51
|
Kirkland TN, Fierer J. Innate Immune Receptors and Defense Against Primary Pathogenic Fungi. Vaccines (Basel) 2020; 8:E303. [PMID: 32545735 PMCID: PMC7350247 DOI: 10.3390/vaccines8020303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
The innate immune system is critical for natural resistance to all pathogenic microorganisms, including fungi. The innate response plays a vital role in resistance to infections before the antigen-specific immune response and also influences antigen-specific adaptive immunity. There are many different receptors for the innate immune response to fungi, and some receptors have been found to play a significant role in the response to human infections with opportunistic fungi. Most human infections are caused by opportunistic fungi, but a small number of organisms are capable of causing infections in normal hosts. The primary pathogenic fungi that cause invasive infections include Blastomyces spp., Cryptococcus gattii, Coccidioides spp., Histoplasma spp., and Paracoccidioides spp. In this review of innate immune receptors that play a role in infections caused by these organisms, we find that innate immunity differs between organisms.
Collapse
Affiliation(s)
- Theo N. Kirkland
- Division of Infectious Diseases, Departments of Pathology and Medicine, School of Medicine, University of California San Diego, San Diego, CA 92037, USA;
| | - Joshua Fierer
- Division of Infectious Diseases, Departments of Pathology and Medicine, School of Medicine, University of California San Diego, San Diego, CA 92037, USA;
- VA HealthCare San Diego, San Diego, CA 92161, USA
| |
Collapse
|
52
|
Xu J, Neal LM, Ganguly A, Kolbe JL, Hargarten JC, Elsegeiny W, Hollingsworth C, He X, Ivey M, Lopez R, Zhao J, Segal B, Williamson PR, Olszewski MA. Chemokine receptor CXCR3 is required for lethal brain pathology but not pathogen clearance during cryptococcal meningoencephalitis. SCIENCE ADVANCES 2020; 6:eaba2502. [PMID: 32596454 PMCID: PMC7299622 DOI: 10.1126/sciadv.aba2502] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 05/04/2020] [Indexed: 05/22/2023]
Abstract
Cryptococcal meningoencephalitis (CM) is the major cause of infection-related neurological death, typically seen in immunocompromised patients. However, T cell-driven inflammatory response has been increasingly implicated in lethal central nervous system (CNS) immunopathology in human patients and murine models. Here, we report marked up-regulation of the chemokine receptor CXCR3 axis in human patients and mice with CM. CXCR3 deletion in mice improves survival, diminishes neurological deficits, and limits neuronal damage without suppressing fungal clearance. CD4+ T cell accumulation and TH1 skewing are reduced in the CNS but not spleens of infected CXCR3-/- mice. Adoptive transfer of WT, but not CXCR3-/- CD4+ T cells, into CXCR3-/- mice phenocopies the pathology of infected WT mice. Collectively, we found that CXCR3+CD4+ T cells drive lethal CNS pathology but are not required for fungal clearance during CM. The CXCR3 pathway shows potential as a therapeutic target or for biomarker discovery to limit CNS inflammatory damages.
Collapse
Affiliation(s)
- Jintao Xu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
- Research Service, Ann Arbor VA Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, USA
| | - Lori M. Neal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
- Research Service, Ann Arbor VA Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, USA
| | - Anutosh Ganguly
- Research Service, Ann Arbor VA Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, USA
| | - Jessica L. Kolbe
- Research Service, Ann Arbor VA Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, USA
| | - Jessica C. Hargarten
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Waleed Elsegeiny
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Christopher Hollingsworth
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Xiumiao He
- School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi, China
| | - Mike Ivey
- Research Service, Ann Arbor VA Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, USA
| | - Rafael Lopez
- Research Service, Ann Arbor VA Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, USA
| | - Jessica Zhao
- Research Service, Ann Arbor VA Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, USA
| | - Benjamin Segal
- Department of Neurology and Neurological Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
| | - Peter R. Williamson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Michal A. Olszewski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
- Research Service, Ann Arbor VA Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, USA
| |
Collapse
|
53
|
Li D, She X, Calderone R. The antifungal pipeline: the need is established. Are there new compounds? FEMS Yeast Res 2020; 20:5827531. [DOI: 10.1093/femsyr/foaa023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 04/28/2020] [Indexed: 12/19/2022] Open
Abstract
ABSTRACT
Our review summarizes and compares the temporal development (eras) of antifungal drug discovery as well as antibacterial ventures. The innovation gap that occurred in antibacterial discovery from 1960 to 2000 was likely due to tailoring of existing compounds to have better activity than predecessors. Antifungal discovery also faced innovation gaps. The semi-synthetic antibiotic era was followed closely by the resistance era and the heightened need for new compounds and targets. With the immense contribution of comparative genomics, antifungal targets became part of the discovery focus. These targets by definition are absolutely required to be fungal- or even lineage (clade) specific. Importantly, targets need to be essential for growth and/or have important roles in disease and pathogenesis. Two types of antifungals are discussed that are mostly in the FDA phase I–III clinical trials. New antifungals are either modified to increase bioavailability and stability for instance, or are new compounds that inhibit new targets. One of the important developments in incentivizing new antifungal discovery has been the prolific number of publications of global and country-specific incidence. International efforts that champion global antimicrobial drug discovery are discussed. Still, interventions are needed. The current pipeline of antifungals and alternatives to antifungals are discussed including vaccines.
Collapse
Affiliation(s)
- Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Georgetown University, NW 302 Med Dent Building, 3900 Reservoir Rd NW, Washington, DC 20057, USA
| | - Xiaodong She
- Jiangsu Key laboratory of Molecular Biology for Skin Disease and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS), Nanjing 210029, China
| | - Richard Calderone
- Department of Microbiology and Immunology, Georgetown University Medical Center, Georgetown University, NW 302 Med Dent Building, 3900 Reservoir Rd NW, Washington, DC 20057, USA
| |
Collapse
|
54
|
Safaei S, Rezvan H, Fateh R, Khalifeh Gholi M. Immunogenicity of the Recombinant Cryptococcus neoformans HSP70, a Potential Candidate for Developing an ELISA Kit. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2020. [DOI: 10.29252/jommid.8.2.60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
55
|
Human IgM Inhibits the Formation of Titan-Like Cells in Cryptococcus neoformans. Infect Immun 2020; 88:IAI.00046-20. [PMID: 31988178 DOI: 10.1128/iai.00046-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
Human studies have shown associations between cryptococcal meningitis and reduced IgM memory B cell levels, and studies in IgM- and/or B cell-deficient mice have demonstrated increased Cryptococcus neoformans dissemination from lungs to brain. Since immunoglobulins are part of the immune milieu that C. neoformans confronts in a human host, and its ability to form titan cells is an important virulence mechanism, we determined the effect of human immunoglobulins on C. neoformans titan cell formation in vitro (i) Fluorescence microscopy showed normal human IgG and IgM bind C. neoformans (ii) C. neoformans grown in titan cell-inducing medium with IgM, not IgG, inhibited titan-like cell formation. (iii) Absorption of IgM with laminarin or curdlan (branched and linear 1-3-beta-d-glucans, respectively) decreased this effect. (iv) Transmission electron microscopy revealed that cells grown with IgM had small capsules and unique features not seen with cells grown with IgG. (v) Comparative transcriptional analysis of cell wall, capsule, and stress response genes showed that C. neoformans grown with IgM, not IgG or phosphate-buffered saline (PBS), had decreased expression of chitin synthetase, CHS1, CHS2, and CHS8, and genes encoding cell wall carbohydrate synthetases α-1-3-glucan (AGS1) and β-1,3-glucan (FKS1). IgM also decreased expression of RIM101 and HOG1, genes encoding central regulators of C. neoformans stress response pathways and cell morphogenesis. Our data show human IgM affects C. neoformans morphology in vitro and suggest that the hypothesis that human immunoglobulins may affect C. neoformans virulence in vivo warrants further investigation.
Collapse
|
56
|
Omar Faruk SM, Hazra I, Mondal S, Datta A, Moitra S, Das PK, Mishra R, Chaudhuri S. T11TS immunotherapy potentiates the repressed calcineurin-NFAT signalling pathway of T cells in Cryptococcus neoformans infected rats: a cue towards T-cell activation for antifungal immunity. J Appl Microbiol 2020; 129:753-767. [PMID: 32145053 DOI: 10.1111/jam.14631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/16/2020] [Accepted: 03/02/2020] [Indexed: 12/24/2022]
Abstract
AIMS To examine the modulation of the interacting partners of the calcineurin (CaN)-NFAT pathway in T cells during Cryptococcus neoformans fungal infection and post-T11TS immunotherapy. METHODS AND RESULTS Wistar rats were infected with C. neoformans and followed by immunotherapy with immune-potentiator T11TS. T cells were analysed by flow cytometry, immunoblotting and nuclear translocation study. The signalling proteins LCK, FYN, LAT, PLCγ1 and CaN in T cells were regulated by C. neoformans infection resulting in reduced nuclear translocation of NFAT and IL-2 expression. Following T11TS immunotherapy, the expressions of the above-mentioned proteins were boosted and thus resulting in the clearance of C. neoformans from lung and spleen. CONCLUSIONS The precise mechanism of suppression of the T-cell function by C. neoformans is still unknown. Previously, we have shown that T11TS positively regulates the function of T cells to abrogate glioma and other immunosuppressive conditions. T11TS immunotherapy increased the expression of the above signalling partners of the CaN-NFAT pathway in T cells and improved nuclear retention of NFAT. As a result, an increased IL-2 expression leads to activation and proliferation of T cells. SIGNIFICANCE AND IMPACT OF THE STUDY Our results demonstrate the role of T11TS in restoring the CaN-NFAT signalling pathway in T cells. It identifies T11TS as an immunotherapeutic agent with potential clinical outcomes to counteract C. neoformans infection.
Collapse
Affiliation(s)
- S M Omar Faruk
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, West Bengal, India.,Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - I Hazra
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, West Bengal, India
| | - S Mondal
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, West Bengal, India
| | - A Datta
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, West Bengal, India
| | - S Moitra
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, West Bengal, India
| | - P K Das
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, West Bengal, India
| | - R Mishra
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - S Chaudhuri
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, West Bengal, India
| |
Collapse
|
57
|
Abstract
The respiratory tract is tasked with responding to a constant and vast influx of foreign agents. It acts as an important first line of defense in the innate immune system and as such plays a crucial role in preventing the entry of invading pathogens. While physical barriers like the mucociliary escalator exert their effects through the clearance of these pathogens, diverse and dynamic cellular mechanisms exist for the activation of the innate immune response through the recognition of pathogen-associated molecular patterns (PAMPs). These PAMPs are recognized by pattern recognition receptors (PRRs) that are expressed on a number of myeloid cells such as dendritic cells, macrophages, and neutrophils found in the respiratory tract. C-type lectin receptors (CLRs) are PRRs that play a pivotal role in the innate immune response and its regulation to a variety of respiratory pathogens such as viruses, bacteria, and fungi. This chapter will describe the function of both activating and inhibiting myeloid CLRs in the recognition of a number of important respiratory pathogens as well as the signaling events initiated by these receptors.
