51
|
O'Leary LA, Mechawar N. Implication of cerebral astrocytes in major depression: A review of fine neuroanatomical evidence in humans. Glia 2021; 69:2077-2099. [PMID: 33734498 DOI: 10.1002/glia.23994] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/01/2023]
Abstract
Postmortem investigations have implicated astrocytes in many neurological and psychiatric conditions. Multiple brain regions from individuals with major depressive disorder (MDD) have lower expression levels of astrocyte markers and lower densities of astrocytes labeled for these markers, suggesting a loss of astrocytes in this mental illness. This paper reviews the general properties of human astrocytes, the methods to study them, and the postmortem evidence for astrocyte pathology in MDD. When comparing astrocyte density and morphometry studies, astrocytes are more abundant and smaller in human subcortical than cortical brain regions, and immunohistochemical labeling for the astrocyte markers glial fibrillary acidic protein (GFAP) and vimentin (VIM) reveals fewer than 15% of all astrocytes that are present in cortical and subcortical regions, as revealed using other staining techniques. By combining astrocyte densities and morphometry, a model was made to illustrate that domain organization is mostly limited to GFAP-IR astrocytes. Using these markers and others, alterations of astrocyte densities appear more widespread than those for astrocyte morphologies throughout the brain of individuals having died with MDD. This review suggests how reduced astrocyte densities may relate to the association of depressive episodes in MDD with elevated S100 beta (S100B) cerebrospinal fluid serum levels. Finally, a potassium imbalance theory is proposed that integrates the reduced astrocyte densities generated from postmortem studies with a hypothesis for the antidepressant effects of ketamine generated from rodent studies.
Collapse
Affiliation(s)
- Liam Anuj O'Leary
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
52
|
Stone NL, England TJ, O'Sullivan SE. Protective Effects of Cannabidivarin and Cannabigerol on Cells of the Blood-Brain Barrier Under Ischemic Conditions. Cannabis Cannabinoid Res 2021; 6:315-326. [PMID: 33998890 PMCID: PMC8380798 DOI: 10.1089/can.2020.0159] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background and Objectives: Preclinical studies have shown cannabidiol is protective in models of ischemic stroke. Based on results from our recent systematic review, we investigated the effects of two promising neuroprotective phytocannabinoids, cannabigerol (CBG) and cannabidivarin (CBDV), on cells of the blood-brain barrier (BBB), namely human brain microvascular endothelial cells (HBMECs), pericytes, and astrocytes. Experimental Approach: Cultures were subjected to oxygen-glucose deprivation (OGD) protocol to model ischemic stroke and cell culture medium was assessed for cytokines and adhesion molecules post-OGD. Astrocyte cell lysates were also analyzed for DNA damage markers. Antagonist studies were conducted where appropriate to study receptor mechanisms. Results: In astrocytes CBG and CBDV attenuated levels of interleukin-6 (IL-6) and lactate dehydrogenase (LDH), whereas CBDV (10 nM-10 μM) also decreased vascular endothelial growth factor (VEGF) secretion. CBDV (300 nM-10 μM) attenuated levels of monocyte chemoattractant protein (MCP)-1 in HBMECs. In astrocytes, CBG decreased levels of DNA damage proteins, including p53, whereas CBDV increased levels of DNA damage markers. Antagonists for CB1, CB2, PPAR-γ, PPAR-α, 5-HT1A, and TRPV1 had no effect on CBG (3 μM) or CBDV (1 μM)-mediated decreases in LDH in astrocytes. GPR55 and GPR18 were partially implicated in the effects of CBDV, but no molecular target was identified for CBG. Conclusions: We show that CBG and CBDV were protective against OG mediated injury in three different cells that constitute the BBB, modulating different hallmarks of ischemic stroke pathophysiology. These data enhance our understanding of the protective effects of CBG and CBDV and warrant further investigation into these compounds in ischemic stroke. Future studies should identify other possible neuroprotective effects of CBG and CBDV and their corresponding mechanisms of action.
Collapse
Affiliation(s)
- Nicole L Stone
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
| | - Timothy J England
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom.,University Hospitals of Derby and Burton NHS Foundation Trust, Royal Derby Hospital, Derby, United Kingdom
| | - Saoirse E O'Sullivan
- University Hospitals of Derby and Burton NHS Foundation Trust, Royal Derby Hospital, Derby, United Kingdom.,CanPharmaConsulting, Nottingham, United Kingdom
| |
Collapse
|
53
|
Preman P, Alfonso-Triguero M, Alberdi E, Verkhratsky A, Arranz AM. Astrocytes in Alzheimer's Disease: Pathological Significance and Molecular Pathways. Cells 2021; 10:540. [PMID: 33806259 PMCID: PMC7999452 DOI: 10.3390/cells10030540] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Astrocytes perform a wide variety of essential functions defining normal operation of the nervous system and are active contributors to the pathogenesis of neurodegenerative disorders such as Alzheimer's among others. Recent data provide compelling evidence that distinct astrocyte states are associated with specific stages of Alzheimer´s disease. The advent of transcriptomics technologies enables rapid progress in the characterisation of such pathological astrocyte states. In this review, we provide an overview of the origin, main functions, molecular and morphological features of astrocytes in physiological as well as pathological conditions related to Alzheimer´s disease. We will also explore the main roles of astrocytes in the pathogenesis of Alzheimer´s disease and summarize main transcriptional changes and altered molecular pathways observed in astrocytes during the course of the disease.
Collapse
Affiliation(s)
- Pranav Preman
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium;
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), 3000 Leuven, Belgium
| | - Maria Alfonso-Triguero
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; (M.A.-T.); (E.A.)
- Department of Neurosciences, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Spain
| | - Elena Alberdi
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; (M.A.-T.); (E.A.)
- Department of Neurosciences, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 48940 Leioa, Spain
| | - Alexei Verkhratsky
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; (M.A.-T.); (E.A.)
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Ikerbasque Basque Foundation for Science, 48009 Bilbao, Spain
| | - Amaia M. Arranz
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; (M.A.-T.); (E.A.)
- Ikerbasque Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
54
|
Escartin C, Galea E, Lakatos A, O'Callaghan JP, Petzold GC, Serrano-Pozo A, Steinhäuser C, Volterra A, Carmignoto G, Agarwal A, Allen NJ, Araque A, Barbeito L, Barzilai A, Bergles DE, Bonvento G, Butt AM, Chen WT, Cohen-Salmon M, Cunningham C, Deneen B, De Strooper B, Díaz-Castro B, Farina C, Freeman M, Gallo V, Goldman JE, Goldman SA, Götz M, Gutiérrez A, Haydon PG, Heiland DH, Hol EM, Holt MG, Iino M, Kastanenka KV, Kettenmann H, Khakh BS, Koizumi S, Lee CJ, Liddelow SA, MacVicar BA, Magistretti P, Messing A, Mishra A, Molofsky AV, Murai KK, Norris CM, Okada S, Oliet SHR, Oliveira JF, Panatier A, Parpura V, Pekna M, Pekny M, Pellerin L, Perea G, Pérez-Nievas BG, Pfrieger FW, Poskanzer KE, Quintana FJ, Ransohoff RM, Riquelme-Perez M, Robel S, Rose CR, Rothstein JD, Rouach N, Rowitch DH, Semyanov A, Sirko S, Sontheimer H, Swanson RA, Vitorica J, Wanner IB, Wood LB, Wu J, Zheng B, Zimmer ER, Zorec R, Sofroniew MV, Verkhratsky A. Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci 2021; 24:312-325. [PMID: 33589835 PMCID: PMC8007081 DOI: 10.1038/s41593-020-00783-4] [Citation(s) in RCA: 1358] [Impact Index Per Article: 339.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022]
Abstract
Reactive astrocytes are astrocytes undergoing morphological, molecular, and functional remodeling in response to injury, disease, or infection of the CNS. Although this remodeling was first described over a century ago, uncertainties and controversies remain regarding the contribution of reactive astrocytes to CNS diseases, repair, and aging. It is also unclear whether fixed categories of reactive astrocytes exist and, if so, how to identify them. We point out the shortcomings of binary divisions of reactive astrocytes into good-vs-bad, neurotoxic-vs-neuroprotective or A1-vs-A2. We advocate, instead, that research on reactive astrocytes include assessment of multiple molecular and functional parameters-preferably in vivo-plus multivariate statistics and determination of impact on pathological hallmarks in relevant models. These guidelines may spur the discovery of astrocyte-based biomarkers as well as astrocyte-targeting therapies that abrogate detrimental actions of reactive astrocytes, potentiate their neuro- and glioprotective actions, and restore or augment their homeostatic, modulatory, and defensive functions.
Collapse
Affiliation(s)
- Carole Escartin
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France.
| | - Elena Galea
- Institut de Neurociències and Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.
- ICREA, Barcelona, Spain.
| | - András Lakatos
- John van Geest Centre for Brain Repair and Division of Stem Cell Neurobiology, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
| | - James P O'Callaghan
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Division of Vascular Neurology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Alberto Serrano-Pozo
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Andrea Volterra
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - Giorgio Carmignoto
- Neuroscience Institute, Italian National Research Council (CNR), Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Amit Agarwal
- The Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Nicola J Allen
- Salk Institute for Biological Studies, Molecular Neurobiology Laboratory, La Jolla, California, USA
| | - Alfonso Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Ari Barzilai
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Ramat Aviv Tel Aviv, Israel
| | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gilles Bonvento
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| | - Arthur M Butt
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK
| | - Wei-Ting Chen
- Center for Brain and Disease Research, VIB and University of Leuven, Leuven, Belgium
| | - Martine Cohen-Salmon
- 'Physiology and Physiopathology of the Gliovascular Unit' Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, Unité Mixte de Recherche 7241 CNRS, Unité1050 INSERM, PSL Research University, Paris, France
| | - Colm Cunningham
- Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, School of Biochemistry & Immunology, Trinity College Dublin, Dublin, Republic of Ireland
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Bart De Strooper
- Center for Brain and Disease Research, VIB and University of Leuven, Leuven, Belgium
- UK Dementia Research Institute at the University College London, London, UK
| | - Blanca Díaz-Castro
- UK Dementia Research Institute at the University of Edinburgh, Centre for Discovery Brain Sciences, Edinburgh, UK
| | - Cinthia Farina
- Institute of Experimental Neurology (INSpe) and Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | | | - Vittorio Gallo
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, Washington DC, USA
| | - James E Goldman
- Department of Pathology & Cell Biology, Columbia University, New York, New York, USA
| | - Steven A Goldman
- University of Rochester Medical Center, Rochester, New York, USA
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Science and Rigshospitalet, Kobenhavn N, Denmark
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universitaet & Institute of Stem Cell Research, Helmholtz Center Munich, Munich, Germany
- Synergy, Excellence Cluster of Systems Neurology, Biomedical Center, Munich, Germany
| | - Antonia Gutiérrez
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Philip G Haydon
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Dieter H Heiland
- Microenvironment and Immunology Research Laboratory, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Matthew G Holt
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Masamitsu Iino
- Division of Cellular and Molecular Pharmacology, Nihon University School of Medicine, Tokyo, Japan
| | - Ksenia V Kastanenka
- Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Helmut Kettenmann
- Cellular Neurosciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science 55, Expo-ro, Yuseong-gu, Daejeon, Korea
| | - Shane A Liddelow
- Neuroscience Institute, Department of Neuroscience and Physiology, Department of Ophthalmology, NYU School of Medicine, New York, USA
| | - Brian A MacVicar
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pierre Magistretti
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Centre de Neurosciences Psychiatriques, University of Lausanne and CHUV, Site de Cery, Prilly-Lausanne, Lausanne, Switzerland
| | - Albee Messing
- Waisman Center and School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Anusha Mishra
- Department of Neurology Jungers Center for Neurosciences Research and Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Anna V Molofsky
- Departments of Psychiatry/Weill Institute for Neuroscience University of California, San Francisco, California, USA
| | - Keith K Murai
- Centre for Research in Neuroscience, Department of Neurology & Neurosurgery, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Christopher M Norris
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Seiji Okada
- Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Stéphane H R Oliet
- Université de Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux, France
| | - João F Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's -PT Government Associate Laboratory, Braga/Guimarães, Portugal
- IPCA-EST-2Ai, Polytechnic Institute of Cávado and Ave, Applied Artificial Intelligence Laboratory, Campus of IPCA, Barcelos, Portugal
| | - Aude Panatier
- Université de Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux, France
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Marcela Pekna
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Luc Pellerin
- INSERM U1082, Université de Poitiers, Poitiers, France
| | - Gertrudis Perea
- Department of Functional and Systems Neurobiology, Cajal Institute, CSIC, Madrid, Spain
| | - Beatriz G Pérez-Nievas
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Frank W Pfrieger
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Kira E Poskanzer
- Department of Biochemistry & Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, California, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School. Associate Member, The Broad Institute, Boston, Massachusetts, USA
| | | | - Miriam Riquelme-Perez
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| | - Stefanie Robel
- Fralin Biomedical Research Institute at Virginia Tech Carilion, School of Neuroscience Virginia Tech, Riverside Circle, Roanoke, Virginia, USA
| | - Christine R Rose
- Institute of Neurobiology, Heinrich Heine University, Düsseldorf, Germany
| | - Jeffrey D Rothstein
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University Paris, Paris, France
| | - David H Rowitch
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Swetlana Sirko
- Physiological Genomics, Biomedical Center, LMU Munich, Munich, Germany
- Institute for Stem Cell Research, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Harald Sontheimer
- Virginia Tech School of Neuroscience and Center for Glial Biology in Health, Disease and Cancer, Virginia Tech at the Fralin Biomedical Research Institute, Roanoke, Virginia, USA
| | - Raymond A Swanson
- Dept. of Neurology, University of California San Francisco and San Francisco Veterans Affairs Health Care System, San Francisco, California, USA
| | - Javier Vitorica
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Dept. Bioquímica y Biología Molecular, Instituto de Biomedicina de Sevilla, Universidad de Sevilla, Hospital Virgen del Rocío/CSIC, Sevilla, Spain
| | - Ina-Beate Wanner
- Semel Institute for Neuroscience & Human Behavior, IDDRC, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Levi B Wood
- George W. Woodruff School of Mechanical Engineering, Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory, and Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jiaqian Wu
- The Vivian L. Smith Department of Neurosurgery, Center for Stem Cell and Regenerative Medicine, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, McGovern Medical School, UTHealth, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Binhai Zheng
- Department of Neurosciences, UC San Diego School of Medicine, La Jolla; VA San Diego Research Service, San Diego, CA, USA
| | - Eduardo R Zimmer
- Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Robert Zorec
- Laboratory of Neuroendocrinology, Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
- Celica Biomedical, 1000, Ljubljana, Slovenia
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California, USA.
