51
|
Wang Y, Wang Z, Lin Y, Qin Y, He R, Wang M, Sun Q, Peng Y. Nanocellulose from agro-industrial wastes: A review on sources, production, applications, and current challenges. Food Res Int 2024; 192:114741. [PMID: 39147548 DOI: 10.1016/j.foodres.2024.114741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 08/17/2024]
Abstract
Significant volumes of agricultural and industrial waste are produced annually. With the global focus shifting towards sustainable and environmentally friendly practices, there is growing emphasis on recycling and utilizing materials derived from such waste, such as cellulose and lignin. In response to this imperative situation, nanocellulose materials have surfaced attracting heightened attention and research interest owing to their superior properties in terms of strength, stiffness, biodegradability, and water resistance. The current manuscript provided a comprehensive review encompassing the resources of nanocellulose, detailed pretreatment and extraction methods, and present applications of nanocellulose. More importantly, it highlighted the challenges related to its processing and utilization, along with potential solutions. After evaluating the benefits and drawbacks of different methods for producing nanocellulose, ultrasound combined with acid hydrolysis emerges as the most promising approach for large-scale production. While nanocellulose has established applications in water treatment, its potential within the food industry appears even more encouraging. Despite the numerous potential applications across various sectors, challenges persist regarding its modification, characterization, industrial-scale manufacturing, and regulatory policies. Overcoming these obstacles requires the development of new technologies and assessment tools aligned with policy. In essence, nanocellulose presents itself as an eco-friendly material with extensive application possibilities, prompting the need for additional research into its extraction, application suitability, and performance enhancement. This review focused on the wide application scenarios of nanocellulose, the challenges of nanocellulose application, and the possible solutions.
Collapse
Affiliation(s)
- Yefan Wang
- Faculty of Medicine, Macau University of Science and Technology, 999078, Macao
| | - Ziyan Wang
- Faculty of Medicine, Macau University of Science and Technology, 999078, Macao
| | - Yu Lin
- Faculty of Medicine, Macau University of Science and Technology, 999078, Macao
| | - Yiming Qin
- Faculty of Medicine, Macau University of Science and Technology, 999078, Macao
| | - Ruixuan He
- Faculty of Medicine, Macau University of Science and Technology, 999078, Macao
| | - Mingxiao Wang
- Faculty of Medicine, Macau University of Science and Technology, 999078, Macao
| | - Quancai Sun
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL 32306, United States.
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, 999078, Macao.
| |
Collapse
|
52
|
Rini ADK, Juwita FT, Bagjana RW, Octivany S, Purnama RB, Rijal MS, Anwar AM, Purwasasmita BS, Asri LATW. Improving the Mechanical Properties of Glass Ionomer Cement With Nanocrystalline Cellulose From Rice Husk. J Biomed Mater Res B Appl Biomater 2024; 112:e35472. [PMID: 39215536 DOI: 10.1002/jbm.b.35472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 04/09/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
This study aimed to evaluate the effect of incorporating nanocrystalline cellulose (NCC) sourced from rice husk on the mechanical properties of a commercial glass ionomer cement (GIC). NCC was isolated through acid hydrolysis, and its crystallinity, chemical structure, and morphology were characterized through x-ray diffractometry, Fourier-transform infrared spectroscopy, and transmission electron microscopy, respectively. Various concentrations of NCC (0%, 0.5%, 1%, and 1.5%) were added to reinforce the GIC matrix. Mechanical tests including compressive strength, flexural strength, hardness, and shear bond strength were conducted on the modified GIC samples. The addition of NCC resulted in increased hardness and shear bond strength values, with 1% NCC showing the highest values compared to other concentrations. However, there was no significant improvement observed in the compressive and flexural strength of the modified GIC. Failure mode test revealed a reduction in adhesive failure with the addition of NCC. Incorporating small amounts of NCC (0.5%-1%) suggests a promising and affordable modification of GIC restorative material using biomass residue, resulting in improved mechanical properties.
Collapse
Affiliation(s)
- Aninda Dwi Kartika Rini
- Dental Medicine Study Program, Faculty of Medicine, Universitas Jendral Soedirman, Purwokerto, Indonesia
| | - Fifin Tresna Juwita
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Bandung, Indonesia
| | - Riza Widyanti Bagjana
- Dental Medicine Study Program, Faculty of Medicine, Universitas Jendral Soedirman, Purwokerto, Indonesia
| | - Sherly Octivany
- Dental Medicine Study Program, Faculty of Medicine, Universitas Jendral Soedirman, Purwokerto, Indonesia
| | - Ryana Budi Purnama
- Dental Medicine Study Program, Faculty of Medicine, Universitas Jendral Soedirman, Purwokerto, Indonesia
| | - Moch Saifur Rijal
- Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Bandung, Indonesia
| | - Ahmad Miftahul Anwar
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Bandung, Indonesia
| | - Bambang Sunendar Purwasasmita
- Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Bandung, Indonesia
- Engineering Physics Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | - Lia A T W Asri
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Bandung, Indonesia
| |
Collapse
|
53
|
Awasthi S, Komal, Pandey SK. Translational applications of magnetic nanocellulose composites. NANOSCALE 2024; 16:15884-15908. [PMID: 39136070 DOI: 10.1039/d4nr01794c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Nanocellulose has emerged as a potential 'green' material owing to its inimitable properties. Furthermore, the significant development in technology has facilitated the design of multidimensional nanocellulose structures, including one-dimensional (1D: microparticles and nanofibers), two-dimensional (2D: coatings), and three-dimensional (3D: hydrogels/ferrogels) composites. In this case, nanocellulose composites blended with magnetic nanoparticles represent a new class of hybrid materials with improved biocompatibility and biodegradability. The application field of magnetic nanocellulose composites (MNCs) ranges from biomedicine and the environment to catalysis and sensing. In this review, we present the major applications of MNCs, emphasizing their innovative benefits and how they interconnect with translational applications in clinics and the environment. Additionally, we focus on the synthesis techniques and role of different additives in the fabrication of MNCs for achieving extremely precise and intricate tasks related to real-world applications. Subsequently, we reveal the recent interdisciplinary research on MNCs and discuss their mechanical, tribological, electrochemical, magnetic, and biological phenomena. Finally, this review concludes with a portrayal of computational modelling together with a glimpse of the various translational applications of MNCs. Therefore, it is anticipated that the current review will provide the readers with an extensive opportunity and a more comprehensive depiction related to the types, properties, and applications of MNCs.
Collapse
Affiliation(s)
- Shikha Awasthi
- Department of Chemistry, School of Basic Sciences, Manipal University Jaipur, Jaipur-303007, Rajasthan, India.
| | - Komal
- Department of Chemistry, School of Basic Sciences, Manipal University Jaipur, Jaipur-303007, Rajasthan, India.
| | - Sarvesh Kumar Pandey
- Department of Chemistry, Maulana Azad National Institute of Technology, Bhopal-462003, Madhya Pradesh, India.
| |
Collapse
|
54
|
Tamo AK. Nanocellulose-based hydrogels as versatile materials with interesting functional properties for tissue engineering applications. J Mater Chem B 2024; 12:7692-7759. [PMID: 38805188 DOI: 10.1039/d4tb00397g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Tissue engineering has emerged as a remarkable field aiming to restore or replace damaged tissues through the use of biomimetic constructs. Among the diverse materials investigated for this purpose, nanocellulose-based hydrogels have garnered attention due to their intriguing biocompatibility, tunable mechanical properties, and sustainability. Over the past few years, numerous research works have been published focusing on the successful use of nanocellulose-based hydrogels as artificial extracellular matrices for regenerating various types of tissues. The review emphasizes the importance of tissue engineering, highlighting hydrogels as biomimetic scaffolds, and specifically focuses on the role of nanocellulose in composites that mimic the structures, properties, and functions of the native extracellular matrix for regenerating damaged tissues. It also summarizes the types of nanocellulose, as well as their structural, mechanical, and biological properties, and their contributions to enhancing the properties and characteristics of functional hydrogels for tissue engineering of skin, bone, cartilage, heart, nerves and blood vessels. Additionally, recent advancements in the application of nanocellulose-based hydrogels for tissue engineering have been evaluated and documented. The review also addresses the challenges encountered in their fabrication while exploring the potential future prospects of these hydrogel matrices for biomedical applications.
Collapse
Affiliation(s)
- Arnaud Kamdem Tamo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany.
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Ingénierie des Matériaux Polymères (IMP), Université Claude Bernard Lyon 1, INSA de Lyon, Université Jean Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France
| |
Collapse
|
55
|
Aikpokpodion PE, Hsiao BS, Dimkpa CO. Mitigation of Nitrogen Losses in a Plant-Soil System through Incorporation of Nanocellulose and Zinc-Modified Nanocellulose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17295-17305. [PMID: 39073884 DOI: 10.1021/acs.jafc.4c03997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Most nitrogen (N) applied to plants as fertilizer is lost through leaching. Here, nanocellulose was used in mitigating N leaching loss. Lettuce-cropped soil was treated with unmodified or Zn-modified nanocellulose (1-2% by wt) in combination with NPK, compared with urea and NPK-only treatments. Consecutive leaching, plant growth, plant N uptake, and soil nitrogen retention were assessed. Nanocellulose + NPK significantly (p ≤ 0.05) reduced N leaching, compared with urea and NPK-only. 1-and-2 wt % nanocellulose, as well as Zn-modified 1-and-2 wt % nanocellulose, reduced N leaching by 45, 38, 39, and 49% compared with urea and by 43, 36, 37, and 47% compared with NPK-only, respectively. Nitrogen leached mainly as NO3- (98.4%). Compared with urea and NPK, lettuce shoot mass was significantly (p ≤ 0.05) increased by 30-42% and by 44-57%, respectively, by all nanocellulose treatments, except for the Zn-modified 1 wt % nanocellulose. Leached N negatively correlated to biomass yield. Soil N retention was enhanced by the pristine and Zn-modified nanocelluloses between 27 and 94%. Demonstrably, nanocellulose can be utilized for mitigating N loss in soil and supporting crop production, resource management, and environmental sustainability.
