51
|
Feasibility of a dried blood spot strategy for serological screening and surveillance to monitor elimination of Human African Trypanosomiasis in the Democratic Republic of the Congo. PLoS Negl Trop Dis 2021; 15:e0009407. [PMID: 34115754 PMCID: PMC8195376 DOI: 10.1371/journal.pntd.0009407] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/25/2021] [Indexed: 11/19/2022] Open
Abstract
In recent years, the number of reported Human African Trypanosomiasis (HAT) cases caused by Trypanosoma brucei (T.b.) gambiense has been markedly declining, and the goal of ‘elimination as a public health problem’ is within reach. For the next stage, i.e. interruption of HAT transmission by 2030, intensive screening and surveillance will need to be maintained, but with tools and strategies more efficiently tailored to the very low prevalence. We assessed the sequential use of ELISA and Immune Trypanolysis (ITL) on dried blood spot (DBS) samples as an alternative to the traditional HAT field testing and confirmation approach. A cross-sectional study was conducted in HAT endemic and previously endemic zones in Kongo Central province, and a non-endemic zone in Haut Katanga province in the Democratic Republic of the Congo (DRC). Door-to-door visits were performed to collect dried blood spot (DBS) samples on filter paper. ELISA/T.b. gambiense was conducted followed by ITL for those testing positive by ELISA and in a subset of ELISA negatives. In total, 11,642 participants were enrolled. Of these, 11,535 DBS were collected and stored in appropriate condition for ELISA testing. Ninety-seven DBS samples tested positive on ELISA. In the endemic zone, ELISA positivity was 1.34% (95%CI: 1.04–1.64). In the previously endemic zone and non-endemic zone, ELISA positivity was 0.34% (95% CI: 0.13–0.55) and 0.37% (95% CI: 0.15–0.60) respectively. Among the ELISA positives, only two samples had a positive ITL result, both from the endemic zone. One of those was from a former HAT patient treated in 2008 and the other from an individual who unfortunately had deceased prior to the follow-up visit. Our study showed that a surveillance strategy, based on DBS samples and centralized testing with retracing of patients if needed, is feasible in DRC. ELISA seems well suited as initial test with a similar positivity rate as traditional screening tests, but ITL remains complex. Alternatives for the latter, also analyzable on DBS, should be further explored. Human African Trypanosomiasis (HAT), also known as sleeping sickness is a parasitic disease, transmitted by tsetse flies, that is usually fatal if untreated. The number of cases have been rapidly declining over the past years indicating that elimination of the disease as a public health problem is within reach. To achieve the next stage, i.e. interruption of HAT transmission by 2030, intensive screening and surveillance will need to be maintained, but with tools and strategies more efficiently tailored to the very low prevalence. In contrast to the traditional approach of sending laboratory expertise to the field, we assessed an alternative approach based on the collection of dried blood samples on filter paper that were tested in a regional laboratory. Samples were taken in endemic, previously endemic and non-endemic villages and tested by ELISA and Immune Trypanolysis. The ELISA positivity rates were similar to those of other screening techniques currently used and Immune Trypanolysis was highly specific. Hence for surveillance in HAT endemic areas, collecting dried blood samples followed by centralized testing could become an alternative to the current strategy of active screening by mobile teams with on the spot confirmation. It has also potential for post-elimination surveillance to monitor resurgence and for exploratory surveillance in historic foci. Though highly specific, Immune Trypanolysis remains too complex for use in intermediate level laboratories, to further expand this strategy an alternative second step test is required.
Collapse
|
52
|
African Trypanosomosis Obliterates DTPa Vaccine-Induced Functional Memory So That Post-Treatment Bordetella pertussis Challenge Fails to Trigger a Protective Recall Response. Vaccines (Basel) 2021; 9:vaccines9060603. [PMID: 34200074 PMCID: PMC8230080 DOI: 10.3390/vaccines9060603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 11/17/2022] Open
Abstract
Salivarian trypanosomes are extracellular parasites causing anthroponotic and zoonotic infections. Anti-parasite vaccination is considered the only sustainable method for global trypanosomosis control. Unfortunately, no single field applicable vaccine solution has been successful so far. The active destruction of the host’s adaptive immune system by trypanosomes is believed to contribute to this problem. Here, we show that Trypanosome brucei brucei infection results in the lasting obliteration of immunological memory, including vaccine-induced memory against non-related pathogens. Using the well-established DTPa vaccine model in combination with a T. b. brucei infection and a diminazene diaceturate anti-parasite treatment scheme, our results demonstrate that while the latter ensured full recovery from the T. b. brucei infection, it failed to restore an efficacious anti-B. pertussis vaccine recall response. The DTPa vaccine failure coincided with a shift in the IgG1/IgG2a anti-B. pertussis antibody ratio in favor of IgG2a, and a striking impact on all of the spleen immune cell populations. Interestingly, an increased plasma IFNγ level in DTPa-vaccinated trypanosome-infected mice coincided with a temporary antibody-independent improvement in early-stage trypanosomosis control. In conclusion, our results are the first to show that trypanosome-inflicted immune damage is not restored by successful anti-parasite treatment.
Collapse
|
53
|
Regulation of Fructose 1,6-Bisphosphatase in Procyclic Form Trypanosoma brucei. Pathogens 2021; 10:pathogens10050617. [PMID: 34069826 PMCID: PMC8157246 DOI: 10.3390/pathogens10050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/05/2023] Open
Abstract
Glycolysis is well described in Trypanosoma brucei, while the importance of gluconeogenesis and one of the key enzymes in that pathway, fructose 1,6-bisphosphatase, is less understood. Using a sensitive and specific assay for FBPase, we demonstrate that FBPase activity in insect stage, procyclic form (PF), parasite changes with parasite cell line, extracellular glucose levels, and cell density. FBPase activity in log phase PF 2913 cells was highest in high glucose conditions, where gluconeogenesis is expected to be inactive, and was undetectable in low glucose, where gluconeogenesis is predicted to be active. This unexpected relationship between FBPase activity and extracellular glucose levels suggests that FBPase may not be exclusively involved in gluconeogenesis and may play an additional role in parasite metabolism. In stationary phase cells, the relationship between FBPase activity and extracellular glucose levels was reversed. Furthermore, we found that monomorphic PF 2913 cells had significantly higher FBPase levels than pleomorphic PF AnTat1.1 cells where the activity was undetectable except when cells were grown in standard SDM79 media, which is glucose-rich and commonly used to grow PF trypanosomes in vitro. Finally, we observed several conditions where FBPase activity changed while protein levels did not, suggesting that the enzyme may be regulated via post-translational modifications.
Collapse
|
54
|
Yusuf AA, Govender MA, Brandenburg JT, Winkler CA. Kidney disease and APOL1. Hum Mol Genet 2021; 30:R129-R137. [PMID: 33744923 PMCID: PMC8117447 DOI: 10.1093/hmg/ddab024] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 01/03/2023] Open
Affiliation(s)
- Aminu Abba Yusuf
- Department of Haematology, Bayero University Kano and Aminu Kano Teaching Hospital, Kano, Nigeria
| | - Melanie A Govender
- Faculty of Health Sciences, Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Jean-Tristan Brandenburg
- Faculty of Health Sciences, Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Cheryl A Winkler
- Molecular Genetic Epidemiology Section, Basic Research Laboratory, Frederick National Laboratory for Cancer Research, NCI, Frederick, MD 21701, USA
| |
Collapse
|
55
|
de Castro Neto AL, da Silveira JF, Mortara RA. Comparative Analysis of Virulence Mechanisms of Trypanosomatids Pathogenic to Humans. Front Cell Infect Microbiol 2021; 11:669079. [PMID: 33937106 PMCID: PMC8085324 DOI: 10.3389/fcimb.2021.669079] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/30/2021] [Indexed: 11/23/2022] Open
Abstract
Trypanosoma brucei, Leishmania spp., and T. cruzi are flagellate protozoans of the family Trypanosomatidae and the causative agents of human African trypanosomiasis, leishmaniasis, and Chagas disease, respectively. These diseases affect humans worldwide and exert a significant impact on public health. Over the course of evolution, the parasites associated with these pathologies have developed mechanisms to circumvent the immune response system throughout the infection cycle. In cases of human infection, this function is undertaken by a group of proteins and processes that allow the parasites to propagate and survive during host invasion. In T. brucei, antigenic variation is promoted by variant surface glycoproteins and other proteins involved in evasion from the humoral immune response, which helps the parasite sustain itself in the extracellular milieu during infection. Conversely, Leishmania spp. and T. cruzi possess a more complex infection cycle, with specific intracellular stages. In addition to mechanisms for evading humoral immunity, the pathogens have also developed mechanisms for facilitating their adhesion and incorporation into host cells. In this review, the different immune evasion strategies at cellular and molecular levels developed by these human-pathogenic trypanosomatids have been discussed, with a focus on the key molecules responsible for mediating the invasion and evasion mechanisms and the effects of these molecules on virulence.
Collapse
Affiliation(s)
- Artur Leonel de Castro Neto
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - José Franco da Silveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Renato Arruda Mortara
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
56
|
Sanderson L, da Silva M, Sekhar GN, Brown RC, Burrell-Saward H, Fidanboylu M, Liu B, Dailey LA, Dreiss CA, Lorenz C, Christie M, Persaud SJ, Yardley V, Croft SL, Valero M, Thomas SA. Drug reformulation for a neglected disease. The NANOHAT project to develop a safer more effective sleeping sickness drug. PLoS Negl Trop Dis 2021; 15:e0009276. [PMID: 33857146 PMCID: PMC8078842 DOI: 10.1371/journal.pntd.0009276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2021] [Accepted: 02/26/2021] [Indexed: 01/16/2023] Open
Abstract
Background Human African trypanosomiasis (HAT or sleeping sickness) is caused by the
parasite Trypanosoma brucei sspp. The disease has two
stages, a haemolymphatic stage after the bite of an infected tsetse fly,
followed by a central nervous system stage where the parasite penetrates the
brain, causing death if untreated. Treatment is stage-specific, due to the
blood-brain barrier, with less toxic drugs such as pentamidine used to treat
stage 1. The objective of our research programme was to develop an
intravenous formulation of pentamidine which increases CNS exposure by some
10–100 fold, leading to efficacy against a model of stage 2 HAT. This target
candidate profile is in line with drugs for neglected diseases inititative
recommendations. Methodology To do this, we evaluated the physicochemical and structural characteristics
of formulations of pentamidine with Pluronic micelles (triblock-copolymers
of polyethylene-oxide and polypropylene oxide), selected candidates for
efficacy and toxicity evaluation in vitro, quantified
pentamidine CNS delivery of a sub-set of formulations in vitro and
in vivo, and progressed one pentamidine-Pluronic formulation
for further evaluation using an in vivo single dose brain
penetration study. Principal Findings Screening pentamidine against 40 CNS targets did not reveal any major
neurotoxicity concerns, however, pentamidine had a high affinity for the
imidazoline2 receptor. The reduction in insulin secretion in
MIN6 β-cells by pentamidine may be secondary to pentamidine-mediated
activation of β-cell imidazoline receptors and impairment of cell viability.
Pluronic F68 (0.01%w/v)-pentamidine formulation had a similar inhibitory
effect on insulin secretion as pentamidine alone and an additive
trypanocidal effect in vitro. However, all Pluronics tested
(P85, P105 and F68) did not significantly enhance brain exposure of
pentamidine. Significance These results are relevant to further developing block-copolymers as
nanocarriers, improving BBB drug penetration and understanding the side
effects of pentamidine. Sleeping sickness or human African Trypanosomiasis (HAT) is a disease caused by a
parasite, which is transferred to humans by the bite of an infected tsetse fly.
There are two disease stages: the first stage is the blood-based stage of the
disease and the second stage affects the brain. It is fatal if left untreated.
The blood-brain barrier (BBB) makes the brain stage difficult to treat because
it prevents 99% of all drugs from entering the brain from the blood. Those
anti-HAT drugs that do enter the brain are toxic and have serious side effects.
Pentamidine is a less toxic blood stage drug, which our research has shown has a
limited ability to cross the BBB due to its removal by proteins called
transporters. The objective of this study was to use Pluronic to improve
pentamidine delivery to target sites, whilst reducing its side effects. Pluronic
is a polymer, which can assemble into micelles and encapsulate the drug. Thus,
prolonging its circulation time and protecting it. Our study indicated that the
selected Pluronics did not increase the brain delivery of pentamidine. However.
Pluronic-pentamidine formulations were identified that harboured trypanocidal
activity and did not increase safety concerns compared to unformulated
pentamidine.
Collapse
Affiliation(s)
- Lisa Sanderson
- King’s College London, Institute of Pharmaceutical Science,
Franklin-Wilkins Building, Stamford Street, London, United
Kingdom
| | - Marcelo da Silva
- King’s College London, Institute of Pharmaceutical Science,
Franklin-Wilkins Building, Stamford Street, London, United
Kingdom
| | - Gayathri N. Sekhar
- King’s College London, Institute of Pharmaceutical Science,
Franklin-Wilkins Building, Stamford Street, London, United
Kingdom
| | - Rachel C. Brown
- King’s College London, Institute of Pharmaceutical Science,
Franklin-Wilkins Building, Stamford Street, London, United
Kingdom
| | - Hollie Burrell-Saward
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and
Tropical Medicine, London, United Kingdom
| | - Mehmet Fidanboylu
- King’s College London, Institute of Pharmaceutical Science,
Franklin-Wilkins Building, Stamford Street, London, United
Kingdom
| | - Bo Liu
- King’s College London, Department of Diabetes, School of Life Course
Sciences, Faculty of Life Sciences & Medicine, London, United
Kingdom
| | - Lea Ann Dailey
- King’s College London, Institute of Pharmaceutical Science,
Franklin-Wilkins Building, Stamford Street, London, United
Kingdom
| | - Cécile A. Dreiss
- King’s College London, Institute of Pharmaceutical Science,
Franklin-Wilkins Building, Stamford Street, London, United
Kingdom
| | - Chris Lorenz
- King’s College London, Theory & Simulation of Condensed Matter Group,
Department of Physics, Strand, London, United Kingdom
| | - Mark Christie
- King’s College London, Institute of Pharmaceutical Science,
Franklin-Wilkins Building, Stamford Street, London, United
Kingdom
| | - Shanta J. Persaud
- King’s College London, Department of Diabetes, School of Life Course
Sciences, Faculty of Life Sciences & Medicine, London, United
Kingdom
| | - Vanessa Yardley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and
Tropical Medicine, London, United Kingdom
| | - Simon L. Croft
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and
Tropical Medicine, London, United Kingdom
| | - Margarita Valero
- Physical Chemistry Department, Faculty of Pharmacy, University of
Salamanca, Salamanca, Spain
| | - Sarah A. Thomas
- King’s College London, Institute of Pharmaceutical Science,
Franklin-Wilkins Building, Stamford Street, London, United
Kingdom
- * E-mail:
| |
Collapse
|
57
|
Davis CN, Rock KS, Antillón M, Miaka EM, Keeling MJ. Cost-effectiveness modelling to optimise active screening strategy for gambiense human African trypanosomiasis in endemic areas of the Democratic Republic of Congo. BMC Med 2021; 19:86. [PMID: 33794881 PMCID: PMC8017623 DOI: 10.1186/s12916-021-01943-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/16/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Gambiense human African trypanosomiasis (gHAT) has been brought under control recently with village-based active screening playing a major role in case reduction. In the approach to elimination, we investigate how to optimise active screening in villages in the Democratic Republic of Congo, such that the expenses of screening programmes can be efficiently allocated whilst continuing to avert morbidity and mortality. METHODS We implement a cost-effectiveness analysis using a stochastic gHAT infection model for a range of active screening strategies and, in conjunction with a cost model, we calculate the net monetary benefit (NMB) of each strategy. We focus on the high-endemicity health zone of Kwamouth in the Democratic Republic of Congo. RESULTS High-coverage active screening strategies, occurring approximately annually, attain the highest NMB. For realistic screening at 55% coverage, annual screening is cost-effective at very low willingness-to-pay thresholds (20.4 per disability adjusted life year (DALY) averted), only marginally higher than biennial screening (14.6 per DALY averted). We find that, for strategies stopping after 1, 2 or 3 years of zero case reporting, the expected cost-benefits are very similar. CONCLUSIONS We highlight the current recommended strategy-annual screening with three years of zero case reporting before stopping active screening-is likely cost-effective, in addition to providing valuable information on whether transmission has been interrupted.
