51
|
Mack A, Emperle M, Schnee P, Adam S, Pleiss J, Bashtrykov P, Jeltsch A. Preferential self-interaction of DNA methyltransferase DNMT3A subunits containing the R882H cancer mutation leads to dominant changes of flanking sequence preferences. J Mol Biol 2022; 434:167482. [DOI: 10.1016/j.jmb.2022.167482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 11/30/2022]
|
52
|
do Amaral-Silva GK, Morais TMDL, Wagner VP, Martins MD, Fregnani ER, Soares FA, Rocha AC, Pontes HR, Santos-Silva AR, Vargas PA. Expression of DNMTs and H3K9ac in Ameloblastoma and Ameloblastic Carcinoma. FRONTIERS IN ORAL HEALTH 2022; 2:751162. [PMID: 35048062 PMCID: PMC8757744 DOI: 10.3389/froh.2021.751162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
Objectives: DNA methyltransferases (DNMTs) and the histone modification H3K9ac are epigenetic markers. This study aimed to describe the immunohistochemical expression of DNMT1, DNMT3A, DNMT3B, and H3K9ac in the dental follicle (DF), ameloblastoma (AME), and ameloblastic carcinoma (AC), correlating these expressions with the recurrence and aggressive behavior in ameloblastoma. Study Design: Immunohistochemical reactions were performed in 10 human DFs, 38 ameloblastomas, and 6 AC samples. Another 59 ameloblastomas assembled in a tissue microarray were used to compare the immunoexpression with the clinical, radiographic, and histopathological characteristics and the presence of BRAFv600e mutation. Each slide was digitized as a high-resolution image and quantified by Aperio ScanScope Nuclear V9 software. All statistical analyzes were performed using GraphPad Prism statistical software. Results: DNMT3B expression was higher in ameloblastomas than in the DFs, while the AC overexpressed all proteins. The ameloblastomas with BRAFv600e mutation, vestibular/lingual, or vestibular/palatine bone cortical disruption and maxilla involvement showed DNMT1 overexpression, while recurrent cases had high DNMT3B levels. Conclusions: DNA methylation and histone modification might play a role in the development, clinical aggressiveness, and recurrence rates of ameloblastoma, such as the progression to AC. Further investigation about gene methylations in ameloblastomas is needed to better understand its relationship with aggressiveness and recurrence.
Collapse
Affiliation(s)
| | | | - Vivian Petersen Wagner
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Manoela Domingues Martins
- Department of Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - André Caroli Rocha
- Medical School, Clinics Hospital, University of São Paulo, São Paulo, Brazil
| | - Helder Rabelo Pontes
- Service of Buccal Pathology, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
| | - Alan Roger Santos-Silva
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Pablo Agustin Vargas
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| |
Collapse
|
53
|
Kuo FC, Chao CT, Lin SH. The Dynamics and Plasticity of Epigenetics in Diabetic Kidney Disease: Therapeutic Applications Vis-à-Vis. Int J Mol Sci 2022; 23:ijms23020843. [PMID: 35055027 PMCID: PMC8777872 DOI: 10.3390/ijms23020843] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic kidney disease (CKD) refers to the phenomenon of progressive decline in the glomerular filtration rate accompanied by adverse consequences, including fluid retention, electrolyte imbalance, and an increased cardiovascular risk compared to those with normal renal function. The triggers for the irreversible renal function deterioration are multifactorial, and diabetes mellitus serves as a major contributor to the development of CKD, namely diabetic kidney disease (DKD). Recently, epigenetic dysregulation emerged as a pivotal player steering the progression of DKD, partly resulting from hyperglycemia-associated metabolic disturbances, rising oxidative stress, and/or uncontrolled inflammation. In this review, we describe the major epigenetic molecular mechanisms, followed by summarizing current understandings of the epigenetic alterations pertaining to DKD. We highlight the epigenetic regulatory processes involved in several crucial renal cell types: Mesangial cells, podocytes, tubular epithelia, and glomerular endothelial cells. Finally, we highlight epigenetic biomarkers and related therapeutic candidates that hold promising potential for the early detection of DKD and the amelioration of its progression.
Collapse
Affiliation(s)
- Feng-Chih Kuo
- National Defense Medical Center, Department of Internal Medicine, Division of Endocrinology and Metabolism, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Chia-Ter Chao
- Department of Internal Medicine, Nephrology Division, National Taiwan University Hospital, Taipei 100, Taiwan
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Department of Internal Medicine, Nephrology Division, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Shih-Hua Lin
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei 114, Taiwan
- National Defense Medical Center, Department of Internal Medicine, Nephrology Division, Taipei 114, Taiwan
| |
Collapse
|
54
|
Mechanisms and Biological Roles of DNA Methyltransferases and DNA Methylation: From Past Achievements to Future Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:1-19. [DOI: 10.1007/978-3-031-11454-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
55
|
Jurkowska RZ, Jeltsch A. Enzymology of Mammalian DNA Methyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:69-110. [DOI: 10.1007/978-3-031-11454-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
56
|
Zhu X, Xiong L, Lyu R, Shen Y, Liu L, Li S, Argueta C, Tan L. Regulation of TET2 gene expression and 5mC oxidation in breast cancer cells by estrogen signaling. Biochem Biophys Res Commun 2021; 589:240-246. [PMID: 34929447 DOI: 10.1016/j.bbrc.2021.12.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/14/2021] [Indexed: 11/02/2022]
Abstract
Estrogen signaling plays important roles in diverse physiological and pathophysiological processes. However, the relationship between estrogen signaling and epigenetic regulation is not fully understood. Here, we explored the effect of estrogen signaling on the expression of Ten-Eleven Translocation (TET) family genes and DNA hydroxylmethylation in estrogen receptor alpha positive (ERα+) breast cancer cells. By analyzing the RNA-seq data, we identified TET2 as an estradiol (E2)-responsive gene in ERα+ MCF7 cells. RT-qPCR and Western blot analyses confirmed that both the mRNA and protein levels of TET2 gene were upregulated in MCF7 cells by E2 treatment. ChIP-seq and qPCR analyses showed that the enrichment of ERα and H3K27ac on the upstream regulatory regions of TET2 gene was increased in MCF7 cells upon E2 treatment. Moreover, E2 treatment also led to a significant increase in the global 5-hydroxymethylcytosine (5hmC) level, while knockout of TET2 abolished such E2-induced 5hmC increase. Conversely, treatment with ICI 182780, a potent and selective estrogen receptor degrader (SERD), inhibited TET2 gene expression and down-regulated the 5hmC level in MCF7 cells. Taken together, our study identified an ERα/TET2/5hmC epigenetic pathway, which may participate in the estrogen-associated physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Xuguo Zhu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Lijun Xiong
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ruitu Lyu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yinghui Shen
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Lu Liu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Shuangqi Li
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Christian Argueta
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Li Tan
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
57
|
Mensah IK, Norvil AB, AlAbdi L, McGovern S, Petell CJ, He M, Gowher H. Misregulation of the expression and activity of DNA methyltransferases in cancer. NAR Cancer 2021; 3:zcab045. [PMID: 34870206 PMCID: PMC8634572 DOI: 10.1093/narcan/zcab045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
In mammals, DNA methyltransferases DNMT1 and DNMT3's (A, B and L) deposit and maintain DNA methylation in dividing and nondividing cells. Although these enzymes have an unremarkable DNA sequence specificity (CpG), their regional specificity is regulated by interactions with various protein factors, chromatin modifiers, and post-translational modifications of histones. Changes in the DNMT expression or interacting partners affect DNA methylation patterns. Consequently, the acquired gene expression may increase the proliferative potential of cells, often concomitant with loss of cell identity as found in cancer. Aberrant DNA methylation, including hypermethylation and hypomethylation at various genomic regions, therefore, is a hallmark of most cancers. Additionally, somatic mutations in DNMTs that affect catalytic activity were mapped in Acute Myeloid Leukemia cancer cells. Despite being very effective in some cancers, the clinically approved DNMT inhibitors lack specificity, which could result in a wide range of deleterious effects. Elucidating distinct molecular mechanisms of DNMTs will facilitate the discovery of alternative cancer therapeutic targets. This review is focused on: (i) the structure and characteristics of DNMTs, (ii) the prevalence of mutations and abnormal expression of DNMTs in cancer, (iii) factors that mediate their abnormal expression and (iv) the effect of anomalous DNMT-complexes in cancer.
Collapse
Affiliation(s)
- Isaiah K Mensah
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | - Lama AlAbdi
- Department of Zoology, Collage of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sarah McGovern
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | - Ming He
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
58
|
Vazquez MJ, Daza-Dueñas S, Tena-Sempere M. Emerging Roles of Epigenetics in the Control of Reproductive Function: Focus on Central Neuroendocrine Mechanisms. J Endocr Soc 2021; 5:bvab152. [PMID: 34703958 PMCID: PMC8533971 DOI: 10.1210/jendso/bvab152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
Reproduction is an essential function for perpetuation of the species. As such, it is controlled by sophisticated regulatory mechanisms that allow a perfect match between environmental conditions and internal cues to ensure adequate pubertal maturation and achievement of reproductive capacity. Besides classical genetic regulatory events, mounting evidence has documented that different epigenetic mechanisms operate at different levels of the reproductive axis to finely tune the development and function of this complex neuroendocrine system along the lifespan. In this mini-review, we summarize recent evidence on the role of epigenetics in the control of reproduction, with special focus on the modulation of the central components of this axis. Particular attention will be paid to the epigenetic control of puberty and Kiss1 neurons because major developments have taken place in this domain recently. In addition, the putative role of central epigenetic mechanisms in mediating the influence of nutritional and environmental cues on reproductive function will be discussed.
Collapse
Affiliation(s)
- Maria Jesus Vazquez
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), 14004 Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain.,Hospital Universitario Reina Sofia, 14004 Cordoba, Spain
| | - Silvia Daza-Dueñas
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), 14004 Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), 14004 Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain.,Hospital Universitario Reina Sofia, 14004 Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Cordoba, Spain.,Institute of Biomedicine, University of Turku, FIN-20520 Turku, Finland
| |
Collapse
|
59
|
Chou FJ, Liu Y, Lang F, Yang C. D-2-Hydroxyglutarate in Glioma Biology. Cells 2021; 10:cells10092345. [PMID: 34571995 PMCID: PMC8464856 DOI: 10.3390/cells10092345] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Isocitrate dehydrogenase (IDH) mutations are common genetic abnormalities in glioma, which result in the accumulation of an "oncometabolite", D-2-hydroxyglutarate (D-2-HG). Abnormally elevated D-2-HG levels result in a distinctive pattern in cancer biology, through competitively inhibiting α-ketoglutarate (α-KG)/Fe(II)-dependent dioxgenases (α-KGDDs). Recent studies have revealed that D-2-HG affects DNA/histone methylation, hypoxia signaling, DNA repair, and redox homeostasis, which impacts the oncogenesis of IDH-mutated cancers. In this review, we will discuss the current understanding of D-2-HG in cancer biology, as well as the emerging opportunities in therapeutics in IDH-mutated glioma.
Collapse
|
60
|
Gao J, Liu R, Feng D, Huang W, Huo M, Zhang J, Leng S, Yang Y, Yang T, Yin X, Teng X, Yu H, Yuan B, Wang Y. Snail/PRMT5/NuRD complex contributes to DNA hypermethylation in cervical cancer by TET1 inhibition. Cell Death Differ 2021; 28:2818-2836. [PMID: 33953349 PMCID: PMC8408166 DOI: 10.1038/s41418-021-00786-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 04/08/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023] Open
Abstract
The biological function of PRMT5 remains poorly understood in cervical cancer metastasis. Here, we report that PRMT5 physically associates with the transcription factor Snail and the NuRD(MTA1) complex to form a transcriptional-repressive complex that catalyzes the symmetrical histone dimethylation and deacetylation. This study shows that the Snail/PRMT5/NuRD(MTA1) complex targets genes, such as TET1 and E-cadherin, which are critical for epithelial-mesenchymal transition (EMT). This complex also affects the conversion of 5mC to 5hmC. This study demonstrates that the Snail/PRMT5/NuRD(MTA1) complex promotes the invasion and metastasis of cervical cancer in vitro and in vivo. This study also shows that PRMT5 expression is upregulated in cervical cancer and various human cancers, and the PRMT5 inhibitor EPZ015666 suppresses EMT and the invasion potential of cervical cancer cells by disinhibiting the expression of TET1 and increasing 5hmC, suggesting that PRMT5 is a potential target for cancer therapy.