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
55
|
Sun Q, Xu X, Wang T, Xu Z, Lu X, Li X, Chen G. Neurovascular Units and Neural-Glia Networks in Intracerebral Hemorrhage: from Mechanisms to Translation. Transl Stroke Res 2021; 12:447-460. [PMID: 33629275 DOI: 10.1007/s12975-021-00897-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/20/2022]
Abstract
Intracerebral hemorrhage (ICH), the most lethal type of stroke, often leads to poor outcomes in the clinic. Due to the complex mechanisms and cell-cell crosstalk during ICH, the neurovascular unit (NVU) was proposed to serve as a promising therapeutic target for ICH research. This review aims to summarize the development of pathophysiological shifts in the NVU and neural-glia networks after ICH. In addition, potential targets for ICH therapy are discussed in this review. Beyond cerebral blood flow, the NVU also plays an important role in protecting neurons, maintaining central nervous system (CNS) homeostasis, coordinating neuronal activity among supporting cells, forming and maintaining the blood-brain barrier (BBB), and regulating neuroimmune responses. During ICH, NVU dysfunction is induced, along with neuronal cell death, microglia and astrocyte activation, endothelial cell (EC) and tight junction (TJ) protein damage, and BBB disruption. In addition, it has been shown that certain targets and candidates can improve ICH-induced secondary brain injury based on an NVU and neural-glia framework. Moreover, therapeutic approaches and strategies for ICH are discussed.
Collapse
Affiliation(s)
- Qing Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Xiang Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Tianyi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Zhongmou Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Xiaocheng Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China.
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| |
Collapse
|
56
|
Verhoog QP, Holtman L, Aronica E, van Vliet EA. Astrocytes as Guardians of Neuronal Excitability: Mechanisms Underlying Epileptogenesis. Front Neurol 2020; 11:591690. [PMID: 33324329 PMCID: PMC7726323 DOI: 10.3389/fneur.2020.591690] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are key homeostatic regulators in the central nervous system and play important roles in physiology. After brain damage caused by e.g., status epilepticus, traumatic brain injury, or stroke, astrocytes may adopt a reactive phenotype. This process of reactive astrogliosis is important to restore brain homeostasis. However, persistent reactive astrogliosis can be detrimental for the brain and contributes to the development of epilepsy. In this review, we will focus on physiological functions of astrocytes in the normal brain as well as pathophysiological functions in the epileptogenic brain, with a focus on acquired epilepsy. We will discuss the role of astrocyte-related processes in epileptogenesis, including reactive astrogliosis, disturbances in energy supply and metabolism, gliotransmission, and extracellular ion concentrations, as well as blood-brain barrier dysfunction and dysregulation of blood flow. Since dysfunction of astrocytes can contribute to epilepsy, we will also discuss their role as potential targets for new therapeutic strategies.
Collapse
Affiliation(s)
- Quirijn P. Verhoog
- Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Linda Holtman
- Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
| | - Eleonora Aronica
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | - Erwin A. van Vliet
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
57
|
Bozic I, Savic D, Lavrnja I. Astrocyte phenotypes: Emphasis on potential markers in neuroinflammation. Histol Histopathol 2020; 36:267-290. [PMID: 33226087 DOI: 10.14670/hh-18-284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Astrocytes, the most abundant glial cells in the central nervous system (CNS), have numerous integral roles in all CNS functions. They are essential for synaptic transmission and support neurons by providing metabolic substrates, secreting growth factors and regulating extracellular concentrations of ions and neurotransmitters. Astrocytes respond to CNS insults through reactive astrogliosis, in which they go through many functional and molecular changes. In neuroinflammatory conditions reactive astrocytes exert both beneficial and detrimental functions, depending on the context and heterogeneity of astrocytic populations. In this review we profile astrocytic diversity in the context of neuroinflammation; with a specific focus on multiple sclerosis (MS) and its best-described animal model experimental autoimmune encephalomyelitis (EAE). We characterize two main subtypes, protoplasmic and fibrous astrocytes and describe the role of intermediate filaments in the physiology and pathology of these cells. Additionally, we outline a variety of markers that are emerging as important in investigating astrocytic biology in both physiological conditions and neuroinflammation.
Collapse
Affiliation(s)
- Iva Bozic
- Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Danijela Savic
- Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Irena Lavrnja
- Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
58
|
Nieland L, Morsett LM, Broekman MLD, Breakefield XO, Abels ER. Extracellular Vesicle-Mediated Bilateral Communication between Glioblastoma and Astrocytes. Trends Neurosci 2020; 44:215-226. [PMID: 33234347 DOI: 10.1016/j.tins.2020.10.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/09/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
Glioblastoma the most aggressive form of brain cancer, comprises a complex mixture of tumor cells and nonmalignant stromal cells, including neurons, astrocytes, microglia, infiltrating monocytes/macrophages, lymphocytes, and other cell types. All nonmalignant cells within and surrounding the tumor are affected by the presence of glioblastoma. Astrocytes use multiple modes of communication to interact with neighboring cells. Extracellular vesicle-directed intercellular communication has been found to be an important component of signaling between astrocytes and glioblastoma in tumor progression. In this review, we focus on recent findings on extracellular vesicle-mediated bilateral crosstalk, between glioblastoma cells and astrocytes, highlighting the protumor and antitumor roles of astrocytes in glioblastoma development.
Collapse
Affiliation(s)
- Lisa Nieland
- Departments of Neurology and Radiology, Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, 02129, USA
| | - Liza M Morsett
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Marike L D Broekman
- Departments of Neurology and Radiology, Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, 02129, USA; Department of Neurosurgery, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands; Department of Neurosurgery, Haaglanden Medical Center, 2512 VA, The Hague, The Netherlands
| | - Xandra O Breakefield
- Departments of Neurology and Radiology, Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, 02129, USA
| | - Erik R Abels
- Departments of Neurology and Radiology, Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, 02129, USA; Department of Neurosurgery, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
59
|
Augusto-Oliveira M, Arrifano GP, Takeda PY, Lopes-Araújo A, Santos-Sacramento L, Anthony DC, Verkhratsky A, Crespo-Lopez ME. Astroglia-specific contributions to the regulation of synapses, cognition and behaviour. Neurosci Biobehav Rev 2020; 118:331-357. [DOI: 10.1016/j.neubiorev.2020.07.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022]
|
60
|
Blood-brain barrier integrity in the pathogenesis of Alzheimer's disease. Front Neuroendocrinol 2020; 59:100857. [PMID: 32781194 DOI: 10.1016/j.yfrne.2020.100857] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
The blood-brain barrier (BBB) tightly controls the molecular exchange between the brain parenchyma and blood. Accumulated evidence from transgenic animal Alzheimer's disease (AD) models and human AD patients have demonstrated that BBB dysfunction is a major player in AD pathology. In this review, we discuss the role of the BBB in maintaining brain integrity and how this is mediated by crosstalk between BBB-associated cells within the neurovascular unit (NVU). We then discuss the role of the NVU, in particular its endothelial cell, pericyte, and glial cell constituents, in AD pathogenesis. The effect of substances released by the neuroendocrine system in modulating BBB function and AD pathogenesis is also discussed. We perform a systematic review of currently available AD treatments specifically targeting pericytes and BBB glial cells. In summary, this review provides a comprehensive overview of BBB dysfunction in AD and a new perspective on the development of therapeutics for AD.
Collapse
|
61
|
Gonzalez-Fernandez E, Staursky D, Lucas K, Nguyen BV, Li M, Liu Y, Washington C, Coolen LM, Fan F, Roman RJ. 20-HETE Enzymes and Receptors in the Neurovascular Unit: Implications in Cerebrovascular Disease. Front Neurol 2020; 11:983. [PMID: 33013649 PMCID: PMC7499024 DOI: 10.3389/fneur.2020.00983] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
20-HETE is a potent vasoconstrictor that is implicated in the regulation of blood pressure, cerebral blood flow and neuronal death following ischemia. Numerous human genetic studies have shown that inactivating variants in the cytochrome P450 enzymes that produce 20-HETE are associated with hypertension, stroke and cerebrovascular disease. However, little is known about the expression and cellular distribution of the cytochrome P450A enzymes (CYP4A) that produce 20-HETE or the newly discovered 20-HETE receptor (GPR75) in the brain. The present study examined the cell types and regions in the rat forebrain that express CYP4A and GPR75. Brain tissue slices from Sprague Dawley (SD), Dahl Salt-Sensitive (SS) and CYP4A1 transgenic rat strains, as well as cultured human cerebral pericytes and cerebral vascular smooth muscle cells, were analyzed by fluorescent immunostaining. Tissue homogenates from these strains and cultured cells were examined by Western blot. In the cerebral vasculature, CYP4A and GPR75 were expressed in endothelial cells, vascular smooth muscle cells and the glial limiting membrane of pial arteries and penetrating arterioles but not in the endothelium of capillaries. CYP4A, but not GPR75, was expressed in astrocytes. CYP4A and GPR75 were both expressed in a subpopulation of pericytes on capillaries. The diameters of capillaries were significantly decreased at the sites of first and second-order pericytes that expressed CYP4A. Capillary diameters were unaffected at the sites of other pericytes that did not express CYP4A. These findings implicate 20-HETE as a paracrine mediator in various components of the neurovascular unit and are consistent with 20-HETE's emerging role in the regulation of cerebral blood flow, blood-brain barrier integrity, the pathogenesis of stroke and the vascular contributions to cognitive impairment and dementia. Moreover, this study highlights GPR75 as a potential therapeutic target for the treatment of these devastating conditions.
