51
|
Taylor CM, Coetzee T, Pfeiffer SE. Detergent-insoluble glycosphingolipid/cholesterol microdomains of the myelin membrane. J Neurochem 2002; 81:993-1004. [PMID: 12065611 DOI: 10.1046/j.1471-4159.2002.00884.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Glycosphingolipids and cholesterol form lateral assemblies, or lipid 'rafts', within biological membranes. Lipid rafts are routinely studied biochemically as low-density, detergent-insoluble complexes (in non-ionic detergents at 4 degrees C; DIGs, detergent-insoluble glycosphingolipid/cholesterol microdomains). Recent discrepancies recommended a re-evaluation of the conditions used for the biochemical analysis of lipid rafts. We have investigated the detergent insolubility of several known proteins present in the glycosphingolipid/cholesterol-rich myelin membrane, using four detergents representing different chemical classes (TX-100, CHAPS, Brij 96 and TX-102), under four conditions: detergent extraction of myelin either at (i) 4 degrees C or (ii) 37 degrees C, or at 4 degrees C after pre-extraction with (iii) saponin or (iv) methyl-beta-cyclodextrin (MbetaCD). Each detergent was different in its ability to solubilize myelin proteins and in the density of the DIGs produced. Brij 96 DIGs floated to a lower density than other detergents tested, possibly representing a subpopulation of DIGs in myelin. DIGs pre-extracted with saponin were denser than DIGs pre-extracted with MbetaCD. Furthermore, pre-extraction with MbetaCD solubilized proteolipid protein (known to associate with cholesterol), whereas pre-extraction with saponin did not, suggesting that saponin is less effective as a cholesterol-perturbing agent than is MbetaCD. These results demonstrate that DIGs isolated by different detergents are not necessarily comparable, and that these detergent-specific DIGs may represent distinct biochemical, and possibly physiological, entities based on the solubilities of specific lipids/proteins in each type of detergent.
Collapse
Affiliation(s)
- Christopher M Taylor
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 6030-3401, USA.
| | | | | |
Collapse
|
52
|
Kroepfl JF, Gardinier MV. Mutually exclusive apicobasolateral sorting of two oligodendroglial membrane proteins, proteolipid protein and myelin/oligodendrocyte glycoprotein, in Madin-Darby canine kidney cells. J Neurosci Res 2001; 66:1140-8. [PMID: 11746447 DOI: 10.1002/jnr.10035] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Oligodendrocytes elaborate an extensive membrane network that ensheathes CNS axons in multilamellar wrappings. A compaction process excludes much of the cytoplasm in mature myelin membranes, giving rise to distinct lipid/protein compositions in two membrane compartments (compact myelin and membranes of the cell body and processes). Insofar as oligodendrocytes arise from neuroepithelial progenitors, it seems likely that some elements are shared for protein targeting by these two cell types. We hypothesized that certain membrane proteins targeting different oligodendroglial membrane compartments would preferentially sort to opposite domains when transfected into Madin-Darby canine kidney (MDCK) epithelial cells. Myelin/oligodendrocyte glycoprotein (MOG) is found in uncompacted membrane (cell body, processes), and it sorts exclusively to MDCK basolateral membrane. Proteolipid protein (PLP) is found in compact myelin, and it sorts exclusively to MDCK apical membrane. Myelin-associated glycoprotein (MAG) is primarily in the periaxonal inner loop of myelin; however, it fails to target preferentially within MDCK cells. This inability of MAG to sort within MDCK cells suggests a lack of required oligodendroglial-specific targeting components. In contrast, the sorting machinery in both oligodendrocytes and MDCK cells recognizes targeting signals for MOG and PLP, and we propose that these oligodendroglial membrane proteins delineate cognate basolateral and apical domains, respectively.
Collapse
Affiliation(s)
- J F Kroepfl
- Integrated Graduate Program in the Life Sciences, Northwestern University Medical School, Chicago, Illinois, USA
| | | |
Collapse
|
53
|
Wilson SH, Bailey AM, Nourse CR, Mattei MG, Byrne JA. Identification of MAL2, a novel member of the mal proteolipid family, though interactions with TPD52-like proteins in the yeast two-hybrid system. Genomics 2001; 76:81-8. [PMID: 11549320 DOI: 10.1006/geno.2001.6610] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The TPD52 (tumor protein D52)-like proteins are small coiled-coil motif-bearing proteins which were first identified though their expression in human breast carcinoma. TPD52-like proteins are known to interact in hetero-and homomeric fashions, but there are no known heterologous binding partners for these proteins. We now report the cloning of a novel member of the MAL proteolipid family, named MAL2, though its interaction with a TPD52L2 bait in a yeast two-hybrid screen. MAL2 is predicted to be 176 residues (19 kDa) with four transmembrane domains and is 35.8% identical to MAL, a proteolipid required in apical vesicle transport. The MAL2 prey bound all TPD52-like baits tested in the yeast two-hybrid system and in vitro translation of MAL2 produced a single 19-kDa (35)S-labeled protein which specifically bound full-length GST-Tpd52 in GST pull-down assays. The gene MAL2, which was localized to human chromosomal band 8q23 and shown to consist of four exons, is predominantly expressed in human kidney, lung, and liver. Our study has therefore identified a novel member of the MAL proteolipid family and potentially implicates TPD52-like proteins in vesicle transport.
Collapse
Affiliation(s)
- S H Wilson
- Molecular Oncology Laboratory, Oncology Research Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW, 2145, Australia
| | | | | | | | | |
Collapse
|
54
|
Kabayama K, Ito N, Honke K, Igarashi Y, Inokuchi J. Suppression of integrin expression and tumorigenicity by sulfation of lactosylceramide in 3LL Lewis lung carcinoma cells. J Biol Chem 2001; 276:26777-83. [PMID: 11352905 DOI: 10.1074/jbc.m100428200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the cellular functions of sulfated glycosphingolipids, we introduced the cerebroside sulfotransferase (CST) gene into J5 cells, a subclone of 3LL Lewis lung carcinoma cells. The J5 cells lack acidic glycosphingolipids but accumulate their common biosynthetic precursor, lactosylceramide. We established the stable CST transfectants, J5/CST-1 and J5/CST-2 clones, highly expressing sulfated lactosylceramide (SM3). Both clones exhibited more spherical morphology in comparison to mock transfectant, and their adhesiveness to fibronectin and laminin was significantly lower. The loss of cell-substratum interactions in these SM3-expressing cells could be attributed to decreased expression of integrins (alpha(5), alpha(6), and beta(1)) on the cell surface and their whole cellular levels. However, the levels of H-2K(b) and H-2D(b) antigens remained unchanged. Reverse transcriptase-polymerase chain reaction and Northern blot analyses for these integrins exhibited significant decrease of beta(1) gene expression in J5/CST-1 and 2, but there was no change in the levels of alpha(5) and alpha(6) transcripts. Deglycosylation by endoglycosidase H treatment clearly demonstrated that the precursor form of beta(1) integrin, possessing high mannose oligosaccharide chains, was preferentially decreased in the CST transfectants. These results demonstrate that endogenous SM3 negatively regulates beta(1) integrin expression at the transcriptional level, and the decrease of alpha integrin proteins in the CST transfectants was due to the post-transcriptional modification. We suggest the putative importance of the intracellular pre-beta(1) integrin pool for normal integrin maturation and subsequent function. Although the rates of cell proliferation in vitro for mock and CST transfectants were similar, tumorigenicity of J5/CST-1 and -2 cells inoculated into syngeneic C57/BL6 mice was greatly decreased or even absent. This was probably due to global loss of the efficient cell-matrix interactions, which are essential for the development of malignant tumors in vivo. Thus, we showed the evidence that cellular SM3 negatively regulates the cell-substratum interaction, resulting in the loss of tumorigenicity.