Collapse
Affiliation(s)
- Jie Gao
- grid.265021.20000 0000 9792 1228Tianjin Key Laboratory of Inflammatory Biology, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China ,grid.27255.370000 0004 1761 1174The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong China
| | - Ruiqiong Liu
- grid.27255.370000 0004 1761 1174The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong China
| | - Dandan Feng
- grid.265021.20000 0000 9792 1228Tianjin Key Laboratory of Inflammatory Biology, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Wei Huang
- grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Cancer Invasion and Metastasis Research, Advanced Innovation Center for Human Brain Protection, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Miaomiao Huo
- grid.506261.60000 0001 0706 7839Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingyao Zhang
- grid.506261.60000 0001 0706 7839Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuai Leng
- grid.265021.20000 0000 9792 1228Tianjin Key Laboratory of Inflammatory Biology, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yang Yang
- grid.265021.20000 0000 9792 1228Tianjin Key Laboratory of Inflammatory Biology, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Tianshu Yang
- grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Cancer Invasion and Metastasis Research, Advanced Innovation Center for Human Brain Protection, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xin Yin
- grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Cancer Invasion and Metastasis Research, Advanced Innovation Center for Human Brain Protection, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xu Teng
- grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Cancer Invasion and Metastasis Research, Advanced Innovation Center for Human Brain Protection, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hefen Yu
- grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Cancer Invasion and Metastasis Research, Advanced Innovation Center for Human Brain Protection, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Baowen Yuan
- grid.506261.60000 0001 0706 7839Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Wang
- grid.265021.20000 0000 9792 1228Tianjin Key Laboratory of Inflammatory Biology, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China ,grid.506261.60000 0001 0706 7839Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
61
|
Luo Z, Ma Y, Di T, Ma B, Li H, An J, Wang Y, Zhang H. DNMT3B decreases extracellular matrix degradation and alleviates intervertebral disc degeneration through TRPA1 methylation to inhibit the COX2/YAP axis. Aging (Albany NY) 2021; 13:20258-20276. [PMID: 34428744 PMCID: PMC8436916 DOI: 10.18632/aging.203410] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/08/2021] [Indexed: 01/14/2023]
Abstract
Intervertebral disc degeneration (IVDD) is a main cause of low back pain that is associated with extracellular matrix (ECM) degradation and inflammation. This study aims to investigate the role of DNMT3B and its regulatory mechanisms in IVDD. IVDD rat models were constructed followed by transfections with oe-DNMT3B or oe-YAP in order to explore the role of DNMT3B in the development of IVDD. After that transfection, nucleus pulposus (NP) cells were isolated and transfected with oe-DNMT3B, oe-TRPA1, si-YAP, oe-YAP or oe-COX2 in order to investigate the functions of DNMT3B in NP cells. DNMT3B was poorly expressed in IVDD tissues and NP cells whereas TRPA1, COX2, and YAP were highly expressed. The proliferation or apoptosis of NP cells was detected through CCK-8 assay or flow cytometry, respectively. Overexpression of DNMT3B promoted the proliferation of NP cells, inhibited their apoptosis, as well as increasing the expression of collagen II and aggrecan and decreasing expression of MMP3 and MMP9. Besides, DNMT3B suppressed inflammation and alleviated IVDD. Mechanistically, DNMT3B modified the TRPA1 promoter by methylation to inhibit the expression of COX2. Overexpression of COX2 promoted the apoptosis of NP cells and decreased the expression of YAP, which was reversed by upregulating DNMT3B. DNMT3B may promote the proliferation of NP cells and prevent their ECM degradation through the TRPA1/COX2/YAP axis, thereby alleviating IVDD in rats.
Collapse
Affiliation(s)
- Zhiqiang Luo
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, P.R. China
| | - Yanchao Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, P.R. China
| | - Tianning Di
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, P.R. China
| | - Bing Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, P.R. China
| | - Hongwei Li
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, P.R. China
| | - Jiangdong An
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, P.R. China
| | - Yonggang Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, P.R. China
| | - Haihong Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, P.R. China
| |
Collapse
|
62
|
Emperle M, Bangalore DM, Adam S, Kunert S, Heil HS, Heinze KG, Bashtrykov P, Tessmer I, Jeltsch A. Structural and biochemical insight into the mechanism of dual CpG site binding and methylation by the DNMT3A DNA methyltransferase. Nucleic Acids Res 2021; 49:8294-8308. [PMID: 34289056 PMCID: PMC8373138 DOI: 10.1093/nar/gkab600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 01/02/2023] Open
Abstract
DNMT3A/3L heterotetramers contain two active centers binding CpG sites at 12 bp distance, however their interaction with DNA not containing this feature is unclear. Using randomized substrates, we observed preferential co-methylation of CpG sites with 6, 9 and 12 bp spacing by DNMT3A and DNMT3A/3L. Co-methylation was favored by AT bases between the 12 bp spaced CpG sites consistent with their increased bending flexibility. SFM analyses of DNMT3A/3L complexes bound to CpG sites with 12 bp spacing revealed either single heterotetramers inducing 40° DNA bending as observed in the X-ray structure, or two heterotetramers bound side-by-side to the DNA yielding 80° bending. SFM data of DNMT3A/3L bound to CpG sites spaced by 6 and 9 bp revealed binding of two heterotetramers and 100° DNA bending. Modeling showed that for 6 bp distance between CpG sites, two DNMT3A/3L heterotetramers could bind side-by-side on the DNA similarly as for 12 bp distance, but with each CpG bound by a different heterotetramer. For 9 bp spacing our model invokes a tetramer swap of the bound DNA. These additional DNA interaction modes explain how DNMT3A and DNMT3A/3L overcome their structural preference for CpG sites with 12 bp spacing during the methylation of natural DNA.
Collapse
Affiliation(s)
- Max Emperle
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Disha M Bangalore
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Sabrina Adam
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Stefan Kunert
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Hannah S Heil
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Katrin G Heinze
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Pavel Bashtrykov
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Ingrid Tessmer
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
63
|
Deep enzymology studies on DNA methyltransferases reveal novel connections between flanking sequences and enzyme activity. J Mol Biol 2021; 433:167186. [PMID: 34375615 DOI: 10.1016/j.jmb.2021.167186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 11/22/2022]
Abstract
DNA interacting enzymes recognize their target sequences embedded in variable flanking sequence context. The influence of flanking sequences on enzymatic activities of DNA methyltransferases (DNMTs) can be systematically studied with "deep enzymology" approaches using pools of double-stranded DNA substrates, which contain target sites in random flanking sequence context. After incubation with DNMTs and bisulfite conversion, the methylation states and flanking sequences of individual DNA molecules are determined by NGS. Deep enzymology studies with different human and mouse DNMTs revealed strong influences of flanking sequences on the CpG and non-CpG methylation activity and structure of DNMT-DNA complexes. Differences in flanking sequence preferences of DNMT3A and DNMT3B were shown to be related to the prominent role of DNMT3B in the methylation of human SATII repeat elements. Mutational studies in DNMT3B discovered alternative interaction networks between the enzyme and the DNA leading to a partial equalization of the effects of different flanking sequences. Structural studies in DNMT1 revealed striking correlations between enzymatic activities and flanking sequence dependent conformational changes upon DNA binding. Correlation of the biochemical data with cellular methylation patterns demonstrated that flanking sequence preferences are an important parameter that influences genomic DNA methylation patterns together with other mechanisms targeting DNMTs to genomic sites.
Collapse
|
64
|
Khrabrova DA, Yakubovskaya MG, Gromova ES. AML-Associated Mutations in DNA Methyltransferase DNMT3A. BIOCHEMISTRY (MOSCOW) 2021; 86:307-318. [PMID: 33838631 DOI: 10.1134/s000629792103007x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In mammals, DNA methylation is an essential epigenetic modification necessary for the maintenance of genome stability, regulation of gene expression, and other processes. Carcinogenesis is accompanied by multiple changes in the DNA methylation pattern and DNA methyltransferase (DNMT) genes; these changes are often associated with poor disease prognosis. Human DNA methyltransferase DNMT3A is responsible for de novo DNA methylation. Missense mutations in the DNMT3A gene occur frequently at the early stages of tumor development and are often observed in hematologic malignances, especially in acute myeloid leukemia (AML), with a prevalence of the R882H mutation. This mutation is the only one that has been extensively studied using both model DNA substrates and cancer cell lines. Biochemical characterization of other DNMT3A mutants is necessary to assess their potential effects on the DNMT3A functioning. In this review, we describe DNMT3A mutations identified in AML with special emphasis on the missense mutations in the DNMT3A catalytic domain. The impact of R882H and less common missense mutations on the DNMT3A activity toward model DNA substrates and in cancer cell lines is discussed together with the underlying molecular mechanisms. Understanding general features of these mechanisms will be useful for further development of novel approaches for early diagnostics of hematologic diseases and personalized cancer therapy.
Collapse
Affiliation(s)
- Dariya A Khrabrova
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Marianna G Yakubovskaya
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| | - Elizaveta S Gromova
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
65
|
Noyan S, Andac Ozketen A, Gurdal H, Gur Dedeoglu B. miR-770-5p regulates EMT and invasion in TNBC cells by targeting DNMT3A. Cell Signal 2021; 83:109996. [PMID: 33798630 DOI: 10.1016/j.cellsig.2021.109996] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/22/2021] [Accepted: 03/28/2021] [Indexed: 01/08/2023]
Abstract
MicroRNAs (miRNAs) are shown to regulate various processes in cancer like motility and invasion that are key features of the metastatic triple negative breast cancer (TNBCs). Epithelial-mesenchymal transition (EMT) is one of the well-defined cellular transitioning processes characterized with reduced E-cadherin expression and increased mesenchymal molecules such as Vimentin or Snail thereby gives the cells mobility and invasive character. Aberrant DNA methylation by DNA methyltransferases (DNMTs) plays an important role in carcinogenesis. It is well known that DNMTs are required for transcriptional silencing of tumor-associated genes. DNMT3A-induced promoter hypermethylation of E-cadherin has also been known to improve cancer metastasis. Our results indicated that miR-770-5p could downregulate Vimentin and Snail expression levels, while increasing or restoring the expression of E-Cadherin hence, leading to inhibition of EMT phenotypes along with motility and invasion. Specifically, we showed that overexpression of miR-770-5p restored the expression of E-Cadherin in MDA-MB-231 cells via directly targeting DNMT3A. We also observed the change in the spindled shapes showing the loss of mesenchymal characteristics and gain of epithelial phenotype in miR-770-5p overexpressing cells. When considered together, our results show that miR-770-5p could effectively inhibit invasion potential driven by EMT.
Collapse
Affiliation(s)
- Senem Noyan
- Ankara University, Biotechnology Institute, Ankara, Turkey
| | - Ayşe Andac Ozketen
- Middle East Technical University, Department of Biological Sciences, Ankara, Turkey
| | - Hakan Gurdal
- Ankara University, Faculty of Medicine, Department of Medical Pharmacology, Ankara, Turkey
| | | |
Collapse
|
66
|
Radhakrishna U, Vishweswaraiah S, Uppala LV, Szymanska M, Macknis J, Kumar S, Saleem-Rasheed F, Aydas B, Forray A, Muvvala SB, Mishra NK, Guda C, Carey DJ, Metpally RP, Crist RC, Berrettini WH, Bahado-Singh RO. Placental DNA methylation profiles in opioid-exposed pregnancies and associations with the neonatal opioid withdrawal syndrome. Genomics 2021; 113:1127-1135. [PMID: 33711455 DOI: 10.1016/j.ygeno.2021.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/29/2020] [Accepted: 03/02/2021] [Indexed: 12/11/2022]
Abstract
Opioid abuse during pregnancy can result in Neonatal Opioid Withdrawal Syndrome (NOWS). We investigated genome-wide methylation analyses of 96 placental tissue samples, including 32 prenatally opioid-exposed infants with NOWS who needed therapy (+Opioids/+NOWS), 32 prenatally opioid-exposed infants with NOWS who did not require treatment (+Opioids/-NOWS), and 32 prenatally unexposed controls (-Opioids/-NOWS, control). Statistics, bioinformatics, Artificial Intelligence (AI), including Deep Learning (DL), and Ingenuity Pathway Analyses (IPA) were performed. We identified 17 dysregulated pathways thought to be important in the pathophysiology of NOWS and reported accurate AI prediction of NOWS diagnoses. The DL had an AUC (95% CI) =0.98 (0.95-1.0) with a sensitivity and specificity of 100% for distinguishing NOWS from the +Opioids/-NOWS group and AUCs (95% CI) =1.00 (1.0-1.0) with a sensitivity and specificity of 100% for distinguishing NOWS versus control and + Opioids/-NOWS group versus controls. This study provides strong evidence of methylation dysregulation of placental tissue in NOWS development.
Collapse
Affiliation(s)
- Uppala Radhakrishna
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA.
| | - Sangeetha Vishweswaraiah
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA
| | - Lavanya V Uppala
- College of Information Science & Technology, University of Nebraska at Omaha, Peter Kiewit Institute, Omaha, NE, USA
| | - Marta Szymanska
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA
| | | | - Sandeep Kumar
- Department of Pathology, Beaumont Health System, Royal Oak, MI, USA
| | - Fozia Saleem-Rasheed
- Department of Newborn Medicine, Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA
| | - Buket Aydas
- Department of Healthcare Analytics, Meridian Health Plans, Detroit, MI, USA
| | - Ariadna Forray
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | | | - Nitish K Mishra
- Department of Genetics, Cell Biology & Anatomy College of Medicine, University of Nebraska Medical Center Omaha, NE, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology & Anatomy College of Medicine, University of Nebraska Medical Center Omaha, NE, USA
| | - David J Carey
- Department of Molecular and Functional Genomics, Geisinger, Danville, PA, USA
| | - Raghu P Metpally
- Department of Molecular and Functional Genomics, Geisinger, Danville, PA, USA
| | - Richard C Crist
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Wade H Berrettini
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Geisinger Clinic, Danville, PA, USA
| | - Ray O Bahado-Singh
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA
| |
Collapse
|
67
|
Marín-García PJ, Llobat L. How Does Protein Nutrition Affect the Epigenetic Changes in Pig? A Review. Animals (Basel) 2021; 11:ani11020544. [PMID: 33669864 PMCID: PMC7923233 DOI: 10.3390/ani11020544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Epigenetic mechanisms regulate gene expression and depend of nutrition. In farm animals, and concretely, in pigs, some papers on protein nutrition have been realized to improve several productive traits. Changes in protein diet influence on epigenetic mechanisms that could affect productive and reproductive traits in individuals and their offspring. The purpose of this review was to update the current knowledge about the effects of these nutritional changes on epigenetic mechanisms in pigs. Abstract Epigenetic changes regulate gene expression and depend of external factors, such as environment and nutrition. In pigs, several studies on protein nutrition have been performed to improve productive and reproductive traits. Indeed, these studies aimed not only to determine broad protein requirements but also pigs’ essential amino acids requirements. Moreover, recent studies tried to determine these nutritional requirements for each individual, which is known as protein precision nutrition. However, nutritional changes could affect different epigenetic mechanisms, modifying metabolic pathways both in a given individual and its offspring. Modifications in protein nutrition, such as change in the amino acid profile, increase or decrease in protein levels, or the addition of metabolites that condition protein requirements, could affect the regulation of some genes, such as myostatin, insulin growth factor, or genes controlling cholesterol and glucose metabolism pathways. This review summarizes the impact of most common protein nutritional strategies on epigenetic changes and describes their effects on regulation of gene expression in pigs. In a context where animal nutrition is shifting towards precision protein nutrition (PPN), further studies evaluating the effects of PPN on animal epigenetic are necessary.
Collapse
Affiliation(s)
- Pablo Jesús Marín-García
- Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46010 Valencia, Spain;
| | - Lola Llobat
- Grupo de Fisiopatología de la Reproducción, Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46010 Valencia, Spain
- Correspondence:
| |
Collapse
|
68
|
Abstract
Emerging evidence suggests the growing importance of "nongenetic factors" in the pathogenesis of atherosclerotic vascular disease. Indeed, the inherited genome determines only part of the risk profile as genomic approaches do not take into account additional layers of biological regulation by "epi"-genetic changes. Epigenetic modifications are defined as plastic chemical changes of DNA/histone complexes which critically affect gene activity without altering the DNA sequence. These modifications include DNA methylation, histone posttranslational modifications, and non-coding RNAs and have the ability to modulate gene expression at both transcriptional and posttranscriptional level. Notably, epigenetic signals are mainly induced by environmental factors (i.e., pollution, smoking, noise) and, once acquired, may be transmitted to the offspring. The inheritance of adverse epigenetic changes may lead to premature deregulation of pathways involved in vascular damage and endothelial dysfunction. Here, we describe the emerging role of epigenetic modifications as fine-tuners of gene transcription in atherosclerosis. Specifically, the following aspects are described in detail: (1) discovery and impact of the epigenome in cardiovascular disease, (2) the epigenetic landscape in atherosclerosis; (3) inheritance of epigenetic signals and premature vascular disease; (4) epigenetic control of lipid metabolism, vascular oxidative stress, inflammation, autophagy, and apoptosis; (5) epigenetic biomarkers in patients with atherosclerosis; (6) novel therapeutic strategies to modulate epigenetic marks. Understanding the individual epigenetic profile may pave the way for new approaches to determine cardiovascular risk and to develop personalized therapies to treat atherosclerosis and its complications.
Collapse
|
69
|
Al-Yozbaki M, Jabre I, Syed NH, Wilson CM. Targeting DNA methyltransferases in non-small-cell lung cancer. Semin Cancer Biol 2021; 83:77-87. [PMID: 33486076 DOI: 10.1016/j.semcancer.2021.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 12/30/2022]
Abstract
Despite the advances in treatment using chemotherapy or targeted therapies, due to static survival rates, non-small cell lung cancer (NSCLC) is the major cause of cancer-related deaths worldwide. Epigenetic-based therapies have been developed for NSCLC by targeting DNA methyltransferases (DNMTs) and histone-modifying enzymes. However, treatment using single epigenetic agents on solid tumours has been inadequate; whereas, treatment with a combination of DNMTs inhibitors with chemotherapy and immunotherapy has shown great promise. Dietary sources of phytochemicals could also inhibit DNMTs and cancer stem cells, representing a novel and promising way to prevent and treat cancer. Herein, we will discuss the different DNMTs, DNA methylation profiling in NSCLC as well as current demethylating agents in ongoing clinical trials. Therefore, providing a concise overview of future developments in the field of epigenetic therapy in NSCLC.
Collapse
Affiliation(s)
- Minnatallah Al-Yozbaki
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, UK
| | - Ibtissam Jabre
- Dept. of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Naeem H Syed
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, UK
| | - Cornelia M Wilson
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, UK; University of Liverpool, Institute of Translation Medicine, Dept of Molecular & Clinical Cancer Medicine, UK.
| |
Collapse
|
70
|
Costa E, Ferreira-Gonçalves T, Cardoso M, Coelho JMP, Gaspar MM, Faísca P, Ascensão L, Cabrita AS, Reis CP, Figueiredo IV. A Step Forward in Breast Cancer Research: From a Natural-Like Experimental Model to a Preliminary Photothermal Approach. Int J Mol Sci 2020; 21:E9681. [PMID: 33353068 PMCID: PMC7765974 DOI: 10.3390/ijms21249681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is one of the most frequently diagnosed malignancies and common causes of cancer death in women. Recent studies suggest that environmental exposures to certain chemicals, such as 7,12-Dimethylbenzanthracene (DMBA), a chemical present in tobacco, may increase the risk of developing breast cancer later in life. The first-line treatments for breast cancer (surgery, chemotherapy or a combination of both) are generally invasive and frequently associated with severe side effects and high comorbidity. Consequently, novel approaches are strongly required to find more natural-like experimental models that better reflect the tumors' etiology, physiopathology and response to treatments, as well as to find more targeted, efficient and minimally invasive treatments. This study proposes the development and an in deep biological characterization of an experimental model using DMBA-tumor-induction in Sprague-Dawley female rats. Moreover, a photothermal therapy approach using a near-infrared laser coupled with gold nanoparticles was preliminarily assessed. The gold nanoparticles were functionalized with Epidermal Growth Factor, and their physicochemical properties and in vitro effects were characterized. DMBA proved to be a very good and selective inductor of breast cancer, with 100% incidence and inducing an average of 4.7 tumors per animal. Epigenetic analysis showed that tumors classified with worst prognosis were hypomethylated. The tumor-induced rats were then subjected to a preliminary treatment using functionalized gold nanoparticles and its activation by laser (650-900 nm). The treatment outcomes presented very promising alterations in terms of tumor histology, confirming the presence of necrosis in most of the cases. Although this study revealed encouraging results as a breast cancer therapy, it is important to define tumor eligibility and specific efficiency criteria to further assess its application in breast cancer treatment on other species.
Collapse
Affiliation(s)
- Eduardo Costa
- Pharmacology and Pharmaceutical Care Laboratory, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (E.C.); (I.V.F.)
- Institute of Experimental Pathology, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (M.C.); (A.S.C.)
- iMed.ULisboa– Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (T.F.-G.); (M.M.G.)
- Vasco da Gama Research Group (CIVG), Vasco da Gama University School (EUVG), 3020-210 Coimbra, Portugal
| | - Tânia Ferreira-Gonçalves
- iMed.ULisboa– Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (T.F.-G.); (M.M.G.)
| | - Miguel Cardoso
- Institute of Experimental Pathology, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (M.C.); (A.S.C.)
- Dentistry Area, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Biophysics Institute, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - João M. P. Coelho
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal;
| | - Maria Manuela Gaspar
- iMed.ULisboa– Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (T.F.-G.); (M.M.G.)
| | - Pedro Faísca
- Faculty of Veterinary Medicine (ULHT)/IGC, 1749-024 Lisboa, Portugal;
| | - Lia Ascensão
- Centro de Estudos do Ambiente e do Mar (CESAM), Faculdade de Ciências, Campo Grande, Universidade de Lisboa, 1749-016 Lisboa, Portugal;
| | - António S. Cabrita
- Institute of Experimental Pathology, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (M.C.); (A.S.C.)
| | - Catarina Pinto Reis
- iMed.ULisboa– Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (T.F.-G.); (M.M.G.)
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal;
| | - Isabel V. Figueiredo
- Pharmacology and Pharmaceutical Care Laboratory, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (E.C.); (I.V.F.)
- Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
71
|
Yang M, Zhu M, Song K, Wuren T, Yan J, Ge RL, Ji L, Cui S. VHL gene methylation contributes to excessive erythrocytosis in chronic mountain sickness rat model by upregulating the HIF-2α/EPO pathway. Life Sci 2020; 266:118873. [PMID: 33309718 DOI: 10.1016/j.lfs.2020.118873] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022]
Abstract
AIMS Hypoxia-inducible factors (HIFs) play important roles in the pathogenesis of erythrocytosis in chronic mountain sickness (CMS). von Hippel-Lindau (VHL) is a key regulator of hypoxia that can direct the poly-ubiquitylation and degradation of HIFs. Epigenetic mechanisms are believed to contribute toward adaption to chronic hypoxia. Here, we investigated the contribution and mechanism of VHL methylation in rats with erythrocytosis in CMS. MAIN METHODS The methylation status of VHL was measured via bisulfite sequencing PCR, while VHL, DNMT1, DNMT3α, and DNMT3β expression were assessed using real-time reverse transcription PCR and western blotting. HIF-2α and EPO expression levels in bone marrow were determined via immunohistochemical staining, and erythroid hyperplasia in bone marrow sections were observed with hematoxylin and eosin staining. KEY FINDINGS We found that chronic hypoxia triggered erythroid hyperplasia in the bone marrow and increased the quantity of peripheral red blood cells in CMS rats. Chronic hypoxia significantly induced methylation at the CpG site in the VHL promoter, decreased VHL expression, and increased HIF-2α and EPO expression. Chronic hypoxia increased DNMT3α and DNMT3β expression, consistent with the decrease in VHL expression. The DNA methyltransferase inhibitor 5-azacytidine reduced chronic hypoxia-induced erythroid proliferation in the bone marrow of rats with CMS by suppressing VHL methylation and DNMTs expression. SIGNIFICANCE Our study suggests that VHL methylation contributes toward excessive erythrocytosis in CMS by upregulating the HIF-2α/EPO pathway in the bone marrow of rats. We demonstrated that the DNMT inhibitor 5-azacytidine can attenuate erythroid hyperplasia in the bone marrow by demethylating the VHL promoter.
Collapse
Affiliation(s)
- Min Yang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810001, China
| | - Mingming Zhu
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810001, China; Affiliated Hospital of Qinghai University, Xining 810001, China
| | - Kang Song
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810001, China; Qinghai Provincial People's Hospital, Xining 810001, China
| | - Tanna Wuren
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810001, China
| | - Jun Yan
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810001, China
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810001, China
| | - Linhua Ji
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810001, China; Huadu District People's Hospital of Guangzhou, Guangzhou 510800, China.
| | - Sen Cui
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810001, China; Affiliated Hospital of Qinghai University, Xining 810001, China.
| |
Collapse
|
72
|
Wu X, Gao Y, Bu J, Deng L, Zhang P, Chi M, Jiang L, Shi X, Ning S, Wang G. Identification of Potential Long Non-coding RNA Expression Quantitative Trait Methylations in Lung Adenocarcinoma and Lung Squamous Carcinoma. Front Genet 2020; 11:602035. [PMID: 33362860 PMCID: PMC7756030 DOI: 10.3389/fgene.2020.602035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
There are associations between DNA methylation and the expression of long non-coding RNA (lncRNA), also known as lncRNA expression quantitative trait methylations (lnc-eQTMs). Lnc-eQTMs may induce a wide range of carcinogenesis pathways. However, lnc-eQTMs have not been globally identified and studied, and their roles in lung adenocarcinoma (LUAD) and lung squamous carcinoma (LUSC) are largely unknown. In the present study, we identified some differential methylation sites located in genes of long intergenic non-coding RNAs (lincRNAs) and other types of lncRNAs in LUAD and LUSC. An integrated pipeline was established to construct two global cancer-specific regulatory networks of lnc-eQTMs in LUAD and LUSC. The associations between eQTMs showed common and specific features between LUAD and LUSC. Some lnc-eQTMs were also related with survival in LUAD- and LUSC-specific regulatory networks. Lnc-eQTMs were associated with cancer-related functions, such as lung epithelium development and vasculogenesis by functional analysis. Drug repurposing analysis revealed that these lnc-eQTMs may mediate the effects of some anesthesia-related drugs in LUAD and LUSC. In summary, the present study elucidates the roles of lnc-eQTMs in LUAD and LUSC, which could improve our understanding of lung cancer pathogenesis and facilitate treatment.
Collapse
Affiliation(s)
- Xiaohong Wu
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yue Gao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jianlong Bu
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lin Deng
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Pinyi Zhang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Meng Chi
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lihua Jiang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaoding Shi
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Guonian Wang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
73
|
Li J, Deng Q, Fan W, Zeng Q, He H, Huang F. Melatonin-induced suppression of DNA methylation promotes odontogenic differentiation in human dental pulp cells. Bioengineered 2020; 11:829-840. [PMID: 32718272 PMCID: PMC8291816 DOI: 10.1080/21655979.2020.1795425] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023] Open
Abstract
Differentiation potency of human dental pulp cells (hDPCs) is essential for dentin regeneration. DNA methylation is one of the major epigenetic mechanisms and is suggested to involve in differentiation of hDPCs, the machinery of which includes DNA methyltransferase enzymes (DNMTs) and methyl-CpG-binding domain proteins (MBDs). Our previous study has found that melatonin (MT) promoted hDPC differentiation, but its mechanism remains elusive. We aimed to investigate the role of DNA methylation in the promotion of MT to differentiation of hDPCs in vitro. hDPCs were cultured in basal growth medium (CO) or odontogenic medium (OM) exposed to MT at different concentrations (0, 10-12, 10-10, 10-8, 10-6, 10-4 M). The cell growth was analyzed using Cell Counting Kit-8 assay, and mineralized tissue formation was measured using Alizarin red staining. The expression of the 10 genes (DNMT1, DNMT3A, DNMT3B, MBD1-6, MeCP2) was determined using real-time qPCR and western blotting. The abundance of MeCP2 in the nuclei was evaluated using immunofluorescence analysis. Global methylation level was tested using ELISA. We found that mineralized tissue formation significantly increased in OM with MT at 10-4 M, while the levels of MeCP2 and global DNA methylation level declined. The expression of MBD1, MBD3, and MBD4 significantly increased in OM alone, and the expession of DNMT1 and MBD2 was decreased. These results indicate that MT promotes odontogenic differentiation of hDPCs in vitro by regulating the levels of DNMT1, MeCP2, and global DNA methylation, suggesting that MT-induced DNA methylation machinery may play an important role in tooth regeneration.
Collapse
Affiliation(s)
- Jingzhou Li
- Department of Pediatric Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Qianyi Deng
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Department of Oral Anatomy and Physiology, Hospital of Stomatology,Guanghua School of Stomatology,Sun Yat-sen University, Guangzhou, China
| | - Qi Zeng
- Department of Pediatric Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Department of Oral Anatomy and Physiology, Hospital of Stomatology,Guanghua School of Stomatology,Sun Yat-sen University, Guangzhou, China
| | - Fang Huang
- Department of Pediatric Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
74
|
Grannonico M, Brandolini L, Varrassi G, Sebastiani P, Colanardi A, Paladini A, Piroli A, Allegretti M, Di Loreto S. DF3016A induces increased BDNF transcription in ischemic neuroinflammation injury. Brain Res 2020; 1748:147057. [DOI: 10.1016/j.brainres.2020.147057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/27/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022]
|
75
|
|
76
|
Dukatz M, Adam S, Biswal M, Song J, Bashtrykov P, Jeltsch A. Complex DNA sequence readout mechanisms of the DNMT3B DNA methyltransferase. Nucleic Acids Res 2020; 48:11495-11509. [PMID: 33105482 PMCID: PMC7672481 DOI: 10.1093/nar/gkaa938] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
DNA methyltransferases interact with their CpG target sites in the context of variable flanking sequences. We investigated DNA methylation by the human DNMT3B catalytic domain using substrate pools containing CpX target sites in randomized flanking context and identified combined effects of CpG recognition and flanking sequence interaction together with complex contact networks involved in balancing the interaction with different flanking sites. DNA methylation rates were more affected by flanking sequences at non-CpG than at CpG sites. We show that T775 has an essential dynamic role in the catalytic mechanism of DNMT3B. Moreover, we identify six amino acid residues in the DNA-binding interface of DNMT3B (N652, N656, N658, K777, N779, and R823), which are involved in the equalization of methylation rates of CpG sites in favored and disfavored sequence contexts by forming compensatory interactions to the flanking residues including a CpG specific contact to an A at the +1 flanking site. Non-CpG flanking preferences of DNMT3B are highly correlated with non-CpG methylation patterns in human cells. Comparison of the flanking sequence preferences of human and mouse DNMT3B revealed subtle differences suggesting a co-evolution of flanking sequence preferences and cellular DNMT targets.
Collapse
Affiliation(s)
- Michael Dukatz
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Sabrina Adam
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Mahamaya Biswal
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Pavel Bashtrykov
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
77
|
Hirao-Suzuki M, Takeda S, Sakai G, Waalkes MP, Sugihara N, Takiguchi M. Cadmium-stimulated invasion of rat liver cells during malignant transformation: Evidence of the involvement of oxidative stress/TET1-sensitive machinery. Toxicology 2020; 447:152631. [PMID: 33188856 DOI: 10.1016/j.tox.2020.152631] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/22/2020] [Accepted: 11/09/2020] [Indexed: 10/23/2022]
Abstract
Cadmium (Cd) is recognized as a highly toxic heavy metal for humans in part because it is a multi-organ carcinogen. To clarify the mechanism of Cd carcinogenicity, we have established an experimental system using rat liver TRL1215 cells exposed to 2.5 μM Cd for 10 weeks and then cultured in Cd-free medium for an additional 4 weeks (total 14 weeks). Recently, we demonstrated, by using this experimental system, that 1) Cd stimulates cell invasion by suppression of apolipoprotein E (ApoE) expression, and 2) Cd induces DNA hypermethylation of the regulatory region of the ApoE gene. However, the underlying mechanism(s) as well as other potential genetic participants in the Cd-stimulated invasion are undefined. In the present work, we found that concurrent with enhanced invasion, Cd induced oxidative stress, coupled with the production of oxidative stress-sensitive metallothionein 2A (MT2A), which lead to down-modulation of ten-eleven translocation methylcytosine dioxygenase 1 (TET1: DNA demethylation) in addition to ApoE, without impacting DNA methyltransferases (DNMTs: DNA methylation) levels. Furthermore, the expression of tissue inhibitor of metalloproteinase 2 and 3 (TIMP2 and TIMP3) that are positively regulated by TET1, were decreased by Cd. The genes (ApoE/TET1/TIMP2/TIMP3) suppressed by Cd were further suppressed by hydroquinone (HQ; a reactive oxygen species [ROS] producer), whereas N-acetyl-l-cysteine (NAC; a ROS scavenger) prevented the suppression of their expression by HQ. In addition, NAC reversed their expression suppressed by Cd. Cd-stimulated cell invasion was clearly dampened by NAC in a concentration-dependent manner. Overall these findings suggest that 1) altered TET1 expression and activity together with ApoE are likely involved in the enhanced invasiveness due to Cd exposure, and 2) Cd down-regulation of TET1 likely evokes a reduction in ApoE expression (possible by DNA hypermethylation), and 3) anti-oxidants are effective in abrogation of the enhanced invasiveness that occurs concurrently with Cd-induced malignant transformation.
Collapse
Affiliation(s)
- Masayo Hirao-Suzuki
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University (HIU), 5-1-1 Hiro-koshingai, Kure, Hiroshima, 737-0112, Japan
| | - Shuso Takeda
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University (HIU), 5-1-1 Hiro-koshingai, Kure, Hiroshima, 737-0112, Japan; Laboratory of Molecular Life Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Sanzou 1, Gakuen-cho, Fukuyama, Hiroshima, 729-0292, Japan.
| | - Genki Sakai
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University (HIU), 5-1-1 Hiro-koshingai, Kure, Hiroshima, 737-0112, Japan; Laboratory of Molecular Life Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Sanzou 1, Gakuen-cho, Fukuyama, Hiroshima, 729-0292, Japan
| | | | - Narumi Sugihara
- Laboratory of Molecular Life Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Sanzou 1, Gakuen-cho, Fukuyama, Hiroshima, 729-0292, Japan
| | - Masufumi Takiguchi
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University (HIU), 5-1-1 Hiro-koshingai, Kure, Hiroshima, 737-0112, Japan.
| |
Collapse
|
78
|
HMGB1 Recruits TET2/AID/TDG to Induce DNA Demethylation in STAT3 Promoter in CD4 + T Cells from aGVHD Patients. J Immunol Res 2020; 2020:7165230. [PMID: 33029541 PMCID: PMC7532413 DOI: 10.1155/2020/7165230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/14/2020] [Accepted: 08/31/2020] [Indexed: 11/20/2022] Open
Abstract
STAT3 is highly expressed in aGVHD CD4+ T cells and plays a critical role in inducing or worsening aGVHD. In our preceding studies, DNA hypomethylation in STAT3 promoter was shown to cause high expression of STAT3 in aGVHD CD4+ T cells, and the process could be modulated by HMGB1, but the underlying mechanism remains unclear. TET2, AID, and TDG are indispensable in DNA demethylation; meanwhile, TET2 and AID also serve extremely important roles in immune response. So, we speculated these enzymes involved in the STAT3 promoter hypomethylation induced by HMGB1 in aGVHD CD4+ T cells. In this study, we found that the binding levels of TET2/AID/TDG to STAT3 promoter were remarkably increased in CD4+T cells from aGVHD patients and were significantly negatively correlated with the STAT3 promoter methylation level. Simultaneously, we revealed that HMGB1 could recruit TET2, AID, and TDG to form a complex in the STAT3 promoter region. Interference with the expression of TET2/AID/TDG inhibited the overexpression of STAT3 caused by HMGB1 downregulation of the STAT3 promoter DNA methylation. These data demonstrated a new molecular mechanism of how HMGB1 promoted the expression of STAT3 in CD4+ T cells from aGVHD patients.
Collapse
|
79
|
曹 圆, 许 凯, 陈 玢, 王 奕, 李 炳, 李 朝, 徐 鹏. [Expression of DNMT3b in human bladder cancer tissue and its correlation with clinical prognosis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1295-1300. [PMID: 32990224 PMCID: PMC7544589 DOI: 10.12122/j.issn.1673-4254.2020.09.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To investigate the expression of DNMT3b in human bladder cancer tissues and its correlation with postoperative survival of patients with bladder cancer. METHODS Thirty-eight pairs of surgically resected human bladder cancer tissues and adjacent bladder tissues were detected by immunohistochemistry for DNMT3b expression, and the correlations of DNMT3b expression level were analyzed with the patients'age, gender, pathological grade, tumor size, T stage, lymph node metastasis and TNM stages. Kaplan-Meier survival analysis was performed to assess the effect of DNMT3b expression on survival outcomes of the patients. RESULTS High DNMT3b protein expression was detected in 63.16% of the bladder cancer tissues and in 13.16% of the adjacent tissues (P < 0.05). The expression level of DNMT3b was associated with the pathological grade (P=0.002), tumor size (P < 0.001), T stage (P < 0.001), lymphatic metastasis (P=0.039) and TNM stage (P < 0.001), but not with gender or age of the patients. Multivariate logistic regression analysis showed that the protein expression level of DNMT3b was correlated with tumor size (P=0.008) and TNM grades of the tumor (P=0.042). Kaplan-Meier analysis showed that the patients with a high DNMT3b expression had a significantly shorter overall survival than those with a low DNMT3b expression (P=0.021). CONCLUSIONS DNMT3b overexpression in bladder cancer is closely related to such clinicopathological factors as pathological grade, tumor size, T stage, lymphatic metastasis, and TNM stage and a shorter overall survival of the patients, suggesting the potential value of DNMT3b as a prognostic marker and a new therapeutic target for bladder cancer.