Collapse
Affiliation(s)
- Christopher N Davis
- Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK.
- Zeeman Institute (SBIDER), University of Warwick, Coventry, CV4 7AL, UK.
| | - Kat S Rock
- Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
- Zeeman Institute (SBIDER), University of Warwick, Coventry, CV4 7AL, UK
| | - Marina Antillón
- Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel, 4051, Switzerland
- University of Basel, Petersplatz 1, Basel, 4051, Switzerland
| | - Erick Mwamba Miaka
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Ave Coisement Liberation et Bd Triomphal No 1, Commune de Kasavubu, Kinshasa, Democratic Republic of Congo
| | - Matt J Keeling
- Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
- Zeeman Institute (SBIDER), University of Warwick, Coventry, CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
58
|
Parab AR, McCall LI. Tryp-ing Up Metabolism: Role of Metabolic Adaptations in Kinetoplastid Disease Pathogenesis. Infect Immun 2021; 89:e00644-20. [PMID: 33526564 PMCID: PMC8090971 DOI: 10.1128/iai.00644-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Today, more than a billion people-one-sixth of the world's population-are suffering from neglected tropical diseases. Human African trypanosomiasis, Chagas disease, and leishmaniasis are neglected tropical diseases caused by protozoan parasites belonging to the genera Trypanosoma and Leishmania About half a million people living in tropical and subtropical regions of the world are at risk of contracting one of these three infections. Kinetoplastids have complex life cycles with different morphologies and unique physiological requirements at each life cycle stage. This review covers the latest findings on metabolic pathways impacting disease pathogenesis of kinetoplastids within the mammalian host. Nutrient availability is a key factor shaping in vivo parasite metabolism; thus, kinetoplastids display significant metabolic flexibility. Proteomic and transcriptomic profiles show that intracellular trypanosomatids are able to switch to an energy-efficient metabolism within the mammalian host system. Host metabolic changes can also favor parasite persistence, and contribute to symptom development, in a location-specific fashion. Ultimately, targeted and untargeted metabolomics studies have been a valuable approach to elucidate the specific biochemical pathways affected by infection within the host, leading to translational drug development and diagnostic insights.
Collapse
Affiliation(s)
- Adwaita R Parab
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Laura-Isobel McCall
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
59
|
Longbottom J, Wamboga C, Bessell PR, Torr SJ, Stanton MC. Optimising passive surveillance of a neglected tropical disease in the era of elimination: A modelling study. PLoS Negl Trop Dis 2021; 15:e0008599. [PMID: 33651803 PMCID: PMC7954327 DOI: 10.1371/journal.pntd.0008599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 03/12/2021] [Accepted: 02/07/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Surveillance is an essential component of global programs to eliminate infectious diseases and avert epidemics of (re-)emerging diseases. As the numbers of cases decline, costs of treatment and control diminish but those for surveillance remain high even after the 'last' case. Reducing surveillance may risk missing persistent or (re-)emerging foci of disease. Here, we use a simulation-based approach to determine the minimal number of passive surveillance sites required to ensure maximum coverage of a population at-risk (PAR) of an infectious disease. METHODOLOGY AND PRINCIPAL FINDINGS For this study, we use Gambian human African trypanosomiasis (g-HAT) in north-western Uganda, a neglected tropical disease (NTD) which has been reduced to historically low levels (<1000 cases/year globally), as an example. To quantify travel time to diagnostic facilities, a proxy for surveillance coverage, we produced a high spatial-resolution resistance surface and performed cost-distance analyses. We simulated travel time for the PAR with different numbers (1-170) and locations (170,000 total placement combinations) of diagnostic facilities, quantifying the percentage of the PAR within 1h and 5h travel of the facilities, as per in-country targets. Our simulations indicate that a 70% reduction (51/170) in diagnostic centres still exceeded minimal targets of coverage even for remote populations, with >95% of a total PAR of ~3million individuals living ≤1h from a diagnostic centre, and we demonstrate an approach to best place these facilities, informing a minimal impact scale back. CONCLUSIONS Our results highlight that surveillance of g-HAT in north-western Uganda can be scaled back without substantially reducing coverage of the PAR. The methodology described can contribute to cost-effective and equable strategies for the surveillance of NTDs and other infectious diseases approaching elimination or (re-)emergence.
Collapse
Affiliation(s)
- Joshua Longbottom
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Centre for Health Informatics, Computing and Statistics, Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
- * E-mail:
| | | | | | - Steve J. Torr
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Michelle C. Stanton
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
60
|
Sterkel M, Haines LR, Casas-Sánchez A, Owino Adung’a V, Vionette-Amaral RJ, Quek S, Rose C, Silva dos Santos M, García Escude N, Ismail HM, Paine MI, Barribeau SM, Wagstaff S, MacRae JI, Masiga D, Yakob L, Oliveira PL, Acosta-Serrano Á. Repurposing the orphan drug nitisinone to control the transmission of African trypanosomiasis. PLoS Biol 2021; 19:e3000796. [PMID: 33497373 PMCID: PMC7837477 DOI: 10.1371/journal.pbio.3000796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/30/2020] [Indexed: 12/02/2022] Open
Abstract
Tsetse transmit African trypanosomiasis, which is a disease fatal to both humans and animals. A vaccine to protect against this disease does not exist so transmission control relies on eliminating tsetse populations. Although neurotoxic insecticides are the gold standard for insect control, they negatively impact the environment and reduce populations of insect pollinator species. Here we present a promising, environment-friendly alternative to current insecticides that targets the insect tyrosine metabolism pathway. A bloodmeal contains high levels of tyrosine, which is toxic to haematophagous insects if it is not degraded and eliminated. RNA interference (RNAi) of either the first two enzymes in the tyrosine degradation pathway (tyrosine aminotransferase (TAT) and 4-hydroxyphenylpyruvate dioxygenase (HPPD)) was lethal to tsetse. Furthermore, nitisinone (NTBC), an FDA-approved tyrosine catabolism inhibitor, killed tsetse regardless if the drug was orally or topically applied. However, oral administration of NTBC to bumblebees did not affect their survival. Using a novel mathematical model, we show that NTBC could reduce the transmission of African trypanosomiasis in sub-Saharan Africa, thus accelerating current disease elimination programmes.
Collapse
Affiliation(s)
- Marcos Sterkel
- Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - Lee R. Haines
- Department of Vector Biology, Liverpool School of Tropical Medicine, United Kingdom
| | - Aitor Casas-Sánchez
- Department of Vector Biology, Liverpool School of Tropical Medicine, United Kingdom
| | - Vincent Owino Adung’a
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- Department of Biochemistry and Molecular Biology, Egerton University, Kenya
| | | | - Shannon Quek
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, United Kingdom
| | - Clair Rose
- Department of Vector Biology, Liverpool School of Tropical Medicine, United Kingdom
| | | | | | - Hanafy M. Ismail
- Department of Vector Biology, Liverpool School of Tropical Medicine, United Kingdom
| | - Mark I. Paine
- Department of Vector Biology, Liverpool School of Tropical Medicine, United Kingdom
| | - Seth M. Barribeau
- Department of Ecology Evolution & Behaviour, Institute of Integrative Biology, University of Liverpool, United Kingdom
| | - Simon Wagstaff
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, United Kingdom
| | | | - Daniel Masiga
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Laith Yakob
- Department of Disease Control, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Pedro L. Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Álvaro Acosta-Serrano
- Department of Vector Biology, Liverpool School of Tropical Medicine, United Kingdom
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, United Kingdom
| |
Collapse
|
61
|
Brown RW, Abdel-Megeed AM, Keller PA, Jones AJ, Sykes ML, Kaiser M, Baell JB, Avery VM, Hyland CJT. Investigation of thiazolyl-benzothiophenamides as potential agents for African sleeping sickness. RSC Med Chem 2020; 11:1413-1422. [PMID: 34095848 PMCID: PMC8126881 DOI: 10.1039/d0md00277a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/10/2020] [Indexed: 11/21/2022] Open
Abstract
African sleeping sickness is a potentially fatal neglected disease affecting sub-Saharan Africa. High-throughput screening identified the thiazolyl-benzothiophenamide 1 to be active against the causative parasite, Trypanosoma brucei. This work establishes structure-activity relationships of 1, guiding the design of second generation derivatives. After screening against the clinically relevant species T. b. rhodesiense, the derivative 16 was identified as a suitable candidate for further investigation.
Collapse
Affiliation(s)
- Ronald W Brown
- School of Chemistry and Molecular Bioscience, and Molecular Horizons Research Institute, University of Wollongong Wollongong 2522 NSW Australia
| | - Ashraf M Abdel-Megeed
- School of Chemistry and Molecular Bioscience, and Molecular Horizons Research Institute, University of Wollongong Wollongong 2522 NSW Australia
| | - Paul A Keller
- School of Chemistry and Molecular Bioscience, and Molecular Horizons Research Institute, University of Wollongong Wollongong 2522 NSW Australia
| | - Amy J Jones
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University Brisbane Innovation Park Nathan 4111 Australia
| | - Melissa L Sykes
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University Brisbane Innovation Park Nathan 4111 Australia
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute Basel 4051 Switzerland
- University of Basel 4003 Basel Switzerland
| | - Jonathan B Baell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University Parkville 3052 Australia
| | - Vicky M Avery
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University Brisbane Innovation Park Nathan 4111 Australia
| | - Christopher J T Hyland
- School of Chemistry and Molecular Bioscience, and Molecular Horizons Research Institute, University of Wollongong Wollongong 2522 NSW Australia
| |
Collapse
|
62
|
Cockram PE, Dickie EA, Barrett MP, Smith TK. Halogenated tryptophan derivatives disrupt essential transamination mechanisms in bloodstream form Trypanosoma brucei. PLoS Negl Trop Dis 2020; 14:e0008928. [PMID: 33275612 PMCID: PMC7744056 DOI: 10.1371/journal.pntd.0008928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 12/16/2020] [Accepted: 10/19/2020] [Indexed: 12/05/2022] Open
Abstract
Amino acid metabolism within Trypanosoma brucei, the causative agent of human African trypanosomiasis, is critical for parasite survival and virulence. Of these metabolic processes, the transamination of aromatic amino acids is one of the most important. In this study, a series of halogenated tryptophan analogues were investigated for their anti-parasitic potency. Several of these analogues showed significant trypanocidal activity. Metabolomics analysis of compound-treated parasites revealed key differences occurring within aromatic amino acid metabolism, particularly within the widely reported and essential transamination processes of this parasite.
Collapse
Affiliation(s)
- Peter E. Cockram
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Scotland
| | - Emily A. Dickie
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Michael P. Barrett
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Terry K. Smith
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Scotland
| |
Collapse
|
63
|
Snijders R, Fukinsia A, Claeys Y, Mpanya A, Hasker E, Meheus F, Miaka E, Boelaert M. Cost of a new method of active screening for human African trypanosomiasis in the Democratic Republic of the Congo. PLoS Negl Trop Dis 2020; 14:e0008832. [PMID: 33315896 PMCID: PMC7769601 DOI: 10.1371/journal.pntd.0008832] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/28/2020] [Accepted: 09/24/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Human African trypanosomiases caused by the Trypanosoma brucei gambiense parasite is a lethal disease targeted for eradication. One of the main disease control strategies is active case-finding through outreach campaigns. In 2014, a new method for active screening was developed with mini, motorcycle-based, teams. This study compares the cost of two active case-finding approaches, namely the traditional mobile teams and mini mobile teams, in the two health districts of the Democratic Republic of the Congo. METHODS The financial and economic costs of both approaches were estimated from a health care provider perspective. Cost and operational data were collected for 12 months for 1 traditional team and 3 mini teams. The cost per person screened and diagnosed was calculated and univariate sensitivity analysis was conducted to identify the main cost drivers. RESULTS During the study period in total 264,630 people were screened, and 23 HAT cases detected. The cost per person screened was lower for a mini team than for a traditional team in the study setting (US$1.86 versus US$2.08). A comparable result was found in a scenario analysis, assuming both teams would operate in a similar setting, with the cost per person screened by a mini team 15% lower than the cost per person screened by a traditional team (1.86 $ vs 2.14$). The main explanations for this lower cost are that mini teams work with fewer human resources, cheaper means of transportation and do not perform the Capillary Tube Centrifugation test or card agglutination test dilutions. DISCUSSION Active HAT screening with mini mobile teams has a lower cost and could be a cost-effective alternative for active case-finding. Further research is needed to determine if mini mobile teams have similar or better yields than traditional mobile teams in terms of detections and cases successfully treated.
Collapse
Affiliation(s)
- Rian Snijders
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| | - Alain Fukinsia
- Programme National de Lutte Contre la Trypanosomiase Humaine Africaine, Kinshasa, the Democratic Republic of Congo
| | - Yves Claeys
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| | - Alain Mpanya
- Programme National de Lutte Contre la Trypanosomiase Humaine Africaine, Kinshasa, the Democratic Republic of Congo
| | - Epco Hasker
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| | - Filip Meheus
- Section of Cancer Surveillance, International Agency for Research on Cancer, Lyon, France
| | - Erick Miaka
- Programme National de Lutte Contre la Trypanosomiase Humaine Africaine, Kinshasa, the Democratic Republic of Congo
| | - Marleen Boelaert
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
64
|
Rijo-Ferreira F, Bjorness TE, Cox KH, Sonneborn A, Greene RW, Takahashi JS. Sleeping Sickness Disrupts the Sleep-Regulating Adenosine System. J Neurosci 2020; 40:9306-9316. [PMID: 33097636 PMCID: PMC7687053 DOI: 10.1523/jneurosci.1046-20.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/28/2020] [Accepted: 10/11/2020] [Indexed: 12/16/2022] Open
Abstract
Patients with sleeping sickness, caused by the parasite Trypanosoma brucei, have disruptions in both sleep timing and sleep architecture. However, the underlying cause of these sleep disturbances is not well understood. Here, we assessed the sleep architecture of male mice infected with T. brucei and found that infected mice had drastically altered sleep patterns. Interestingly, T. brucei-infected mice also had a reduced homeostatic sleep response to sleep deprivation, a response modulated by the adenosine system. We found that infected mice had a reduced electrophysiological response to an adenosine receptor antagonist and increased adenosine receptor gene expression. Although the mechanism by which T. brucei infection causes these changes remains to be determined, our findings suggest that the symptoms of sleeping sickness may be because of alterations in homeostatic adenosine signaling.SIGNIFICANCE STATEMENT Sleeping sickness is a fatal disease that disrupts the circadian clock, causes disordered temperature regulation, and induces sleep disturbance. To examine the neurologic effects of infection in the absence of other symptoms, in this study, we used a mouse model of sleeping sickness in which the acute infection was treated but brain infection remained. Using this model, we evaluated the effects of the sleeping sickness parasite, Trypanosoma brucei, on sleep patterns in mice, under both normal and sleep-deprived conditions. Our findings suggest that signaling of adenosine, a neuromodulator involved in mediating homeostatic sleep drive, may be reduced in infected mice.
Collapse
Affiliation(s)
- Filipa Rijo-Ferreira
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
| | - Theresa E Bjorness
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
- Research Service, VA North Texas Health Care System, Dallas, Texas 75216-7167
| | - Kimberly H Cox
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
| | - Alex Sonneborn
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
| | - Robert W Greene
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
| | - Joseph S Takahashi
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
| |
Collapse
|
65
|
Maganga GD, Boundenga L, Ologui-Minkue-Edzo EJ, Kombila LB, Mebaley TGN, Kumulungui B, Mavoungou JF. Frequency and diversity of trypanosomes in sheep and goats from Mongo County in South Gabon, Central Africa. Vet World 2020; 13:2502-2507. [PMID: 33363347 PMCID: PMC7750216 DOI: 10.14202/vetworld.2020.2502-2507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022] Open
Abstract
Background and Aim Trypanosomosis is a major impediment to livestock farming in sub-Saharan Africa. It is a vector-borne disease caused by several species of protozoan parasites, namely, trypanosomes. The present study aimed to identify the diversity of trypanosome species infecting sheep and goats from Mongo County and to determine the frequency of these parasites. Materials and Methods This study was conducted on 286 trypanotolerant goats and sheep from Mongo regions located in South Gabon, using polymerase chain reaction. Results Analyses showed that the overall occurrence of trypanosomosis in small ruminants was 13.6% (39/286). Our results also showed that two factors, species and season, could affect the occurrence rate of Trypanosoma. A total of six Trypanosoma species were identified, two in sheep (Trypanosoma simiae and Trypanosoma theileri) and five in goats (Trypanosoma vivax, T. simiae, T. simiae Tsavo, Trypanosoma congolense, and Trypanosoma brucei), though Trypanosoma simiae was the most important species. Mixed infections were also found in goats (54.5%) and sheep (3.57%). Conclusion Our study demonstrated that small ruminants could represent a reservoir of biodiversity for Trypanosoma parasites.
Collapse
Affiliation(s)
- Gael Darren Maganga
- Centre International de Recherches Médicales de Franceville, BP 769, Franceville, Gabon.,Département de Zootechnologie, Institut National Supérieur d'Agronomie et de Biotechnologies, BP 901, Franceville, Gabon
| | - Larson Boundenga
- Centre International de Recherches Médicales de Franceville, BP 769, Franceville, Gabon
| | | | - Linda Bohou Kombila
- Centre International de Recherches Médicales de Franceville, BP 769, Franceville, Gabon
| | | | - Brice Kumulungui
- Centre International de Recherches Médicales de Franceville, BP 769, Franceville, Gabon.,Département de Zootechnologie, Institut National Supérieur d'Agronomie et de Biotechnologies, BP 901, Franceville, Gabon
| | - Jacques François Mavoungou
- Department of Zootechnology, Institut de Recherche Agronomique et Forestière (IRAF-CENAREST), BP: 13354, Libreville, Gabon
| |
Collapse
|
66
|
da Silva MTA, Silva IRE, Faim LM, Bellini NK, Pereira ML, Lima AL, de Jesus TCL, Costa FC, Watanabe TF, Pereira HD, Valentini SR, Zanelli CF, Borges JC, Dias MVB, da Cunha JPC, Mittra B, Andrews NW, Thiemann OH. Trypanosomatid selenophosphate synthetase structure, function and interaction with selenocysteine lyase. PLoS Negl Trop Dis 2020; 14:e0008091. [PMID: 33017394 PMCID: PMC7595633 DOI: 10.1371/journal.pntd.0008091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 10/29/2020] [Accepted: 08/03/2020] [Indexed: 11/19/2022] Open
Abstract
Eukaryotes from the Excavata superphylum have been used as models to study the evolution of cellular molecular processes. Strikingly, human parasites of the Trypanosomatidae family (T. brucei, T. cruzi and L. major) conserve the complex machinery responsible for selenocysteine biosynthesis and incorporation in selenoproteins (SELENOK/SelK, SELENOT/SelT and SELENOTryp/SelTryp), although these proteins do not seem to be essential for parasite viability under laboratory controlled conditions. Selenophosphate synthetase (SEPHS/SPS) plays an indispensable role in selenium metabolism, being responsible for catalyzing the formation of selenophosphate, the biological selenium donor for selenocysteine synthesis. We solved the crystal structure of the L. major selenophosphate synthetase and confirmed that its dimeric organization is functionally important throughout the domains of life. We also demonstrated its interaction with selenocysteine lyase (SCLY) and showed that it is not present in other stable assemblies involved in the selenocysteine pathway, namely the phosphoseryl-tRNASec kinase (PSTK)-Sec-tRNASec synthase (SEPSECS) complex and the tRNASec-specific elongation factor (eEFSec) complex. Endoplasmic reticulum stress with dithiothreitol (DTT) or tunicamycin upon selenophosphate synthetase ablation in procyclic T. brucei cells led to a growth defect. On the other hand, only DTT presented a negative effect in bloodstream T. brucei expressing selenophosphate synthetase-RNAi. Furthermore, selenoprotein T (SELENOT) was dispensable for both forms of the parasite. Together, our data suggest a role for the T. brucei selenophosphate synthetase in the regulation of the parasite’s ER stress response. Selenium is both a toxic compound and a micronutrient. As a micronutrient, it participates in the synthesis of specific proteins, selenoproteins, as the amino acid selenocysteine. The synthesis of selenocysteine is present in organisms ranging from bacteria to humans. The protist parasites of the Trypanosomatidae family, that cause major tropical diseases, conserve the complex machinery responsible for selenocysteine biosynthesis and incorporation in selenoproteins. However, this pathway has been considered dispensable for the parasitic protist cells. This has intrigued us, and lead to question that if maintained in the cell it should be under selective pressure and therefore be necessary. Also, extensive and dynamic protein-protein interactions must happen to deliver selenium-containing intermediates along the pathway in order to warrant efficient usage of biological selenium in the cell. In this study we have investigated the molecular interactions of different proteins involved in selenocysteine synthesis and its putative involvement in the endoplasmic reticulum redox homeostasis.
Collapse
Affiliation(s)
- Marco Túlio Alves da Silva
- Laboratory of Structural Biology, Sao Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Ivan Rosa e Silva
- Laboratory of Structural Biology, Sao Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Lívia Maria Faim
- Laboratory of Structural Biology, Sao Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Natália Karla Bellini
- Laboratory of Structural Biology, Sao Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Murilo Leão Pereira
- Laboratory of Structural Biology, Sao Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Ana Laura Lima
- Laboratory of Structural Biology, Sao Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Teresa Cristina Leandro de Jesus
- Laboratory of Structural Biology, Sao Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
- Laboratory of Cell Cycle and Center of Toxins, Immune Response and Cell Signaling—CeTICS, Butantan Institute, São Paulo, SP, Brazil
| | - Fernanda Cristina Costa
- Laboratory of Structural Biology, Sao Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Tatiana Faria Watanabe
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Humberto D'Muniz Pereira
- Laboratory of Structural Biology, Sao Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | | | | | - Júlio Cesar Borges
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil
| | | | - Júlia Pinheiro Chagas da Cunha
- Laboratory of Cell Cycle and Center of Toxins, Immune Response and Cell Signaling—CeTICS, Butantan Institute, São Paulo, SP, Brazil
| | - Bidyottam Mittra
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Norma W. Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Otavio Henrique Thiemann
- Laboratory of Structural Biology, Sao Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
- * E-mail:
| |
Collapse
|
67
|
Varikuti S, Jha BK, Holcomb EA, McDaniel JC, Karpurapu M, Srivastava N, McGwire BS, Satoskar AR, Parinandi NL. The role of vascular endothelium and exosomes in human protozoan parasitic diseases. ACTA ACUST UNITED AC 2020; 4. [PMID: 33089078 PMCID: PMC7575144 DOI: 10.20517/2574-1209.2020.27] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The vascular endothelium is a vital component in maintaining the structure and function of blood vessels. The endothelial cells (ECs) mediate vital regulatory functions such as the proliferation of cells, permeability of various tissue membranes, and exchange of gases, thrombolysis, blood flow, and homeostasis. The vascular endothelium also regulates inflammation and immune cell trafficking, and ECs serve as a replicative niche for many bacterial, viral, and protozoan infectious diseases. Endothelial dysfunction can lead to vasodilation and pro-inflammation, which are the hallmarks of many severe diseases. Exosomes are nanoscale membrane-bound vesicles that emerge from cells and serve as important extracellular components, which facilitate communication between cells and maintain homeostasis during normal and pathophysiological states. Exosomes are also involved in gene transfer, inflammation and antigen presentation, and mediation of the immune response during pathogenic states. Protozoa are a diverse group of unicellular organisms that cause many infectious diseases in humans. In this regard, it is becoming increasingly evident that many protozoan parasites (such as Plasmodium, Trypanosoma, Leishmania, and Toxoplasma) utilize exosomes for the transfer of their virulence factors and effector molecules into the host cells, which manipulate the host gene expression, immune responses, and other biological activities to establish and modulate infection. In this review, we discuss the role of the vascular endothelium and exosomes in and their contribution to pathogenesis in malaria, African sleeping sickness, Chagas disease, and leishmaniasis and toxoplasmosis with an emphasis on their actions on the innate and adaptive immune mechanisms of resistance.
Collapse
Affiliation(s)
- Sanjay Varikuti
- Department of Pathology, The Ohio State University Medical Center, Columbus, OH 43201, USA.,Department of Bioscience & Biotechnology, Banasthali University, Banasthali 304022, India
| | - Bijay Kumar Jha
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH 43201, USA
| | - Erin A Holcomb
- Department of Pathology, The Ohio State University Medical Center, Columbus, OH 43201, USA
| | - Jodi C McDaniel
- College of Nursing, The Ohio State University, Columbus, OH 43201, USA
| | - Manjula Karpurapu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH 43201, USA
| | - Nidhi Srivastava
- Department of Bioscience & Biotechnology, Banasthali University, Banasthali 304022, India
| | - Bradford S McGwire
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH 43201, USA
| | - Abhay R Satoskar
- Department of Pathology, The Ohio State University Medical Center, Columbus, OH 43201, USA
| | - Narasimham L Parinandi
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH 43201, USA
| |
Collapse
|
68
|
Lemerani M, Jumah F, Bessell P, Biéler S, Ndung'u JM. Improved Access to Diagnostics for Rhodesian Sleeping Sickness around a Conservation Area in Malawi Results in Earlier Detection of Cases and Reduced Mortality. J Epidemiol Glob Health 2020; 10:280-287. [PMID: 32959623 PMCID: PMC7758844 DOI: 10.2991/jegh.k.200321.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/25/2020] [Indexed: 11/01/2022] Open
Abstract
Trypanosoma brucei rhodesiense Human African Trypanosomiasis (rHAT) is a zoonotic disease transmitted by tsetse flies from wild and domestic animals. It presents as an acute disease and advances rapidly into a neurological form that can only be treated with melarsoprol, which is associated with a high fatality rate. Bringing diagnostic services for rHAT closer to at-risk populations would increase chances of detecting cases in early stages of disease when treatment is safer and more effective. In Malawi, most of the rHAT cases occur around Vwaza Marsh Wildlife Reserve. Until 2013, diagnosis of rHAT in the region was only available at the Rumphi District Hospital that is more than 60 km away from the reserve. In 2013, Malawi's Ministry of Health initiated a project to enhance the detection of rHAT in five health facilities around Vwaza Marsh by upgrading laboratories and training technicians. We report here a retrospective study that was carried out to evaluate the impact of improving access to diagnostic services on the disease stage at diagnosis and on mortality. Between August 2014 and July 2017, 2014 patients suspected of having the disease were tested by microscopy, including 1267 who were tested in the new facilities. This resulted in the identification of 78 new rHAT cases, of which six died. Compared with previous years, data obtained during this period indicate that access to diagnostic services closer to where people at the greatest risk of infection live promotes identification of cases in earlier stages of infection, and improves treatment outcomes.
Collapse
Affiliation(s)
| | | | | | - Sylvain Biéler
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
| | | |
Collapse
|
69
|
Koné M, N’Gouan EK, Kaba D, Koffi M, Kouakou L, N’Dri L, Kouamé CM, Nanan VK, Tapé GA, Coulibaly B, Courtin F, Ahouty B, Djohan V, Bucheton B, Solano P, Büscher P, Lejon V, Jamonneau V. The complex health seeking pathway of a human African trypanosomiasis patient in Côte d'Ivoire underlines the need of setting up passive surveillance systems. PLoS Negl Trop Dis 2020; 14:e0008588. [PMID: 32925917 PMCID: PMC7515183 DOI: 10.1371/journal.pntd.0008588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/24/2020] [Accepted: 07/13/2020] [Indexed: 11/25/2022] Open
Abstract
Background Significant efforts to control human African trypanosomiasis (HAT) over the two past decades have resulted in drastic decrease of its prevalence in Côte d’Ivoire. In this context, passive surveillance, integrated in the national health system and based on clinical suspicion, was reinforced. We describe here the health-seeking pathway of a girl who was the first HAT patient diagnosed through this strategy in August 2017. Methods After definitive diagnosis of this patient, epidemiological investigations were carried out into the clinical evolution and the health and therapeutic itinerary of the patient before diagnosis. Results At the time of diagnosis, the patient was positive in both serological and molecular tests and trypanosomes were detected in blood and cerebrospinal fluid. She suffered from important neurological disorders. The first disease symptoms had appeared three years earlier, and the patient had visited several public and private peripheral health care centres and hospitals in different cities. The failure to diagnose HAT for such a long time caused significant health deterioration and was an important financial burden for the family. Conclusion This description illustrates the complexity of detecting the last HAT cases due to complex diagnosis and the progressive disinterest and unawareness by both health professionals and the population. It confirms the need of implementing passive surveillance in combination with continued sensitization and health staff training. Human African trypanosomiasis (HAT) or sleeping sickness is a parasitic disease caused by Trypanosoma brucei that is transmitted by tsetse flies. In 2012, HAT was included in the World Health Organization roadmap for the control of neglected tropical diseases with the objective of elimination as a public health problem by 2020. In Côte d’Ivoire, HAT prevalence has dropped sharply the last decade. A passive HAT surveillance was therefore integrated in the national health system, which allowed to detect a first patient in 2017. This article describes the complex health seeking pathway and suffering before diagnosis of this patient, an 11 years old girl, and illustrates the challenge when health agents and population no longer consider HAT as a threat in an elimination context. Our results show the need to install a solid surveillance system, in combination with continued sensitization and repeated health staff training.