Collapse
Affiliation(s)
- Paul E Aikpokpodion
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| | - Benjamin S Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Christian O Dimkpa
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| |
Collapse
|
56
|
Lima NF, Maciel GM, Lima NP, Fernandes IDAA, Haminiuk CWI. Bacterial cellulose in cosmetic innovation: A review. Int J Biol Macromol 2024; 275:133396. [PMID: 38945719 DOI: 10.1016/j.ijbiomac.2024.133396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/10/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024]
Abstract
Bacterial cellulose (BC) emerges as a versatile biomaterial with a myriad of industrial applications, particularly within the cosmetics sector. The absence of hemicellulose, lignin, and pectin in its pure cellulose structure enables favorable interactions with both hydrophilic and hydrophobic biopolymers. This enhances compatibility with active ingredients commonly employed in cosmetics, such as antioxidants, vitamins, and botanical extracts. Recent progress in BC-based materials, which encompasses membranes, films, gels, nanocrystals, and nanofibers, highlights its significant potential in cosmetics. In this context, BC not only serves as a carrier for active ingredients but also plays a crucial role as a structural agent in formulations. The sustainability of BC production and processing is a central focus, highlighting the need for innovative approaches to strengthen scalability and cost-effectiveness. Future research endeavors, including the exploration of novel cultivation strategies and functionalization techniques, aim to maximize BC's therapeutic potential while broadening its scope in personalized skincare regimes. Therefore, this review emphasizes the crucial contribution of BC to the cosmetics sector, underlining its role in fostering innovation, sustainability, and ethical skincare practices. By integrating recent research findings and industry trends, this review proposes a fresh approach to advancing both skincare science and environmental responsibility in the cosmetics industry.
Collapse
Affiliation(s)
- Nicole Folmann Lima
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), CEP (81531-980) Curitiba, Paraná, Brazil
| | - Giselle Maria Maciel
- Laboratório de Biotecnologia, Universidade Tecnológica Federal do Paraná (UTFPR), CEP (81280-340) Curitiba, Paraná, Brazil
| | - Nayara Pereira Lima
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), CEP (81531-980) Curitiba, Paraná, Brazil
| | - Isabela de Andrade Arruda Fernandes
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental (PPGCTA), Universidade Tecnológica Federal do Paraná (UTFPR), CEP (81280-340) Curitiba, Paraná, Brazil
| | | |
Collapse
|
57
|
Solomakha O, Stepanova M, Dobrodumov A, Gofman I, Nashchekina Y, Nashchekin A, Korzhikova-Vlakh E. Chemical Modification of Nanocrystalline Cellulose for Manufacturing of Osteoconductive Composite Materials. Polymers (Basel) 2024; 16:1936. [PMID: 39000790 PMCID: PMC11244019 DOI: 10.3390/polym16131936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024] Open
Abstract
Cellulose is one of the main renewable polymers whose properties are very attractive in many fields, including biomedical applications. The modification of nanocrystalline cellulose (NCC) opens up the possibility of creating nanomaterials with properties of interest as well as combining them with other biomedical polymers. In this work, we proposed the covalent modification of NCC with amphiphilic polyanions such as modified heparin (Hep) and poly(αL-glutamic acid) (PGlu). The modification of NCC should overcome two drawbacks in the production of composite materials based on poly(ε-caprolactone) (PCL), namely, (1) to improve the distribution of modified NCC in the PCL matrix, and (2) to provide the composite material with osteoconductive properties. The obtained specimens of modified NCC were characterized by Fourier-transform infrared spectroscopy and solid-state 13C nuclear magnetic resonance spectroscopy, dynamic and electrophoretic light scattering, as well as thermogravimetric analysis. The morphology of PCL-based composites containing neat or modified NCC as filler was studied by optical and scanning electron microscopy. The mechanical properties of the obtained composites were examined in tensile tests. The homogeneity of filler distribution as well as the mechanical properties of the composites depended on the method of NCC modification and the amount of attached polyanion. In vitro biological evaluation showed improved adhesion of human fetal mesenchymal stem cells (FetMSCs) and human osteoblast-like cells (MG-63 osteosarcoma cell line) to PCL-based composites filled with NCC bearing Hep or PGlu derivatives compared to pure PCL. Furthermore, these composites demonstrated the osteoconductive properties in the experiment on the osteogenic differentiation of FetMSCs.
Collapse
Affiliation(s)
- Olga Solomakha
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia
| | - Mariia Stepanova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia
| | - Anatoliy Dobrodumov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia
| | - Iosif Gofman
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia
| | - Yulia Nashchekina
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | | | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia
| |
Collapse
|
58
|
Sun Q, Tao S, Bovone G, Han G, Deshmukh D, Tibbitt MW, Ren Q, Bertsch P, Siqueira G, Fischer P. Versatile Mechanically Tunable Hydrogels for Therapeutic Delivery Applications. Adv Healthc Mater 2024; 13:e2304287. [PMID: 38488218 DOI: 10.1002/adhm.202304287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Indexed: 04/02/2024]
Abstract
Hydrogels provide a versatile platform for biomedical material fabrication that can be structurally and mechanically fine-tuned to various tissues and applications. Applications of hydrogels in biomedicine range from highly dynamic injectable hydrogels that can flow through syringe needles and maintain or recover their structure after extrusion to solid-like wound-healing patches that need to be stretchable while providing a selective physical barrier. In this study, a toolbox is designed using thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) polymeric matrices and nanocelluloses as reinforcing agent to obtain biocompatible hydrogels with altering mechanical properties, from a liquid injectable to a solid-like elastic hydrogel. The liquid hydrogels possess low viscosity and shear-thinning properties at 25 °C, which allows facile injection at room temperature, while they become viscoelastic gels at body temperature. In contrast, the covalently cross-linked solid-like hydrogels exhibit enhanced viscoelasticity. The liquid hydrogels are biocompatible and are able to delay the in vitro release and maintain the bioactivity of model drugs. The antimicrobial agent loaded solid-like hydrogels are effective against typical wound-associated pathogens. This work presents a simple method of tuning hydrogel mechanical strength to easily adapt to applications in different soft tissues and broaden the potential of renewable bio-nanoparticles in hybrid biomaterials with controlled drug release capabilities.
Collapse
Affiliation(s)
- Qiyao Sun
- Department of Health Science and Technology, ETH Zurich, Zurich, 8092, Switzerland
| | - Siyuan Tao
- Laboratory for Biointerfaces, Empa, St. Gallen, 9014, Switzerland
| | - Giovanni Bovone
- Macromolecular Engineering Laboratory, D-MAVT, ETH Zurich, Zurich, 8092, Switzerland
| | - Garam Han
- Department of Health Science and Technology, ETH Zurich, Zurich, 8092, Switzerland
| | - Dhananjay Deshmukh
- Macromolecular Engineering Laboratory, D-MAVT, ETH Zurich, Zurich, 8092, Switzerland
- Institute for Mechanical Systems, D-MAVT, ETH Zurich, Zurich, 8092, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, D-MAVT, ETH Zurich, Zurich, 8092, Switzerland
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, St. Gallen, 9014, Switzerland
| | - Pascal Bertsch
- Drug Delivery and Biophysics of Biopharmaceuticals, Department of Pharmacy, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Gilberto Siqueira
- Cellulose & Wood Materials Laboratory, EMPA, Dübendorf, 8600, Switzerland
| | - Peter Fischer
- Department of Health Science and Technology, ETH Zurich, Zurich, 8092, Switzerland
| |
Collapse
|
59
|
Wossine SE, Thothadri G, Tufa HB, Tucho WM, Murtaza A, Edacherian A, Sayeed Ahmed GM. Isolation and Characterization of Spherical Cellulose Nanocrystals Extracted from the Higher Cellulose Yield of the Jenfokie Plant: Morphological, Structural, and Thermal Properties. Polymers (Basel) 2024; 16:1629. [PMID: 38931979 PMCID: PMC11207728 DOI: 10.3390/polym16121629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Scholars are looking for solutions to substitute hazardous substances in manufacturing nanocellulose from bio-sources to preserve the world's growing environmental consciousness. During the past decade, there has been a notable increase in the use of cellulose nanocrystals (CNCs) in modern science and nanotechnology advancements because of their abundance, biocompatibility, biodegradability, renewability, and superior mechanical properties. Spherical cellulose nanocrystals (J-CNCs) were successfully synthesized from Jenfokie micro-cellulose (J-MC) via sulfuric acid hydrolysis in this study. The yield (up to 58.6%) and specific surface area (up to 99.64 m2/g) of J-CNCs were measured. A field emission gun-scanning electron microscope (FEG-SEM) was used to assess the morphology of the J-MC and J-CNC samples. The spherical shape nanoparticles with a mean nano-size of 34 nm for J-CNCs were characterized using a transmission electron microscope (TEM). X-ray diffraction (XRD) was used to determine the crystallinity index and crystallinity size of J-CNCs, up to 98.4% and 6.13 nm, respectively. The chemical composition was determined using a Fourier transform infrared (FT-IR) spectroscope. Thermal characterization of thermogravimetry analysis (TGA), derivative thermogravimetry (DTG), and differential thermal analysis (DTA) was conducted to identify the thermal stability and cellulose pyrolysis behavior of both J-MC and J-CNC samples. The thermal analysis of J-CNC indicated lower thermal stability than J-MC. It was noted that J-CNC showed higher levels of crystallinity and larger crystallite sizes than J-MC, indicating a successful digestion and an improvement of the main crystalline structure of cellulose. The X-ray diffraction spectra and TEM images were utilized to establish that the nanocrystals' size was suitable. The novelty of this work is the synthesis of spherical nanocellulose with better properties, chosen with a rich source of cellulose from an affordable new plant (studied for the first time) by stepwise water-retted extraction, continuing from our previous study.