Collapse
Affiliation(s)
- K Kabayama
- Department of Biomembrane and Biofunctional Chemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | | | | | | | | |
Collapse
|
55
|
Baumann N, Pham-Dinh D. Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 2001; 81:871-927. [PMID: 11274346 DOI: 10.1152/physrev.2001.81.2.871] [Citation(s) in RCA: 1261] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Oligodendrocytes, the myelin-forming cells of the central nervous system (CNS), and astrocytes constitute macroglia. This review deals with the recent progress related to the origin and differentiation of the oligodendrocytes, their relationships to other neural cells, and functional neuroglial interactions under physiological conditions and in demyelinating diseases. One of the problems in studies of the CNS is to find components, i.e., markers, for the identification of the different cells, in intact tissues or cultures. In recent years, specific biochemical, immunological, and molecular markers have been identified. Many components specific to differentiating oligodendrocytes and to myelin are now available to aid their study. Transgenic mice and spontaneous mutants have led to a better understanding of the targets of specific dys- or demyelinating diseases. The best examples are the studies concerning the effects of the mutations affecting the most abundant protein in the central nervous myelin, the proteolipid protein, which lead to dysmyelinating diseases in animals and human (jimpy mutation and Pelizaeus-Merzbacher disease or spastic paraplegia, respectively). Oligodendrocytes, as astrocytes, are able to respond to changes in the cellular and extracellular environment, possibly in relation to a glial network. There is also a remarkable plasticity of the oligodendrocyte lineage, even in the adult with a certain potentiality for myelin repair after experimental demyelination or human diseases.
Collapse
Affiliation(s)
- N Baumann
- Institut National de la Santé et de la Recherche Médicale U. 495, Biology of Neuron-Glia Interactions, Salpêtrière Hospital, Paris, France.
| | | |
Collapse
|
56
|
Bermingham JR, Shumas S, Whisenhunt T, Rosenfeld MG, Scherer SS. Modification of representational difference analysis applied to the isolation of forskolin-regulated genes from Schwann cells. J Neurosci Res 2001; 63:516-24. [PMID: 11241587 DOI: 10.1002/jnr.1046] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many aspects of the response of Schwann cells to axonal cues can be induced in vitro by the adenylyl cyclase activator forskolin, yet the role of cAMP signaling in regulating Schwann cell differentiation remains unclear. To define better the relationship between cAMP signaling and Schwann cell differentiation, we used a modification of cDNA representational difference analysis (RDA) that permits the analysis of small amounts of mRNA and identified additional genes that are differentially expressed by forskolin-treated and untreated Schwann cells. The genes that we have identified, including MKP3, a regulator of ERK signaling, and the sphingosine-1-phosphate receptor edg3/lp(B3), may play important roles in mediating Schwann cell differentiation.
Collapse
Affiliation(s)
- J R Bermingham
- McLaughlin Research Institute, Great Falls, Montana 59405, USA.
| | | | | | | | | |
Collapse
|
57
|
Abstract
In the central nervous system (CNS), the myelin sheath is synthesised by oligodendrocytes as a specialised subdomain of an extended plasma membrane, reminiscent of the segregated membrane domains of polarised cells. Myelination takes place within a relatively short period of time and oligodendrocytes must have adapted membrane sorting and transport mechanisms to achieve such a high rate of myelin synthesis and to maintain the unique organisation of the myelin membrane. In adult life, maintenance of the functional myelin sheath requires a carefully orchestrated balance of myelin synthesis and turnover. Imbalance in these processes may cause dys- or demyelination and disease. This review summarises what is currently known about myelin protein trafficking and mistrafficking in oligodendrocytes. We also present data demonstrating distinct transport pathways for myelin structural proteins and the expression of SNARE proteins in differentiating oligodendrocytes. Myelinating glial cells may well serve as a model system for studying general aspects of membrane trafficking and organisation of membrane domains.
Collapse
Affiliation(s)
- E M Krämer
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37035 Göttingen, Germany.
| | | | | |
Collapse
|
58
|
Caduff J, Sansano S, Bonnet A, Suter U, Schaeren-Wiemers N. Characterization of GFP-MAL expression and incorporation in rafts. Microsc Res Tech 2001; 52:645-55. [PMID: 11276117 DOI: 10.1002/jemt.1049] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
During myelin formation, membrane-associated proteins have to be sorted and transported in specified membrane regions such as compact and non-compact myelin membranes. One protein that may be involved in such a process is the Myelin and Lymphocyte protein MAL (VIP17/ MVP17). MAL was identified as a novel myelin membrane component expressed by oligodendrocytes and Schwann cells. Since MAL has been shown to be important in the apical sorting machinery of polarized cells, we have started to investigate the possible functional role of MAL in sorting myelin membrane-associated molecules. In this study, we have generated cDNA constructs with green fluorescent protein (GFP) either at the N- or C-terminus of MAL. Transfection experiments showed that GFP-MAL expression resembles that of normal MAL, whereas the MAL-GFP fusion construct was not properly transported within the cell. Furthermore, we could demonstrate that GFP-MAL is enriched in detergent insoluble glycolipid-enriched microdomains as already seen for untagged MAL. As a prerequisite for the generation of transgenic mice expressing GFP-MAL under the control of its own regulatory elements, we have generated a cDNA construct with an 8-kb MAL promotor fragment fused to GFP-MAL. Transfection experiments of the Oli-neu oligodendrocyte cell line showed that GFP-MAL was expressed, but only in cells, which were stimulated for differentiation with cAMP. In summary, the results confirm that the fusion protein GFP-MAL is incorporated into detergent-insoluble complexes and the 8-kb MAL promotor fragment is sufficient to be activated in oligodendrocytes.
Collapse
Affiliation(s)
- J Caduff
- Neurobiology Laboratory, Department of Research, University Hospital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | | | | | | | | |
Collapse
|
59
|
Frank M, Atanasoski S, Sancho S, Magyar JP, Rülicke T, Schwab ME, Suter U. Progressive segregation of unmyelinated axons in peripheral nerves, myelin alterations in the CNS, and cyst formation in the kidneys of myelin and lymphocyte protein-overexpressing mice. J Neurochem 2000; 75:1927-39. [PMID: 11032882 DOI: 10.1046/j.1471-4159.2000.0751927.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myelin and lymphocyte protein (MAL) is a putative tetraspan proteolipid that is highly expressed by Schwann cells and oligodendrocytes as a component of compact myelin. Outside of the nervous system, MAL is found in apical membranes of epithelial cells, mainly in the kidney and stomach. Because MAL is associated with glycosphingolipids, it is thought to be involved in the organization, transport, and maintenance of glycosphingolipid-enriched membrane microdomains. In this report, we describe the generation and analysis of transgenic mice with increased MAL gene dosage. Immunohistochemical analysis revealed that the localization of MAL overexpression in the transgenic animals corresponded closely to the MAL expression pattern observed in wildtype animals, indicating correct spatial regulation of the transgene. Phenotypically, MAL overexpression led to progressive dissociation of unmyelinated axons from bundles in the PNS, a tendency to hypomyelination and aberrant myelin formation in the CNS, and the formation of large cysts in the tubular region of the kidney. Thus, increased expression of MAL appears to be deleterious to membranous structures in the affected tissues, indicating a requirement for tight control of endogenous MAL expression in Schwann cells, oligodendrocytes, and kidney epithelial cells.
Collapse
Affiliation(s)
- M Frank
- Brain Research Institute, Department of Neuromorphology, University of Zürich and Swiss Federal Institute of Technology, Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
60
|
van Meer G, Holthuis JC. Sphingolipid transport in eukaryotic cells. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1486:145-70. [PMID: 10856719 DOI: 10.1016/s1388-1981(00)00054-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Sphingolipids constitute a sizeable fraction of the membrane lipids in all eukaryotes and are indispensable for eukaryotic life. First of all, the involvement of sphingolipids in organizing the lateral domain structure of membranes appears essential for processes like protein sorting and membrane signaling. In addition, recognition events between complex glycosphingolipids and glycoproteins are thought to be required for tissue differentiation in higher eukaryotes and for other specific cell interactions. Finally, upon certain stimuli like stress or receptor activation, sphingolipids give rise to a variety of second messengers with effects on cellular homeostasis. All sphingolipid actions are governed by their local concentration. The intricate control of their intracellular topology by the proteins responsible for their synthesis, hydrolysis and intracellular transport is the topic of this review.
Collapse
Affiliation(s)
- G van Meer
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | |
Collapse
|
61
|
Frank M. MAL, a proteolipid in glycosphingolipid enriched domains: functional implications in myelin and beyond. Prog Neurobiol 2000; 60:531-44. [PMID: 10739088 DOI: 10.1016/s0301-0082(99)00039-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The myelin and lymphocyte protein MAL (VIP17/MVP17) is a proteolipid of 17 kD with a hydrophobicity pattern that indicates a four transmembrane domain structure. The MAL cDNA has been cloned from human T-cells, rat oligodendrocytes and the Madin-Darby canine kidney (MDCK) cell line. In the nervous system both myelinating cells, oligodendrocytes and Schwann cells, express MAL protein. MAL expression parallels myelin formation, and MAL is predominantly localized in compact myelin. Prior to myelin formation MAL is also found in immature Schwann cells. Outside the nervous system MAL expression is found in T-cells and in distinct epithelial cells, e.g. in kidney, stomach and thyroid gland, where MAL is localised in the apical plasma membrane. Specific glycosphingolipids, e.g. galactosylceramide and sulfatide, are enriched in such apical kidney and stomach membranes as well as in myelin. MAL copurifies with these glycosphingolipids in detergent insoluble domains, indicating a close association and possible functional interactions of MAL with glycosphingolipids in these tissues. Moreover, recent reports point to additional functions of MAL-glycosphingolipid complexes in signalling, cell differentiation and apical sorting. The role of MAL in the formation, stabilisation and maintenance of glycosphingolipid-enriched membrane microdomains and its contribution to specific membrane properties in myelin and epithelial cells are discussed.
Collapse
Affiliation(s)
- M Frank
- Brain Research Institute, Department of Neuromorphology, University of Zurich, Switzerland.
| |
Collapse
|
62
|
Hirst EM, Johnson TC, Li Y, Raisman G. Improved post-embedding immunocytochemistry of myelinated nervous tissue for electron microscopy. J Neurosci Methods 2000; 95:151-8. [PMID: 10752486 DOI: 10.1016/s0165-0270(99)00173-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The particularly high lipid content of normal mature adult myelin sheaths, together with the light fixation protocols usually necessary to retain antigenicity, combine to make white matter nervous tissue an especially problematical subject for post-embedding immuno-electron microscopy using modern acrylic resins. Fixation and infiltration modifications to standard processing schedules for Lowicryl were found to greatly improve the embedding and therefore the resulting morphology. This in turn improved the signal to noise ratio by reducing the high non-specific backgrounds usually found in poorly infiltrated areas. Using Lowicryl HM20, we have been able to obtain satisfactory immunostaining for myelin basic protein with good retention of structural integrity in the myelin of both normal and lesioned adult cortico spinal tract.
Collapse
Affiliation(s)
- E M Hirst
- Division of Neurobiology, National Institute for Medical Research, London, UK.
| | | | | | | |
Collapse
|
63
|
Wewetzer K, Archelos JJ, Hartung HP, Seilheimer B, Christ B. The monoclonal antibody 23E9 defines a novel developmentally-regulated Schwann cell surface antigen. Int J Dev Neurosci 1999; 17:715-25. [PMID: 10568688 DOI: 10.1016/s0736-5748(99)00046-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The present study describes the identification and partial characterization of a novel Schwann cell surface molecule by means of a monoclonal antibody (23E9). The 23E9 antigen was found in association with Schwann cells of the peripheral nerve but not with sensory neurons and satellite cells of the dorsal root ganglion. The expression of the antigen in the sciatic nerve starts after birth, is high around postnatal day 8 and becomes down-regulated towards the adult stage. This suggests that it may be involved in the induction of myelin formation. On Western blots, the antibody identified two major bands of approximately 27 and 42 kDa. Treatment of cultured Schwann cells with forskolin, an agent known to mimic neuronal contact in vitro, stimulated the up-regulation of the antigen. This implies that the expression of 23E9 is induced and maintained by axon-derived signals in vivo. Comparison of the presented data with the literature suggests that we have identified a novel cell surface molecule not previously characterized in the context of Schwann cell biology. To clarify the molecular identity of the antigen and define its physiological relevance, the antibody will be used in future studies for immunoprecipitation and functional in vitro assays.
Collapse
MESH Headings
- Aging/physiology
- Animals
- Animals, Newborn
- Antibodies, Monoclonal
- Antibody Specificity
- Antigens, Surface/analysis
- Antigens, Surface/genetics
- Antigens, Surface/immunology
- Cells, Cultured
- Enzyme-Linked Immunosorbent Assay
- Ganglia, Spinal/cytology
- Ganglia, Spinal/growth & development
- Ganglia, Spinal/metabolism
- Gene Expression Regulation, Developmental
- Rats
- Rats, Wistar
- Schwann Cells/cytology
- Schwann Cells/metabolism
- Sciatic Nerve/cytology
- Sciatic Nerve/growth & development
- Sciatic Nerve/metabolism
Collapse
Affiliation(s)
- K Wewetzer
- Hannover Medical School, Center of Anatomy, Germany.
| | | | | | | | | |
Collapse
|
64
|
Frank M, Schaeren-Wiemers N, Schneider R, Schwab ME. Developmental expression pattern of the myelin proteolipid MAL indicates different functions of MAL for immature Schwann cells and in a late step of CNS myelinogenesis. J Neurochem 1999; 73:587-97. [PMID: 10428054 DOI: 10.1046/j.1471-4159.1999.0730587.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The myelin and lymphocyte protein MAL is a small proteolipid of 17 kDa and is expressed by oligodendrocytes and Schwann cells. We have characterized the embryonic and postnatal expression of MAL in the rat nervous system by in situ hybridization, immunocytochemistry, and western blotting and compared it with that of other myelin constituents. In the CNS, MAL is expressed during late steps of myelination: MAL protein appears approximately 3-5 days later than myelin basic protein and proteolipid protein. In contrast, in the PNS, MAL transcript and protein expression is detected prior to the onset of myelination, as early as embryonic day 17. Our results demonstrate that MAL is differentially expressed in oligodendrocytes and Schwann cells, likely reflecting different functions of the MAL proteolipid: (1) The late expression of MAL protein in the CNS points to a role in the final steps of myelin sheath formation, such as stabilization of the compacted myelin membranes. (2) The early expression of MAL protein in immature Schwann cells suggests an important role of MAL in the terminal differentiation step of the Schwann cell lineage and in the onset of peripheral myelination.
Collapse
Affiliation(s)
- M Frank
- Brain Research Institute, University of Zurich, Switzerland
| | | | | | | |
Collapse
|
65
|
Cheong KH, Zacchetti D, Schneeberger EE, Simons K. VIP17/MAL, a lipid raft-associated protein, is involved in apical transport in MDCK cells. Proc Natl Acad Sci U S A 1999; 96:6241-8. [PMID: 10339572 PMCID: PMC26866 DOI: 10.1073/pnas.96.11.6241] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Apical proteins are sorted and delivered from the trans-Golgi network to the plasma membrane by a mechanism involving sphingolipid-cholesterol rafts. In this paper, we report the effects of changing the levels of VIP17/MAL, a tetraspan membrane protein localized to post-Golgi transport containers and the apical cell surface in MDCK cells. Overexpression of VIP17/MAL disturbed the morphology of the MDCK cell layers by increasing apical delivery and seemingly expanding the apical cell surface domains. On the other hand, expression of antisense RNA directed against VIP17/MAL caused accumulation in the Golgi and/or impaired apical transport of different apical protein markers, i.e., influenza virus hemagglutinin, the secretory protein clusterin (gp80), the transmembrane protein gp114, and a glycosylphosphatidylinositol-anchored protein. However, antisense RNA expression did not affect the distribution of E-cadherin to the basolateral surface. Because VIP17/MAL associates with sphingolipid-cholesterol rafts, these data provide functional evidence that this protein is involved in apical transport and might be a component of the machinery clustering lipid rafts with apical cargo to form apical transport carriers.
Collapse
Affiliation(s)
- K H Cheong
- European Molecular Biology Laboratory, Cell Biology and Biophysics Programme, D69012 Heidelberg and Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | | |
Collapse
|