Collapse
Affiliation(s)
- Minayégninrin Koné
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
- Laboratoire de Biodiversité et Gestion des Ecosystèmes Tropicaux, Unité de Recherche en Génétique et Epidémiologie Moléculaire, Université Jean Lorougnon Guédé, UFR Environnement, Daloa, Côte d’Ivoire
| | | | - Dramane Kaba
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
| | - Mathurin Koffi
- Laboratoire de Biodiversité et Gestion des Ecosystèmes Tropicaux, Unité de Recherche en Génétique et Epidémiologie Moléculaire, Université Jean Lorougnon Guédé, UFR Environnement, Daloa, Côte d’Ivoire
| | - Lingué Kouakou
- Programme National d’Élimination de la Trypanosomose Humaine Africaine, Abidjan, Côte d’Ivoire
| | - Louis N’Dri
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
| | - Cyrille Mambo Kouamé
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
| | - Valentin Kouassi Nanan
- Direction Départementale de la Marahoué, District sanitaire de Sinfra, Ministère de la Santé et de l’Hygiène Publique, Abidjan, Côte d’Ivoire
| | - Gossé Apollinaire Tapé
- Direction départementale de la santé de la Marahoué, Centre de Santé Urbain de Bonon, Ministère de la Santé et de l’Hygiène Publique, Abidjan Côte d’Ivoire
| | - Bamoro Coulibaly
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
| | - Fabrice Courtin
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement (IRD) Université de Montpellier, Montpellier, France
| | - Bernardin Ahouty
- Laboratoire de Biodiversité et Gestion des Ecosystèmes Tropicaux, Unité de Recherche en Génétique et Epidémiologie Moléculaire, Université Jean Lorougnon Guédé, UFR Environnement, Daloa, Côte d’Ivoire
| | - Vincent Djohan
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
| | - Bruno Bucheton
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement (IRD) Université de Montpellier, Montpellier, France
| | - Philippe Solano
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement (IRD) Université de Montpellier, Montpellier, France
| | - Philippe Büscher
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Veerle Lejon
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement (IRD) Université de Montpellier, Montpellier, France
| | - Vincent Jamonneau
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement (IRD) Université de Montpellier, Montpellier, France
- * E-mail:
| |
Collapse
|
70
|
Showalter HD. Recent Progress in the Discovery and Development of 2-Nitroimidazooxazines and 6-Nitroimidazooxazoles to Treat Tuberculosis and Neglected Tropical Diseases. Molecules 2020; 25:molecules25184137. [PMID: 32927749 PMCID: PMC7576498 DOI: 10.3390/molecules25184137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/02/2022] Open
Abstract
Nitroimidazole drugs have a long history as therapeutic agents to treat bacterial and parasitic diseases. The discovery in 1989 of a bicyclic nitroimidazole lead, displaying in vitro and in vivo antitubercular activity, spurred intensive exploration of this and related scaffolds, which led to the regulatory approval of pretomanid and delamanid as a new class of tuberculosis drugs. Much of the discovery work related to this took place over a 20-year period ending in 2010, which is covered in a number of cited reviews. This review highlights subsequent research published over the 2011–August 2020 timeframe, and captures detailed structure–activity relationship studies and synthetic strategies directed towards uncovering newer generation drugs for both tuberculosis and selected neglected tropical diseases. Additionally, this review presents in silico calculations relating to the drug-like properties of lead compounds and clinical agents, as well as chemical development and manufacturing processes toward providing bulk drug supplies.
Collapse
Affiliation(s)
- Hollis D Showalter
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
71
|
Smith Jr. JT, Doleželová E, Tylec B, Bard JE, Chen R, Sun Y, Zíková A, Read LK. Developmental regulation of edited CYb and COIII mitochondrial mRNAs is achieved by distinct mechanisms in Trypanosoma brucei. Nucleic Acids Res 2020; 48:8704-8723. [PMID: 32738044 PMCID: PMC7470970 DOI: 10.1093/nar/gkaa641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 01/01/2023] Open
Abstract
Trypanosoma brucei is a parasitic protozoan that undergoes a complex life cycle involving insect and mammalian hosts that present dramatically different nutritional environments. Mitochondrial metabolism and gene expression are highly regulated to accommodate these environmental changes, including regulation of mRNAs that require extensive uridine insertion/deletion (U-indel) editing for their maturation. Here, we use high throughput sequencing and a method for promoting life cycle changes in vitro to assess the mechanisms and timing of developmentally regulated edited mRNA expression. We show that edited CYb mRNA is downregulated in mammalian bloodstream forms (BSF) at the level of editing initiation and/or edited mRNA stability. In contrast, edited COIII mRNAs are depleted in BSF by inhibition of editing progression. We identify cell line-specific differences in the mechanisms abrogating COIII mRNA editing, including the possible utilization of terminator gRNAs that preclude the 3' to 5' progression of editing. By examining the developmental timing of altered mitochondrial mRNA levels, we also reveal transcript-specific developmental checkpoints in epimastigote (EMF), metacyclic (MCF), and BSF. These studies represent the first analysis of the mechanisms governing edited mRNA levels during T. brucei development and the first to interrogate U-indel editing in EMF and MCF life cycle stages.
Collapse
Affiliation(s)
- Joseph T Smith Jr.
- Department of Microbiology and Immunology, University at Buffalo – Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Eva Doleželová
- Institute of Parasitology, Biology Centre Czech Academy of Science, České Budejovice, Czech Republic
| | - Brianna Tylec
- Department of Microbiology and Immunology, University at Buffalo – Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Jonathan E Bard
- Genomics and Bioinformatics Core, University at Buffalo, Buffalo, NY 14203, USA
| | - Runpu Chen
- Department of Computer Science and Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Yijun Sun
- Department of Microbiology and Immunology, University at Buffalo – Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Alena Zíková
- Institute of Parasitology, Biology Centre Czech Academy of Science, České Budejovice, Czech Republic
| | - Laurie K Read
- Department of Microbiology and Immunology, University at Buffalo – Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| |
Collapse
|
72
|
Marsela M, Hayashida K, Nakao R, Chatanga E, Gaithuma AK, Naoko K, Musaya J, Sugimoto C, Yamagishi J. Molecular identification of trypanosomes in cattle in Malawi using PCR methods and nanopore sequencing: epidemiological implications for the control of human and animal trypanosomiases. Parasite 2020; 27:46. [PMID: 32686644 PMCID: PMC7370688 DOI: 10.1051/parasite/2020043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 06/25/2020] [Indexed: 11/24/2022] Open
Abstract
This study aimed to identify trypanosomes infecting cattle in Malawi in order to understand the importance of cattle in the transmission dynamics of Human African Trypanosomiasis (HAT) and Animal African Trypanosomosis (AAT). A total of 446 DNA samples from cattle blood from three regions of Malawi were screened for African trypanosomes by ITS1 PCR. The obtained amplicons were sequenced using a portable next-generation sequencer, MinION, for validation. Comparison of the results from ITS1 PCR and MinION sequencing showed that combining the two methods provided more accurate species identification than ITS1 PCR alone. Further PCR screening targeting the serum resistance-associated (SRA) gene was conducted to detect Trypanosoma brucei rhodesiense. Trypanosoma congolense was the most prevalent Trypanosoma sp., which was found in Nkhotakota (10.8%; 20 of 185), followed by Kasungu (2.5%; 5 of 199). Of note, the prevalence of T. b. rhodesiense detected by SRA PCR was high in Kasungu and Nkhotakota showing 9.5% (19 of 199) and 2.7% (5 of 185), respectively. We report the presence of animal African trypanosomes and T. b. rhodesiense from cattle at the human-livestock-wildlife interface for the first time in Malawi. Our results confirmed that animal trypanosomes are important causes of anemia in cattle and that cattle are potential reservoirs for human African trypanosomiasis in Malawi.
Collapse
Affiliation(s)
- Megasari Marsela
-
Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University Kita-20, Nishi-10, Kita-ku Sapporo 001-0020 Hokkaido Japan
| | - Kyoko Hayashida
-
Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University Kita-20, Nishi-10, Kita-ku Sapporo 001-0020 Hokkaido Japan
| | - Ryo Nakao
-
Laboratory of Parasitology, Veterinary Medicine Faculty, Hokkaido University Kita-18, Nishi-9, Kita-ku Sapporo 060-0818 Hokkaido Japan
| | - Elisha Chatanga
-
Laboratory of Parasitology, Veterinary Medicine Faculty, Hokkaido University Kita-18, Nishi-9, Kita-ku Sapporo 060-0818 Hokkaido Japan
| | - Alex Kiarie Gaithuma
-
Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University Kita-20, Nishi-10, Kita-ku Sapporo 001-0020 Hokkaido Japan
| | - Kawai Naoko
-
Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University Kita-20, Nishi-10, Kita-ku Sapporo 001-0020 Hokkaido Japan
| | - Janelisa Musaya
-
Department of Pathology, College of Medicine, University of Malawi P/Bag 360 Chichiri 30096 Blantyre 3 Malawi
| | - Chihiro Sugimoto
-
Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University Kita-20, Nishi-10, Kita-ku Sapporo 001-0020 Hokkaido Japan
| | - Junya Yamagishi
-
Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University Kita-20, Nishi-10, Kita-ku Sapporo 001-0020 Hokkaido Japan
-
International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University Kita-20, Nishi-10, Kita-ku Sapporo 001-0020 Hokkaido Japan
| |
Collapse
|
73
|
Frezza C, Venditti A, Bianco A, Serafini M, Pitorri M, Sciubba F, Di Cocco ME, Spinozzi E, Cappellacci L, Hofer A, Maggi F, Petrelli R. Phytochemical Analysis and Trypanocidal Activity of Marrubium incanum Desr. Molecules 2020; 25:molecules25143140. [PMID: 32660058 PMCID: PMC7397158 DOI: 10.3390/molecules25143140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 11/16/2022] Open
Abstract
The rationale inspiring the discovery of lead compounds for the treatment of human parasitic protozoan diseases from natural sources is the well-established use of medicinal plants in various systems of traditional medicine. On this basis, we decided to select an overlooked medicinal plant growing in central Italy, Marrubium incanum Desr. (Lamiaceae), which has been used as a traditional remedy against protozoan diseases, and to investigate its potential against Human African trypanosomiasis (HAT). For this purpose, we assayed three extracts of different polarities obtained from the aerial parts of M. incanum—namely, water (MarrInc-H2O), ethanol (MarrInc-EtOH) and dichloromethane (MarrInc-CH2Cl2)—against Trypanosoma brucei (TC221), with the aim to discover lead compounds for the development of antitrypanosomal drugs. Their selectivity index (SI) was determined on mammalian cells (BALB/3T3 mouse fibroblasts) as a counter-screen for toxicity. The preliminary screening selected the MarrInc-CH2Cl2 extract as the most promising candidate against HAT, showing an IC50 value of 28 μg/mL. On this basis, column chromatography coupled with the NMR spectroscopy of a MarrInc-CH2Cl2 extract led to the isolation and identification of five compounds i.e. 1-α-linolenoyl-2-palmitoyl-3-stearoyl-sn- glycerol (1), 1-linoleoyl-2-palmitoyl-3-stearoyl-sn-glycerol (2), stigmasterol (3), palmitic acid (4), and salvigenin (5). Notably, compounds 3 and 5 were tested on T. brucei, with the latter being five-fold more active than the MarrInc-CH2Cl2 extract (IC50 = 5.41 ± 0.85 and 28 ± 1.4 μg/mL, respectively). Furthermore, the SI for salvigenin was >18.5, showing a preferential effect on target cells compared with the dichloromethane extract (>3.6). Conversely, stigmasterol was found to be inactive. To complete the work, also the more polar MarrInc-EtOH extract was analyzed, giving evidence for the presence of 2″-O-allopyranosyl-cosmosiin (6), verbascoside (7), and samioside (8). Our findings shed light on the phytochemistry of this overlooked species and its antiprotozoal potential, providing evidence for the promising role of flavonoids such as salvigenin for the treatment of protozoal diseases.
Collapse
Affiliation(s)
- Claudio Frezza
- Department of Environmental Biology, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (C.F.); (M.S.)
| | - Alessandro Venditti
- Department of Chemistry, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.V.); (A.B.); (M.P.); (F.S.); (M.E.D.C.)
| | - Armandodoriano Bianco
- Department of Chemistry, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.V.); (A.B.); (M.P.); (F.S.); (M.E.D.C.)
| | - Mauro Serafini
- Department of Environmental Biology, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (C.F.); (M.S.)
| | - Massimo Pitorri
- Department of Chemistry, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.V.); (A.B.); (M.P.); (F.S.); (M.E.D.C.)
| | - Fabio Sciubba
- Department of Chemistry, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.V.); (A.B.); (M.P.); (F.S.); (M.E.D.C.)
| | - Maria Enrica Di Cocco
- Department of Chemistry, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.V.); (A.B.); (M.P.); (F.S.); (M.E.D.C.)
| | - Eleonora Spinozzi
- School of Pharmacy, University of Camerino, via Sant’Agostino 1, 62032 Camerino, Italy; (E.S.); (L.C.); (R.P.)
| | - Loredana Cappellacci
- School of Pharmacy, University of Camerino, via Sant’Agostino 1, 62032 Camerino, Italy; (E.S.); (L.C.); (R.P.)
| | - Anders Hofer
- Department of Medical Biochemistry and Biophysics, Umeå University, 90736 Umeå, Sweden;
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, via Sant’Agostino 1, 62032 Camerino, Italy; (E.S.); (L.C.); (R.P.)
- Correspondence: ; Tel.: +39-0737-404506; Fax: +39-0737-402285
| | - Riccardo Petrelli
- School of Pharmacy, University of Camerino, via Sant’Agostino 1, 62032 Camerino, Italy; (E.S.); (L.C.); (R.P.)
| |
Collapse
|
74
|
VolcanoFinder: Genomic scans for adaptive introgression. PLoS Genet 2020; 16:e1008867. [PMID: 32555579 PMCID: PMC7326285 DOI: 10.1371/journal.pgen.1008867] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 06/30/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
Recent research shows that introgression between closely-related species is an important source of adaptive alleles for a wide range of taxa. Typically, detection of adaptive introgression from genomic data relies on comparative analyses that require sequence data from both the recipient and the donor species. However, in many cases, the donor is unknown or the data is not currently available. Here, we introduce a genome-scan method—VolcanoFinder—to detect recent events of adaptive introgression using polymorphism data from the recipient species only. VolcanoFinder detects adaptive introgression sweeps from the pattern of excess intermediate-frequency polymorphism they produce in the flanking region of the genome, a pattern which appears as a volcano-shape in pairwise genetic diversity. Using coalescent theory, we derive analytical predictions for these patterns. Based on these results, we develop a composite-likelihood test to detect signatures of adaptive introgression relative to the genomic background. Simulation results show that VolcanoFinder has high statistical power to detect these signatures, even for older sweeps and for soft sweeps initiated by multiple migrant haplotypes. Finally, we implement VolcanoFinder to detect archaic introgression in European and sub-Saharan African human populations, and uncovered interesting candidates in both populations, such as TSHR in Europeans and TCHH-RPTN in Africans. We discuss their biological implications and provide guidelines for identifying and circumventing artifactual signals during empirical applications of VolcanoFinder. The process by which beneficial alleles are introduced into a species from a closely-related species is termed adaptive introgression. We present an analytically-tractable model for the effects of adaptive introgression on non-adaptive genetic variation in the genomic region surrounding the beneficial allele. The result we describe is a characteristic volcano-shaped pattern of increased variability that arises around the positively-selected site, and we introduce an open-source method VolcanoFinder to detect this signal in genomic data. Importantly, VolcanoFinder is a population-genetic likelihood-based approach, rather than a comparative-genomic approach, and can therefore probe genomic variation data from a single population for footprints of adaptive introgression, even from a priori unknown and possibly extinct donor species.
Collapse
|
75
|
Parthasarathy A, Kalesh K. Defeating the trypanosomatid trio: proteomics of the protozoan parasites causing neglected tropical diseases. RSC Med Chem 2020; 11:625-645. [PMID: 33479664 PMCID: PMC7549140 DOI: 10.1039/d0md00122h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Mass spectrometry-based proteomics enables accurate measurement of the modulations of proteins on a large scale upon perturbation and facilitates the understanding of the functional roles of proteins in biological systems. It is a particularly relevant methodology for studying Leishmania spp., Trypanosoma cruzi and Trypanosoma brucei, as the gene expression in these parasites is primarily regulated by posttranscriptional mechanisms. Large-scale proteomics studies have revealed a plethora of information regarding modulated proteins and their molecular interactions during various life processes of the protozoans, including stress adaptation, life cycle changes and interactions with the host. Important molecular processes within the parasite that regulate the activity and subcellular localisation of its proteins, including several co- and post-translational modifications, are also accurately captured by modern proteomics mass spectrometry techniques. Finally, in combination with synthetic chemistry, proteomic techniques facilitate unbiased profiling of targets and off-targets of pharmacologically active compounds in the parasites. This provides important data sets for their mechanism of action studies, thereby aiding drug development programmes.