Collapse
Affiliation(s)
- Solomon Estifo Wossine
- Department of Mechanical Engineering, Adama Science and Technology University, Adama 1888, Ethiopia; (S.E.W.); (H.B.T.)
| | - Ganesh Thothadri
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Habtamu Beri Tufa
- Department of Mechanical Engineering, Adama Science and Technology University, Adama 1888, Ethiopia; (S.E.W.); (H.B.T.)
| | | | - Adil Murtaza
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Abhilash Edacherian
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia;
| | - Gulam Mohammed Sayeed Ahmed
- Center of Excellence (COE) for Advanced Manufacturing Engineering, Department of Mechanical Engineering, Adama Science and Technology University, Adama 1888, Ethiopia;
| |
Collapse
|
60
|
Abd Manaf M, Harun S, Md. Jahim J, Sajab MS, Ibrahim Z. Synergistic sequential oxidative extraction for nanofibrillated cellulose isolated from oil palm empty fruit bunch. PLoS One 2024; 19:e0299312. [PMID: 38843202 PMCID: PMC11156338 DOI: 10.1371/journal.pone.0299312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 02/08/2024] [Indexed: 06/09/2024] Open
Abstract
This research presents a comprehensive study of sequential oxidative extraction (SOE) consisting of alkaline and acidic oxidation processes to extract nanocellulose from plant biomass. This proposed process is advantageous as its operation requires a minimum process with mild solvents, and yet successfully isolated high-quality nanofibrillated cellulose (NFC) from raw OPEFB. The SOE involved ammonium hydroxide (NH4OH, 2.6 M) and formic acid (HCOOH, 5.3 M) catalyzed by hydrogen peroxide (H2O2, 3.2 M). This approach was used to efficiently solubilize the lignin and hemicellulose from Oil Palm Empty Fruit Bunch (OPEFB) at the temperature of 100°C and 1 h extraction time, which managed to retain fibrous NFC. The extracted solid and liquor at each stage were studied extensively through physiochemical analysis. The finding indicated that approximately 75.3%dwb of hemicellulose, 68.9%dwb of lignin, and 42.0%dwb of extractive were solubilized in the first SOE cycle, while the second SOE cycle resulted in 92.3%dwb, 99.6%dwb and 99.8%dwb of solubilized hemicellulose, lignin, and extractive/ash, respectively. High-quality NFC (75.52%dwb) was obtained for the final extracted solid with 76.4% crystallinity, which is near the crystallinity of standard commercial NFC. The proposed process possesses an effective synergy in producing NFC from raw OPEFB with less cellulose degradation, and most of the degraded hemicellulose and lignin are solubilized in the liquor.
Collapse
Affiliation(s)
- Mastura Abd Manaf
- Faculty of Engineering and Built Environment, Research Centre for Sustainable Process Technology (CESPRO), Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Shuhaida Harun
- Faculty of Engineering and Built Environment, Research Centre for Sustainable Process Technology (CESPRO), Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
- Faculty of Engineering and Built Environment, Chemical Engineering Programme, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Jamaliah Md. Jahim
- Faculty of Engineering and Built Environment, Research Centre for Sustainable Process Technology (CESPRO), Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
- Faculty of Engineering and Built Environment, Chemical Engineering Programme, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Mohd Shaiful Sajab
- Faculty of Engineering and Built Environment, Research Centre for Sustainable Process Technology (CESPRO), Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
- Faculty of Engineering and Built Environment, Chemical Engineering Programme, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Zulkifli Ibrahim
- Faculty of Electrical and Electronic Engineering Technology, Electrical Engineering Technology Department, Universiti Teknikal Malaysia Melaka, Melaka, Malaysia
| |
Collapse
|
61
|
Črešnar KP, Plohl O, Zemljič LF. Functionalised Fibres as a Coupling Reinforcement Agent in Recycled Polymer Composites. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2739. [PMID: 38894002 PMCID: PMC11174083 DOI: 10.3390/ma17112739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
This study addresses the structure-property relationship within the green concept of wood fibres with cellulose nanofibre functionalised composites (nW-PPr) containing recycled plastic polyolefins, in particular, polypropylene (PP-r). It focuses especially on the challenges posed by nanoscience in relation to wood fibres (WF) and explores possible changes in the thermal properties, crystallinity, morphology, and mechanical properties. In a two-step methodology, wood fibres (50% wt%) were first functionalised with nanocellulose (nC; 1-9 wt%) and then, secondly, processed into composites using an extrusion process. The surface modification of nC improves its compatibility with the polymer matrix, resulting in improved adhesion, mechanical properties, and inherent biodegradability. The effects of the functionalised WF on the recycled polymer composites were investigated systematically and included analyses of the structure, crystallisation, morphology, and surface properties, as well as thermal and mechanical properties. Using a comprehensive range of techniques, including X-ray diffraction (XRD), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), zeta potential measurements, and dynamic mechanical analysis (DMA), this study aims to unravel the intricate interplay of factors affecting the performance and properties of the developed nanocellulose-functionalised wood fibre-polymer composites. The interfacial adhesion of the nW-PPr polymer composites, crystallisation process, and surface properties was improved due to the formation of an H-bond between the nW coupling agent and neat PP-r. In addition, the role of nW (1.0 wt%) as a nucleating agent resulted in increased crystallinity, or, on the other hand, promoted the interfacial interaction with the highest amount (3.0% wt%, 9.0% wt%) of nW in the PP-r preferentially between the nW and neat PP-r, and also postponed the crystallisation temperature. The changes in the isoelectric point of the nW-PPr polymer composites compared to the neat PP-r polymer indicate the acid content of the polymer composite and, consequently, the final surface morphology. Finally, the higher storage modulus of the composites compared to neat r-PP shows a dependence on improved crystallinity, morphology, and adhesion. It was clear that the results of this study contribute to a better understanding of sustainable materials and can drive the development of environmentally friendly composites applied in packaging.
Collapse
Affiliation(s)
- Klementina Pušnik Črešnar
- Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia; (O.P.); (L.F.Z.)
- Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia
| | - Olivija Plohl
- Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia; (O.P.); (L.F.Z.)
| | - Lidija Fras Zemljič
- Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia; (O.P.); (L.F.Z.)
| |
Collapse
|
62
|
Hamidon TS, Garba ZN, Zango ZU, Hussin MH. Biopolymer-based beads for the adsorptive removal of organic pollutants from wastewater: Current state and future perspectives. Int J Biol Macromol 2024; 269:131759. [PMID: 38679272 DOI: 10.1016/j.ijbiomac.2024.131759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/13/2024] [Accepted: 04/20/2024] [Indexed: 05/01/2024]
Abstract
Among biopolymer-based adsorbents, composites in the form of beads have shown promising results in terms of high adsorption capacity and ease of separation from the effluents. This review addresses the potential of biopolymer-based beads to remediate wastewaters polluted with emerging organic contaminants, for instance dyes, active pharmaceutical ingredients, pesticides, phenols, oils, polyaromatic hydrocarbons, and polychlorinated biphenyls. High adsorption capacities up to 2541.76 mg g-1 for dyes, 392 mg g-1 for pesticides and phenols, 1890.3 mg g-1 for pharmaceuticals, and 537 g g-1 for oils and organic solvents have been reported. The review also attempted to convey to its readers the significance of wastewater treatment through adsorption by providing an overview on decontamination technologies of organic water contaminants. Various preparation methods of biopolymer-based gel beads and adsorption mechanisms involved in the process of decontamination have been summarized and analyzed. Therefore, we believe there is an urge to discuss the current state of the application of biopolymer-based gel beads for the adsorption of organic pollutants from wastewater and future perspectives in this regard since it is imperative to treat wastewater before releasing into freshwater bodies.
Collapse
Affiliation(s)
- Tuan Sherwyn Hamidon
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | | | - Zakariyya Uba Zango
- Department of Chemistry, Faculty of Science, Al-Qalam University Katsina, Katsina 820101, Nigeria
| | - M Hazwan Hussin
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
63
|
Sajjadi M, Nasrollahzadeh M, Sattari MR, Ghafuri H, Jaleh B. Sulfonic acid functionalized cellulose-derived (nano)materials: Synthesis and application. Adv Colloid Interface Sci 2024; 328:103158. [PMID: 38718629 DOI: 10.1016/j.cis.2024.103158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/01/2024] [Accepted: 04/10/2024] [Indexed: 05/26/2024]
Abstract
The preparation/application of heterogeneous (nano)materials from natural resources has currently become increasingly fascinating for researchers. Cellulose is the most abundant renewable polysaccharide on earth. The unique physicochemical, structural, biological, and environmental properties of this natural biopolymer have led to its increased application in many fields. The more desirable features of cellulose-based (nano)materials such as biodegradability, renewability, biocompatibility, cost-effectiveness, simplicity of preparation, environmentally friendly nature, and widespread range of applications have converted them into promising compounds in medicine, catalysis, biofuel cells, and water/wastewater treatment processes. Functionalized cellulose-based (nano)materials containing sulfonic acid groups may prove to be one of the most promising sustainable bio(nano)materials of modern times in the field of cellulose science and (nano)technology owing to their intrinsic features, high crystallinity, high specific surface area, abundance, reactivity, and recyclability. In this review, the developments in the application of sulfonated cellulose-based (nano)materials containing sulfonic acid (-SO3H) groups in catalysis, water purification, biological/biomedical, environmental, and fuel cell applications have been reported. This review provides an overview of the methods used to chemically modify cellulose and/or cellulose derivatives in different forms, including nanocrystals, hydrogels, films/membranes, and (nano)composites/blends by introducing sulfonate groups on the cellulose backbone, focusing on diverse sulfonating agents utilized and substitution regioselectivity, and highlights their potential applications in different industries for the generation of alternative energies and products.
Collapse
Affiliation(s)
- Mohaddeseh Sajjadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | | | | | - Hossein Ghafuri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Babak Jaleh
- Department of Physics, Faculty of Science, Bu-Ali Sina University, Hamedan 65174, Iran
| |
Collapse
|
64
|
Habibullah S, Swain R, Nandi S, Das M, Rout T, Mohanty B, Mallick S. Nanocrystalline cellulose as a reinforcing agent for poly (vinyl alcohol)/ gellan-gum-based composite film for moxifloxacin ocular delivery. Int J Biol Macromol 2024; 270:132302. [PMID: 38744357 DOI: 10.1016/j.ijbiomac.2024.132302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/16/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Nanocrystalline cellulose (NCC) is a star material in drug delivery applications due to its good biocompatibility, large specific surface area, high tensile strength (TS), and high hydrophilicity. Poly(Vinyl Alcohol)/Gellan-gum-based innovative composite film has been prepared using nanocrystalline cellulose (PVA/GG/NCC) as a strengthening agent for ocular delivery of moxifloxacin (MOX) via solvent casting method. Impedance analysis was studied using the capacitive sensing technique for examining new capacitance nature of the nanocomposite MOX film. Antimicrobial properties of films were evaluated using Pseudomonas aeruginosa and Staphylococcus aureus as gram-negative and gram-positive bacteria respectively by disc diffusion technique. XRD revealed the characteristic peak of NCC and the amorphous form of the drug. Sustained in vitro release and enhanced corneal permeation of drug were noticed in the presence of NCC. Polymer matrix enhanced the mechanical properties (tensile strength 22.05 to 28.41 MPa) and impedance behavior (resistance 59.23 to 213.23 Ω) in the film due to the presence of NCC rather than its absence (16.78 MPa and 39.03 Ω respectively). Occurrence of NCC brought about good antimicrobial behavior (both gram-positive and gram-negative) of the film. NCC incorporated poly(vinyl alcohol)/gellan-gum-based composite film exhibited increased mechanical properties and impedance behavior for improved ocular delivery of moxifloxacin.
Collapse
Affiliation(s)
- Sk Habibullah
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Rakesh Swain
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Souvik Nandi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Mouli Das
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Tanmaya Rout
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, 754202 Cuttack, Odisha, India
| | - Biswaranjan Mohanty
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, 754202 Cuttack, Odisha, India.
| | - Subrata Mallick
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India.
| |
Collapse
|
65
|
Ramli NA, Adam F, Ries ME, Ibrahim SF. DES-ultrasonication treatment of cellulose nanocrystals and the reinforcement in carrageenan biocomposite. Int J Biol Macromol 2024; 270:132385. [PMID: 38754668 DOI: 10.1016/j.ijbiomac.2024.132385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/09/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
CNCs are intensively studied to reinforce biocomposites. However, it remains a challenge to homogeneously disperse the CNC in biocomposites for a smooth film surface. Mechanochemical treatment via ultrasonication in deep eutectic solvent (DES) generated a stable dispersion of CNC before incorporation into carrageenan biocomposite. Shifted peaks of choline chloride (ChCl) methylene groups to 3.95-3.98 ppm in 1H NMR indicated a formation of eutectic mixture between the hydrogen bond acceptor (HBA) and hydrogen bond donor (HBD) at the functional group of CH3···OH. The swelling of CNC in the DES was proven by the formation of intermolecular H-bond at a length of 2.46 Å. The use of DES contributed to a good dispersion of CNC in the solution which increased zeta potential by 43.2 % compared to CNC in deionized water. The ultrasonication amplitude and feed concentration were varied for the best parameters of a stable dispersion of CNC. The crystallinity of 1 wt% of CNC at 20 % sonication amplitude improved from 76 to 81 %. The high crystallinity of CNCDES resulted in an increase in film tensile and capsule loop strength of Carra-CNCDES by 20.7 and 19.4 %, respectively. Improved dispersion of CNCDES reduced the surface roughness of the biocomposite by 21.8 %. H-bond network in CNCDES improved the biocomposite properties for an ingenious reinforcement material.
Collapse
Affiliation(s)
- Nur Amalina Ramli
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26300 Kuantan, Pahang, Malaysia
| | - Fatmawati Adam
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26300 Kuantan, Pahang, Malaysia; Centre for Research in Advanced Fluid and Processes, Universiti Malaysia Pahang Al-Sultan Abdullah, 26300 Kuantan, Pahang, Malaysia.
| | - Michael E Ries
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - S Fatimah Ibrahim
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
66
|
Jabbour R, Kang JS, Sobhi HF. Effect of Quorum Sensing Molecules on the Quality of Bacterial Nanocellulose Materials. ACS OMEGA 2024; 9:20003-20011. [PMID: 38737048 PMCID: PMC11079910 DOI: 10.1021/acsomega.3c10053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/26/2024] [Accepted: 04/08/2024] [Indexed: 05/14/2024]
Abstract
Bacterial nanocellulose (BNC) biofilms, produced by various bacterial species, such as Gluconacetobacter xylinus, represent a highly promising multifunctional material characterized by distinctive physiochemical properties. These biofilms have demonstrated remarkable versatility as nano biomaterials, finding extensive applications across medical, defense, electronics, optics, and food industries. In contrast to plant cellulose, BNC biofilms exhibit numerous advantages, including elevated purity and crystallinity, expansive surface area, robustness, and excellent biocompatibility, making them exceptional multifunctional materials. However, their production with consistent morphological properties and their transformation into practical forms present challenges. This difficulty often arises from the heterogeneity in cell density, which is influenced by the presence of N-acyl-homoserine lactones (AHLs) serving as quorum sensing signaling molecules during the biosynthesis of BNC biofilms. In this study, we employed surface characterization methodologies including scanning electron microscopy, energy-dispersive spectroscopy, diffuse reflectance infrared Fourier transform spectroscopy, and atomic force microscopy to characterize BNC biofilms derived from growth media supplemented with varying concentrations of distinct N-acyl-homoserine lactone signaling molecules. The data obtained through these analytical techniques elucidated that the morphological properties of the BNC biofilms were influenced by the specific AHLs, signaling molecules, introduced into the growth media. These findings lay the groundwork for future exploration of leveraging synthetic biology and biomimetic methods for tailoring BNC with predetermined morphological properties.
Collapse
Affiliation(s)
- Rabih
E. Jabbour
- U.S.
Army Edgewood Chemical Biological Center, Research & Technology Directorate, 5183 Blackhawk Rd, Aberdeen Proving Ground, Aberdeen, Maryland 21010, United States
| | - Joshua S. Kang
- Center
for Organic Synthesis, Department of Natural Sciences, Coppin State University, Baltimore, Maryland 21216, United States
| | - Hany F. Sobhi
- Center
for Organic Synthesis, Department of Natural Sciences, Coppin State University, Baltimore, Maryland 21216, United States
| |
Collapse
|
67
|
Sumarago EC, dela Cerna MFM, Leyson AKB, Tan NPB, Magsico KF. Production and Characterization of Nanocellulose from Maguey ( Agave cantala) Fiber. Polymers (Basel) 2024; 16:1312. [PMID: 38794505 PMCID: PMC11125682 DOI: 10.3390/polym16101312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Plant fibers have been studied as sources of nanocellulose due to their sustainable features. This study investigated the effects of acid hydrolysis parameters, reaction temperature, and acid concentration on nanocellulose yield from maguey (Agave cantala) fiber. Nanocellulose was produced from the fibers via the removal of non-cellulosic components through alkali treatment and bleaching, followed by strong acid hydrolysis for 45 min using sulfuric acid (H2SO4). The temperature during acid hydrolysis was 30, 40, 50, and 60 °C, and the H2SO4 concentration was 40, 50, and 60 wt. % H2SO4. Results showed that 53.56% of raw maguey fibers were isolated as cellulose, that is, 89.45% was α-cellulose. The highest nanocellulose yield of 81.58 ± 0.36% was achieved from acid hydrolysis at 50 °C using 50 wt. % H2SO4, producing nanocellulose measuring 8-75 nm in diameter and 72-866 nm in length, as confirmed via field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) analysis. Fourier-transform infrared spectroscopy (FTIR) analysis indicated the chemical transformation of fibers throughout the nanocellulose production process. The zeta potential analysis showed that the nanocellulose had excellent colloidal stability with a highly negative surface charge of -37.3 mV. Meanwhile, X-ray diffraction (XRD) analysis validated the crystallinity of nanocellulose with a crystallinity index of 74.80%. Lastly, thermogravimetric analysis (TGA) demonstrated that the inflection point attributed to the cellulose degradation of the produced nanocellulose is 311.41 °C.
Collapse
Affiliation(s)
- Erwin C. Sumarago
- Department of Chemical Engineering, University of San Carlos, Cebu City 6000, Philippines; (E.C.S.); (M.F.M.d.C.); (A.K.B.L.)
| | - Mary Frahnchezka M. dela Cerna
- Department of Chemical Engineering, University of San Carlos, Cebu City 6000, Philippines; (E.C.S.); (M.F.M.d.C.); (A.K.B.L.)
| | - Andrea Kaylie B. Leyson
- Department of Chemical Engineering, University of San Carlos, Cebu City 6000, Philippines; (E.C.S.); (M.F.M.d.C.); (A.K.B.L.)
| | - Noel Peter B. Tan
- Center for Advanced New Materials, Engineering, and Emerging Technologies (CANMEET), University of San Agustin, Iloilo City 5000, Philippines;
| | - Kendra Felizimarie Magsico
- Center for Advanced New Materials, Engineering, and Emerging Technologies (CANMEET), University of San Agustin, Iloilo City 5000, Philippines;
| |
Collapse
|
68
|
Khorsandi D, Jenson S, Zarepour A, Khosravi A, Rabiee N, Iravani S, Zarrabi A. Catalytic and biomedical applications of nanocelluloses: A review of recent developments. Int J Biol Macromol 2024; 268:131829. [PMID: 38677670 DOI: 10.1016/j.ijbiomac.2024.131829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Nanocelluloses exhibit immense potential in catalytic and biomedical applications. Their unique properties, biocompatibility, and versatility make them valuable in various industries, contributing to advancements in environmental sustainability, catalysis, energy conversion, drug delivery, tissue engineering, biosensing/imaging, and wound healing/dressings. Nanocellulose-based catalysts can efficiently remove pollutants from contaminated environments, contributing to sustainable and cleaner ecosystems. These materials can also be utilized as drug carriers, enabling targeted and controlled drug release. Their high surface area allows for efficient loading of therapeutic agents, while their biodegradability ensures safer and gradual release within the body. These targeted drug delivery systems enhance the efficacy of treatments and minimizes side effects. Moreover, nanocelluloses can serve as scaffolds in tissue engineering due to their structural integrity and biocompatibility. They provide a three-dimensional framework for cell growth and tissue regeneration, promoting the development of functional and biologically relevant tissues. Nanocellulose-based dressings have shown great promise in wound healing and dressings. Their ability to absorb exudates, maintain a moist environment, and promote cell proliferation and migration accelerates the wound healing process. Herein, the recent advancements pertaining to the catalytic and biomedical applications of nanocelluloses and their composites are deliberated, focusing on important challenges, advantages, limitations, and future prospects.
Collapse
Affiliation(s)
- Danial Khorsandi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Serena Jenson
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia.
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan.
| |
Collapse
|
69
|
Trache D, Tarchoun AF, Abdelaziz A, Bessa W, Thakur S, Hussin MH, Brosse N, Thakur VK. A comprehensive review on processing, characteristics, and applications of cellulose nanofibrils/graphene hybrid-based nanocomposites: Toward a synergy between two-star nanomaterials. Int J Biol Macromol 2024; 268:131633. [PMID: 38641279 DOI: 10.1016/j.ijbiomac.2024.131633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
Nanostructured materials are fascinating since they are promising for intensely enhancing materials' performance, and they can offer multifunctional features. Creating such high-performance nanocomposites via effective and mild approaches is an inevitable requirement for sustainable materials engineering. Nanocomposites, which combine two-star nanomaterials, namely, cellulose nanofibrils (CNFs) and graphene derivatives (GNMs), have recently revealed interesting physicochemical properties and excellent performance. Despite numerous studies on the production and application of such systems, there is still a lack of concise information on their practical uses. In this review, recent progress in the production, modification, properties, and emerging uses of CNFs/GNMs hybrid-based nanocomposites in various fields such as flexible energy harvesting and storage, sensors, adsorbents, packaging, and thermal management, among others, are comprehensively examined and described based on recent investigations. Nevertheless, numerous challenges and gaps need to be addressed to successfully introduce such nanomaterials in large-scale industrial applications. This review will certainly help readers understand the design approaches and potential applications of CNFs/GNMs hybrid-based nanocomposites for which new research directions in this emerging topic are discussed.
Collapse
Affiliation(s)
- Djalal Trache
- Energetic Materials Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046 Algiers, Algeria.
| | - Ahmed Fouzi Tarchoun
- Energetic Materials Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046 Algiers, Algeria.
| | - Amir Abdelaziz
- Energetic Materials Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046 Algiers, Algeria
| | - Wissam Bessa
- Energetic Materials Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046 Algiers, Algeria
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland.
| | - M Hazwan Hussin
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Nicolas Brosse
- Laboratoire d'Etude et de Recherche sur le MAtériau Bois (LERMAB), Faculté des Sciences et Techniques, Université de Lorraine, Bld. des Aiguillettes, F-54500 Vandœuvre-lès-Nancy, France
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, Edinburgh EH9 3JG, UK
| |
Collapse
|
70
|
Chinnappa K, Bai CDG, Srinivasan PP. Nanocellulose-stabilized nanocomposites for effective Hg(II) removal and detection: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30288-30322. [PMID: 38619767 DOI: 10.1007/s11356-024-33105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/22/2024] [Indexed: 04/16/2024]
Abstract
Mercury pollution, with India ranked as the world's second-largest emitter, poses a critical environmental and public health challenge and underscores the need for rigorous research and effective mitigation strategies. Nanocellulose is derived from cellulose, the most abundant natural polymer on earth, and stands out as an excellent choice for mercury ion remediation due to its remarkable adsorption capacity, which is attributed to its high specific surface area and abundant functional groups, enabling efficient Hg(II) ion removal from contaminated water sources. This review paper investigates the compelling potential of nanocellulose as a scavenging tool for Hg(II) ion contamination. The comprehensive examination encompasses the fundamental attributes of nanocellulose, its diverse fabrication techniques, and the innovative development methods of nanocellulose-based nanocomposites. The paper further delves into the mechanisms that underlie Hg removal using nanocellulose, as well as the integration of nanocellulose in Hg detection methodologies, and also acknowledges the substantial challenges that lie ahead. This review aims to pave the way for sustainable solutions in mitigating Hg contamination using nanocellulose-based nanocomposites to address the global context of this environmental concern.
Collapse
Affiliation(s)
- Karthik Chinnappa
- Department of Biotechnology, St. Joseph's College of Engineering, OMR, Chennai, 600119, Tamil Nadu, India
| | | | - Pandi Prabha Srinivasan
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur Taluk, Chennai, 602117, Tamil Nadu, India
| |
Collapse
|
71
|
Mishra S. New Excipient For Oral Drug Delivery: CNC Derived From Sugarcane Bagasse-Derived Microcrystalline Cellulose. ACS OMEGA 2024; 9:19353-19362. [PMID: 38708209 PMCID: PMC11064190 DOI: 10.1021/acsomega.4c00497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024]
Abstract
Nanocrystalline cellulose (CNC) has emerged as a subject of researcher's interest because of its diverse attributes encompassing biocompatibility, sustainability, a high aspect ratio, and an abundance of -OH groups suitable for modifications. Sugarcane bagasse microcrystalline cellulose (SCBMCC) was used as the raw material for the preparation of CNC due to its pure cellulose content, which is mildly compromised by the pectin, hemicellulose, lignin, and other lignocellulosic components. In the present work, CNC was extracted from SCBMCC and used as a disintegrant. The classic hydrolysis technique was used for the preparation of CNC. Hydrolytic conditions were optimized using the response surface methodology (RSM). The optimized batch of CNC was characterized using techniques such as field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. Notably, CNC prepared under a hydrolysis time of 90 min exhibited the highest crystallinity of 69.9%. The average particle size and zeta potential were found to be 145 nm and -34.4 mV, respectively. Thermal analysis suggested that an intermediate hydrolysis time resulted in CNC with enhanced thermal stability, showcasing its potential for pharmaceutical applications. Diclofenac potassium was used as the model drug to evaluate the disintegrant properties of CNC as an excipient. Tablets were prepared using the direct compression method. SCBMCC and CNC were used as disintegrants and were compared with the commercial product. The disintegration times (DTs) attained for the tablets prepared using CNC and SCBMCC are 219 and 339.83 s, respectively. The dissolution study of CNC showed a dissolution efficacy (DE%) of 66 and a mean dissolution time (MDT) of 12. The research findings showed that tablets prepared using CNC as disintegrants exhibited the fastest disintegration compared to other formulations.
Collapse
Affiliation(s)
- Shweta Mishra
- Shobhaben
Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, V. L Mehta Road, Vile Parle (W), Mumbai 400056, India
| |
Collapse
|
72
|
An H, Zhang M, Gu Z, Jiao X, Ma Y, Huang Z, Wen Y, Dong Y, Zhang P. Advances in Polysaccharides for Cartilage Tissue Engineering Repair: A Review. Biomacromolecules 2024; 25:2243-2260. [PMID: 38523444 DOI: 10.1021/acs.biomac.3c01424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Cartilage repair has been a significant challenge in orthopedics that has not yet been fully resolved. Due to the absence of blood vessels and the almost cell-free nature of mature cartilage tissue, the limited ability to repair cartilage has resulted in significant socioeconomic pressures. Polysaccharide materials have recently been widely used for cartilage tissue repair due to their excellent cell loading, biocompatibility, and chemical modifiability. They also provide a suitable microenvironment for cartilage repair and regeneration. In this Review, we summarize the techniques used clinically for cartilage repair, focusing on polysaccharides, polysaccharides for cartilage repair, and the differences between these and other materials. In addition, we summarize the techniques of tissue engineering strategies for cartilage repair and provide an outlook on developing next-generation cartilage repair and regeneration materials from polysaccharides. This Review will provide theoretical guidance for developing polysaccharide-based cartilage repair and regeneration materials with clinical applications for cartilage tissue repair and regeneration.
Collapse
Affiliation(s)
- Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Meng Zhang
- Department of Orthopaedics and Trauma Peking University People's Hospital, Beijing 100044, China
| | - Zhen Gu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiangyu Jiao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yinglei Ma
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhe Huang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | | | - Peixun Zhang
- Department of Orthopaedics and Trauma Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
73
|
Ramezani G, Stiharu I, van de Ven TGM, Nerguizian V. Advancements in Hybrid Cellulose-Based Films: Innovations and Applications in 2D Nano-Delivery Systems. J Funct Biomater 2024; 15:93. [PMID: 38667550 PMCID: PMC11051498 DOI: 10.3390/jfb15040093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/28/2024] Open
Abstract
This review paper delves into the realm of hybrid cellulose-based materials and their applications in 2D nano-delivery systems. Cellulose, recognized for its biocompatibility, versatility, and renewability, serves as the core matrix for these nanomaterials. The paper offers a comprehensive overview of the latest advancements in the creation, analysis, and application of these materials, emphasizing their significance in nanotechnology and biomedical domains. It further illuminates the integration of nanomaterials and advanced synthesis techniques that have significantly improved the mechanical, chemical, and biological properties of hybrid cellulose-based materials.
Collapse
Affiliation(s)
- Ghazaleh Ramezani
- Department of Mechanical, Industrial, and Aerospace Engineering, Concordia University, Montreal, QC H3G 1M8, Canada;
| | - Ion Stiharu
- Department of Mechanical, Industrial, and Aerospace Engineering, Concordia University, Montreal, QC H3G 1M8, Canada;
| | - Theo G. M. van de Ven
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada;
| | - Vahe Nerguizian
- Department of Electrical Engineering, École de Technologie Supérieure, 1100 Notre Dame West, Montreal, QC H3C 1K3, Canada;
| |
Collapse
|
74
|
Pignon F, Guilbert E, Mandin S, Hengl N, Karrouch M, Jean B, Putaux JL, Gibaud T, Manneville S, Narayanan T. Orthotropic organization of a cellulose nanocrystal suspension realized via the combined action of frontal ultrafiltration and ultrasound as revealed by in situ SAXS. J Colloid Interface Sci 2024; 659:914-925. [PMID: 38219310 DOI: 10.1016/j.jcis.2023.12.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024]
Abstract
HYPOTHESIS Rodlike cellulose nanocrystals (CNCs) exhibit significant potential as building blocks for creating uniform, sustainable materials. However, a critical hurdle lies in the need to enhance existing or devise novel processing that provides improved control over the alignment and arrangement of CNCs across a wide spatial range. Specifically, the challenge is to achieve orthotropic organization in a single-step processing, which entails creating non-uniform CNC orientations to generate spatial variations in anisotropy. EXPERIMENTS A novel processing method combining frontal ultrafiltration (FU) and ultrasound (US) has been developed. A dedicated channel-cell was designed to simultaneously generate (1) a vertical acoustic force thanks to a vibrating blade at the top and (2) a transmembrane pressure force at the bottom. Time-resolved in situ small-angle X-ray scattering permitted to probe the dynamical structural organization/orientation of CNCs during the processing. FINDINGS For the first time, a typical three-layer orthotropic structure that resembles the articular cartilage organization was achieved in one step during the FU/US process: a first layer composed of CNCs having their director aligned parallel to the horizontal membrane surface, a second intermediate isotropic layer, and a third layer of CNCs with their director vertically oriented along the direction of US wave propagation direction.
Collapse
Affiliation(s)
- Frédéric Pignon
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LRP, F-38000 Grenoble, France.
| | - Emilie Guilbert
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LRP, F-38000 Grenoble, France
| | - Samuel Mandin
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LRP, F-38000 Grenoble, France
| | - Nicolas Hengl
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LRP, F-38000 Grenoble, France
| | - Mohamed Karrouch
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LRP, F-38000 Grenoble, France
| | - Bruno Jean
- Univ. Grenoble Alpes, CNRS, CERMAV, F-38000 Grenoble, France
| | - Jean-Luc Putaux
- Univ. Grenoble Alpes, CNRS, CERMAV, F-38000 Grenoble, France
| | - Thomas Gibaud
- ENSL, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Sebastien Manneville
- ENSL, CNRS, Laboratoire de Physique, F-69342 Lyon, France; Institut Universitaire de France, France
| | | |
Collapse
|
75
|
Kassab Z, Daoudi H, Salim MH, El Idrissi El Hassani C, Abdellaoui Y, El Achaby M. Process-structure-property relationships of cellulose nanocrystals derived from Juncus effusus stems on ҡ-carrageenan-based bio-nanocomposite films. Int J Biol Macromol 2024; 265:130892. [PMID: 38513904 DOI: 10.1016/j.ijbiomac.2024.130892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/04/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
This study investigates the potential of Juncus plant fibers as a renewable source for producing cellulose nanocrystals (CNs) to reinforce polymers. Cellulose microfibers (CMFs) were extracted with a 0.43 ± 0.2 μm diameter and 69 % crystallinity through alkaline and bleaching treatments, then subjected to sulfuric acid hydrolysis, yielding four CN types (CN10, CN15, CN20 and CN30) with distinct physico-chemical properties and aspect ratios (47, 55, 57, and 60). The study assessed the influence of cellulose nanocrystals (CNs), incorporated at different weight percentages (3 %, 5 %, and 8 %), on thermal, transparency, and mechanical properties in k-carrageenan (CA) biocomposite films. The results indicate significant enhancements in these characteristics, highlighting good compatibility between CNs and CA matrix. Particularly noteworthy is the observed substantial improvement in tensile strength at an 8 wt% loading, with values of 23.43 ± 0.83 MPa for neat CA, 33.53 ± 0.83 MPa for CA-CN10, 36.67 ± 0.71 MPa for CA-CN15, 37.65 ± 0.56 MPa for CA-CN20, and 39.89 ± 0.77 MPa for CA-CN30 composites. Furthermore, the research explores the connection between the duration of hydrolysis and the properties of cellulose nanocrystals (CNs), unveiling their influence on the characteristics of nanocomposite films. Prolonged hydrolysis enhances CN crystallinity (CrI), aspect ratio, and surface charge content, consequently enhancing mechanical features like strength and flexibility in these films. These findings demonstrate the potential of Juncus plant fibers as a natural and eco-friendly resource for producing CNs that effectively reinforce polymers, making them an attractive option for diverse applications in the field.
Collapse
Affiliation(s)
- Zineb Kassab
- Materials Science, Energy, and Nano-engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150 Ben Guerir, Morocco.
| | - Hamza Daoudi
- Materials Science, Energy, and Nano-engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| | - Mohamed Hamid Salim
- Department of Chemical Engineering, Khalifa University SAN Campus Umm Al Nar, 127788, Abu Dhabi, United Arab Emirates
| | - Chirâa El Idrissi El Hassani
- Laboratory of Materials, Catalysis & Natural Resources Valorization, Faculty of Sciences and Techniques, University Hassan II, URAC 24, Casablanca, Morocco
| | - Youness Abdellaoui
- CONAHCyT-Cinvestav Saltillo, Department of Sustainability of Natural Resources and Energy, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Saltillo 25900, Mexico
| | - Mounir El Achaby
- Materials Science, Energy, and Nano-engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| |
Collapse
|
76
|
Hosseinzadeh J, Abdulkhani A, Ashori A, Dmirievich PS, Abdolmaleki H, Hajiahmad A, Sun F, Zadeh ZE. Comparative study on liquid versus gas phase hydrochloric acid hydrolysis for microcrystalline cellulose isolation from sugarcane bagasse. Int J Biol Macromol 2024; 264:130674. [PMID: 38458273 DOI: 10.1016/j.ijbiomac.2024.130674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Microcrystalline cellulose (MCC) was successfully synthesized from sugarcane bagasse using a rapid, low-temperature hydrochloric acid (HCl) gas treatment. The primary aim was to develop an energy-efficient "green" cellulose extraction process. Response surface methodology optimized the liquid-phase hydrolysis conditions to 3.3 % HCl at 117 °C for 127 min to obtain MCC with 350 degree of polymerization. An alternative gas-phase approach utilizing gaseous HCl diluted in hot 40 °C air was proposed to accelerate MCC production. The cellulose pulp was moistened to 15-18 % moisture content and then exposed to HCl gas, which was absorbed by the moisture in the cellulose fibers to generate a highly concentrated acidic solution that hydrolyzed the cellulose. The cellulose pulp was isolated from depithed bagasse through soda pulping, multistage bleaching and cold alkali purification. Hydrolysis was conducted by saturating the moist cellulose fibers with gaseous HCl mixed with hot air. Extensive analytical characterization using FT-IR, XRD, SEM, TGA, DSC, particle size, and porosity analyses verified comparable physicochemical attributes between MCC samples prepared via liquid and gas phase methods. The gas-produced MCC revealed 85% crystallinity, 71 Å crystallite dimensions, and thermally stable rod-shaped morphology with an average diameter below 200 μm. The similar material properties validate the proposed gas-based technique as an equally effective yet more energy-efficient alternative to conventional aqueous acid hydrolysis for fabricating highly pure MCC powders from lignocellulose. This sustainable approach enables the value-addition of sugarcane bagasse agro-industrial residue into cellulosic nanomaterials for wide-ranging industrial applications. In summary, the key achievements of this work are rapid MCC production under mild temperatures using HCl gas, optimization of liquid phase hydrolysis, successful demonstration of gas phase method, and extensive characterization verifying equivalence between both protocols. The gas methodology offers a greener cellulose extraction process from biomass.
Collapse
Affiliation(s)
- Jaber Hosseinzadeh
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Ali Abdulkhani
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
| | - Alireza Ashori
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
| | - Pimenov Sergey Dmirievich
- Institute for Chemical Processing of Wood Biomass and Technosphere Safety, Saint Petersburg State Forest Technical University, Saint Petersburg, Russian Federation
| | | | - Ali Hajiahmad
- Department of Mechanics of Biosystems Engineering, Faculty of Agriculture, University of Tehran, Karaj, Iran
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zahra Echresh Zadeh
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| |
Collapse
|
77
|
Norfarhana A, Ilyas R, Ngadi N, Dzarfan Othman MH. Innovative ionic liquid pretreatment followed by wet disk milling treatment provides enhanced properties of sugar palm nano-fibrillated cellulose. Heliyon 2024; 10:e27715. [PMID: 38509963 PMCID: PMC10951586 DOI: 10.1016/j.heliyon.2024.e27715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
In order to accommodate the increased demand for innovative materials, intensive research has focused on natural resources. In pursuit of advanced substances that exhibit functionality, sustainability, recyclability, and cost-effectiveness, the present work attempted an alternative study on cellulose nanofibers derived from sugar palm fiber. Leveraging an innovative approach involving ionic liquid (IL) pre-treatment, bleaching, and wet disc mill technique, nano-fibrillated cellulose (NFC) was successfully obtained from the sugar palm fiber source. Remarkably, 96.89% of nanofibers were extracted from the sugar palm fiber, demonstrating the process's efficacy and scalability. Further investigation revealed that the sugar palm nano-fibrillated cellulose (SPNFC) exhibited a surface area of 3.46 m2/g, indicating a significant interface for enhanced functionality. Additionally, the analysis unveiled an average pore size of 4.47 nm, affirming its suitability for various applications that necessitate precise filtration. Moreover, the surface charge densities of SPNFC were found to be -32.1 mV, offering opportunities for surface modification and enhanced interactions with various materials. The SPNFC exhibit remarkable thermal stability, enduring temperatures of up to 360.5 °C. Additionally, the isolation process is evident in a significant rise in the crystallinity index, escalating from 50.97% in raw fibers to 61.62% in SPNFC. These findings shed light on the vast potential and distinct features of SPNFC, opening the path for its application in a wide array of industries, including but not limited to advanced materials, biomedicine, and environmental engineering.
Collapse
Affiliation(s)
- A.S. Norfarhana
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
- Department of Petrochemical Engineering, Politeknik Tun Syed Nasir Syed Ismail, Pagoh Education Hub, 84600 Pagoh Muar Johor, Malaysia
| | - R.A. Ilyas
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
| | - Norzita Ngadi
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
| | - Mohd Hafiz Dzarfan Othman
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| |
Collapse
|
78
|
Xu Y, Gilbert EP, Sokolova A, Stokes JR. Phase transition and gelation in cellulose nanocrystal-based aqueous suspensions studied by SANS. J Colloid Interface Sci 2024; 658:660-670. [PMID: 38134674 DOI: 10.1016/j.jcis.2023.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
HYPOTHESIS Aqueous suspensions of cellulose nanocrystals (CNC) form a re-entrant liquid crystal (LC) phase with increasing salinity. Phase separation occurs in this LC state leading to a biphasic gel with a flow programmable structure that can be used to form anisotropic soft materials. We term this state a Liquid Crystal Hydroglass (LCH). Defining the mechanisms by which the LCH forms requires detailed structural analysis at the mesoscopic length scale. EXPERIMENTS By utilising Small Angle Neutron Scattering (SANS), we investigated the microstructure transitions in CNC suspensions, with a particular focus on the unique LC re-entrancy and gelation into the biphasic LCH. FINDINGS Scattering from LCH gels comprises contributions from a dispersed liquid state and static heterogeneity, characterised using a Lorentzian-Gaussian model of inhomogeneity. This conceptually supports a gelation mechanism (spinodal decomposition) in CNC suspensions towards a biphasic structure of the LCH. It also demonstrates that, with increasing salinity, the non-monotonic variation in effective volume fraction of CNC rods fundamentally causes the LC re-entrancy. This work provides the first experimental characterisation of the LC-re-entrancy and formation of an anisotropic LCH gel. The proposed mechanism can be extended to understanding the general behaviour of anisotropic colloids.
Collapse
Affiliation(s)
- Yuan Xu
- School of Chemical Engineering, The University of Queensland, Queensland, 4072, Australia.
| | - Elliot P Gilbert
- Australian Centre for Neutron Scattering, ANSTO, Lucas Heights, New South Wales, 2234, Australia
| | - Anna Sokolova
- Australian Centre for Neutron Scattering, ANSTO, Lucas Heights, New South Wales, 2234, Australia
| | - Jason R Stokes
- School of Chemical Engineering, The University of Queensland, Queensland, 4072, Australia.
| |
Collapse
|
79
|
Saberi Riseh R, Hassanisaadi M, Vatankhah M, Varma RS, Thakur VK. Nano/Micro-Structural Supramolecular Biopolymers: Innovative Networks with the Boundless Potential in Sustainable Agriculture. NANO-MICRO LETTERS 2024; 16:147. [PMID: 38457088 PMCID: PMC10923760 DOI: 10.1007/s40820-024-01348-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/09/2024] [Indexed: 03/09/2024]
Abstract
Sustainable agriculture plays a crucial role in meeting the growing global demand for food while minimizing adverse environmental impacts from the overuse of synthetic pesticides and conventional fertilizers. In this context, renewable biopolymers being more sustainable offer a viable solution to improve agricultural sustainability and production. Nano/micro-structural supramolecular biopolymers are among these innovative biopolymers that are much sought after for their unique features. These biomaterials have complex hierarchical structures, great stability, adjustable mechanical strength, stimuli-responsiveness, and self-healing attributes. Functional molecules may be added to their flexible structure, for enabling novel agricultural uses. This overview scrutinizes how nano/micro-structural supramolecular biopolymers may radically alter farming practices and solve lingering problems in agricultural sector namely improve agricultural production, soil health, and resource efficiency. Controlled bioactive ingredient released from biopolymers allows the tailored administration of agrochemicals, bioactive agents, and biostimulators as they enhance nutrient absorption, moisture retention, and root growth. Nano/micro-structural supramolecular biopolymers may protect crops by appending antimicrobials and biosensing entities while their eco-friendliness supports sustainable agriculture. Despite their potential, further studies are warranted to understand and optimize their usage in agricultural domain. This effort seeks to bridge the knowledge gap by investigating their applications, challenges, and future prospects in the agricultural sector. Through experimental investigations and theoretical modeling, this overview aims to provide valuable insights into the practical implementation and optimization of supramolecular biopolymers in sustainable agriculture, ultimately contributing to the development of innovative and eco-friendly solutions to enhance agricultural productivity while minimizing environmental impact.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan, 7718897111, Iran.
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan, 7718897111, Iran
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan, 7718897111, Iran
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural Collage (SRUC), Edinburgh, EH9 3JG, UK.
| |
Collapse
|
80
|
Le Guern F, Ouk TS, Arnoux P, Frochot C, Sol V. Easy and versatile cellulosic support inhibiting broad spectrum strains: synergy between photodynamic antimicrobial therapy and polymyxin B. Photochem Photobiol Sci 2024; 23:395-407. [PMID: 38300464 DOI: 10.1007/s43630-023-00526-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/15/2023] [Indexed: 02/02/2024]
Abstract
Despite advances achieved in the health field over the last decade, infections caused by resistant bacterial strains are an increasingly important societal issue that needs to be addressed. New approaches have already been developed to overcome this problem. Photodynamic antimicrobial chemotherapy (PACT) could provide a promising alternative method to eradicate microbes. This approach has already inspired the development of innovative surfaces. Interesting results were achieved against Gram-positive bacteria, but it also appeared that Gram-negative strains, especially Pseudomonas aeruginosa, were less sensitive to PACT. However, materials coated with cationic porphyrins have already proven their wide-spectrum activity, but these materials were not suitable for industrial-scale production. The main aim of this work was the design of a large-scale evolutionary material based on PACT and antibiotic prophylaxis. Transparent regenerated cellulose has been simply impregnated with a usual cationic porphyrin (N-methylpyridyl) and an antimicrobial peptide (polymyxin B). In addition to its photophysical properties, this film exhibited a wide-spectrum bactericidal activity over 4 days despite daily application of fresh bacterial inoculums. The efficiency of PACT and polymyxin B combination could help to reduce the emergence of bacterial multi-resistant strains and we believe that this kind of material would provide an excellent opportunity to prevent bacterial contamination of bandages or packaging.
Collapse
Affiliation(s)
- Florent Le Guern
- Univ Limoges, LABCiS, UR22722, 87000, Limoges, France
- Institut Lavoisier de Versailles, Université Paris-Saclay, UVSQ, CNRS, 78000, Versailles, France
| | | | - Phillipe Arnoux
- Université de Lorraine, CNRS LRGP UMR 7274, 54000, Nancy, France
| | - Céline Frochot
- Université de Lorraine, CNRS LRGP UMR 7274, 54000, Nancy, France
| | - Vincent Sol
- Univ Limoges, LABCiS, UR22722, 87000, Limoges, France.
| |
Collapse
|
81
|
Hamidon TS, Idris NN, Adnan R, Haafiz MKM, Zahari A, Hussin MH. Oil palm frond-derived cellulose nanocrystals: Effect of pretreatment and elucidating its reinforcing potential in hydrogel beads. Int J Biol Macromol 2024; 262:130239. [PMID: 38367788 DOI: 10.1016/j.ijbiomac.2024.130239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Herein, cellulose nanocrystals were synthesized from oil palm fronds (CNC-OPF) involving two pretreatment approaches, viz. autohydrolysis and soda pulping. The pretreatments were applied individually to OPF fibers to assess their influence on CNCs' physicochemical and thermal properties. CNC-OPF samples were assessed using complementary characterization techniques, which confirmed their purity and characteristics. CP/MAS 13C NMR and TEM studies revealed that autohydrolysis pretreatment yielded CNCs with effective hemicellulose and extractives removal compared to that of soda pulping. XRD analysis demonstrated that autohydrolysis-treated CNC-OPF contained a much higher crystallinity index compared to soda pulping treatment. BET measurement disclosed a relatively higher surface area and wider pore diameter of autohydrolysis-treated CNC-OPF. Autohydrolysis-treated CNCs were applied as a reinforcement filler in alginate-based hydrogel beads for the removal of 4-chlorophenol from water, which attained a qmax of 19.168 mg g-1. BET analysis revealed the less porous nature of CNC-ALG hydrogel beads which could have contributed to hydrogel beads' relatively lower adsorption capacity. The point of zero charge of CNC-ALG hydrogel beads was 4.82, suggesting their applicability only within a short solution pH range. This study directs future studies to unveil the possibilities of functionalizing CNCs in order to enhance the adsorption performance of CNC-immobilized hydrogel beads towards 4-chlorophenol and other organic contaminants.
Collapse
Affiliation(s)
- Tuan Sherwyn Hamidon
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | - Nor Najhan Idris
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Rohana Adnan
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - M K Mohamad Haafiz
- School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Azeana Zahari
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - M Hazwan Hussin
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
82
|
Wang F, Borjas A, Bonto A, Ursu AV, Dupont M, Roche J, Delattre C. Exploring Novel Applications for Hydrogels Derived from Modified Celluloses. Polymers (Basel) 2024; 16:530. [PMID: 38399908 PMCID: PMC10892153 DOI: 10.3390/polym16040530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
The valorization of lignocellulosic biomass by-products holds significant economic and ecological potential, considering their global overproduction. This paper introduces the fabrication of a novel wheat-straw-based hydrogel and a new microcellulose-based hydrogel through 2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO) oxidation. In this study, Fourier transform infrared (FTIR) analysis was employed for the detection of carboxyl groups, neutralization titration was conducted using a conductivity meter, viscosity analysis was performed using a rheometer, and transmittance analysis was carried out using a spectrophotometer. Two novel hydrogels based on TEMPO oxidation have been developed. Among them, the bio-based hydrogel derived from oxidized wheat straw exhibited exceptional printability and injectability. We found that the oxidation degree of microcellulose reached 56-69%, and the oxidation degree of wheat straw reached 56-63%. The cross-linking of 4% oxidized wheat straw and calcium chloride was completed in 400 seconds, and the viscosity exceeded 100,000 Pa·s. In summary, we have successfully created low-cost hydrogels through the modification of wheat straw and microcellulose, transforming lignocellulosic biomass by-products into a sustainable source of polymers. This paper verifies the future applicability of biomass materials in 3D printing.
Collapse
Affiliation(s)
- Feiyang Wang
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Aldo Borjas
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
- INRAE, Laboratoire de Génétique, Diversité et Écophysiologie des céréales (GDEC), Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Aldrin Bonto
- Department of Chemistry, De La Salle University, 2401 Taft, Avenue, Manila 0922, Philippines
| | - Alina Violeta Ursu
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Maxime Dupont
- INRAE, Laboratoire de Génétique, Diversité et Écophysiologie des céréales (GDEC), Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Jane Roche
- INRAE, Laboratoire de Génétique, Diversité et Écophysiologie des céréales (GDEC), Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Cédric Delattre
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
- Institut Universitaire de France (IUF), 1 Rue Descartes, 75005 Paris, France
| |
Collapse
|
83
|
Channab BE, El Idrissi A, Essamlali Y, Zahouily M. Nanocellulose: Structure, modification, biodegradation and applications in agriculture as slow/controlled release fertilizer, superabsorbent, and crop protection: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:119928. [PMID: 38219662 DOI: 10.1016/j.jenvman.2023.119928] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/28/2023] [Accepted: 12/23/2023] [Indexed: 01/16/2024]
Abstract
This review investigates the potential of nanocellulose in agriculture, encompassing its structure, synthesis, modification, and applications. Our investigation of the characteristics of nanocellulose includes a comprehensive classification of its structure. Various mechanical, chemical and enzymatic synthesis techniques are evaluated, each offering distinct possibilities. The central role of surface functionalization is thoroughly examined. In particular, we are evaluating the conventional production of nanocellulose, thus contributing to the novelty. This review is a pioneering effort to comprehensively explore the use of nanocellulose in slow and controlled release fertilizers, revolutionizing nutrient management and improving crop productivity with reduced environmental impact. Additionally, our work uniquely integrates diverse applications of nanocellulose in agriculture, ranging from slow-release fertilizers, superabsorbent cellulose hydrogels for drought stress mitigation, and long-lasting crop protection via nanocellulose-based seed coatings. The study ends by identifying challenges and unexplored opportunities in the use of nanocellulose in agriculture. This review makes an innovative contribution by being the first comprehensive study to examine the multiple applications of nanocellulose in agriculture, including slow-release and controlled-release fertilizers.
Collapse
Affiliation(s)
- Badr-Eddine Channab
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco.
| | - Ayoub El Idrissi
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco; Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco
| | - Younes Essamlali
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco; Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco; Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| | - Mohamed Zahouily
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco; Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco; Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| |
Collapse
|
84
|
Sarangi PK, Srivastava RK, Sahoo UK, Singh AK, Parikh J, Bansod S, Parsai G, Luqman M, Shadangi KP, Diwan D, Lanterbecq D, Sharma M. Biotechnological innovations in nanocellulose production from waste biomass with a focus on pineapple waste. CHEMOSPHERE 2024; 349:140833. [PMID: 38043620 DOI: 10.1016/j.chemosphere.2023.140833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/17/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
New materials' synthesis and utilization have shown many critical challenges in healthcare and other industrial sectors as most of these materials are directly or indirectly developed from fossil fuel resources. Environmental regulations and sustainability concepts have promoted the use of natural compounds with unique structures and properties that can be biodegradable, biocompatible, and eco-friendly. In this context, nanocellulose (NC) utility in different sectors and industries is reported due to their unique properties including biocompatibility and antimicrobial characteristics. The bacterial nanocellulose (BNC)-based materials have been synthesized by bacterial cells and extracted from plant waste materials including pineapple plant waste biomass. These materials have been utilized in the form of nanofibers and nanocrystals. These materials are found to have excellent surface properties, low density, and good transparency, and are rich in hydroxyl groups for their modifications to other useful products. These materials are well utilized in different sectors including biomedical or health care centres, nanocomposite materials, supercapacitors, and polymer matrix production. This review explores different approaches for NC production from pineapple waste residues using biotechnological interventions, approaches for their modification, and wider applications in different sectors. Recent technological developments in NC production by enzymatic treatment are critically discussed. The utilization of pineapple waste-derived NC from a bioeconomic perspective is summarized in the paper. The chemical composition and properties of nanocellulose extracted from pineapple waste may have unique characteristics compared to other sources. Pineapple waste for nanocellulose production aligns with the principles of sustainability, waste reduction, and innovation, making it a promising and novel approach in the field of nanocellulose materials.
Collapse
Affiliation(s)
- Prakash Kumar Sarangi
- College of Agriculture, Central Agricultural University, Imphal, 795004, Manipur, India
| | - Rajesh Kumar Srivastava
- Department of Biotechnology, GIT, Gandhi Institute of Technology and Management (GITAM), Visakhapatnam, 530045, India
| | | | - Akhilesh Kumar Singh
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, 845401, India
| | - