51
|
Wang C, Cao M, Zhao J, Hu A, Liu X, Chen Z, Zhang C, Li H. Epidermal and dermal cells from adult rat eccrine sweat gland-containing skin can reconstruct the three-dimensional structure of eccrine sweat glands. Acta Histochem 2024; 126:152120. [PMID: 38041896 DOI: 10.1016/j.acthis.2023.152120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/19/2023] [Accepted: 11/19/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND Previously, we have demonstrated that eccrine sweat gland cells (ESGCs) can reconstruct the three-dimensional (3D) structure of eccrine sweat glands (ESGs). However, there is still a need to explore source cells capable of regenerating ESG to address the issue of ESG regeneration in ESGC-deficient conditions, such as severe burns. METHODS The epidermal cells and dermal cells in adult rat ventral foot skin (ESG-bearing) were isolated. The isolated single epidermal cells and dermal cells were mixed with Matrigel, and then the mixture was implanted into the axillary/inguinal fat pads of nude mice. Five weeks after implantation, the Matrigel plugs were harvested and the morphology and differentiation of the cells were examined by H&E staining and fluorescent immunohistochemical staining for ESG markers, such as Na+ -K+ -2Cl- cotransporter 1 (NKCC1), Na+ -K+ -ATPase (NKA), Foxa1 and K14. RESULTS The epidermal cells and dermal cells of adult rat ventral foot skin can reconstruct 3D structure and express specific markers of ESGs in skin, such as NKCC1, NKA and Foxa1, indicating the ESG-phenotypic differentiation of the 3D structures. Double immunofluorescence staining showed that some 3D structures expressed both the myoepithelial cell marker alpha-SMA and the common marker K14 of duct cells and myoepithelial cells, while some 3D structures expressed only K14, indicating that ESG-like 3D structures differentiated into duct-like and secretory coiled cells. CONCLUSION Epidermal and dermal cells from adult ESG-bearing skin can be used as a cell source for ESG regeneration.
Collapse
Affiliation(s)
- Cangyu Wang
- Laboratory of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Manxiu Cao
- Laboratory of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Junhong Zhao
- Laboratory of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Anqi Hu
- Laboratory of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Xiang Liu
- Laboratory of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Zihua Chen
- Laboratory of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and Fourth Medical Center of PLA General Hospital, Beijing, China.
| | - Haihong Li
- Laboratory of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China; Department of Burns and Plastic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, China.
| |
Collapse
|
52
|
Yadav P, Singh SK, Rajput S, Allawadhi P, Khurana A, Weiskirchen R, Navik U. Therapeutic potential of stem cells in regeneration of liver in chronic liver diseases: Current perspectives and future challenges. Pharmacol Ther 2024; 253:108563. [PMID: 38013053 DOI: 10.1016/j.pharmthera.2023.108563] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
The deposition of extracellular matrix and hyperplasia of connective tissue characterizes chronic liver disease called hepatic fibrosis. Progression of hepatic fibrosis may lead to hepatocellular carcinoma. At this stage, only liver transplantation is a viable option. However, the number of possible liver donors is less than the number of patients needing transplantation. Consequently, alternative cell therapies based on non-stem cells (e.g., fibroblasts, chondrocytes, keratinocytes, and hepatocytes) therapy may be able to postpone hepatic disease, but they are often ineffective. Thus, novel stem cell-based therapeutics might be potentially important cutting-edge approaches for treating liver diseases and reducing patient' suffering. Several signaling pathways provide targets for stem cell interventions. These include pathways such as TGF-β, STAT3/BCL-2, NADPH oxidase, Raf/MEK/ERK, Notch, and Wnt/β-catenin. Moreover, mesenchymal stem cells (MSCs) stimulate interleukin (IL)-10, which inhibits T-cells and converts M1 macrophages into M2 macrophages, producing an anti-inflammatory environment. Furthermore, it inhibits the action of CD4+ and CD8+ T cells and reduces the activity of TNF-α and interferon cytokines by enhancing IL-4 synthesis. Consequently, the immunomodulatory and anti-inflammatory capabilities of MSCs make them an attractive therapeutic approach. Importantly, MSCs can inhibit the activation of hepatic stellate cells, causing their apoptosis and subsequent promotion of hepatocyte proliferation, thereby replacing dead hepatocytes and reducing liver fibrosis. This review discusses the multidimensional therapeutic role of stem cells as cell-based therapeutics in liver fibrosis.
Collapse
Affiliation(s)
- Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Sumeet Kumar Singh
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Sonu Rajput
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Prince Allawadhi
- Department of Pharmacy, Vaish Institute of Pharmaceutical Education and Research (VIPER), Pandit Bhagwat Dayal Sharma University of Health Sciences (Pt. B. D. S. UHS), Rohtak, Haryana 124001, India
| | - Amit Khurana
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| |
Collapse
|
53
|
Zhang F, Gao H, Jiang X, Yang F, Zhang J, Song S, Shen J. Biomedical Application of Decellularized Scaffolds. ACS APPLIED BIO MATERIALS 2023; 6:5145-5168. [PMID: 38032114 DOI: 10.1021/acsabm.3c00778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Tissue loss and end-stage organ failure are serious health problems across the world. Natural and synthetic polymer scaffold material based artificial organs play an important role in the field of tissue engineering and organ regeneration, but they are not from the body and may cause side effects such as rejection. In recent years, the biomimetic decellularized scaffold based materials have drawn great attention in the tissue engineering field for their good biocompatibility, easy modification, and excellent organism adaptability. Therefore, in this review, we comprehensively summarize the application of decellularized scaffolds in tissue engineering and biomedicine in recent years. The preparation methods, modification strategies, construction of artificial tissues, and application in biomedical applications are discussed. We hope that this review will provide a useful reference for research on decellularized scaffolds and promote their application tissue engineering.
Collapse
Affiliation(s)
- Fang Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Huimin Gao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xuefeng Jiang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fang Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jun Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Saijie Song
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
54
|
Olguín Y, Selva M, Benavente D, Orellana N, Montenegro I, Madrid A, Jaramillo-Pinto D, Otero MC, Corrales TP, Acevedo CA. Effect of Electrical Stimulation on PC12 Cells Cultured in Different Hydrogels: Basis for the Development of Biomaterials in Peripheral Nerve Tissue Engineering. Pharmaceutics 2023; 15:2760. [PMID: 38140099 PMCID: PMC10747664 DOI: 10.3390/pharmaceutics15122760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/26/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Extensive damage to peripheral nerves is a health problem with few therapeutic alternatives. In this context, the development of tissue engineering seeks to obtain materials that can help recreate environments conducive to cellular development and functional repair of peripheral nerves. Different hydrogels have been studied and presented as alternatives for future treatments to emulate the morphological characteristics of nerves. Along with this, other research proposes the need to incorporate electrical stimuli into treatments as agents that promote cell growth and differentiation; however, no precedent correlates the simultaneous effects of the types of hydrogel and electrical stimuli. This research evaluates the neural differentiation of PC12 cells, relating the effect of collagen, alginate, GelMA, and PEGDA hydrogels with electrical stimulation modulated in four different ways. Our results show significant correlations for different cultivation conditions. Electrical stimuli significantly increase neural differentiation for specific experimental conditions dependent on electrical frequency, not voltage. These backgrounds allow new material treatment schemes to be formulated through electrical stimulation in peripheral nerve tissue engineering.
Collapse
Affiliation(s)
- Yusser Olguín
- Departamento de Química y Medio Ambiente, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile
- Centro Científico y Tecnológico de Valparaíso (CCTVal), Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.B.); (C.A.A.)
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (M.S.); (N.O.); (T.P.C.)
| | - Mónica Selva
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (M.S.); (N.O.); (T.P.C.)
| | - Diego Benavente
- Centro Científico y Tecnológico de Valparaíso (CCTVal), Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.B.); (C.A.A.)
| | - Nicole Orellana
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (M.S.); (N.O.); (T.P.C.)
| | - Ivan Montenegro
- Centro de Investigaciones Biomédicas, Escuela de Obstetricia, Facultad de Medicina, Universidad de Valparaíso, Angamos 655, Reñaca, Viña del Mar 2520000, Chile;
| | - Alejandro Madrid
- Laboratorio de Productos Naturales y Síntesis Orgánica (LPNSO), Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2390123, Chile;
| | - Diego Jaramillo-Pinto
- Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
- Millenium Nucleus in NanoBioPhysics (NNBP), Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
| | - María Carolina Otero
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Republica 252, Santiago 8370071, Chile;
| | - Tomas P. Corrales
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (M.S.); (N.O.); (T.P.C.)
- Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
- Millenium Nucleus in NanoBioPhysics (NNBP), Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
| | - Cristian A. Acevedo
- Centro Científico y Tecnológico de Valparaíso (CCTVal), Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.B.); (C.A.A.)
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (M.S.); (N.O.); (T.P.C.)
- Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
| |
Collapse
|
55
|
Epicoco L, Pellegrino R, Madaghiele M, Friuli M, Giannotti L, Di Chiara Stanca B, Palermo A, Siculella L, Savkovic V, Demitri C, Nitti P. Recent Advances in Functionalized Electrospun Membranes for Periodontal Regeneration. Pharmaceutics 2023; 15:2725. [PMID: 38140066 PMCID: PMC10747510 DOI: 10.3390/pharmaceutics15122725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Periodontitis is a global, multifaceted, chronic inflammatory disease caused by bacterial microorganisms and an exaggerated host immune response that not only leads to the destruction of the periodontal apparatus but may also aggravate or promote the development of other systemic diseases. The periodontium is composed of four different tissues (alveolar bone, cementum, gingiva, and periodontal ligament) and various non-surgical and surgical therapies have been used to restore its normal function. However, due to the etiology of the disease and the heterogeneous nature of the periodontium components, complete regeneration is still a challenge. In this context, guided tissue/bone regeneration strategies in the field of tissue engineering and regenerative medicine have gained more and more interest, having as a goal the complete restoration of the periodontium and its functions. In particular, the use of electrospun nanofibrous scaffolds has emerged as an effective strategy to achieve this goal due to their ability to mimic the extracellular matrix and simultaneously exert antimicrobial, anti-inflammatory and regenerative activities. This review provides an overview of periodontal regeneration using electrospun membranes, highlighting the use of these nanofibrous scaffolds as delivery systems for bioactive molecules and drugs and their functionalization to promote periodontal regeneration.
Collapse
Affiliation(s)
- Luana Epicoco
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (M.M.); (M.F.); (C.D.)
- Institute of Medical Physics and Biophysics, University of Leipzig, 04103 Leipzig, Germany
| | - Rebecca Pellegrino
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (M.M.); (M.F.); (C.D.)
| | - Marta Madaghiele
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (M.M.); (M.F.); (C.D.)
| | - Marco Friuli
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (M.M.); (M.F.); (C.D.)
| | - Laura Giannotti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.G.); (B.D.C.S.); (L.S.)
| | - Benedetta Di Chiara Stanca
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.G.); (B.D.C.S.); (L.S.)
| | - Andrea Palermo
- Implant Dentistry College of Medicine and Dentistry, Birmingham B4 6BN, UK;
| | - Luisa Siculella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.G.); (B.D.C.S.); (L.S.)
| | - Vuk Savkovic
- Clinic and Polyclinic for Oral and Maxillofacial Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Christian Demitri
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (M.M.); (M.F.); (C.D.)
| | - Paola Nitti
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (M.M.); (M.F.); (C.D.)
| |
Collapse
|
56
|
Izanlou S, Afshar A, Zare A, Zhilisbayeva KR, Bakhshalizadeh S, Safaei Z, Sehat-Bakhsh S, Khaledi S, Asgari HR, Kazemnejad S, Ajami M, Ajami M, Dehghan Tarzjani M, Najafzadeh V, Kouchakian MR, Mussin NM, Kaliyev AA, Aringazina RA, Mahdipour M, Shirazi R, Tamadon A. Enhancing differentiation of menstrual blood-derived stem cells into female germ cells using a bilayer amniotic membrane and nano-fibrous fibroin scaffold. Tissue Cell 2023; 85:102215. [PMID: 37716177 DOI: 10.1016/j.tice.2023.102215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/17/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
Three-dimensional nanofiber scaffolds offer a promising method for simulating in vivo conditions within the laboratory. This study aims to investigate the influence of a bilayer amniochorionic membrane/nanofibrous fibroin scaffold on the differentiation of human menstrual blood mesenchymal stromal/stem cells (MenSCs) into female germ cells. MenSCs were isolated and assigned to four culture groups: (i) MenSCs co-cultured with granulosa cells (GCs) using the scaffold (3D-T group), (ii) MenSCs using the scaffold alone (3D-C group), (iii) MenSCs co-cultured only with GCs (2D-T group), and (iv) MenSCs without co-culture or scaffold (2D-C group). Both MenSCs and GCs were independently cultured for two weeks before co-culturing was initiated. Flow cytometry was employed to characterize MenSCs based on positive markers (CD73, CD90, and CD105) and negative markers (CD45 and CD133). Additionally, flow cytometry and immunocytochemistry were used to characterize the GCs. Differentiated MenSCs were analyzed using real-time PCR and immunostaining. The real-time PCR results demonstrated significantly higher levels of VASA expression in the 3D-T group compared to the 3D-C, 2D-T, and 2D-C groups. Similarly, the SCP3 mRNA level in the 3D-T group was notably elevated compared to the 3D-C, 2D-T, and 2D-C groups. Moreover, the expression of GDF9 was significantly higher in the 3D-T group when compared to the 3D-C, 2D-T, and 2D-C groups. Immunostaining results revealed a lack of signal for VASA, SCP3, or GDF9 markers in the 2D-T group, while some cells in the 3D-T group exhibited positive staining for all these proteins. These findings suggest that the combination of a bilayer amniochorionic membrane/nanofibrous fibroin scaffold with co-culturing GCs facilitates the differentiation of MenSCs into female germ cells.
