hippocampal slices by targeting NR2A receptors, GSK3β, and PKC activities. Neural Plast 2013; 2013:261593. [PMID: 24349798 PMCID: PMC3856160 DOI: 10.1155/2013/261593] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/11/2013] [Indexed: 01/06/2023] Open
Abstract
The molecular mechanisms that regulate Tau phosphorylation are complex and currently incompletely understood. In the present study, pharmacological inhibitors were deployed to investigate potential processes by which the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors modulates Tau phosphorylation in rat hippocampal slices. Our results demonstrated that Tau phosphorylation at Ser199-202 residues was decreased in NMDA-treated hippocampal slices, an effect that was not reproduced at Ser262 and Ser404 epitopes. NMDA-induced reduction of Tau phosphorylation at Ser199-202 was further promoted when NR2A-containing receptors were pharmacologically isolated and were completely abrogated by the NR2A receptor antagonist NVP-AAM077. Compared with nontreated slices, we observed that NMDA receptor activation was reflected in high Ser9 and low Tyr216 phosphorylation of glycogen synthase kinase-3 beta (GSK3β), suggesting that NMDA receptor activation might diminish Tau phosphorylation via a pathway involving GSK3β inhibition. Accordingly, we found that GSK3β inactivation by a protein kinase C- (PKC-) dependent mechanism is involved in the NMDA-induced reduction of Tau phosphorylation at Ser199-202 epitopes. Taken together, these data indicate that NR2A receptor activation may be important in limiting Tau phosphorylation by a PKC/GSK3β pathway and strengthen the idea that these receptors might act as an important molecular device counteracting neuronal cell death mechanisms in various pathological conditions.
Collapse
Affiliation(s)
- Audrée De Montigny
- Groupe de Recherche en Neuroscience, Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada G9A 5H7
| | - Ismaël Elhiri
- Groupe de Recherche en Neuroscience, Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada G9A 5H7
| | - Julie Allyson
- Groupe de Recherche en Neuroscience, Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada G9A 5H7
| | - Michel Cyr
- Groupe de Recherche en Neuroscience, Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada G9A 5H7
| | - Guy Massicotte
- Groupe de Recherche en Neuroscience, Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada G9A 5H7
| |
Collapse
|
85
|
Hohman TJ, Koran MEI, Thornton-Wells TA. Interactions between GSK3β and amyloid genes explain variance in amyloid burden. Neurobiol Aging 2013; 35:460-5. [PMID: 24112793 DOI: 10.1016/j.neurobiolaging.2013.08.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 08/28/2013] [Indexed: 01/25/2023]
Abstract
The driving theoretical framework of Alzheimer's disease (AD) has been built around the amyloid-β (Aβ) cascade in which amyloid pathology precedes and drives tau pathology. Other evidence has suggested that tau and amyloid pathology may arise independently. Both lines of research suggest that there may be epistatic relationships between genes involved in amyloid and tau pathophysiology. In the current study, we hypothesized that genes coding glycogen synthase kinase 3 (GSK-3) and comparable tau kinases would modify genetic risk for amyloid plaque pathology. Quantitative amyloid positron emission tomography data from the Alzheimer's Disease Neuroimaging Initiative served as the quantitative outcome in regression analyses, covarying for age, gender, and diagnosis. Three interactions reached statistical significance, all involving the GSK3β single nucleotide polymorphism rs334543-2 with APBB2 (rs2585590, rs3098914) and 1 with APP (rs457581). These interactions explained 1.2%, 1.5%, and 1.5% of the variance in amyloid deposition respectively. Our results add to a growing literature on the role of GSK-3 activity in amyloid processing and suggest that combined variation in GSK3β and APP-related genes may result in increased amyloid burden.
