51
|
Lyden PD, Diniz MA, Bosetti F, Lamb J, Nagarkatti KA, Rogatko A, Kim S, Cabeen RP, Koenig JI, Akhter K, Arbab AS, Avery BD, Beatty HE, Bibic A, Cao S, Simoes Braga Boisserand L, Chamorro A, Chauhan A, Diaz-Perez S, Dhandapani K, Dhanesha N, Goh A, Herman AL, Hyder F, Imai T, Johnson CW, Khan MB, Kamat P, Karuppagounder SS, Kumskova M, Mihailovic JM, Mandeville JB, Morais A, Patel RB, Sanganahalli BG, Smith C, Shi Y, Sutariya B, Thedens D, Qin T, Velazquez SE, Aronowski J, Ayata C, Chauhan AK, Leira EC, Hess DC, Koehler RC, McCullough LD, Sansing LH. A multi-laboratory preclinical trial in rodents to assess treatment candidates for acute ischemic stroke. Sci Transl Med 2023; 15:eadg8656. [PMID: 37729432 DOI: 10.1126/scitranslmed.adg8656] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023]
Abstract
Human diseases may be modeled in animals to allow preclinical assessment of putative new clinical interventions. Recent, highly publicized failures of large clinical trials called into question the rigor, design, and value of preclinical assessment. We established the Stroke Preclinical Assessment Network (SPAN) to design and implement a randomized, controlled, blinded, multi-laboratory trial for the rigorous assessment of candidate stroke treatments combined with intravascular thrombectomy. Efficacy and futility boundaries in a multi-arm multi-stage statistical design aimed to exclude from further study highly effective or futile interventions after each of four sequential stages. Six independent research laboratories performed a standard focal cerebral ischemic insult in five animal models that included equal numbers of males and females: young mice, young rats, aging mice, mice with diet-induced obesity, and spontaneously hypertensive rats. The laboratories adhered to a common protocol and efficiently enrolled 2615 animals with full data completion and comprehensive animal tracking. SPAN successfully implemented treatment masking, randomization, prerandomization inclusion and exclusion criteria, and blinded assessment of outcomes. The SPAN design and infrastructure provide an effective approach that could be used in similar preclinical, multi-laboratory studies in other disease areas and should help improve reproducibility in translational science.
Collapse
Affiliation(s)
- Patrick D Lyden
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
- Department of Neurology, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Márcio A Diniz
- Biostatistics and Bioinformatics Research Center, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Francesca Bosetti
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jessica Lamb
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Karisma A Nagarkatti
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - André Rogatko
- Biostatistics and Bioinformatics Research Center, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sungjin Kim
- Biostatistics and Bioinformatics Research Center, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ryan P Cabeen
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Imaging and Informatics Institute, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - James I Koenig
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kazi Akhter
- Department of Radiology, Johns Hopkins University, Baltimore, MD 21218-2625, USA
| | - Ali S Arbab
- Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912-0004, USA
| | - Brooklyn D Avery
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21218-2625, USA
| | - Hannah E Beatty
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Adnan Bibic
- Department of Radiology, Johns Hopkins University, Baltimore, MD 21218-2625, USA
| | - Suyi Cao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21218-2625, USA
| | | | - Angel Chamorro
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Neurology, Hospital Clinic, University of Barcelona, Barcelona 08036, Spain
| | - Anjali Chauhan
- Department of Neurology, McGovern Medical School, University of Texas HSC, Houston, TX 77030, USA
| | - Sebastian Diaz-Perez
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Krishnan Dhandapani
- Department Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Nirav Dhanesha
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Andrew Goh
- Department of Neurology, McGovern Medical School, University of Texas HSC, Houston, TX 77030, USA
| | - Alison L Herman
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Takahiko Imai
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Conor W Johnson
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mohammad B Khan
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Pradip Kamat
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | | | - Mariia Kumskova
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jelena M Mihailovic
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
| | - Joseph B Mandeville
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Andreia Morais
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Rakesh B Patel
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | - Cameron Smith
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yanrong Shi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21218-2625, USA
| | - Brijesh Sutariya
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Daniel Thedens
- Department of Radiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Tao Qin
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Sofia E Velazquez
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jaroslaw Aronowski
- Department of Neurology, McGovern Medical School, University of Texas HSC, Houston, TX 77030, USA
| | - Cenk Ayata
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Anil K Chauhan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Enrique C Leira
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Neurosurgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21218-2625, USA
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, University of Texas HSC, Houston, TX 77030, USA
| | - Lauren H Sansing
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
52
|
Çalışkan G, Demiray YE, Stork O. Comparison of three common inbred mouse strains reveals substantial differences in hippocampal GABAergic interneuron populations and in vitro network oscillations. Eur J Neurosci 2023; 58:3383-3401. [PMID: 37550182 DOI: 10.1111/ejn.16112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 08/09/2023]
Abstract
A major challenge in neuroscience is to pinpoint neurobiological correlates of specific cognitive and neuropsychiatric traits. At the mesoscopic level, promising candidates for establishing such connections are brain oscillations that can be robustly recorded as local field potentials with varying frequencies in the hippocampus in vivo and in vitro. Inbred mouse strains show natural variation in hippocampal synaptic plasticity (e.g. long-term potentiation), a cellular correlate of learning and memory. However, their diversity in expression of different types of hippocampal network oscillations has not been fully explored. Here, we investigated hippocampal network oscillations in three widely used inbred mouse strains: C57BL/6J (B6J), C57BL/6NCrl (B6N) and 129S2/SvPasCrl (129) with the aim to identify common oscillatory characteristics in inbred mouse strains that show aberrant emotional/cognitive behaviour (B6N and 129) and compare them to "control" B6J strain. First, we detected higher gamma oscillation power in the hippocampal CA3 of both B6N and 129 strains. Second, higher incidence of hippocampal sharp wave-ripple (SPW-R) transients was evident in these strains. Third, we observed prominent differences in the densities of distinct interneuron types and CA3 associative network activity, which are indispensable for sustainment of mesoscopic network oscillations. Together, these results add further evidence to profound physiological differences among inbred mouse strains commonly used in neuroscience research.
Collapse
Affiliation(s)
- Gürsel Çalışkan
- Research Group "Synapto-Oscillopathies", Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Yunus E Demiray
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Oliver Stork
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying MentalHealth (C-I-R-C), Jena-Magdeburg-Halle, Germany
- German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Jena-Magdeburg-Halle, Germany
| |
Collapse
|
53
|
Koshko L, Scofield S, Debarba L, Stilgenbauer L, Fakhoury P, Jayarathne H, Perez-Mojica JE, Griggs E, Lempradl A, Sadagurski M. Prenatal benzene exposure in mice alters offspring hypothalamic development predisposing to metabolic disease in later life. CHEMOSPHERE 2023; 330:138738. [PMID: 37084897 PMCID: PMC10199724 DOI: 10.1016/j.chemosphere.2023.138738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Maternal exposure to environmental contaminants during pregnancy poses a significant threat to a developing fetus, as these substances can easily cross the placenta and disrupt the neurodevelopment of offspring. Specifically, the hypothalamus is essential in the regulation of metabolism, notably during critical windows of development. An abnormal hormonal and inflammatory milieu during development can trigger persistent changes in the function of hypothalamic circuits, leading to long-lasting effects on the body's energy homeostasis and metabolism. We recently demonstrated that gestational exposure to clinically relevant levels of benzene induces severe metabolic dysregulation in the offspring. Given the central role of the hypothalamus in metabolic control, we hypothesized that prenatal exposure to benzene impacts hypothalamic development, contributing to the adverse metabolic effects in the offspring. C57BL/6JB dams were exposed to benzene at 50 ppm in the inhalation chambers exclusively during pregnancy (from E0.5 to E19). Transcriptomic analysis of the exposed offspring at postnatal day 21 (P21) revealed hypothalamic changes in genes related to metabolic regulation, inflammation, and neurodevelopment exclusively in males. Moreover, the hypothalamus of prenatally benzene-exposed male offspring displayed alterations in orexigenic and anorexigenic projections, impairments in leptin signaling, and increased microgliosis. Additional exposure to benzene during lactation did not promote further microgliosis or astrogliosis in the offspring, while the high-fat diet (HFD) challenge in adulthood exacerbated glucose metabolism and hypothalamic inflammation in benzene-exposed offspring of both sexes. These findings reveal the persistent adverse effects of prenatal benzene exposure on hypothalamic circuits and neuroinflammation, predisposing the offspring to long-lasting metabolic health conditions.
Collapse
Affiliation(s)
- Lisa Koshko
- Department of Biological Sciences, Institute of Environmental Health Sciences, Integrative Biosciences Center (IBio), Wayne State University, Detroit, MI, USA
| | - Sydney Scofield
- Department of Biological Sciences, Institute of Environmental Health Sciences, Integrative Biosciences Center (IBio), Wayne State University, Detroit, MI, USA
| | - Lucas Debarba
- Department of Biological Sciences, Institute of Environmental Health Sciences, Integrative Biosciences Center (IBio), Wayne State University, Detroit, MI, USA
| | - Lukas Stilgenbauer
- Department of Biological Sciences, Institute of Environmental Health Sciences, Integrative Biosciences Center (IBio), Wayne State University, Detroit, MI, USA
| | - Patrick Fakhoury
- Department of Biological Sciences, Institute of Environmental Health Sciences, Integrative Biosciences Center (IBio), Wayne State University, Detroit, MI, USA
| | - Hashan Jayarathne
- Department of Biological Sciences, Institute of Environmental Health Sciences, Integrative Biosciences Center (IBio), Wayne State University, Detroit, MI, USA
| | | | - Ellen Griggs
- Van Andel Research Institute, Grand Rapids, MI, USA
| | | | - Marianna Sadagurski
- Department of Biological Sciences, Institute of Environmental Health Sciences, Integrative Biosciences Center (IBio), Wayne State University, Detroit, MI, USA.
| |
Collapse
|
54
|
Mo F, Lv B, Zhao D, Xi Z, Qian Y, Ge D, Yang N, Zhang D, Jiang G, Gao S. Small RNA Sequencing Analysis of STZ-Injured Pancreas Reveals Novel MicroRNA and Transfer RNA-Derived RNA with Biomarker Potential for Diabetes Mellitus. Int J Mol Sci 2023; 24:10323. [PMID: 37373469 DOI: 10.3390/ijms241210323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
MicroRNAs (miRNAs) and transfer RNA-derived small RNAs (tsRNAs) play critical roles in the regulation of different biological processes, but their underlying mechanisms in diabetes mellitus (DM) are still largely unknown. This study aimed to gain a better understanding of the functions of miRNAs and tsRNAs in the pathogenesis of DM. A high-fat diet (HFD) and streptozocin (STZ)-induced DM rat model was established. Pancreatic tissues were obtained for subsequent studies. The miRNA and tsRNA expression profiles in the DM and control groups were obtained by RNA sequencing and validated with quantitative reverse transcription-PCR (qRT-PCR). Subsequently, bioinformatics methods were used to predict target genes and the biological functions of differentially expressed miRNAs and tsRNAs. We identified 17 miRNAs and 28 tsRNAs that were significantly differentiated between the DM and control group. Subsequently, target genes were predicted for these altered miRNAs and tsRNAs, including Nalcn, Lpin2 and E2f3. These target genes were significantly enriched in localization as well as intracellular and protein binding. In addition, the results of KEGG analysis showed that the target genes were significantly enriched in the Wnt signaling pathway, insulin pathway, MAPK signaling pathway and Hippo signaling pathway. This study revealed the expression profiles of miRNAs and tsRNAs in the pancreas of a DM rat model using small RNA-Seq and predicted the target genes and associated pathways using bioinformatics analysis. Our findings provide a novel aspect in understanding the mechanisms of DM and identify potential targets for the diagnosis and treatment of DM.
Collapse
Affiliation(s)
- Fangfang Mo
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Bohan Lv
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dandan Zhao
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ziye Xi
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yining Qian
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dongyu Ge
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Nan Yang
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Dongwei Zhang
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guangjian Jiang
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Sihua Gao
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
55
|
Watkins BA, Newman JW, Kuchel GA, Fiehn O, Kim J. Dietary Docosahexaenoic Acid and Glucose Systemic Metabolic Changes in the Mouse. Nutrients 2023; 15:2679. [PMID: 37375583 DOI: 10.3390/nu15122679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The endocannabinoid system (ECS) participates in regulating whole body energy balance. Overactivation of the ECS has been associated with the negative consequence of obesity and type 2 diabetes. Since activators of the ECS rely on lipid-derived ligands, an investigation was conducted to determine whether dietary PUFA could influence the ECS to affect glucose clearance by measuring metabolites of macronutrient metabolism. C57/blk6 mice were fed a control or DHA-enriched semi-purified diet for a period of 112 d. Plasma, skeletal muscle, and liver were collected after 56 d and 112 d of feeding the diets for metabolomics analysis. Key findings characterized a shift in glucose metabolism and greater catabolism of fatty acids in mice fed the DHA diet. Glucose use and promotion of fatty acids as substrate were found based on levels of metabolic pathway intermediates and altered metabolic changes related to pathway flux with DHA feeding. Greater levels of DHA-derived glycerol lipids were found subsequently leading to the decrease of arachidonate-derived endocannabinoids (eCB). Levels of 1- and 2-arachidonylglcerol eCB in muscle and liver were lower in the DHA diet group compared to controls. These findings demonstrate that DHA feeding in mice alters macronutrient metabolism and may restore ECS tone by lowering arachidonic acid derived eCB.