Collapse
Affiliation(s)
- Safoura Izanlou
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Alireza Afshar
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Islamic Republic of Iran
| | - Afshin Zare
- PerciaVista R&D Co., Shiraz, Islamic Republic of Iran
| | - Kulyash R Zhilisbayeva
- Department of Scientific Work, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Shabnam Bakhshalizadeh
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.
| | - Zahra Safaei
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Soheila Sehat-Bakhsh
- Department of Anatomical Sciences, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Islamic Republic of Iran
| | - Sajed Khaledi
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hamid-Reza Asgari
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Somaieh Kazemnejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Islamic Republic of Iran
| | - Mansoureh Ajami
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Islamic Republic of Iran
| | - Monireh Ajami
- Department of Hematology, Faculty of Paramedical Sciences, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Masoumeh Dehghan Tarzjani
- Department of Gynecology and Obstetrics, Imam Khomeinin Hospital, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | | | - Mohammad Reza Kouchakian
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Nadiar M Mussin
- General Surgery, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Asset A Kaliyev
- General Surgery, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Raisa A Aringazina
- Department of Internal Medicine No. 1, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran; Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Shirazi
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran; Department of Anatomy, School of Biomedical Sciences, Medicine & Health, UNSW Sydney, Sydney, Australia.
| | - Amin Tamadon
- PerciaVista R&D Co., Shiraz, Islamic Republic of Iran; Department of Scientific Work, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan.
| |
Collapse
|
57
|
Alzoubi L, Aljabali AAA, Tambuwala MM. Empowering Precision Medicine: The Impact of 3D Printing on Personalized Therapeutic. AAPS PharmSciTech 2023; 24:228. [PMID: 37964180 DOI: 10.1208/s12249-023-02682-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
This review explores recent advancements and applications of 3D printing in healthcare, with a focus on personalized medicine, tissue engineering, and medical device production. It also assesses economic, environmental, and ethical considerations. In our review of the literature, we employed a comprehensive search strategy, utilizing well-known databases like PubMed and Google Scholar. Our chosen keywords encompassed essential topics, including 3D printing, personalized medicine, nanotechnology, and related areas. We first screened article titles and abstracts and then conducted a detailed examination of selected articles without imposing any date limitations. The articles selected for inclusion, comprising research studies, clinical investigations, and expert opinions, underwent a meticulous quality assessment. This methodology ensured the incorporation of high-quality sources, contributing to a robust exploration of the role of 3D printing in the realm of healthcare. The review highlights 3D printing's potential in healthcare, including customized drug delivery systems, patient-specific implants, prosthetics, and biofabrication of organs. These innovations have significantly improved patient outcomes. Integration of nanotechnology has enhanced drug delivery precision and biocompatibility. 3D printing also demonstrates cost-effectiveness and sustainability through optimized material usage and recycling. The healthcare sector has witnessed remarkable progress through 3D printing, promoting a patient-centric approach. From personalized implants to radiation shielding and drug delivery systems, 3D printing offers tailored solutions. Its transformative applications, coupled with economic viability and sustainability, have the potential to revolutionize healthcare. Addressing material biocompatibility, standardization, and ethical concerns is essential for responsible adoption.
Collapse
Affiliation(s)
- Lorca Alzoubi
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid, 21163, Jordan
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid, 21163, Jordan.
| | - Murtaza M Tambuwala
- Lincoln Medical School, Brayford Pool Campus, University of Lincoln, Lincoln, LN6 7TS, UK.
| |
Collapse
|
58
|
Tymetska S, Shymborska Y, Stetsyshyn Y, Budkowski A, Bernasik A, Awsiuk K, Donchak V, Raczkowska J. Thermoresponsive Smart Copolymer Coatings Based on P(NIPAM- co-HEMA) and P(OEGMA- co-HEMA) Brushes for Regenerative Medicine. ACS Biomater Sci Eng 2023; 9:6256-6272. [PMID: 37874897 PMCID: PMC10646826 DOI: 10.1021/acsbiomaterials.3c00917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023]
Abstract
The fabrication of multifunctional, thermoresponsive platforms for regenerative medicine based on polymers that can be easily functionalized is one of the most important challenges in modern biomaterials science. In this study, we utilized atom transfer radical polymerization (ATRP) to produce two series of novel smart copolymer brush coatings. These coatings were based on copolymerizing 2-hydroxyethyl methacrylate (HEMA) with either oligo(ethylene glycol) methyl ether methacrylate (OEGMA) or N-isopropylacrylamide (NIPAM). The chemical compositions of the resulting brush coatings, namely, poly(oligo(ethylene glycol) methyl ether methacrylate-co-2-hydroxyethyl methacrylate) (P(OEGMA-co-HEMA)) and poly(N-isopropylacrylamide-co-2-hydroxyethyl methacrylate) (P(NIPAM-co-HEMA)), were predicted using reactive ratios of the monomers. These predictions were then verified using time-of-flight-secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). The thermoresponsiveness of the coatings was examined through water contact angle (CA) measurements at different temperatures, revealing a transition driven by lower critical solution temperature (LCST) or upper critical solution temperature (UCST) or a vanishing transition. The type of transition observed depended on the chemical composition of the coatings. Furthermore, it was demonstrated that the transition temperature of the coatings could be easily adjusted by modifying their composition. The topography of the coatings was characterized using atomic force microscopy (AFM). To assess the biocompatibility of the coatings, dermal fibroblast cultures were employed, and the results indicated that none of the coatings exhibited cytotoxicity. However, the shape and arrangement of the cells were significantly influenced by the chemical structure of the coating. Additionally, the viability of the cells was correlated with the wettability and roughness of the coatings, which determined the initial adhesion of the cells. Lastly, the temperature-induced changes in the properties of the fabricated copolymer coatings effectively controlled cell morphology, adhesion, and spontaneous detachment in a noninvasive, enzyme-free manner that was confirmed using optical microscopy.
Collapse
Affiliation(s)
- Svitlana Tymetska
- Jagiellonian
University, Doctoral School of Exact and
Natural Sciences, Łojasiewicza
11, 30-348 Kraków, Poland
- Jagiellonian
University, Faculty of Physics, Astronomy
and Applied Computer Science, Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Yana Shymborska
- Jagiellonian
University, Doctoral School of Exact and
Natural Sciences, Łojasiewicza
11, 30-348 Kraków, Poland
- Jagiellonian
University, Faculty of Physics, Astronomy
and Applied Computer Science, Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Kraków, Poland
- Lviv
Polytechnic National University, St. George’s Square 2, 79013 Lviv, Ukraine
| | - Yurij Stetsyshyn
- Lviv
Polytechnic National University, St. George’s Square 2, 79013 Lviv, Ukraine
| | - Andrzej Budkowski
- Jagiellonian
University, Faculty of Physics, Astronomy
and Applied Computer Science, Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Andrzej Bernasik
- Faculty
of Physics and Applied Computer Science, AGH - University of Science and Technology, al. Mickiewicza 30, 30-049 Kraków, Poland
| | - Kamil Awsiuk
- Jagiellonian
University, Faculty of Physics, Astronomy
and Applied Computer Science, Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Volodymyr Donchak
- Lviv
Polytechnic National University, St. George’s Square 2, 79013 Lviv, Ukraine
| | - Joanna Raczkowska
- Jagiellonian
University, Faculty of Physics, Astronomy
and Applied Computer Science, Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Kraków, Poland
| |
Collapse
|
59
|
De Leon-Oliva D, Boaru DL, Perez-Exposito RE, Fraile-Martinez O, García-Montero C, Diaz R, Bujan J, García-Honduvilla N, Lopez-Gonzalez L, Álvarez-Mon M, Saz JV, de la Torre B, Ortega MA. Advanced Hydrogel-Based Strategies for Enhanced Bone and Cartilage Regeneration: A Comprehensive Review. Gels 2023; 9:885. [PMID: 37998975 PMCID: PMC10670584 DOI: 10.3390/gels9110885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Bone and cartilage tissue play multiple roles in the organism, including kinematic support, protection of organs, and hematopoiesis. Bone and, above all, cartilaginous tissues present an inherently limited capacity for self-regeneration. The increasing prevalence of disorders affecting these crucial tissues, such as bone fractures, bone metastases, osteoporosis, or osteoarthritis, underscores the urgent imperative to investigate therapeutic strategies capable of effectively addressing the challenges associated with their degeneration and damage. In this context, the emerging field of tissue engineering and regenerative medicine (TERM) has made important contributions through the development of advanced hydrogels. These crosslinked three-dimensional networks can retain substantial amounts of water, thus mimicking the natural extracellular matrix (ECM). Hydrogels exhibit exceptional biocompatibility, customizable mechanical properties, and the ability to encapsulate bioactive molecules and cells. In addition, they can be meticulously tailored to the specific needs of each patient, providing a promising alternative to conventional surgical procedures and reducing the risk of subsequent adverse reactions. However, some issues need to be addressed, such as lack of mechanical strength, inconsistent properties, and low-cell viability. This review describes the structure and regeneration of bone and cartilage tissue. Then, we present an overview of hydrogels, including their classification, synthesis, and biomedical applications. Following this, we review the most relevant and recent advanced hydrogels in TERM for bone and cartilage tissue regeneration.
Collapse
Affiliation(s)
- Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
| | - Roque Emilio Perez-Exposito
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Service of Traumatology of University Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
| | - Raul Diaz
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
| | - Laura Lopez-Gonzalez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
- Immune System Diseases-Rheumatology Service, Hospital Universitario Principe de Asturias, 28801 Alcala de Henares, Spain
| | - Jose V. Saz
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
- Department of Biomedicine and Biotechnology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Basilio de la Torre
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
- Service of Traumatology of University Hospital Ramón y Cajal, 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
| |
Collapse
|
60
|
Gholami L, Khorsandi K, Fekrazad R. Effect of red and near-infrared irradiation on periodontal ligament stem cells: ROS generation and cell cycle analysis. J Biomol Struct Dyn 2023; 41:10051-10058. [PMID: 36469733 DOI: 10.1080/07391102.2022.2152869] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Reconstruction of lost tooth structures and the periodontium with the help of tissue engineering has found a special place in dentistry in recent years with reports of great therapeutic success. Stem cells from the periodontal ligament have the potential for high differentiation into the bone and periodontal ligament cells and are therefore a suit candidate for regenerative therapies of the periodontium and other tissues. In this regard, the use of photobiomodulation on these cells by light irradiation can be effective in increasing the efficiency of these regenerative methods. The effect of red and near-infrared lasers was investigated in pulsed and continuous modes on the cell viability, ROS production and the cell cycle of Periodontal Ligament Stem cells (PDLSCs) using MTT assay and flowcytometry techniques. The result shows that both red and near-infra-red (NIR) irradiations at 3 J/cm2 maintain cell viability. ROS generation assay indicated that in PDL stem cells irradiated with NIR laser (940 nm), ROS production was greater than in the red (660 nm) irradiated groups. Cell cycle analysis revealed that NIR irradiation can enhance the proportion of S-phase cells and declinedecline the proportion of G1-phase cells compared to the red laser irradiation groups. Moreover, this enhancement was greater in the pulsed group compared to the continuous mode group. Overall, the current study results showed that photobiomodulation can support the cell viability of PDLSCs and could affect the ROS production and cell cycle. This effect was more with 940 nm (NIR) irradiation pulsed mode compared to 660 nm (red).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Leila Gholami
- Department of Periodontics, School of Dentistry, Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Reza Fekrazad
- Radiation Science Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
61
|
Vafa E, Tayebi L, Abbasi M, Azizli MJ, Bazargan-Lari R, Talaiekhozani A, Zareshahrabadi Z, Vaez A, Amani AM, Kamyab H, Chelliapan S. A better roadmap for designing novel bioactive glasses: effective approaches for the development of innovative revolutionary bioglasses for future biomedical applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116960-116983. [PMID: 36456674 DOI: 10.1007/s11356-022-24176-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
The introduction of bioactive glasses (BGs) precipitated a paradigm shift in the medical industry and opened the path for the development of contemporary regenerative medicine driven by biomaterials. This composition can bond to live bone and can induce osteogenesis by the release of physiologically active ions. 45S5 BG products have been transplanted effectively into millions of patients around the world, primarily to repair bone and dental defects. Over the years, many other BG compositions have been introduced as innovative biomaterials for repairing soft tissue and delivering drugs. When research first started, many of the accomplishments that have been made today were unimaginable. It appears that the true capacity of BGs has not yet been realized. Because of this, research involving BGs is extremely fascinating. However, to be successful, it requires interdisciplinary cooperation between physicians, glass chemists, and bioengineers. The present paper gives a picture of the existing clinical uses of BGs and illustrates key difficulties deserving to be faced in the future. The challenges range from the potential for BGs to be used in a wide variety of applications. We have high hopes that this paper will be of use to both novice researchers, who are just beginning their journey into the world of BGs, as well as seasoned scientists, in that it will promote conversation regarding potential additional investigation and lead to the discovery of innovative medical applications for BGs.
Collapse
Affiliation(s)
- Ehsan Vafa
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Azizli
- Department of Chemistry and Chemical Engineering, Islamic Azad University, Rasht, Rasht Branch, Iran
| | - Reza Bazargan-Lari
- Department of Materials Science and Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Amirreza Talaiekhozani
- Department of Civil Engineering, Jami Institute of Technology, Isfahan, Iran
- Alavi Educational and Cultural Complex, Shiraz, Iran
| | - Zahra Zareshahrabadi
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Mohamad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hesam Kamyab
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India, Chennai, India
| | - Shreeshivadasan Chelliapan
- Engineering Department, Razak Faculty of Technology & Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| |
Collapse
|
62
|
Bharadhwaj RA, Kumarswamy R. Long noncoding RNA TUG1 regulates smooth muscle cell differentiation via KLF4-myocardin axis. Am J Physiol Cell Physiol 2023; 325:C940-C950. [PMID: 37642238 PMCID: PMC10635660 DOI: 10.1152/ajpcell.00275.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Abdominal aortic aneurysms (AAAs) are asymptomatic vascular diseases that have life-threatening outcomes. Smooth muscle cell (SMC) dysfunction plays an important role in AAA development. The contribution of non-coding genome, specifically the role of long non-coding RNAs (lncRNAs) in SMC dysfunction, is relatively unexplored. We investigated the role of lncRNA TUG1 in SMC dysfunction. To identify potential lncRNAs relevant to SMC functionality, lncRNA profiling was performed in angiotensin-II-treated SMCs. AAA was induced by angiotensin-II treatment in mice. Transcriptional regulation of TUG1 was studied using promoter luciferase and chromatin-immuno-precipitation experiments. Gain-or-loss-of-function experiments were performed in vitro to investigate TUG1-mediated regulation of SMC function. Immunoprecipitation experiments were conducted to elucidate the mechanism underlying TUG1-mediated SMC dysfunction. TUG1 was upregulated in SMCs following angiotensin-II treatment. Similarly, TUG1 levels were elevated in abdominal aorta in a mouse model of angiotensin-II-induced AAA. Further investigations showed that angiotensin-II-induced TUG1 expression could be suppressed by inhibiting Notch-signaling pathway, both in vitro and in mouse AAA model and that TUG1 is a direct transcriptional target of the Notch pathway. In aneurysmal tissues, TUG1 expression was inversely correlated with the expression of SMC contractile genes. Overexpression of TUG1 repressed SMC differentiation in vitro, whereas siRNA/shRNA-mediated TUG1 knockdown showed an opposite effect. Mechanistically, TUG1 interacts with transcriptional repressor KLF4 and facilitates its recruitment to myocardin promoter ultimately leading to the repression of SMC differentiation. In summary, our study uncovers a novel role for the lncRNA TUG1 wherein it modulates SMC differentiation via the KLF4-myocardin axis, which may have potential implications in AAA development.NEW & NOTEWORTHY TUG1 is an angiotensin-II-induced long noncoding RNA that mediates smooth muscle cell (SMC) dysfunction through interaction with transcriptional repressor KLF4.
Collapse
Affiliation(s)
- Ravi Abishek Bharadhwaj
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Regalla Kumarswamy
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
63
|
Hassan N, Krieg T, Zinser M, Schröder K, Kröger N. An Overview of Scaffolds and Biomaterials for Skin Expansion and Soft Tissue Regeneration: Insights on Zinc and Magnesium as New Potential Key Elements. Polymers (Basel) 2023; 15:3854. [PMID: 37835903 PMCID: PMC10575381 DOI: 10.3390/polym15193854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
The utilization of materials in medical implants, serving as substitutes for non-functional biological structures, supporting damaged tissues, or reinforcing active organs, holds significant importance in modern healthcare, positively impacting the quality of life for millions of individuals worldwide. However, certain implants may only be required temporarily to aid in the healing process of diseased or injured tissues and tissue expansion. Biodegradable metals, including zinc (Zn), magnesium (Mg), iron, and others, present a new paradigm in the realm of implant materials. Ongoing research focuses on developing optimized materials that meet medical standards, encompassing controllable corrosion rates, sustained mechanical stability, and favorable biocompatibility. Achieving these objectives involves refining alloy compositions and tailoring processing techniques to carefully control microstructures and mechanical properties. Among the materials under investigation, Mg- and Zn-based biodegradable materials and their alloys demonstrate the ability to provide necessary support during tissue regeneration while gradually degrading over time. Furthermore, as essential elements in the human body, Mg and Zn offer additional benefits, including promoting wound healing, facilitating cell growth, and participating in gene generation while interacting with various vital biological functions. This review provides an overview of the physiological function and significance for human health of Mg and Zn and their usage as implants in tissue regeneration using tissue scaffolds. The scaffold qualities, such as biodegradation, mechanical characteristics, and biocompatibility, are also discussed.
Collapse
Affiliation(s)
- Nourhan Hassan
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Biotechnology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Thomas Krieg
- Translational Matrix Biology, Medical Faculty, University of Cologne, 50923 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50923 Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, 50923 Cologne, Germany
| | - Max Zinser
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Department for Oral and Craniomaxillofacial and Plastic Surgery, University of Cologne, Kerpener Strasse 62, 50931 Cologne, Germany
| | - Kai Schröder
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Nadja Kröger
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| |
Collapse
|
64
|
Giubilini A, Messori M, Bondioli F, Minetola P, Iuliano L, Nyström G, Maniura-Weber K, Rottmar M, Siqueira G. 3D-Printed Poly(3-hydroxybutyrate- co-3-hydroxyhexanoate)-Cellulose-Based Scaffolds for Biomedical Applications. Biomacromolecules 2023; 24:3961-3971. [PMID: 37589321 PMCID: PMC10498448 DOI: 10.1021/acs.biomac.3c00263] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/08/2023] [Indexed: 08/18/2023]
Abstract
While biomaterials have become indispensable for a wide range of tissue repair strategies, second removal procedures oftentimes needed in the case of non-bio-based and non-bioresorbable scaffolds are associated with significant drawbacks not only for the patient, including the risk of infection, impaired healing, or tissue damage, but also for the healthcare system in terms of cost and resources. New biopolymers are increasingly being investigated in the field of tissue regeneration, but their widespread use is still hampered by limitations regarding mechanical, biological, and functional performance when compared to traditional materials. Therefore, a common strategy to tune and broaden the final properties of biopolymers is through the effect of different reinforcing agents. This research work focused on the fabrication and characterization of a bio-based and bioresorbable composite material obtained by compounding a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) matrix with acetylated cellulose nanocrystals (CNCs). The developed biocomposite was further processed to obtain three-dimensional scaffolds by additive manufacturing (AM). The 3D printability of the PHBH-CNC biocomposites was demonstrated by realizing different scaffold geometries, and the results of in vitro cell viability studies provided a clear indication of the cytocompatibility of the biocomposites. Moreover, the CNC content proved to be an important parameter in tuning the different functional properties of the scaffolds. It was demonstrated that the water affinity, surface roughness, and in vitro degradability rate of biocomposites increase with increasing CNC content. Therefore, this tailoring effect of CNC can expand the potential field of use of the PHBH biopolymer, making it an attractive candidate for a variety of tissue engineering applications.
Collapse
Affiliation(s)
- Alberto Giubilini
- Department
of Management and Production Engineering (DIGEP), Politecnico di Torino, Torino 10129, Italy
- Integrated
Additive Manufacturing Centre (IAM@PoliTO), Politecnico di Torino, Torino 10129, Italy
| | - Massimo Messori
- Integrated
Additive Manufacturing Centre (IAM@PoliTO), Politecnico di Torino, Torino 10129, Italy
- Department
of Applied Science and Technology (DISAT), Politecnico di Torino, Torino 10129, Italy
| | - Federica Bondioli
- Integrated
Additive Manufacturing Centre (IAM@PoliTO), Politecnico di Torino, Torino 10129, Italy
- Department
of Applied Science and Technology (DISAT), Politecnico di Torino, Torino 10129, Italy
| | - Paolo Minetola
- Department
of Management and Production Engineering (DIGEP), Politecnico di Torino, Torino 10129, Italy
- Integrated
Additive Manufacturing Centre (IAM@PoliTO), Politecnico di Torino, Torino 10129, Italy
| | - Luca Iuliano
- Department
of Management and Production Engineering (DIGEP), Politecnico di Torino, Torino 10129, Italy
- Integrated
Additive Manufacturing Centre (IAM@PoliTO), Politecnico di Torino, Torino 10129, Italy
| | - Gustav Nyström
- Cellulose
& Wood Materials Laboratory, Swiss Federal
Laboratories for Materials Science and Technology (Empa), Dübendorf 8600, Switzerland
- Department
of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - Katharina Maniura-Weber
- Biointerfaces, Swiss Federal Laboratories for Materials Science and
Technology (Empa), St. Gallen 9014, Switzerland
| | - Markus Rottmar
- Biointerfaces, Swiss Federal Laboratories for Materials Science and
Technology (Empa), St. Gallen 9014, Switzerland
| | - Gilberto Siqueira
- Cellulose
& Wood Materials Laboratory, Swiss Federal
Laboratories for Materials Science and Technology (Empa), Dübendorf 8600, Switzerland
| |
Collapse
|
65
|
Yuan M, Kermanian M, Agarwal T, Yang Z, Yousefiasl S, Cheng Z, Ma P, Lin J, Maleki A. Defect Engineering in Biomedical Sciences. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304176. [PMID: 37270664 DOI: 10.1002/adma.202304176] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/28/2023] [Indexed: 06/05/2023]
Abstract
With the promotion of nanochemistry research, large numbers of nanomaterials have been applied in vivo to produce desirable cytotoxic substances in response to endogenous or exogenous stimuli for achieving disease-specific therapy. However, the performance of nanomaterials is a critical issue that is difficult to improve and optimize under biological conditions. Defect-engineered nanoparticles have become the most researched hot materials in biomedical applications recently due to their excellent physicochemical properties, such as optical properties and redox reaction capabilities. Importantly, the properties of nanomaterials can be easily adjusted by regulating the type and concentration of defects in the nanoparticles without requiring other complex designs. Therefore, this tutorial review focuses on biomedical defect engineering and briefly discusses defect classification, introduction strategies, and characterization techniques. Several representative defective nanomaterials are especially discussed in order to reveal the relationship between defects and properties. A series of disease treatment strategies based on defective engineered nanomaterials are summarized. By summarizing the design and application of defective engineered nanomaterials, a simple but effective methodology is provided for researchers to design and improve the therapeutic effects of nanomaterial-based therapeutic platforms from a materials science perspective.
Collapse
Affiliation(s)
- Meng Yuan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Mehraneh Kermanian
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology (School of Pharmacy), Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
| | - Tarun Agarwal
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, 522502, India
| | - Zhuang Yang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Satar Yousefiasl
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Ziyong Cheng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology (School of Pharmacy), Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
| |
Collapse
|
66
|
Ghaedamini S, Karbasi S, Hashemibeni B, Honarvar A, Rabiei A. PCL/Agarose 3D-printed scaffold for tissue engineering applications: fabrication, characterization, and cellular activities. Res Pharm Sci 2023; 18:566-579. [PMID: 37842514 PMCID: PMC10568963 DOI: 10.4103/1735-5362.383711] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/10/2023] [Accepted: 07/15/2023] [Indexed: 10/17/2023] Open
Abstract
Background and purpose Biomaterials, scaffold manufacturing, and design strategies with acceptable mechanical properties are the most critical challenges facing tissue engineering. Experimental approach In this study, polycaprolactone (PCL) scaffolds were fabricated through a novel three-dimensional (3D) printing method. The PCL scaffolds were then coated with 2% agarose (Ag) hydrogel. The 3D-printed PCL and PCL/Ag scaffolds were characterized for their mechanical properties, porosity, hydrophilicity, and water absorption. The construction and morphology of the printed scaffolds were evaluated via Fourier-Transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The attachment and proliferation of L929 cells cultured on the scaffolds were investigated through MTT assay on the cell culture study upon the 1st, 3rd, and 7th days. Findings/Results The incorporation of Ag hydrogel with PCL insignificantly decreased the mechanical strength of the scaffold. The presence of Ag enhanced the hydrophilicity and water absorption of the scaffolds, which could positively influence their cell behavior compared to the PCL scaffolds. Regarding cell morphology, the cells on the PCL scaffolds had a more rounded shape and less cell spreading, representing poor cell attachment and cell-scaffold interaction due to the hydrophobic nature of PCL. Conversely, the cells on the PCL/Ag scaffolds were elongated with a spindle-shaped morphology indicating a positive cell-scaffold interaction. Conclusion and implications PCL/Ag scaffolds can be considered appropriate for tissue-engineering applications.
Collapse
Affiliation(s)
- Sho’leh Ghaedamini
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeed Karbasi
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Batool Hashemibeni
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Honarvar
- Cellular and Molecular Research Center, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Abbasali Rabiei
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
67
|
Chakraborty S, Ramasubbu K, Banerjee M, Balaji MP, Vinayagam Y, V DR. A systematic review on the molecular and clinical association between Human Papillomavirus and Human Immunodeficiency Virus co-infection in Head, Neck and Oral squamous cell carcinoma. Rev Med Virol 2023; 33:e2462. [PMID: 37280764 DOI: 10.1002/rmv.2462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/27/2023] [Accepted: 05/23/2023] [Indexed: 06/08/2023]
Abstract
Head and neck cancer, one of the most commonly prevalent malignancies globally is a complex category of tumours that comprises cancers of the oral cavity, pharynx, and larynx. A specific subgroup of such cancers has been found with some unique chromosomal, therapeutic, and epidemiologic traits with the possibility of affecting via co-infection. About 25% of all head and neck cancers in the population are human papillomavirus infection (HPV)-associated, typically developing in the oropharynx, which comprises the tonsils. In the period of efficient combined antiviral treatment, HPV-positive oral cancers are also becoming a significant contributor to illness and fatality for Human Immunodeficiency Virus (HIV)-infected persons. Although the prevalence and historical background of oral HPV transmission are not thoroughly understood, it seems likely that oral HPV transmission is relatively frequent in HIV-infected people when compared to the overall population. Therefore, there is a need to understand the mechanisms leading to this co-infection, as there is very little research related to that. Hence, this study mainly focus on the therapeutical and biomedical analysis of HPV and HIV co-infection in the above-mentioned cancer, including oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Shreya Chakraborty
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Kanagavalli Ramasubbu
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Manosi Banerjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Menaka Priya Balaji
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Yamini Vinayagam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Devi Rajeswari V
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
68
|
Dyrek N, Wikarek A, Niemiec M, Kocełak P. Selected musculoskeletal disorders in patients with thyroid dysfunction, diabetes, and obesity. Reumatologia 2023; 61:305-317. [PMID: 37745138 PMCID: PMC10515130 DOI: 10.5114/reum/170312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/01/2023] [Indexed: 09/26/2023] Open
Abstract
Many medical conditions affect the skeletal system and constitute independent risk factors for fractures. The action of thyroid hormones is necessary to maintain adequate development, mineralization, and bone strength. Untreated hyperthyroidism can lead to a decrease in bone mineral density (BMD), osteoporosis, and pathological fractures. In hypothyroidism, the changes in the quality of bone structure lead to an increase in the frequency of fractures. Excessive body weight negatively impacts fracture risk, increases the risk of osteoarthritis and accelerates the development of rheumatoid arthritis and osteoporosis. Type 1 and type 2 diabetes are associated with an increased risk of bone fractures despite different etiopathogenesis due to the duration of the disease and the pro-inflammatory state, the incorporation of advanced glycation end products (AGEs) into the bone matrix, and microvascular disorders. This study summarizes the current literature on the influence of thyroid dysfunction, obesity, and diabetes on the skeletal system.
Collapse
Affiliation(s)
- Nicola Dyrek
- Students’ Scientific Society at the Pathophysiology Unit, Department of Pathophysiology, Faculty of Medical Science, The Medical University of Silesia, Katowice, Poland
| | - Agnieszka Wikarek
- Pathophysiology Unit, Department of Pathophysiology, Faculty of Medical Science, The Medical University of Silesia, Katowice, Poland
| | - Małgorzata Niemiec
- Students’ Scientific Society at the Pathophysiology Unit, Department of Pathophysiology, Faculty of Medical Science, The Medical University of Silesia, Katowice, Poland
| | - Piotr Kocełak
- Pathophysiology Unit, Department of Pathophysiology, Faculty of Medical Science, The Medical University of Silesia, Katowice, Poland
| |
Collapse
|
69
|
Almeida GHDR, da Silva-Júnior LN, Gibin MS, Dos Santos H, de Oliveira Horvath-Pereira B, Pinho LBM, Baesso ML, Sato F, Hernandes L, Long CR, Relly L, Miglino MA, Carreira ACO. Perfusion and Ultrasonication Produce a Decellularized Porcine Whole-Ovary Scaffold with a Preserved Microarchitecture. Cells 2023; 12:1864. [PMID: 37508528 PMCID: PMC10378497 DOI: 10.3390/cells12141864] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 07/30/2023] Open
Abstract
The application of decellularized scaffolds for artificial tissue reconstruction has been an approach with great therapeutic potential in regenerative medicine. Recently, biomimetic ovarian tissue reconstruction was proposed to reestablish ovarian endocrine functions. Despite many decellularization methods proposed, there is no established protocol for whole ovaries by detergent perfusion that is able to preserve tissue macro and microstructure with higher efficiency. This generated biomaterial may have the potential to be applied for other purposes beyond reproduction and be translated to other areas in the tissue engineering field. Therefore, this study aimed to establish and standardize a protocol for porcine ovaries' decellularization based on detergent perfusion and ultrasonication to obtain functional whole-ovary scaffolds. For that, porcine ovaries (n = 5) were perfused with detergents (0.5% SDS and 1% Triton X-100) and submitted to an ultrasonication bath to produce acellular scaffolds. The decellularization efficiency was evaluated by DAPI staining and total genomic DNA quantification. ECM morphological evaluation was performed by histological, immunohistochemistry, and ultrastructural analyses. ECM physico-chemical composition was evaluated using FTIR and Raman spectroscopy. A cytocompatibility and cell adhesion assay using murine fibroblasts was performed. Results showed that the proposed method was able to remove cellular components efficiently. There was no significant ECM component loss in relation to native tissue, and the scaffolds were cytocompatible and allowed cell attachment. In conclusion, the proposed decellularization protocol produced whole-ovaries scaffolds with preserved ECM composition and great potential for application in tissue engineering.
Collapse
Affiliation(s)
| | | | | | - Henrique Dos Santos
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil
| | | | - Leticia Beatriz Mazo Pinho
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil
| | | | - Francielle Sato
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil
| | - Luzmarina Hernandes
- Department of Morphological Sciences, State University of Maringa, Maringá 87020-900, Brazil
| | - Charles R Long
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Luciana Relly
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil
- Centre for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| |
Collapse
|
70
|
Carvalho DN, Gelinsky M, Williams DS, Mearns-Spragg A, Reis RL, Silva TH. Marine collagen-chitosan-fucoidan/chondroitin sulfate cryo-biomaterials loaded with primary human cells envisaging cartilage tissue engineering. Int J Biol Macromol 2023; 241:124510. [PMID: 37080412 DOI: 10.1016/j.ijbiomac.2023.124510] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/22/2023]
Abstract
Cartilage repair after a trauma or a degenerative disease like osteoarthritis (OA) continues to be a big challenge in current medicine due to the limited self-regenerative capacity of the articular cartilage tissues. To overcome the current limitations, tissue engineering and regenerative medicine (TERM) and adjacent areas have focused their efforts on new therapeutical procedures and materials capable of restoring normal tissue functionalities through polymeric scaffolding and stem cell engineering approaches. For this, the sustainable exploration of marine origin materials has emerged in the last years as a natural alternative to mammal sources, benefiting from their biological properties (e.g., biocompatibility, biodegradability, no toxicity, among others) for the development of several types of scaffolds. In this study, marine collagen(jCOL)-chitosan(sCHT)-fucoidan(aFUC)/chondroitin sulfate(aCS) were cryo-processed (-20 °C, -80 °C, and -196 °C) and a chemical-free crosslinking approach was explored to establish cohesive and stable cryogel materials. The cryogels were intensively characterized to assess their oscillatory behavior, thermal structural stability, thixotropic properties (around 45 % for the best formulations), injectability, and surface structural organization. Additionally, the cryogels demonstrate an interesting microenvironment in in vitro studies using human adipose-derived stem cells (hASCs), supporting their viability and proliferation. In both physic-chemical and in vitro studies, the systems that contain fucoidan in their formulations, i.e., C1 (jCOL, sCHT, aFUC) and C3 (jCOL, sCHT, aFUC, aCS), submitted at -80 °C, are those that demonstrated most promising results for future application in articular cartilage tissues.
Collapse
Affiliation(s)
- Duarte Nuno Carvalho
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Michael Gelinsky
- Centre for Translational Bone, Joint- and Soft Tissue Research, Technische Universität Dresden, Faculty of Medicine and University Hospital, 01307 Dresden, Germany
| | - David S Williams
- Jellagen Limited, Unit G6, Capital Business Park, Parkway, St Mellons, Cardiff CF3 2PY, United Kingdom
| | - Andrew Mearns-Spragg
- Jellagen Limited, Unit G6, Capital Business Park, Parkway, St Mellons, Cardiff CF3 2PY, United Kingdom
| | - Rui L Reis
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Tiago H Silva
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
71
|
Radhouani H, Gonçalves C, Maia FR, Oliveira EP, Reis RL, Oliveira JM. Development of Conjugated Kefiran-Chondroitin Sulphate Cryogels with Enhanced Properties for Biomedical Applications. Pharmaceutics 2023; 15:1662. [PMID: 37376110 DOI: 10.3390/pharmaceutics15061662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Hydrogels based on natural polysaccharides can have unique properties and be tailored for several applications, which may be mainly limited by the fragile structure and weak mechanical properties of this type of system. We successfully prepared cryogels made of newly synthesized kefiran exopolysaccharide-chondroitin sulfate (CS) conjugate via carbodiimide-mediated coupling to overcome these drawbacks. The freeze-thawing procedure of cryogel preparation followed by lyophilization is a promising route to fabricate polymer-based scaffolds with countless and valuable biomedical applications. The novel graft macromolecular compound (kefiran-CS conjugate) was characterized through 1H-NMR and FTIR spectroscopy-which confirmed the structure of the conjugate, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA)-which mirrored good thermal stability (degradation temperature of about 215 °C) and, finally, gel permeation chromatography-size exclusion chromatography (GPC-SEC)-which proved an increased molecular weight due to chemical coupling of kefiran with CS. At the same time, the corresponding cryogels physically crosslinked after the freeze-thawing procedure were investigated by scanning electron microscopy (SEM), Micro-CT, and dynamic rheology. The results revealed a prevalent contribution of elastic/storage component to the viscoelastic behavior of cryogels in swollen state, a micromorphology with micrometer-sized open pores fully interconnected, and high porosity (ca. 90%) observed for freeze-dried cryogels. Furthermore, the metabolic activity and proliferation of human adipose stem cells (hASCs), when cultured onto the developed kefiran-CS cryogel, was maintained at a satisfactory level over 72 h. Based on the results obtained, it can be inferred that the newly freeze-dried kefiran-CS cryogels possess a host of unique properties that render them highly suitable for use in tissue engineering, regenerative medicine, drug delivery, and other biomedical applications where robust mechanical properties and biocompatibility are crucial.
Collapse
Affiliation(s)
- Hajer Radhouani
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Cristiana Gonçalves
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - F Raquel Maia
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Eduarda P Oliveira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Joaquim M Oliveira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| |
Collapse
|
72
|
Noroozi R, Arif ZU, Taghvaei H, Khalid MY, Sahbafar H, Hadi A, Sadeghianmaryan A, Chen X. 3D and 4D Bioprinting Technologies: A Game Changer for the Biomedical Sector? Ann Biomed Eng 2023:10.1007/s10439-023-03243-9. [PMID: 37261588 DOI: 10.1007/s10439-023-03243-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/14/2023] [Indexed: 06/02/2023]
Abstract
Bioprinting is an innovative and emerging technology of additive manufacturing (AM) and has revolutionized the biomedical sector by printing three-dimensional (3D) cell-laden constructs in a precise and controlled manner for numerous clinical applications. This approach uses biomaterials and varying types of cells to print constructs for tissue regeneration, e.g., cardiac, bone, corneal, cartilage, neural, and skin. Furthermore, bioprinting technology helps to develop drug delivery and wound healing systems, bio-actuators, bio-robotics, and bio-sensors. More recently, the development of four-dimensional (4D) bioprinting technology and stimuli-responsive materials has transformed the biomedical sector with numerous innovations and revolutions. This issue also leads to the exponential growth of the bioprinting market, with a value over billions of dollars. The present study reviews the concepts and developments of 3D and 4D bioprinting technologies, surveys the applications of these technologies in the biomedical sector, and discusses their potential research topics for future works. It is also urged that collaborative and valiant efforts from clinicians, engineers, scientists, and regulatory bodies are needed for translating this technology into the biomedical, pharmaceutical, and healthcare systems.
Collapse
Affiliation(s)
- Reza Noroozi
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Zia Ullah Arif
- Department of Mechanical Engineering, University of Management & Technology, Lahore, Sialkot Campus, Lahore, 51041, Pakistan
| | - Hadi Taghvaei
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Muhammad Yasir Khalid
- Department of Aerospace Engineering, Khalifa University of Science and Technology, PO Box: 127788, Abu Dhabi, United Arab Emirates
| | - Hossein Sahbafar
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Amin Hadi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ali Sadeghianmaryan
- Postdoctoral Researcher Fellow at Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA.
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK, S7N5A9, Canada.
| | - Xiongbiao Chen
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK, S7N5A9, Canada
| |
Collapse
|
73
|
Fadilah NIM, Ahmat N, Hao LQ, Maarof M, Rajab NF, Idrus RBH, Fauzi MB. Biological Safety Assessments of High-Purified Ovine Collagen Type I Biomatrix for Future Therapeutic Product: International Organisation for Standardisation (ISO) and Good Laboratory Practice (GLP) Settings. Polymers (Basel) 2023; 15:polym15112436. [PMID: 37299233 DOI: 10.3390/polym15112436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Wound care management is incredibly challenging for chronic injuries, despite the availability of various types of wound care products in the market. However, most current wound-healing products do not attempt to mimic the extracellular matrix (ECM) and simply provide a barrier function or wound covering. Collagen is a natural polymer that involves a major constituent of the ECM protein, thus making it attractive to be used in skin tissue regeneration during wound healing. This study aimed to validate the biological safety assessments of ovine tendon collagen type-I (OTC-I) in the accredited laboratory under ISO and GLP settings. It is important to ensure that the biomatrix will not stimulate the immune system to produce any adverse reaction. Therefore, we successfully extracted collagen type-I from the ovine tendon (OTC- I) using a method of low-concentration acetic acid. The three-dimensional (3D) skin patch of spongy OTC-I was a soft and white colour, being tested for safety and biocompatibility evaluations based on ISO 10993-5, ISO 10993-10, ISO 10993-11, ISO 10993-23, USP 40 <151>, and OECD 471. For the dermal sensitisation and acute irritation test, none of the tested animals displayed any erythema or oedema effects (p > 0.005). In addition, there were no abnormalities detected in the organ of the mice after being exposed to OTC-I; additionally, no morbidity and mortality were observed in the acute systemic test under the guideline of ISO 10993-11:2017. The grade 0 (non-reactive) based on ISO 10993-5:2009 was graded for the OTC-I at 100% concentration and the mean number of the revertant colonies did not exceed 2-fold of the 0.9% w/v sodium chloride compared to the tester strains of S. typhimurium (TA100, TA1535, TA98, TA1537), and E. coli (WP2 trp uvrA). Our study revealed that OTC-I biomatrix does not present any adverse effects or abnormalities in the present study's condition of induced skin sensitization effect, mutagenic and cytotoxic towards cells and animals. This biocompatibility assessment demonstrated a good agreement between in vitro and in vivo results regarding the absence of skin irritation and sensitization potential. Therefore, OTC-I biomatrix is a potential medical device candidate for future clinical trials focusing on wound care management.
Collapse
Affiliation(s)
- Nur Izzah Md Fadilah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Nazeha Ahmat
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Looi Qi Hao
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- My Cytohealth Sdn. Bhd., Kuala Lumpur 56000, Malaysia
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Nor Fadilah Rajab
- Biomedical Science Program, Center for Healthy Aging and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abd Aziz, Kuala Lumpur 50300, Malaysia
| | - Ruszymah Binti Hj Idrus
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- My Cytohealth Sdn. Bhd., Kuala Lumpur 56000, Malaysia
| |
Collapse
|
74
|
Nathan KG, Genasan K, Kamarul T. Polyvinyl Alcohol-Chitosan Scaffold for Tissue Engineering and Regenerative Medicine Application: A Review. Mar Drugs 2023; 21:md21050304. [PMID: 37233498 DOI: 10.3390/md21050304] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Tissue engineering and regenerative medicine (TERM) holds great promise for addressing the growing need for innovative therapies to treat disease conditions. To achieve this, TERM relies on various strategies and techniques. The most prominent strategy is the development of a scaffold. Polyvinyl alcohol-chitosan (PVA-CS) scaffold emerged as a promising material in this field due to its biocompatibility, versatility, and ability to support cell growth and tissue regeneration. Preclinical studies showed that the PVA-CS scaffold can be fabricated and tailored to fit the specific needs of different tissues and organs. Additionally, PVA-CS can be combined with other materials and technologies to enhance its regenerative capabilities. Furthermore, PVA-CS represents a promising therapeutic solution for developing new and innovative TERM therapies. Therefore, in this review, we summarized the potential role and functions of PVA-CS in TERM applications.
Collapse
Affiliation(s)
- Kavitha Ganesan Nathan
- Department of Orthopedic Surgery, Faculty of Medicine, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Krishnamurithy Genasan
- Department of Physiology, Faculty of Medicine, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Tunku Kamarul
- Department of Orthopedic Surgery, Faculty of Medicine, University Malaya, Kuala Lumpur 50603, Malaysia
- Advanced Medical and Dental Institute (AMDI), University Sains Malaysia, Bertam, Kepala Batas 13200, Malaysia
| |
Collapse
|
75
|
Jeyaraman M, Maffulli N, Gupta A. Stromal Vascular Fraction in Osteoarthritis of the Knee. Biomedicines 2023; 11:1460. [PMID: 37239130 PMCID: PMC10216511 DOI: 10.3390/biomedicines11051460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
In the United States, osteoarthritis (OA) affects 30 million people among the population and poses a major disability and financial burden that impact functional quality of life among the affected individuals [...].
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai 600056, Tamil Nadu, India;
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX 78045, USA
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, School of Medicine and Surgery, University of Salerno, 84084 Fisciano, Italy;
- San Giovanni di Dio e Ruggi D’Aragona Hospital “Clinica Orthopedica” Department, Hospital of Salerno, 84124 Salerno, Italy
- Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Queen Mary University of London, London E1 4DG, UK
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Stoke on Trent ST5 5BG, UK
| | - Ashim Gupta
- South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX 78045, USA
- BioIntegrate, Lawrenceville, GA 30043, USA
- Future Biologics, Lawrenceville, GA 30043, USA
- Regenerative Orthopaedics, Noida 201301, Uttar Pradesh, India
| |
Collapse
|
76
|
Farshidfar N, Fooladi S, Nematollahi MH, Iravani S. Carbon dots with tissue engineering and regenerative medicine applications. RSC Adv 2023; 13:14517-14529. [PMID: 37197681 PMCID: PMC10183719 DOI: 10.1039/d3ra02336b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023] Open
Abstract
Carbon dots (CDs) with unique physicochemical features such as exceptional biocompatibility, low cost, eco-friendliness, abundant functional groups (e.g., amino, hydroxyl, and carboxyl), high stability, and electron mobility have been broadly investigated in nano- and biomedicine. In addition, the controlled architecture, tunable fluorescence emission/excitation, light-emitting potential, high photostability, high water solubility, low cytotoxicity, and biodegradability make these carbon-based nanomaterials suitable for tissue engineering and regenerative medicine (TE-RM) purposes. However, there are still limited pre- and clinical assessments, because of some important challenges such as the scaffold inconsistency and non-biodegradability in addition to the lack of non-invasive methods to monitor tissue regeneration after implantation. In addition, the eco-friendly synthesis of CDs exhibited some important advantages such as environmentally friendly properties, low cost, and simplicity compared to the conventional synthesis techniques. Several CD-based nanosystems have been designed with stable photoluminescence, high-resolution imaging of live cells, excellent biocompatibility, fluorescence properties, and low cytotoxicity, which make them promising candidates for TE-RM purposes. Combining attractive fluorescence properties, CDs have shown great potential for cell culture and other biomedical applications. Herein, recent advancements and new discoveries of CDs in TE-RM are considered, focusing on challenges and future perspectives.
Collapse
Affiliation(s)
- Nima Farshidfar
- Orthodontic Research Center, School of Dentistry, Shiraz University of Medical Sciences Shiraz Iran
| | - Saba Fooladi
- Student Research Committee, Kerman University of Medical Sciences Kerman Iran
| | - Mohammad Hadi Nematollahi
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences Kerman Iran
- Department of Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences Kerman Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences 81746-73461 Isfahan Iran
| |
Collapse
|
77
|
Elfawy LA, Ng CY, Amirrah IN, Mazlan Z, Wen APY, Fadilah NIM, Maarof M, Lokanathan Y, Fauzi MB. Sustainable Approach of Functional Biomaterials-Tissue Engineering for Skin Burn Treatment: A Comprehensive Review. Pharmaceuticals (Basel) 2023; 16:ph16050701. [PMID: 37242483 DOI: 10.3390/ph16050701] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Burns are a widespread global public health traumatic injury affecting many people worldwide. Non-fatal burn injuries are a leading cause of morbidity, resulting in prolonged hospitalization, disfigurement, and disability, often with resulting stigma and rejection. The treatment of burns is aimed at controlling pain, removing dead tissue, preventing infection, reducing scarring risk, and tissue regeneration. Traditional burn wound treatment methods include the use of synthetic materials such as petroleum-based ointments and plastic films. However, these materials can be associated with negative environmental impacts and may not be biocompatible with the human body. Tissue engineering has emerged as a promising approach to treating burns, and sustainable biomaterials have been developed as an alternative treatment option. Green biomaterials such as collagen, cellulose, chitosan, and others are biocompatible, biodegradable, environment-friendly, and cost-effective, which reduces the environmental impact of their production and disposal. They are effective in promoting wound healing and reducing the risk of infection and have other benefits such as reducing inflammation and promoting angiogenesis. This comprehensive review focuses on the use of multifunctional green biomaterials that have the potential to revolutionize the way we treat skin burns, promoting faster and more efficient healing while minimizing scarring and tissue damage.
Collapse
Affiliation(s)
- Loai A Elfawy
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Chiew Yong Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Ibrahim N Amirrah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Zawani Mazlan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Adzim Poh Yuen Wen
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Department of Surgery, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Nur Izzah Md Fadilah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
78
|
Kim J. Characterization of Biocompatibility of Functional Bioinks for 3D Bioprinting. Bioengineering (Basel) 2023; 10:bioengineering10040457. [PMID: 37106644 PMCID: PMC10135811 DOI: 10.3390/bioengineering10040457] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Three-dimensional (3D) bioprinting with suitable bioinks has become a critical tool for fabricating 3D biomimetic complex structures mimicking physiological functions. While enormous efforts have been devoted to developing functional bioinks for 3D bioprinting, widely accepted bioinks have not yet been developed because they have to fulfill stringent requirements such as biocompatibility and printability simultaneously. To further advance our knowledge of the biocompatibility of bioinks, this review presents the evolving concept of the biocompatibility of bioinks and standardization efforts for biocompatibility characterization. This work also briefly reviews recent methodological advances in image analyses to characterize the biocompatibility of bioinks with regard to cell viability and cell-material interactions within 3D constructs. Finally, this review highlights a number of updated contemporary characterization technologies and future perspectives to further advance our understanding of the biocompatibility of functional bioinks for successful 3D bioprinting.
Collapse
Affiliation(s)
- Jinku Kim
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| |
Collapse
|
79
|
Abdul Samat A, Abdul Hamid ZA, Jaafar M, Ong CC, Yahaya BH. Investigation of the In Vitro and In Vivo Biocompatibility of a Three-Dimensional Printed Thermoplastic Polyurethane/Polylactic Acid Blend for the Development of Tracheal Scaffolds. Bioengineering (Basel) 2023; 10:394. [PMID: 37106581 PMCID: PMC10136332 DOI: 10.3390/bioengineering10040394] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/18/2023] [Accepted: 02/02/2023] [Indexed: 04/29/2023] Open
Abstract
Tissue-engineered polymeric implants are preferable because they do not cause a significant inflammatory reaction in the surrounding tissue. Three-dimensional (3D) technology can be used to fabricate a customised scaffold, which is critical for implantation. This study aimed to investigate the biocompatibility of a mixture of thermoplastic polyurethane (TPU) and polylactic acid (PLA) and the effects of their extract in cell cultures and in animal models as potential tracheal replacement materials. The morphology of the 3D-printed scaffolds was investigated using scanning electron microscopy (SEM), while the degradability, pH, and effects of the 3D-printed TPU/PLA scaffolds and their extracts were investigated in cell culture studies. In addition, subcutaneous implantation of 3D-printed scaffold was performed to evaluate the biocompatibility of the scaffold in a rat model at different time points. A histopathological examination was performed to investigate the local inflammatory response and angiogenesis. The in vitro results showed that the composite and its extract were not toxic. Similarly, the pH of the extracts did not inhibit cell proliferation and migration. The analysis of biocompatibility of the scaffolds from the in vivo results suggests that porous TPU/PLA scaffolds may facilitate cell adhesion, migration, and proliferation and promote angiogenesis in host cells. The current results suggest that with 3D printing technology, TPU and PLA could be used as materials to construct scaffolds with suitable properties and provide a solution to the challenges of tracheal transplantation.
Collapse
Affiliation(s)
- Asmak Abdul Samat
- Lung Stem Cell and Gene Therapy Group, Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Sains@Bertam, Kepala Batas 13200, Malaysia
- Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan 25200, Malaysia
| | - Zuratul Ain Abdul Hamid
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia
| | - Mariatti Jaafar
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia
| | - Chern Chung Ong
- Fabbxible Technology, 11a Jalan IKS Bukit Tengah, Tmn IKS Bukit Tengah, Bukit Mertajam 14000, Malaysia
| | - Badrul Hisham Yahaya
- Lung Stem Cell and Gene Therapy Group, Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Sains@Bertam, Kepala Batas 13200, Malaysia
| |
Collapse
|
80
|
Almeida GHDR, Iglesia RP, Rinaldi JDC, Murai MK, Calomeno CVAQ, da Silva Junior LN, Horvath-Pereira BDO, Pinho LBM, Miglino MA, Carreira ACO. Current Trends on Bioengineering Approaches for Ovarian Microenvironment Reconstruction. TISSUE ENGINEERING. PART B, REVIEWS 2023. [PMID: 36355603 DOI: 10.1089/ten.teb.2022.0171] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ovarian tissue has a unique microarchitecture and a complex cellular and molecular dynamics that are essential for follicular survival and development. Due to this great complexity, several factors may lead to ovarian insufficiency, and therefore to systemic metabolic disorders and female infertility. Techniques currently used in the reproductive clinic such as oocyte cryopreservation or even ovarian tissue transplant, although effective, have several limitations, which impair their wide application. In this scenario, mimetic ovarian tissue reconstruction comes as an innovative alternative to develop new methodologies for germ cells preservation and ovarian functions restoration. The ovarian extracellular matrix (ECM) is crucial for oocyte viability maintenance, once it acts actively in folliculogenesis. One of the key components of ovarian bioengineering is biomaterials application that mimics ECM and provides conditions for cell anchorage, proliferation, and differentiation. Therefore, this review aims at describing ovarian tissue engineering approaches and listing the main limitations of current methods for preservation and reestablishment of ovarian fertility. In addition, we describe the main elements that structure this study field, highlighting the main advances and the challenges to overcome to develop innovative methodologies to be applied in reproductive medicine. Impact Statement This review presents the main advances in the application of tissue bioengineering in the ovarian tissue reconstruction to develop innovative solutions for ovarian fertility reestablishment.
Collapse
Affiliation(s)
| | - Rebeca Piatniczka Iglesia
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Mikaelly Kiemy Murai
- Department of Morphological Sciences, State University of Maringa, Maringá, Brazil
| | | | | | | | - Letícia Beatriz Mazo Pinho
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.,Center of Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
| |
Collapse
|
81
|
Marchal-Chaud H, Rieger R, Mai VT, Courtial EJ, Ottenio M, Bonnefont-Rebeix C, Bruyère K, Boulocher C. Contactless mechanical stimulation of tissue engineered constructs: Development and validation of an air-pulse device. BIOMATERIALS ADVANCES 2023; 149:213401. [PMID: 37018914 DOI: 10.1016/j.bioadv.2023.213401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/08/2023] [Accepted: 03/22/2023] [Indexed: 03/28/2023]
Abstract
OBJECTIVE Tissue engineering (TE) is the study and development of biological substitutes to restore, maintain or improve tissue function. Tissue engineered constructs (TECs) still present differences in mechanical and biological properties compared to native tissue. Mechanotransduction is the process through which mechanical stimulation triggers proliferation, apoptosis, and extracellular matrix synthesis, among other cell activities. Regarding that aspect, the effect of in vitro stimulations such as compression, stretching, bending or fluid shear stress loading modalities have been extensively studied. A fluid flow used to produce contactless mechanical stimulation induced by an air pulse could be easily achieved in vivo without altering the tissue integrity. METHODS A new air-pulse device for contactless and controlled mechanical simulation of a TECs was developed and validated in this study conducted in the following three phases: 1) conception of the controlled air-pulse device combined with a 3D printed bioreactor; 2) experimental and numerical mechanical characterization of the air-pulse impact by digital image correlation; and 3) achieving sterility and noncytotoxicity of the air-pulse and of the 3D printed bioreactor using a novel dedicated sterilization process. RESULTS We demonstrated that the treated PLA (polylactic acid) was noncytotoxic and did not influence cell proliferation. An ethanol/autoclaved sterilization protocol for 3D printed objects in PLA has been developed in this study, enabling the use of 3D printing in cell culture. A numerical twin of the device was developed and experimentally characterized by digital image correlation. It showed a coefficient of determination R2 = 0.98 between the numerical and averaged experimental surface displacement profiles of the TEC substitute. CONCLUSION The results of the study assessed the noncytotoxicity of PLA for prototyping by 3D printing the homemade bioreactor. A novel sterilization process for PLA was developed in this study based on a thermochemical process. A numerical twin using fluid-structure interaction method has been developed to investigate the micromechanical effects of air pulses inside the TEC, which cannot all be measured experimentally, for instance, wave propagation generated during the air-pulse impact. The device could be used to study the cell response to contactless cyclic mechanical stimulation, particularly in TEC with fibroblasts, stromal cells and mesenchymal stem cells, which have been shown to be sensitive to the frequency and strain level at the air-liquid interface.
Collapse
|
82
|
Ohshima H, Mishima K. Oral biosciences: The annual review 2022. J Oral Biosci 2023; 65:1-12. [PMID: 36740188 DOI: 10.1016/j.job.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND The Journal of Oral Biosciences is devoted to advancing and disseminating fundamental knowledge concerning every aspect of oral biosciences. HIGHLIGHT This review features review articles in the fields of "Bone Cell Biology," "Tooth Development & Regeneration," "Tooth Bleaching," "Adipokines," "Milk Thistle," "Epithelial-Mesenchymal Transition," "Periodontitis," "Diagnosis," "Salivary Glands," "Tooth Root," "Exosome," "New Perspectives of Tooth Identification," "Dental Pulp," and "Saliva" in addition to the review articles by the winner of the "Lion Dental Research Award" ("Plastic changes in nociceptive pathways contributing to persistent orofacial pain") presented by the Japanese Association for Oral Biology. CONCLUSION The review articles in the Journal of Oral Biosciences have inspired its readers to broaden their knowledge about various aspects of oral biosciences. The current editorial review introduces these exciting review articles.
Collapse
Affiliation(s)
- Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan.
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, Showa University School of Dentistry, 1-5-8, Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
83
|
Kang JI, Park KM. Oxygen-supplying syringe to create hyperoxia-inducible hydrogels for in situ tissue regeneration. Biomaterials 2023; 293:121943. [PMID: 36527790 DOI: 10.1016/j.biomaterials.2022.121943] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/28/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
Recent trends in the design of regenerative materials include the development of bioactive matrices to harness the innate healing ability of the body using various biophysicochemical stimuli (defined as in situ tissue regeneration). Among these, hyperoxia (>21% pO2) is a well-known therapeutic factor for promoting tissue regeneration, such as immune cell recruitment, cell proliferation, angiogenesis, and fibroblast differentiation into myofibroblast. Although various strategies to induce hyperoxia are reported, developing advanced hyperoxia-inducing biomaterials for tissue regeneration is still challenging. In this study, a catalase-immobilized syringe (defined as an Oxyringe) via calcium peroxide-mediated surface modification is developed as a new type of oxygen-supplying system. Hyperoxia-inducible hydrogels are fabricated utilizing Oxyringe. This hydrogel plays a role as a physical barrier for hemostasis. In addition, hyperoxic matrices induce transient hyperoxia in vivo (up to 46.0% pO2). Interestingly, the hydrogel-induced hyperoxia boost the initial macrophage recruitment and rapid inflammation resolution. Furthermore, hyperoxic oxygen release of hydrogels facilitates neovascularization and cell proliferation involved in the proliferation phase, expediting tissue maturation related to the remodeling phase in wound healing. In summary, Oxyringe has excellent potential as an advanced oxygen-supplying platform to create hyperoxia-inducing hydrogels for in situ tissue regeneration.
Collapse
Affiliation(s)
- Jeon Il Kang
- Department of Bioengineering and Nano-Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
| | - Kyung Min Park
- Department of Bioengineering and Nano-Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea; Research Center for Bio Materials & Process Development, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea.
| |
Collapse
|
84
|
Ranjan R, Kumar R, Jeyaraman M, Arora A, Kumar S, Nallakumarasamy A. Autologous platelet-rich plasma in the delayed union of long bone fractures - A quasi experimental study. J Orthop 2023; 36:76-81. [PMID: 36620095 PMCID: PMC9817092 DOI: 10.1016/j.jor.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/15/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
Introduction Fractures of long bones unite without any complication except for 2%-10% which may lead to delayed or non-union of the fracture. Management of delayed union of fractures poses a great challenge for orthopaedic surgeons. Platelet-rich plasma (PRP) is an autologous blood-derived biological agent, which delivers growth factors, cytokines, and bio-micro molecules at supraphysiologic concentrations at the site of tissue injury, thus potentiating the body's healing efforts. Various studies and research have proved the osteogenic activity of PRP. The growth factors present in the PRP induce the locally available resilient progenitor or stem cells and convert the atrophic environment into a trophic environment. Materials and methods We investigated the safety and efficacy of autologous PRP injection in the delayed union of long bone fractures. A total of 25 cases of delayed union of long bone fractures were augmented with 3 doses of autologous PRP at 3 weekly intervals and were followed up for 12 months. All the cases were documented with pre-and post-procedural and 12th -month visual analog score (VAS) and Warden's score. Results Out of 25 cases, 21 (84.00%) cases showed good union of fracture with adequate callus formation by 10-12 weeks with 3 doses of autologous PRP injections. The mean pre-procedural VAS and Warden's score at the final follow-up showed statistically significant results (p < 0.05). No other complications were noted due to autologous PRP application among the study participants during the study period except for 3 cases (2 cases of non-union, and 1 case of implant failure). Conclusion Results of the current study suggest that autologous injection of PRP might be a safe and effective therapeutic tool for the management of delayed union of long bone fractures.