Collapse
Affiliation(s)
- 圆 曹
- />南方医科大学珠江医院泌尿外科,广东 广州 510282Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 凯 许
- />南方医科大学珠江医院泌尿外科,广东 广州 510282Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 玢屾 陈
- />南方医科大学珠江医院泌尿外科,广东 广州 510282Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 奕铭 王
- />南方医科大学珠江医院泌尿外科,广东 广州 510282Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 炳坤 李
- />南方医科大学珠江医院泌尿外科,广东 广州 510282Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 朝明 李
- />南方医科大学珠江医院泌尿外科,广东 广州 510282Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 鹏 徐
- />南方医科大学珠江医院泌尿外科,广东 广州 510282Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| |
Collapse
|
80
|
Tolmacheva EN, Vasilyev SA, Lebedev IN. Aneuploidy and DNA Methylation as Mirrored Features of Early Human Embryo Development. Genes (Basel) 2020; 11:E1084. [PMID: 32957536 PMCID: PMC7564410 DOI: 10.3390/genes11091084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
Genome stability is an integral feature of all living organisms. Aneuploidy is the most common cause of fetal death in humans. The timing of bursts in increased aneuploidy frequency coincides with the waves of global epigenetic reprogramming in mammals. During gametogenesis and early embryogenesis, parental genomes undergo two waves of DNA methylation reprogramming. Failure of these processes can critically affect genome stability, including chromosome segregation during cell division. Abnormal methylation due to errors in the reprogramming process can potentially lead to aneuploidy. On the other hand, the presence of an entire additional chromosome, or chromosome loss, can affect the global genome methylation level. The associations of these two phenomena are well studied in the context of carcinogenesis, but here, we consider the relationship of DNA methylation and aneuploidy in early human and mammalian ontogenesis. In this review, we link these two phenomena and highlight the critical ontogenesis periods and genome regions that play a significant role in human reproduction and in the formation of pathological phenotypes in newborns with chromosomal aneuploidy.
Collapse
Affiliation(s)
- Ekaterina N. Tolmacheva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, 634050 Tomsk, Russia; (S.A.V.); (I.N.L.)
| | | | | |
Collapse
|
81
|
Zeng X, Tsui JCC, Shi M, Peng J, Cao CY, Kan LLY, Lau CPY, Liang Y, Wang L, Liu L, Chen Z, Tsui SKW. Genome-Wide Characterization of Host Transcriptional and Epigenetic Alterations During HIV Infection of T Lymphocytes. Front Immunol 2020; 11:2131. [PMID: 33013899 PMCID: PMC7511662 DOI: 10.3389/fimmu.2020.02131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Background and methods: Host genomic alterations are closely related to dysfunction of CD4+ T lymphocytes in the HIV-host interplay. However, the roles of aberrant DNA methylation and gene expression in the response to HIV infection are not fully understood. We investigated the genome-wide DNA methylation and transcriptomic profiles in two HIV-infected T lymphocyte cell lines using high-throughput sequencing. Results: Based on DNA methylation data, we identified 3,060 hypomethylated differentially methylated regions (DMRs) and 2,659 hypermethylated DMRs in HIV-infected cells. Transcription-factor-binding motifs were significantly associated with methylation alterations, suggesting that DNA methylation modulates gene expression by affecting the binding to transcription factors during HIV infection. In support of this hypothesis, genes with promoters overlapping with DMRs were enriched in the biological function related to transcription factor activities. Furthermore, the analysis of gene expression data identified 1,633 upregulated genes and 2,142 downregulated genes on average in HIV-infected cells. These differentially expressed genes (DEGs) were significantly enriched in apoptosis-related pathways. Our results suggest alternative splicing as an additional mechanism that may contribute to T-cell apoptosis during HIV infection. We also demonstrated a genome-scale correlation between DNA methylation and gene expression in HIV-infected cells. We identified 831 genes with alterations in both DNA methylation and gene expression, which were enriched in apoptosis. Our results were validated using various experimental methods. In addition, consistent with our in silico results, a luciferase assay showed that the activity of the PDX1 and SMAD3 promoters was significantly decreased in the presence of HIV proteins, indicating the potential of these genes as genetic markers of HIV infection. Conclusions: Our results suggest important roles for DNA methylation and gene expression regulation in T-cell apoptosis during HIV infection. We propose a list of novel genes related to these processes for further investigation. This study also provides a comprehensive characterization of changes occurring at the transcriptional and epigenetic levels in T cells in response to HIV infection.
Collapse
Affiliation(s)
- Xi Zeng
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Joseph Chi-Ching Tsui
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Mai Shi
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jie Peng
- Acquired Immunodeficiency Syndrome (AIDS) Institute, The University of Hong Kong, Hong Kong, China
| | - Cyanne Ye Cao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Lea Ling-Yu Kan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Carol Po-Ying Lau
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yonghao Liang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Lingyi Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Liu
- Acquired Immunodeficiency Syndrome (AIDS) Institute, The University of Hong Kong, Hong Kong, China
| | - Zhiwei Chen
- Acquired Immunodeficiency Syndrome (AIDS) Institute, The University of Hong Kong, Hong Kong, China
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
- Centre for Microbial Genomics and Proteomics, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
82
|
Liao Y, Jung SH, Kim T. A-to-I RNA editing as a tuner of noncoding RNAs in cancer. Cancer Lett 2020; 494:88-93. [PMID: 32822814 DOI: 10.1016/j.canlet.2020.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/11/2020] [Accepted: 08/07/2020] [Indexed: 12/26/2022]
Abstract
Recent advancement in RNA technology and computation biology shows the abundance and impact of RNA editing at the genome-wide level. Of RNA editing events, Adenosine-to-inosine (A-to-I) RNA editing is one of the most frequent types of RNA editing catalyzed by ADAR proteins. Indeed, A-to-I RNA editing occurs at the various coding and noncoding regions, triggering abnormal signaling pathways involved in cancer pathogenesis. Noncoding RNAs such as microRNA and long noncoding RNA have emerged as key regulators of pathways in cancer. The RNA editing including A-to-I editing is enriched in noncoding regions because of the abundance of noncoding RNAs accounting for 99% of total transcripts in the human genome. The effects of A-to-I editing in coding genes have been investigated and reported. However, those in noncoding RNAs have been less known in spite of the high frequency of editing events in noncoding regions. In this review, we will briefly discuss current findings and potential directions of A-to-I RNA editing research of noncoding RNAs and cancer. We will also introduce the concept of A-to-I editing, ADAR proteins, RNA editing technologies and databases.
Collapse
Affiliation(s)
- Yuanfan Liao
- Department of Anatomy, Histology and Developmental Biology, Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University, Health Science Center, Shenzhen, 518055, China
| | - Seung Ho Jung
- Applied Neuroscience, Warfighter Interface Division, 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH, 45433, USA; ORISE, Oak Ridge, TN, 37830, USA.
| | - Taewan Kim
- Department of Anatomy, Histology and Developmental Biology, Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University, Health Science Center, Shenzhen, 518055, China; The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
83
|
Wong KK. DNMT1 as a therapeutic target in pancreatic cancer: mechanisms and clinical implications. Cell Oncol (Dordr) 2020; 43:779-792. [PMID: 32504382 DOI: 10.1007/s13402-020-00526-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/09/2020] [Accepted: 04/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pancreatic cancer or pancreatic ductal adenocarcinoma (PDAC) is one of the most devastating cancer types with a 5-year survival rate of only 9%. PDAC is one of the leading causes of cancer-related deaths in both genders. Epigenetic alterations may lead to the suppression of tumor suppressor genes, and DNA methylation is a predominant epigenetic modification. DNA methyltransferase 1 (DNMT1) is required for maintaining patterns of DNA methylation during cellular replication. Accumulating evidence has implicated the oncogenic roles of DNMT1 in various malignancies including PDACs. CONCLUSIONS Herein, the expression profiles, oncogenic roles, regulators and inhibitors of DNMT1 in PDACs are presented and discussed. DNMT1 is overexpressed in PDAC cases compared with non-cancerous pancreatic ducts, and its expression gradually increases from pre-neoplastic lesions to PDACs. DNMT1 plays oncogenic roles in suppressing PDAC cell differentiation and in promoting their proliferation, migration and invasion, as well as in induction of the self-renewal capacity of PDAC cancer stem cells. These effects are achieved via promoter hypermethylation of tumor suppressor genes, including cyclin-dependent kinase inhibitors (e.g., p14, p15, p16, p21 and p27), suppressors of epithelial-mesenchymal transition (e.g., E-cadherin) and tumor suppressor miRNAs (e.g., miR-148a, miR-152 and miR-17-92 cluster). Pre-clinical investigations have shown the potency of novel non-nucleoside DNMT1 inhibitors against PDAC cells. Finally, phase I/II clinical trials of DNMT1 inhibitors (azacitidine, decitabine and guadecitabine) in PDAC patients are currently underway, where these inhibitors have the potential to sensitize PDACs to chemotherapy and immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
84
|
Emperle M, Adam S, Kunert S, Dukatz M, Baude A, Plass C, Rathert P, Bashtrykov P, Jeltsch A. Mutations of R882 change flanking sequence preferences of the DNA methyltransferase DNMT3A and cellular methylation patterns. Nucleic Acids Res 2020; 47:11355-11367. [PMID: 31620784 PMCID: PMC6868496 DOI: 10.1093/nar/gkz911] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/26/2019] [Accepted: 10/02/2019] [Indexed: 02/01/2023] Open
Abstract
Somatic DNMT3A mutations at R882 are frequently observed in AML patients including the very abundant R882H, but also R882C, R882P and R882S. Using deep enzymology, we show here that DNMT3A-R882H has more than 70-fold altered flanking sequence preferences when compared with wildtype DNMT3A. The R882H flanking sequence preferences mainly differ on the 3' side of the CpG site, where they resemble DNMT3B, while 5' flanking sequence preferences resemble wildtype DNMT3A, indicating that R882H behaves like a DNMT3A/DNMT3B chimera. Investigation of the activity and flanking sequence preferences of other mutations of R882 revealed that they cause similar effects. Bioinformatic analyses of genomic methylation patterns focusing on flanking sequence effects after expression of wildtype DNMT3A and R882H in human cells revealed that genomic methylation patterns reflect the details of the altered flanking sequence preferences of R882H. Concordantly, R882H specific hypermethylation in AML patients was strongly correlated with the R882H flanking sequence preferences. R882H specific DNA hypermethylation events in AML patients were accompanied by R882H specific mis-regulation of several genes with strong cancer connection, which are potential downstream targets of R882H. In conclusion, our data provide novel and detailed mechanistic understanding of the pathogenic mechanism of the DNMT3A R882H somatic cancer mutation.
Collapse
Affiliation(s)
- Max Emperle
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Sabrina Adam
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Stefan Kunert
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Michael Dukatz
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Annika Baude
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, 28069120 Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, 28069120 Heidelberg, Germany
| | - Philipp Rathert
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Pavel Bashtrykov
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
85
|
Liu D, Zhao L, Wang Z, Zhou X, Fan X, Li Y, Xu J, Hu S, Niu M, Song X, Li Y, Zuo L, Lei C, Zhang M, Tang G, Huang M, Zhang N, Duan L, Lv H, Zhang M, Li J, Xu L, Kong F, Feng R, Jiang Y. EWASdb: epigenome-wide association study database. Nucleic Acids Res 2020; 47:D989-D993. [PMID: 30321400 PMCID: PMC6323898 DOI: 10.1093/nar/gky942] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/04/2018] [Indexed: 12/29/2022] Open
Abstract
DNA methylation, the most intensively studied epigenetic modification, plays an important role in understanding the molecular basis of diseases. Furthermore, epigenome-wide association study (EWAS) provides a systematic approach to identify epigenetic variants underlying common diseases/phenotypes. However, there is no comprehensive database to archive the results of EWASs. To fill this gap, we developed the EWASdb, which is a part of 'The EWAS Project', to store the epigenetic association results of DNA methylation from EWASs. In its current version (v 1.0, up to July 2018), the EWASdb has curated 1319 EWASs associated with 302 diseases/phenotypes. There are three types of EWAS results curated in this database: (i) EWAS for single marker; (ii) EWAS for KEGG pathway and (iii) EWAS for GO (Gene Ontology) category. As the first comprehensive EWAS database, EWASdb has been searched or downloaded by researchers from 43 countries to date. We believe that EWASdb will become a valuable resource and significantly contribute to the epigenetic research of diseases/phenotypes and have potential clinical applications. EWASdb is freely available at http://www.ewas.org.cn/ewasdb or http://www.bioapp.org/ewasdb.
Collapse
Affiliation(s)
- Di Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Training Center for Students Innovation and Entrepreneurship Education, Harbin Medical University, Harbin, China
| | - Linna Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Training Center for Students Innovation and Entrepreneurship Education, Harbin Medical University, Harbin, China
| | - Zhaoyang Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Training Center for Students Innovation and Entrepreneurship Education, Harbin Medical University, Harbin, China
| | - Xu Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Training Center for Students Innovation and Entrepreneurship Education, Harbin Medical University, Harbin, China
| | - Xiuzhao Fan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Training Center for Students Innovation and Entrepreneurship Education, Harbin Medical University, Harbin, China
| | - Yong Li
- Training Center for Students Innovation and Entrepreneurship Education, Harbin Medical University, Harbin, China
| | - Jing Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Training Center for Students Innovation and Entrepreneurship Education, Harbin Medical University, Harbin, China
| | - Simeng Hu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Training Center for Students Innovation and Entrepreneurship Education, Harbin Medical University, Harbin, China
| | - Miaomiao Niu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Training Center for Students Innovation and Entrepreneurship Education, Harbin Medical University, Harbin, China
| | - Xiuling Song
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Training Center for Students Innovation and Entrepreneurship Education, Harbin Medical University, Harbin, China
| | - Ying Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Training Center for Students Innovation and Entrepreneurship Education, Harbin Medical University, Harbin, China
| | - Lijiao Zuo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Training Center for Students Innovation and Entrepreneurship Education, Harbin Medical University, Harbin, China
| | - Changgui Lei
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Training Center for Students Innovation and Entrepreneurship Education, Harbin Medical University, Harbin, China
| | - Meng Zhang
- Training Center for Students Innovation and Entrepreneurship Education, Harbin Medical University, Harbin, China.,Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Guoping Tang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Min Huang
- Training Center for Students Innovation and Entrepreneurship Education, Harbin Medical University, Harbin, China.,Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Nan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Training Center for Students Innovation and Entrepreneurship Education, Harbin Medical University, Harbin, China
| | - Lian Duan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hongchao Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Mingming Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jin Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Liangde Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Training Center for Students Innovation and Entrepreneurship Education, Harbin Medical University, Harbin, China
| | - Fanwu Kong
- Department of Nephrology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Rennan Feng
- Training Center for Students Innovation and Entrepreneurship Education, Harbin Medical University, Harbin, China.,Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Yongshuai Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Training Center for Students Innovation and Entrepreneurship Education, Harbin Medical University, Harbin, China
| |
Collapse
|
86
|
Structural basis for impairment of DNA methylation by the DNMT3A R882H mutation. Nat Commun 2020; 11:2294. [PMID: 32385248 PMCID: PMC7210271 DOI: 10.1038/s41467-020-16213-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 04/15/2020] [Indexed: 12/18/2022] Open
Abstract
DNA methyltransferase DNMT3A is essential for establishment of mammalian DNA methylation during development. The R882H DNMT3A is a hotspot mutation in acute myeloid leukemia (AML) causing aberrant DNA methylation. However, how this mutation affects the structure and function of DNMT3A remains unclear. Here we report structural characterization of wild-type and R882H-mutated DNMT3A in complex with DNA substrates with different sequence contexts. A loop from the target recognition domain (TRD loop) recognizes the CpG dinucleotides in a +1 flanking site-dependent manner. The R882H mutation reduces the DNA binding at the homodimeric interface, as well as the molecular link between the homodimeric interface and TRD loop, leading to enhanced dynamics of TRD loop. Consistently, in vitro methylation analyses indicate that the R882H mutation compromises the enzymatic activity, CpG specificity and flanking sequence preference of DNMT3A. Together, this study uncovers multiple defects of DNMT3A caused by the R882H mutation in AML. The DNA methyltransferase DNMT3A plays an important role in establishing the DNA methylation patterns during development and deregulation of DNMT3A is associated with hematological cancers, with the R882H mutation the most frequently occurring DNMT3A missense mutation in acute myeloid leukemia. Here, the authors present the crystal structures of wild-type and R882H DNMT3A in complex with different DNA substrates and explain why the R882H mutation compromises the enzymatic activity of DNMT3A.
Collapse
|
87
|
Soave I, Occhiali T, Assorgi C, Marci R, Caserta D. Environmental toxin exposure in polycystic ovary syndrome women and possible ovarian neoplastic repercussion. Curr Med Res Opin 2020; 36:693-703. [PMID: 32046531 DOI: 10.1080/03007995.2020.1729108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Purpose: Over the last two decades, increasing attention has been paid to environmental toxins and their effects on the female reproductive system. Endocrine disrupting chemicals (EDCs) are exogenous substances or mixtures that can mimic the action of steroid hormones and interfere with their metabolism. Advanced glycation end products (AGEs) are proinflammatory molecules that can interact with cell surface receptors and mediate the triggering of proinflammatory pathways and oxidative stress. The purpose of this review is to explore the effects of environmental toxin exposure in the pathogenesis of both polycystic ovary syndrome (PCOS) and OC (ovarian cancer), considered separately, and also to evaluate possible neoplastic ovarian repercussion after exposure in patients diagnosed with PCOS.Materials and methods: We searched PubMed for articles published in the English language with the use of the following MeSH search terms: "polycystic ovary syndrome" and "ovarian cancer" combined with "endocrine disruptors". Titles and abstracts were examined and full articles that met the selection criteria were retrieved. A manual search of review articles and cross-references completed the search.Results: Extensive data from different studies collected in recent years concerning the effects of EDC/AGE exposure have confirmed their role in the pathophysiology of both PCOS and OC. They favor PCOS/OC development through different mechanisms that finally lead to hormonal and metabolic disruption and epigenetic modifications.Conclusions: Environmental toxin exposure in PCOS women could favor neoplastic transformation by exacerbating and potentiating some PCOS features. Further research, although difficult, is needed in order to prevent further diffusion of these substances in the environment, or at least to provide adequate information to the population considered at risk.
Collapse
Affiliation(s)
- Ilaria Soave
- Department of Surgical and Clinical Sciences and Translational Medicine, S. Andrea Hospital, "Sapienza" University of Rome, Rome, Italy
| | - Tommaso Occhiali
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy
| | - Chiara Assorgi
- Department of Surgical and Clinical Sciences and Translational Medicine, S. Andrea Hospital, "Sapienza" University of Rome, Rome, Italy
| | - Roberto Marci
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy
| | - Donatella Caserta
- Department of Surgical and Clinical Sciences and Translational Medicine, S. Andrea Hospital, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
88
|
Liang Z, Zhu Y, Long J, Ye F, Hu G. Both intra and inter-domain interactions define the intrinsic dynamics and allosteric mechanism in DNMT1s. Comput Struct Biotechnol J 2020; 18:749-764. [PMID: 32280430 PMCID: PMC7132064 DOI: 10.1016/j.csbj.2020.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 01/03/2023] Open
Abstract
Dynamics and allosteric potentials of the RFTS domain are proposed. Hinge sites located at the RFTS-CD interface are key regulators for inter-domain interactions. Network analysis reveals local allosteric networks and inter-domain communication pathways in DNMT1. A potential allosteric site at the TRD interface for DNMT1 is identified.
DNA methyltransferase 1 (DNMT1), a large multidomain enzyme, is believed to be involved in the passive transmission of genomic methylation patterns via methylation maintenance. Yet, the molecular mechanism of interaction networks underlying DNMT1 structures, dynamics, and its biological significance has yet to be fully characterized. In this work, we used an integrated computational strategy that combined coarse-grained and atomistic simulations with coevolution information and network modeling of the residue interactions for the systematic investigation of allosteric dynamics in DNMT1. The elastic network modeling has proposed that the high plasticity of RFTS has strengthened the correlated behaviors of DNMT1 structures through the hinge sites located at the RFTS-CD interface, which mediate the collective motions between domains. The perturbation response scanning (PRS) analysis combined with the enrichment analysis of disease mutations have further highlighted the allosteric potential of the RFTS domain. Furthermore, the long-range paths connect the intra-domain interactions through the TRD interface and catalytic interface, emphasizing some key inter-domain interactions as the bridges in the global allosteric regulation of DNMT1. The observed interplay between conserved intra-domain networks and dynamical plasticity encoded by inter-domain interactions provides insights into the intrinsic dynamics and functional evolution, as well as the design of allosteric modulators of DNMT1 based on the TRD interface.
Collapse
Affiliation(s)
- Zhongjie Liang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Yu Zhu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Jie Long
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Fei Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Guang Hu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
89
|
Xu F, Liu Z, Liu R, Lu C, Wang L, Mao W, Zhu Q, Shou H, Zhang K, Li Y, Chu Y, Gu J, Ge D. Epigenetic induction of tumor stemness via the lipopolysaccharide-TET3-HOXB2 signaling axis in esophageal squamous cell carcinoma. Cell Commun Signal 2020; 18:17. [PMID: 32014008 PMCID: PMC6998358 DOI: 10.1186/s12964-020-0510-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/02/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Esophageal squamous cell cancer (ESCC) is one kind of frequent digestive tumor. The inflammatory environment plays an important role in the tumorigenesis and development of ESCC. Cancer stem cells are a small group of tumor cells with stem cell characteristics, which can potentially hinder the tumor management and treatment. METHODS ELISA was performed to detect the lipopolysaccharide concentration in cancer tissues. qPCR, Western blot, FACS, Immunohistochemistry, Immunofluorescence and Dot blot were applied to detect target genes expression. CCK-8, Colony-formation, Transwell, Sphere and Xenograft were conducted to investigate the function of cells, influenced by risk factors. The survival curve was drawn with the Kaplan-Meier product limit estimator. Nano-hmC-Seal-seq was utilized to detect the downstream target of TET3. ChIP-qPCR was adopted to demonstrate the transcriptional regulation of stem cell-associated genes by HOXB2. RESULTS Lipopolysaccharide concentration was significantly up-regulated in ESCC. High concentration of lipopolysaccharide stimulation induced the stemness of ESCC cells. TET3 expression was elevated with lipopolysaccharide stimulation via p38/ERK-MAPK pathway in ESCC and negatively correlated with patients' survival. TET3 induced the stemness of ESCC cells. Nano-hmC-Seal-seq showed that TET3 overexpression led to a significant increase in 5hmC levels of HOXB2 gene region, which was thus identified as the downstream target of TET3. The binding of HOXB2 to NANOG and cMYC was verified by ChIP-qPCR. CONCLUSIONS Lipopolysaccharide served as a tumor promotor in ESCC by inducing cancer cell stemness through the activation of a LPS-TET3-HOXB2 signaling axis, which might provide a novel therapeutic strategy for ESCC. Video Abstract.
Collapse
Affiliation(s)
- Fengkai Xu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Zhonghe Liu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Ronghua Liu
- Key Laboratory of Medical Epigenetics and Metabolism, Institute of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Chunlai Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Lin Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Wei Mao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Qiaoliang Zhu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Huankai Shou
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Kunpeng Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Yin Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Yiwei Chu
- Department of Immunology, Fudan University, Shanghai, People's Republic of China
| | - Jie Gu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| | - Di Ge
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
90
|
Stachecka J, Lemanska W, Noak M, Szczerbal I. Expression of key genes involved in DNA methylation during in vitro differentiation of porcine mesenchymal stem cells (MSCs) into adipocytes. Biochem Biophys Res Commun 2020; 522:811-818. [DOI: 10.1016/j.bbrc.2019.11.175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022]
|
91
|
Yao WQ, Wu F, Zhang W, Chuang SS, Thompson JS, Chen Z, Zhang SW, Clipson A, Wang M, Liu H, Bibawi H, Huang Y, Campos L, Grant JW, Wright P, Ei-Daly H, Rásó-Barnett L, Farkas L, Follows GA, Gao Z, Attygalle AD, Ashton-Key M, Liu W, Du MQ. Angioimmunoblastic T-cell lymphoma contains multiple clonal T-cell populations derived from a common TET2 mutant progenitor cell. J Pathol 2020; 250:346-357. [PMID: 31859368 PMCID: PMC7064999 DOI: 10.1002/path.5376] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/28/2019] [Accepted: 12/12/2019] [Indexed: 02/05/2023]
Abstract
Angioimmunoblastic T‐cell lymphoma (AITL) is a neoplastic proliferation of T follicular helper cells with clinical and histological presentations suggesting a role of antigenic drive in its development. Genetically, it is characterized by a stepwise acquisition of somatic mutations, with early mutations involving epigenetic regulators (TET2, DNMT3A) and occurring in haematopoietic stem cells, with subsequent changes involving signaling molecules (RHOA, VAV1, PLCG1, CD28) critical for T‐cell biology. To search for evidence of potential oncogenic cooperation between genetic changes and intrinsic T cell receptor (TCR) signaling, we investigated somatic mutations and T‐cell receptor β (TRB) rearrangement in 119 AITL, 11 peripheral T‐cell lymphomas with T follicular helper phenotype (PTCL‐TFH), and 25 PTCL‐NOS using Fluidigm polymerase chain reaction (PCR) and Illumina MiSeq sequencing. We confirmed frequent TET2, DNMT3A, and RHOA mutations in AITL (72%, 34%, 61%) and PTCL‐TFH (73%, 36%, 45%) and showed multiple TET2 mutations (2 or 3) in 57% of the involved AITL and PTCL‐TFH. Clonal TRB rearrangement was seen in 76 cases with multiple functional rearrangements (2–4) in 18 cases (24%). In selected cases, we confirmed bi‐clonal T‐cell populations and further demonstrated that these independent T‐cell populations harboured identical TET2 mutations by using BaseScope in situ hybridization, suggesting their derivation from a common TET2 mutant progenitor cell population. Furthermore, both T‐cell populations expressed CD4. Finally, in comparison with tonsillar TFH cells, both AITL and PTCL‐TFH showed a significant overrepresentation of several TRB variable family members, particularly TRBV19*01. Our findings suggest the presence of parallel neoplastic evolutions from a common TET2 mutant haematopoietic progenitor pool in AITL and PTCL‐TFH, albeit to be confirmed in a large series of cases. The biased TRBV usage in these lymphomas suggests that antigenic stimulation may play an important role in predilection of T cells to clonal expansion and malignant transformation. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Wen-Qing Yao
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK.,Department of Pathology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Fangtian Wu
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK.,Department of Haematology, Jiangsu Province Hospital, Nanjing Medical University, Nanjing, PR China
| | - Wenyan Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, PR China
| | | | - Joe S Thompson
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Zi Chen
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Shao-Wei Zhang
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Alexandra Clipson
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ming Wang
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Hongxiang Liu
- Molecular Malignancy Laboratory, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Hani Bibawi
- Molecular Malignancy Laboratory, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Yuanxue Huang
- Molecular Malignancy Laboratory, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Luis Campos
- Department of Histopathology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - John W Grant
- Department of Histopathology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Penny Wright
- Department of Histopathology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Hesham Ei-Daly
- The Haematopathology and Oncology Diagnostic Service, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Lívia Rásó-Barnett
- The Haematopathology and Oncology Diagnostic Service, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Lorant Farkas
- The Haematopathology and Oncology Diagnostic Service, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - George A Follows
- Department of Haematology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Zifen Gao
- Department of Pathology, Health Science Centre, Peking University, Beijing, PR China
| | | | - Margaret Ashton-Key
- Department of Cellular Pathology, Southampton University Hospitals National Health Service Foundation Trust, Southampton, UK
| | - Weiping Liu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Ming-Qing Du
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK.,Molecular Malignancy Laboratory, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.,Department of Histopathology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
92
|
Guo W, Zhang H, Yang A, Ma P, Sun L, Deng M, Mao C, Xiong J, Sun J, Wang N, Ma S, Nie L, Jiang Y. Homocysteine accelerates atherosclerosis by inhibiting scavenger receptor class B member1 via DNMT3b/SP1 pathway. J Mol Cell Cardiol 2020; 138:34-48. [PMID: 31733201 DOI: 10.1016/j.yjmcc.2019.11.145] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/04/2019] [Indexed: 12/25/2022]
Abstract
Homocysteine (Hcy) is an independent risk factor for atherosclerosis, which is characterized by lipid accumulation in the atherosclerotic plaque. Increasing evidence supports that as the main receptor of high-density lipoprotein, scavenger receptor class B member 1 (SCARB1) is protective against atherosclerosis. However, the underlying mechanism regarding it in Hcy-mediated atherosclerosis remains unclear. Here, we found the remarkable inhibition of SCARB1 expression in atherosclerotic plaque and Hcy-treated foam cells, whereas overexpression of SCARB1 can suppress lipid accumulation in foam cells following Hcy treatment. Analysis of SCARB1 promoter showed that no significant change of methylation level was observed both in vivo and in vitro under Hcy treatment. Moreover, it was found that the negative regulation of DNMT3b on SCARB1 was due to the decreased recruitment of SP1 to SCARB1 promoter. Thus, we concluded that inhibition of SCARB1 expression induced by DNMT3b at least partly accelerated Hcy-mediated atherosclerosis through promoting lipid accumulation in foam cells, which was attributed to the decreased binding of SP1 to SCARB1 promoter. In our point, these findings will provide novel insight into an epigenetic mechanism for atherosclerosis.
Collapse
Affiliation(s)
- Wei Guo
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research (NingXia Medical University), Yinchuan, China
| | - Huiping Zhang
- Prenatal Diagnosis Center of Ningxia Medical University General Hospital, Yinchuan, China
| | - Anning Yang
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research (NingXia Medical University), Yinchuan, China
| | - Pengjun Ma
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research (NingXia Medical University), Yinchuan, China
| | - Lei Sun
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research (NingXia Medical University), Yinchuan, China
| | - Mei Deng
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research (NingXia Medical University), Yinchuan, China
| | - Caiyan Mao
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research (NingXia Medical University), Yinchuan, China
| | - Jiantuan Xiong
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jianmin Sun
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Nan Wang
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, China
| | - Shengchao Ma
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research (NingXia Medical University), Yinchuan, China
| | - Lihong Nie
- Department of Physiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yideng Jiang
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research (NingXia Medical University), Yinchuan, China.
| |
Collapse
|
93
|
Functional Analysis of DNMT3A DNA Methyltransferase Mutations Reported in Patients with Acute Myeloid Leukemia. Biomolecules 2019; 10:biom10010008. [PMID: 31861499 PMCID: PMC7022712 DOI: 10.3390/biom10010008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 12/30/2022] Open
Abstract
In mammals, DNA methylation is necessary for the maintenance of genomic stability, gene expression regulation, and other processes. During malignant diseases progression, changes in both DNA methylation patterns and DNA methyltransferase (MTase) genes are observed. Human de novo MTase DNMT3A is most frequently mutated in acute myeloid leukemia (AML) with a striking prevalence of R882H mutation, which has been extensively studied. Here, we investigate the functional role of the missense mutations (S714C, R635W, R736H, R771L, P777R, and F752V) found in the catalytic domain of DNMT3A in AML patients. These were accordingly mutated in the murine Dnmt3a catalytic domain (S124C, R45W, R146H, R181L, P187R, and F162V) and in addition, one-site CpG-containing DNA substrates were used as a model system. The 3–15-fold decrease (S124C and P187R) or complete loss (F162V, R45W, and R146H) of Dnmt3a-CD methylation activity was observed. Remarkably, Pro 187 and Arg 146 are not located at or near the Dnmt3a functional motives. Regulatory protein Dnmt3L did not enhance the methylation activity of R45W, R146H, P187R, and F162V mutants. The key steps of the Dnmt3a-mediated methylation mechanism, including DNA binding and transient covalent intermediate formation, were examined. There was a complete loss of DNA-binding affinity for R45W located in the AdoMet binding region and for R146H. Dnmt3a mutants studied in vitro suggest functional impairment of DNMT3A during pathogenesis.
Collapse
|
94
|
de Azevedo JWV, de Medeiros Fernandes TAA, Fernandes JV, de Azevedo JCV, Lanza DCF, Bezerra CM, Andrade VS, de Araújo JMG, Fernandes JV. Biology and pathogenesis of human osteosarcoma. Oncol Lett 2019; 19:1099-1116. [PMID: 31966039 PMCID: PMC6955653 DOI: 10.3892/ol.2019.11229] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/10/2019] [Indexed: 12/26/2022] Open
Abstract
Osteosarcoma (OS) is a bone tumor of mesenchymal origin, most frequently occurring during the rapid growth phase of long bones, and usually located in the epiphyseal growth plates of the femur or the tibia. Its most common feature is genome disorganization, aneuploidy with chromosomal alterations, deregulation of tumor suppressor genes and of the cell cycle, and an absence of DNA repair. This suggests the involvement of surveillance failures, DNA repair or apoptosis control during osteogenesis, allowing the survival of cells which have undergone alterations during differentiation. Epigenetic events, including DNA methylation, histone modifications, nucleosome remodeling and expression of non-coding RNAs have been identified as possible risk factors for the tumor. It has been reported that p53 target genes or those genes that have their activity modulated by p53, in addition to other tumor suppressor genes, are silenced in OS-derived cell lines by hypermethylation of their promoters. In osteogenesis, osteoblasts are formed from pluripotent mesenchymal cells, with potential for self-renewal, proliferation and differentiation into various cell types. This involves complex signaling pathways and multiple factors. Any disturbance in this process can cause deregulation of the differentiation and proliferation of these cells, leading to the malignant phenotype. Therefore, the origin of OS seems to be multifactorial, involving the deregulation of differentiation of mesenchymal cells and tumor suppressor genes, activation of oncogenes, epigenetic events and the production of cytokines.
Collapse
Affiliation(s)
| | | | | | | | | | - Christiane Medeiros Bezerra
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | - Vânia Sousa Andrade
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | | | - José Veríssimo Fernandes
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| |
Collapse
|
95
|
Wang W, Chen G, Wang B, Yuan Z, Liu G, Niu B, Chen Y, Zhou S, He J, Xue H. Long non-coding RNA BZRAP1-AS1 silencing suppresses tumor angiogenesis in hepatocellular carcinoma by mediating THBS1 methylation. J Transl Med 2019; 17:421. [PMID: 31847842 PMCID: PMC6916030 DOI: 10.1186/s12967-019-02145-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer associated with a high mortality. Long non-coding RNAs (lncRNAs) have recently emerged as regulators in the development and progression of several cancers, and therefore represent an opportunity to uncover new targets for therapy. In the present study, we aimed to investigate the potential effect of lncRNA BZRAP1-AS1 on the angiogenesis of HCC. METHODS Microarray-based data analysis was initially employed to screen genes and lncRNAs that are differentially expressed in HCC and the candidate BZRAP1-AS1 was identified as a hit. The expression of BZRAP1-AS1 and thrombospondin-1 (THBS1) in HCC tissues and cells were then determined using RT-qPCR. The gene methylation level was measured by methylation-specific PCR (MSP) and bisulfite sequencing PCR (BSP) assays. Next, the interactions between BZRAP1-AS1, DNA methyltransferase 3B (DNMT3b), and THBS1 were assessed by RIP, RNA pull-down and ChIP assays. Finally, the roles of BZRAP1-AS1, DNMT3b and THBS1 in angiogenesis in vitro as well as tumorigenesis in vivo were evaluated by a battery of the gain- and loss-of function experiments. RESULTS BZRAP1-AS1 was identified as a highly expressed lncRNA in HCC tissues and cells. Down-regulation of BZRAP1-AS1 in HCC cells inhibited HUVEC proliferation, migration and angiogenesis. By interacting with DNMT3b, BZRAP1-AS1 induced methylation of the THBS1 promoter and inhibited the transcription of THBS1, resulting in promoted angiogenesis of HUVECs. Moreover, silencing of BZRAP1-AS1 repressed the angiogenesis as well as the tumor growth of HCC in vivo via up-regulating THBS1. CONCLUSION This study provides evidence that angiogenesis in HCC is hindered by silencing of BZRAP1-AS1. Thus, BZRAP1-AS1 may be a promising marker for the treatment of HCC.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular/blood supply
- Carcinoma, Hepatocellular/genetics
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Cell Proliferation
- Chickens
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- DNA Methylation/genetics
- Down-Regulation/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- Human Umbilical Vein Endothelial Cells/metabolism
- Humans
- Liver Neoplasms/blood supply
- Liver Neoplasms/genetics
- Male
- Mice, Nude
- Middle Aged
- Models, Biological
- Neovascularization, Pathologic/genetics
- Promoter Regions, Genetic
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Thrombospondin 1/metabolism
- DNA Methyltransferase 3B
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Hepatobiliary Surgery, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, No. 7, Weiwu Road, Jinshui District, Zhengzhou, 450003 People’s Republic of China
| | - Guoyong Chen
- Department of Hepatobiliary Surgery, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, No. 7, Weiwu Road, Jinshui District, Zhengzhou, 450003 People’s Republic of China
| | - Bing Wang
- Department of Hepatobiliary Surgery, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, No. 7, Weiwu Road, Jinshui District, Zhengzhou, 450003 People’s Republic of China
| | - Zhenhua Yuan
- Department of Hepatobiliary Surgery, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, No. 7, Weiwu Road, Jinshui District, Zhengzhou, 450003 People’s Republic of China
| | - Guangbo Liu
- Department of Hepatobiliary Surgery, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, No. 7, Weiwu Road, Jinshui District, Zhengzhou, 450003 People’s Republic of China
| | - Biao Niu
- Department of Hepatobiliary Surgery, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, No. 7, Weiwu Road, Jinshui District, Zhengzhou, 450003 People’s Republic of China
| | - Yongfeng Chen
- Department of Hepatobiliary Surgery, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, No. 7, Weiwu Road, Jinshui District, Zhengzhou, 450003 People’s Republic of China
| | - Shaotang Zhou
- Department of Hepatobiliary Surgery, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, No. 7, Weiwu Road, Jinshui District, Zhengzhou, 450003 People’s Republic of China
| | - Junchuang He
- Department of Hepatobiliary Surgery, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, No. 7, Weiwu Road, Jinshui District, Zhengzhou, 450003 People’s Republic of China
| | - Huanzhou Xue
- Department of Hepatobiliary Surgery, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, No. 7, Weiwu Road, Jinshui District, Zhengzhou, 450003 People’s Republic of China
| |
Collapse
|
96
|
Dolen EK, McGinnis JH, Tavory RN, Weiss JA, Switzer RL. Disease-Associated Mutations G589A and V590F Relieve Replication Focus Targeting Sequence-Mediated Autoinhibition of DNA Methyltransferase 1. Biochemistry 2019; 58:5151-5159. [PMID: 31804802 DOI: 10.1021/acs.biochem.9b00749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In eukaryotes, the most common epigenetic DNA modification is methylation of carbon 5 of cytosines, predominantly in CpG dinucleotides. Methylation patterns are established and maintained by a family of proteins known as DNA methyltransferases (DNMTs). DNA methylation is an important epigenetic mark associated with gene repression, and disruption of the normal DNA methylation pattern is known to play a role in several disease states. Methylation patterns are primarily maintained by DNMT1, which possesses specificity for methylation of hemimethylated DNA. DNMT1 is a multidomain protein with a C-terminal catalytic methyltransferase domain and a large N-terminal regulatory region. The replication focus targeting sequence (RFTS) domain, found in the regulatory region, is an endogenous inhibitor of DNMT1 activity. Recently, several mutations in the RFTS domain were shown to be causal for two adult onset neurodegenerative diseases; however, little is known about the impact of these mutations on the structure and function of DNMT1. Two of these mutations, G589A and V590F, are associated with development of autosomal dominant cerebellar ataxia, deafness, and narcolepsy (ADCA-DN). We have successfully expressed and purified G589A and V590F DNMT1 for in vitro studies. The mutations significantly decrease the thermal stability of DNMT1, yet the mutant proteins exhibit 2.5-3.5-fold increases in DNA binding affinity. In addition, the mutations weaken RFTS-mediated inhibition of DNA methylation activity. Taken together, these data suggest these disease-associated mutations decrease protein stability and, at least partially, relieve normal RFTS-mediated autoinhibition of DNMT1.
Collapse
Affiliation(s)
- Emma K Dolen
- Department of Chemistry , Bucknell University , Lewisburg , Pennsylvania 17837 , United States
| | - James H McGinnis
- Program in Cell Biology/Biochemistry , Bucknell University , Lewisburg , Pennsylvania 17837 , United States
| | - Rachel N Tavory
- Program in Cell Biology/Biochemistry , Bucknell University , Lewisburg , Pennsylvania 17837 , United States
| | - Jill A Weiss
- Program in Cell Biology/Biochemistry , Bucknell University , Lewisburg , Pennsylvania 17837 , United States
| | - Rebecca L Switzer
- Department of Chemistry , Bucknell University , Lewisburg , Pennsylvania 17837 , United States
| |
Collapse
|
97
|
Mo HY, An CH, Choi EJ, Yoo NJ, Lee SH. Somatic mutation and loss of expression of a candidate tumor suppressor gene TET3 in gastric and colorectal cancers. Pathol Res Pract 2019; 216:152759. [PMID: 31859118 DOI: 10.1016/j.prp.2019.152759] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/10/2019] [Accepted: 11/22/2019] [Indexed: 12/16/2022]
Abstract
Ten-eleven translocation 3 (TET3) is responsible for the DNA methylation and plays an important role in regulation of the gene expression. TET2, another TET, is frequently mutated in hematologic malignancies and considered a driver gene for leukemogenesis. TET3 mRNA downregulation has been identified in many solid cancers, suggesting its role as a candidate tumor suppressor gene (TSG). However, somatic inactivating mutation and protein expression in solid cancers are largely unknown. The aim of our study was to find whether TET3 gene was mutated and expressionally altered in gastric (GC) and colorectal cancers (CRC). TET3 gene possesses mononucleotide repeats in the coding sequence that could be mutated in cancers with high microsatellite instability (MSI-H). We analyzed 79 GCs and 124 CRCs, and found that GCs (2.9 %) and CRCs (7.6 %) with MSI-H, but not those with microsatellite stable/low MSI (MSS), harbored frameshift mutations within the repeats. In immunohistochemistry, loss of TET3 expression was identified in 32 % of GCs and 28 % of CRCs. Positive TET3 immunostaining in MSI-H cancers with TET3 frameshift mutation (1/7) was significantly lower than that without TET3 frameshift mutations (75/110). Our data may indicate TET3 harbored not only frameshift mutation but also loss of expression, which together could play a role in tumorigenesis of GC and CRC with MSI-H by inhibiting TSG functions of TET3.
Collapse
Affiliation(s)
- Ha Yoon Mo
- Departments of Pathology, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Chang Hyeok An
- General Surgery, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Eun Ji Choi
- Departments of Pathology, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Nam Jin Yoo
- Departments of Pathology, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Sug Hyung Lee
- Departments of Pathology, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea.
| |
Collapse
|
98
|
DNA methylation directs microRNA biogenesis in mammalian cells. Nat Commun 2019; 10:5657. [PMID: 31827083 PMCID: PMC6906426 DOI: 10.1038/s41467-019-13527-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/28/2019] [Indexed: 12/19/2022] Open
Abstract
MicroRNA (miRNA) biogenesis initiates co-transcriptionally, but how the Microprocessor machinery pinpoints the locations of short precursor miRNA sequences within long flanking regions of the transcript is not known. Here we show that miRNA biogenesis depends on DNA methylation. When the regions flanking the miRNA coding sequence are highly methylated, the miRNAs are more highly expressed, have greater sequence conservation, and are more likely to drive cancer-related phenotypes than miRNAs encoded by unmethylated loci. We show that the removal of DNA methylation from miRNA loci leads to their downregulation. Further, we found that MeCP2 binding to methylated miRNA loci halts RNA polymerase II elongation, leading to enhanced processing of the primary miRNA by Drosha. Taken together, our data reveal that DNA methylation directly affects miRNA biogenesis.
Collapse
|
99
|
Guo M, Peng Y, Gao A, Du C, Herman JG. Epigenetic heterogeneity in cancer. Biomark Res 2019; 7:23. [PMID: 31695915 PMCID: PMC6824025 DOI: 10.1186/s40364-019-0174-y] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
Phenotypic and functional heterogeneity is one of the hallmarks of human cancers. Tumor genotype variations among tumors within different patients are known as interpatient heterogeneity, and variability among multiple tumors of the same type arising in the same patient is referred to as intra-patient heterogeneity. Subpopulations of cancer cells with distinct phenotypic and molecular features within a tumor are called intratumor heterogeneity (ITH). Since Nowell proposed the clonal evolution of tumor cell populations in 1976, tumor heterogeneity, especially ITH, was actively studied. Research has focused on the genetic basis of cancer, particularly mutational activation of oncogenes or inactivation of tumor-suppressor genes (TSGs). The phenomenon of ITH is commonly explained by Darwinian-like clonal evolution of a single tumor. Despite the monoclonal origin of most cancers, new clones arise during tumor progression due to the continuous acquisition of mutations. It is clear that disruption of the "epigenetic machinery" plays an important role in cancer development. Aberrant epigenetic changes occur more frequently than gene mutations in human cancers. The epigenome is at the intersection of the environment and genome. Epigenetic dysregulation occurs in the earliest stage of cancer. The current trend of epigenetic therapy is to use epigenetic drugs to reverse and/or delay future resistance to cancer therapies. A majority of cancer therapies fail to achieve durable responses, which is often attributed to ITH. Epigenetic therapy may reverse drug resistance in heterogeneous cancer. Complete understanding of genetic and epigenetic heterogeneity may assist in designing combinations of targeted therapies based on molecular information extracted from individual tumors.
Collapse
Affiliation(s)
- Mingzhou Guo
- 1Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, 40 Daxue Road, Zhengzhou, Henan 450052 China
| | - Yaojun Peng
- 1Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - Aiai Gao
- 1Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - Chen Du
- 1Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - James G Herman
- 3The Hillman Cancer Center, University of Pittsburgh Cancer Institute, 5117 Centre Ave., Pittsburgh, PA 15213 USA
| |
Collapse
|
100
|
Cao LQ, Yang XW, Chen YB, Zhang DW, Jiang XF, Xue P. Exosomal miR-21 regulates the TETs/PTENp1/PTEN pathway to promote hepatocellular carcinoma growth. Mol Cancer 2019; 18:148. [PMID: 31656200 PMCID: PMC6815431 DOI: 10.1186/s12943-019-1075-2] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023] Open
Abstract
Background As an important means of communication, exosomes play an important role in the development of hepatocellular carcinoma (HCC). Methods Bioinformatics analysis, dual-luciferase reporter assays, methylation-specific quantitative PCR, and ChIP-PCR analysis were used to gain insight into the underlying mechanism of miR-21 in HCC. Results The detection of miRNAs in exosomes of HCC showed that miR-21 expression in exosomes was positively correlated with the expression level of miR-21 in cells and negatively correlated with the expression of its target genes PTEN, PTENp1 and TETs. HCC cell-derived exosomes could increase miR-21 and p-Akt expression in HCC cells and downregulate the expression of PTEN, PTENp1 and TETs. MiR-21 inhibitors or PTENp1 overexpression vectors could weaken the effect of the abovementioned exosomes and simultaneously weaken their role in promoting cell proliferation and migration and inhibiting apoptosis. Further studies showed that miR-21 not only directly regulated the expression of PTEN, PTENp1 and TETs but also increased the methylation level of the PTENp1 promoter by regulating the expression of TETs, thereby inhibiting the expression of PTENp1 and further downregulating the expression of PTEN. Conclusions Exosomal miR-21 can regulate the expression of the tumor suppressor genes PTEN and PTENp1 in various ways and affect the growth of HCC cells.
Collapse
Affiliation(s)
- Liang-Qi Cao
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, 250# Changgang East Road, Haizhu District, Guangzhou, 510260, People's Republic of China.
| | - Xue-Wei Yang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, 250# Changgang East Road, Haizhu District, Guangzhou, 510260, People's Republic of China
| | - Yu-Bin Chen
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, 250# Changgang East Road, Haizhu District, Guangzhou, 510260, People's Republic of China
| | - Da-Wei Zhang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, 250# Changgang East Road, Haizhu District, Guangzhou, 510260, People's Republic of China
| | - Xiao-Feng Jiang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, 250# Changgang East Road, Haizhu District, Guangzhou, 510260, People's Republic of China
| | - Ping Xue
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, 250# Changgang East Road, Haizhu District, Guangzhou, 510260, People's Republic of China
| |
Collapse
|