Collapse
Affiliation(s)
- Ezekiel Gonzalez-Fernandez
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Daniel Staursky
- William and Carey University College of Osteopathic Medicine, Hattiesburg, MS, United States
| | - Kathryn Lucas
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS, United States
| | - Bond V. Nguyen
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Man Li
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Yedan Liu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Chad Washington
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS, United States
| | - Lique M. Coolen
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Richard J. Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
62
|
O'Leary LA, Davoli MA, Belliveau C, Tanti A, Ma JC, Farmer WT, Turecki G, Murai KK, Mechawar N. Characterization of Vimentin-Immunoreactive Astrocytes in the Human Brain. Front Neuroanat 2020; 14:31. [PMID: 32848635 PMCID: PMC7406576 DOI: 10.3389/fnana.2020.00031] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Astrocytes are commonly identified by their expression of the intermediate filament protein glial fibrillary acidic protein (GFAP). GFAP-immunoreactive (GFAP-IR) astrocytes exhibit regional heterogeneity in density and morphology in the mouse brain as well as morphological diversity in the human cortex. However, regional variations in astrocyte distribution and morphology remain to be assessed comprehensively. This was the overarching objective of this postmortem study, which mainly exploited the immunolabeling of vimentin (VIM), an intermediate filament protein expressed by astrocytes and endothelial cells which presents the advantage of more extensively labeling cell structures. We compared the densities of vimentin-immunoreactive (VIM-IR) and GFAP-IR astrocytes in various brain regions (prefrontal and primary visual cortex, caudate nucleus, mediodorsal thalamus) from male individuals having died suddenly in the absence of neurological or psychiatric conditions. The morphometric properties of VIM-IR in these brain regions were also assessed. We found that VIM-IR astrocytes generally express the canonical astrocytic markers Aldh1L1 and GFAP but that VIM-IR astrocytes are less abundant than GFAP-IR astrocytes in all human brain regions, particularly in the thalamus, where VIM-IR cells were nearly absent. About 20% of all VIM-IR astrocytes presented a twin cell morphology, a phenomenon rarely observed for GFAP-IR astrocytes. Furthermore VIM-IR astrocytes in the striatum were often seen to extend numerous parallel processes which seemed to give rise to large VIM-IR fiber bundles projecting over long distances. Moreover, morphometric analyses revealed that VIM-IR astrocytes were more complex than their mouse counterparts in functionally homologous brain regions, as has been previously reported for GFAP-IR astrocytes. Lastly, the density of GFAP-IR astrocytes in gray and white matter were inversely correlated with vascular density, but for VIM-IR astrocytes this was only the case in gray matter, suggesting that gliovascular interactions may especially influence the regional heterogeneity of GFAP-IR astrocytes. Taken together, these findings reveal special features displayed uniquely by human VIM-IR astrocytes and illustrate that astrocytes display important region- and marker-specific differences in the healthy human brain.
Collapse
Affiliation(s)
- Liam Anuj O'Leary
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Maria Antonietta Davoli
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - Claudia Belliveau
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Arnaud Tanti
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - Jie Christopher Ma
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - William Todd Farmer
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Center, Montreal General Hospital, Montreal, QC, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Keith Kazuo Murai
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Center, Montreal General Hospital, Montreal, QC, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
63
|
Troili F, Cipollini V, Moci M, Morena E, Palotai M, Rinaldi V, Romano C, Ristori G, Giubilei F, Salvetti M, Orzi F, Guttmann CRG, Cavallari M. Perivascular Unit: This Must Be the Place. The Anatomical Crossroad Between the Immune, Vascular and Nervous System. Front Neuroanat 2020; 14:17. [PMID: 32372921 PMCID: PMC7177187 DOI: 10.3389/fnana.2020.00017] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/23/2020] [Indexed: 12/25/2022] Open
Abstract
Most neurological disorders seemingly have heterogenous pathogenesis, with overlapping contribution of neuronal, immune and vascular mechanisms of brain injury. The perivascular space in the brain represents a crossroad where those mechanisms interact, as well as a key anatomical component of the recently discovered glymphatic pathway, which is considered to play a crucial role in the clearance of brain waste linked to neurodegenerative diseases. The pathological interplay between neuronal, immune and vascular factors can create an environment that promotes self-perpetration of mechanisms of brain injury across different neurological diseases, including those that are primarily thought of as neurodegenerative, neuroinflammatory or cerebrovascular. Changes of the perivascular space can be monitored in humans in vivo using magnetic resonance imaging (MRI). In the context of glymphatic clearance, MRI-visible enlarged perivascular spaces (EPVS) are considered to reflect glymphatic stasis secondary to the perivascular accumulation of brain debris, although they may also represent an adaptive mechanism of the glymphatic system to clear them. EPVS are also established correlates of dementia and cerebral small vessel disease (SVD) and are considered to reflect brain inflammatory activity. In this review, we describe the “perivascular unit” as a key anatomical and functional substrate for the interaction between neuronal, immune and vascular mechanisms of brain injury, which are shared across different neurological diseases. We will describe the main anatomical, physiological and pathological features of the perivascular unit, highlight potential substrates for the interplay between different noxae and summarize MRI studies of EPVS in cerebrovascular, neuroinflammatory and neurodegenerative disorders.
Collapse
Affiliation(s)
- Fernanda Troili
- Department of Neurosciences Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Virginia Cipollini
- Department of Neurosciences Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Marco Moci
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Baronissi, Italy
| | - Emanuele Morena
- Department of Neurosciences Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Miklos Palotai
- Harvard Medical School, Center for Neurological Imaging, Brigham and Women's Hospital, Boston, MA, United States
| | - Virginia Rinaldi
- Department of Neurosciences Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Carmela Romano
- Department of Neurosciences Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Giovanni Ristori
- Department of Neurosciences Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Franco Giubilei
- Department of Neurosciences Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Marco Salvetti
- Department of Neurosciences Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Francesco Orzi
- Department of Neurosciences Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Charles R G Guttmann
- Harvard Medical School, Center for Neurological Imaging, Brigham and Women's Hospital, Boston, MA, United States
| | - Michele Cavallari
- Harvard Medical School, Center for Neurological Imaging, Brigham and Women's Hospital, Boston, MA, United States
| |
Collapse
|
64
|
Early AN, Gorman AA, Van Eldik LJ, Bachstetter AD, Morganti JM. Effects of advanced age upon astrocyte-specific responses to acute traumatic brain injury in mice. J Neuroinflammation 2020; 17:115. [PMID: 32290848 PMCID: PMC7158022 DOI: 10.1186/s12974-020-01800-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/01/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Older-age individuals are at the highest risk for disability from a traumatic brain injury (TBI). Astrocytes are the most numerous glia in the brain, necessary for brain function, yet there is little known about unique responses of astrocytes in the aged-brain following TBI. METHODS Our approach examined astrocytes in young adult, 4-month-old, versus aged, 18-month-old mice, at 1, 3, and 7 days post-TBI. We selected these time points to span the critical period in the transition from acute injury to presumably irreversible tissue damage and disability. Two approaches were used to define the astrocyte contribution to TBI by age interaction: (1) tissue histology and morphological phenotyping, and (2) transcriptomics on enriched astrocytes from the injured brain. RESULTS Aging was found to have a profound effect on the TBI-induced loss of astrocyte function needed for maintaining water transport and edema-namely, aquaporin-4. The aged brain also demonstrated a progressive exacerbation of astrogliosis as a function of time after injury. Moreover, clasmatodendrosis, an underrecognized astrogliopathy, was found to be significantly increased in the aged brain, but not in the young brain. As a function of TBI, we observed a transitory refraction in the number of these astrocytes, which rebounded by 7 days post-injury in the aged brain. Transcriptomic data demonstrated disproportionate changes in genes attributed to reactive astrocytes, inflammatory response, complement pathway, and synaptic support in aged mice following TBI compared to young mice. Additionally, our data highlight that TBI did not evoke a clear alignment with the previously defined "A1/A2" dichotomy of reactive astrogliosis. CONCLUSIONS Overall, our findings point toward a progressive phenotype of aged astrocytes following TBI that we hypothesize to be maladaptive, shedding new insights into potentially modifiable astrocyte-specific mechanisms that may underlie increased fragility of the aged brain to trauma.
Collapse
Affiliation(s)
- Alexandria N Early
- Sanders-Brown Center on Aging, University of Kentucky, Room 433, Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA.,Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
| | - Amy A Gorman
- Sanders-Brown Center on Aging, University of Kentucky, Room 433, Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, Room 433, Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA.,Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA.,Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Adam D Bachstetter
- Sanders-Brown Center on Aging, University of Kentucky, Room 433, Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA.,Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA.,Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Josh M Morganti
- Sanders-Brown Center on Aging, University of Kentucky, Room 433, Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA. .,Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA. .,Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
65
|
Lundin A, Ricchiuto P, Clausen M, Hicks R, Falk A, Herland A. hiPS-Derived Astroglia Model Shows Temporal Transcriptomic Profile Related to Human Neural Development and Glia Competence Acquisition of a Maturing Astrocytic Identity. ACTA ACUST UNITED AC 2020; 4:e1900226. [PMID: 32402123 DOI: 10.1002/adbi.201900226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 11/10/2022]
Abstract
Astrocyte biology has a functional and cellular diversity only observed in humans. The understanding of the regulatory network governing outer radial glia (RG), responsible for the expansion of the outer subventricular zone (oSVZ), and astrocyte cellular development remains elusive, partly since relevant human material to study these features is not readily available. A human-induced pluripotent stem cell derived astrocytic model, NES-Astro, has been recently developed, with high expression of astrocyte-associated markers and high astrocyte-relevant functionality. Here it is studied how the NES-Astro phenotype develops during specification and its correlation to known RG and astrocyte characteristics in human brain development. It is demonstrated that directed differentiation of neurogenic long-term neuroepithelial stem cells undergo a neurogenic-to-gliogenic competence preferential change, acquiring a glial fate. Temporal transcript profiles of long- and small RNA corroborate previously shown neurogenic restriction by glia-associated let-7 expression. Furthermore, NES-Astro differentiation displays proposed mechanistic features important for the evolutionary expansion of the oSVZ together with an astroglia/astrocyte transcriptome. The NES-Astro generation is a straight-forward differentiation protocol from stable and expandable neuroepithelial stem cell lines derived from iPS cells. Thus, the NES-Astro is an easy-access cell system with high biological relevance for studies of mechanistic traits of glia and astrocyte.
Collapse
Affiliation(s)
- Anders Lundin
- Translational Genomics, BioPharmaceuticals R&D, Discovery Sciences, AstraZeneca, Gothenburg, Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - Piero Ricchiuto
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Darwin Building, 310 Milton Rd, Cambridge, CB4 0WG, UK
| | - Maryam Clausen
- Translational Genomics, BioPharmaceuticals R&D, Discovery Sciences, AstraZeneca, Gothenburg, Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - Ryan Hicks
- Translational Genomics, BioPharmaceuticals R&D, Discovery Sciences, AstraZeneca, Gothenburg, Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Anna Herland
- Department of Neuroscience, Karolinska Institutet, Stockholm, 17177, Sweden.,Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, 10044, Sweden.,AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institutet, Stockholm, 17177, Sweden
| |
Collapse
|
66
|
Bayraktar OA, Bartels T, Holmqvist S, Kleshchevnikov V, Martirosyan A, Polioudakis D, Ben Haim L, Young AMH, Batiuk MY, Prakash K, Brown A, Roberts K, Paredes MF, Kawaguchi R, Stockley JH, Sabeur K, Chang SM, Huang E, Hutchinson P, Ullian EM, Hemberg M, Coppola G, Holt MG, Geschwind DH, Rowitch DH. Astrocyte layers in the mammalian cerebral cortex revealed by a single-cell in situ transcriptomic map. Nat Neurosci 2020; 23:500-509. [PMID: 32203496 PMCID: PMC7116562 DOI: 10.1038/s41593-020-0602-1] [Citation(s) in RCA: 300] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/28/2020] [Indexed: 11/09/2022]
Abstract
Although the cerebral cortex is organized into six excitatory neuronal layers, it is unclear whether glial cells show distinct layering. In the present study, we developed a high-content pipeline, the large-area spatial transcriptomic (LaST) map, which can quantify single-cell gene expression in situ. Screening 46 candidate genes for astrocyte diversity across the mouse cortex, we identified superficial, mid and deep astrocyte identities in gradient layer patterns that were distinct from those of neurons. Astrocyte layer features, established in the early postnatal cortex, mostly persisted in adult mouse and human cortex. Single-cell RNA sequencing and spatial reconstruction analysis further confirmed the presence of astrocyte layers in the adult cortex. Satb2 and Reeler mutations that shifted neuronal post-mitotic development were sufficient to alter glial layering, indicating an instructive role for neuronal cues. Finally, astrocyte layer patterns diverged between mouse cortical regions. These findings indicate that excitatory neurons and astrocytes are organized into distinct lineage-associated laminae.
Collapse
Affiliation(s)
- Omer Ali Bayraktar
- Department of Paediatrics, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Departments of Pediatrics and Neurosurgery, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.
- Wellcome Sanger Institute, Hinxton, UK.
| | - Theresa Bartels
- Department of Paediatrics, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Staffan Holmqvist
- Department of Paediatrics, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | | | - Araks Martirosyan
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, KU Leuven Department of Neuroscience, Leuven, Belgium
| | - Damon Polioudakis
- Departments of Neurology and Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
- Center for Autism Research and Treatment, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Lucile Ben Haim
- Department of Paediatrics, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Adam M H Young
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Mykhailo Y Batiuk
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, KU Leuven Department of Neuroscience, Leuven, Belgium
| | - Kirti Prakash
- Department of Paediatrics, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Alexander Brown
- Sainsbury Wellcome Centre, University College London, London, UK
| | | | - Mercedes F Paredes
- Departments of Pediatrics and Neurosurgery, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Riki Kawaguchi
- Department of Psychiatry, University of California Los Angeles, Los Angeles, CA, USA
| | - John H Stockley
- Department of Paediatrics, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Khalida Sabeur
- Department of Paediatrics, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Departments of Pediatrics and Neurosurgery, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Sandra M Chang
- Department of Paediatrics, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Departments of Pediatrics and Neurosurgery, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Eric Huang
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Peter Hutchinson
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Erik M Ullian
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | | | - Giovanni Coppola
- Departments of Neurology and Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, University of California Los Angeles, Los Angeles, CA, USA
| | - Matthew G Holt
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, KU Leuven Department of Neuroscience, Leuven, Belgium
| | - Daniel H Geschwind
- Departments of Neurology and Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
- Center for Autism Research and Treatment, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - David H Rowitch
- Department of Paediatrics, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Departments of Pediatrics and Neurosurgery, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
67
|
Al-Dalahmah O, Sosunov AA, Shaik A, Ofori K, Liu Y, Vonsattel JP, Adorjan I, Menon V, Goldman JE. Single-nucleus RNA-seq identifies Huntington disease astrocyte states. Acta Neuropathol Commun 2020; 8:19. [PMID: 32070434 PMCID: PMC7029580 DOI: 10.1186/s40478-020-0880-6] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 01/05/2020] [Indexed: 11/17/2022] Open
Abstract
Huntington Disease (HD) is an inherited movement disorder caused by expanded CAG repeats in the Huntingtin gene. We have used single nucleus RNASeq (snRNASeq) to uncover cellular phenotypes that change in the disease, investigating single cell gene expression in cingulate cortex of patients with HD and comparing the gene expression to that of patients with no neurological disease. In this study, we focused on astrocytes, although we found significant gene expression differences in neurons, oligodendrocytes, and microglia as well. In particular, the gene expression profiles of astrocytes in HD showed multiple signatures, varying in phenotype from cells that had markedly upregulated metallothionein and heat shock genes, but had not completely lost the expression of genes associated with normal protoplasmic astrocytes, to astrocytes that had substantially upregulated glial fibrillary acidic protein (GFAP) and had lost expression of many normal protoplasmic astrocyte genes as well as metallothionein genes. When compared to astrocytes in control samples, astrocyte signatures in HD also showed downregulated expression of a number of genes, including several associated with protoplasmic astrocyte function and lipid synthesis. Thus, HD astrocytes appeared in variable transcriptional phenotypes, and could be divided into several different “states”, defined by patterns of gene expression. Ultimately, this study begins to fill the knowledge gap of single cell gene expression in HD and provide a more detailed understanding of the variation in changes in gene expression during astrocyte “reactions” to the disease.
Collapse
|
68
|
Moreno-Rodriguez M, Perez SE, Nadeem M, Malek-Ahmadi M, Mufson EJ. Frontal cortex chitinase and pentraxin neuroinflammatory alterations during the progression of Alzheimer's disease. J Neuroinflammation 2020; 17:58. [PMID: 32066474 PMCID: PMC7025403 DOI: 10.1186/s12974-020-1723-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/20/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Chitinase 3-like 1 (CHI3L1), chitinase 3-like 2 (CHI3L2), and neuronal pentraxin II (NPTX2) are inflammatory biomarkers of Alzheimer's disease (AD). Although studies have demonstrated that cerebrospinal fluid levels of these proteins are changed in AD, no studies have undertaken a detailed examination of alterations in protein levels, cellular expression, and interaction with amyloid in the brain during the progression of AD. METHODS The study evaluated levels of both CHI3L1 and CHI3L2, NPTX2, ionized calcium-binding adapter molecule 1 (Iba1), complement component 1q (C1q), glial fibrillary acidic protein (GFAP), and CD44, in the frontal cortex of people who died with an antemortem clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI), mild/moderate AD (mAD), and severe AD (sAD) using immunoblot and immunohistochemical techniques. RESULTS CHI3L1-immunoreactive (-ir) astrocyte numbers were increased in the frontal cortex and white matter in sAD compared to NCI. On the other hand, increases in GFAP and Iba1-ir cell numbers were observed in MCI compared to NCI but only in white matter. Western blot analyses revealed significantly lower frontal cortex CHI3L2 levels, whereas CD44 levels were increased in sAD. No significant differences for CHI3L1, GFAP, C1q, and NPTX2 protein levels were detected between clinical groups. Strong significant correlations were found between frontal cortex CHI3L1 and Iba1-ir cell numbers in white matter and CHI3L1 and C1q protein levels in the early stages of the disease. C1q and Iba1, CD44 with CHI3L2, and GFAP protein levels were associated during disease progression. CHI3L1 and Iba1 cell numbers in white matter showed a significant associations with episodic memory and perceptual speed. CONCLUSIONS White matter CHI3L1 inflammatory response is associated with cognitive impairment early in the onset of AD.
Collapse
Affiliation(s)
- Marta Moreno-Rodriguez
- Department of Neurobiology and Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 W. Thomas Rd., Phoenix, AZ, 85013, USA
| | - Sylvia E Perez
- Department of Neurobiology and Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 W. Thomas Rd., Phoenix, AZ, 85013, USA
| | - Muhammad Nadeem
- Department of Neurobiology and Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 W. Thomas Rd., Phoenix, AZ, 85013, USA
| | | | - Elliott J Mufson
- Department of Neurobiology and Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 W. Thomas Rd., Phoenix, AZ, 85013, USA.
| |
Collapse
|
69
|
Lagos-Cabré R, Burgos-Bravo F, Avalos AM, Leyton L. Connexins in Astrocyte Migration. Front Pharmacol 2020; 10:1546. [PMID: 32009957 PMCID: PMC6974553 DOI: 10.3389/fphar.2019.01546] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/29/2019] [Indexed: 12/18/2022] Open
Abstract
Astrocytes have long been considered the supportive cells of the central nervous system, but during the last decades, they have gained much more attention because of their active participation in the modulation of neuronal function. For example, after brain damage, astrocytes become reactive and undergo characteristic morphological and molecular changes, such as hypertrophy and increase in the expression of glial fibrillary acidic protein (GFAP), in a process known as astrogliosis. After severe damage, astrocytes migrate to the lesion site and proliferate, which leads to the formation of a glial scar. At this scar-forming stage, astrocytes secrete many factors, such as extracellular matrix proteins, cytokines, growth factors and chondroitin sulfate proteoglycans, stop migrating, and the process is irreversible. Although reactive gliosis is a normal physiological response that can protect brain cells from further damage, it also has detrimental effects on neuronal survival, by creating a hostile and non-permissive environment for axonal repair. The transformation of astrocytes from reactive to scar-forming astrocytes highlights migration as a relevant regulator of glial scar formation, and further emphasizes the importance of efficient communication between astrocytes in order to orchestrate cell migration. The coordination between astrocytes occurs mainly through Connexin (Cx) channels, in the form of direct cell-cell contact (gap junctions, GJs) or contact between the extracellular matrix and the astrocytes (hemichannels, HCs). Reactive astrocytes increase the expression levels of several proteins involved in astrocyte migration, such as αvβ3 Integrin, Syndecan-4 proteoglycan, the purinergic receptor P2X7, Pannexin1, and Cx43 HCs. Evidence has indicated that Cx43 HCs play a role in regulating astrocyte migration through the release of small molecules to the extracellular space, which then activate receptors in the same or adjacent cells to continue the signaling cascades required for astrocyte migration. In this review, we describe the communication of astrocytes through Cxs, the role of Cxs in inflammation and astrocyte migration, and discuss the molecular mechanisms that regulate Cx43 HCs, which may provide a therapeutic window of opportunity to control astrogliosis and the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Raúl Lagos-Cabré
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Center for Studies on Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Francesca Burgos-Bravo
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Center for Studies on Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Ana María Avalos
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Center for Studies on Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
70
|
de Majo M, Koontz M, Rowitch D, Ullian EM. An update on human astrocytes and their role in development and disease. Glia 2020; 68:685-704. [PMID: 31926040 DOI: 10.1002/glia.23771] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022]
Abstract
Human astrocytes provide trophic as well as structural support to the surrounding brain cells. Furthermore, they have been implicated in many physiological processes important for central nervous system function. Traditionally astrocytes have been considered to be a homogeneous class of cells, however, it has increasingly become more evident that astrocytes can have very different characteristics in different regions of the brain, or even within the same region. In this review we will discuss the features of human astrocytes, their heterogeneity, and their generation during neurodevelopment and the extraordinary progress that has been made to model these fascinating cells in vitro, mainly from induced pluripotent stem cells. Astrocytes' role in disease will also be discussed with a particular focus on their role in neurodegenerative disorders. As outlined here, astrocytes are important for the homeostasis of the central nervous system and understanding their regional specificity is a priority to elucidate the complexity of the human brain.
Collapse
Affiliation(s)
- Martina de Majo
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California
| | - Mark Koontz
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California
| | - David Rowitch
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California.,Department of Pediatrics, University of California, San Francisco, San Francisco, California.,Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Erik M Ullian
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
71
|
Planas-Fontánez TM, Dreyfus CF, Saitta KS. Reactive Astrocytes as Therapeutic Targets for Brain Degenerative Diseases: Roles Played by Metabotropic Glutamate Receptors. Neurochem Res 2020; 45:541-550. [PMID: 31983009 PMCID: PMC7058558 DOI: 10.1007/s11064-020-02968-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/13/2020] [Accepted: 01/18/2020] [Indexed: 02/06/2023]
Abstract
Astrocytes are well known to play critical roles in the development and maintenance of the central nervous system (CNS). Moreover, recent reports indicate that these cells are heterogeneous with respect to the molecules they express and the functions they exhibit in the quiescent or activated state. Because astrocytes also contribute to pathology, promising new results raise the possibility of manipulating specific astroglial populations for therapeutic roles. In this mini-review, we highlight the function of metabotropic glutamate receptors (mGluRs), in particular mGluR3 and mGluR5, in reactive astrocytes and relate these to three degenerative CNS diseases: multiple sclerosis, Alzheimer's disease and Amyotrophic Lateral Sclerosis. Previous studies demonstrate that effects of these receptors may be beneficial, but this varies depending on the subtype of receptor, the state of the astrocytes, and the specific disease to which they are exposed. Elucidating the role of mGluRs on astrocytes at specific times during development and disease will provide novel insights in understanding how to best use these to serve as therapeutic targets.
Collapse
Affiliation(s)
- Talia M. Planas-Fontánez
- grid.430387.b0000 0004 1936 8796Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ USA ,grid.430387.b0000 0004 1936 8796Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ USA
| | - Cheryl F. Dreyfus
- grid.430387.b0000 0004 1936 8796Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ USA ,grid.430387.b0000 0004 1936 8796Robert Wood Johnson Medical School, 683 Hoes Lane West, Room 361, Piscataway, NJ 08854 USA
| | - Kyle S. Saitta
- grid.430387.b0000 0004 1936 8796Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ USA ,grid.430387.b0000 0004 1936 8796Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ USA
| |
Collapse
|
72
|
Spatiotemporal model of tripartite synapse with perinodal astrocytic process. J Comput Neurosci 2019; 48:1-20. [DOI: 10.1007/s10827-019-00734-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/11/2019] [Accepted: 10/21/2019] [Indexed: 12/30/2022]
|
73
|
Bedner P, Jabs R, Steinhäuser C. Properties of human astrocytes and NG2 glia. Glia 2019; 68:756-767. [DOI: 10.1002/glia.23725] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 01/11/2023]
Affiliation(s)
- Peter Bedner
- Institute of Cellular Neurosciences, Medical FacultyUniversity of Bonn Bonn Germany
| | - Ronald Jabs
- Institute of Cellular Neurosciences, Medical FacultyUniversity of Bonn Bonn Germany
| | | |
Collapse
|
74
|
Atkinson-Dell R, Mohamet L. Induced Pluripotent Stem Cell-Derived Astroglia: A New Tool for Research Towards the Treatment of Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1175:383-405. [PMID: 31583596 DOI: 10.1007/978-981-13-9913-8_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite over a century of research into Alzheimer's disease (AD), progress in understanding the complex aetiology has been hindered, in part, by a lack of human, disease relevant, cellular models, reflected in an inability to translate results from animal studies to successful human therapies. Induced pluripotent stem cell (iPSC) technology, in which somatic cells are reprogrammed to pluripotent stem cells, creates an ideal physiologically relevant model as they maintain the genetic identity of the donor. These iPSCs can self-renew indefinitely in vitro and have the capacity to differentiate into any cell type, opening up new discovery and therapeutic opportunities. Despite a plethora of publications indicating the generation and utility of iPSC-derived neurones for disease modelling to date, in comparison only a limited number of studies have described generation of enriched astroglia from patients with early- or late-stage onset of AD. We recently reported that iPSC-astroglia derived from these patients are capable of mimicking a wide variety of deficits in homeostatic molecular cascades, intimately associated with AD, that are routinely observed in vivo. This review examines the opportunities and limitations of this innovative technology in the context of AD modelling and uses for preclinical discovery to improve our success for an efficacious therapeutic outcome.
Collapse
Affiliation(s)
| | - Lisa Mohamet
- StrataStem Ltd., Suite 112, 4a Rylands Street, Warrington, WA1 1EN, UK.
| |
Collapse
|
75
|
Sailuotong Capsule Prevents the Cerebral Ischaemia-Induced Neuroinflammation and Impairment of Recognition Memory through Inhibition of LCN2 Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8416105. [PMID: 31565154 PMCID: PMC6745154 DOI: 10.1155/2019/8416105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/27/2019] [Accepted: 05/04/2019] [Indexed: 12/13/2022]
Abstract
Background Astrogliosis can result in astrocytes with hypertrophic morphology after injury, indicated by extended processes and swollen cell bodies. Lipocalin-2 (LCN2), a secreted glycoprotein belonging to the lipocalin superfamily, has been reported to play a detrimental role in ischaemic brains and neurodegenerative diseases. Sailuotong (SLT) capsule is a standardized three-herb preparation composed of ginseng, ginkgo, and saffron for the treatment of vascular dementia. Although recent clinical trials have demonstrated the beneficial effect of SLT on vascular dementia, its potential cellular mechanism has not been fully explored. Methods Male adult Sprague-Dawley (SD) rats were subjected to microsphere-embolized cerebral ischaemia. Immunostaining and Western blotting were performed to assess astrocytic reaction. Human astrocytes exposed to oxygen-glucose deprivation (OGD) were used to elucidate the effects of SLT-induced inflammation and astrocytic reaction. Results A memory recovery effect was found to be associated with the cerebral ischaemia-induced expression of inflammatory proteins and the suppression of LCN2 expression in the brain. Additionally, SLT reduced the astrocytic reaction, LCN2 expression, and the phosphorylation of STAT3 and JAK2. For in vitro experiments, OGD-induced expression of inflammation and LCN2 was also decreased in human astrocyte by the SLT treatment. Moreover, LCN2 overexpression significantly enhanced the above effects. SLT downregulated these effects that were enhanced by LCN2 overexpression. Conclusions SLT mediates neuroinflammation, thereby protecting against ischaemic brain injury by inhibiting astrogliosis and suppressing neuroinflammation via the LCN2-JAK2/STAT3 pathway, providing a new idea for the treatment strategy of ischaemic stroke.
Collapse
|
76
|
Prospects and challenges of imaging neuroinflammation beyond TSPO in Alzheimer's disease. Eur J Nucl Med Mol Imaging 2019; 46:2831-2847. [PMID: 31396666 PMCID: PMC6879435 DOI: 10.1007/s00259-019-04462-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023]
Abstract
Neuroinflammation, as defined by the activation of microglia and astrocytes, has emerged in the last years as a key element of the pathogenesis of neurodegenerative diseases based on genetic findings and preclinical and human studies. This has raised the need for new methodologies to assess and follow glial activation in patients, prompting the development of PET ligands for molecular imaging of glial cells and novel structural MRI and DTI tools leading to a multimodal approach. The present review describes the recent advancements in microglia and astrocyte biology in the context of health, ageing, and Alzheimer's disease, the most common dementia worldwide. The review further delves in molecular imaging discussing the challenges associated with past and present targets, including conflicting findings, and finally, presenting novel methodologies currently explored to improve our in vivo knowledge of the neuroinflammatory patterns in Alzheimer's disease. With glial cell activation as a potential therapeutic target in neurodegenerative diseases, the translational research between cell biologists, chemists, physicists, radiologists, and neurologists should be strengthened.
Collapse
|
77
|
Sugiyama Y, Oishi T, Yamashita A, Murata Y, Yamamoto T, Takashima I, Isa T, Higo N. Neuronal and microglial localization of secreted phosphoprotein 1 (osteopontin) in intact and damaged motor cortex of macaques. Brain Res 2019; 1714:52-64. [PMID: 30790559 DOI: 10.1016/j.brainres.2019.02.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/12/2019] [Accepted: 02/17/2019] [Indexed: 01/06/2023]
Abstract
We previously reported that mRNA encoding secreted phosphoprotein 1 (SPP1), also known as osteopontin, is preferentially expressed in large neurons in layer V of the macaque motor cortex, most of which are presumed to be corticospinal tract neurons. As a first step to elucidating the cellular function of SPP1 in macaque neurons, we examined the localization of SPP1 in the primary motor cortex (M1) of the macaque by using immunohistochemistry. SPP1 immunoreactivity was found to be localized in the cell bodies of neurons, but not outside the cells, indicating that SPP1 was not secreted from these neurons. The results of electron microscope analysis and double-labeling analysis with marker proteins suggested that SPP1 was localized in the mitochondria of neurons. The distributions of SPP1 in the neurons corresponded to those of integrin αV, a putative receptor for SPP1. The distribution of SPP1 was also investigated in macaques whose M1 had been lesioned. We found that SPP1 was secreted by proliferated microglia in the lesioned area. Double-labeling analysis indicated that SPP1 immunoreactivity in the microglia was colocalized with CD44, another putative receptor for SPP1. Success rates in the small-object-retrieval task were positively correlated with SPP1 immunoreactivity in the neurons in the perilesional area. SPP1 has multiple roles in the macaque motor cortex, and it may be a key protein during recovery of hand movement after brain damage.
Collapse
Affiliation(s)
- Yoko Sugiyama
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan; Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Ibaraki 305-8574, Japan
| | - Takao Oishi
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Akiko Yamashita
- Division of Biology, Department of Liberal Education, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Yumi Murata
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
| | - Tatsuya Yamamoto
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan; Department of Physical Therapy, Faculty of Medical and Health Sciences, Tsukuba International University, Tsuchiura, Ibaraki 300-0051, Japan
| | - Ichiro Takashima
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan; Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Ibaraki 305-8574, Japan
| | - Tadashi Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Noriyuki Higo
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan.
| |
Collapse
|
78
|
Falcone C, Wolf-Ochoa M, Amina S, Hong T, Vakilzadeh G, Hopkins WD, Hof PR, Sherwood CC, Manger PR, Noctor SC, Martínez-Cerdeño V. Cortical interlaminar astrocytes across the therian mammal radiation. J Comp Neurol 2019; 527:1654-1674. [PMID: 30552685 DOI: 10.1002/cne.24605] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 01/21/2023]
Abstract
Interlaminar astrocytes (ILA) in the cerebral cortex possess a soma in layer I and extend an interlaminar process that runs perpendicular to the pia into deeper cortical layers. We examined cerebral cortex from 46 species that encompassed most orders of therian mammalians, including 22 primate species. We described two distinct cell types with interlaminar processes that have been referred to as ILA, that we termed pial ILA and supial ILA. ILA subtypes differ in somatic morphology, position in layer I, and presence across species. We further described rudimentary ILA that have short GFAP+ processes that do not exit layer I, and "typical" ILA with longer GFAP+ processes that exit layer I. Pial ILA were present in all mammalian species analyzed, with typical ILA observed in Primates, Scandentia, Chiroptera, Carnivora, Artiodactyla, Hyracoidea, and Proboscidea. Subpial ILA were absent in Marsupialia, and typical subpial ILA were only found in Primate. We focused on the properties of pial ILA by investigating the molecular properties of pial ILA and confirming their astrocytic nature. We found that while the density of pial ILA somata only varied slightly, the complexity of ILA processes varied greatly across species. Primates, specifically bonobo, chimpanzee, orangutan, and human, exhibited pial ILA with the highest complexity. We showed that interlaminar processes contact neurons, pia, and capillaries, suggesting a potential role for ILA in the blood-brain barrier and facilitating communication among cortical neurons, astrocytes, capillaries, meninges, and cerebrospinal fluid.
Collapse
Affiliation(s)
- Carmen Falcone
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, California.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, Sacramento, California
| | - Marisol Wolf-Ochoa
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, California.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, Sacramento, California
| | - Sarwat Amina
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, Sacramento, California.,UC Davis Medical Center, MIND Institute, Sacramento, California
| | - Tiffany Hong
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, California.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, Sacramento, California
| | - Gelareh Vakilzadeh
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, California.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, Sacramento, California
| | - William D Hopkins
- Neuroscience Institute and Language Research Center, Georgia State University, Atlanta, Georgia
| | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stephen C Noctor
- UC Davis Medical Center, MIND Institute, Sacramento, California.,Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, Sacramento, California
| | - Verónica Martínez-Cerdeño
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, California.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, Sacramento, California.,UC Davis Medical Center, MIND Institute, Sacramento, California
| |
Collapse
|
79
|
Shih EK, Robinson MB. Role of Astrocytic Mitochondria in Limiting Ischemic Brain Injury? Physiology (Bethesda) 2019; 33:99-112. [PMID: 29412059 DOI: 10.1152/physiol.00038.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Until recently, astrocyte processes were thought to be too small to contain mitochondria. However, it is now clear that mitochondria are found throughout fine astrocyte processes and are mobile with neuronal activity resulting in positioning near synapses. In this review, we discuss evidence that astrocytic mitochondria confer selective resiliency to astrocytes during ischemic insults and the functional significance of these mitochondria for normal brain function.
Collapse
Affiliation(s)
- Evelyn K Shih
- Children's Hospital of Philadelphia Research Institute , Philadelphia, Pennsylvania.,Children's Hospital of Philadelphia, Division of Neurology , Philadelphia, Pennsylvania.,Department of Pediatrics, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Michael B Robinson
- Children's Hospital of Philadelphia Research Institute , Philadelphia, Pennsylvania.,Department of Pediatrics, University of Pennsylvania , Philadelphia, Pennsylvania.,Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|
80
|
Abstract
Neuroglia represent a diverse population of non-neuronal cells in the nervous systems, be that peripheral, central, enteric or autonomic nervous system. Arguably, these cells represent about half of the volume of the human brain. This volumetric ratio, and by extension glia to neurone ratio, not only widely differ depending on the size of the animal species brain and its positioning on the phylogenetic tree, but also vary between the regions of an individual brain. Neuroglia derived from a dual origin (ectoderm and mesodermal) and in an assorted morphology, yet their functional traits can be mainly classified into being keepers of homeostasis (water, ions, neurotransmitters, metabolites, fuels, etc.) and defenders (e.g., against microbial organisms, etc.) of the nervous system. As these capabilities go awry, neuroglia ultimately define their fundamental role in most, if not, all neuropathologies. This concept presented in this chapter serves as a general introduction into the world of neuroglia and subsequent topics covered by this book.
Collapse
|
81
|
Morel L, Men Y, Chiang MSR, Tian Y, Jin S, Yelick J, Higashimori H, Yang Y. Intracortical astrocyte subpopulations defined by astrocyte reporter Mice in the adult brain. Glia 2019; 67:171-181. [PMID: 30430665 DOI: 10.1002/glia.23545] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/13/2018] [Accepted: 09/17/2018] [Indexed: 11/11/2022]
Abstract
Although historically regarded as a homogeneous cell population, astrocytes in different brain regions exhibit differences in their physiological properties, such as gap-junction coupling, glutamate uptake dynamics, and intracellular Ca2+ response. Recent in vivo RNA profiles have further demonstrated the molecular heterogeneity of astrocytes in the adult CNS. Astrocyte heterogeneity exists not only inter-regionally but also intra-regionally. Despite the characteristic laminal organization of cortical layers and multiple sources of radial glia progenitors for (astro)gliogenesis, the molecular profile and functional properties of astroglial subpopulations in the adult cerebral cortex remain essentially undefined. Using two astrocyte reporter mouse lines: eaat2-tdTomato and Bac aldh1l1-eGFP, we identified tdT- eGFP+ , tdTlow eGFP+ , and tdThigh eGFP+ astroglial subpopulations (in an approximate 1:7:2 ratio) within the cortex. The tdT- eGFP+ astrocyte population is selectively localized at layers I-II and exhibits increased resting membrane potential and membrane resistance but reduced functional expression of the potassium channel Kir4.1. We also isolated individual astrocyte subpopulations through fluorescence activated cell sorting (FACS) and examined their transcriptome differences by RNA-seq. We found that the whole-genome transcriptional profiles of tdT- eGFP+ astrocytes are drastically different from that of tdTlow eGFP+ and tdThigh eGFP+ astrocytes. Particularly, elevated levels of several nonastrocyte genes that are typically specific to other glial cells, such as mog, mobp, Iba1, and pdgfrα, are observed in tdT- eGFP+ astrocytes, suggesting a less-specific molecular identity of these astrocytes. Overall, our study has unveiled molecular differences between adult cortical astroglial subpopulations, shedding new light on understanding their unique functions in the adult cortex.
Collapse
Affiliation(s)
- Lydie Morel
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
| | - Yuqin Men
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
| | - Ming S R Chiang
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
| | - Yang Tian
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
- Dongfang Hospital of University of Chinese Medicine, Beijing, China
| | - Shijie Jin
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
| | - Julia Yelick
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
- Sackler School of Biomedical Sciences, Tufts University, Boston, Massachusetts
| | - Haruki Higashimori
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
| | - Yongjie Yang
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
- Sackler School of Biomedical Sciences, Tufts University, Boston, Massachusetts
| |
Collapse
|
82
|
Mohamet L, Jones VC, Dayanithi G, Verkhratsky A. Pathological human astroglia in Alzheimer's disease: opening new horizons with stem cell technology. FUTURE NEUROLOGY 2018. [DOI: 10.2217/fnl-2017-0029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pathological remodeling, degeneration and reactivity of astrocytes are fundamental astrogliopathies contributing to all neurological diseases. In neurodegenerative disorders (including Alzheimer's disease [AD]) astroglia undergo complex changes that range from atrophy with loss of function to accumulation of reactive cells around disease-specific lesions (senile plaques in the case of AD). The cellular pathology of astroglia in the context of human AD remains enigmatic; mainly because of the severe limitations of animal models, which, although reproducing some pathological features of the disease, do not mimic its progression in full. Human-induced pluripotent stem cells technology creates a novel and potentially revolutionizing platform for studying fundamental mechanisms of the disease and for screening to identify new therapeutic compounds.
Collapse
Affiliation(s)
- Lisa Mohamet
- StrataStem Ltd, Suite 112, 4a Rylands Street, Warrington, WA1 1EN, UK
| | - Vicky C Jones
- School of Pharmacy & Biomedical Sciences, The University of Central Lancashire, Preston PR1 2HE, UK
| | - Govindan Dayanithi
- Centre Nationale de la Recherche Scientifique Institut des Sciences Biologiques (INSB)3, rue Michel-Ange 75794 Paris cedex 16, France
- INSERM U1198, École Pratique des Hautes Études-Sorbonne, Université Montpellier34095 Montpellier, France
- Deptartment of Pharmacology & Toxicology, Faculty of Pharmacy, Charles University in Plzen, alej Svobody 76, 323 00 Plzeň-Czech Republic
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK
- IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain & Department of Neurosciences, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
| |
Collapse
|
83
|
Perez-Nievas BG, Serrano-Pozo A. Deciphering the Astrocyte Reaction in Alzheimer's Disease. Front Aging Neurosci 2018; 10:114. [PMID: 29922147 PMCID: PMC5996928 DOI: 10.3389/fnagi.2018.00114] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/03/2018] [Indexed: 12/24/2022] Open
Abstract
Reactive astrocytes were identified as a component of senile amyloid plaques in the cortex of Alzheimer's disease (AD) patients several decades ago. However, their role in AD pathophysiology has remained elusive ever since, in part owing to the extrapolation of the literature from primary astrocyte cultures and acute brain injury models to a chronic neurodegenerative scenario. Recent accumulating evidence supports the idea that reactive astrocytes in AD acquire neurotoxic properties, likely due to both a gain of toxic function and a loss of their neurotrophic effects. However, the diversity and complexity of this glial cell is only beginning to be unveiled, anticipating that astrocyte reaction might be heterogeneous as well. Herein we review the evidence from mouse models of AD and human neuropathological studies and attempt to decipher the main conundrums that astrocytes pose to our understanding of AD development and progression. We discuss the morphological features that characterize astrocyte reaction in the AD brain, the consequences of astrocyte reaction for both astrocyte biology and AD pathological hallmarks, and the molecular pathways that have been implicated in this reaction.
Collapse
Affiliation(s)
| | - Alberto Serrano-Pozo
- Alzheimer's Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
84
|
Okolicsanyi RK, Oikari LE, Yu C, Griffiths LR, Haupt LM. Heparan Sulfate Proteoglycans as Drivers of Neural Progenitors Derived From Human Mesenchymal Stem Cells. Front Mol Neurosci 2018; 11:134. [PMID: 29740281 PMCID: PMC5928449 DOI: 10.3389/fnmol.2018.00134] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/03/2018] [Indexed: 01/19/2023] Open
Abstract
Background: Due to their relative ease of isolation and their high ex vivo and in vitro expansive potential, human mesenchymal stem cells (hMSCs) are an attractive candidate for therapeutic applications in the treatment of brain injury and neurological diseases. Heparan sulfate proteoglycans (HSPGs) are a family of ubiquitous proteins involved in a number of vital cellular processes including proliferation and stem cell lineage differentiation. Methods: Following the determination that hMSCs maintain neural potential throughout extended in vitro expansion, we examined the role of HSPGs in mediating the neural potential of hMSCs. hMSCs cultured in basal conditions (undifferentiated monolayer cultures) were found to co-express neural markers and HSPGs throughout expansion with modulation of the in vitro niche through the addition of exogenous HS influencing cellular HSPG and neural marker expression. Results: Conversion of hMSCs into hMSC Induced Neurospheres (hMSC IN) identified distinctly localized HSPG staining within the spheres along with altered gene expression of HSPG core protein and biosynthetic enzymes when compared to undifferentiated hMSCs. Conclusion: Comparison of markers of pluripotency, neural self-renewal and neural lineage specification between hMSC IN, hMSC and human neural stem cell (hNSC H9) cultures suggest that in vitro generated hMSC IN may represent an intermediary neurogenic cell type, similar to a common neural progenitor cell. In addition, this data demonstrates HSPGs and their biosynthesis machinery, are associated with hMSC IN formation. The identification of specific HSPGs driving hMSC lineage-specification will likely provide new markers to allow better use of hMSCs in therapeutic applications and improve our understanding of human neurogenesis.
Collapse
Affiliation(s)
- Rachel K Okolicsanyi
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Lotta E Oikari
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Chieh Yu
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Larisa M Haupt
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
85
|
Abstract
Introduction: Astroglia represent the main cellular homeostatic system of the central nervous system (CNS). Astrocytes are intimately involved in regulation and maintenance of neurotransmission by regulating neurotransmitters removal and turnover and by supplying neurons with neurotransmitters precursors. Astroglial cells are fundamental elements of monoaminergic transmission in the brain and in the spinal cord. Astrocytes receive monoaminergic inputs and control catabolism of monoamines through dedicated transporters and intracellular enzymatic pathways.Areas covered: Astroglial cells express serotonergic receptors; in this review, we provide an in-depth characterization of 5-HT2B receptors. Activation of these receptors triggers numerous intracellular signaling cascades that regulate expression of multiple genes. Astroglial 5-HT2B receptors are activated by serotonin-specific reuptake inhibitors, such as major anti-depressant fluoxetine. Expression of astroglial serotonin receptors undergoes remarkable changes in depression disorders, and these changes can be corrected by chronic treatment with anti-depressant drugs.Expert commentary: Depressive behaviors, which occur in rodents following chronic stress or in neurotoxic models of Parkinson disease, are associated with significant changes in the expression of astroglial, but not neuronal 5-HT2B receptors; while therapy with anti-depressants normalizes both receptors expression and depressive behavioral phenotype. In summary, astroglial serotonin receptors are linked to mood disorders and may represent a novel target for cell- and molecule-specific therapies of depression and mood disorders.
Collapse
Affiliation(s)
- Liang Peng
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, PR China
| | - Dan Song
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, PR China
| | - Baoman Li
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, PR China
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Achucarro Center for Neuroscience, Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
86
|
Abstract
In this first issue of Neuroglia, it is highly appropriate that Professor Jorge A. Colombo at the Unit of Applied Neurobiology (UNA, CEMIC-CONICET) in Buenos Aires, Argentina, writes a perspective of idiosyncrasies of astrocytes in the human brain. Much of his work has been focused on the special case of interlaminar astrocytes, so-named because of their long straight processes that traverse the layers of the human cerebral cortex. Notably, interlaminar astrocytes are primate-specific and their evolutionary development is directly related to that of the columnar organization of the cerebral cortex in higher primates. The human brain also contains varicose projection astrocytes or polarized astrocytes which are absent in lower animals. In addition, classical protoplasmic astrocytes dwelling in the brains of humans are ≈15-times larger and immensely more complex than their rodent counterparts. Human astrocytes retain their peculiar morphology even after grafting into rodent brains; that is, they replace the host astrocytes and confer certain cognitive advantages into so-called ‘humanised’ chimeric mice. Recently, a number of innovative studies have highlighted the major differences between human and rodent astrocytes. Nonetheless, these differences are not widely recognized, and we hope that Jorge Colombo’s Perspective and our associated Commentary will help stimulate appreciation of human astrocytes by neuroscientists and glial cell biologists alike.
Collapse
|
87
|
BMP-Responsive Protease HtrA1 Is Differentially Expressed in Astrocytes and Regulates Astrocytic Development and Injury Response. J Neurosci 2018; 38:3840-3857. [PMID: 29483282 DOI: 10.1523/jneurosci.2031-17.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 11/21/2022] Open
Abstract
Astrocytes perform a wide array of physiological functions, including structural support, ion exchange, and neurotransmitter uptake. Despite this diversity, molecular markers that label subpopulations of astrocytes are limited, and mechanisms that generate distinct astrocyte subtypes remain unclear. Here we identified serine protease high temperature requirement A 1 (HtrA1), a bone morphogenetic protein 4 signaling regulated protein, as a novel marker of forebrain astrocytes, but not of neural stem cells, in adult mice of both sexes. Genetic deletion of HtrA1 during gliogenesis accelerates astrocyte differentiation. In addition, ablation of HtrA1 in cultured astrocytes leads to altered chondroitin sulfate proteoglycan expression and inhibition of neurite extension, along with elevated levels of transforming growth factor-β family proteins. Brain injury induces HtrA1 expression in reactive astrocytes, and loss of HtrA1 leads to an impairment in wound closure accompanied by increased proliferation of endothelial and immune cells. Our findings demonstrate that HtrA1 is differentially expressed in adult mouse forebrain astrocytes, and that HtrA1 plays important roles in astrocytic development and injury response.SIGNIFICANCE STATEMENT Astrocytes, an abundant cell type in the brain, perform a wide array of physiological functions. Although characterized as morphologically and functionally diverse, molecular markers that label astrocyte subtypes or signaling pathways that lead to their diversity remain limited. Here, after examining the expression profile of astrocytes generated in response to bone morphogenetic protein signaling, we identify high temperature requirement A 1 (HtrA1) as an astrocyte-specific marker that is differentially expressed in distinct adult mouse brain regions. HtrA1 is a serine protease that has been linked to cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy, a small blood vessel disease in humans. Understanding the role of HtrA1 during development and after injury will provide insights into how distinct astrocyte populations are generated and their unique roles in injury and disease.
Collapse
|
88
|
Human iPS-Derived Astroglia from a Stable Neural Precursor State Show Improved Functionality Compared with Conventional Astrocytic Models. Stem Cell Reports 2018; 10:1030-1045. [PMID: 29456185 PMCID: PMC5918339 DOI: 10.1016/j.stemcr.2018.01.021] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 12/15/2022] Open
Abstract
In vivo studies of human brain cellular function face challenging ethical and practical difficulties. Animal models are typically used but display distinct cellular differences. One specific example is astrocytes, recently recognized for contribution to neurological diseases and a link to the genetic risk factor apolipoprotein E (APOE). Current astrocytic in vitro models are questioned for lack of biological characterization. Here, we report human induced pluripotent stem cell (hiPSC)-derived astroglia (NES-Astro) developed under defined conditions through long-term neuroepithelial-like stem (ltNES) cells. We characterized NES-Astro and astrocytic models from primary sources, astrocytoma (CCF-STTG1), and hiPSCs through transcriptomics, proteomics, glutamate uptake, inflammatory competence, calcium signaling response, and APOE secretion. Finally, we assess modulation of astrocyte biology using APOE-annotated compounds, confirming hits of the cholesterol biosynthesis pathway in adult and hiPSC-derived astrocytes. Our data show large diversity among astrocytic models and emphasize a cellular context when studying astrocyte biology. Expression and functional profiling display variation between astrocyte models Development of NES-Astro showing functional astrocyte-associated glutamate receptor NES-Astro is immune competent, displaying ATP and glutamate-driven calcium signaling APOE HTS assay shows that compound hit finding depends on astrocytic model biology
Collapse
|
89
|
Papageorgiou IE, Valous NA, Lahrmann B, Janova H, Klaft ZJ, Koch A, Schneider UC, Vajkoczy P, Heppner FL, Grabe N, Halama N, Heinemann U, Kann O. Astrocytic glutamine synthetase is expressed in the neuronal somatic layers and down-regulated proportionally to neuronal loss in the human epileptic hippocampus. Glia 2018; 66:920-933. [DOI: 10.1002/glia.23292] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Ismini E. Papageorgiou
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326; Heidelberg D-69120 Germany
- Interdisciplinary Center for Neurosciences, University of Heidelberg, Im Neuenheimer Feld 364; Heidelberg D-69120 Germany
- Present address: Institute of Radiology, Südharz Klinikum Nordhausen gGmbH, Dr.-Robert-Koch-Str. 39; Nordhausen D-99734 Germany
| | - Nektarios A. Valous
- Applied Tumor Immunity Clinical Cooperation Unit, National Center for Tumor Diseases, German Cancer Research Center, Im Neuenheimer Feld 460; Heidelberg D-69120 Germany
- Department of Medical Oncology; National Center for Tumor Diseases, University Hospital Heidelberg, Im Neuenheimer Feld 460; Heidelberg D-69120 Germany
| | - Bernd Lahrmann
- Hamamatsu Tissue Imaging and Analysis Center (TIGA), National Center for Tumor Diseases, BIOQUANT, Im Neuenheimer Feld 267, University of Heidelberg; Heidelberg D-69120 Germany
- Steinbeis Transfer Center for Medical Systems Biology, Heckerstr. 9; Heidelberg D-69124 Germany
| | - Hana Janova
- Division of Clinical Neuroscience; Max Planck Institute of Experimental Medicine, Hermann-Rein-str. 3; Göttingen D-37075 Germany
| | - Zin-Juan Klaft
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1; Berlin D-10117 Germany
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1; Berlin D-10117 Germany
| | - Arend Koch
- Institute of Neuropathology, Charité-Universitätsmedizin Berlin, Charité Campus Mitte, Charitéplatz 1; Berlin D-10117 Germany
| | - Ulf C. Schneider
- Department of Neurosurgery; Charité-Universitätsmedizin Berlin, Campus Virchow Medical Center, Augustenplatz 1; Berlin D-11353 Germany
| | - Peter Vajkoczy
- Department of Neurosurgery; Charité-Universitätsmedizin Berlin, Campus Virchow Medical Center, Augustenplatz 1; Berlin D-11353 Germany
| | - Frank L. Heppner
- Institute of Neuropathology, Charité-Universitätsmedizin Berlin, Charité Campus Mitte, Charitéplatz 1; Berlin D-10117 Germany
| | - Niels Grabe
- Hamamatsu Tissue Imaging and Analysis Center (TIGA), National Center for Tumor Diseases, BIOQUANT, Im Neuenheimer Feld 267, University of Heidelberg; Heidelberg D-69120 Germany
- Steinbeis Transfer Center for Medical Systems Biology, Heckerstr. 9; Heidelberg D-69124 Germany
| | - Niels Halama
- Department of Medical Oncology; National Center for Tumor Diseases, University Hospital Heidelberg, Im Neuenheimer Feld 460; Heidelberg D-69120 Germany
| | - Uwe Heinemann
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1; Berlin D-10117 Germany
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1; Berlin D-10117 Germany
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326; Heidelberg D-69120 Germany
- Interdisciplinary Center for Neurosciences, University of Heidelberg, Im Neuenheimer Feld 364; Heidelberg D-69120 Germany
| |
Collapse
|
90
|
Smith AJ, Verkman AS. The "glymphatic" mechanism for solute clearance in Alzheimer's disease: game changer or unproven speculation? FASEB J 2018; 32:543-551. [PMID: 29101220 DOI: 10.1096/fj.201700999] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
How solutes and macromolecules are removed from brain tissue is of central importance in normal brain physiology and in how toxic protein aggregates are cleared in neurodegenerative conditions, including Alzheimer's disease (AD). Conventionally, solute transport in the narrow and tortuous extracellular space in brain parenchyma has been thought to be primarily diffusive and nondirectional. The recently proposed "glymphatic" (glial-lymphatic) hypothesis posits that solute clearance is convective and driven by active fluid transport from para-arterial to paravenous spaces though aquaporin-4 water channels in astrocyte endfeet. Glymphatic, convective solute clearance has received much attention because of its broad implications for AD and other brain pathologies and even the function of sleep. However, the theoretical plausibility of glymphatic transport has been questioned, and recent data have challenged its experimental underpinnings. A substantiated mechanism of solute clearance in the brain is of considerable importance because of its implications for pathogenic mechanisms of neurologic diseases and delivery of therapeutics.-Smith, A. J., Verkman, A. S. The "glymphatic" mechanism for solute clearance in Alzheimer's disease: game changer or unproven speculation?
Collapse
Affiliation(s)
- Alex J Smith
- Department of Medicine, University of California San Francisco, San Francisco, California, USA.,Department of Physiology, University of California San Francisco, San Francisco, California, USA
| | - Alan S Verkman
- Department of Medicine, University of California San Francisco, San Francisco, California, USA.,Department of Physiology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
91
|
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
92
|
Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018; 98:239-389. [PMID: 29351512 PMCID: PMC6050349 DOI: 10.1152/physrev.00042.2016] [Citation(s) in RCA: 1073] [Impact Index Per Article: 153.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
93
|
Cell Biology of Astrocyte-Synapse Interactions. Neuron 2017; 96:697-708. [PMID: 29096081 DOI: 10.1016/j.neuron.2017.09.056] [Citation(s) in RCA: 695] [Impact Index Per Article: 86.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 09/24/2017] [Accepted: 09/28/2017] [Indexed: 12/25/2022]
Abstract
Astrocytes, the most abundant glial cells in the mammalian brain, are critical regulators of brain development and physiology through dynamic and often bidirectional interactions with neuronal synapses. Despite the clear importance of astrocytes for the establishment and maintenance of proper synaptic connectivity, our understanding of their role in brain function is still in its infancy. We propose that this is at least in part due to large gaps in our knowledge of the cell biology of astrocytes and the mechanisms they use to interact with synapses. In this review, we summarize some of the seminal findings that yield important insight into the cellular and molecular basis of astrocyte-neuron communication, focusing on the role of astrocytes in the development and remodeling of synapses. Furthermore, we pose some pressing questions that need to be addressed to advance our mechanistic understanding of the role of astrocytes in regulating synaptic development.
Collapse
|
94
|
Verkhratsky A, Zorec R, Parpura V. Stratification of astrocytes in healthy and diseased brain. Brain Pathol 2017; 27:629-644. [PMID: 28805002 PMCID: PMC5599174 DOI: 10.1111/bpa.12537] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/03/2017] [Accepted: 06/06/2017] [Indexed: 12/11/2022] Open
Abstract
Astrocytes, a subtype of glial cells, come in variety of forms and functions. However, overarching role of these cell is in the homeostasis of the brain, be that regulation of ions, neurotransmitters, metabolism or neuronal synaptic networks. Loss of homeostasis represents the underlying cause of all brain disorders. Thus, astrocytes are likely involved in most if not all of the brain pathologies. We tabulate astroglial homeostatic functions along with pathological condition that arise from dysfunction of these glial cells. Classification of astrocytes is presented with the emphasis on evolutionary trails, morphological appearance and numerical preponderance. We note that, even though astrocytes from a variety of mammalian species share some common features, human astrocytes appear to be the largest and most complex of all astrocytes studied thus far. It is then an imperative to develop humanized models to study the role of astrocytes in brain pathologies, which is perhaps most abundantly clear in the case of glioblastoma multiforme.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Division of Neuroscience & Experimental PsychologyThe University of ManchesterManchesterUnited Kingdom
- Achúcarro Basque Center for NeuroscienceIKERBASQUE, Basque Foundation for Science48011 BilbaoSpain
- Department of NeuroscienceUniversity of the Basque Country UPV/EHU and CIBERNED48940 LeioaSpain
| | - Robert Zorec
- Laboratory of Cell EngineeringCelica BIOMEDICAL, Tehnološki park 24, Ljubljana 1000SloveniaEurope
- Laboratory of Neuroendocrinology‐Molecular Cell PhysiologyInstitute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, Ljubljana 1000SloveniaEurope
| | - Vladimir Parpura
- Department of Neurobiology, Civitan International Research Center and Center for Glial Biology in Medicine, Evelyn F. McKnight Brain Institute, Atomic Force Microscopy & Nanotechnology Laboratories, 1719 6th Avenue South, CIRC 429University of Alabama at BirminghamBirminghamAL 35294‐0021
| |
Collapse
|
95
|
Olabarria M, Goldman JE. Disorders of Astrocytes: Alexander Disease as a Model. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 12:131-152. [PMID: 28135564 DOI: 10.1146/annurev-pathol-052016-100218] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Astrocytes undergo important phenotypic changes in many neurological disorders, including strokes, trauma, inflammatory diseases, infectious diseases, and neurodegenerative diseases. We have been studying the astrocytes of Alexander disease (AxD), which is caused by heterozygous mutations in the GFAP gene, which is the gene that encodes the major astrocyte intermediate filament protein. AxD is a primary astrocyte disease because GFAP expression is specific to astrocytes in the central nervous system (CNS). The accumulation of extremely large amounts of GFAP causes many molecular changes in astrocytes, including proteasome inhibition, stress kinase activation, mechanistic target of rapamycin (mTOR) activation, loss of glutamate and potassium buffering capacity, loss of astrocyte coupling, and changes in cell morphology. Many of these changes appear to be common to astrocyte reactions in other neurological disorders. Using AxD to illuminate common mechanisms, we discuss the molecular pathology of AxD astrocytes and compare that to astrocyte pathology in other disorders.
Collapse
Affiliation(s)
- Markel Olabarria
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032; ,
| | - James E Goldman
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032; ,
| |
Collapse
|
96
|
Can we detect the effect of spines and leaflets on the diffusion of brain intracellular metabolites? Neuroimage 2017; 182:283-293. [PMID: 28495635 DOI: 10.1016/j.neuroimage.2017.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 04/05/2017] [Accepted: 05/03/2017] [Indexed: 11/22/2022] Open
Abstract
Prior models used to clarify which aspects of tissue microstructure mostly affect intracellular diffusion and corresponding diffusion-weighted magnetic resonance (DW-MR) signal have focused on relatively simple geometrical descriptions of the cellular microenvironment (spheres, randomly oriented cylinders, etc…), neglecting finer morphological details which may have an important role. Some types of neurons present high density of spines; and astrocytes and macroglial cells processes present leaflets, which may all impact the diffusion process. Here, we use Monte-Carlo simulations of many particles diffusing in cylindrical compartments with secondary structures mimicking spines and leaflets of neuronal and glial cell fibers, to investigate to what extent the diffusion-weighted signal of intracellular molecules is sensitive to spines/leaflets density and length. In order to study the specificity of DW-MR signal to these kinds of secondary structures, beading-like geometry is simulated as "control" deviation from smooth cylinder too. Results suggest that: a) the estimated intracellular tortuosity increases as spines/leaflets density or length (beading amplitude) increase; b) the tortuosity limit is reached for diffusion time td>200 ms for metabolites and td>70 ms for water molecules, suggesting that the effects of these finer morphological details are negligible at td longer than these threshold values; c) fiber diameter is overestimated, while intracellular diffusivity is underestimated, when simple geometrical models based on hollow smooth cylinders are used; d) apparent surface-to-volume, S/V, ratio estimated by linear fit of high frequency OG data appears to be an excellent estimation of the actual S/V ratio, even in the presence of secondary structures, and it increases as spines and leaflets density or length increase (while decreasing as beadings amplitude increases). Comparison between numerical simulations and multimodal metabolites DW-MRS experiments in vivo in mouse brain shows that these fine structures may affect the DW-MRS signal and the derived diffusion metrics consistently with their expected density and geometrical features. This work suggests that finer structures of cell morphology have non-negligible effects on intracellular molecules' diffusion that may be measured by using multimodal DW-MRS approaches, stimulating future developments and applications.
Collapse
|
97
|
Kardos J, Héja L, Jemnitz K, Kovács R, Palkovits M. The nature of early astroglial protection-Fast activation and signaling. Prog Neurobiol 2017; 153:86-99. [PMID: 28342942 DOI: 10.1016/j.pneurobio.2017.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/22/2016] [Accepted: 03/05/2017] [Indexed: 12/14/2022]
Abstract
Our present review is focusing on the uniqueness of balanced astroglial signaling. The balance of excitatory and inhibitory signaling within the CNS is mainly determined by sharp synaptic transients of excitatory glutamate (Glu) and inhibitory γ-aminobutyrate (GABA) acting on the sub-second timescale. Astroglia is involved in excitatory chemical transmission by taking up i) Glu through neurotransmitter-sodium transporters, ii) K+ released due to presynaptic action potential generation, and iii) water keeping osmotic pressure. Glu uptake-coupled Na+ influx may either ignite long-range astroglial Ca2+ transients or locally counteract over-excitation via astroglial GABA release and increased tonic inhibition. Imbalance of excitatory and inhibitory drives is associated with a number of disease conditions, including prevalent traumatic and ischaemic injuries or the emergence of epilepsy. Therefore, when addressing the potential of early therapeutic intervention, astroglial signaling functions combating progress of Glu excitotoxicity is of critical importance. We suggest, that excitotoxicity is linked primarily to over-excitation induced by the impairment of astroglial Glu uptake and/or GABA release. Within this framework, we discuss the acute alterations of Glu-cycling and metabolism and conjecture the therapeutic promise of regulation. We also confer the role played by key carrier proteins and enzymes as well as their interplay at the molecular, cellular, and organ levels. Moreover, based on our former studies, we offer potential prospect on the emerging theme of astroglial succinate sensing in course of Glu excitotoxicity.
Collapse
Affiliation(s)
- Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Hungary.
| | - László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Hungary
| | - Katalin Jemnitz
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Hungary
| | - Richárd Kovács
- Institute of Neurophysiology, Charité - Universitätsmedizin, Berlin, Germany
| | - Miklós Palkovits
- Human Brain Tissue Bank and Laboratory, Semmelweis University, Budapest, Hungary
| |
Collapse
|
98
|
Freire-Regatillo A, Argente-Arizón P, Argente J, García-Segura LM, Chowen JA. Non-Neuronal Cells in the Hypothalamic Adaptation to Metabolic Signals. Front Endocrinol (Lausanne) 2017; 8:51. [PMID: 28377744 PMCID: PMC5359311 DOI: 10.3389/fendo.2017.00051] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/03/2017] [Indexed: 12/19/2022] Open
Abstract
Although the brain is composed of numerous cell types, neurons have received the vast majority of attention in the attempt to understand how this organ functions. Neurons are indeed fundamental but, in order for them to function correctly, they rely on the surrounding "non-neuronal" cells. These different cell types, which include glia, epithelial cells, pericytes, and endothelia, supply essential substances to neurons, in addition to protecting them from dangerous substances and situations. Moreover, it is now clear that non-neuronal cells can also actively participate in determining neuronal signaling outcomes. Due to the increasing problem of obesity in industrialized countries, investigation of the central control of energy balance has greatly increased in attempts to identify new therapeutic targets. This has led to interesting advances in our understanding of how appetite and systemic metabolism are modulated by non-neuronal cells. For example, not only are nutrients and hormones transported into the brain by non-neuronal cells, but these cells can also metabolize these metabolic factors, thus modifying the signals reaching the neurons. The hypothalamus is the main integrating center of incoming metabolic and hormonal signals and interprets this information in order to control appetite and systemic metabolism. Hence, the factors transported and released from surrounding non-neuronal cells will undoubtedly influence metabolic homeostasis. This review focuses on what is known to date regarding the involvement of different cell types in the transport and metabolism of nutrients and hormones in the hypothalamus. The possible involvement of non-neuronal cells, in particular glial cells, in physiopathological outcomes of poor dietary habits and excess weight gain are also discussed.
Collapse
Affiliation(s)
- Alejandra Freire-Regatillo
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Pilar Argente-Arizón
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
- IMDEA Food Institute, Campus of International Excellence (CEI) UAM + CSIC, Madrid, Spain
| | - Luis Miguel García-Segura
- Laboratory of Neuroactive Steroids, Department of Functional and Systems Neurobiology, Instituto Cajal, CSIC (Consejo Superior de Investigaciones Científicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Julie A. Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| |
Collapse
|
99
|
Eidsvaag VA, Enger R, Hansson HA, Eide PK, Nagelhus EA. Human and mouse cortical astrocytes differ in aquaporin-4 polarization toward microvessels. Glia 2017; 65:964-973. [PMID: 28317216 PMCID: PMC5413834 DOI: 10.1002/glia.23138] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/19/2017] [Accepted: 02/20/2017] [Indexed: 12/02/2022]
Abstract
Aquaporin‐4 (AQP4), the predominant water channel in the brain, is expressed in astrocytes and ependymal cells. In rodents AQP4 is highly polarized to perivascular astrocytic endfeet and loss of AQP4 polarization is associated with disease. The present study was undertaken to compare the expression pattern of AQP4 in human and mouse cortical astrocytes. Cortical tissue specimens were sampled from 11 individuals undergoing neurosurgery wherein brain tissue was removed as part of the procedure, and compared with cortical tissue from 5 adult wild‐type mice processed similarly. The tissue samples were immersion‐fixed and prepared for AQP4 immunogold electron microscopy, allowing quantitative assessment of AQP4's subcellular distribution. In mouse we found that AQP4 water channels were prominently clustered around vessels, being 5 to 10‐fold more abundant in astrocytic endfoot membranes facing the capillary endothelium than in parenchymal astrocytic membranes. In contrast, AQP4 was markedly less polarized in human astrocytes, being only two to three‐fold enriched in astrocytic endfoot membranes adjacent to capillaries. The lower degree of AQP4 polarization in human subjects (1/3 of that in mice) was mainly due to higher AQP4 expression in parenchymal astrocytic membranes. We conclude that there are hitherto unrecognized species differences in AQP4 polarization toward microvessels in the cerebral cortex.
Collapse
Affiliation(s)
- Vigdis Andersen Eidsvaag
- Department of Neurosurgery, Oslo University Hospital, Rikshospitalet, Oslo, 0027, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,GliaLab and Letten Centre, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0317, Norway
| | - Rune Enger
- GliaLab and Letten Centre, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0317, Norway.,Department of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, 0027, Norway
| | - Hans-Arne Hansson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| | - Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital, Rikshospitalet, Oslo, 0027, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Erlend A Nagelhus
- GliaLab and Letten Centre, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0317, Norway.,Department of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, 0027, Norway
| |
Collapse
|
100
|
Song L, Pei L, Yao S, Wu Y, Shang Y. NLRP3 Inflammasome in Neurological Diseases, from Functions to Therapies. Front Cell Neurosci 2017; 11:63. [PMID: 28337127 PMCID: PMC5343070 DOI: 10.3389/fncel.2017.00063] [Citation(s) in RCA: 339] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 02/22/2017] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammation has been identified as a causative factor of multiple neurological diseases. The nucleotide-binding oligomerization domain-, leucine-rich repeat- and pyrin domain-containing 3 (NLRP3) inflammasome, a subcellular multiprotein complex that is abundantly expressed in the central nervous system (CNS), can sense and be activated by a wide range of exogenous and endogenous stimuli such as microbes, aggregated and misfolded proteins, and adenosine triphosphate, which results in activation of caspase-1. Activated caspase-1 subsequently leads to the processing of interleukin-1β (IL-1β) and interleukin-18 (IL-18) pro-inflammatory cytokines and mediates rapid cell death. IL-1β and IL-18 drive inflammatory responses through diverse downstream signaling pathways, leading to neuronal damage. Thus, the NLRP3 inflammasome is considered a key contributor to the development of neuroinflammation. In this review article, we briefly discuss the structure and activation the NLRP3 inflammasome and address the involvement of the NLRP3 inflammasome in several neurological disorders, such as brain infection, acute brain injury and neurodegenerative diseases. In addition, we review a series of promising therapeutic approaches that target the NLRP3 inflammasome signaling including anti-IL-1 therapy, small molecule NLRP3 inhibitors and other compounds, however, these approaches are still experimental in neurological diseases. At present, it is plausible to generate cell-specific conditional NLRP3 knockout (KO) mice via the Cre system to investigate the role of the NLRP3 inflammasome, which may be instrumental in the development of novel pharmacologic investigations for neuroinflammation-associated diseases.
Collapse
Affiliation(s)
- Limin Song
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Lei Pei
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Shanglong Yao
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Yan Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - You Shang
- Department of Critical Care Medicine, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| |
Collapse
|