Collapse
Affiliation(s)
- Bruce A Watkins
- Department of Nutrition, University of California, Davis, Davis, CA 95616, USA
- Center on Aging, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - John W Newman
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA 95616, USA
| | - George A Kuchel
- Center on Aging, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Oliver Fiehn
- NIH UC Davis West Coast Metabolomics Center, Davis, CA 95616, USA
| | - Jeffrey Kim
- Genome and Biomedical Sciences Facility, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
56
|
Kallassy J, Gagnon E, Rosenberg D, Silbart LK, McManus SA. Strains of Faecalibacterium prausnitzii and its extracts reduce blood glucose levels, percent HbA1c, and improve glucose tolerance without causing hypoglycemic side effects in diabetic and prediabetic mice. BMJ Open Diabetes Res Care 2023; 11:11/3/e003101. [PMID: 37277225 DOI: 10.1136/bmjdrc-2022-003101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 05/20/2023] [Indexed: 06/07/2023] Open
Abstract
INTRODUCTION The commensal bacterium Faecalibacterium prausnitzii is a prominent member of the microbiome of animals and humans, and it plays an important role in several physiological processes. Numerous studies have correlated the reduction of F. prausnitzii abundance with many disease states, including irritable bowel syndrome, Crohn's disease, obesity, asthma, major depressive disorder, and metabolic diseases in humans. Studies have also correlated F. prausnitzii with diseases in humans involved in altered glucose metabolism, including diabetes. RESEARCH DESIGN AND METHODS The aim of this study was to investigate the effects of compositions derived from three strains of F. prausnitzii (coined FPZ) on glucose metabolism in diet-induced obese male C57BL/6J prediabetic and type 2 diabetic mice. The primary endpoints of these studies were measuring changes in fasting blood glucose, glucose tolerance (as measured by a glucose tolerance test), and percent hemoglobin A1c (HbA1c) with longer term treatment. Two placebo-controlled trials were carried out using both live cell FPZ and killed cell FPZ and extracts. Two additional placebo-controlled trials were carried out in non-diabetic mice and mice that previously had type 2 diabetes (T2D). RESULTS Both trials in prediabetic and diabetic mice revealed that peroral administration of live FPZ or extracts from FPZ lowered fasting blood glucose levels and improved glucose tolerance compared with control mice. A trial administering longer FPZ treatment also resulted in lowered percent HbA1c compared with control mice. Additionally, trials in non-diabetic mice treated with FPZ demonstrated that FPZ treatment does not lead to hypoglycemia. CONCLUSIONS The trial results have shown that treatment with different formulations of FPZ result in lower blood glucose levels, lower percent HbA1c, and improved glucose response in mice compared with control prediabetic/diabetic mice. FPZ is a promising candidate as an orally administered probiotic or postbiotic to manage and improve pre-diabetes and T2D.
Collapse
Affiliation(s)
| | | | | | - Lawrence K Silbart
- Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
| | | |
Collapse
|
57
|
Wulfridge P, Davidovich A, Salvador AC, Manno GC, Tryggvadottir R, Idrizi A, Huda MN, Bennett BJ, Adams LG, Hansen KD, Threadgill DW, Feinberg AP. Precision pharmacological reversal of genotype-specific diet-induced metabolic syndrome in mice informed by transcriptional regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538156. [PMID: 37163127 PMCID: PMC10168252 DOI: 10.1101/2023.04.25.538156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Diet-related metabolic syndrome is the largest contributor to adverse health in the United States. However, the study of gene-environment interactions and their epigenomic and transcriptomic integration is complicated by the lack of environmental and genetic control in humans that is possible in mouse models. Here we exposed three mouse strains, C57BL/6J (BL6), A/J, and NOD/ShiLtJ (NOD), to a high-fat high-carbohydrate diet, leading to varying degrees of metabolic syndrome. We then performed transcriptomic and genomic DNA methylation analyses and found overlapping but also highly divergent changes in gene expression and methylation upstream of the discordant metabolic phenotypes. Strain-specific pathway analysis of dietary effects reveals a dysregulation of cholesterol biosynthesis common to all three strains but distinct regulatory networks driving this dysregulation. This suggests a strategy for strain-specific targeted pharmacologic intervention of these upstream regulators informed by transcriptional regulation. As a pilot study, we administered the drug GW4064 to target one of these genotype-dependent networks, the Farnesoid X receptor pathway, and found that GW4064 exerts genotype-specific protection against dietary effects in BL6, as predicted by our transcriptomic analysis, as well as increased inflammatory-related gene expression changes in NOD. This pilot study demonstrates the potential efficacy of precision therapeutics for genotype-informed dietary metabolic intervention, and a mouse platform for guiding this approach.
Collapse
|
58
|
Semple EA, Harberson MT, Xu B, Rashleigh R, Cartwright TL, Braun JJ, Custer AC, Liu C, Hill JW. Melanocortin 4 receptor signaling in Sim1 neurons permits sexual receptivity in female mice. Front Endocrinol (Lausanne) 2023; 14:983670. [PMID: 37033219 PMCID: PMC10080118 DOI: 10.3389/fendo.2023.983670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Female sexual dysfunction affects approximately 40% of women in the United States, yet few therapeutic options exist for these patients. The melanocortin system is a new treatment target for hypoactive sexual desire disorder (HSDD), but the neuronal pathways involved are unclear. Methods In this study, the sexual behavior of female MC4R knockout mice lacking melanocortin 4 receptors (MC4Rs) was examined. The mice were then bred to express MC4Rs exclusively on Sim1 neurons (tbMC4RSim1 mice) or on oxytocin neurons (tbMC4ROxt mice) to examine the effect on sexual responsiveness. Results MC4R knockout mice were found to approach males less and have reduced receptivity to copulation, as indicated by a low lordosis quotient. These changes were independent of body weight. Lordosis behavior was normalized in tbMC4RSim1 mice and improved in tbMC4ROxt mice. In contrast, approach behavior was unchanged in tbMC4RSim1 mice but greatly increased in tbMC4ROxt animals. The changes were independent of melanocortin-driven metabolic effects. Discussion These results implicate MC4R signaling in Oxt neurons in appetitive behaviors and MC4R signaling in Sim1 neurons in female sexual receptivity, while suggesting melanocortin-driven sexual function does not rely on metabolic neural circuits.
Collapse
Affiliation(s)
- Erin A. Semple
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, United States
| | - Mitchell T. Harberson
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, United States
| | - Baijie Xu
- Center for Hypothalamic Research, University of Texas Southwestern, Dallas, TX, United States
| | - Rebecca Rashleigh
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, United States
| | - Tori L. Cartwright
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, United States
| | - Jessica J. Braun
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, United States
| | - Amy C. Custer
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, United States
| | - Chen Liu
- Center for Hypothalamic Research, University of Texas Southwestern, Dallas, TX, United States
| | - Jennifer W. Hill
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, United States
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH, United States
| |
Collapse
|
59
|
Wei JH, Lee WJ, Luo JL, Huang HL, Wang SC, Chou RH, Huang PH, Lin SJ. Vertical Sleeve Gastrectomy Offers Protection against Disturbed Flow-Induced Atherosclerosis in High-Fat Diet-Fed Mice. Int J Mol Sci 2023; 24:ijms24065669. [PMID: 36982743 PMCID: PMC10051344 DOI: 10.3390/ijms24065669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Bariatric surgery reduces body weight, enhances metabolic and diabetic control, and improves outcomes on obesity-related comorbidities. However, the mechanisms mediating this protection against cardiovascular diseases remain unclear. We investigated the effect of sleeve gastrectomy (SG) on vascular protection in response to shear stress-induced atherosclerosis using an overweighted and carotid artery ligation mouse model. Eight-week-old male wild-type mice (C57BL/6J) were fed a high-fat diet (HFD) for two weeks to induce weight gain and dysmetabolism. SG was performed in HFD-fed mice. Two weeks after the SG procedure, partial carotid-artery ligation was performed to promote disturbed flow-induced atherosclerosis. Compared with the control mice, HFD-fed wild-type mice exhibited increased body weight, total cholesterol level, hemoglobin A1c, and enhanced insulin resistance; SG significantly reversed these adverse effects. As expected, HFD-fed mice exhibited greater neointimal hyperplasia and atherosclerotic plaques than the control group, and the SG procedure attenuated HFD-promoted ligation-induced neointimal hyperplasia and arterial elastin fragmentation. Besides, HFD promoted ligation-induced macrophage infiltration, matrix metalloproteinase-9 expression, upregulation of inflammatory cytokines, and increased vascular endothelial growth factor secretion. SG significantly reduced the above-mentioned effects. Moreover, HFD restriction partially reversed the intimal hyperplasia caused by carotid artery ligation; however, this protective effect was significantly lower than that observed in SG-operated mice. Our study demonstrated that HFD deteriorates shear stress-induced atherosclerosis and SG mitigates vascular remodeling, and this protective effect was not comparable in HFD restriction group. These findings provide a rationale for using bariatric surgery to counter atherosclerosis in morbid obesity.
Collapse
Affiliation(s)
- Jih-Hua Wei
- Division of Cardiology, Department of Internal Medicine, Min-Sheng General Hospital, Taoyuan 330, Taiwan; (J.-H.W.)
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Wei-Jei Lee
- Department of Surgery, Min-Sheng General Hospital, Taoyuan 330, Taiwan
| | - Jing-Lin Luo
- Division of Cardiology, Department of Internal Medicine, Min-Sheng General Hospital, Taoyuan 330, Taiwan; (J.-H.W.)
| | - Hsin-Lei Huang
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan
| | - Shen-Chih Wang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Ruey-Hsing Chou
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Anesthesiology, Taipei Veteran General Hospital, Taipei 112, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Beitou District, Taipei 112, Taiwan
| | - Po-Hsun Huang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Anesthesiology, Taipei Veteran General Hospital, Taipei 112, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Beitou District, Taipei 112, Taiwan
- Correspondence: ; Tel.: +886-2-2875-7374; Fax: +886-2-2875-7375
| | - Shing-Jong Lin
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Anesthesiology, Taipei Veteran General Hospital, Taipei 112, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Beitou District, Taipei 112, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
60
|
Cao S, Jurczak MJ, Shuda Y, Sun R, Shuda M, Chang Y, Moore PS. Mitotic CDK1 and 4E-BP1 II: A single phosphomimetic mutation in 4E-BP1 induces glucose intolerance in mice. PLoS One 2023; 18:e0282914. [PMID: 36897840 PMCID: PMC10004604 DOI: 10.1371/journal.pone.0282914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
OBJECTIVE Cyclin-dependent kinase 1 (CDK1)/cyclin B1 phosphorylates many of the same substrates as mTORC1 (a key regulator of glucose metabolism), including the eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). Only mitotic CDK1 phosphorylates 4E-BP1 at residue S82 in mice (S83 in humans), in addition to the common 4E-BP1 phospho-acceptor sites phosphorylated by both CDK1 and mTORC1. We examined glucose metabolism in mice having a single aspartate phosphomimetic amino acid knock in substitution at the 4E-BP1 serine 82 (4E-BP1S82D) mimicking constitutive CDK1 phosphorylation. METHODS Knock-in homozygous 4E-BP1S82D and 4E-BP1S82A C57Bl/6N mice were assessed for glucose tolerance testing (GTT) and metabolic cage analysis on regular and on high-fat chow diets. Gastrocnemius tissues from 4E-BP1S82D and WT mice were subject to Reverse Phase Protein Array analysis. Since the bone marrow is one of the few tissues typically having cycling cells that transit mitosis, reciprocal bone-marrow transplants were performed between male 4E-BP1S82D and WT mice, followed by metabolic assessment, to determine the role of actively cycling cells on glucose homeostasis. RESULTS Homozygous knock-in 4E-BP1S82D mice showed glucose intolerance that was markedly accentuated with a diabetogenic high-fat diet (p = 0.004). In contrast, homozygous mice with the unphosphorylatable alanine substitution (4E-BP1S82A) had normal glucose tolerance. Protein profiling of lean muscle tissues, largely arrested in G0, did not show protein expression or signaling changes that could account for these results. Reciprocal bone-marrow transplantation between 4E-BP1S82D and wild-type littermates revealed a trend for wild-type mice with 4E-BP1S82D marrow engraftment on high-fat diets to become hyperglycemic after glucose challenge. CONCLUSIONS 4E-BP1S82D is a single amino acid substitution that induces glucose intolerance in mice. These findings indicate that glucose metabolism may be regulated by CDK1 4E-BP1 phosphorylation independent from mTOR and point towards an unexpected role for cycling cells that transit mitosis in diabetic glucose control.