Collapse
Affiliation(s)
- Anutthaman Parthasarathy
- Rochester Institute of Technology , Thomas H. Gosnell School of Life Sciences , 85 Lomb Memorial Dr , Rochester , NY 14623 , USA
| | - Karunakaran Kalesh
- Department of Chemistry , Durham University , Lower Mount Joy, South Road , Durham DH1 3LE , UK .
| |
Collapse
|
76
|
Zoonotic and vector-borne parasites and epilepsy in low-income and middle-income countries. Nat Rev Neurol 2020; 16:333-345. [PMID: 32427939 DOI: 10.1038/s41582-020-0361-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 12/22/2022]
Abstract
Zoonotic and vector-borne parasites are important preventable risk factors for epilepsy. Three parasitic infections - cerebral malaria, Taenia solium cysticercosis and onchocerciasis - have an established association with epilepsy. Parasitoses are widely prevalent in low-income and middle-income countries, which are home to 80% of the people with epilepsy in the world. Once a parasitic infection has taken hold in the brain, therapeutic measures do not seem to influence the development of epilepsy in the long term. Consequently, strategies to control, eliminate and eradicate parasites represent the most feasible way to reduce the epilepsy burden at present. The elucidation of immune mechanisms underpinning the parasitic infections, some of which are parasite-specific, opens up new therapeutic possibilities. In this Review, we explore the pathophysiological basis of the link between parasitic infections and epilepsy, and we consider preventive and therapeutic approaches to reduce the burden of epilepsy attributable to parasitic disorders. We conclude that a concerted approach involving medical, veterinary, parasitological and ecological experts, backed by robust political support and sustainable funding, is the key to reducing this burden.
Collapse
|
77
|
Human African trypanosomiasis: the current situation in endemic regions and the risks for non-endemic regions from imported cases. Parasitology 2020; 147:922-931. [PMID: 32338232 PMCID: PMC7391876 DOI: 10.1017/s0031182020000645] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Human African trypanosomiasis (HAT) is caused by Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense and caused devastating epidemics during the 20th century. Due to effective control programs implemented in the last two decades, the number of reported cases has fallen to a historically low level. Although fewer than 977 cases were reported in 2018 in endemic countries, HAT is still a public health problem in endemic regions until it is completely eliminated. In addition, almost 150 confirmed HAT cases were reported in non-endemic countries in the last three decades. The majority of non-endemic HAT cases were reported in Europe, USA and South Africa, due to historical alliances, economic links or geographic proximity to disease-endemic countries. Furthermore, with the implementation of the ‘Belt and Road’ project, sporadic imported HAT cases have been reported in China as a warning sign of tropical diseases prevention. In this paper, we explore and interpret the data on HAT incidence and find no positive correlation between the number of HAT cases from endemic and non-endemic countries. This data will provide useful information for better understanding the imported cases of HAT globally in the post-elimination phase.
Collapse
|
78
|
Burri C. Sleeping Sickness at the Crossroads. Trop Med Infect Dis 2020; 5:tropicalmed5020057. [PMID: 32276514 PMCID: PMC7345563 DOI: 10.3390/tropicalmed5020057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
Human African trypanosomiasis (HAT; sleeping sickness) is a disease with truly historic dimensions [...].
Collapse
Affiliation(s)
- Christian Burri
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland;
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| |
Collapse
|
79
|
Chung JH, Tang AH, Geraghty K, Corcilius L, Kaiser M, Payne RJ. Total Synthesis and Antitrypanosomal Activity of Janadolide and Simplified Analogues. Org Lett 2020; 22:3089-3093. [PMID: 32251602 DOI: 10.1021/acs.orglett.0c00840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Janadolide is a cyclic depsipeptide natural product isolated from the marine cyanobacterium Okeania sp. Herein, we describe the total synthesis of janadolide, along with eight simplified analogues, via an efficient solid-phase strategy. Crucial to the synthesis of the natural product was the construction of a key polyketide fragment via an enantioselective (-)-B-chlorodiisopinocampheylborane-mediated reduction and a B-alkyl Suzuki reaction. Janadolide and the simplified analogues exhibited antitrypanosomal activity against pathogenic Trypanosoma brucei rhodesiense and Trypanosoma cruzi parasites.
Collapse
Affiliation(s)
- Jonathan H Chung
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Arthur H Tang
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Kieran Geraghty
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Leo Corcilius
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland.,University of Basel, 4001 Basel, Switzerland
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
80
|
Zulu AI, Oderinlo OO, Kruger C, Isaacs M, Hoppe HC, Smith VJ, Veale CGL, Khanye SD. Synthesis, Structure and In Vitro Anti-Trypanosomal Activity of Non-Toxic Arylpyrrole-Based Chalcone Derivatives. Molecules 2020; 25:E1668. [PMID: 32260364 PMCID: PMC7181280 DOI: 10.3390/molecules25071668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023] Open
Abstract
With an intention of identifying chalcone derivatives exhibiting anti-protozoal activity, a cohort of relatively unexplored arylpyrrole-based chalcone derivatives were synthesized in moderate to good yields. The resultant compounds were evaluated in vitro for their potential activity against a cultured Trypanosoma brucei brucei 427 strain. Several compounds displayed mostly modest in vitro anti-trypanosomal activity with compounds 10e and 10h emerging as active candidates with IC50 values of 4.09 and 5.11 µM, respectively. More importantly, a concomitant assessment of their activity against a human cervix adenocarcinoma (HeLa) cell line revealed that these compounds are non-toxic.
Collapse
Affiliation(s)
- Ayanda I. Zulu
- Department of Chemistry, Faculty of Science, Rhodes University, Grahamstown 6140, South Africa; (A.I.Z.); (O.O.O.); (C.K.); (V.J.S.)
| | - Ogunyemi O. Oderinlo
- Department of Chemistry, Faculty of Science, Rhodes University, Grahamstown 6140, South Africa; (A.I.Z.); (O.O.O.); (C.K.); (V.J.S.)
| | - Cuan Kruger
- Department of Chemistry, Faculty of Science, Rhodes University, Grahamstown 6140, South Africa; (A.I.Z.); (O.O.O.); (C.K.); (V.J.S.)
| | - Michelle Isaacs
- Centre for Chemico and Biomedicinal Research, Rhodes University, Grahamstown 6140, South Africa; (M.I.); (H.C.H.)
| | - Heinrich C. Hoppe
- Centre for Chemico and Biomedicinal Research, Rhodes University, Grahamstown 6140, South Africa; (M.I.); (H.C.H.)
- Department of Biochemistry and Microbiology, Faculty of Science, Rhodes University, Grahamstown 6140, South Africa
| | - Vincent J. Smith
- Department of Chemistry, Faculty of Science, Rhodes University, Grahamstown 6140, South Africa; (A.I.Z.); (O.O.O.); (C.K.); (V.J.S.)
- Centre for Chemico and Biomedicinal Research, Rhodes University, Grahamstown 6140, South Africa; (M.I.); (H.C.H.)
| | - Clinton G. L. Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, South Africa;
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, Grahamstown 6140, South Africa
| | - Setshaba D. Khanye
- Department of Chemistry, Faculty of Science, Rhodes University, Grahamstown 6140, South Africa; (A.I.Z.); (O.O.O.); (C.K.); (V.J.S.)
- Centre for Chemico and Biomedicinal Research, Rhodes University, Grahamstown 6140, South Africa; (M.I.); (H.C.H.)
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, Grahamstown 6140, South Africa
| |
Collapse
|
81
|
Medkour H, Varloud M, Davoust B, Mediannikov O. New Molecular Approach for the Detection of Kinetoplastida Parasites of Medical and Veterinary Interest. Microorganisms 2020; 8:E356. [PMID: 32131458 PMCID: PMC7143920 DOI: 10.3390/microorganisms8030356] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 02/26/2020] [Accepted: 03/01/2020] [Indexed: 01/03/2023] Open
Abstract
Kinetoplastids are protozoa containing a range of ubiquitous free_living species-pathogens of invertebrates, vertebrates and even some plants. Some of them are causative agents of canine vector-borne diseases. Their diagnosis is often missing in a gold standard. Here, we proposed a molecular approach for the diagnosis and study of Kinetoplastida. The TaqMan qPCR assays target the following genes: 24Sa LSU of Kinetoplastida, 28S LSU of Leishmania/ Trypanosoma spp., 5.8S rRNA of Trypanosoma spp., 18S SSU of Leishmania spp., kinetoplast minicircle DNA (kDNA) of L. donovani complex and kDNA of L. infantum, were designed, validated for their sensitivity (Se) and specificity (Sp) in silico and in vitro using a panel of known DNAs. They were then used to screen 369 blood samples (358 dogs, 2 equids, 9 monkeys). In addition, new 28S LSU primer sets are presented to use for Kinetoplastida's identification by PCR/sequencing. All qPCRs showed consistently high analytical sensitivities and reproducibility. They detect approximately 0.01 parasite/ mL blood for the kDNA based- qPCRs and at least a single cell-equivalent of rDNA for the other systems. Based on the sequencing results, after screening, Se and Sp were: 0. 919 and 0.971, 0.853 and 0.979, 1.00 and 0.987, 0.826 and 0.995 for all of Kinetoplastida, Leishmania/ Trypanosoma, Trypanosoma, Leishmania spp. specific qPCRs, respectively. kDNA based qPCRs were more sensitive and specific (Se: 1.00; Sp: 0.997). PCR/sequencing allowed the detection of Kinetoplastids in animal blood samples such as L. infantum, L. guyanensis, T. congolense, T. evansi and Bodo spp. The molecular approach proposed here is useful for epidemiological studies, fundamental research such as screening for new Kinetoplastida species, diagnosis and therapeutic follow-up. In addition, researchers are free to choose the molecular tools adapted to their aims.
Collapse
Affiliation(s)
- Hacène Medkour
- IHU Méditerranée Infection - Microbes, Evolution, Phylogeny and Infection (MEΦI), 13385 Marseille CEDEX 05, France; (H.M.); (B.D.)
- UMR Aix-Marseille Université, IRD, APHM -19-21, Bd Jean Moulin, 13385 Marseille CEDEX 05, France
- PADESCA Laboratory, Veterinary Science Institute, University Constantine 1, El Khroub 25100, Algeria
| | | | - Bernard Davoust
- IHU Méditerranée Infection - Microbes, Evolution, Phylogeny and Infection (MEΦI), 13385 Marseille CEDEX 05, France; (H.M.); (B.D.)
- UMR Aix-Marseille Université, IRD, APHM -19-21, Bd Jean Moulin, 13385 Marseille CEDEX 05, France
| | - Oleg Mediannikov
- IHU Méditerranée Infection - Microbes, Evolution, Phylogeny and Infection (MEΦI), 13385 Marseille CEDEX 05, France; (H.M.); (B.D.)
- UMR Aix-Marseille Université, IRD, APHM -19-21, Bd Jean Moulin, 13385 Marseille CEDEX 05, France
| |
Collapse
|
82
|
Sereno D, Akhoundi M, Sayehmri K, Mirzaei A, Holzmuller P, Lejon V, Waleckx E. Noninvasive Biological Samples to Detect and Diagnose Infections due to Trypanosomatidae Parasites: A Systematic Review and Meta-Analysis. Int J Mol Sci 2020; 21:E1684. [PMID: 32121441 PMCID: PMC7084391 DOI: 10.3390/ijms21051684] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/24/2022] Open
Abstract
Unicellular eukaryotes of the Trypanosomatidae family include human and animal pathogens that belong to the Trypanosoma and Leishmania genera. Diagnosis of the diseases they cause requires the sampling of body fluids (e.g., blood, lymph, peritoneal fluid, cerebrospinal fluid) or organ biopsies (e.g., bone marrow, spleen), which are mostly obtained through invasive methods. Body fluids or appendages can be alternatives to these invasive biopsies but appropriateness remains poorly studied. To further address this question, we perform a systematic review on clues evidencing the presence of parasites, genetic material, antibodies, and antigens in body secretions, appendages, or the organs or proximal tissues that produce these materials. Paper selection was based on searches in PubMed, Web of Science, WorldWideScience, SciELO, Embase, and Google. The information of each selected article (n = 333) was classified into different sections and data were extracted from 77 papers. The presence of Trypanosomatidae parasites has been tracked in most of organs or proximal tissues that produce body secretions or appendages, in naturally or experimentally infected hosts. The meta-analysis highlights the paucity of studies on human African trypanosomiasis and an absence on animal trypanosomiasis. Among the collected data high heterogeneity in terms of the I2 statistic (100%) is recorded. A high positivity is recorded for antibody and genetic material detection in urine of patients and dogs suffering leishmaniasis, and of antigens for leishmaniasis and Chagas disease. Data on conjunctival swabs can be analyzed with molecular methods solely for dogs suffering canine visceral leishmaniasis. Saliva and hair/bristles showed a pretty good positivity that support their potential to be used for leishmaniasis diagnosis. In conclusion, our study pinpoints significant gaps that need to be filled in order to properly address the interest of body secretion and hair or bristles for the diagnosis of infections caused by Leishmania and by other Trypanosomatidae parasites.
Collapse
Affiliation(s)
- Denis Sereno
- Institut de Recherche pour le Dévelopement, Université de Montpellier, UMR INTERTRYP IRD, CIRAD, 34032 Montpellier, France; (V.L.); (E.W.)
- Institut de Recherche pour le Dévelopement, Université de Montpellier, UMR MIVEGEC IRD, CNRS, 34032 Montpellier, France
| | - Mohammad Akhoundi
- Parasitology-Mycology Department, Avicenne Hospital, AP-HP, 93000 Bobigny, France;
| | - Kourosh Sayehmri
- Psychosocial Injuries Research Center, Department of Biostatistics, Ilam University of Medical Sciences, Ilam 6931851147, Iran;
| | - Asad Mirzaei
- Parasitology Department, Paramedical School, Ilam University of Medical Sciences, Ilam 6931851147, Iran;
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam 6931851147, Iran
| | - Philippe Holzmuller
- CIRAD, UMR ASTRE “Animal, Santé, Territoires, Risques et Ecosystèmes”, F-34398 Montpellier, France;
- ASTRE, CIRAD, INRAE, Université de Montpellier (I-MUSE), 34000 Montpellier, France
| | - Veerle Lejon
- Institut de Recherche pour le Dévelopement, Université de Montpellier, UMR INTERTRYP IRD, CIRAD, 34032 Montpellier, France; (V.L.); (E.W.)
| | - Etienne Waleckx
- Institut de Recherche pour le Dévelopement, Université de Montpellier, UMR INTERTRYP IRD, CIRAD, 34032 Montpellier, France; (V.L.); (E.W.)
- Centro de Investigaciones Regionales «Dr Hideyo Noguchi», Universidad autònoma de yucatán, Merida, Yucatán 97000, Mexico
| |
Collapse
|
83
|
Rao SPS, Lakshminarayana SB, Jiricek J, Kaiser M, Ritchie R, Myburgh E, Supek F, Tuntland T, Nagle A, Molteni V, Mäser P, Mottram JC, Barrett MP, Diagana TT. Anti-Trypanosomal Proteasome Inhibitors Cure Hemolymphatic and Meningoencephalic Murine Infection Models of African Trypanosomiasis. Trop Med Infect Dis 2020; 5:tropicalmed5010028. [PMID: 32079320 PMCID: PMC7157554 DOI: 10.3390/tropicalmed5010028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 11/29/2022] Open
Abstract
Current anti-trypanosomal therapies suffer from problems of longer treatment duration, toxicity and inadequate efficacy, hence there is a need for safer, more efficacious and ‘easy to use’ oral drugs. Previously, we reported the discovery of the triazolopyrimidine (TP) class as selective kinetoplastid proteasome inhibitors with in vivo efficacy in mouse models of leishmaniasis, Chagas Disease and African trypanosomiasis (HAT). For the treatment of HAT, development compounds need to have excellent penetration to the brain to cure the meningoencephalic stage of the disease. Here we describe detailed biological and pharmacological characterization of triazolopyrimidine compounds in HAT specific assays. The TP class of compounds showed single digit nanomolar potency against Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense strains. These compounds are trypanocidal with concentration-time dependent kill and achieved relapse-free cure in vitro. Two compounds, GNF6702 and a new analog NITD689, showed favorable in vivo pharmacokinetics and significant brain penetration, which enabled oral dosing. They also achieved complete cure in both hemolymphatic (blood) and meningoencephalic (brain) infection of human African trypanosomiasis mouse models. Mode of action studies on this series confirmed the 20S proteasome as the target in T. brucei. These proteasome inhibitors have the potential for further development into promising new treatment for human African trypanosomiasis.
Collapse
Affiliation(s)
- Srinivasa P S Rao
- Novartis Institute for Tropical Diseases, 5300 Chiron Way, Emeryville, CA 94608, USA; (S.B.L.); (J.J.); (T.T.D.)
- Correspondence:
| | - Suresh B Lakshminarayana
- Novartis Institute for Tropical Diseases, 5300 Chiron Way, Emeryville, CA 94608, USA; (S.B.L.); (J.J.); (T.T.D.)
| | - Jan Jiricek
- Novartis Institute for Tropical Diseases, 5300 Chiron Way, Emeryville, CA 94608, USA; (S.B.L.); (J.J.); (T.T.D.)
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4501 Basel, Switzerland; (M.K.); (P.M.)
- Department of Epidemiology and Public Health, University of Basel, Petersplatz 1, 4000 Basel, Switzerland
| | - Ryan Ritchie
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (R.R.); (M.P.B.)
| | - Elmarie Myburgh
- York Biomedical Research Institute, Hull York Medical School, University of York, Wentworth Way, Heslington, York YO10 5DD, UK;
| | - Frantisek Supek
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA; (F.S.); (T.T.); (A.N.); (V.M.)
| | - Tove Tuntland
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA; (F.S.); (T.T.); (A.N.); (V.M.)
| | - Advait Nagle
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA; (F.S.); (T.T.); (A.N.); (V.M.)
| | - Valentina Molteni
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA; (F.S.); (T.T.); (A.N.); (V.M.)
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4501 Basel, Switzerland; (M.K.); (P.M.)
- Department of Epidemiology and Public Health, University of Basel, Petersplatz 1, 4000 Basel, Switzerland
| | - Jeremy C Mottram
- York Biomedical Research Institute, Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK;
| | - Michael P Barrett
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (R.R.); (M.P.B.)
| | - Thierry T Diagana
- Novartis Institute for Tropical Diseases, 5300 Chiron Way, Emeryville, CA 94608, USA; (S.B.L.); (J.J.); (T.T.D.)
| |
Collapse
|
84
|
Dieme C, Zmarlak NM, Brito-Fravallo E, Travaillé C, Pain A, Cherrier F, Genève C, Calvo-Alvarez E, Riehle MM, Vernick KD, Rotureau B, Mitri C. Exposure of Anopheles mosquitoes to trypanosomes reduces reproductive fitness and enhances susceptibility to Plasmodium. PLoS Negl Trop Dis 2020; 14:e0008059. [PMID: 32032359 PMCID: PMC7032731 DOI: 10.1371/journal.pntd.0008059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 02/20/2020] [Accepted: 01/15/2020] [Indexed: 12/17/2022] Open
Abstract
During a blood meal, female Anopheles mosquitoes are potentially exposed to diverse microbes in addition to the malaria parasite, Plasmodium. Human and animal African trypanosomiases are frequently co-endemic with malaria in Africa. It is not known whether exposure of Anopheles to trypanosomes influences their fitness or ability to transmit Plasmodium. Using cell and molecular biology approaches, we found that Trypanosoma brucei brucei parasites survive for at least 48h after infectious blood meal in the midgut of the major malaria vector, Anopheles coluzzii before being cleared. This transient survival of trypanosomes in the midgut is correlated with a dysbiosis, an alteration in the abundance of the enteric bacterial flora in Anopheles coluzzii. Using a developmental biology approach, we found that the presence of live trypanosomes in mosquito midguts also reduces their reproductive fitness, as it impairs the viability of laid eggs by affecting their hatching. Furthermore, we found that Anopheles exposure to trypanosomes enhances their vector competence for Plasmodium, as it increases their infection prevalence. A transcriptomic analysis revealed that expression of only two Anopheles immune genes are modulated during trypanosome exposure and that the increased susceptibility to Plasmodium was microbiome-dependent, while the reproductive fitness cost was dependent only on the presence of live trypanosomes but was microbiome independent. Taken together, these results demonstrate multiple effects upon Anopheles vector competence for Plasmodium caused by eukaryotic microbes interacting with the host and its microbiome, which may in turn have implications for malaria control strategies in co-endemic areas. In nature, females Anopheles mosquitoes that transmit the malaria parasites Plasmodium, take successive blood meals to maximize their offspring. During these blood meals, mosquitoes are exposed to a variety of microbes present in the host blood in addition to Plasmodium, the obligate parasite that causes malaria. The Trypanosoma parasites, causing trypanosomiases, are sympatric with the malaria parasites in numerous African regions, therefore, a single female mosquito could be in contact with both pathogens concurrently or through successive blood meals. In this work, we showed that exposure of females Anopheles mosquitoes to Trypanosoma enhanced their susceptibility to malaria parasites, reduced their reproductive fitness and modulated their bacterial gut flora. While the effect of trypanosomes ingestion on Plasmodium infection is microbiome dependent, the phenotype on the reproductive fitness is microbiome independent. These results highlight the need for considering the effect of eukaryotic microbes on Anopheles biology for malaria control strategies.
Collapse
Affiliation(s)
- Constentin Dieme
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, INSERM U1201, Institut Pasteur, Paris, France
| | - Natalia Marta Zmarlak
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
- Graduate School of Life Sciences ED515, Sorbonne Universities, UPMC Paris VI, Paris, France
| | - Emma Brito-Fravallo
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
| | - Christelle Travaillé
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, INSERM U1201, Institut Pasteur, Paris, France
| | - Adrien Pain
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
- Institut Pasteur–Bioinformatics and Biostatistics Hub–C3BI, USR 3756 IP CNRS–Paris, France
| | - Floriane Cherrier
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
| | - Corinne Genève
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
| | - Estefanía Calvo-Alvarez
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, INSERM U1201, Institut Pasteur, Paris, France
| | - Michelle M. Riehle
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Kenneth D. Vernick
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
| | - Brice Rotureau
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, INSERM U1201, Institut Pasteur, Paris, France
- * E-mail: (BR); (CM)
| | - Christian Mitri
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
- * E-mail: (BR); (CM)
| |
Collapse
|
85
|
Molecular identification of different trypanosome species in tsetse flies caught in the wildlife reserve of Santchou in the western region of Cameroon. Parasitol Res 2020; 119:805-813. [PMID: 32006230 DOI: 10.1007/s00436-020-06606-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 01/06/2020] [Indexed: 10/25/2022]
Abstract
Addressing the problems linked to tsetse-transmitted trypanosomiases requires considerable data on tsetse distribution and trypanosome infections. Although efforts to map tsetse and trypanosome infections have been undertaken at continental level, published data are still rare in wildlife reserves of West and Central Africa. To fill this gap, data on tsetse distribution and trypanosome infections were generated in the wildlife reserve of Santchou. For this study, each tsetse caught was identified and its DNA extracted. Different trypanosome species were identified by PCR. Entomological and parasitological data were transported onto a satellite image in order to visualize their distributions. From 195 Glossina palpalis palpalis that were caught, 33.8% (66/195) carried trypanosome infections with 89.4% (59/66) of single infections and 10.6% (7/66) mixed infections. From the 66 flies with trypanosome infections, 54.5% (36/66), 27.3% (18/66) and 18.2% (12/66) were respectively due to Trypanosoma congolense, Trypanosoma brucei s.l. and Trypanosoma vivax. The global infection rates were 18.5% (36/195) for Trypanosoma congolense (forest and savannah), 9.2% (18/195) for Trypanosoma brucei s.l. and 6.1% (12/195) for Trypanosoma vivax. The maps generated show the distribution of tsetse and trypanosome infections. This study showed an active transmission of trypanosomes in the wildlife reserve of Santchou. The maps enabled to identify areas with high transmission risk and where control operations must be implemented in order to eliminate tsetse and the diseases that they transmit.
Collapse
|
86
|
Falisse JB, Mwamba-Miaka E, Mpanya A. Whose Elimination? Frontline Workers' Perspectives on the Elimination of the Human African Trypanosomiasis and Its Anticipated Consequences. Trop Med Infect Dis 2020; 5:tropicalmed5010006. [PMID: 31906341 PMCID: PMC7157216 DOI: 10.3390/tropicalmed5010006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/20/2019] [Accepted: 12/25/2019] [Indexed: 01/06/2023] Open
Abstract
While academic literature has paid careful attention to the technological efforts―drugs, tests, and tools for vector control―deployed to eliminate Gambiense Human African Trypanosomiasis (HAT), the human resources and health systems dimensions of elimination are less documented. This paper analyses the perspectives and experiences of frontline nurses, technicians, and coordinators who work for the HAT programme in the former province of Bandundu in the Democratic Republic of the Congo, at the epidemic’s very heart. The research is based on 21 semi-structured interviews conducted with frontline workers in February 2018. The results highlight distinctive HAT careers as well as social elevation through specialised work. Frontline workers are concerned about changes in active screening strategies and the continued existence of the vector, which lead them to question the possibility of imminent elimination. Managers seem to anticipate a post-HAT situation and prepare for the employment of their staff; most workers see their future relatively confidently, as re-allocated to non-vertical units. The findings suggest concrete pathways for improving the effectiveness of elimination efforts: improving active screening through renewed engagements with local leaders, conceptualising horizontal integration in terms of human resources mobility, and investing more in detection and treatment activities (besides innovation).
Collapse
Affiliation(s)
- Jean-Benoît Falisse
- Centre of African Studies, University of Edinburgh, Edinburgh EH8 9LD, UK
- Correspondence: ; Tel.: +44-131-651-1632
| | - Erick Mwamba-Miaka
- Programme National de lutte contre la THA (PNLTHA), Kinshasa 2, Democratic Republic of the Congo; (E.M.-M.); (A.M.)
| | - Alain Mpanya
- Programme National de lutte contre la THA (PNLTHA), Kinshasa 2, Democratic Republic of the Congo; (E.M.-M.); (A.M.)
- Faculté des Sciences de la Santé, Université Pedagogique Nationale (UPN), Kinshasa BP 8815, Democratic Republic of the Congo
| |
Collapse
|
87
|
Abstract
Programs for neglected tropical diseases (NTDs) such as sleeping sickness increasingly involve patients and community workers in syndromic case detection with little exploration of patient understandings of symptoms. Drawing on concepts from sensorial anthropology, I investigate peoples' experiences of sleeping sickness in South Sudan. People here sense the disease through discourses about four symptoms (pain, sleepiness, confusion and hunger) using biomedical and ethnophysiological concepts and sensations of risk in the post-conflict environment. When identified together, the symptoms interlock as a complete disease, prompting people to seek hospital-based care. Such local forms of sense-making enable diagnosis and help control programs function.
Collapse
Affiliation(s)
- Jennifer J Palmer
- Department of Global Health & Development, London School of Hygiene & Tropical Medicine , London, United Kingdom
| |
Collapse
|
88
|
Ndeffo-Mbah ML, Pandey A, Atkins KE, Aksoy S, Galvani AP. The impact of vector migration on the effectiveness of strategies to control gambiense human African trypanosomiasis. PLoS Negl Trop Dis 2019; 13:e0007903. [PMID: 31805051 PMCID: PMC6894748 DOI: 10.1371/journal.pntd.0007903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Background Several modeling studies have been undertaken to assess the feasibility of the WHO goal of eliminating gambiense human African trypanosomiasis (g-HAT) by 2030. However, these studies have generally overlooked the effect of vector migration on disease transmission and control. Here, we evaluated the impact of vector migration on the feasibility of interrupting transmission in different g-HAT foci. Methods We developed a g-HAT transmission model of a single tsetse population cluster that accounts for migration of tsetse fly into this population. We used a model calibration approach to constrain g-HAT incidence to ranges expected for high, moderate and low transmission settings, respectively. We used the model to evaluate the effectiveness of current intervention measures, including medical intervention through enhanced screening and treatment, and vector control, for interrupting g-HAT transmission in disease foci under each transmission setting. Results We showed that, in low transmission settings, under enhanced medical intervention alone, at least 70% treatment coverage is needed to interrupt g-HAT transmission within 10 years. In moderate transmission settings, a combination of medical intervention and a vector control measure with a daily tsetse mortality greater than 0.03 is required to achieve interruption of disease transmission within 10 years. In high transmission settings, interruption of disease transmission within 10 years requires a combination of at least 70% medical intervention coverage and at least 0.05 tsetse daily mortality rate from vector control. However, the probability of achieving elimination in high transmission settings decreases with an increased tsetse migration rate. Conclusion Our results suggest that the WHO 2030 goal of G-HAT elimination is, at least in theory, achievable. But the presence of tsetse migration may reduce the probability of interrupting g-HAT transmission in moderate and high transmission foci. Therefore, optimal vector control programs should incorporate monitoring and controlling of vector density in buffer areas around foci of g-HAT control efforts. Gambian human African trypanosomiasis (g-HAT), also known as sleeping sickness, is a vector-borne parasitic disease transmitted by tsetse flies. If untreated, g-HAT infection will usually result in death. Recently, the World Health Organization (WHO) has targeted g-HAT for elimination through achieving interruption of transmission by 2030. To help inform elimination efforts, mathematical models have been used to evaluate the feasibility of the WHO goals in different g-HAT transmission foci. However, these mathematical models have generally ignored the role that tsetse migration may have in the spread and reemergence of g-HAT. Using a mathematical model, we evaluate the impact of tsetse migration on the effectiveness of current intervention measures for achieving interruption of g-HAT transmission in different transmission foci. We consider different interventions such as enhanced screening and treatment and vector control. We show that vector control has a great potential for reducing transmission. Still, the presence and intensity of tsetse migration can undermine its effectiveness for interrupting disease transmission, especially in high transmission foci. Our results indicate the need of accounting for tsetse surveillance and migration data in designing vector control efforts for g-HAT elimination.
Collapse
Affiliation(s)
- Martial L. Ndeffo-Mbah
- Department of Veterinary Integrative Biosciences, Texas A&M College of Veterinary Medicine and Biomedical Sciences, College Station, TX, United States of America
- Department of Epidemiology and Biostatistics, Texas A&M School of Public Health, College Station, TX, United States of America
- * E-mail:
| | - Abhishek Pandey
- Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, CT, United States of America
- Department of Epidemiology and Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| | - Katherine E. Atkins
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Centre for Global Health, The Usher Institute for Population Health Sciences and Informatics, Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
| | - Serap Aksoy
- Department of Epidemiology and Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| | - Alison P. Galvani
- Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, CT, United States of America
- Department of Epidemiology and Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| |
Collapse
|
89
|
Neopterin and CXCL-13 in Diagnosis and Follow-Up of Trypanosoma brucei gambiense Sleeping Sickness: Lessons from the Field in Angola. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6070176. [PMID: 31886231 PMCID: PMC6914994 DOI: 10.1155/2019/6070176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/10/2019] [Accepted: 10/08/2019] [Indexed: 11/26/2022]
Abstract
Human African Trypanosomiasis may become manageable in the next decade with fexinidazole. However, currently stage diagnosis remains difficult to implement in the field and requires a lumbar puncture. Our study of an Angolan cohort of T. b. gambiense-infected patients used other staging criteria than those recommended by the WHO. We compared WHO criteria (cell count and parasite identification in the CSF) with two biomarkers (neopterin and CXCL-13) which have proven potential to diagnose disease stage or relapse. Biological, clinical, and neurological data were analysed from a cohort of 83 patients. A neopterin concentration below 15.5 nmol/L in the CSF denoted patients with stage 1 disease, and a concentration above 60.31 nmol/L characterized patients with advanced stage 2 (trypanosomes in CSF and/or cytorachia higher than 20 cells) disease. CXCL-13 levels below 91.208 pg/mL denoted patients with stage 1 disease, and levels of CXCL-13 above 395.45 pg/mL denoted patients with advanced stage 2 disease. Values between these cut-offs may represent patients with intermediate stage disease. Our work supports the existence of an intermediate stage in HAT, and CXCL-13 and neopterin levels may help to characterize it.
Collapse
|
90
|
Mulenga P, Chenge F, Boelaert M, Mukalay A, Lutumba P, Lumbala C, Luboya O, Coppieters Y. Integration of Human African Trypanosomiasis Control Activities into Primary Healthcare Services: A Scoping Review. Am J Trop Med Hyg 2019; 101:1114-1125. [PMID: 31482788 PMCID: PMC6838596 DOI: 10.4269/ajtmh.19-0232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/11/2019] [Indexed: 11/07/2022] Open
Abstract
Human African trypanosomiasis (HAT) also known as sleeping sickness is targeted for elimination as a public health problem by 2020 and elimination of infection by 2030. Although the number of reported cases is decreasing globally, integration of HAT control activities into primary healthcare services is endorsed to expand surveillance and control. However, this integration process faces several challenges in the field. This literature review analyzes what is known about integrated HAT control to guide the integration process in an era of HAT elimination. We carried out a scoping review by searching PubMed and Google Scholar data bases as well as gray literature documents resulting in 25 documents included for analysis. The main reasons in favor to integrate HAT control were related to coverage, cost, quality of service, or sustainability. There were three categories of factors influencing the integration process: 1) the clinical evolution of HAT, 2) the organization of health services, and 3) the diagnostic and therapeutic tools. There is a consensus that both active and passive approaches to HAT case detection and surveillance need to be combined, in a context-sensitive way. However, apart from some documentation about the constraints faced by local health services, there is little evidence on how this synergy is best achieved.
Collapse
Affiliation(s)
- Philippe Mulenga
- Faculty of Medicine and School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
- School of Public Health, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Faustin Chenge
- Faculty of Medicine and School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
- Centre de Connaissances en Santé en République Démocratique du Congo, Kinshasa, Democratic Republic of the Congo
| | - Marleen Boelaert
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| | - Abdon Mukalay
- Faculty of Medicine and School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Pascal Lutumba
- Department of Tropical Medicine, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Crispin Lumbala
- National Program for the Control of Human African Trypanosomiasis, Kinshasa, Democratic Republic of the Congo
| | - Oscar Luboya
- Faculty of Medicine and School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Yves Coppieters
- School of Public Health, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
91
|
Davis CN, Rock KS, Mwamba Miaka E, Keeling MJ. Village-scale persistence and elimination of gambiense human African trypanosomiasis. PLoS Negl Trop Dis 2019; 13:e0007838. [PMID: 31658269 PMCID: PMC6837580 DOI: 10.1371/journal.pntd.0007838] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 11/07/2019] [Accepted: 10/10/2019] [Indexed: 11/18/2022] Open
Abstract
Gambiense human African trypanosomiasis (gHAT) is one of several neglected tropical diseases that is targeted for elimination by the World Health Organization. Recent years have seen a substantial decline in the number of globally reported cases, largely driven by an intensive process of screening and treatment. However, this infection is highly focal, continuing to persist at low prevalence even in small populations. Regional elimination, and ultimately global eradication, rests on understanding the dynamics and persistence of this infection at the local population scale. Here we develop a stochastic model of gHAT dynamics, which is underpinned by screening and reporting data from one of the highest gHAT incidence regions, Kwilu Province, in the Democratic Republic of Congo. We use this model to explore the persistence of gHAT in villages of different population sizes and subject to different patterns of screening. Our models demonstrate that infection is expected to persist for long periods even in relatively small isolated populations. We further use the model to assess the risk of recrudescence following local elimination and consider how failing to detect cases during active screening events informs the probability of elimination. These quantitative results provide insights for public health policy in the region, particularly highlighting the difficulties in achieving and measuring the 2030 elimination goal.
Collapse
Affiliation(s)
- Christopher N. Davis
- MathSys CDT, Mathematics Institute, University of Warwick, Coventry, United Kingdom
- Zeeman Institute (SBIDER), University of Warwick, Coventry, United Kingdom
| | - Kat S. Rock
- Zeeman Institute (SBIDER), University of Warwick, Coventry, United Kingdom
- Mathematics Institute, University of Warwick, Coventry, United Kingdom
| | - Erick Mwamba Miaka
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Ave Coisement Liberation et Bd Triomphal No 1, Commune de Kasavubu, Kinshasa, Demecratic Republic of the Congo
| | - Matt J. Keeling
- Zeeman Institute (SBIDER), University of Warwick, Coventry, United Kingdom
- Mathematics Institute, University of Warwick, Coventry, United Kingdom
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- * E-mail:
| |
Collapse
|
92
|
Ivasiv V, Albertini C, Gonçalves AE, Rossi M, Bolognesi ML. Molecular Hybridization as a Tool for Designing Multitarget Drug Candidates for Complex Diseases. Curr Top Med Chem 2019; 19:1694-1711. [DOI: 10.2174/1568026619666190619115735] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 12/14/2022]
Abstract
Molecular hybridization is a well-exploited medicinal chemistry strategy that aims to combine
two molecules (or parts of them) in a new, single chemical entity. Recently, it has been recognized
as an effective approach to design ligands able to modulate multiple targets of interest. Hybrid compounds
can be obtained by linking (presence of a linker) or framework integration (merging or fusing)
strategies. Although very promising to combat the multifactorial nature of complex diseases, the development
of molecular hybrids faces the critical issues of selecting the right target combination and the
achievement of a balanced activity towards them, while maintaining drug-like-properties. In this review,
we present recent case histories from our own research group that demonstrate why and how molecular
hybridization can be carried out to address the challenges of multitarget drug discovery in two therapeutic
areas that are Alzheimer’s and parasitic diseases. Selected examples spanning from linker- to fragment-
based hybrids will allow to discuss issues and consequences relevant to drug design.
Collapse
Affiliation(s)
- Viktoriya Ivasiv
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum − University of Bologna, I-40126, Bologna, Italy
| | - Claudia Albertini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum − University of Bologna, I-40126, Bologna, Italy
| | - Ana E. Gonçalves
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum − University of Bologna, I-40126, Bologna, Italy
| | - Michele Rossi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum − University of Bologna, I-40126, Bologna, Italy
| | - Maria L. Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum − University of Bologna, I-40126, Bologna, Italy
| |
Collapse
|
93
|
Courtin F, Camara O, Camara M, Kagbadouno M, Bucheton B, Solano P, Jamonneau V. Sleeping sickness in the historical focus of forested Guinea: update using a geographically based method. Parasite 2019; 26:61. [PMID: 31599229 PMCID: PMC6785972 DOI: 10.1051/parasite/2019061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/18/2019] [Indexed: 11/14/2022] Open
Abstract
In 2017, 1447 new cases of Human African Trypanosomiasis (HAT) were reported, which reflects considerable progress towards the World Health Organisation's target of eliminating HAT as a public health problem by 2020. However, current epidemiological data are still lacking for a number of areas, including historical HAT foci. In order to update the HAT situation in the historical focus of forested Guinea, we implemented a geographically based methodology: Identification of Villages at Risk (IVR). The methodology is based on three sequential steps: Desk-based IVR (IVR-D), which selects villages at risk of HAT on the basis of HAT archives and geographical items; Field-based IVR (IVR-F), which consists in collecting additional epidemiological and geographical information in the field in villages at risk; and to be Medically surveyed IVR (IVR-M), a field data analysis through a Geographic Information System (GIS), to compile a list of the villages most at risk of HAT, suitable to guide active screening and passive surveillance. In an area of 2385 km2 with 1420,530 inhabitants distributed in 1884 settlements, 14 villages with a population of 11,236 inhabitants were identified as most at risk of HAT and selected for active screening. Although no HAT cases could be confirmed, subjects that had come into contact with Trypanosoma brucei gambiense were identified and two sentinel sites were chosen to implement passive surveillance. IVR, which could be applied to any gambiense areas where the situation needs to be clarified, could help to reach the objective of HAT elimination.
Collapse
Affiliation(s)
- Fabrice Courtin
-
Institut de Recherche pour le Développement (IRD), UMR 177 IRD-CIRAD INTERTRYP, Institut Pierre Richet/Institut National de Santé Publique Bouaké Côte d’Ivoire
| | - Oumou Camara
-
Programme National de Lutte contre la THA, Ministère de la Santé Conakry Guinea
| | - Mamadou Camara
-
Programme National de Lutte contre la THA, Ministère de la Santé Conakry Guinea
| | - Moïse Kagbadouno
-
Programme National de Lutte contre la THA, Ministère de la Santé Conakry Guinea
| | - Bruno Bucheton
-
Institut de Recherche pour le Développement (IRD), UMR 177 IRD-CIRAD INTERTRYP, Programme National de Lutte contre la THA Conakry Guinea
| | - Philippe Solano
-
Institut de Recherche pour le Développement (IRD), UMR 177 IRD-CIRAD INTERTRYP Montpellier France
| | - Vincent Jamonneau
-
Institut de Recherche pour le Développement (IRD), UMR 177 IRD-CIRAD INTERTRYP, Institut Pierre Richet/Institut National de Santé Publique Bouaké Côte d’Ivoire
| |
Collapse
|
94
|
Campbell NK, Williams DG, Fitzgerald HK, Barry PJ, Cunningham CC, Nolan DP, Dunne A. Trypanosoma brucei Secreted Aromatic Ketoacids Activate the Nrf2/HO-1 Pathway and Suppress Pro-inflammatory Responses in Primary Murine Glia and Macrophages. Front Immunol 2019; 10:2137. [PMID: 31572363 PMCID: PMC6749089 DOI: 10.3389/fimmu.2019.02137] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/27/2019] [Indexed: 11/23/2022] Open
Abstract
African trypanosomes, such as Trypanosoma brucei (T. brucei), are protozoan parasites of the mammalian vasculature and central nervous system that are best known for causing fatal human sleeping sickness. As exclusively extracellular parasites, trypanosomes are subject to constant challenge from host immune defenses but they have developed very effective strategies to evade and modulate these responses to maintain an infection while simultaneously prolonging host survival. Here we investigate host parasite interactions, especially within the CNS context, which are not well-understood. We demonstrate that T. brucei strongly upregulates the stress response protein, Heme Oxygenase 1 (HO-1), in primary murine glia and macrophages in vitro. Furthermore, using a novel AHADHinT. brucei cell line, we demonstrate that specific aromatic ketoacids secreted by bloodstream forms of T. brucei are potent drivers of HO-1 expression and are capable of inhibiting pro-IL1β induction in both glia and macrophages. Additionally, we found that these ketoacids significantly reduced IL-6 and TNFα production by glia, but not macrophages. Finally, we present data to support Nrf2 activation as the mechanism of action by which these ketoacids upregulate HO-1 expression and mediate their anti-inflammatory activity. This study therefore reports a novel immune evasion mechanism, whereby T. brucei secretes amino-acid derived metabolites for the purpose of suppressing both the host CNS and peripheral immune response, potentially via induction of the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Nicole K Campbell
- School of Biochemistry and Immunology, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - David G Williams
- School of Biochemistry and Immunology, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Hannah K Fitzgerald
- School of Biochemistry and Immunology, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Paul J Barry
- School of Biochemistry and Immunology, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Clare C Cunningham
- School of Biochemistry and Immunology, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Derek P Nolan
- School of Biochemistry and Immunology, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Aisling Dunne
- School of Biochemistry and Immunology, Trinity College Dublin, University of Dublin, Dublin, Ireland.,School of Medicine, Trinity Biomedical Biosciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
95
|
Mulenga P, Lutumba P, Coppieters Y, Mpanya A, Mwamba-Miaka E, Luboya O, Chenge F. Passive Screening and Diagnosis of Sleeping Sickness with New Tools in Primary Health Services: An Operational Research. Infect Dis Ther 2019; 8:353-367. [PMID: 31309434 PMCID: PMC6702524 DOI: 10.1007/s40121-019-0253-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION The integration of human African trypanosomiasis (HAT) activities into primary health services is gaining importance as a result of the decreasing incidence of HAT and the ongoing developments of new screening and diagnostic tools. In the Democratic Republic of Congo, this integration process faces multiple challenges. We initiated an operational research project to document drivers and bottlenecks of the process. METHODS Three health districts piloted the integration of HAT screening and diagnosis into primary health services. We analysed the outcome indicators of this intervention and conducted in-depth interviews with health care providers, seropositives, community health workers and HD management team members. Our thematic interview guide focused on factors facilitating and impeding the integration of HAT screening. RESULTS The study showed a HAT-RDT-positive rate of 2.2% in Yasa Bonga, 2.9% in Kongolo and 3% in Bibanga, while the proportion of reported seropositives that received confirmatory examinations was 76%, 45.6% and 68%, respectively. Qualitative analyses indicated that some seropositives were unable to access the confirmation facility. The main reasons that were given included distance, RDT rupture, lack of basic screening equipment and financial barriers (additional hospital fees not included in free treatment course), fear of lumbar puncture and the perception of HAT as a disease of supernatural origin. CONCLUSION Passive screening using HAT RDTs in primary health services inevitably has some limitations. However, regarding the epidemiological context and some obstacles to integrated implementation, this cannot on its own be a relevant alternative to the elimination of HAT by 2020. FUNDING We acknowledge the agency that provided financial support for this study, the Belgian Development Cooperation. The funder had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript. Philippe Mulenga received financial support thanks to a doctoral grant from the Belgian Development Cooperation under the FA4 agreement. Funding for the study and Rapid Service Fees was provided by the Epidemiology and Tropical Diseases Unit of the Institute of Tropical Medicine, Antwerp.
Collapse
Affiliation(s)
- Philippe Mulenga
- Faculty of Medicine & School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo.
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium.
- School of Public Health, Université Libre de Bruxelles, Brussels, Belgium.
| | - Pascal Lutumba
- Department of Tropical Medicine, University of Kinshasa, Faculty of Medicine, Kinshasa, Democratic Republic of the Congo
| | - Yves Coppieters
- School of Public Health, Université Libre de Bruxelles, Brussels, Belgium
| | - Alain Mpanya
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine, Kinshasa, Democratic Republic of the Congo
| | - Eric Mwamba-Miaka
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine, Kinshasa, Democratic Republic of the Congo
| | - Oscar Luboya
- Faculty of Medicine & School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Faustin Chenge
- Faculty of Medicine & School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
- Centre de Connaissances en Santé en République Démocratique du Congo, Kinshasa, Democratic Republic of the Congo
| |
Collapse
|
96
|
Akazue PI, Ebiloma GU, Ajibola O, Isaac C, Onyekwelu K, Ezeh CO, Eze AA. Sustainable Elimination (Zero Cases) of Sleeping Sickness: How Far Are We from Achieving This Goal? Pathogens 2019; 8:E135. [PMID: 31470522 PMCID: PMC6789789 DOI: 10.3390/pathogens8030135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 01/02/2023] Open
Abstract
The recent massive reduction in the numbers of fresh Human African Trypanosomiasis (HAT) infection has presented an opportunity for the global elimination of this disease. To prevent a possible resurgence, as was the case after the reduced transmission of the 1960s, surveillance needs to be sustained and the necessary tools for detection and treatment of cases need to be made available at the points of care. In this review, we examine the available resources and make recommendations for improvement to ensure the sustenance of the already achieved gains to keep the trend moving towards elimination.
Collapse
Affiliation(s)
- Pearl Ihuoma Akazue
- Department of Biochemistry, Faculty of Life Sciences, University of Benin, Benin City 300283, Nigeria
| | - Godwin U Ebiloma
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Olumide Ajibola
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul PO Box 273, The Gambia
| | - Clement Isaac
- Department of Zoology, Faculty of Life Sciences, Ambrose Alli University, Ekpoma 310101, Nigeria
| | - Kenechukwu Onyekwelu
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, University of Nigeria, Enugu Campus, Enugu 410001, Nigeria
| | - Charles O Ezeh
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, University of Nigeria, Enugu Campus, Enugu 410001, Nigeria
| | - Anthonius Anayochukwu Eze
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, University of Nigeria, Enugu Campus, Enugu 410001, Nigeria.
| |
Collapse
|
97
|
Trypanosoma brucei L11 Is Essential to Ribosome Biogenesis and Interacts with the Kinetoplastid-Specific Proteins P34 and P37. mSphere 2019; 4:4/4/e00475-19. [PMID: 31434747 PMCID: PMC6706469 DOI: 10.1128/msphere.00475-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Eukaryotic ribosome biogenesis is an essential cellular process involving tightly coordinated assembly of multiple rRNA and protein components. Much of our understanding of this pathway has come from studies performed with yeast model systems. These studies have identified critical checkpoints in the maturation of the large ribosomal subunit (LSU/60S), one of which is the proper formation and incorporation of the 5S ribonucleoprotein complex (5S RNP). Research on the 5S RNP has identified a complex containing the four proteins L5, L11, Rpf2, and Rrs1 as well as 5S rRNA. Our laboratory has studied the 5S RNP in Trypanosoma brucei, a eukaryotic parasite, and identified the proteins P34 and P37 as essential, parasite-specific members of this complex. We have additionally identified homologues of L5, Rpf2, Rrs1, and 5S rRNA in T. brucei and characterized their roles in this essential process. In this study, we examined the T. brucei homologue of ribosomal protein L11 as a member of the 5S RNP. We showed that TbL11 is essential and that it is important for proper ribosome subunit formation and 60S rRNA processing. Additionally, we identified TbL11 interactions with TbL5 and TbRpf2, as well as novel interactions with the kinetoplast-specific proteins P34 and P37. These findings expand our understanding of a crucial process outside the context of model yeast organisms and highlight differences in an otherwise highly conserved process that could be used to develop future treatments against T. brucei IMPORTANCE The human-pathogenic, eukaryotic parasite Trypanosoma brucei causes human and animal African trypanosomiases. Treatments for T. brucei suffer from numerous hurdles, including adverse side effects and developing resistance. Ribosome biogenesis is one critical process for T. brucei survival that could be targeted for new drug development. A critical checkpoint in ribosome biogenesis is formation of the 5S RNP, which we have shown involves the trypanosome-specific proteins P34 and P37 as well as homologues of Rpf2, Rrs1, and L5. We have identified parasite-specific characteristics of these proteins and involvement in key parts of ribosome biogenesis, making them candidates for future drug development. In this work, we characterized the T. brucei homologue of ribosomal protein L11. We show that it is essential for parasite survival and is involved in ribosome biogenesis and rRNA processing. Furthermore, we identified novel interactions with P34 and P37, characteristics that make this protein a potential target for novel chemotherapeutics.
Collapse
|
98
|
Grab DJ, Nikolskaia OV, Courtioux B, Thekisoe OMM, Magez S, Bogorad M, Dumler JS, Bisser S. Using detergent-enhanced LAMP for African trypanosome detection in human cerebrospinal fluid and implications for disease staging. PLoS Negl Trop Dis 2019; 13:e0007631. [PMID: 31425540 PMCID: PMC6715242 DOI: 10.1371/journal.pntd.0007631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 08/29/2019] [Accepted: 07/13/2019] [Indexed: 12/12/2022] Open
Abstract
Objective Where human African trypanosomiasis (HAT) patients are seen, failure to microscopically diagnose infections by Trypanosoma brucei gambiense in blood smears and/or cerebrospinal fluid (CSF) in the critical early stages of the disease is the single most important factor in treatment failure, a result of delayed treatment onset or its absence. We hypothesized that the enhanced sensitivity of detergent-enhanced loop-mediated isothermal amplification (LAMP) will allow for point of care (POC) detection of African trypanosomes in the CSF of HAT patients where the probability for detecting a single parasite or parasite DNA molecule in 1 μL of CSF sample is negligible by current methods. Methodology We used LAMP targeting the multicopy pan-T. brucei repetitive insertion mobile element (RIME LAMP) and the Trypanosoma brucei gambiense 5.8S rRNA-internal transcribed spacer 2 gene (TBG1 LAMP). We tested 1 μL out of 20 μL sham or Triton X-100 treated CSFs from 73 stage-1 and 77 stage-2 HAT patients from the Central African Republic and 100 CSF negative controls. Results Under sham conditions, parasite DNA was detected by RIME and TBG1 LAMP in 1.4% of the stage-1 and stage-2 gambiense HAT CSF samples tested. After sample incubation with detergent, the number of LAMP parasite positive stage-2 CSF’s increased to 26%, a value which included the 2 of the 4 CSF samples where trypanosomes were identified microscopically. Unexpected was the 41% increase in parasite positive stage-1 CSF’s detected by LAMP. Cohen’s kappa coefficients for RIME versus TBG1 LAMP of 0.92 (95%CI: 0.82–1.00) for stage-1 and 0.90 (95%CI: 0.80–1.00) for stage-2 reflected a high level of agreement between the data sets indicating that the results were not due to amplicon contamination, data confirmed in χ2 tests (p<0.001) and Fisher’s exact probability test (p = 4.7e-13). Conclusion This study detected genomic trypanosome DNA in the CSF independent of the HAT stage and may be consistent with early CNS entry and other scenarios that identify critical knowledge gaps for future studies. Detergent-enhanced LAMP could be applicable for non-invasive African trypanosome detection in human skin and saliva or as an epidemiologic tool for the determination of human (or animal) African trypanosome prevalence in areas where chronically low parasitemias are present. Human African trypanosomiasis is a fatal disease (if untreated) spread by bloodsucking tsetse flies. These protozoan parasites first enter the lymph and blood to invade many organ systems (early stage sleeping sickness). Weeks to months later, the parasites invade the brain causing a wide variety of neurological symptoms (late stage sleeping sickness). In rural clinical settings, diagnosis still relies on the detection of these microbes in blood and cerebrospinal fluid (CSF) by microscopy. LAMP, or loop-mediated isothermal amplification of DNA, is a technique that can specifically detect very small amounts of DNA from an organism. We previously showed that by simply adding detergent during sample preparation, the analytical sensitivity of LAMP targeting many gene copies is greatly improved, presumably because DNA is released from the pathogen cells and dispersed through the sample. We demonstrated proof of principle using pathogenic trypanosomes in different human body fluids (CSF or blood) and showed that this simple modification should be applicable for diagnosis of other microbial infections where cells are sensitive to detergent lysis. After completion of the above published study, we tested a collection of clinical CSF samples from African patients diagnosed with early or late stage sleeping sickness based on current World Health Organization (WHO) guidelines. For proof-of-concept we tested only a single microliter of detergent-treated CSF to test for late stage disease. We predicted that a significant number of the late stage samples would be LAMP positive, while the early stage CSFs would yield predominantly negative results. Instead, our study detected trypanosome DNA in patient CSF independent of African sleeping sickness stage, results that may be consistent with early brain entry and other scenarios that identify critical knowledge gaps for future studies.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Central African Republic
- Cerebrospinal Fluid/parasitology
- Child
- Child, Preschool
- DNA, Protozoan/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- DNA, Ribosomal Spacer/genetics
- Detergents/metabolism
- Female
- Humans
- Infant
- Infant, Newborn
- Male
- Middle Aged
- Molecular Diagnostic Techniques/methods
- Nucleic Acid Amplification Techniques/methods
- RNA, Ribosomal, 5.8S/genetics
- Sensitivity and Specificity
- Severity of Illness Index
- Trypanosoma/genetics
- Trypanosoma/isolation & purification
- Trypanosomiasis, African/diagnosis
- Trypanosomiasis, African/pathology
- Young Adult
Collapse
Affiliation(s)
- Dennis J. Grab
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| | - Olga V. Nikolskaia
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Bertrand Courtioux
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, CNRS FR 3503 GEIST, University of Limoges, INSERM UMR1094 Tropical Neuroepidemiology, Limoges, France
| | - Oriel M. M. Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Stefan Magez
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Maxim Bogorad
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - J. Stephen Dumler
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Sylvie Bisser
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, CNRS FR 3503 GEIST, University of Limoges, INSERM UMR1094 Tropical Neuroepidemiology, Limoges, France
- Pasteur Institute, Cayenne, French Guiana, France
| |
Collapse
|
99
|
Trypanosoma brucei Homologue of Regulator of Ribosome Synthesis 1 (Rrs1) Has Direct Interactions with Essential Trypanosome-Specific Proteins. mSphere 2019; 4:4/4/e00453-19. [PMID: 31391282 PMCID: PMC6686231 DOI: 10.1128/msphere.00453-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Trypanosoma brucei is a parasite responsible for human and animal African trypanosomiasis. Current treatments for these diseases have numerous problems, and the development of novel chemotherapeutics can be achieved by identifying targets that are parasite specific and part of essential processes. Ribosome biogenesis is the process of generating translation-competent ribosomes and is critical for survival in all organisms. Work from our laboratory has shown that the formation of the 5S RNP, a crucial checkpoint in ribosome biogenesis, requires trypanosome-specific proteins P34/P37 and homologues of Rpf2 and L5 which possess parasite-specific characteristics. In this study, we characterize TbRrs1, an additional member of the T. brucei 5S RNP, and show that it is essential for parasite survival and has unique interactions with P34/P37 and 5S rRNA. This expands our understanding of the 5S RNP in T. brucei and identifies new targets for future drug development. Studies in eukaryotic ribosome biogenesis have largely been performed in yeast, where they have described a highly complex process involving numerous protein and RNA components. Due to the complexity and crucial nature of this process, a number of checkpoints are necessary to ensure that only properly assembled ribosomes are released into the cytoplasm. Assembly of the 5S ribonucleoprotein (RNP) complex is one of these checkpoints for late-stage 60S subunit maturation. Studies in Saccharomyces cerevisiae have identified the 5S rRNA and four proteins, L5, L11, Rpf2, and Rrs1, as comprising the ribosome-associated 5S RNP. Work from our laboratory has shown that in the eukaryotic pathogen Trypanosoma brucei, the 5S RNP includes trypanosome-specific proteins P34/P37, as well as homologues of L5, Rpf2, and 5S rRNA. In this study, we examine a homologue of Rrs1 and identify it as an additional member of the T. brucei 5S RNP. Using RNA interference, we show that TbRrs1 is essential for the survival of T. brucei and has an important role in ribosome subunit formation and, together with TbRpf2, plays a role in 25/28S and 5.8S rRNA processing. We further show that TbRrs1 is a member of the T. brucei 5S RNP through the identification of novel direct interactions with P34/P37 and 5S rRNA as well as with TbL5 and TbRpf2. These unique characteristics of TbRrs1 highlight the importance of studying ribosome biogenesis in the context of diverse organisms and identify interactions that could be targeted for future drug development. IMPORTANCETrypanosoma brucei is a parasite responsible for human and animal African trypanosomiasis. Current treatments for these diseases have numerous problems, and the development of novel chemotherapeutics can be achieved by identifying targets that are parasite specific and part of essential processes. Ribosome biogenesis is the process of generating translation-competent ribosomes and is critical for survival in all organisms. Work from our laboratory has shown that the formation of the 5S RNP, a crucial checkpoint in ribosome biogenesis, requires trypanosome-specific proteins P34/P37 and homologues of Rpf2 and L5 which possess parasite-specific characteristics. In this study, we characterize TbRrs1, an additional member of the T. brucei 5S RNP, and show that it is essential for parasite survival and has unique interactions with P34/P37 and 5S rRNA. This expands our understanding of the 5S RNP in T. brucei and identifies new targets for future drug development.
Collapse
|
100
|
Mehlitz D, Molyneux D. The elimination of Trypanosoma brucei gambiense? Challenges of reservoir hosts and transmission cycles: Expect the unexpected. Parasite Epidemiol Control 2019; 6:e00113. [PMID: 31528738 PMCID: PMC6742776 DOI: 10.1016/j.parepi.2019.e00113] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/03/2019] [Accepted: 07/11/2019] [Indexed: 11/24/2022] Open
Abstract
The World Health Organisation has set the goal for elimination of Human African Trypanosomiasis (HAT), caused by Trypanosoma brucei gambiense (gHAT), as a public health problem for 2020 and for the total interruption of transmission to humans for 2030. Targeting human carriers and potential animal reservoir infections will be critical to achieving this ambitious goal. However, there is continuing debate regarding the significance of reservoir host animals, wild and domestic, in different epidemiological contexts, whilst the extent and duration of the asymptomatic human carrier state is similarly undefined. This paper reviews the status of the knowledge of latent infections in wild and domestic animal reservoir hosts towards the goal of better understanding their role in the transmission dynamic of the disease. Focus areas include the transmission cycles in non-human hosts, the infectivity of animal reservoirs to Glossina palpalis s.l., the longevity of infection and the stability of T. b. gambiense biological characteristics in antelopes and domestic animals. There is compelling evidence that T. b. gambiense can establish and persist in experimentally infected antelopes, pigs and dogs for a period of at least two years. In particular, metacyclic transmission of T. b. gambiense has been reported in antelope-G.p.palpalis-antelope and pig-G.p.gambiensis-pig cycles. Experimental studies demonstrate that the infectiveness of latent animal reservoir infections with T. b. gambiense is retained in animal-Glossina-animal cycles (antelopes and pigs) for periods of three years and human infectivity markers (human serum resistance, zymodeme, DNA) are stable in non-human hosts for the same period. These observations shed light on the epidemiological significance of animal reservoir hosts in specific ecosystems characterized by presently active, as well as known "old" HAT foci whilst challenging the concept of total elimination of all transmission by 2030. This target is also compromised by the existence of human asymptomatic carriers of T. b. gambiense often detected outside Africa after having lived outside tsetse infested areas for many years - sometimes decades. Non-tsetse modes of transmission may also play a significant but underestimated role in the maintenance of foci and also preclude the total elimination of transmission - these include mother to child transmission and sexual transmission. Both these modes of transmission have been the subject of case reports yet their frequency in African settings remains to be ascertained when the context of residual foci are discussed yet both challenge the concept of the possibility of the total elimination of transmission.
Collapse
Affiliation(s)
- D. Mehlitz
- Institute for Parasitology and Tropical Veterinary Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Germany
| | - D.H. Molyneux
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|