Collapse
Affiliation(s)
- Rajni Ranjan
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Rakesh Kumar
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, India
| | - Arunabh Arora
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Sudhir Kumar
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Arulkumar Nallakumarasamy
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, India
- Department of Orthopaedics, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
85
|
Duraisamy K, Gangadharan A, Martirosyan KS, Sahu NK, Manogaran P, Easwaradas Kreedapathy G. Fabrication of Multifunctional Drug Loaded Magnetic Phase Supported Calcium Phosphate Nanoparticle for Local Hyperthermia Combined Drug Delivery and Antibacterial Activity. ACS APPLIED BIO MATERIALS 2023; 6:104-116. [PMID: 36511628 DOI: 10.1021/acsabm.2c00768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Magnetic calcium phosphate nanoparticles are biocompatible and have attracted much attention as biomaterials for bone tissue engineering and theranostic applications. In this study, we report the fabrication of a biocompatible magnetic nickel ferrite supported fluorapatite nanoparticle as a bone substitute material with hyperthermia potential using a facile wet precipitation approach. The composition and magnetic properties of the sample were analyzed using X-ray diffraction (XRD) and a vibrating sample magnetometer (VSM). The presence of both magnetic (NiFe2O4 and γ-Fe2O3) and fluorapatite phases was identified, and the sample exhibited ferromagnetic behavior with saturation magnetization and coercivity of 3.08 emu/g and 109 Oe, respectively. The fabricated sample achieved the hyperthermia temperature of ∼43 °C under tumor mimic conditions (neglecting Brownian relaxation) in 2.67 min, and the specific loss power (SLP) was estimated to be 898 W/g(Ni+Fe) which is sufficient to prompt irreversible cell apoptosis. Biocompatibility of the synthesized nanoparticle was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium (MTT) assay with fibroblast NIH 3T3 and L929 cells. An in vitro drug release experiment was conducted at pH 5 (tumor mimic) and 7.4 (physiological), which revealed a release of 49.8% in the former and 11.6% in the latter pH for 11 days. The prepared sample showed antibacterial activity against S. aureus.
Collapse
Affiliation(s)
| | - Ajithkumar Gangadharan
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas78249-1644, United States
| | - Karen S Martirosyan
- Department of Physics and Astronomy, University of Texas at Rio Grande Valley, Brownsville, Texas78520, United States
| | - Niroj Kumar Sahu
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, Tamil Nadu632014, India
| | - Prasath Manogaran
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu641 046, India
| | | |
Collapse
|
86
|
Assad H, Assad A, Kumar A. Recent Developments in 3D Bio-Printing and Its Biomedical Applications. Pharmaceutics 2023; 15:255. [PMID: 36678884 PMCID: PMC9861443 DOI: 10.3390/pharmaceutics15010255] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
The fast-developing field of 3D bio-printing has been extensively used to improve the usability and performance of scaffolds filled with cells. Over the last few decades, a variety of tissues and organs including skin, blood vessels, and hearts, etc., have all been produced in large quantities via 3D bio-printing. These tissues and organs are not only able to serve as building blocks for the ultimate goal of repair and regeneration, but they can also be utilized as in vitro models for pharmacokinetics, drug screening, and other purposes. To further 3D-printing uses in tissue engineering, research on novel, suitable biomaterials with quick cross-linking capabilities is a prerequisite. A wider variety of acceptable 3D-printed materials are still needed, as well as better printing resolution (particularly at the nanoscale range), speed, and biomaterial compatibility. The aim of this study is to provide expertise in the most prevalent and new biomaterials used in 3D bio-printing as well as an introduction to the associated approaches that are frequently considered by researchers. Furthermore, an effort has been made to convey the most pertinent implementations of 3D bio-printing processes, such as tissue regeneration, etc., by providing the most significant research together with a comprehensive list of material selection guidelines, constraints, and future prospects.
Collapse
Affiliation(s)
- Humira Assad
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Punjab 144001, India
| | - Arvina Assad
- Bibi Halima College of Nursing and Medical Technology, Srinagar 190010, India
| | - Ashish Kumar
- Nalanda College of Engineering, Department of Science and Technology, Government of Bihar, Patna 803108, India
| |
Collapse
|
87
|
Hansda A, Mukherjee S, Dixit K, Dhara S, Mukherjee G. Immunological Perspectives Involved in Tissue Engineering. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
88
|
Mokhtarinia K, Rezvanian P, Masaeli E. Sustainable hydrogel-based cell therapy. SUSTAINABLE HYDROGELS 2023:443-470. [DOI: 10.1016/b978-0-323-91753-7.00009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
89
|
Farmani AR, Salmeh MA, Golkar Z, Moeinzadeh A, Ghiasi FF, Amirabad SZ, Shoormeij MH, Mahdavinezhad F, Momeni S, Moradbeygi F, Ai J, Hardy JG, Mostafaei A. Li-Doped Bioactive Ceramics: Promising Biomaterials for Tissue Engineering and Regenerative Medicine. J Funct Biomater 2022; 13:162. [PMID: 36278631 PMCID: PMC9589997 DOI: 10.3390/jfb13040162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 12/03/2022] Open
Abstract
Lithium (Li) is a metal with critical therapeutic properties ranging from the treatment of bipolar depression to antibacterial, anticancer, antiviral and pro-regenerative effects. This element can be incorporated into the structure of various biomaterials through the inclusion of Li chloride/carbonate into polymeric matrices or being doped in bioceramics. The biocompatibility and multifunctionality of Li-doped bioceramics present many opportunities for biomedical researchers and clinicians. Li-doped bioceramics (capable of immunomodulation) have been used extensively for bone and tooth regeneration, and they have great potential for cartilage/nerve regeneration, osteochondral repair, and wound healing. The synergistic effect of Li in combination with other anticancer drugs as well as the anticancer properties of Li underline the rationale that bioceramics doped with Li may be impactful in cancer treatments. The role of Li in autophagy may explain its impact in regenerative, antiviral, and anticancer research. The combination of Li-doped bioceramics with polymers can provide new biomaterials with suitable flexibility, especially as bio-ink used in 3D printing for clinical applications of tissue engineering. Such Li-doped biomaterials have significant clinical potential in the foreseeable future.
Collapse
Affiliation(s)
- Ahmad Reza Farmani
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
- Tissue Engineering Department, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa 74615-168, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
| | - Mohammad Ali Salmeh
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14155-6619, Iran
| | - Zahra Golkar
- Department of Midwifery, Firoozabad Branch, Islamic Azad University, Firoozabad 74715-117, Iran
| | - Alaa Moeinzadeh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Farzaneh Farid Ghiasi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Sara Zamani Amirabad
- Department of Chemical Engineering, Faculty of Engineering, Yasouj University, Yasouj 75918-74934, Iran
| | - Mohammad Hasan Shoormeij
- Emergency Medicine Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
| | - Forough Mahdavinezhad
- Anatomy Department, School of Medicine, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
- Department of Infertility, Velayat Hospital, Qazvin University of Medical Sciences, Qazvin 34199-15315, Iran
| | - Simin Momeni
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 83151-61355, Iran
| | - Fatemeh Moradbeygi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Jafar Ai
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
| | - John G. Hardy
- Department of Chemistry, Faraday Building, Lancaster University, Lancaster LA1 4YB, UK
- Materials Science Institute, Lancaster University, Lancaster LA1 4YW, UK
| | - Amir Mostafaei
- Department of Mechanical, Materials, and Aerospace Engineering, Illinois Institute of Technology, 10 W 32nd Street, Chicago, IL 60616, USA
| |
Collapse
|
90
|
Tamo AK, Tran TA, Doench I, Jahangir S, Lall A, David L, Peniche-Covas C, Walther A, Osorio-Madrazo A. 3D Printing of Cellulase-Laden Cellulose Nanofiber/Chitosan Hydrogel Composites: Towards Tissue Engineering Functional Biomaterials with Enzyme-Mediated Biodegradation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6039. [PMID: 36079419 PMCID: PMC9456765 DOI: 10.3390/ma15176039] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 05/18/2023]
Abstract
The 3D printing of a multifunctional hydrogel biomaterial with bioactivity for tissue engineering, good mechanical properties and a biodegradability mediated by free and encapsulated cellulase was proposed. Bioinks of cellulase-laden and cellulose nanofiber filled chitosan viscous suspensions were used to 3D print enzymatic biodegradable and biocompatible cellulose nanofiber (CNF) reinforced chitosan (CHI) hydrogels. The study of the kinetics of CNF enzymatic degradation was studied in situ in fibroblast cell culture. To preserve enzyme stability as well as to guarantee its sustained release, the cellulase was preliminarily encapsulated in chitosan-caseinate nanoparticles, which were further incorporated in the CNF/CHI viscous suspension before the 3D printing of the ink. The incorporation of the enzyme within the CHI/CNF hydrogel contributed to control the decrease of the CNF mechanical reinforcement in the long term while keeping the cell growth-promoting property of chitosan. The hydrolysis kinetics of cellulose in the 3D printed scaffolds showed a slow but sustained degradation of the CNFs with enzyme, with approximately 65% and 55% relative activities still obtained after 14 days of incubation for the encapsulated and free enzyme, respectively. The 3D printed composite hydrogels showed excellent cytocompatibility supporting fibroblast cell attachment, proliferation and growth. Ultimately, the concomitant cell growth and biodegradation of CNFs within the 3D printed CHI/CNF scaffolds highlights the remarkable potential of CHI/CNF composites in the design of tissue models for the development of 3D constructs with tailored in vitro/in vivo degradability for biomedical applications.
Collapse
Affiliation(s)
- Arnaud Kamdem Tamo
- Laboratory for Bioinspired Materials BMBT, Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany or
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
| | - Tuan Anh Tran
- Laboratory for Bioinspired Materials BMBT, Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany or
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
| | - Ingo Doench
- Laboratory for Bioinspired Materials BMBT, Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany or
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
| | - Shaghayegh Jahangir
- Laboratory for Bioinspired Materials BMBT, Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany or
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
| | - Aastha Lall
- Laboratory for Bioinspired Materials BMBT, Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany or
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
| | - Laurent David
- Polymer Materials Engineering IMP CNRS UMR 5223, Université Lyon, Université Claude Bernard Lyon 1, Université Jean Monnet St Etienne, INSA de Lyon, CNRS, 69622 Villeurbanne, France
| | - Carlos Peniche-Covas
- Center of Biomaterials, Faculty of Chemistry, University of Havana, Havana 10400, Cuba
| | - Andreas Walther
- ABMS Lab, Active, Adaptive and Autonomous Bioinspired Materials, Department of Chemistry, University of Mainz, 55128 Mainz, Germany
| | - Anayancy Osorio-Madrazo
- Laboratory for Bioinspired Materials BMBT, Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany or
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
91
|
3D Bioprinting with Live Cells. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
92
|
Biomaterials as regenerative medicine in Poly Cystic Ovarian Syndrome (PCOS) treatment. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
93
|
Makuku R, Werthel JD, Zanjani LO, Nabian MH, Tantuoyir MM. New frontiers of tendon augmentation technology in tissue engineering and regenerative medicine: a concise literature review. J Int Med Res 2022; 50:3000605221117212. [PMID: 35983666 PMCID: PMC9393707 DOI: 10.1177/03000605221117212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Tissue banking programs fail to meet the demand for human organs and tissues for
transplantation into patients with congenital defects, injuries, chronic
diseases, and end-stage organ failure. Tendons and ligaments are among the most
frequently ruptured and/or worn-out body tissues owing to their frequent use,
especially in athletes and the elderly population. Surgical repair has remained
the mainstay management approach, regardless of scarring and adhesion formation
during healing, which then compromises the gliding motion of the joint and
reduces the quality of life for patients. Tissue engineering and regenerative
medicine approaches, such as tendon augmentation, are promising as they may
provide superior outcomes by inducing host-tissue ingrowth and tendon
regeneration during degradation, thereby decreasing failure rates and morbidity.
However, to date, tendon tissue engineering and regeneration research has been
limited and lacks the much-needed human clinical evidence to translate most
laboratory augmentation approaches to therapeutics. This narrative review
summarizes the current treatment options for various tendon pathologies, future
of tendon augmentation, cell therapy, gene therapy, 3D/4D bioprinting,
scaffolding, and cell signals.
Collapse
Affiliation(s)
- Rangarirai Makuku
- Center for Orthopedic Trans-Disciplinary Applied Research (COTAR), School of Medicine, 48439Tehran University of Medical Sciences, Tehran, Iran.,Department of Orthopedic Surgery, Hospital Ambroise Pare, Boulogne-Billancourt, France
| | - Jean-David Werthel
- Department of Orthopedic and Trauma Surgery, Shariati Hospital, 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Oryadi Zanjani
- Center for Orthopedic Trans-Disciplinary Applied Research (COTAR), School of Medicine, 48439Tehran University of Medical Sciences, Tehran, Iran.,Department of Orthopedic Surgery, Hospital Ambroise Pare, Boulogne-Billancourt, France
| | - Mohammad Hossein Nabian
- Center for Orthopedic Trans-Disciplinary Applied Research (COTAR), School of Medicine, 48439Tehran University of Medical Sciences, Tehran, Iran.,Department of Orthopedic Surgery, Hospital Ambroise Pare, Boulogne-Billancourt, France
| | - Marcarious M Tantuoyir
- Center for Orthopedic Trans-Disciplinary Applied Research (COTAR), School of Medicine, 48439Tehran University of Medical Sciences, Tehran, Iran.,Department of Orthopedic Surgery, Hospital Ambroise Pare, Boulogne-Billancourt, France.,Biomedical Engineering Unit, University of Ghana Medical Centre, Accra, Ghana
| |
Collapse
|
94
|
Jain P, Rauer SB, Möller M, Singh S. Mimicking the Natural Basement Membrane for Advanced Tissue Engineering. Biomacromolecules 2022; 23:3081-3103. [PMID: 35839343 PMCID: PMC9364315 DOI: 10.1021/acs.biomac.2c00402] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Advancements in the field of tissue engineering have
led to the
elucidation of physical and chemical characteristics of physiological
basement membranes (BM) as specialized forms of the extracellular
matrix. Efforts to recapitulate the intricate structure and biological
composition of the BM have encountered various advancements due to
its impact on cell fate, function, and regulation. More attention
has been paid to synthesizing biocompatible and biofunctional fibrillar
scaffolds that closely mimic the natural BM. Specific modifications
in biomimetic BM have paved the way for the development of in vitro models like alveolar-capillary barrier, airway
models, skin, blood-brain barrier, kidney barrier, and metastatic
models, which can be used for personalized drug screening, understanding
physiological and pathological pathways, and tissue implants. In this
Review, we focus on the structure, composition, and functions of in vivo BM and the ongoing efforts to mimic it synthetically.
Light has been shed on the advantages and limitations of various forms
of biomimetic BM scaffolds including porous polymeric membranes, hydrogels,
and electrospun membranes This Review further elaborates and justifies
the significance of BM mimics in tissue engineering, in particular
in the development of in vitro organ model systems.
Collapse
Affiliation(s)
- Puja Jain
- DWI-Leibniz-Institute for Interactive Materials e.V, Aachen 52074, Germany
| | | | - Martin Möller
- DWI-Leibniz-Institute for Interactive Materials e.V, Aachen 52074, Germany
| | - Smriti Singh
- Max-Planck-Institute for Medical Research, Heidelberg 69028, Germany
| |
Collapse
|
95
|
Development of an Oriented Co-Culture System Using 3D Scaffolds Fabricated via Non-Linear Lithography. MATERIALS 2022; 15:ma15124349. [PMID: 35744408 PMCID: PMC9231110 DOI: 10.3390/ma15124349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 02/05/2023]
Abstract
Damage in the Peripheral Nervous System (PNS) is related to numerous neurodegenerative diseases and has consequently drawn the attention of Tissue Engineering (TE), which is considered a promising alternative to already established methods such as surgery and autografts. TE focuses on the design, optimization, and use of scaffolds in vitro and in vivo. In this work, the authors used a novel scaffold geometry fabricated via Multiphoton Lithography (MPL), a commonly used fabrication method, for the mono- and co-cultures of glial Schwann (SW10) and neuronal Neuro-2a (N2a) cells. Both cell types have already been used for the study of various neurodegenerative diseases. However, their focus has been on only one of the cell types at a time, with studies regarding their co-culture only recently documented. Here, the suitability of the fabricated scaffolds has been explored and the effects of topography on SW10 and N2a behavior have been investigated. Our findings demonstrate that scaffold co-culture systems favor the presence of neurites compared to mono-cultures at 21 days (31.4 ± 5.5% and 15.4 ± 5.4%, respectively), while there is also a significant decrease in long neurites in the mono-culture over time (45.3 ± 15.9% at 7 days versus 15.4 ± 5.4% at 21 days). It has been shown that the scaffolds can successfully manipulate cell growth, elongation, and morphology, and these results can form a basis for the development of an experimental model for the study of PNS-related diseases and understanding of key cell functions such as myelination.
Collapse
|
96
|
Casteleiro Costa P, Wang B, Filan C, Bowles-Welch A, Yeago C, Roy K, Robles FE. Functional imaging with dynamic quantitative oblique back-illumination microscopy. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:066502. [PMID: 35773755 PMCID: PMC9243522 DOI: 10.1117/1.jbo.27.6.066502] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
SIGNIFICANCE Quantitative oblique back-illumination microscopy (qOBM) is a recently developed label-free imaging technique that enables 3D quantitative phase imaging of thick scattering samples with epi-illumination. Here, we propose dynamic qOBM to achieve functional imaging based on subcellular dynamics, potentially indicative of metabolic activity. We show the potential utility of this novel technique by imaging adherent mesenchymal stromal cells (MSCs) grown in bioreactors, which can help address important unmet needs in cell manufacturing for therapeutics. AIM We aim to develop dynamic qOBM and demonstrate its potential for functional imaging based on cellular and subcellular dynamics. APPROACH To obtain functional images with dynamic qOBM, a sample is imaged over a period of time and its temporal signals are analyzed. The dynamic signals display an exponential frequency response that can be analyzed with phasor analysis. Functional images of the dynamic signatures are obtained by mapping the frequency dynamic response to phasor space and color-coding clustered signals. RESULTS Functional imaging with dynamic qOBM provides unique information related to subcellular activity. The functional qOBM images of MSCs not only improve conspicuity of cells in complex environments (e.g., porous micro-carriers) but also reveal two distinct cell populations with different dynamic behavior. CONCLUSIONS In this work we present a label-free, fast, and scalable functional imaging approach to study and intuitively display cellular and subcellular dynamics. We further show the potential utility of this novel technique to help monitor adherent MSCs grown in bioreactors, which can help achieve quality-by-design of cell products, a significant unmet need in the field of cell therapeutics. This approach also has great potential for dynamic studies of other thick samples, such as organoids.
Collapse
Affiliation(s)
- Paloma Casteleiro Costa
- Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, Georgia, United States
| | - Bryan Wang
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Georgia Institute of Technology, Marcus Center for Therapeutic Cell Characterization and Manufacturing, Atlanta, Georgia, United States
| | - Caroline Filan
- Georgia Institute of Technology, Nuclear & Radiological Engineering and Medical Physics Program, Atlanta, Georgia, United States
| | - Annie Bowles-Welch
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Georgia Institute of Technology, Marcus Center for Therapeutic Cell Characterization and Manufacturing, Atlanta, Georgia, United States
| | - Carolyn Yeago
- Georgia Institute of Technology, Marcus Center for Therapeutic Cell Characterization and Manufacturing, Atlanta, Georgia, United States
| | - Krishnendu Roy
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Georgia Institute of Technology, Marcus Center for Therapeutic Cell Characterization and Manufacturing, Atlanta, Georgia, United States
| | - Francisco E. Robles
- Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, Georgia, United States
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| |
Collapse
|
97
|
Shen X, Shi H, Wei H, Wu B, Xia Q, Yeo J, Huang W. Engineering Natural and Recombinant Silks for Sustainable Biodevices. Front Chem 2022; 10:881028. [PMID: 35601555 PMCID: PMC9117649 DOI: 10.3389/fchem.2022.881028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/15/2022] [Indexed: 01/12/2023] Open
Abstract
Silk fibroin (SF) is a structural protein derived from natural silkworm silks. Materials fabricated based on SF usually inherit extraordinary physical and biological properties, including high mechanical strength, toughness, optical transparency, tailorable biodegradability, and biocompatibility. Therefore, SF has attracted interest in the development of sustainable biodevices, especially for emergent bio-electronic technologies. To expand the function of current silk devices, the SF characteristic sequence has been used to synthesize recombinant silk proteins that benefit from SF and other functional peptides, such as stimuli-responsive elastin peptides. In addition to genetic engineering methods, innovated chemistry modification approaches and improved material processing techniques have also been developed for fabricating advanced silk materials with tailored chemical features and nanostructures. Herein, this review summarizes various methods to synthesize functional silk-based materials from different perspectives. This review also highlights the recent advances in the applications of natural and recombinant silks in tissue regeneration, soft robotics, and biosensors, using B. mori SF and silk-elastin-like proteins (SELPs) as examples.
Collapse
Affiliation(s)
- Xinchen Shen
- The Zhejiang University - University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Haoyuan Shi
- J Lab for Engineering Living Materials, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
| | - Hongda Wei
- The Zhejiang University - University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Boxuan Wu
- The Zhejiang University - University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Qingyuan Xia
- The Zhejiang University - University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingjie Yeo
- J Lab for Engineering Living Materials, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
| | - Wenwen Huang
- The Zhejiang University - University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
98
|
Xu F, Dawson C, Lamb M, Mueller E, Stefanek E, Akbari M, Hoare T. Hydrogels for Tissue Engineering: Addressing Key Design Needs Toward Clinical Translation. Front Bioeng Biotechnol 2022; 10:849831. [PMID: 35600900 PMCID: PMC9119391 DOI: 10.3389/fbioe.2022.849831] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022] Open
Abstract
Graphical Abstract
Collapse
Affiliation(s)
- Fei Xu
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Chloe Dawson
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Makenzie Lamb
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Eva Mueller
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Evan Stefanek
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC, Canada
| | - Mohsen Akbari
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC, Canada
- Biotechnology Center, Silesian University of Technology, Gliwice, Poland
- *Correspondence: Mohsen Akbari, ; Todd Hoare,
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
- *Correspondence: Mohsen Akbari, ; Todd Hoare,
| |
Collapse
|
99
|
Vafaei S, Mansoori M, hashemi F, Basiri M. Exosome Odyssey to Original Line in Dental Regeneration. J Oral Biosci 2022; 64:271-278. [DOI: 10.1016/j.job.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
|
100
|
Vaghela R, Arkudas A, Gage D, Körner C, von Hörsten S, Salehi S, Horch RE, Hessenauer M. Microvascular development in the rat arteriovenous loop model in vivo-A step by step intravital microscopy analysis. J Biomed Mater Res A 2022; 110:1551-1563. [PMID: 35484827 DOI: 10.1002/jbm.a.37395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/27/2022] [Accepted: 04/18/2022] [Indexed: 12/21/2022]
Abstract
The arteriovenous (AV) loop model is a key technique to solve one of the major problems of tissue engineering-providing adequate vascular support for a tissue construct of significant size. However, the molecular and cellular mechanisms of vascularization and factors influencing the generation of new tissue in the AV loop are still poorly understood. We previously established a novel intravital microscopy approach to study these events. In this study, we implanted our observation chamber filled with two types of hydrogels such as fibrin and methacrylate gelatin (GelMA) and performed intravital microscopy (IVM) on days 7, 14, and 21. Initial microvessel formation was observed in GelMA on day 14, while the vessel network showed clear indicators of network rearrangement and maturation on day 21. No visible microvessels were observed in fibrin. The chambers were explanted on day 21. Histological examination revealed higher numbers of microvessels in GelMA compared to fibrin, while the AV loop was thrombosed in all fibrin constructs, possibly due to matrix degradation. GelMA proved to be an ideal matrix for IVM studies in the AV loop model due to its slow degradation and transparency. This IVM model can be employed as a novel tool for live and thus faster comprehension of crucial events in the tissue regeneration process, which can improve tissue engineering application.
Collapse
Affiliation(s)
- Ravikumar Vaghela
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Daniel Gage
- Department of Materials Science and Engineering for Metals, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Carolin Körner
- Department of Materials Science and Engineering for Metals, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Stephan von Hörsten
- Department of Experimental Therapy, University Hospital Erlangen and Preclinical Experimental Animal Center, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Sahar Salehi
- Department of Biomaterials, University of Bayreuth, Bayreuth, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Maximilian Hessenauer
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|