Collapse
Affiliation(s)
- Simon Cao
- Hillman Cancer Center, Cancer Virology Program, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michael J. Jurczak
- Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Yoko Shuda
- Hillman Cancer Center, Cancer Virology Program, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rui Sun
- Hillman Cancer Center, Cancer Virology Program, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Masahiro Shuda
- Hillman Cancer Center, Cancer Virology Program, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Yuan Chang
- Hillman Cancer Center, Cancer Virology Program, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Patrick S. Moore
- Hillman Cancer Center, Cancer Virology Program, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
61
|
Zong Q, Bundkirchen K, Neunaber C, Noack S. Are the Properties of Bone Marrow-Derived Mesenchymal Stem Cells Influenced by Overweight and Obesity? Int J Mol Sci 2023; 24:ijms24054831. [PMID: 36902259 PMCID: PMC10003331 DOI: 10.3390/ijms24054831] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) are promising candidates for cell-based therapies. Growing evidence has indicated that overweight/obesity can change the bone marrow microenvironment, which affects some properties of BMSCs. As the overweight/obese population rapidly increases, they will inevitably become a potential source of BMSCs for clinical application, especially when receiving autologous BMSC transplantation. Given this situation, the quality control of these cells has become particularly important. Therefore, it is urgent to characterize BMSCs isolated from overweight/obese bone marrow environments. In this review, we summarize the evidence of the effects of overweight/obesity on the biological properties of BMSCs derived from humans and animals, including proliferation, clonogenicity, surface antigen expression, senescence, apoptosis, and trilineage differentiation, as well as the underlying mechanisms. Overall, the conclusions of existing studies are not consistent. Most studies demonstrate that overweight/obesity can influence one or more characteristics of BMSCs, while the involved mechanisms are still unclear. Moreover, insufficient evidence proves that weight loss or other interventions can rescue these qualities to baseline status. Thus, further research should address these issues and prioritize developing methods to improve functions of overweight- or obesity-derived BMSCs.
Collapse
|
62
|
Frick JM, Eller OC, Foright RM, Levasseur BM, Yang X, Wang R, Winter MK, O'Neil MF, Morris EM, Thyfault JP, Christianson JA. High-fat/high-sucrose diet worsens metabolic outcomes and widespread hypersensitivity following early-life stress exposure in female mice. Am J Physiol Regul Integr Comp Physiol 2023; 324:R353-R367. [PMID: 36693166 PMCID: PMC9970659 DOI: 10.1152/ajpregu.00216.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/21/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023]
Abstract
Exposure to stress early in life has been associated with adult-onset comorbidities such as chronic pain, metabolic dysregulation, obesity, and inactivity. We have established an early-life stress model using neonatal maternal separation (NMS) in mice, which displays evidence of increased body weight and adiposity, widespread mechanical allodynia, and hypothalamic-pituitary-adrenal axis dysregulation in male mice. Early-life stress and consumption of a Western-style diet contribute to the development of obesity; however, relatively few preclinical studies have been performed in female rodents, which are known to be protected against diet-induced obesity and metabolic dysfunction. In this study, we gave naïve and NMS female mice access to a high-fat/high-sucrose (HFS) diet beginning at 4 wk of age. Robust increases in body weight and fat were observed in HFS-fed NMS mice during the first 10 wk on the diet, driven partly by increased food intake. Female NMS mice on an HFS diet showed widespread mechanical hypersensitivity compared with either naïve mice on an HFS diet or NMS mice on a control diet. HFS diet-fed NMS mice also had impaired glucose tolerance and fasting hyperinsulinemia. Strikingly, female NMS mice on an HFS diet showed evidence of hepatic steatosis with increased triglyceride levels and altered glucocorticoid receptor levels and phosphorylation state. They also exhibited increased energy expenditure as observed via indirect calorimetry and expression of proinflammatory markers in perigonadal adipose. Altogether, our data suggest that early-life stress exposure increased the susceptibility of female mice to develop diet-induced metabolic dysfunction and pain-like behaviors.
Collapse
Affiliation(s)
- Jenna M Frick
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Olivia C Eller
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Rebecca M Foright
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Brittni M Levasseur
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Xiaofang Yang
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Ruipeng Wang
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Michelle K Winter
- Kansas Intellectual and Developmental Disabilities Research Association, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Maura F O'Neil
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - E Matthew Morris
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - John P Thyfault
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
- Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, Kansas, United States
| | - Julie A Christianson
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| |
Collapse
|
63
|
Bodilly L, Williamson L, Howell K, Alder MN, Kaplan JM. OBESE MICE WITH PNEUMONIA HAVE HYPERLEPTINEMIA AND INCREASED PULMONARY SIGNAL TRANSDUCER AND ACTIVATOR OF TRANSCRIPTION 3 ACTIVATION. Shock 2023; 59:409-416. [PMID: 36597767 PMCID: PMC9991986 DOI: 10.1097/shk.0000000000002050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
ABSTRACT Obesity is an ongoing epidemic that influences pathobiology in numerous disease states. Obesity is associated with increased plasma leptin levels, a hormone that activates the signal transducer and activator of transcription 3 (STAT3) pathway. Pneumonia is a significant cause of morbidity and mortality. During pneumonia, inflammatory pathways including STAT3 are activated. Outcomes in obese patients with pneumonia are mixed, with some studies showing obesity increases harm and others showing benefit. It is unclear whether obesity alters STAT3 activation during bacterial pneumonia and how this might impact outcomes from pneumonia. We used a murine model of obesity and pneumonia challenge with Pseudomonas aeruginosa in obese and nonobese mice to investigate the effect of obesity on STAT3 activation. We found obese mice with bacterial pneumonia had increased mortality compared with nonobese mice. Inflammatory markers, IL-6 and TNF-α, and lung neutrophil infiltration were elevated at 6 h after pneumonia in both nonobese and obese mice. Obese mice had greater lung injury compared with nonobese mice at 6 h after pneumonia. Leptin and insulin levels were higher in obese mice compared with nonobese mice, and obese mice with pneumonia had higher pulmonary STAT3 activation compared with nonobese mice.
Collapse
Affiliation(s)
- Lauren Bodilly
- Department of Pediatrics, University of Iowa, Iowa City, IA
| | - Lauren Williamson
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kendra Howell
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | | |
Collapse
|
64
|
Elenbaas JS, Pudupakkam U, Ashworth KJ, Kang CJ, Patel V, Santana K, Jung IH, Lee PC, Burks KH, Amrute JM, Mecham RP, Halabi CM, Alisio A, Di Paola J, Stitziel NO. SVEP1 is an endogenous ligand for the orphan receptor PEAR1. Nat Commun 2023; 14:850. [PMID: 36792666 PMCID: PMC9932102 DOI: 10.1038/s41467-023-36486-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Sushi, von Willebrand factor type A, EGF and pentraxin domain containing 1 (SVEP1) is an extracellular matrix protein that causally promotes vascular disease and associates with platelet reactivity in humans. Here, using a human genomic and proteomic approach, we identify a high affinity, disease-relevant, and potentially targetable interaction between SVEP1 and the orphan receptor Platelet and Endothelial Aggregation Receptor 1 (PEAR1). This interaction promotes PEAR1 phosphorylation and disease associated AKT/mTOR signaling in vascular cells and platelets. Mice lacking SVEP1 have reduced platelet activation, and exogenous SVEP1 induces PEAR1-dependent activation of platelets. SVEP1 and PEAR1 causally and concordantly relate to platelet phenotypes and cardiovascular disease in humans, as determined by Mendelian Randomization. Targeting this receptor-ligand interaction may be a viable therapeutic strategy to treat or prevent cardiovascular and thrombotic disease.
Collapse
Affiliation(s)
- Jared S Elenbaas
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
- Medical Scientist Training Program, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| | - Upasana Pudupakkam
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Katrina J Ashworth
- Division of Pediatric Hematology Oncology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Chul Joo Kang
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| | - Ved Patel
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Katherine Santana
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - In-Hyuk Jung
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Paul C Lee
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Medical Scientist Training Program, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Kendall H Burks
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Medical Scientist Training Program, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Junedh M Amrute
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Medical Scientist Training Program, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Robert P Mecham
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Carmen M Halabi
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Arturo Alisio
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Jorge Di Paola
- Division of Pediatric Hematology Oncology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Nathan O Stitziel
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, 63108, USA.
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| |
Collapse
|
65
|
Nance SA, Muir L, Delproprosto J, Lumeng CN. MSR1 is not required for obesity-associated inflammation and insulin resistance in mice. Sci Rep 2023; 13:2651. [PMID: 36788340 PMCID: PMC9927046 DOI: 10.1038/s41598-023-29736-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Obesity induces a chronic inflammatory state associated with changes in adipose tissue macrophages (ATMs). Macrophage scavenger receptor 1 (MSR1) has been implicated in the regulation of adipose tissue inflammation and diabetes pathogenesis; however, reports have been mixed on the contribution of MSR1 in obesity and glucose intolerance. We observed increased MSR1 expression in VAT of obese diabetic individuals compared to non-diabetic and single nuclear RNA sequencing identified macrophage-specific expression of MSR1 in human adipose tissue. We examined male Msr1-/- (Msr1KO) and WT controls and observed protection from obesity and AT inflammation in non-littermate Msr1KO mice. We then evaluated obese littermate Msr1+/- (Msr1HET) and Msr1KO mice. Both Msr1KO mice and Msr1HET mice became obese and insulin resistant when compared to their normal chow diet counterparts, but there was no Msr1-dependent difference in body weight, glucose metabolism, or insulin resistance. Flow cytometry revealed no significant differences between genotypes in ATM subtypes or proliferation in male and female mice. We observed increased frequency of proliferating ATMs in obese female compared to male mice. Overall, we conclude that while MSR1 is a biomarker of diabetes status in human adipose tissue, in mice Msr1 is not required for obesity-associated insulin resistance or ATM accumulation.
Collapse
Affiliation(s)
- Sierra A Nance
- Molecular and Integrative Physiology, University of Michigan Medical School, 109 Zina Pitcher Place, 2057 BSRB, Ann Arbor, MI, 48109, USA
- Department of Pediatrics, University of Michigan Medical School, 109 Zina Pitcher Place, 2057 BSRB, Ann Arbor, MI, 48109, USA
| | - Lindsey Muir
- Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jennifer Delproprosto
- Department of Pediatrics, University of Michigan Medical School, 109 Zina Pitcher Place, 2057 BSRB, Ann Arbor, MI, 48109, USA
| | - Carey N Lumeng
- Molecular and Integrative Physiology, University of Michigan Medical School, 109 Zina Pitcher Place, 2057 BSRB, Ann Arbor, MI, 48109, USA.
- Department of Pediatrics, University of Michigan Medical School, 109 Zina Pitcher Place, 2057 BSRB, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
66
|
Adipocyte-derived extracellular vesicles increase insulin secretion through transport of insulinotropic protein cargo. Nat Commun 2023; 14:709. [PMID: 36759608 PMCID: PMC9911726 DOI: 10.1038/s41467-023-36148-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Adipocyte-derived extracellular vesicles (AdEVs) are membranous nanoparticles that convey communication from adipose tissue to other organs. Here, to delineate their role as messengers with glucoregulatory nature, we paired fluorescence AdEV-tracing and SILAC-labeling with (phospho)proteomics, and revealed that AdEVs transfer functional insulinotropic protein cargo into pancreatic β-cells. Upon transfer, AdEV proteins were subjects for phosphorylation, augmented insulinotropic GPCR/cAMP/PKA signaling by increasing total protein abundances and phosphosite dynamics, and ultimately enhanced 1st-phase glucose-stimulated insulin secretion (GSIS) in murine islets. Notably, insulinotropic effects were restricted to AdEVs isolated from obese and insulin resistant, but not lean mice, which was consistent with differential protein loads and AdEV luminal morphologies. Likewise, in vivo pre-treatment with AdEVs from obese but not lean mice amplified insulin secretion and glucose tolerance in mice. This data suggests that secreted AdEVs can inform pancreatic β-cells about insulin resistance in adipose tissue in order to amplify GSIS in times of increased insulin demand.