Collapse
|
58
|
Merchant R, Doctor P, Varaiya A. Molecular basis of susceptibility and protection from microbial infections. CLINICAL MOLECULAR MEDICINE 2020:403-421. [DOI: 10.1016/b978-0-12-809356-6.00023-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
59
|
Fungal dissemination is limited by liver macrophage filtration of the blood. Nat Commun 2019; 10:4566. [PMID: 31594939 PMCID: PMC6783440 DOI: 10.1038/s41467-019-12381-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 08/16/2019] [Indexed: 12/14/2022] Open
Abstract
Fungal dissemination into the bloodstream is a critical step leading to invasive fungal infections. Here, using intravital imaging, we show that Kupffer cells (KCs) in the liver have a prominent function in the capture of circulating Cryptococcus neoformans and Candida albicans, thereby reducing fungal dissemination to target organs. Complement C3 but not C5, and complement receptor CRIg but not CR3, are involved in capture of C. neoformans. Internalization of C. neoformans by KCs is subsequently mediated by multiple receptors, including CR3, CRIg, and scavenger receptors, which work synergistically along with C5aR signaling. Following phagocytosis, the growth of C. neoformans is inhibited by KCs in an IFN-γ independent manner. Thus, the liver filters disseminating fungi from circulation via KCs, providing a mechanistic explanation for the enhanced risk of cryptococcosis among individuals with liver diseases, and suggesting a therapeutic strategy to prevent fungal dissemination through enhancing KC functions. Patients with liver diseases are at increased risk of fungal infections. Here the authors show that Kupffer cells are critical for the filtration of fungi out of the blood and thereby for liver-mediated protection against disseminating fungal infection.
Collapse
|
60
|
Guess TE, Rosen J, Castro-Lopez N, Wormley FL, McClelland EE. An inherent T cell deficit in healthy males to C. neoformans infection may begin to explain the sex susceptibility in incidence of cryptococcosis. Biol Sex Differ 2019; 10:44. [PMID: 31477151 PMCID: PMC6720413 DOI: 10.1186/s13293-019-0258-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
Background Cryptococcus neoformans, the causative agent of cryptococcosis, causes ~ 181,000 deaths annually, with males having a higher incidence of disease than females (7M:3F). The reason for this sex bias remains unclear. We hypothesized that this disparity was due to biological differences between the male and female immune response. Methods Peripheral blood mononuclear cells (PBMCs) from healthy donors were isolated and infected with C. neoformans ± exogenous testosterone or 17-β-estradiol. C. neoformans, B, T, and NK cell proliferation was quantified by flow cytometry. Cytokine analysis was conducted via protein array or ELISA. Serological testing was conducted to determine previous exposure to C. neoformans. Results C. neoformans proliferated more in male PBMCs. T cell percentages in both sexes were lower in infected versus uninfected cells. Male PBMCs had lower CD3+, CD4+, and CD8+ T cells percentages during infection compared to females. Cytokine profiles showed differences in uninfected male and female PBMCs, which subsided during infection. Only one donor was sero-negative for prior C. neoformans exposure. There was an effect of estrogen in one dataset. Conclusions These results suggest that males show an inherent deficit in T cell response during infection, which may contribute to the increased incidence of disease in males. Electronic supplementary material The online version of this article (10.1186/s13293-019-0258-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tiffany E Guess
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| | - Joseph Rosen
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| | - Natalia Castro-Lopez
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA.,South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Floyd L Wormley
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA.,South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Erin E McClelland
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA.
| |
Collapse
|
61
|
Fa Z, Xu J, Yi J, Sang J, Pan W, Xie Q, Yang R, Fang W, Liao W, Olszewski MA. TNF-α-Producing Cryptococcus neoformans Exerts Protective Effects on Host Defenses in Murine Pulmonary Cryptococcosis. Front Immunol 2019; 10:1725. [PMID: 31404168 PMCID: PMC6677034 DOI: 10.3389/fimmu.2019.01725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
Tumor necrosis factor alpha (TNF-α) plays a critical role in the control of cryptococcal infection, and its insufficiency promotes cryptococcal persistence. To explore the therapeutic potential of TNF-α supplementation as a booster of host anti-cryptococcal responses, we engineered a C. neoformans strain expressing murine TNF-α. Using a murine model of pulmonary cryptococcosis, we demonstrated that TNF-α-producing C. neoformans strain enhances protective elements of host response including preferential T-cell accumulation and improved Th1/Th2 cytokine balance, diminished pulmonary eosinophilia and alternative activation of lung macrophages at the adaptive phase of infection compared to wild type strain-infected mice. Furthermore, TNF-α expression by C. neoformans enhanced the fungicidal activity of macrophages in vitro. Finally, mice infected with the TNF-α-producing C. neoformans strain showed improved fungal control and considerably prolonged survival compared to wild type strain-infected mice, but could not induce sterilizing immunity. Taken together, our results support that TNF-α expression by an engineered C. neoformans strain while insufficient to drive complete immune protection, strongly enhanced protective responses during primary cryptococcal infection.
Collapse
Affiliation(s)
- Zhenzong Fa
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, United States.,Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China.,Department of Dermatology, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Jintao Xu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, United States.,Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, MI, United States
| | - Jiu Yi
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Junjun Sang
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Weihua Pan
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qun Xie
- Department of Anesthesiology, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Runping Yang
- Department of Dermatology, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Wei Fang
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wanqing Liao
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Michal A Olszewski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, United States.,Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, MI, United States
| |
Collapse
|
62
|
Zarakas MA, Desai JV, Chamilos G, Lionakis MS. Fungal Infections with Ibrutinib and Other Small-Molecule Kinase Inhibitors. CURRENT FUNGAL INFECTION REPORTS 2019; 13:86-98. [PMID: 31555394 DOI: 10.1007/s12281-019-00343-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Purpose of review Small molecule kinase inhibitors (SMKIs) have revolutionized the management of malignant and autoimmune disorders. Emerging clinical reports point toward an increased risk for invasive fungal infections (IFIs) in patients treated with certain SMKIs. In this mini-review, we highlight representative examples of SMKIs that have been associated with or are expected to give rise to IFIs. Recent findings The clinical use of the Bruton's tyrosine kinase inhibitor ibrutinib as well as other FDA-approved SMKIs has been associated with IFIs. The fungal infection susceptibility associated with the clinical use of certain SMKIs underscores their detrimental effects on innate and adaptive antifungal immune responses. Summary The unprecedented development and clinical use of SMKIs is expected to give rise to an expansion of iatrogenic immunosuppressive factors predisposing to IFIs (and other opportunistic infections). Beyond increased clinical surveillance, better understanding of the pathogenesis of SMKI-associated immune dysregulation should help devising improved risk stratification and prophylaxis strategies in vulnerable patients.
Collapse
Affiliation(s)
- Marissa A Zarakas
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jigar V Desai
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Georgios Chamilos
- Department of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Greece, and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 71300, Heraklion, Crete, Greece
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
63
|
Abstract
This essay is written from the vantage point of the microbial world. While the focus of much thought in the microbial pathogenesis and infectious diseases fields has been on the impact of host-microbe interaction on the host, here we ask questions about what happens to the microbe. This essay is written from the vantage point of the microbial world. While the focus of much thought in the microbial pathogenesis and infectious diseases fields has been on the impact of host-microbe interaction on the host, here we ask questions about what happens to the microbe. What are the costs and benefits for microbes of having the capacity for virulence? Our exploration of this topic leads us to conclude that virulence confers very few benefits for microbes, unless disease is necessary for microbial survival through host-to-host spread. In fact, the capacity for virulence is often fraught with risk for microbes, including host dependence and the threat of extinction. The costs of virulence may explain why, relative to their enormous numbers in nature, very few microbes are actually associated with human and animal disease.
Collapse
|
64
|
Quintero O, Trachuk P, Lerner MZ, Sarungbam J, Pirofski LA, Park SO. Risk factors of laryngeal cryptococcosis: A case report. Med Mycol Case Rep 2019; 24:82-85. [PMID: 31080714 PMCID: PMC6506557 DOI: 10.1016/j.mmcr.2019.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/05/2019] [Accepted: 04/24/2019] [Indexed: 01/29/2023] Open
Abstract
Cryptococcal infections are acquired by inhalation of encapsulated yeast cells or basidiospores. While Cryptococcus has a propensity to invade the lungs and central nervous system, other sites can be affected. Laryngeal cryptococcosis is rare with less than 30 previously reported cases, which commonly occurred in apparently immunocompetent hosts on inhaled corticosteroids. We present a case of laryngeal cryptococcosis with a long-term inhaled corticosteroid use, co-infection of pulmonary Mycobacterium avium-intracellulare, and mannose-binding lectin deficiency.
Collapse
Affiliation(s)
- Orlando Quintero
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Polina Trachuk
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Michael Z. Lerner
- Department of Otolaryngology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Judy Sarungbam
- Department of Pathology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Liise-anne Pirofski
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Sun O. Park
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| |
Collapse
|
65
|
de Oliveira HC, Trevijano-Contador N, Garcia-Rodas R. Cryptococcal Pathogenicity and Morphogenesis. CURRENT FUNGAL INFECTION REPORTS 2019. [DOI: 10.1007/s12281-019-00340-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
66
|
Trevijano-Contador N, Pirofski L. Antibody immunity and natural resistance to cryptococcosis. CURRENT TROPICAL MEDICINE REPORTS 2019; 6:50-54. [PMID: 31134140 DOI: 10.1007/s40475-019-00174-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The encapsulated fungus Cryptococcus neoformans (Cn) causes cryptococcal meningitis (CM). There are ~180,000 deaths per year worldwide attributed to CM, which is the most common cause of meningitis in adults with HIV in sub-Saharan Africa. HIV infection with advanced immunodeficiency is the most important predisposing risk factor for CM, highlighting the critical role that T cell mediated immunity plays in disease prevention. Numerous studies in the past decade demonstrate that antibody immunity also plays a role in resistance to CM, although its role has taken more time to establish. In mice, B cells reduce early dissemination from lungs to brain, and naïve mouse IgM can enhance fungal containment in the lungs. In concert with these findings, human studies show that patients with CM have lower IgM memory B cell levels and/or different serological profiles than controls. In this article, we review recent data on the role that B cells and/or antibody-based immunity play in host defense against Cn and natural resistance to CM.