Collapse
Affiliation(s)
- Timothy J Hohman
- Center for Human Genetics and Research, Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | | | | | | |
Collapse
|
86
|
Medina M, Avila J. New insights into the role of glycogen synthase kinase-3 in Alzheimer's disease. Expert Opin Ther Targets 2013; 18:69-77. [DOI: 10.1517/14728222.2013.843670] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
87
|
Fuzzati-Armentero MT, Ghezzi C, Nisticò R, Oda A, Blandini F. Single or combined treatment with L-DOPA and quinpirole differentially modulate expression and phosphorylation of key regulatory kinases in neuroblastoma cells. Neurosci Lett 2013; 552:168-73. [PMID: 23896526 DOI: 10.1016/j.neulet.2013.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/30/2013] [Accepted: 07/18/2013] [Indexed: 10/26/2022]
Abstract
In the past decades, the clinical use of dopamine agonists has expanded from adjunct therapy in patients with a deteriorating response to L-3,4-dihydroxyphenylalanine (L-DOPA) to monotherapy for the treatment of early PD. Dopamine agonists provide their antiparkinsonian benefit through stimulation of brain postsynaptic type 2 dopamine receptors that exert their effect through classical cAMP-dependent mechanisms, as well as cAMP-independent cellular signaling cascades, including the Akt/glycogen synthase kinase 3 (GSK3) pathway. Alterations of Akt/GSK3 have been observed and may contribute to the neurodegenerative processes and the development of L-DOPA-induced dyskinesia. The effects L-DOPA and quinpirole, a dopamine agonist, on the two key regulatory kinases, Akt and GSK3, were evaluated in neuroblastoma cell line. L-DOPA and dopamine agonist dose-dependently and differentially modulated Akt and GSK3 expression and phosphorylation when added alone or combined. The combined treatment inverted or potentiated the modulatory properties of the single compound. The drug- and concentration-dependent balance of dopamine receptor stimulation over auto-oxidation may distinctively modulate GSK3 isoforms and Akt. Our results indicate that particular attention must be given to drug concentration and combination when multiple therapies are applied for the clinical treatment of PD patients.
Collapse
|
88
|
Abstract
The pathway leading from soluble and monomeric to hyperphosphorylated, insoluble and filamentous tau protein is at the centre of many human neurodegenerative diseases, collectively referred to as tauopathies. Dominantly inherited mutations in MAPT, the gene that encodes tau, cause forms of frontotemporal dementia and parkinsonism, proving that dysfunction of tau is sufficient to cause neurodegeneration and dementia. However, most cases of tauopathy are not inherited in a dominant manner. The first tau aggregates form in a few nerve cells in discrete brain areas. These become self propagating and spread to distant brain regions in a prion-like manner. The prevention of tau aggregation and propagation is the focus of attempts to develop mechanism-based treatments for tauopathies.
Collapse
Affiliation(s)
- Maria Grazia Spillantini
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
89
|
Targeting the mTOR Signaling Network for Alzheimer’s Disease Therapy. Mol Neurobiol 2013; 49:120-35. [DOI: 10.1007/s12035-013-8505-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 07/01/2013] [Indexed: 12/29/2022]
|
90
|
Daulatzai MA. Neurotoxic Saboteurs: Straws that Break the Hippo’s (Hippocampus) Back Drive Cognitive Impairment and Alzheimer’s Disease. Neurotox Res 2013; 24:407-59. [DOI: 10.1007/s12640-013-9407-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/06/2013] [Accepted: 06/17/2013] [Indexed: 12/29/2022]
|
91
|
Avrahami L, Licht-Murava A, Eisenstein M, Eldar-Finkelman H. GSK-3 inhibition: Achieving moderate efficacy with high selectivity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1410-4. [DOI: 10.1016/j.bbapap.2013.01.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/15/2013] [Indexed: 02/06/2023]
|
92
|
Yoshiyama Y, Lee VMY, Trojanowski JQ. Therapeutic strategies for tau mediated neurodegeneration. J Neurol Neurosurg Psychiatry 2013; 84:784-95. [PMID: 23085937 PMCID: PMC3912572 DOI: 10.1136/jnnp-2012-303144] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Based on the amyloid hypothesis, controlling β-amyloid protein (Aβ) accumulation is supposed to suppress downstream pathological events, tau accumulation, neurodegeneration and cognitive decline. However, in recent clinical trials, Aβ removal or reducing Aβ production has shown limited efficacy. Moreover, while active immunisation with Aβ resulted in the clearance of Aβ, it did not prevent tau pathology or neurodegeneration. This prompts the concern that it might be too late to employ Aβ targeting therapies once tau mediated neurodegeneration has occurred. Therefore, it is timely and very important to develop tau directed therapies. The pathomechanisms of tau mediated neurodegeneration are unclear but hyperphosphorylation, oligomerisation, fibrillisation and propagation of tau pathology have been proposed as the likely pathological processes that induce loss of function or gain of toxic function of tau, causing neurodegeneration. Here we review the strategies for tau directed treatments based on recent progress in research on tau and our understanding of the pathomechanisms of tau mediated neurodegeneration.
Collapse
Affiliation(s)
- Yasumasa Yoshiyama
- Department of Neurology, Chiba East National Hospital, 673 Nitona, Chuo Ward, Chiba, Chiba 260-8712, Japan.
| | | | | |
Collapse
|
93
|
Reddy PH. Amyloid beta-induced glycogen synthase kinase 3β phosphorylated VDAC1 in Alzheimer's disease: implications for synaptic dysfunction and neuronal damage. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1913-21. [PMID: 23816568 DOI: 10.1016/j.bbadis.2013.06.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/17/2013] [Accepted: 06/21/2013] [Indexed: 01/10/2023]
Abstract
Glycogen synthase kinase 3 (GSK3) is a serine/threonine protein kinase that is involved in the multiple signaling processes of a cell. Increasing evidence suggests that GSK3β plays a key role in multiple cellular processes in the progression of diabetes, obesity, Alzheimer's disease (AD), Parkinson's disease (PD), inflammatory diseases, schizophrenia, bipolar and several mood disorders, and mitochondrial diseases. Recent research has found that increased GSK3β activity is linked to the pathogenesis of AD through amyloid beta (Aβ), phosphorylated tau and mitochondrial dysfunction. Recent research has also revealed that GSK3β is elevated in AD-affected tissues and is critically involved in dissociating the voltage-dependent anion channel 1 (VDAC1) protein from hexokinases, and causing disrupted glucose metabolism, mitochondrial dysfunction and activating apoptotic cell death. The purpose of this article is to review recent research that is elucidating the role of GSK3β in AD pathogenesis. We discuss the involvement of GSK3β in the phosphorylation of VDAC1 and dissociation of VADC1 with hexokinases in AD neurons.
Collapse
Affiliation(s)
- P Hemachandra Reddy
- Neurogenetics Laboratory, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA; Department of Physiology and Pharmacology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
94
|
Moujalled D, James JL, Parker SJ, Lidgerwood GE, Duncan C, Meyerowitz J, Nonaka T, Hasegawa M, Kanninen KM, Grubman A, Liddell JR, Crouch PJ, White AR. Kinase Inhibitor Screening Identifies Cyclin-Dependent Kinases and Glycogen Synthase Kinase 3 as Potential Modulators of TDP-43 Cytosolic Accumulation during Cell Stress. PLoS One 2013; 8:e67433. [PMID: 23840699 PMCID: PMC3694067 DOI: 10.1371/journal.pone.0067433] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 05/21/2013] [Indexed: 12/13/2022] Open
Abstract
Abnormal processing of TAR DNA binding protein 43 (TDP-43) has been identified as a major factor in neuronal degeneration during amyotrophic lateral sclerosis (ALS) or frontotemporal lobar degeneration (FTLD). It is unclear how changes to TDP-43, including nuclear to cytosolic translocation and subsequent accumulation, are controlled in these diseases. TDP-43 is a member of the heterogeneous ribonucleoprotein (hnRNP) RNA binding protein family and is known to associate with cytosolic RNA stress granule proteins in ALS and FTLD. hnRNP trafficking and accumulation is controlled by the action of specific kinases including members of the mitogen-activated protein kinase (MAPK) pathway. However, little is known about how kinase pathways control TDP-43 movement and accumulation. In this study, we used an in vitro model of TDP-43-positve stress granule formation to screen for the effect of kinase inhibitors on TDP-43 accumulation. We found that while a number of kinase inhibitors, particularly of the MAPK pathways modulated both TDP-43 and the global stress granule marker, human antigen R (HuR), multiple inhibitors were more specific to TDP-43 accumulation, including inhibitors of cyclin-dependent kinases (CDKs) and glycogen synthase kinase 3 (GSK3). Close correlation was observed between effects of these inhibitors on TDP-43, hnRNP K and TIAR, but often with different effects on HuR accumulation. This may indicate a potential interaction between TDP-43, hnRNP K and TIAR. CDK inhibitors were also found to reverse pre-formed TDP-43-positive stress granules and both CDK and GSK3 inhibitors abrogated the accumulation of C-terminal TDP-43 (219–414) in transfected cells. Further studies are required to confirm the specific kinases involved and whether their action is through phosphorylation of the TDP-43 binding partner hnRNP K. This knowledge provides a valuable insight into the mechanisms controlling abnormal cytoplasmic TDP-43 accumulation and may herald new opportunities for kinase modulation-based therapeutic intervention in ALS and FTLD.
Collapse
Affiliation(s)
- Diane Moujalled
- Department of Pathology, The University of Melbourne, Victoria, Australia and Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Janine L. James
- Department of Pathology, The University of Melbourne, Victoria, Australia and Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Sarah J. Parker
- Department of Pathology, The University of Melbourne, Victoria, Australia and Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Grace E. Lidgerwood
- Department of Pathology, The University of Melbourne, Victoria, Australia and Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Clare Duncan
- Department of Pathology, The University of Melbourne, Victoria, Australia and Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Jodi Meyerowitz
- Department of Pathology, The University of Melbourne, Victoria, Australia and Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Takashi Nonaka
- Department of Neuropathology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Masato Hasegawa
- Department of Neuropathology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Katja M. Kanninen
- A.I. Virtanen Institute for Molecular Sciences, Laboratory of Molecular Brain Research, University of Eastern Finland, Kuopio, Finland
| | - Alexandra Grubman
- Department of Pathology, The University of Melbourne, Victoria, Australia and Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Jeffrey R. Liddell
- Department of Pathology, The University of Melbourne, Victoria, Australia and Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Peter J. Crouch
- Department of Pathology, The University of Melbourne, Victoria, Australia and Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Anthony R. White
- Department of Pathology, The University of Melbourne, Victoria, Australia and Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
95
|
Cavallini A, Brewerton S, Bell A, Sargent S, Glover S, Hardy C, Moore R, Calley J, Ramachandran D, Poidinger M, Karran E, Davies P, Hutton M, Szekeres P, Bose S. An unbiased approach to identifying tau kinases that phosphorylate tau at sites associated with Alzheimer disease. J Biol Chem 2013; 288:23331-47. [PMID: 23798682 DOI: 10.1074/jbc.m113.463984] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neurofibrillary tangles, one of the hallmarks of Alzheimer disease (AD), are composed of paired helical filaments of abnormally hyperphosphorylated tau. The accumulation of these proteinaceous aggregates in AD correlates with synaptic loss and severity of dementia. Identifying the kinases involved in the pathological phosphorylation of tau may identify novel targets for AD. We used an unbiased approach to study the effect of 352 human kinases on their ability to phosphorylate tau at epitopes associated with AD. The kinases were overexpressed together with the longest form of human tau in human neuroblastoma cells. Levels of total and phosphorylated tau (epitopes Ser(P)-202, Thr(P)-231, Ser(P)-235, and Ser(P)-396/404) were measured in cell lysates using AlphaScreen assays. GSK3α, GSK3β, and MAPK13 were found to be the most active tau kinases, phosphorylating tau at all four epitopes. We further dissected the effects of GSK3α and GSK3β using pharmacological and genetic tools in hTau primary cortical neurons. Pathway analysis of the kinases identified in the screen suggested mechanisms for regulation of total tau levels and tau phosphorylation; for example, kinases that affect total tau levels do so by inhibition or activation of translation. A network fishing approach with the kinase hits identified other key molecules putatively involved in tau phosphorylation pathways, including the G-protein signaling through the Ras family of GTPases (MAPK family) pathway. The findings identify novel tau kinases and novel pathways that may be relevant for AD and other tauopathies.
Collapse
Affiliation(s)
- Annalisa Cavallini
- Eli Lilly and Company Limited, Erl Wood Manor, Sunninghill Road, Windlesham, Surrey GU20 6PH, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Maurin H, Lechat B, Dewachter I, Ris L, Louis JV, Borghgraef P, Devijver H, Jaworski T, Van Leuven F. Neurological characterization of mice deficient in GSK3α highlight pleiotropic physiological functions in cognition and pathological activity as Tau kinase. Mol Brain 2013; 6:27. [PMID: 23705847 PMCID: PMC3671145 DOI: 10.1186/1756-6606-6-27] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 05/22/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND GSK3β is involved in a wide range of physiological functions, and is presumed to act in the pathogenesis of neurological diseases, from bipolar disorder to Alzheimer's disease (AD). In contrast, the GSK3α isozyme remained largely ignored with respect to both aspects. RESULTS We generated and characterized two mouse strains with neuron-specific or with total GSK3α deficiency. Behavioral and electrophysiological analysis demonstrated the physiological importance of neuronal GSK3α, with GSK3β not compensating for impaired cognition and reduced LTP. Interestingly, the passive inhibitory avoidance task proved to modulate the phosphorylation status of both GSK3 isozymes in wild-type mice, further implying both to function in cognition. Moreover, GSK3α contributed to the neuronal architecture of the hippocampal CA1 sub-region that is most vulnerable in AD. Consequently, practically all parameters and characteristics indicated that both GSK3 isoforms were regulated independently, but that they acted on the same physiological functions in learning and memory, in mobility and in behavior. CONCLUSIONS GSK3α proved to be regulated independently from GSK3β, and to exert non-redundant physiological neurological functions in general behavior and in cognition. Moreover, GSK3α contributes to the pathological phosphorylation of protein Tau.
Collapse
Affiliation(s)
- Hervé Maurin
- Experimental Genetics Group - LEGTEGG, Department Human Genetics, KULeuven, B-3000, Leuven, Belgium
| | - Benoit Lechat
- Experimental Genetics Group - LEGTEGG, Department Human Genetics, KULeuven, B-3000, Leuven, Belgium
| | - Ilse Dewachter
- Experimental Genetics Group - LEGTEGG, Department Human Genetics, KULeuven, B-3000, Leuven, Belgium
| | - Laurence Ris
- Department Neurosciences, University Mons-Hainaut, B-7000, Mons, Belgium
| | - Justin V Louis
- Experimental Genetics Group - LEGTEGG, Department Human Genetics, KULeuven, B-3000, Leuven, Belgium
| | - Peter Borghgraef
- Experimental Genetics Group - LEGTEGG, Department Human Genetics, KULeuven, B-3000, Leuven, Belgium
| | - Herman Devijver
- Experimental Genetics Group - LEGTEGG, Department Human Genetics, KULeuven, B-3000, Leuven, Belgium
| | - Tomasz Jaworski
- Present address: Nencki Institute Experimental Biology, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Fred Van Leuven
- Experimental Genetics Group - LEGTEGG, Department Human Genetics, KULeuven, B-3000, Leuven, Belgium
| |
Collapse
|
97
|
Duan Y, Dong S, Gu F, Hu Y, Zhao Z. Advances in the pathogenesis of Alzheimer's disease: focusing on tau-mediated neurodegeneration. Transl Neurodegener 2012; 1:24. [PMID: 23241453 PMCID: PMC3598890 DOI: 10.1186/2047-9158-1-24] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 12/11/2012] [Indexed: 12/25/2022] Open
Abstract
In addition to senile plaques and cerebral amyloid angiopathy, the hyperphosphorylation of tau protein and formation of intraneuronal neurofibrillary tangles (NFTs) represents another neuropathological hallmark in AD brain. Tau is a microtubule-associated protein and localizes predominantly in the axons of neurons with the primary function in maintaining microtubules stability. When the balance between tau phosphorylation and dephosphorylation is changed in favor of the former, tau is hyperphosphorylated and the level of the free tau fractions elevated. The hyperphosphorylation of tau protein and formation of NFTs represent a characteristic neuropathological feature in AD brain. We have discussed the role of Aβ in AD in our previous review, this review focused on the recent advances in tau-mediated AD pathology, mainly including tau hyperphosphorylation, propagation of tau pathology and the relationship between tau and Aβ.
Collapse
Affiliation(s)
- Yale Duan
- Key Laboratory of Brain Functional Genomics, Ministry of Education,Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, 3663 Zhongshan Road (N), Shanghai 200062, China.
| | | | | | | | | |
Collapse
|
98
|
Abstract
Glycogen Synthase Kinase 3 (GSK-3) is a key player in development, physiology and disease. Because of this, GSK-3 inhibitors are increasingly being explored for a variety of applications. In addition most analyses focus on GSK-3β and overlook the closely related protein GSK-3α. Here, we describe novel GSK-3α and GSK-3β mouse alleles that allow us to visualise expression of their respective mRNAs by tracking β-galactosidase activity. We used these new lacZ alleles to compare expression in the palate and cranial sutures and found that there was indeed differential expression. Furthermore, both are loss of function alleles and can be used to generate homozygous mutant mice; in addition, excision of the lacZ cassette from GSK-3α creates a Cre-dependent tissue-specific knockout. As expected, GSK3α mutants were viable, while GSK3β mutants died after birth with a complete cleft palate. We also assessed the GSK-3α mutants for cranial and sternal phenotypes and found that they were essentially normal. Finally, we observed gestational lethality in compound GSK-3β−/−; GSK3α+/− mutants, suggesting that GSK-3 dosage is critical during embryonic development.
Collapse
Affiliation(s)
- William B. Barrell
- Department of Craniofacial Development and Stem Cell Biology, King’s College London, London, United Kingdom
| | - Heather L. Szabo-Rogers
- Department of Craniofacial Development and Stem Cell Biology, King’s College London, London, United Kingdom
| | - Karen J. Liu
- Department of Craniofacial Development and Stem Cell Biology, King’s College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
99
|
Avrahami L, Farfara D, Shaham-Kol M, Vassar R, Frenkel D, Eldar-Finkelman H. Inhibition of glycogen synthase kinase-3 ameliorates β-amyloid pathology and restores lysosomal acidification and mammalian target of rapamycin activity in the Alzheimer disease mouse model: in vivo and in vitro studies. J Biol Chem 2012; 288:1295-306. [PMID: 23155049 DOI: 10.1074/jbc.m112.409250] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Accumulation of β-amyloid (Aβ) deposits is a primary pathological feature of Alzheimer disease that is correlated with neurotoxicity and cognitive decline. The role of glycogen synthase kinase-3 (GSK-3) in Alzheimer disease pathogenesis has been debated. To study the role of GSK-3 in Aβ pathology, we used 5XFAD mice co-expressing mutated amyloid precursor protein and presenilin-1 that develop massive cerebral Aβ loads. Both GSK-3 isozymes (α/β) were hyperactive in this model. Nasal treatment of 5XFAD mice with a novel substrate competitive GSK-3 inhibitor, L803-mts, reduced Aβ deposits and ameliorated cognitive deficits. Analyses of 5XFAD hemi-brain samples indicated that L803-mts restored the activity of mammalian target of rapamycin (mTOR) and inhibited autophagy. Lysosomal acidification was impaired in the 5XFAD brains as indicated by reduced cathepsin D activity and decreased N-glycoyslation of the vacuolar ATPase subunit V0a1, a modification required for lysosomal acidification. Treatment with L803-mts restored lysosomal acidification in 5XFAD brains. Studies in SH-SY5Y cells confirmed that GSK-3α and GSK-3β impair lysosomal acidification and that treatment with L803-mts enhanced the acidic lysosomal pool as demonstrated in LysoTracker Red-stained cells. Furthermore, L803-mts restored impaired lysosomal acidification caused by dysfunctional presenilin-1. We provide evidence that mTOR is a target activated by GSK-3 but inhibited by impaired lysosomal acidification and elevation in amyloid precursor protein/Aβ loads. Taken together, our data indicate that GSK-3 is a player in Aβ pathology. Inhibition of GSK-3 restores lysosomal acidification that in turn enables clearance of Aβ burdens and reactivation of mTOR. These changes facilitate amelioration in cognitive function.
Collapse
Affiliation(s)
- Limor Avrahami
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, George S. Wise Faculty of Life Sciences, Tel Aviv University Tel Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|