Collapse
|
67
|
9-PAHPA long term intake in DIO and db/db mice ameliorates insulin sensitivity but has few effects on obesity and associated metabolic disorders. J Nutr Biochem 2023; 112:109216. [PMID: 36372312 DOI: 10.1016/j.jnutbio.2022.109216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/11/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022]
Abstract
Branched fatty acid esters of hydroxy fatty acids are endogenous lipids reported to have antidiabetic and anti-inflammatory effects. Recently, we showed that 9-palmitic acid esters of hydroxypalmitic acid (9-PAHPA) and 9-oleic acid esters of hydroxypalmitic acid increased insulin sensitivity in mice when incorporated to a chow diet or to a high fat and high sucrose diet. However, preventive supplementation with 9-PAHPA and 9-oleic acid esters of hydroxypalmitic acid in high fat and high sucrose diet mice did not impair significant weight gain or the development of hyperglycemia. The aim of this work was therefore to study whether in two animal models of obesity, namely the classical diet-induced obesity (DIO) and the db/db mice, 9-PAHPA may have beneficial effects against obesity and liver and skeletal muscle metabolic dysfunction. In DIO mice, we observed that 9-PAHPA increased body weight and fat mass. In line with this observation, we found that 9-PAHPA supplementation decreased energy expenditure. In liver and in skeletal muscle, mitochondrial activities and oxidative stress parameters were not modified by 9-PAHPA supplementation. In db/db mice, 9-PAHPA had no effect on the dramatic weight gain and hyperglycemia. In addition, 9-PAHPA supplementation did not correct either the hepatomegaly and hepatic steatosis or the severe muscle atrophy recorded compared with db/+ animals. Likewise, supplementation with 9-PAHPA did not impact the different metabolic parameters analyzed, either in the liver or in the skeletal muscles. However, it decreased insulin resistance in DIO and db/db mice. In conclusion, our study indicated that a long-term intake of 9-PAHPA in DIO and db/db mice improved insulin sensitivity but had only few effects on obesity and associated metabolic disorders.
Collapse
|
68
|
Bui TI, Britt EA, Muthukrishnan G, Gill SR. Probiotic induced synthesis of microbiota polyamine as a nutraceutical for metabolic syndrome and obesity-related type 2 diabetes. Front Endocrinol (Lausanne) 2023; 13:1094258. [PMID: 36714575 PMCID: PMC9880209 DOI: 10.3389/fendo.2022.1094258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023] Open
Abstract
The gut microbiota regulates multiple facets of host metabolism and immunity through the production of signaling metabolites, such as polyamines which are small organic compounds that are essential to host cell growth and lymphocyte activation. Polyamines are most abundant in the intestinal lumen, where their synthesis by the gut microbiota is influenced by microbiome composition and host diet. Disruption of the host gut microbiome in metabolic syndrome and obesity-related type 2 diabetes (obesity/T2D) results in potential dysregulation of polyamine synthesis. A growing body of evidence suggests that restoration of the dysbiotic gut microbiota and polyamine synthesis is effective in ameliorating metabolic syndrome and strengthening the impaired immune responses of obesity/T2D. In this review, we discuss existing studies on gut microbiome determinants of polyamine synthesis, polyamine production in obesity/T2D, and evidence that demonstrates the potential of polyamines as a nutraceutical in obesity/T2D hosts.
Collapse
Affiliation(s)
- Tina I. Bui
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Emily A. Britt
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Gowrishankar Muthukrishnan
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, United States
| | - Steven R. Gill
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
69
|
Petrecca S, Quail DF. Mouse Models of Obesity to Study the Tumor-Immune Microenvironment. Methods Mol Biol 2023; 2614:121-138. [PMID: 36587123 DOI: 10.1007/978-1-0716-2914-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Obesity is associated with chronic, low-grade systemic inflammation and leads to changes in the immune microenvironment of various tissues. As a result, obesity is associated with increased risk of cancer and a worse prognosis in patients. Given the prevalence of obesity worldwide, understanding the fundamental biology governing the relationship between obesity and cancer is critical. In this chapter, we describe preclinical models of obesity that can be combined with standard tumor models and techniques to study the tumor-immune microenvironment. We also discuss important considerations when planning experiments involving these models.
Collapse
Affiliation(s)
- Sarah Petrecca
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada.,Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Daniela F Quail
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada. .,Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC, Canada. .,Department of Physiology, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
70
|
Ciric D, Kravic-Stevovic T, Bumbasirevic V, Petricevic S, Jovanovic S, Trajkovic V, Martinovic T. Effects of metformin and simvastatin treatment on ultrastructural features of liver macrophages in HFD mice. Ultrastruct Pathol 2023; 47:1-11. [PMID: 36520527 DOI: 10.1080/01913123.2022.2156639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Type 2 diabetes is a major health burden to the society. Macrophages and liver inflammation emerged as important factors in its development. We investigated ultrastructural changes in the liver, with a special emphasis on macrophages in high fat diet (HFD) fed C57BL/6 J mice treated with metformin or simvastatin, two drugs that are used frequently in diabetes. Both metformin and simvastatin reduced the liver damage in HFD fed animals, manifested as the prevention of nonalcoholic steatohepatitis development and reduced activation and number of macrophages in the liver, as well as the percentage of these cells with lipid droplets in the cytoplasm compared to untreated HFD animals. In contrast with untreated HFD-fed animals, lipid droplets were not observed in lysosomes of macrophages in HFD animals treated with metformin and simvastatin. These findings provide new insight into the effects of metformin and simvastatin on the liver in this experimental model of type 2 diabetes and provide further rationale for implementation of statins in the therapeutic regimens in this disease.
Collapse
Affiliation(s)
- Darko Ciric
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Tamara Kravic-Stevovic
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Bumbasirevic
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Department of Medical Science Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Sasa Petricevic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sofija Jovanovic
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Tamara Martinovic
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
71
|
Xiao G, Kumar R, Komuro Y, Burguet J, Kakarla V, Azizkhanian I, Sheth SA, Williams CK, Zhang XR, Macknicki M, Brumm A, Kawaguchi R, Mai P, Kaneko N, Vinters HV, Carmichael ST, Havton LA, DeCarli C, Hinman JD. IL-17/CXCL5 signaling within the oligovascular niche mediates human and mouse white matter injury. Cell Rep 2022; 41:111848. [PMID: 36543124 PMCID: PMC10026849 DOI: 10.1016/j.celrep.2022.111848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 10/10/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Cerebral small vessel disease and brain white matter injury are worsened by cardiovascular risk factors including obesity. Molecular pathways in cerebral endothelial cells activated by chronic cerebrovascular risk factors alter cell-cell signaling, blocking endogenous and post-ischemic white matter repair. Using cell-specific translating ribosome affinity purification (RiboTag) in white matter endothelia and oligodendrocyte progenitor cells (OPCs), we identify a coordinated interleukin-chemokine signaling cascade within the oligovascular niche of subcortical white matter that is triggered by diet-induced obesity (DIO). DIO induces interleukin-17B (IL-17B) signaling that acts on the cerebral endothelia through IL-17Rb to increase both circulating and local endothelial expression of CXCL5. In white matter endothelia, CXCL5 promotes the association of OPCs with the vasculature and triggers OPC gene expression programs regulating cell migration through chemokine signaling. Targeted blockade of IL-17B reduced vessel-associated OPCs by reducing endothelial CXCL5 expression. In multiple human cohorts, blood levels of CXCL5 function as a diagnostic and prognostic biomarker of vascular cognitive impairment.
Collapse
Affiliation(s)
- Guanxi Xiao
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rosie Kumar
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yutaro Komuro
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jasmine Burguet
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Visesha Kakarla
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ida Azizkhanian
- New York Medical College, School of Medicine, Valhalla, NY, USA
| | - Sunil A Sheth
- Department of Neurology, UT Health McGovern School of Medicine, Houston, TX, USA
| | - Christopher K Williams
- Department of Neuropathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xinhai R Zhang
- Department of Neuropathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michal Macknicki
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Andrew Brumm
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Riki Kawaguchi
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Phu Mai
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Naoki Kaneko
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Harry V Vinters
- Department of Neuropathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Leif A Havton
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Charles DeCarli
- Department of Neurology, University of California, Davis, Davis, CA, USA
| | - Jason D Hinman
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
72
|
Otaibi AA, Mubarak SA, Qarni AA, Hawwari A, Bakillah A, Iqbal J. ATP-Binding Cassette Protein ABCC10 Deficiency Prevents Diet-Induced Obesity but Not Atherosclerosis in Mice. Int J Mol Sci 2022; 23:ijms232213813. [PMID: 36430292 PMCID: PMC9694421 DOI: 10.3390/ijms232213813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/11/2022] Open
Abstract
Excess plasma lipid levels are a risk factor for various cardiometabolic disorders. Studies have shown that improving dyslipidemia lowers the progression of these disorders. In this study, we investigated the role of ATP-binding cassette transporter C10 (ABCC10) in regulating lipid metabolism. Our data indicate that deletion of the Abcc10 gene in male mice results in lower plasma and intestinal triglycerides by around 38% and 36%, respectively. Furthermore, deletion of ABCC10 ameliorates diet-induced obesity in mice and leads to a better response during insulin and glucose tolerance tests. Unexpectedly, ABCC10 deficiency does not affect triglyceride levels or atherosclerosis in ApoE-deficient mice. In addition, our studies demonstrate low oleate uptake by enterocytes (~25-30%) and less absorption (~37%) of triglycerides in the small intestine of ABCC10 knockout mice. Deletion of the Abcc10 gene also alters several lipid metabolism genes in the intestine, suggesting that ABCC10 regulates dietary fat absorption, which may contribute to diet-induced obesity in mice.
Collapse
|
73
|
Čater M, Hölter SM. A Pathophysiological Intersection of Diabetes and Alzheimer's Disease. Int J Mol Sci 2022; 23:11562. [PMID: 36232867 PMCID: PMC9569835 DOI: 10.3390/ijms231911562] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 12/06/2022] Open
Abstract
Diabetes is among the most prevalent diseases of the modern world and is strongly linked to an increased risk of numerous neurodegenerative disorders, although the exact pathophysiological mechanisms are not clear yet. Insulin resistance is a serious pathological condition, connecting type 2 diabetes, metabolic syndrome, and obesity. Recently, insulin resistance has been proven to be connected also to cognitive decline and dementias, including the most prevalent form, Alzheimer's disease. The relationship between diabetes and Alzheimer's disease regarding pathophysiology is so significant that it has been proposed that some presentations of the condition could be termed type 3 diabetes.
Collapse
Affiliation(s)
- Maša Čater
- Chair of Genetics, Animal Biotechnology and Immunology, Department of Animal Science, Biotechnical Faculty, University of Ljubljana, 1230 Domžale, Slovenia
| | - Sabine M. Hölter
- Institute of Developmental Genetics, Helmholtz Munich, 85764 Neuherberg, Germany
- School of Life Sciences, Technical University Munich, 85354 Freising, Germany
| |
Collapse
|
74
|
Abstract
Diabetes is a chronic metabolic disease affecting an increasing number of people. Although diabetes has negative health outcomes for diagnosed individuals, a population at particular risk are pregnant women, as diabetes impacts not only a pregnant woman's health but that of her child. In this review, we cover the current knowledge and unanswered questions on diabetes affecting an expectant mother, focusing on maternal and fetal outcomes.
Collapse
Affiliation(s)
- Cecilia González Corona
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, One Baylor Plaza, Houston, TX 77030, USA
| | - Ronald J. Parchem
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, One Baylor Plaza, Houston, TX 77030, USA,Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
75
|
Bohm MS, Sipe LM, Pye ME, Davis MJ, Pierre JF, Makowski L. The role of obesity and bariatric surgery-induced weight loss in breast cancer. Cancer Metastasis Rev 2022; 41:673-695. [PMID: 35870055 PMCID: PMC9470652 DOI: 10.1007/s10555-022-10050-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023]
Abstract
Obesity is a complex metabolic condition considered a worldwide public health crisis, and a deeper mechanistic understanding of obesity-associated diseases is urgently needed. Obesity comorbidities include many associated cancers and are estimated to account for 20% of female cancer deaths in the USA. Breast cancer, in particular, is associated with obesity and is the focus of this review. The exact causal links between obesity and breast cancer remain unclear. Still, interactions have emerged between body mass index, tumor molecular subtype, genetic background, and environmental factors that strongly suggest obesity influences the risk and progression of certain breast cancers. Supportive preclinical research uses various diet-induced obesity models to demonstrate that weight loss, via dietary interventions or changes in energy expenditure, reduces the onset or progression of breast cancers. Ongoing and future studies are now aimed at elucidating the underpinning mechanisms behind weight-loss-driven observations to improve therapy and outcomes in patients with breast cancer and reduce risk. This review aims to summarize the rapidly emerging literature on obesity and weight loss strategies with a focused discussion of bariatric surgery in both clinical and preclinical studies detailing the complex interactions between metabolism, immune response, and immunotherapy in the setting of obesity and breast cancer.
Collapse
Affiliation(s)
- Margaret S Bohm
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Laura M Sipe
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Madeline E Pye
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Matthew J Davis
- Division of Bariatric Surgery, Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Joseph F Pierre
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- Department of Nutritional Sciences, College of Agriculture and Life Science, The University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Liza Makowski
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- College of Medicine, UTHSC Center for Cancer Research, The University of Tennessee Health Science Center, Cancer Research Building Room 322, 19 S Manassas Street, Memphis, TN, 38163, USA.
| |
Collapse
|
76
|
High-fat diet causes mechanical allodynia in the absence of injury or diabetic pathology. Sci Rep 2022; 12:14840. [PMID: 36050326 PMCID: PMC9437006 DOI: 10.1038/s41598-022-18281-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 08/09/2022] [Indexed: 12/04/2022] Open
Abstract
Understanding the interactions between diet, obesity, and diabetes is important to tease out mechanisms in painful pathology. Western diet is rich in fats, producing high amounts of circulating bioactive metabolites. However, no research has assessed how a high-fat diet (HFD) alone may sensitize an individual to non-painful stimuli in the absence of obesity or diabetic pathology. To investigate this, we tested the ability of a HFD to stimulate diet-induced hyperalgesic priming, or diet sensitization in male and female mice. Our results revealed that 8 weeks of HFD did not alter baseline pain sensitivity, but both male and female HFD-fed animals exhibited robust mechanical allodynia when exposed to a subthreshold dose of intraplantar Prostaglandin E2 (PGE2) compared to mice on chow diet. Furthermore, calcium imaging in isolated primary sensory neurons of both sexes revealed HFD induced an increased percentage of capsaicin-responsive neurons compared to their chow counterparts. Immunohistochemistry (IHC) showed a HFD-induced upregulation of ATF3, a neuronal marker of injury, in lumbar dorsal root ganglia (DRG). This suggests that a HFD induces allodynia in the absence of a pre-existing condition or injury via dietary components. With this new understanding of how a HFD can contribute to the onset of pain, we can understand the dissociation behind the comorbidities associated with obesity and diabetes to develop pharmacological interventions to treat them more efficiently.
Collapse
|
77
|
Kuppuswamy S, Annex BH, Ganta VC. Targeting Anti-Angiogenic VEGF 165b-VEGFR1 Signaling Promotes Nitric Oxide Independent Therapeutic Angiogenesis in Preclinical Peripheral Artery Disease Models. Cells 2022; 11:2676. [PMID: 36078086 PMCID: PMC9454804 DOI: 10.3390/cells11172676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Nitric oxide (NO) is the critical regulator of VEGFR2-induced angiogenesis. Neither VEGF-A over-expression nor L-Arginine (NO-precursor) supplementation has been effective in helping patients with Peripheral Artery Disease (PAD) in clinical trials. One incompletely studied reason may be due to the presence of the less characterized anti-angiogenic VEGF-A (VEGF165b) isoform. We have recently shown that VEGF165b inhibits ischemic angiogenesis by blocking VEGFR1, not VEGFR2 activation. Here we wanted to determine whether VEGF165b inhibition using a monoclonal isoform-specific antibody against VEGF165b vs. control, improved perfusion recovery in preclinical PAD models that have impaired VEGFR2-NO signaling, including (1) type-2 diabetic model, (2) endothelial Nitric oxide synthase-knock out mice, and (3) Myoglobin transgenic mice that have impaired NO bioavailability. In all PAD models, VEGF165b inhibition vs. control enhanced perfusion recovery, increased microvascular density in the ischemic limb, and activated VEGFR1-STAT3 signaling. In vitro, VEGF165b inhibition vs. control enhanced a VEGFR1-dependent endothelial survival/proliferation and angiogenic capacity. These data demonstrate that VEGF165b inhibition induces VEGFR1-STAT3 activation, which does not require increased NO to induce therapeutic angiogenesis in PAD. These results may have implications for advancing therapies for patients with PAD where the VEGFR2-eNOS-NO pathway is impaired.
Collapse
Affiliation(s)
| | | | - Vijay C. Ganta
- Vascular Biology Center and Department of Medicine, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
78
|
Lovell CD, Anguera MC. Long Noncoding RNAs That Function in Nutrition: Lnc-ing Nutritional Cues to Metabolic Pathways. Annu Rev Nutr 2022; 42:251-274. [PMID: 35436418 DOI: 10.1146/annurev-nutr-062220-030244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Long noncoding RNAs (lncRNAs) are sensitive to changing environments and play key roles in health and disease. Emerging evidence indicates that lncRNAs regulate gene expression to shape metabolic processes in response to changing nutritional cues. Here we review various lncRNAs sensitive to fasting, feeding, and high-fat diet in key metabolic tissues (liver, adipose, and muscle), highlighting regulatory mechanisms that trigger expression changes of lncRNAs themselves, and how these lncRNAs regulate gene expression of key metabolic genes in specific cell types or across tissues. Determining how lncRNAs respond to changes in nutrition is critical for our understanding of the complex downstream cascades following dietary changes and can shape how we treat metabolic disease. Furthermore, investigating sex biases that might influence lncRNA-regulated responses will likely reveal contributions toward the observed disparities between the sexes in metabolic diseases.
Collapse
Affiliation(s)
- Claudia D Lovell
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Montserrat C Anguera
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
79
|
Wound Healing Impairment in Type 2 Diabetes Model of Leptin-Deficient Mice—A Mechanistic Systematic Review. Int J Mol Sci 2022; 23:ijms23158621. [PMID: 35955751 PMCID: PMC9369324 DOI: 10.3390/ijms23158621] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
Type II diabetes mellitus (T2DM) is one of the most prevalent diseases in the world, associated with diabetic foot ulcers and impaired wound healing. There is an ongoing need for interventions effective in treating these two problems. Pre-clinical studies in this field rely on adequate animal models. However, producing such a model is near-impossible given the complex and multifactorial pathogenesis of T2DM. A leptin-deficient murine model was developed in 1959 and relies on either dysfunctional leptin (ob/ob) or a leptin receptor (db/db). Though monogenic, this model has been used in hundreds of studies, including diabetic wound healing research. In this study, we systematically summarize data from over one hundred studies, which described the mechanisms underlying wound healing impairment in this model. We briefly review the wound healing dynamics, growth factors’ dysregulation, angiogenesis, inflammation, the function of leptin and insulin, the role of advanced glycation end-products, extracellular matrix abnormalities, stem cells’ dysregulation, and the role of non-coding RNAs. Some studies investigated novel chronic diabetes wound models, based on a leptin-deficient murine model, which was also described. We also discussed the interventions studied in vivo, which passed into human clinical trials. It is our hope that this review will help plan future research.
Collapse
|
80
|
Shaw SJ, Goff DA, Carroll DC, Singh R, Sweeny DJ, Park G, Jenkins Y, Markovtsov V, Sun TQ, Issakani SD, Hitoshi Donald G. Payan Y. Structure Activity Relationships Leading to the Identification of the Indirect Activator of AMPK, R419. Bioorg Med Chem 2022; 71:116951. [DOI: 10.1016/j.bmc.2022.116951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 11/02/2022]
|
81
|
Sanz FJ, Solana-Manrique C, Lilao-Garzón J, Brito-Casillas Y, Muñoz-Descalzo S, Paricio N. Exploring the link between Parkinson's disease and type 2 diabetes mellitus in Drosophila. FASEB J 2022; 36:e22432. [PMID: 35766235 DOI: 10.1096/fj.202200286r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. Diabetes mellitus (DM) is a metabolic disease characterized by high levels of glucose in blood. Recent epidemiological studies have highlighted the link between both diseases; it is even considered that DM might be a risk factor for PD. To further investigate the likely relation of these diseases, we have used a Drosophila PD model based on inactivation of the DJ-1β gene (ortholog of human DJ-1), and diet-induced Drosophila and mouse type 2 DM (T2DM) models, together with human neuron-like cells. T2DM models were obtained by feeding flies with a high sugar-containing medium, and mice with a high fat diet. Our results showed that both fly models exhibit common phenotypes such as alterations in carbohydrate homeostasis, mitochondrial dysfunction or motor defects, among others. In addition, we demonstrated that T2DM might be a risk factor of developing PD since our diet-induced fly and mouse T2DM models present DA neuron dysfunction, a hallmark of PD. We also confirmed that neurodegeneration is caused by increased glucose levels, which has detrimental effects in human neuron-like cells by triggering apoptosis and leading to cell death. Besides, the observed phenotypes were exacerbated in DJ-1β mutants cultured in the high sugar medium, indicating that DJ-1 might have a role in carbohydrate homeostasis. Finally, we have confirmed that metformin, an antidiabetic drug, is a potential candidate for PD treatment and that it could prevent PD onset in T2DM model flies. This result supports antidiabetic compounds as promising PD therapeutics.
Collapse
Affiliation(s)
- Francisco José Sanz
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, Burjassot, Spain.,Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Burjassot, Spain
| | - Cristina Solana-Manrique
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, Burjassot, Spain.,Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Burjassot, Spain
| | - Joaquín Lilao-Garzón
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Yeray Brito-Casillas
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Silvia Muñoz-Descalzo
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Nuria Paricio
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, Burjassot, Spain.,Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Burjassot, Spain
| |
Collapse
|
82
|
Locatelli M, Macconi D, Corna D, Cerullo D, Rottoli D, Remuzzi G, Benigni A, Zoja C. Sirtuin 3 Deficiency Aggravates Kidney Disease in Response to High-Fat Diet through Lipotoxicity-Induced Mitochondrial Damage. Int J Mol Sci 2022; 23:ijms23158345. [PMID: 35955472 PMCID: PMC9368634 DOI: 10.3390/ijms23158345] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023] Open
Abstract
Sirtuin 3 (SIRT3) is the primary mitochondrial deacetylase that controls the antioxidant pathway and energy metabolism. We previously found that renal Sirt3 expression and activity were reduced in mice with type 2 diabetic nephropathy associated with oxidative stress and mitochondrial abnormalities and that a specific SIRT3 activator improved renal damage. SIRT3 is modulated by diet, and to assess whether Sirt3 deficiency aggravates mitochondrial damage and accelerates kidney disease in response to nutrient overloads, wild-type (WT) and Sirt3−/− mice were fed a high-fat-diet (HFD) or standard diet for 8 months. Sirt3−/− mice on HFD exhibited earlier and more severe albuminuria compared to WT mice, accompanied by podocyte dysfunction and glomerular capillary rarefaction. Mesangial matrix expansion, tubular vacuolization and inflammation, associated with enhanced lipid accumulation, were more evident in Sirt3−/− mice. After HFD, kidneys from Sirt3−/− mice showed more oxidative stress than WT mice, mitochondria ultrastructural damage in tubular cells, and a reduction in mitochondrial mass and energy production. Our data demonstrate that Sirt3 deficiency renders mice more prone to developing oxidative stress and mitochondrial abnormalities in response to HFD, resulting in more severe kidney diseases, and this suggests that mitochondria protection may be a method to prevent HFD-induced renal injury.
Collapse
|
83
|
Shen J, Liu C, Yan P, Wang M, Guo L, Liu S, Chen J, Rosenholm JM, Huang H, Wang R, Zhang H. Helper T Cell (CD4 +) Targeted Tacrolimus Delivery Mediates Precise Suppression of Allogeneic Humoral Immunity. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9794235. [PMID: 35958106 PMCID: PMC9343082 DOI: 10.34133/2022/9794235] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/24/2022] [Indexed: 01/15/2023]
Abstract
Antibody-mediated rejection (ABMR) is a major cause of dysfunction and loss of transplanted kidney. The current treatments for ABMR involve nonspecific inhibition and clearance of T/B cells or plasma cells. However, the prognosis of patients following current treatment is poor. T follicular helper cells (Tfh) play an important role in allograft-specific antibodies secreting plasma cell (PC) development. Tfh cells are therefore considered to be important therapeutic targets for the treatment of antibody hypersecretion disorders, such as transplant rejection and autoimmune diseases. Tacrolimus (Tac), the primary immunosuppressant, prevents rejection by reducing T cell activation. However, its administration should be closely monitored to avoid serious side effects. In this study, we investigated whether Tac delivery to helper T (CD4+) cells using functionalized mesoporous nanoparticles can block Tfh cell differentiation after alloantigen exposure. Results showed that Tac delivery ameliorated humoral rejection injury in rodent kidney graft by suppressing Tfh cell development, PC, and donor-specific antibody (DSA) generation without causing severe side effects compared with delivery through the drug administration pathway. This study provides a promising therapeutic strategy for preventing humoral rejection in solid organ transplantation. The specific and controllable drug delivery avoids multiple disorder risks and side effects observed in currently used clinical approaches.
Collapse
Affiliation(s)
- Jia Shen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China
| | - Chang Liu
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Pengpeng Yan
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China
| | - Meifang Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China
| | - Luying Guo
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China
| | - Shuaihui Liu
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Hongfeng Huang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China
| | - Rending Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China
- Organ Donation and Coordination Office, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
84
|
Wen Y, Liu Y, Huang Q, Farag MA, Li X, Wan X, Zhao C. Nutritional assessment models for diabetes and aging. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Yuxi Wen
- College of Marine Sciences Fujian Agriculture and Forestry University Fuzhou China
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Yuanyuan Liu
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Qihui Huang
- College of Marine Sciences Fujian Agriculture and Forestry University Fuzhou China
- Department of Analytical and Food Chemistry Universidade de Vigo, Nutrition and Bromatology Group, Faculty of Sciences Ourense Spain
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy Cairo University Cairo Egypt
| | - Xiaoqing Li
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Xuzhi Wan
- College of Biosystem Engineering and Food Science Zhejiang University Hangzhou China
| | - Chao Zhao
- College of Marine Sciences Fujian Agriculture and Forestry University Fuzhou China
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology Fujian Agriculture and Forestry University Fuzhou China
| |
Collapse
|
85
|
Kar AK, Singh A, Singh D, Shraogi N, Verma R, Saji J, Jagdale P, Ghosh D, Patnaik S. Biopolymeric composite hydrogel loaded with silver NPs and epigallocatechin gallate (EGCG) effectively manages ROS for rapid wound healing in type II diabetic wounds. Int J Biol Macromol 2022; 218:506-518. [PMID: 35817241 DOI: 10.1016/j.ijbiomac.2022.06.196] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/05/2022]
Abstract
Delayed wound healing in patients having type-II diabetes mellitus (T2DM) often results in a high rate of amputation. We report an innovative Guar Gum-based macroporous hydrogel (HG) infused with an antibacterial agent (Ag NPs), and antioxidant, epigallocatechin gallate (EGCG) to address rapid wound healing and interestingly could inhibit the associated pathophysical bone infection in a high-fat-diet-induced T2DM C57BL/6 mice model. The HG-Ag-EGCG elicits scar-free wound healing in subcutaneous wounds and histopathological evidence confirmed HG-Ag-EGCG hydrogel patch elicits better wound healing through enhanced cell proliferation, mature connecting tissue fiber formation, minimum void spaces formation, and better re-epithelialization when compared with a market available hydrogel patch material (Luofucon®). Supportive of the in vivo outcomes, in vitro experiments delineated better-wound closure due to improved management of ROS by the HG-Ag-EGCG. Additionally, a favorable non-toxicity outcome assessed through both in vitro and in vivo conditions confirmed its potential applicability in clinical wound care management.
Collapse
Affiliation(s)
- Aditya K Kar
- Water Analysis Laboratory, System Toxicology, and Health Risk Assessment Group, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amrita Singh
- Water Analysis Laboratory, System Toxicology, and Health Risk Assessment Group, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Divya Singh
- Water Analysis Laboratory, System Toxicology, and Health Risk Assessment Group, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Nikita Shraogi
- Water Analysis Laboratory, System Toxicology, and Health Risk Assessment Group, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rahul Verma
- Water Analysis Laboratory, System Toxicology, and Health Risk Assessment Group, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Joel Saji
- Water Analysis Laboratory, System Toxicology, and Health Risk Assessment Group, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Pankaj Jagdale
- Regulatory Toxicology Group, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Debabrata Ghosh
- Immunotoxicology laboratory, Food, Drug, and Chemical Toxicology Group, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Satyakam Patnaik
- Water Analysis Laboratory, System Toxicology, and Health Risk Assessment Group, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
86
|
Oraha J, Enriquez RF, Herzog H, Lee NJ. Sex-specific changes in metabolism during the transition from chow to high-fat diet feeding are abolished in response to dieting in C57BL/6J mice. Int J Obes (Lond) 2022; 46:1749-1758. [PMID: 35794191 PMCID: PMC9492540 DOI: 10.1038/s41366-022-01174-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/03/2022]
Abstract
Background/Objective Female mice are often excluded from diet-induced obesity studies as they are more resistant to the obesifying effects of a high-fat diet (HFD). However, the underlying mechanisms behind this sex disparity may actually have important implications for the development and management of obesity in humans. Therefore, we systematically investigated the immediate sex-specific effects of transitioning to a HFD in C57BL/6J mice as well as monitored whether these effects are altered after sustained HFD feeding and whether sex affects the response to a return to chow, representative of dieting. Methods Dual X-ray absorptiometry (DXA) analysis of body composition, indirect calorimetry measurements, and qPCR analysis of hypothalamic and brainstem regions were performed on male and female C57BL/6J mice. Results HFD had immediate and dramatic effects in males, increasing fat mass by 58% in the first 3 days. The resistance to the obesifying effect of HFD in females was linked both to an ability to maintain activity levels as well as to an immediate and significantly enhanced reduction in respiratory quotient (RQ), suggesting a greater ability to utilise fat in the diet as a source of fuel. Mechanistically, this sex disparity may be at least partially due to inherent sex differences in the catabolic (POMC/CART) versus anabolic (NPY/AgRP) neurological signalling pathways. Interestingly, the reintroduction of chow following HFD had immediate and consistent responses between the sexes with body composition and most metabolic parameters normalised within 3 days. However, both sexes displayed elevated hypothalamic Npy levels reminiscent of starvation. The difference in RQ seen between the sexes on HFD was immediately abolished suggesting similar abilities to burn fat reserves for fuel. Conclusions C57BL/6J mice have markedly different sex-specific behavioural and metabolic responses to the introduction as well as the sustained intake of a HFD, but consistent responses to a dieting situation.
Collapse
Affiliation(s)
- Jennifer Oraha
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | | | - Herbert Herzog
- Garvan Institute of Medical Research, Sydney, NSW, Australia. .,School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia.
| | - Nicola J Lee
- Garvan Institute of Medical Research, Sydney, NSW, Australia. .,School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
87
|
Kotowska D, Neuhaus M, Heyman-Lindén L, Morén B, Li S, Kryvokhyzha D, Berger K, Stenkula KG. Short-term lingonberry feeding is associated with decreased insulin levels and altered adipose tissue function in high-fat diet fed C57BL/6J mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
88
|
Oblak AL, Kotredes KP, Pandey RS, Reagan AM, Ingraham C, Perkins B, Lloyd C, Baker D, Lin PB, Soni DM, Tsai AP, Persohn SA, Bedwell AA, Eldridge K, Speedy R, Meyer JA, Peters JS, Figueiredo LL, Sasner M, Territo PR, Sukoff Rizzo SJ, Carter GW, Lamb BT, Howell GR. Plcg2M28L Interacts With High Fat/High Sugar Diet to Accelerate Alzheimer's Disease-Relevant Phenotypes in Mice. Front Aging Neurosci 2022; 14:886575. [PMID: 35813947 PMCID: PMC9263289 DOI: 10.3389/fnagi.2022.886575] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
Obesity is recognized as a significant risk factor for Alzheimer's disease (AD). Studies have supported the notion that obesity accelerates AD-related pathophysiology in mouse models of AD. The majority of studies, to date, have focused on the use of early-onset AD models. Here, we evaluate the impact of genetic risk factors on late-onset AD (LOAD) in mice fed with a high fat/high sugar diet (HFD). We focused on three mouse models created through the IU/JAX/PITT MODEL-AD Center. These included a combined risk model with APOE4 and a variant in triggering receptor expressed on myeloid cells 2 (Trem2R47H ). We have termed this model, LOAD1. Additional variants including the M28L variant in phospholipase C Gamma 2 (Plcg2M28L ) and the 677C > T variant in methylenetetrahydrofolate reductase (Mthfr 677C > T ) were engineered by CRISPR onto LOAD1 to generate LOAD1.Plcg2M28L and LOAD1.Mthfr 677C > T . At 2 months of age, animals were placed on an HFD that induces obesity or a control diet (CD), until 12 months of age. Throughout the study, blood was collected to assess the levels of cholesterol and glucose. Positron emission tomography/computed tomography (PET/CT) was completed prior to sacrifice to image for glucose utilization and brain perfusion. After the completion of the study, blood and brains were collected for analysis. As expected, animals fed a HFD, showed a significant increase in body weight compared to those fed a CD. Glucose increased as a function of HFD in females only with cholesterol increasing in both sexes. Interestingly, LOAD1.Plcg2M28L demonstrated an increase in microglia density and alterations in regional brain glucose and perfusion on HFD. These changes were not observed in LOAD1 or LOAD1.Mthfr 677C > T animals fed with HFD. Furthermore, LOAD1.Plcg2M28L but not LOAD1.Mthfr 677C > T or LOAD1 animals showed transcriptomics correlations with human AD modules. Our results show that HFD affects the brain in a genotype-specific manner. Further insight into this process may have significant implications for the development of lifestyle interventions for the treatment of AD.
Collapse
Affiliation(s)
- Adrian L. Oblak
- Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Radiology & Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indianapolis, IN, United States
| | | | - Ravi S. Pandey
- The Jackson Laboratory, Bar Harbor, ME, United States
- Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | | | - Cynthia Ingraham
- Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indianapolis, IN, United States
| | - Bridget Perkins
- Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indianapolis, IN, United States
| | - Christopher Lloyd
- Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indianapolis, IN, United States
| | - Deborah Baker
- Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indianapolis, IN, United States
| | - Peter B. Lin
- Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indianapolis, IN, United States
| | - Disha M. Soni
- Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indianapolis, IN, United States
| | - Andy P. Tsai
- Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indianapolis, IN, United States
| | - Scott A. Persohn
- Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indianapolis, IN, United States
| | - Amanda A. Bedwell
- Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indianapolis, IN, United States
| | - Kierra Eldridge
- Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indianapolis, IN, United States
| | - Rachael Speedy
- Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indianapolis, IN, United States
| | - Jill A. Meyer
- Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indianapolis, IN, United States
| | - Johnathan S. Peters
- Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indianapolis, IN, United States
| | - Lucas L. Figueiredo
- Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indianapolis, IN, United States
| | | | - Paul R. Territo
- Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indianapolis, IN, United States
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Stacey J. Sukoff Rizzo
- Department of Medicine, Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | | - Bruce T. Lamb
- Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Radiology & Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indianapolis, IN, United States
| | | |
Collapse
|
89
|
Adipocyte-Specific Expression of PGC1α Promotes Adipocyte Browning and Alleviates Obesity-Induced Metabolic Dysfunction in an HO-1-Dependent Fashion. Antioxidants (Basel) 2022; 11:antiox11061147. [PMID: 35740043 PMCID: PMC9220759 DOI: 10.3390/antiox11061147] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/11/2022] Open
Abstract
Recent studies suggest that PGC1-α plays a crucial role in mitochondrial and vascular function, yet the physiological significance of PGC1α and HO expression in adipose tissues in the context of obesity-linked vascular dysfunction remains unclear. We studied three groups of six-week-old C57BL/6J male mice: (1) mice fed a normal chow diet; (2) mice fed a high-fat diet (H.F.D.) for 28 weeks, and (3) mice fed a high-fat diet (H.F.D.) for 28 weeks, treated with adipose-specific overexpression of PGC-1α (transgenic-adipocyte-PGC-1α) at week 20, and continued on H.F.D. for weeks 20–28. R.N.A. arrays examined 88 genes involved in adipocyte proliferation and maturation. Blood pressure, tissue fibrosis, fasting glucose, and oxygen consumption were measured, as well as liver steatosis, and the expression levels of metabolic and mitochondrial markers. Obese mice exhibited a marked reduction of PGC1α and developed adipocyte hypertrophy, fibrosis, hepatic steatosis, and decreased mitochondrial respiration. Mice with adipose-specific overexpression of PGC1-α exhibited improvement in HO-1, mitochondrial biogenesis and respiration, with a decrease in fasting glucose, reduced blood pressure and fibrosis, and increased oxygen consumption. PGC-1α led to the upregulated expression of processes associated with the browning of fat tissue, including UCP1, FGF21, and pAMPK signaling, with a reduction in inflammatory adipokines, NOV/CCN3 expression, and TGFβ. These changes required HO-1 expression. The R.N.A. array analysis identified subgroups of genes positively correlated with contributions to the browning of adipose tissue, all dependent on HO-1. Our observations reveal a positive impact of adipose-PGC1-α on distal organ systems, with beneficial effects on HO-1 levels, reversing obesity-linked cardiometabolic disturbances.
Collapse
|
90
|
Heather LC, Hafstad AD, Halade GV, Harmancey R, Mellor KM, Mishra PK, Mulvihill EE, Nabben M, Nakamura M, Rider OJ, Ruiz M, Wende AR, Ussher JR. Guidelines on Models of Diabetic Heart Disease. Am J Physiol Heart Circ Physiol 2022; 323:H176-H200. [PMID: 35657616 PMCID: PMC9273269 DOI: 10.1152/ajpheart.00058.2022] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Diabetes is a major risk factor for cardiovascular diseases, including diabetic cardiomyopathy, atherosclerosis, myocardial infarction, and heart failure. As cardiovascular disease represents the number one cause of death in people with diabetes, there has been a major emphasis on understanding the mechanisms by which diabetes promotes cardiovascular disease, and how antidiabetic therapies impact diabetic heart disease. With a wide array of models to study diabetes (both type 1 and type 2), the field has made major progress in answering these questions. However, each model has its own inherent limitations. Therefore, the purpose of this guidelines document is to provide the field with information on which aspects of cardiovascular disease in the human diabetic population are most accurately reproduced by the available models. This review aims to emphasize the advantages and disadvantages of each model, and to highlight the practical challenges and technical considerations involved. We will review the preclinical animal models of diabetes (based on their method of induction), appraise models of diabetes-related atherosclerosis and heart failure, and discuss in vitro models of diabetic heart disease. These guidelines will allow researchers to select the appropriate model of diabetic heart disease, depending on the specific research question being addressed.
Collapse
Affiliation(s)
- Lisa C Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anne D Hafstad
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Ganesh V Halade
- Department of Medicine, The University of Alabama at Birmingham, Tampa, Florida, United States
| | - Romain Harmancey
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States
| | | | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Erin E Mulvihill
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Miranda Nabben
- Departments of Genetics and Cell Biology, and Clinical Genetics, Maastricht University Medical Center, CARIM School of Cardiovascular Diseases, Maastricht, the Netherlands
| | - Michinari Nakamura
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Oliver J Rider
- University of Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matthieu Ruiz
- Montreal Heart Institute, Montreal, Quebec, Canada.,Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Adam R Wende
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
91
|
Mouat MA, Wilkins BP, Ding E, Govindaraju H, Coleman JLJ, Graham RM, Turner N, Smith NJ. Metabolic Profiling of Mice with Deletion of the Orphan G Protein-Coupled Receptor, GPR37L1. Cells 2022; 11:cells11111814. [PMID: 35681509 PMCID: PMC9180194 DOI: 10.3390/cells11111814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Understanding the neurogenic causes of obesity may reveal novel drug targets to counter the obesity crisis and associated sequelae. Here, we investigate whether the deletion of GPR37L1, an astrocyte-specific orphan G protein-coupled receptor, affects whole-body energy homeostasis in mice. We subjected male Gpr37l1−/− mice and littermate wildtype (Gpr37l1+/+, C57BL/6J background) controls to either 12 weeks of high-fat diet (HFD) or chow feeding, or to 1 year of chow diet, with body composition quantified by EchoMRI, glucose handling by glucose tolerance test and metabolic rate by indirect calorimetry. Following an HFD, Gpr37l1−/− mice had similar glucose handling, body weight and fat mass compared with wildtype controls. Interestingly, we observed a significantly elevated respiratory exchange ratio in HFD- and chow-fed Gpr37l1−/− mice during daylight hours. After 1 year of chow feeding, we again saw no differences in glucose and insulin tolerance or body weight between genotypes, nor in energy expenditure or respiratory exchange ratio. However, there was significantly lower fat mass accumulation, and higher ambulatory activity in the Gpr37l1−/− mice during night hours. Overall, these results indicate that while GPR37L1 may play a minor role in whole-body metabolism, it is not a viable clinical target for the treatment of obesity.
Collapse
Affiliation(s)
- Margaret A. Mouat
- Orphan Receptor Laboratory, School of Medical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW 2052, Australia; (M.A.M.); (B.P.W.)
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (J.L.J.C.); (R.M.G.)
| | - Brendan P. Wilkins
- Orphan Receptor Laboratory, School of Medical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW 2052, Australia; (M.A.M.); (B.P.W.)
| | - Eileen Ding
- Mitochondrial Bioenergetics Laboratory, School of Medical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW 2052, Australia; (E.D.); (H.G.)
| | - Hemna Govindaraju
- Mitochondrial Bioenergetics Laboratory, School of Medical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW 2052, Australia; (E.D.); (H.G.)
| | - James L. J. Coleman
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (J.L.J.C.); (R.M.G.)
| | - Robert M. Graham
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (J.L.J.C.); (R.M.G.)
| | - Nigel Turner
- Mitochondrial Bioenergetics Laboratory, School of Medical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW 2052, Australia; (E.D.); (H.G.)
- Cellular Bioenergetics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
- Correspondence: (N.T.); (N.J.S.)
| | - Nicola J. Smith
- Orphan Receptor Laboratory, School of Medical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW 2052, Australia; (M.A.M.); (B.P.W.)
- Correspondence: (N.T.); (N.J.S.)
| |
Collapse
|
92
|
Yu X, Arden C, Berlinguer-Palmini R, Chen C, Bradshaw C, Smith AL, Whitehall J, White M, Anderson S, Kattner N, Shaw J, Turnbull D, Greaves LC, Walker M. Mitochondrial complex I subunit deficiency promotes pancreatic α-cell proliferation. Mol Metab 2022; 60:101489. [PMID: 35390502 PMCID: PMC9046450 DOI: 10.1016/j.molmet.2022.101489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/28/2022] [Indexed: 10/29/2022] Open
Abstract
OBJECTIVE There is strong evidence that mitochondrial DNA mutations and mitochondrial dysfunction play a role in diabetes pathogenesis. The homozygous knock-in mtDNA mutator mouse is a model of premature aging due to the accumulation of mitochondrial DNA mutations. We used this mouse model to investigate the relationship between mitochondrial subunit expression and pancreatic islet cell composition. METHODS Quadruple immunofluorescence was used to quantify mitochondrial subunit expression (complex I and IV) and cell composition in pancreatic islets from mitochondrial DNA mutator mice (PolgAmut/mut) and control C57BL/6 mice at 12 and 44 weeks of age. RESULTS Mitochondrial complex I subunit expression was decreased in islets from 12 week PolgAmut/mut mice. This complex I deficiency persisted with age and was associated with decreased insulin staining intensity at 44 weeks. Complex I deficiency was greater in α-cells compared with β-cells in islets from 44 week PolgAmut/mut mice. Islet cell composition was normal in 12 week PolgAmut/mut mice, but the β: α cell ratio was decreased in islets from 44 week PolgAmut/mut mice. This was due to an increase in α-cell number linked to an increase in α-cell proliferation. CONCLUSION Complex I deficiency promotes α-cell proliferation and alters islet cell composition.
Collapse
Affiliation(s)
- Xuefei Yu
- Diabetes Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Catherine Arden
- Diabetes Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Chun Chen
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Carla Bradshaw
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Anna Lm Smith
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Julia Whitehall
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Michael White
- Diabetes Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Scott Anderson
- Diabetes Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Nicole Kattner
- Diabetes Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - James Shaw
- Diabetes Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Doug Turnbull
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Laura C Greaves
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| | - Mark Walker
- Diabetes Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
93
|
Manaserh IH, Bledzka KM, Junker A, Grondolsky J, Schumacher SM. A Cardiac Amino-Terminal GRK2 Peptide Inhibits Maladaptive Adipocyte Hypertrophy and Insulin Resistance During Diet-Induced Obesity. JACC Basic Transl Sci 2022; 7:563-579. [PMID: 35818501 PMCID: PMC9270572 DOI: 10.1016/j.jacbts.2022.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 12/04/2022]
Abstract
Heart disease remains the leading cause of death, and mortality rates positively correlate with the presence of obesity and diabetes. Despite the correlation between cardiac and metabolic dysregulation, the mechanistic pathway(s) of interorgan crosstalk still remain undefined. This study reveals that cardiac-restricted expression of an amino-terminal peptide of GRK2 (βARKnt) preserves systemic and cardiac insulin responsiveness, and protects against adipocyte maladaptive hypertrophy in a diet-induced obesity model. These data suggest a cardiac-driven mechanism to ameliorate maladaptive cardiac remodeling and improve systemic metabolic homeostasis that may lead to new treatment modalities for cardioprotection in obesity and obesity-related metabolic syndromes.
Collapse
Key Words
- AS160, Akt substrate of 160 kilodaltons
- BAT, brown adipose tissue
- GRK2
- GRK2, G protein-coupled receptor kinase 2
- HFD, high-fat diet
- HOMA-IR, homeostatic model assessment of insulin resistance
- NLC, nontransgenic littermate control
- NP, natriuretic peptide
- NPR, natriuretic peptide receptor
- RER, respiratory exchange ratio
- T2D, type II diabetes
- Tg, transgenic
- beiging
- cardioprotection
- gWAT, gonadal white adipose tissue
- mTOR, mechanistic target of rapamycin protein kinase
- metabolism
- obesity
- βARKct, cardiac restricted expression of C-terminus domain of GRK2
- βARKnt, cardiac-restricted expression of N-terminus domain of GRK2
Collapse
Affiliation(s)
- Iyad H. Manaserh
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kamila M. Bledzka
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Alex Junker
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jessica Grondolsky
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sarah M. Schumacher
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
94
|
Insights from a high-fat diet fed mouse model with a humanized liver. PLoS One 2022; 17:e0268260. [PMID: 35533183 PMCID: PMC9084523 DOI: 10.1371/journal.pone.0268260] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/25/2022] [Indexed: 11/19/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disorder worldwide and is increasing at an alarming rate. NAFLD is strongly associated with obesity and insulin resistance. The use of animal models remains a vital aspect for investigating the molecular mechanisms contributing to metabolic dysregulation and facilitating novel drug target identification. However, some differences exist between mouse and human hepatocyte physiology. Recently, chimeric mice with human liver have been generated, representing a step forward in the development of animal models relevant to human disease. Here we explored the feasibility of using one of these models (cDNA-uPA/SCID) to recapitulate obesity, insulin resistance and NAFLD upon feeding a Western-style diet. Furthermore, given the importance of a proper control diet, we first evaluated whether there are differences between feeding a purified ingredient control diet that matches the composition of the high-fat diet and feeding a grain-based chow diet. We show that mice fed chow have a higher food intake and fed glucose levels than mice that received a low-fat purified ingredient diet, suggesting that the last one represents a better control diet. Upon feeding a high-fat or matched ingredient control diet for 12 weeks, cDNA-uPA/SCID chimeric mice developed extensive macrovesicular steatosis, a feature previously associated with reduced growth hormone action. However, mice were resistant to diet-induced obesity and remained glucose tolerant. Genetic background is fundamental for the development of obesity and insulin resistance. Our data suggests that using a background that favors the development of these traits, such as C57BL/6, may be necessary to establish a humanized mouse model of NAFLD exhibiting the metabolic dysfunction associated with obesity.
Collapse
|
95
|
Abels M, Riva M, Shcherbina L, Fischer AHT, Banke E, Degerman E, Lindqvist A, Wierup N. Overexpressed beta cell CART increases insulin secretion in mouse models of insulin resistance and diabetes. Peptides 2022; 151:170747. [PMID: 35065097 DOI: 10.1016/j.peptides.2022.170747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 12/15/2022]
Abstract
Impaired beta cell function and beta cell death are key features of type 2 diabetes (T2D). Cocaine- and amphetamine-regulated transcript (CART) is necessary for normal islet function in mice. CART increases glucose-stimulated insulin secretion in vivo in mice and in vitro in human islets and CART protects beta cells against glucotoxicity-induced cell death in vitro in rats. Furthermore, beta cell CART is upregulated in T2D patients and in diabetic rodent models as a consequence of hyperglycaemia. The aim of this study was to assess the impact of upregulated beta cell CART on islet hormone secretion and glucose homeostasis in a transgenic mouse model. To this end, mice with beta cell-specific overexpression of CART (CARTtg mice) were generated. CARTtg mice challenged by aging, high fat diet feeding or streptozotocin treatment were phenotyped with respect to in vivo and in vitro insulin and glucagon secretion, glucose homeostasis, and beta cell mass. In addition, the impact of adenoviral overexpression of CART on insulin secretion was studied in INS-1 832/13 cells. CARTtg mice had a normal metabolic phenotype under basal conditions. On the other hand, with age CARTtg mice displayed increased insulin secretion and improved glucose elimination, compared with age-matched WT mice. Furthermore, compared with WT controls, CARTtg mice had increased insulin secretion after feeding a high fat diet, as well as lower glucose levels and higher insulin secretion after streptozotocin treatment. Viral overexpression of CART in INS-1 832/13 cells resulted in increased glucose-stimulated insulin secretion. Together, these results imply that beta cell CART acts to increase insulin secretion when beta cell function is challenged. We propose that the increase in beta cell CART is part of a compensatory mechanisms trying to counteract the hyperglycaemia in T2D.
Collapse
Affiliation(s)
- Mia Abels
- Lund University Diabetes Centre, Malmö, Sweden
| | - Matteo Riva
- Lund University Diabetes Centre, Malmö, Sweden
| | | | | | - Elin Banke
- Lund University Diabetes Centre, Malmö, Sweden
| | | | | | - Nils Wierup
- Lund University Diabetes Centre, Malmö, Sweden.
| |
Collapse
|
96
|
Wiggins AM, Sorge RE. An improved model of type 2 diabetes with effects on glucose tolerance, neuropathy and retinopathy with and without obesity. Physiol Behav 2022; 248:113740. [PMID: 35167879 PMCID: PMC10714886 DOI: 10.1016/j.physbeh.2022.113740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/02/2022] [Accepted: 02/10/2022] [Indexed: 12/01/2022]
Abstract
RATIONALE Type 2 diabetes (T2D) costs billions of dollars annually, is also associated with pain (diabetic neuropathy), as well as retinopathy, lower urinary tract/urinary bladder dysfunction, depression, and systemic inflammation, affecting quality of life for patients. To that end, animal models are utilized to explore potential treatments, but may not reflect the complexity of the condition. OBJECTIVE We aimed to test an improved model of T2D that more closely mimics the clinical mechanisms and symptoms in an outbred strain of mouse. FINDINGS Male and female CD-1 mice (n = 72) were fed one of four diets: regular chow (REG), our Standard American Diet (SAD), a revised SAD (SAD2), or the commonly-used high-fat diet (HFD). Overall, HFD- and SAD-fed mice had significant weight gain and increased fat mass. Following injury, the SAD- and SAD2-fed mice showed protracted recovery, but the HFD-fed mice did not. Similarly, SAD- and SAD2-fed mice showed impaired retinal function compared to REG-fed mice, but the HFD-fed mice did not. CONCLUSIONS The SAD and SAD2 more closely model the problematic dietary intake and subsequent clinical symptoms associated with T2D. POTENTIAL IMPACT OF STUDY The adjusted SAD2 may be a better representation of a human-translatable diet than the SAD and HFD, and may allow for increased advances in the investigation of T2D-related symptoms.
Collapse
Affiliation(s)
- Asia M Wiggins
- Department of Psychology, University of Alabama at Birmingham, United States
| | - Robert E Sorge
- Department of Psychology, University of Alabama at Birmingham, United States.
| |
Collapse
|
97
|
Bui TI, Gill AL, Mooney RA, Gill SR. Modulation of Gut Microbiota Metabolism in Obesity-Related Type 2 Diabetes Reduces Osteomyelitis Severity. Microbiol Spectr 2022; 10:e0017022. [PMID: 35315698 PMCID: PMC9045376 DOI: 10.1128/spectrum.00170-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/03/2022] [Indexed: 12/01/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen causing osteomyelitis through hematogenous seeding or contamination of implants and open wounds following orthopedic surgeries. The severity of S. aureus-mediated osteomyelitis is enhanced in obesity-related type 2 diabetes (obesity/T2D) due to chronic inflammation impairing both adaptive and innate immunity. Obesity-induced inflammation is linked to gut dysbiosis, with modification of the gut microbiota by high-fiber diets leading to a reduction in the symptoms and complications of obesity/T2D. However, our understanding of the mechanisms by which modifications of the gut microbiota alter host infection responses is limited. To address this gap, we monitored tibial S. aureus infections in obese/T2D mice treated with the inulin-like fructan fiber oligofructose. Treatment with oligofructose significantly decreased S. aureus colonization and lowered proinflammatory signaling postinfection in obese/T2D mice, as observed by decreased circulating inflammatory cytokines (tumor necrosis factor-α [TNF-α]) and chemokines (interferon-γ-induced protein 10 kDa [IP-10], keratinocyte-derived chemokine [KC], monokine induced by interferon-γ [MIG], monocyte chemoattractant protein-1 [MCP-1], and regulated upon activation, normal T cell expressed and presumably secreted [RANTES]), indicating partial reduction in inflammation. Oligofructose markedly shifted diversity in the gut microbiota of obese/T2D mice, with notable increases in the anti-inflammatory bacterium Bifidobacterium pseudolongum. Analysis of the cecum and plasma metabolome suggested that polyamine production was increased, specifically spermine and spermidine. Oral administration of these polyamines to obese/T2D mice resulted in reduced infection severity similar to oligofructose supplementation, suggesting that polyamines can mediate the beneficial effects of fiber on osteomyelitis severity. These results demonstrate the contribution of gut microbiota metabolites to the control of bacterial infections distal to the gut and polyamines as an adjunct therapeutic for osteomyelitis in obesity/T2D. IMPORTANCE Individuals with obesity-related type 2 diabetes (obesity/T2D) are at a five times increased risk for invasive Staphylococcus aureus osteomyelitis (bone infection) following orthopedic surgeries. With increasing antibiotic resistance and limited discoveries of novel antibiotics, it is imperative that we explore other avenues for therapeutics. In this study, we demonstrated that the dietary fiber oligofructose markedly reduced osteomyelitis severity and hyperinflammation following acute prosthetic joint infections in obese/T2D mice. Reduced infection severity was associated with changes in gut microbiota composition and metabolism, as indicated by increased production of natural polyamines in the gut and circulating plasma. This work identifies a novel role for the gut microbiome in mediating control of bacterial infections and polyamines as beneficial metabolites involved in improving the obesity/T2D host response to osteomyelitis. Understanding the impact of polyamines on host immunity and mechanisms behind decreasing susceptibility to severe implant-associated osteomyelitis is crucial to improving treatment strategies for this patient population.
Collapse
Affiliation(s)
- Tina I. Bui
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Ann Lindley Gill
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Robert A. Mooney
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Steven R. Gill
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
98
|
Núñez-Ruiz A, Sánchez-Brena F, López-Pacheco C, Acevedo-Domínguez NA, Soldevila G. Obesity modulates the immune macroenvironment associated with breast cancer development. PLoS One 2022; 17:e0266827. [PMID: 35472214 PMCID: PMC9041840 DOI: 10.1371/journal.pone.0266827] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/28/2022] [Indexed: 11/19/2022] Open
Abstract
Growing evidence demonstrates a strong correlation between obesity and an increased risk of breast cancer, although the mechanisms involved have not been completely elucidated. Some reports have described a crosstalk between adipocytes, cancer cells, and immune cells within the tumor microenvironment, however, it is currently unknown whether obesity can promote tumor growth by inducing systemic alterations of the immune cell homeostasis in peripheral lymphoid organs and adipose tissue. Here, we used the E0771 breast cancer cell line in a mouse model of diet-induced obesity to analyze the immune subpopulations present in the tumors, visceral adipose tissue (VAT), and spleen of lean and obese mice. Our results showed a significant reduction in the frequency of infiltrating CD8+ T cells and a decreased M1/M2 macrophage ratio, indicative of the compromised anti-tumoral immune response reported in obesity. Despite not finding differences in the percentage or numbers of intratumoral Tregs, phenotypic analysis showed that they were enriched in CD39+, PD-1+ and CCR8+ cells, compared to the draining lymph nodes, confirming the highly immunosuppressive profile of infiltrating Tregs reported in established tumors. Analysis of peripheral T lymphocytes showed that tumor development in obese mice was associated to a significant increase in the percentage of peripheral Tregs, which supports the systemic immunosuppressive effect caused by the tumor. Interestingly, evaluation of immune subpopulations in the VAT showed that the characteristic increase in the M1/M2 macrophage ratio reported in obesity, was completely reversed in tumor-bearing mice, resembling the M2-polarized profile found in the microenvironment of the growing tumor. Importantly, VAT Tregs, which are commonly decreased in obese mice, were significantly increased in the presence of breast tumors and displayed significantly higher levels of Foxp3, indicating a regulatory feedback mechanism triggered by tumor growth. Altogether, our results identify a complex reciprocal relationship between adipocytes, immune cells, and the tumor, which may modulate the immune macroenvironment that promotes breast cancer development in obesity.
Collapse
Affiliation(s)
- Aleida Núñez-Ruiz
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, UNAM, México City, México
| | - Flor Sánchez-Brena
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, UNAM, México City, México
| | - Cynthia López-Pacheco
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, UNAM, México City, México
- Laboratorio Nacional de Citometría de Flujo, Instituto de Investigaciones Biomédicas, UNAM, México City, México
| | | | - Gloria Soldevila
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, UNAM, México City, México
- * E-mail:
| |
Collapse
|
99
|
Allweyer M, Emde M, Bähr I, Spielmann J, Bieramperl P, Naujoks W, Kielstein H. Investigation of Behavior and Plasma Levels of Corticosterone in Restrictive- and Ad Libitum-Fed Diet-Induced Obese Mice. Nutrients 2022; 14:nu14091746. [PMID: 35565711 PMCID: PMC9100467 DOI: 10.3390/nu14091746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
Diet-induced obesity (DIO) mice models are commonly used to investigate obesity-related health problems. Until now, only sparse data exist on the influence of DIO on behavior and stress hormones in mice. The present study investigates high-fat DIO with two different feeding regimes on behavioral parameters in mice. Various behavioral tests (open field, elevated plus maze, social interaction, hotplate) were performed with female BALB/c and male C57BL/6 mice after a feeding period of twelve weeks (restrictive vs. ad libitum and normal-fat diet vs. high-fat diet) to investigate levels of anxiety and aggression. BALB/c mice were DIO-resistant and therefore the prerequisite for the behavior analyses was not attained. C57BL/6 mice fed a high-fat diet had a significantly higher body weight and fat mass compared to C57BL/6 mice fed a control diet. Interestingly, the DIO C57BL/6 mice showed no changes in their aggression- or anxiety-related behavior but showed a significant change in the anxiety index. This was probably due to a lower activity level, as other ethological parameters did not show an altered anxiety-related behavior. In the ad libitum-fed DIO group, the highest corticosterone level was detected. Changes due to the feeding regime (restrictive vs. ad libitum) were not observed. These results provide a possible hint to a bias in the investigation of DIO-related health problems in laboratory animal experiments, which may be influenced by the lower activity level.
Collapse
|
100
|
French SS, Hudson SB, Webb AC, Knapp CR, Virgin EE, Smith GD, Lewis EL, Iverson JB, DeNardo DF. Glucose tolerance of iguanas is affected by high-sugar diets in the lab and supplemental feeding by ecotourists in the wild. J Exp Biol 2022; 225:274936. [PMID: 35448902 DOI: 10.1242/jeb.243932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/17/2022] [Indexed: 12/28/2022]
Abstract
There is great interspecific variation in the nutritional composition of natural diets, and the varied nutritional content is physiologically tolerated because of evolutionarily based balances between diet composition and processing ability. However, as a result of landscape change and human exposure, unnatural diets are becoming widespread among wildlife without the necessary time for evolutionary matching between the diet and its processing. We tested how a controlled, unnatural high glucose diet affects glucose tolerance using captive green iguanas, and we performed similar glucose tolerance tests on wild Northern Bahamian rock iguanas that are either frequently fed grapes by tourists or experience no such supplementation. We evaluated both short and longer-term blood glucose responses and corticosterone (CORT) concentrations as changes have been associated with altered diets. Experimental glucose supplementation in the laboratory and tourist feeding in the wild both significantly affected glucose metabolism. When iguanas received a glucose-rich diet, we found greater acute increases in blood glucose following a glucose challenge. Relative to unfed iguanas, tourist-fed iguanas had significantly lower baseline CORT, higher baseline blood glucose, and slower returns to baseline glucose levels following a glucose challenge. Therefore, unnatural consumption of high amounts of glucose alters glucose metabolism in laboratory iguanas with short-term glucose treatment and free-living iguanas exposed to long-term feeding by tourists. Based on these results and the increasing prevalence of anthropogenically altered wildlife diets, the consequences of dietary changes on glucose metabolism should be further investigated across species, as such changes in glucose metabolism have health consequences in humans (e.g. diabetes).
Collapse
Affiliation(s)
- Susannah S French
- Department of Biology, Utah State University, Logan, UT 84322, USA.,Ecology Center, Utah State University, Logan, UT 84322, USA
| | - Spencer B Hudson
- Department of Biology, Utah State University, Logan, UT 84322, USA.,Ecology Center, Utah State University, Logan, UT 84322, USA
| | - Alison C Webb
- Department of Biology, Utah State University, Logan, UT 84322, USA.,Ecology Center, Utah State University, Logan, UT 84322, USA
| | - Charles R Knapp
- Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, IL 60605, USA
| | - Emily E Virgin
- Department of Biology, Utah State University, Logan, UT 84322, USA.,Ecology Center, Utah State University, Logan, UT 84322, USA
| | - Geoffrey D Smith
- Biology Department, Dixie State University, Saint George, UT 84770, USA
| | - Erin L Lewis
- Department of Biology, Utah State University, Logan, UT 84322, USA.,Ecology Center, Utah State University, Logan, UT 84322, USA
| | - John B Iverson
- Department of Biology, Earlham College, Richmond, IN 47374, USA
| | - Dale F DeNardo
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|