Collapse
Affiliation(s)
- N Trevijano-Contador
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - L Pirofski
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.,Department of Microbiology & Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.poly
| |
Collapse
|
67
|
Probert M, Zhou X, Goodall M, Johnston SA, Bielska E, Ballou ER, May RC. A Glucuronoxylomannan Epitope Exhibits Serotype-Specific Accessibility and Redistributes towards the Capsule Surface during Titanization of the Fungal Pathogen Cryptococcus neoformans. Infect Immun 2019; 87:IAI.00731-18. [PMID: 30670549 PMCID: PMC6434129 DOI: 10.1128/iai.00731-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/23/2018] [Indexed: 11/20/2022] Open
Abstract
Disseminated infections with the fungal species Cryptococcus neoformans or, less frequently, Cryptococcus gattii are an important cause of mortality in immunocompromised individuals. Central to the virulence of both species is an elaborate polysaccharide capsule that consists predominantly of glucuronoxylomannan (GXM). Due to its abundance, GXM is an ideal target for host antibodies, and several monoclonal antibodies (mAbs) have previously been derived using purified GXM or whole capsular preparations as antigens. In addition to their application in the diagnosis of cryptococcosis, anti-GXM mAbs are invaluable tools for studying capsule structure. In this study, we report the production and characterization of a novel anti-GXM mAb, Crp127, that unexpectedly reveals a role for GXM remodeling during the process of fungal titanization. We show that Crp127 recognizes a GXM epitope in an O-acetylation-dependent, but xylosylation-independent, manner. The epitope is differentially expressed by the four main serotypes of Cryptococcus neoformans and C. gattii, is heterogeneously expressed within clonal populations of C. gattii serotype B strains, and is typically confined to the central region of the enlarged capsule. Uniquely, however, this epitope redistributes to the capsular surface in titan cells, a recently characterized morphotype where haploid 5-μm cells convert to highly polyploid cells of >10 μm with distinct but poorly understood capsular characteristics. Titan cells are produced in the host lung and critical for successful infection. Crp127 therefore advances our understanding of cryptococcal morphological change and may hold significant potential as a tool to differentially identify cryptococcal strains and subtypes.
Collapse
Affiliation(s)
- Mark Probert
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Xin Zhou
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Margaret Goodall
- Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Simon A Johnston
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Ewa Bielska
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Elizabeth R Ballou
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Robin C May
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
68
|
Shourian M, Qureshi ST. Resistance and Tolerance to Cryptococcal Infection: An Intricate Balance That Controls the Development of Disease. Front Immunol 2019; 10:66. [PMID: 30761136 PMCID: PMC6361814 DOI: 10.3389/fimmu.2019.00066] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/11/2019] [Indexed: 12/25/2022] Open
Abstract
Cryptococcus neoformans is a ubiquitous environmental yeast and a leading cause of invasive fungal infection in humans. The most recent estimate of global disease burden includes over 200,000 cases of cryptococcal meningitis each year. Cryptococcus neoformans expresses several virulence factors that may have originally evolved to protect against environmental threats, and human infection may be an unintended consequence of these acquired defenses. Traditionally, C. neoformans has been viewed as a purely opportunistic pathogen that targets severely immune compromised hosts; however, during the past decade the spectrum of susceptible individuals has grown considerably. In addition, the closely related strain Cryptococcus gattii has recently emerged in North America and preferentially targets individuals with intact immunity. In parallel to the changing epidemiology of cryptococcosis, an increasing role for host immunity in the pathogenesis of severe disease has been elucidated. Initially, the HIV/AIDS epidemic revealed the capacity of C. neoformans to cause host damage in the absence of adaptive immunity. Subsequently, the development and clinical implementation of highly active antiretroviral treatment (HAART) led to recognition of an immune reconstitution inflammatory syndrome (IRIS) in a subset of HIV+ individuals, demonstrating the pathological role of host immunity in disease. A post-infectious inflammatory syndrome (PIIRS) characterized by abnormal T cell-macrophage activation has also been documented in HIV-negative individuals following antifungal therapy. These novel clinical conditions illustrate the highly complex host-pathogen relationship that underlies severe cryptococcal disease and the intricate balance between tolerance and resistance that is necessary for effective resolution. In this article, we will review current knowledge of the interactions between cryptococci and mammalian hosts that result in a tolerant phenotype. Future investigations in this area have potential for translation into improved therapies for affected individuals.
Collapse
Affiliation(s)
- Mitra Shourian
- Translational Research in Respiratory Diseases Program, Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Salman T Qureshi
- Translational Research in Respiratory Diseases Program, Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
69
|
Yoon HA, Nakouzi A, Chang CC, Kuniholm MH, Carreño LJ, Wang T, Ndung’u T, Lewin SR, French MA, Pirofski LA. Association Between Plasma Antibody Responses and Risk for Cryptococcus-Associated Immune Reconstitution Inflammatory Syndrome. J Infect Dis 2019; 219:420-428. [PMID: 30010905 PMCID: PMC6325352 DOI: 10.1093/infdis/jiy447] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/13/2018] [Indexed: 01/12/2023] Open
Abstract
Background Initiation of antiretroviral therapy (ART) in human immunodeficiency virus (HIV)-infected individuals with cryptococcal meningitis places them at risk for Cryptococcus-associated immune reconstitution inflammatory syndrome (C-IRIS). The relationship between antibody immunity and C-IRIS risk has not been investigated. Methods We compared plasma levels of immunoglobulins, C. neoformans glucuronoxylomannan (GXM) capsule-specific and laminarin (Lam)-binding IgM and IgG, and percentages of peripheral blood total and memory B cells between 27 HIV-infected patients with CM who developed C-IRIS and 63 who did not, and evaluated associations of these parameters with risk of C-IRIS. Results Prior to initiation of ART, plasma IgM, Lam-binding IgM (Lam-IgM), Lam-IgG, and GXM-IgM levels were significantly lower in patients who developed C-IRIS than those who did not. Multivariate analysis revealed significant inverse associations between C-IRIS and IgM (P = .0003), Lam-IgM (P = .0005), Lam-IgG (P = .002), and GXM-IgM (P = .002) independent of age, sex, HIV viral load, CD4+ T-cell count, and cerebrospinal fluid fungal burden. There were no associations between C-IRIS and total or memory B cells. Discussion Antibody profiles that include plasma IgM, Lam-IgM, Lam-IgG, and/or GXM-IgM may have value in furthering our understanding of C-IRIS pathogenesis and hold promise as candidate biomarkers of C-IRIS risk.
Collapse
Affiliation(s)
- Hyun Ah Yoon
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
| | - Antonio Nakouzi
- Department of Microbiology and Immunology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
| | - Christina C Chang
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Mark H Kuniholm
- Department of Epidemiology and Biostatistics, University at Albany, Rensselaer, New York
| | - Leandro J Carreño
- Millennium Institute on Immunology and Immunotherapy, Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Tao Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
| | - Thumbi Ndung’u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal
- Africa Health Research Institute, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Sharon R Lewin
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital
| | - Martyn A French
- University of Western Australia Medical School and School of Biomedical Sciences, Perth, Australia
| | - Liise-anne Pirofski
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
| |
Collapse
|
70
|
Hlupeni A, Nakouzi A, Wang T, Boyd KF, Makadzange TA, Ndhlovu CE, Pirofski LA. Antibody Responses in HIV-Infected Patients With Advanced Immunosuppression and Asymptomatic Cryptococcal Antigenemia. Open Forum Infect Dis 2018; 6:ofy333. [PMID: 30648127 PMCID: PMC6329905 DOI: 10.1093/ofid/ofy333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/06/2018] [Indexed: 12/11/2022] Open
Abstract
Background There are no host biomarkers of risk for HIV-associated cryptococcal meningitis (CM) except CD4+ T-cell deficiency. At present, serum cryptococcal antigen (CrAg) screening of those with CD4 <100 cells/µL is used to identify persons at risk for HIV-associated CM. We determined if plasma antibody profiles could discriminate CrAg+ from CrAg- patients. Methods We performed serological analyses of 237 HIV-infected asymptomatic Zimbabwean patients with CD4 <100 cells/µL; 125 CrAg- and CrAg+ but cerebrospinal fluid CrAg- by CrAg lateral flow assay. We measured plasma immunoglobulin M (IgM), immunoglobulin G (IgG) 1, and IgG2 concentrations by Luminex, and titers of Cryptococcus neoformans (Cn) glucuronoxylomannan (GXM) polysaccharide and naturally occurring Laminarin (natural Lam, a β-(1–3)-glucan linked polysaccharide)-binding IgM and IgG by enzyme-linked immunosorbent assay. Results GXM-IgG, -IgM, and -IgG2 levels were significantly higher in CrAg+ patients, whereas natural Lam-IgM and Lam-IgG were higher in CrAg- patients before and after adjustment for age, sex, and CD4 T-cell count, despite overlap of values. To address this variability and better discriminate the groups, we used Akaike Information Criteria to select variables that independently predicted CrAg+ status and included them in a receiver operating characteristic curve to predict CrAg status. By inclusion of CD4, GXM-IgG, GXM-IgM, and Lam-IgG, -IgG2, and -IgM, this model had an 80.4% probability (95% confidence interval, 0.75–0.86) of predicting CrAg+ status. Conclusions Statistical models that include multiple serological variables may improve the identification of patients at risk for CM and inform new directions in research on the complex role that antibodies may play in resistance and susceptibility to CM.
Collapse
Affiliation(s)
- Admire Hlupeni
- Department of Medicine, University of Zimbabwe College of Health Sciences, Harare, Zimbabwe
| | - Antonio Nakouzi
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
| | - Tao Wang
- Department of Epidemiology and Biostatistics, Albert Einstein College of Medicine, Bronx, New York
| | - Kathryn F Boyd
- Department of Medicine, University of Zimbabwe College of Health Sciences, Harare, Zimbabwe
| | - Tariro A Makadzange
- Department of Medicine, University of Zimbabwe College of Health Sciences, Harare, Zimbabwe
| | - Chiratidzo E Ndhlovu
- Department of Medicine, University of Zimbabwe College of Health Sciences, Harare, Zimbabwe
| | - Liise-Anne Pirofski
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York.,Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
71
|
Cryptococcus neoformans Cda1 and Its Chitin Deacetylase Activity Are Required for Fungal Pathogenesis. mBio 2018; 9:mBio.02087-18. [PMID: 30459196 PMCID: PMC6247093 DOI: 10.1128/mbio.02087-18] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cryptococcus neoformans is unique among fungal pathogens that cause disease in a mammalian host, as it secretes a polysaccharide capsule that hinders recognition by the host to facilitate its survival and proliferation. Even though it causes serious infections in immunocompromised hosts, reports of infection in hosts that are immunocompetent are on the rise. The cell wall of a fungal pathogen, its synthesis, composition, and pathways of remodelling are attractive therapeutic targets for the development of fungicides. Chitosan, a polysaccharide in the cell wall of C. neoformans is one such target, as it is critical for pathogenesis and absent in the host. The results we present shed light on the importance of one of the chitin deacetylases that synthesize chitosan during infection and further implicates chitosan as being a critical factor for the pathogenesis of C. neoformans. Chitin is an essential component of the cell wall of Cryptococcus neoformans conferring structural rigidity and integrity under diverse environmental conditions. Chitin deacetylase genes encode the enyzmes (chitin deacetylases [Cdas]) that deacetylate chitin, converting it to chitosan. The functional role of chitosan in the fungal cell wall is not well defined, but it is an important virulence determinant of C. neoformans. Mutant strains deficient in chitosan are completely avirulent in a mouse pulmonary infection model. C. neoformans carries genes that encode three Cdas (Cda1, Cda2, and Cda3) that appear to be functionally redundant in cells grown under vegetative conditions. Here we report that C. neoformans Cda1 is the principal Cda responsible for fungal pathogenesis. Point mutations were introduced in the active site of Cda1 to generate strains in which the enzyme activity of Cda1 was abolished without perturbing either its stability or localization. When used to infect CBA/J mice, Cda1 mutant strains produced less chitosan and were attenuated for virulence. We further demonstrate that C. neoformans Cda genes are transcribed differently during a murine infection from what has been measured in vitro.
Collapse
|
72
|
Surawut S, Makjaroen J, Thim-Uam A, Wongphoom J, Palaga T, Pisitkun P, Chindamporn A, Leelahavanichkul A. Increased susceptibility against Cryptococcus neoformans of lupus mouse models (pristane-induction and FcGRIIb deficiency) is associated with activated macrophage, regardless of genetic background. J Microbiol 2018; 57:45-53. [PMID: 30456753 DOI: 10.1007/s12275-019-8311-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/17/2018] [Accepted: 09/06/2018] [Indexed: 12/16/2022]
Abstract
The severity of cryptococcosis in lupus from varying genetic-backgrounds might be different due to the heterogeneity of lupus-pathogenesis. This study explored cryptococcosis in lupus mouse models of pristane-induction (normal genetic-background) and FcGRIIb deficiency (genetic defect). Because the severity of lupus nephritis, as determined by proteinuria and serum creatinine, between pristane and FcGRIIb-/- mice were similar at 6-month-old, Cryptococcus neoformans was intravenously administered in 6-month-old mice and were age-matched with wild-type. Indeed, the cryptococcosis disease severity, as evaluated by mortality rate, internal-organ fungal burdens and serum cytokines, between pristane and FcGRIIb-/- mice was not different. However, the severity of cryptococcosis in wild-type was less severe than the lupus mice. On the other hand, phagocytosis activity of peritoneal macrophages from lupus mice (pristane and FcGRIIb-/-) was more predominant than the wild-type without the difference in macrophage killing-activity among these groups. In addition, the number of active T helper cells (Th-cell) in the spleen, including Th-cells with intracellular IFN-γ, from lupus mice (pristane and FcGRIIb-/-) was higher than wildtype. Moreover, these active Th-cells were even higher after 2 weeks of cryptococcal infection. These data support enhanced macrophage activation through prominent Th-cells in both lupus models. In conclusion, an increased susceptibility of cryptococcosis in both lupus models was independent to genetic background. This might due to Th-cell enhanced macrophage phagocytosis with the interference of macrophage killing activity from Cryptococcal immune-evasion properties.
Collapse
Affiliation(s)
- Saowapha Surawut
- Medical Microbiology, Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Jiradej Makjaroen
- Medical Microbiology, Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Arthid Thim-Uam
- Inter-Department Program of Biomedical Sciences, Faculty of Graduate, Chulalongkorn University, Bangkok, Thailand
| | - Jutamas Wongphoom
- Division of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Prapaporn Pisitkun
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Ariya Chindamporn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand. .,Skeletal Disorders Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
73
|
Casadevall A, Coelho C, Cordero RJB, Dragotakes Q, Jung E, Vij R, Wear MP. The capsule of Cryptococcus neoformans. Virulence 2018; 10:822-831. [PMID: 29436899 PMCID: PMC6779390 DOI: 10.1080/21505594.2018.1431087] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The capsule of Cryptococcus neoformans is its dominant virulence factor and plays a key role in the biology of this fungus. In this essay, we focus on the capsule as a cellular structure and note the limitations inherent in the current methodologies available for its study. Given that no single method can provide the structure of the capsule, our notions of what is the cryptococcal capsule must be arrived at by synthesizing information gathered from very different methodological approaches including microscopy, polysaccharide chemistry and physical chemistry of macromolecules. The emerging picture is one of a carefully regulated dynamic structure that is constantly rearranged as a response to environmental stimulation and cellular replication. In the environment, the capsule protects the fungus against desiccation and phagocytic predators. In animal hosts the capsule functions in both offensive and defensive modes, such that it interferes with immune responses while providing the fungal cell with a defensive shield that is both antiphagocytic and capable of absorbing microbicidal oxidative bursts from phagocytic cells. Finally, we delineate a set of unsolved problems in the cryptococcal capsule field that could provide fertile ground for future investigations.
Collapse
Affiliation(s)
- Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health , Baltimore , MD , USA
| | - Carolina Coelho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health , Baltimore , MD , USA
| | - Radames J B Cordero
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health , Baltimore , MD , USA
| | - Quigly Dragotakes
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health , Baltimore , MD , USA
| | - Eric Jung
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health , Baltimore , MD , USA
| | - Raghav Vij
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health , Baltimore , MD , USA
| | - Maggie P Wear
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health , Baltimore , MD , USA
| |
Collapse
|
74
|
Jarvis JN, Harrison TS. Understanding Causal Pathways in Cryptococcal Meningitis Immune Reconstitution Inflammatory Syndrome. J Infect Dis 2018; 219:344-346. [DOI: 10.1093/infdis/jiy448] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 07/12/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Joseph N Jarvis
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Botswana University of Pennsylvania Partnership, Gaborone, Botswana
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Thomas S Harrison
- Centre for Global Health, Institute for Infection and Immunity, St. George’s University of London, United Kingdom
| |
Collapse
|
75
|
|
76
|
Differential In Vitro Cytokine Induction by the Species of Cryptococcus gattii Complex. Infect Immun 2018; 86:IAI.00958-17. [PMID: 29311248 DOI: 10.1128/iai.00958-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/04/2018] [Indexed: 12/13/2022] Open
Abstract
Cryptococcal species vary in capsule and cell size, thermotolerance, geographic distribution, and affected populations. Cryptococcus gattii sensu stricto and C. deuterogattii affect mainly immunocompetent hosts; however, C. bacillisporus, C. decagattii, and C. tetragattii cause infections mainly in immunocompromised hosts. This study aimed to compare the capacities of different species of the C. gattii species complex to induce cytokines and antimicrobial molecules in human peripheral blood mononuclear cells (PBMCs). Cryptococcus bacillisporus and C. deuterogattii induced the lowest levels of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and IL-6 among the five species of the C. gattii complex. Cryptococcus deuterogattii induced higher levels of IL-22 than those induced by C. tetragattii and the environmental species C. flavescens In addition, C. bacillisporus and C. gattii sensu stricto proliferated inside human monocyte-derived macrophages after 24 h of infection. All Cryptococcus species were able to generate reactive oxygen species (ROS) in human PBMCs, with C. bacillisporus and C. deuterogattii being more efficient than the other species. In conclusion, C. bacillisporus and C. deuterogattii induce lower levels of the proinflammatory cytokines TNF-α, IL-1β, and IL-6 and higher ROS levels than those induced by the other species. Species of the Cryptococcus gattii complex have different abilities to induce cytokine and ROS production by human PBMCs.
Collapse
|
77
|
Organ-specific mechanisms linking innate and adaptive antifungal immunity. Semin Cell Dev Biol 2018; 89:78-90. [PMID: 29366628 DOI: 10.1016/j.semcdb.2018.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/09/2018] [Accepted: 01/15/2018] [Indexed: 12/24/2022]
Abstract
Fungal infections remain a significant global health problem in humans. Fungi infect millions of people worldwide and cause from acute superficial infections to life-threatening systemic disease to chronic illnesses. Trying to decipher the complex innate and adaptive immune mechanisms that protect humans from pathogenic fungi is therefore a key research goal that may lead to immune-based therapeutic strategies and improved patient outcomes. In this review, we summarize how the cells and molecules of the innate immune system activate the adaptive immune system to elicit long-term immunity to fungi. We present current knowledge and exciting new advances in the context of organ-specific immunity, outlining the tissue-specific tropisms for the major pathogenic fungi of humans, the antifungal functions of tissue-resident myeloid cells, and the adaptive immune responses required to protect specific organs from fungal challenge.
Collapse
|
78
|
Neuro-Immune Mechanisms of Anti-Cryptococcal Protection. J Fungi (Basel) 2017; 4:jof4010004. [PMID: 29371497 PMCID: PMC5872307 DOI: 10.3390/jof4010004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/10/2017] [Accepted: 12/23/2017] [Indexed: 12/15/2022] Open
Abstract
Cryptococcal meningitis (CM) is a life-threatening fungal disease affecting both immunosuppressed and immunocompetent people. The main causative agent of CM is Cryptococcus neoformans, a basidiomycete fungus prevalent in the environment. Our understanding of the immune mechanisms controlling C. neoformans growth within the central nervous system (CNS) is poor. However, there have been several recent advances in the field of neuroimmunology regarding how cells resident within the CNS, such as microglia and neurons, can participate in immune surveillance and control of infection. In this mini-review, the cells of the CNS are discussed with reference to what is currently known about how they control C. neoformans infection.
Collapse
|
79
|
He Q, Ding Y, Zhou W, Li H, Zhang M, Shi Y, Su X. Clinical features of pulmonary cryptococcosis among patients with different levels of peripheral blood CD4 + T lymphocyte counts. BMC Infect Dis 2017; 17:768. [PMID: 29237413 PMCID: PMC5729485 DOI: 10.1186/s12879-017-2865-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 11/28/2017] [Indexed: 11/17/2022] Open
Abstract
Background The clinical manifestation of pulmonary cryptococcosis varies notably between immunocompromised and immunocompetent patients. To better understand pulmonary cryptococcosis, we compared the clinical features of pulmonary cryptococcosis patients with or without decreased peripheral blood CD4+ T cell counts. Methods We retrospectively reviewed the medical records of 80 patients with cryptococcosis who had been treated in Jingling Hospital from January 2011 to January 2016. According to the normal range of peripheral blood CD4 + T-lymphocyte counts in our population, we chose CD4 = 378/μL as a cut-off value. Results The proportion of fever in the patients with decreased CD4+ T cells was higher than that of the patients with a normal amount of CD4+ T cells (86.7% vs 28.6%, P < 0.001). The incidence of clinical symptoms, such as cough (60.6% vs 64.7%, P = 0.729), chest pain (9.1% vs 26.5%, P = 0.064), and dyspnea (27.3% vs 23.5%, P = 0.725) showed no difference between patients with low CD4+ T cell counts and those with normal CD4+ T cell counts. The number of asymptomatic patients in the CD4+ T cell normal group was higher than that in the decreased CD4+ T cell group (17.1% vs 0%, P = 0.005). Nodules, masses, and halo signs were more common in the CD4+ T cell normal patients than in the low-CD4+ T cell patients (79.4% vs 54.5%, P = 0.03). The opposite trend was observed for cavitations (14.7% vs 51.5%, P = 0.001). The other CT findings, including pulmonary consolidation (P = 0.205), and pleural effusion (P = 0.641), did not differ significantly between the two groups. Conclusions CD4+ T lymphocytes have a significant impact on the clinical and radiological characteristics of pulmonary cryptococcosis. The patients with normal CD4+ T cell counts were found to have less fever and more nodule-like radiographic findings. Trial registration 2011NJKY-023-01. Registered on January 10, 2011.
Collapse
Affiliation(s)
- Qian He
- Department of Respiratory and Critical Care Medicine, Southern Medical University, Jinling Hospital, Nanjing, 210002, China
| | - Yuan Ding
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Wei Zhou
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Hongxing Li
- Department of Respiratory and Critical Care Medicine, Southern Medical University, Jinling Hospital, Nanjing, 210002, China
| | - Ming Zhang
- Department of Respiratory Medicine, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yi Shi
- Department of Respiratory and Critical Care Medicine, Southern Medical University, Jinling Hospital, Nanjing, 210002, China
| | - Xin Su
- Department of Respiratory and Critical Care Medicine, Southern Medical University, Jinling Hospital, Nanjing, 210002, China. .,Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China.
| |
Collapse
|
80
|
Specht CA, Lee CK, Huang H, Hester MM, Liu J, Luckie BA, Torres Santana MA, Mirza Z, Khoshkenar P, Abraham A, Shen ZT, Lodge JK, Akalin A, Homan J, Ostroff GR, Levitz SM. Vaccination with Recombinant Cryptococcus Proteins in Glucan Particles Protects Mice against Cryptococcosis in a Manner Dependent upon Mouse Strain and Cryptococcal Species. mBio 2017; 8:e01872-17. [PMID: 29184017 PMCID: PMC5705919 DOI: 10.1128/mbio.01872-17] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/18/2017] [Indexed: 01/02/2023] Open
Abstract
Development of a vaccine to protect against cryptococcosis is a priority given the enormous global burden of disease in at-risk individuals. Using glucan particles (GPs) as a delivery system, we previously demonstrated that mice vaccinated with crude Cryptococcus-derived alkaline extracts were protected against lethal challenge with Cryptococcus neoformans and Cryptococcus gattii The goal of the present study was to identify protective protein antigens that could be used in a subunit vaccine. Using biased and unbiased approaches, six candidate antigens (Cda1, Cda2, Cda3, Fpd1, MP88, and Sod1) were selected, recombinantly expressed in Escherichia coli, purified, and loaded into GPs. Three mouse strains (C57BL/6, BALB/c, and DR4) were then vaccinated with the antigen-laden GPs, following which they received a pulmonary challenge with virulent C. neoformans and C. gattii strains. Four candidate vaccines (GP-Cda1, GP-Cda2, GP-Cda3, and GP-Sod1) afforded a significant survival advantage in at least one mouse model; some vaccine combinations provided added protection over that seen with either antigen alone. Vaccine-mediated protection against C. neoformans did not necessarily predict protection against C. gattii Vaccinated mice developed pulmonary inflammatory responses that effectively contained the infection; many surviving mice developed sterilizing immunity. Predicted T helper cell epitopes differed between mouse strains and in the degree to which they matched epitopes predicted in humans. Thus, we have discovered cryptococcal proteins that make promising candidate vaccine antigens. Protection varied depending on the mouse strain and cryptococcal species, suggesting that a successful human subunit vaccine will need to contain multiple antigens, including ones that are species specific.IMPORTANCE The encapsulated fungi Cryptococcus neoformans and Cryptococcus gattii are responsible for nearly 200,000 deaths annually, mostly in immunocompromised individuals. An effective vaccine could substantially reduce the burden of cryptococcosis. However, a major gap in cryptococcal vaccine development has been the discovery of protective antigens to use in vaccines. Here, six cryptococcal proteins with potential as vaccine antigens were expressed recombinantly and purified. Mice were then vaccinated with glucan particle preparations containing each antigen. Of the six candidate vaccines, four protected mice from a lethal cryptococcal challenge. However, the degree of protection varied as a function of mouse strain and cryptococcal species. These preclinical studies identify cryptococcal proteins that could serve as candidate vaccine antigens and provide a proof of principle regarding the feasibility of protein antigen-based vaccines to protect against cryptococcosis.
Collapse
MESH Headings
- Animals
- Antigens, Fungal/administration & dosage
- Antigens, Fungal/genetics
- Antigens, Fungal/immunology
- Cloning, Molecular
- Cryptococcosis/pathology
- Cryptococcosis/prevention & control
- Cryptococcus gattii/immunology
- Cryptococcus neoformans/immunology
- Disease Models, Animal
- Drug Carriers/administration & dosage
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Fungal Proteins/administration & dosage
- Fungal Proteins/genetics
- Fungal Proteins/immunology
- Fungal Vaccines/administration & dosage
- Fungal Vaccines/genetics
- Fungal Vaccines/immunology
- Gene Expression
- Glucans/administration & dosage
- Lung/pathology
- Lung Diseases, Fungal/prevention & control
- Mice
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Survival Analysis
- Treatment Outcome
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Charles A Specht
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Chrono K Lee
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Haibin Huang
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Maureen M Hester
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jianhua Liu
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Bridget A Luckie
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Melanie A Torres Santana
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Zeynep Mirza
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Payam Khoshkenar
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ambily Abraham
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Zu T Shen
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jennifer K Lodge
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ali Akalin
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Gary R Ostroff
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Stuart M Levitz
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
81
|
Rohatgi S, Nakouzi A, Carreño LJ, Slosar-Cheah M, Kuniholm MH, Wang T, Pappas PG, Pirofski LA. Antibody and B Cell Subset Perturbations in Human Immunodeficiency Virus-Uninfected Patients With Cryptococcosis. Open Forum Infect Dis 2017; 5:ofx255. [PMID: 29354657 PMCID: PMC5767948 DOI: 10.1093/ofid/ofx255] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/16/2017] [Indexed: 12/18/2022] Open
Abstract
The importance of antibody immunity in protection against Cryptococcus neoformans remains unresolved. We measured serum C neoformans-specific and total antibody levels and peripheral blood B cell subsets of 12 previously healthy patients with cryptococcosis (cases) and 21 controls. Before and after adjustment for age, sex, and race, cryptococcal capsular polysaccharide immunoglobulin G was higher in cases than controls, whereas total B and memory B cell levels were lower. These associations parallel previous findings in patients with human immunodeficiency virus-associated cryptococcosis and suggest that B cell subset perturbations may also associate with disease in previously normal individuals with cryptococcosis.
Collapse
Affiliation(s)
- Soma Rohatgi
- Department of Biotechnology, IIT-Roorkee, Uttarakhand, India
| | - Antonio Nakouzi
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
| | - Leandro J Carreño
- Millennium Institute on Immunology and Immunotherapy, Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago
| | | | - Mark H Kuniholm
- Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, New York
| | - Tao Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Peter G Pappas
- Division of Infectious Diseases, University of Alabama at Birmingham
| | - Liise-Anne Pirofski
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York.,Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
82
|
Shah SI, Bui H, Velasco N, Rungta S. Incidental Finding of Cryptococcus on Prostate Biopsy for Prostate Adenocarcinoma Following Cardiac Transplant: Case Report and Review of the Literature. AMERICAN JOURNAL OF CASE REPORTS 2017; 18:1171-1180. [PMID: 29104281 PMCID: PMC5687115 DOI: 10.12659/ajcr.905528] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Cryptococcus is the third most common invasive fungal organism in immunocompromised patients, including transplant patients, and usually involves the central nervous system and lungs, with a median time to infection of 25 months. We report a case of Cryptococcus of the prostate gland, found as an incidental finding on prostate biopsy for prostate adenocarcinoma, four months following cardiac transplantation. CASE REPORT A 62-year-old male African-American who had a cardiac transplant four months previously, underwent a six-core prostate biopsy for a two-year history of increasing prostate-specific antigen (PSA) levels, and a recent history of non-specific urinary tract symptoms. A prostatic adenocarcinoma, Gleason grade 4+4=8, was diagnosed on histopathology, and 'foamy' cells were seen in the biopsies. Histochemical stains, including Grocott methenamine silver (GMS), and periodic acid-Schiff (PAS) showed abundant round and oval 5-7 µm diameter fungal elements; mucicarmine highlighted the fungal polysaccharide capsule, diagnostic for Cryptococcus. Cryptococcal antigen detection was made by the latex agglutination test and cultures. We reviewed the literature and found 70 published cases (from 1946-2008) of Cryptococcus of the prostate gland, with only one previous case presenting five years following cardiac transplantation. CONCLUSIONS Fungal infections of the prostate are rare, and occur mainly in immunocompromised patients. We present a unique case of prostatic Cryptococcus found incidentally at four months following cardiac transplantation. This case report highlights the need to consider atypical fungal infection as a differential diagnosis for prostatitis in immunosuppressed patients, including transplant patients.
Collapse
Affiliation(s)
- Sujal I Shah
- Department of Pathology, University of Cincinnati Medical Center, Cincinnati, OH, USA.,Department of Pathology, Cincinnati VA Medical Center, Cincinnati, OH, USA
| | - Hai Bui
- Department of Pathology, University of Cincinnati Medical Center, Cincinnati, OH, USA.,Department of Pathology, Cincinnati VA Medical Center, Cincinnati, OH, USA
| | - Nelson Velasco
- Department of Pathology, University of Cincinnati Medical Center, Cincinnati, OH, USA.,Department of Primary Care, Veterans Affairs, Southern Oregon Rehabilitation Center and Clinics, White City, OR, USA
| | - Shilpa Rungta
- Department of Pathology, University of Cincinnati Medical Center, Cincinnati, OH, USA.,Department of Pathology, Cincinnati VA Medical Center, Cincinnati, OH, USA
| |
Collapse
|
83
|
Dufaud C, Rivera J, Rohatgi S, Pirofski LA. Naïve B cells reduce fungal dissemination in Cryptococcus neoformans infected Rag1 -/- mice. Virulence 2017; 9:173-184. [PMID: 28837391 PMCID: PMC5955176 DOI: 10.1080/21505594.2017.1370529] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
IgM and B-1 cell deficient mice exhibit early C. neoformans dissemination from lungs to brain, but a definitive role for B cells in conferring resistance to C. neoformans dissemination has not been established. To address this question, we developed an intranasal (i.n.) C. neoformans infection model in B and T cell deficient Rag1-/- mice and found they also exhibit earlier fungal dissemination and higher brain CFU than wild-type C57Bl/6 (wild-type) mice. To probe the effect of B cells on fungal dissemination, Rag1-/- mice were given splenic (intravenously) or peritoneal (intraperitoneally) B cells from wild-type mice and infected i.n. with C. neoformans 7 d later. Mice that received B cells had lung histopathology resembling wild type mice 14 d post-infection, and B-1, not B-2 or T cells in their lungs, and serum and lung IgM and IgG 21 d post-infection. Lung CFU were comparable in wild-type, Rag1-/-, and Rag1-/- mice that received B cells 21 d post-infection, but brain CFU were significantly lower in mice that received B cells than Rag1-/- mice that did not. To determine if natural antibody can promote immunity in our model, we measured alveolar macrophage phagocytosis of C. neoformans in Rag1-/- mice treated with naive wild-type IgM-sufficient or sIgM-/- IgM-deficient sera before infection. Compared to IgM-deficient sera, IgM-sufficient sera significantly increased phagocytosis. Our data establish B cells are able to reduce early C. neoformans dissemination in mice and suggest natural IgM may be a key mediator of early antifungal immunity in the lungs.
Collapse
Affiliation(s)
- Chad Dufaud
- a Department of Immunology and Microbial Sciences , Scripps Research Institute , La Jolla , CA , USA
| | - Johanna Rivera
- b Division of Infectious Diseases , Albert Einstein College of Medicine and Montefiore Medical Center , Bronx , NY , USA
| | - Soma Rohatgi
- c Department of Biotechnology IIT-Roorkee , Uttarakhand , India
| | - Liise-Anne Pirofski
- a Department of Immunology and Microbial Sciences , Scripps Research Institute , La Jolla , CA , USA.,d Department of Microbiology and Immunology , Albert Einstein College of Medicine , Bronx , NY , USA
| |
Collapse
|
84
|
Yang CL, Wang J, Zou LL. Innate immune evasion strategies against Cryptococcal meningitis caused by Cryptococcus neoformans. Exp Ther Med 2017; 14:5243-5250. [PMID: 29285049 PMCID: PMC5740712 DOI: 10.3892/etm.2017.5220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 05/31/2017] [Indexed: 12/14/2022] Open
Abstract
As an infectious fungus that affects the respiratory tract, Cryptococcus neoformans (C. neoformans) commonly causes asymptomatic pulmonary infection. C. neoformans may target the brain instead of the lungs and cross the blood-brain barrier (BBB) in the early phase of infection; however, this is dependent on successful evasion of the host innate immune system. During the initial stage of fungal infection, a complex network of innate immune factors are activated. C. neoformans utilizes a number of strategies to overcome the anti-fungal mechanisms of the host innate immune system and cross the BBB. In the present review, the defensive mechanisms of C. neoformans against the innate immune system and its ability to cross the BBB were discussed, with an emphasis on recent insights into the activities of anti-phagocytotic and anti-oxidative factors in C. neoformans.
Collapse
Affiliation(s)
- Cheng-Liang Yang
- Translational Neuroscience and Neural Regeneration and Repair Institute, The First Hospital of Yichang, China Three Gorges University, Yichang, Hubei 443002, P.R. China.,Institute of Cell Therapy, The First Hospital of Yichang, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Jun Wang
- Translational Neuroscience and Neural Regeneration and Repair Institute, The First Hospital of Yichang, China Three Gorges University, Yichang, Hubei 443002, P.R. China.,Institute of Cell Therapy, The First Hospital of Yichang, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Li-Li Zou
- Translational Neuroscience and Neural Regeneration and Repair Institute, The First Hospital of Yichang, China Three Gorges University, Yichang, Hubei 443002, P.R. China.,Institute of Cell Therapy, The First Hospital of Yichang, China Three Gorges University, Yichang, Hubei 443002, P.R. China.,Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| |
Collapse
|
85
|
Xu J, Flaczyk A, Neal LM, Fa Z, Cheng D, Ivey M, Moore BB, Curtis JL, Osterholzer JJ, Olszewski MA. Exploitation of Scavenger Receptor, Macrophage Receptor with Collagenous Structure, by Cryptococcus neoformans Promotes Alternative Activation of Pulmonary Lymph Node CD11b + Conventional Dendritic Cells and Non-Protective Th2 Bias. Front Immunol 2017; 8:1231. [PMID: 29033946 PMCID: PMC5624996 DOI: 10.3389/fimmu.2017.01231] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/19/2017] [Indexed: 12/18/2022] Open
Abstract
Macrophage receptor with collagenous structure (MARCO) contributes to fungal containment during the early/innate phase of cryptococcal infection; however, its role in adaptive antifungal immunity remains unknown. Using a murine model of cryptococcosis, we compared host adaptive immune responses in wild-type and MARCO−/− mice throughout an extended time course post-infection. Unlike in early infection, MARCO deficiency resulted in improved pulmonary fungal clearance and diminished cryptococcal dissemination during the efferent phase. Improved fungal control in the absence of MARCO expression was associated with enhanced hallmarks of protective Th1-immunity, including higher frequency of pulmonary TNF-α-producing T cells, increased cryptococcal-antigen-triggered IFN-γ and TNF-α production by splenocytes, and enhanced expression of M1 polarization genes by pulmonary macrophages. Concurrently, we found lower frequencies of IL-5- and IL-13-producing T cells in the lungs, impaired production of IL-4 and IL-10 by cryptococcal antigen-pulsed splenocytes, and diminished serum IgE, which were hallmarks of profoundly suppressed efferent Th2 responses in MARCO-deficient mice compared to WT mice. Mechanistically, we found that MARCO expression facilitated early accumulation and alternative activation of CD11b+ conventional DC (cDC) in the lung-associated lymph nodes (LALNs), which contributed to the progressive shift of the immune response from Th1 toward Th2 at the priming site (LALNs) and local infection site (lungs) during the efferent phase of cryptococcal infection. Taken together, our study shows that MARCO can be exploited by the fungal pathogen to promote accumulation and alternative activation of CD11b+ cDC in the LALN, which in turn alters Th1/Th2 balance to promote fungal persistence and dissemination.
Collapse
Affiliation(s)
- Jintao Xu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, United States.,Department of Veterans Affairs Health System, VA Ann Arbor Healthcare System (VHA), Ann Arbor, MI, United States
| | - Adam Flaczyk
- Department of Veterans Affairs Health System, VA Ann Arbor Healthcare System (VHA), Ann Arbor, MI, United States
| | - Lori M Neal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, United States.,Department of Veterans Affairs Health System, VA Ann Arbor Healthcare System (VHA), Ann Arbor, MI, United States
| | - Zhenzong Fa
- Department of Veterans Affairs Health System, VA Ann Arbor Healthcare System (VHA), Ann Arbor, MI, United States
| | - Daphne Cheng
- Department of Veterans Affairs Health System, VA Ann Arbor Healthcare System (VHA), Ann Arbor, MI, United States
| | - Mike Ivey
- Department of Veterans Affairs Health System, VA Ann Arbor Healthcare System (VHA), Ann Arbor, MI, United States
| | - Bethany B Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, United States.,Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jeffrey L Curtis
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, United States.,Department of Veterans Affairs Health System, VA Ann Arbor Healthcare System (VHA), Ann Arbor, MI, United States
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, United States.,Department of Veterans Affairs Health System, VA Ann Arbor Healthcare System (VHA), Ann Arbor, MI, United States
| | - Michal A Olszewski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, United States.,Department of Veterans Affairs Health System, VA Ann Arbor Healthcare System (VHA), Ann Arbor, MI, United States
| |
Collapse
|
86
|
Abstract
Cryptococcus species are encapsulated fungi found in the environment that predominantly cause disease in immunocompromised hosts after inhalation into the lungs. Even with contemporary antifungal regimens, patients with cryptococcosis continue to have high morbidity and mortality rates. The development of more effective therapies may depend on our understanding of the cellular and molecular mechanisms by which the host promotes sterilizing immunity against the fungus. This review will highlight our current knowledge of how Cryptococcus, primarily the species C. neoformans, is sensed by the mammalian host and how subsequent signaling pathways direct the anti-cryptococcal response by effector cells of the innate immune system.
Collapse
Affiliation(s)
- Lena J Heung
- Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
87
|
Dos Santos FM, Piffer AC, Schneider RDO, Ribeiro NS, Garcia AWA, Schrank A, Kmetzsch L, Vainstein MH, Staats CC. Alterations of zinc homeostasis in response to Cryptococcus neoformans in a murine macrophage cell line. Future Microbiol 2017; 12:491-504. [DOI: 10.2217/fmb-2016-0160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To evaluate alterations of zinc homeostasis in macrophages exposed to Cryptococcus neoformans. Materials & methods: Using a fluorescent zinc probe-based flow cytometry and atomic absorption spectrometry, zinc levels were evaluated in J774.A1 cell lines exposed to C. neoformans H99 cells. The transcription profile of macrophage zinc related homeostasis genes – metallothioneins and zinc transporters (ZnTs) of the SLC30 and SLC39 (Zrt-Irt-protein) families – was analyzed by quantitative PCR. Results: Macrophage intracellular labile zinc levels decreased following exposure to C. neoformans. A significant decrease in transcription levels was detected in specific ZnTs from both the Zrt-Irt-protein and ZnT families, especially 24 h after infection. Conclusion: These findings suggest that macrophages may exhibit zinc depletion in response to C. neoformans infection.
Collapse
Affiliation(s)
- Francine Melise Dos Santos
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
| | - Alícia Corbellini Piffer
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
| | - Rafael de Oliveira Schneider
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
| | - Nicole Sartori Ribeiro
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
| | - Ane Wichine Acosta Garcia
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
| | - Augusto Schrank
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
| | - Lívia Kmetzsch
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
| | - Marilene Henning Vainstein
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
| | - Charley Christian Staats
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
| |
Collapse
|
88
|
Xu J, Flaczyk A, Neal LM, Fa Z, Eastman AJ, Malachowski AN, Cheng D, Moore BB, Curtis JL, Osterholzer JJ, Olszewski MA. Scavenger Receptor MARCO Orchestrates Early Defenses and Contributes to Fungal Containment during Cryptococcal Infection. THE JOURNAL OF IMMUNOLOGY 2017; 198:3548-3557. [PMID: 28298522 DOI: 10.4049/jimmunol.1700057] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/21/2017] [Indexed: 12/19/2022]
Abstract
The scavenger receptor macrophage receptor with collagenous structure (MARCO) promotes protective innate immunity against bacterial and parasitic infections; however, its role in host immunity against fungal pathogens, including the major human opportunistic fungal pathogen Cryptococcus neoformans, remains unknown. Using a mouse model of C. neoformans infection, we demonstrated that MARCO deficiency leads to impaired fungal control during the afferent phase of cryptococcal infection. Diminished fungal containment in MARCO-/- mice was accompanied by impaired recruitment of Ly6Chigh monocytes and monocyte-derived dendritic cells (moDC) and lower moDC costimulatory maturation. The reduced recruitment and activation of mononuclear phagocytes in MARCO-/- mice was linked to diminished early expression of IFN-γ along with profound suppression of CCL2 and CCL7 chemokines, providing evidence for roles of MARCO in activation of the CCR2 axis during C. neoformans infection. Lastly, we found that MARCO was involved in C. neoformans phagocytosis by resident pulmonary macrophages and DC. We conclude that MARCO facilitates early interactions between C. neoformans and lung-resident cells and promotes the production of CCR2 ligands. In turn, this contributes to a more robust recruitment and activation of moDC that opposes rapid fungal expansion during the afferent phase of cryptococcal infection.
Collapse
Affiliation(s)
- Jintao Xu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109.,Pulmonary Section, Medical Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and
| | - Adam Flaczyk
- Pulmonary Section, Medical Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and
| | - Lori M Neal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109.,Pulmonary Section, Medical Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and
| | - Zhenzong Fa
- Pulmonary Section, Medical Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and
| | - Alison J Eastman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109.,Pulmonary Section, Medical Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and
| | - Antoni N Malachowski
- Pulmonary Section, Medical Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and
| | - Daphne Cheng
- Pulmonary Section, Medical Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and
| | - Bethany B Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109.,Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Jeffrey L Curtis
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109.,Pulmonary Section, Medical Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109.,Pulmonary Section, Medical Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and
| | - Michal A Olszewski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109; .,Pulmonary Section, Medical Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and
| |
Collapse
|
89
|
Surawut S, Ondee T, Taratummarat S, Palaga T, Pisitkun P, Chindamporn A, Leelahavanichkul A. The role of macrophages in the susceptibility of Fc gamma receptor IIb deficient mice to Cryptococcus neoformans. Sci Rep 2017; 7:40006. [PMID: 28074867 PMCID: PMC5225418 DOI: 10.1038/srep40006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 11/30/2016] [Indexed: 02/04/2023] Open
Abstract
Dysfunctional polymorphisms of FcγRIIb, an inhibitory receptor, are associated with Systemic Lupus Erythaematosus (SLE). Cryptococcosis is an invasive fungal infection in SLE, perhaps due to the de novo immune defect. We investigated cryptococcosis in the FcγRIIb-/- mouse-lupus-model. Mortality, after intravenous C. neoformans-induced cryptococcosis, in young (8-week-old) and older (24-week-old) FcγRIIb-/- mice, was higher than in age-matched wild-types. Severe cryptococcosis in the FcγRIIb-/- mice was demonstrated by high fungal burdens in the internal organs with histological cryptococcoma-like lesions and high levels of TNF-α and IL-6, but not IL-10. Interestingly, FcγRIIb-/- macrophages demonstrated more prominent phagocytosis but did not differ in killing activity in vitro and the striking TNF-α, IL-6 and IL-10 levels, compared to wild-type cells. Indeed, in vivo macrophage depletion with liposomal clodronate attenuated the fungal burdens in FcγRIIb-/- mice, but not wild-type mice. When administered to wild-type mice, FcγRIIb-/- macrophages with phagocytosed Cryptococcus resulted in higher fungal burdens than FcγRIIb+/+ macrophages with phagocytosed Cryptococcus. These results support, at least in part, a model whereby, in FcγRIIb-/- mice, enhanced C. neoformans transmigration occurs through infected macrophages. In summary, prominent phagocytosis, with limited effective killing activity, and high pro-inflammatory cytokine production by FcγRIIb-/- macrophages were correlated with more severe cryptococcosis in FcγRIIb-/- mice.
Collapse
Affiliation(s)
- Saowapha Surawut
- Medical Microbiology, Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Thunnicha Ondee
- Medical Sciences Program, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sujittra Taratummarat
- Medical Microbiology, Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Prapaporn Pisitkun
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Ariya Chindamporn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Immunology and Immune-mediated Diseases, Department of Microbiology, Faculty of Medicine, Bangkok, Thailand
| |
Collapse
|
90
|
Ding Y, Li P, He Q, Wei H, Wu T, Xia D, Tan M, Shi Y, Su X. The CD4 + T-lymphocyte count is an important predictor for the prognosis of cryptococcosis. Eur J Clin Microbiol Infect Dis 2016; 36:897-904. [PMID: 28035481 PMCID: PMC5395594 DOI: 10.1007/s10096-016-2880-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/14/2016] [Indexed: 12/01/2022]
Abstract
There is great heterogeneity of immunity among patients with cryptococcosis, and severe immunodeficiency can lead to negative clinical outcomes. Underlying disease is a poor surrogate for immune status and inferior in predicting an individual’s prognosis. This study was intended to determine whether T-lymphocyte subgroups would be more suitable indicators regarding the severity of infection and clinical outcomes of such patients. We retrieved clinical data on 101 patients with cryptococcosis and compared the validity of multiple parameters (underlying disease and T-lymphocyte subgroups) in predicting the severity of infection and clinical outcome in these patients. For patients with CD4+ T-lymphocyte counts lower than 400/μL, the odds ratio of disseminated cryptococcosis was 23.3 (P = 0.005). There was a moderate negative correlation between CD4+ T-cell count and Apache II score (−0.609, P < 0.001). Mortality among patients with low levels of CD4+ T lymphocytes was significantly higher than among those with normal levels (23.8% vs 5.3%, P = 0.016). However, the difference was not significant if the patients were grouped by underlying disease (P = 0.067). The CD4+ T-lymphocyte count in peripheral blood is a simple and more accurate biomarker for predicting severity of infection and clinical outcome in patients with cryptococcosis.
Collapse
Affiliation(s)
- Y Ding
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China, 210002
| | - P Li
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China, 210002
| | - Q He
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Southern Medical University, Nanjing, China, 210002
| | - H Wei
- Department of Infectious Disease, Nanjing Second Hospital, Nanjing, China, 210002
| | - T Wu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China, 210002
| | - D Xia
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China, 210002
| | - M Tan
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China, 210002
| | - Y Shi
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China, 210002
| | - X Su
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China, 210002.
| |
Collapse
|
91
|
Wheeler ML, Limon JJ, Underhill DM. Immunity to Commensal Fungi: Detente and Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 12:359-385. [PMID: 28068483 DOI: 10.1146/annurev-pathol-052016-100342] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fungi are ubiquitous in our environment, and a healthy immune system is essential to maintain adequate protection from fungal infections. When this protection breaks down, superficial and invasive fungal infections cause diseases that range from irritating to life-threatening. Millions of people worldwide develop invasive infections during their lives, and mortality for these infections often exceeds 50%. Nevertheless, we are normally colonized with many of the same disease-causing fungi (e.g., on the skin or in the gut). Recent research is dramatically expanding our understanding of the mechanisms by which our immune systems interact with these organisms in health and disease. In this review, we discuss what is currently known about where and how the immune system interacts with common fungi.
Collapse
Affiliation(s)
- Matthew L Wheeler
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, and Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048; , ,
| | - Jose J Limon
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, and Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048; , ,
| | - David M Underhill
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, and Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048; , , .,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
92
|
Koutsouras GW, Ramos RL, Martinez LR. Role of microglia in fungal infections of the central nervous system. Virulence 2016; 8:705-718. [PMID: 27858519 DOI: 10.1080/21505594.2016.1261789] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Most fungi are capable of disseminating into the central nervous system (CNS) commonly being observed in immunocompromised hosts. Microglia play a critical role in responding to these infections regulating inflammatory processes proficient at controlling CNS colonization by these eukaryotic microorganisms. Nonetheless, it is this inflammatory state that paradoxically yields cerebral mycotic meningoencephalitis and abscess formation. As peripheral macrophages and fungi have been investigated aiding our understanding of peripheral disease, ascertaining the key interactions between fungi and microglia may uncover greater abilities to treat invasive fungal infections of the brain. Here, we present the current knowledge of microglial physiology. Due to the existing literature, we have described to greater extent the opportunistic mycotic interactions with these surveillance cells of the CNS, highlighting the need for greater efforts to study other cerebral fungal infections such as those caused by geographically restricted dimorphic and rare fungi.
Collapse
Affiliation(s)
- George W Koutsouras
- a Department of Biomedical Sciences , NYIT College of Osteopathic Medicine, New York Institute of Technology , Old Westbury , NY , USA
| | - Raddy L Ramos
- a Department of Biomedical Sciences , NYIT College of Osteopathic Medicine, New York Institute of Technology , Old Westbury , NY , USA
| | - Luis R Martinez
- a Department of Biomedical Sciences , NYIT College of Osteopathic Medicine, New York Institute of Technology , Old Westbury , NY , USA
| |
Collapse
|
93
|
Malachowski AN, Yosri M, Park G, Bahn YS, He Y, Olszewski MA. Systemic Approach to Virulence Gene Network Analysis for Gaining New Insight into Cryptococcal Virulence. Front Microbiol 2016; 7:1652. [PMID: 27833589 PMCID: PMC5081415 DOI: 10.3389/fmicb.2016.01652] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 10/04/2016] [Indexed: 11/13/2022] Open
Abstract
Cryptococcus neoformans is pathogenic yeast, responsible for highly lethal infections in compromised patients around the globe. C. neoformans typically initiates infections in mammalian lung tissue and subsequently disseminates to the central nervous system where it causes significant pathologies. Virulence genes of C. neoformans are being characterized at an increasing rate, however, we are far from a comprehensive understanding of their roles and genetic interactions. Some of these reported virulence genes are scattered throughout different databases, while others are not yet included. This study gathered and analyzed 150 reported virulence associated factors (VAFs) of C. neoformans. Using the web resource STRING database, our study identified different interactions between the total VAFs and those involved specifically in lung and brain infections and identified a new strain specific virulence gene, SHO1, involved in the mitogen-activated protein kinase signaling pathway. As predicted by our analysis, SHO1 expression enhanced C. neoformans virulence in a mouse model of pulmonary infection, contributing to enhanced non-protective immune Th2 bias and progressively enhancing fungal growth in the infected lungs. Sequence analysis indicated 77.4% (116) of total studied VAFs are soluble proteins, and 22.7% (34) are transmembrane proteins. Motifs involved in regulation and signaling such as protein kinases and transcription factors are highly enriched in Cryptococcus VAFs. Altogether, this study represents a pioneering effort in analysis of the virulence composite network of C. neoformans using a systems biology approach.
Collapse
Affiliation(s)
- Antoni N Malachowski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann ArborMI, USA; VA Ann Arbor Healthcare System Research Service (11R), Ann ArborMI, USA
| | - Mohamed Yosri
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann ArborMI, USA; VA Ann Arbor Healthcare System Research Service (11R), Ann ArborMI, USA; The Regional Center for Mycology and Biotechnology, Al-Azhar UniversityCairo, Egypt
| | - Goun Park
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University Seoul, South Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University Seoul, South Korea
| | - Yongqun He
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann ArborMI, USA; Department of Microbiology and Immunology, University of Michigan Medical School, Ann ArborMI, USA; Center for Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann ArborMI, USA
| | - Michal A Olszewski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann ArborMI, USA; VA Ann Arbor Healthcare System Research Service (11R), Ann ArborMI, USA
| |
Collapse
|
94
|
Xu J, Eastman AJ, Flaczyk A, Neal LM, Zhao G, Carolan J, Malachowski AN, Stolberg VR, Yosri M, Chensue SW, Curtis JL, Osterholzer JJ, Olszewski MA. Disruption of Early Tumor Necrosis Factor Alpha Signaling Prevents Classical Activation of Dendritic Cells in Lung-Associated Lymph Nodes and Development of Protective Immunity against Cryptococcal Infection. mBio 2016; 7:e00510-16. [PMID: 27406560 PMCID: PMC4958242 DOI: 10.1128/mbio.00510-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/09/2016] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Anti-tumor necrosis factor alpha (anti-TNF-α) therapies have been increasingly used to treat inflammatory diseases and are associated with increased risk of invasive fungal infections, including Cryptococcus neoformans infection. Using a mouse model of cryptococcal infection, we investigated the mechanism by which disruption of early TNF-α signaling results in the development of nonprotective immunity against C. neoformans We found that transient depletion of TNF-α inhibited pulmonary fungal clearance and enhanced extrapulmonary dissemination of C. neoformans during the adaptive phase of the immune response. Higher fungal burdens in TNF-α-depleted mice were accompanied by markedly impaired Th1 and Th17 responses in the infected lungs. Furthermore, early TNF-α depletion also resulted in disrupted transcriptional initiation of the Th17 polarization program and subsequent upregulation of Th1 genes in CD4(+) T cells in the lung-associated lymph nodes (LALN) of C. neoformans-infected mice. These defects in LALN T cell responses were preceded by a dramatic shift from a classical toward an alternative activation of dendritic cells (DC) in the LALN of TNF-α-depleted mice. Taken together, our results indicate that early TNF-α signaling is required for optimal DC activation, and the initial Th17 response followed by Th1 transcriptional prepolarization of T cells in the LALN, which further drives the development of protective immunity against cryptococcal infection in the lungs. Thus, administration of anti-TNF-α may introduce a particularly greater risk for newly acquired fungal infections that require generation of protective Th1/Th17 responses for their containment and clearance. IMPORTANCE Increased susceptibility to invasive fungal infections in patients on anti-TNF-α therapies underlines the need for understanding the cellular effects of TNF-α signaling in promoting protective immunity to fungal pathogens. Here, we demonstrate that early TNF-α signaling is required for classical activation and accumulation of DC in LALN of C. neoformans-infected mice. Subsequent transcriptional initiation of Th17 followed by Th1 programming in LALN results in pulmonary accumulation of gamma interferon- and interleukin-17A-producing T cells and effective fungal clearance. All of these crucial steps are severely impaired in mice that undergo anti-TNF-α treatment, consistent with their inability to clear C. neoformans This study identified critical interactions between cells of the innate immune system (DC), the emerging T cell responses, and cytokine networks with a central role for TNF-α which orchestrate the development of the immune protection against cryptococcal infection. This information will be important in aiding development and understanding the potential side effects of immunotherapies.
Collapse
Affiliation(s)
- Jintao Xu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA Pulmonary Section, Medical Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, USA
| | - Alison J Eastman
- Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Adam Flaczyk
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA Pulmonary Section, Medical Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, USA
| | - Lori M Neal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA Pulmonary Section, Medical Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, USA
| | - Guolei Zhao
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA Pulmonary Section, Medical Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, USA
| | - Jacob Carolan
- Pulmonary Section, Medical Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, USA
| | - Antoni N Malachowski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA Pulmonary Section, Medical Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, USA
| | - Valerie R Stolberg
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA Pulmonary Section, Medical Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, USA
| | - Mohammed Yosri
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA Pulmonary Section, Medical Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, USA
| | - Stephen W Chensue
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA Pulmonary Section, Medical Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, USA
| | - Jeffrey L Curtis
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, Michigan, USA Pulmonary Section, Medical Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, USA
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, Michigan, USA Pulmonary Section, Medical Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, USA
| | - Michal A Olszewski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, Michigan, USA Pulmonary Section, Medical Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, USA
| |
Collapse
|
95
|
Wake R, Govender NP. Cryptococcosis in apparently immune-competent patients: taxonomy, epidemiology, pathophysiology and treatment. S Afr J Infect Dis 2016. [DOI: 10.1080/23120053.2016.1188488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
96
|
Opportunities for the development of novel therapies based on host-microbial interactions. Pharmacol Res 2016; 112:68-83. [PMID: 27107789 DOI: 10.1016/j.phrs.2016.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 12/21/2022]
Abstract
Immune responses are fundamental for protecting against most infectious agents. However, there is now much evidence to suggest that the pathogenesis and tissue damage after infection are not usually related to the direct action of the replication of microorganisms, but instead to altered immune responses triggered after the contact with the pathogen. This review article discusses several mechanisms necessary for the host to protect against microbial infection and focuses in aspects that cause altered inflammation and drive immunopathology. These basic findings can ultimately reveal pathways amenable to host-directed therapy in adjunct to antimicrobial therapy for future improved control measures for many infectious diseases. Therefore, modulating the effects of inflammatory pathways may represent a new therapy during infection outcome and disease.
Collapse
|
97
|
Park YD, Williamson PR. Masking the Pathogen: Evolutionary Strategies of Fungi and Their Bacterial Counterparts. J Fungi (Basel) 2015; 1:397-421. [PMID: 29376918 PMCID: PMC5753132 DOI: 10.3390/jof1030397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 11/21/2022] Open
Abstract
Pathogens reduce immune recognition of their cell surfaces using a variety of inert structural polysaccharides. For example, capsular polysaccharides play critical roles in microbial survival strategies. Capsules are widely distributed among bacterial species, but relatively rare in eukaryotic microorganisms, where they have evolved considerable complexity in structure and regulation and are exemplified by that of the HIV/AIDS-related fungus Cryptococcus neoformans. Endemic fungi that affect normal hosts such as Histoplasma capsulatum and Blastomyces dermatitidis have also evolved protective polysaccharide coverings in the form of immunologically inert α-(1,3)-glucan polysaccharides to protect their more immunogenic β-(1,3)-glucan-containing cell walls. In this review we provide a comparative update on bacterial and fungal capsular structures and immunogenic properties as well as the polysaccharide masking strategies of endemic fungal pathogens.
Collapse
Affiliation(s)
- Yoon-Dong Park
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Building 10, Rm 11N222, MSC 1888, Bethesda, MD 20892, USA.
| | - Peter R Williamson
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Building 10, Rm 11N222, MSC 1888, Bethesda, MD 20892, USA.
| |
Collapse
|
98
|
Medici NP, Del Poeta M. New insights on the development of fungal vaccines: from immunity to recent challenges. Mem Inst Oswaldo Cruz 2015; 110:966-73. [PMID: 26602871 PMCID: PMC4708015 DOI: 10.1590/0074-02760150335] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/28/2015] [Indexed: 12/14/2022] Open
Abstract
Fungal infections are emerging as a major problem in part due to high mortality associated with systemic infections, especially in the case of immunocompromised patients. With the development of new treatments for diseases such as cancer and the acquired immune deficiency syndrome pandemic, the number of immunosuppressed patients has increased and, as a consequence, also the number of invasive fungal infections has increased. Several studies have proposed new strategies for the development of effective fungal vaccines. In addition, better understanding of how the immune system works against fungal pathogens has improved the further development of these new vaccination strategies. As a result, some fungal vaccines have advanced through clinical trials. However, there are still many challenges that prevent the clinical development of fungal vaccines that can efficiently immunise subjects at risk of developing invasive fungal infections. In this review, we will discuss these new vaccination strategies and the challenges that they present. In the future with proper investments, fungal vaccines may soon become a reality.
Collapse
Affiliation(s)
- Natasha P Medici
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|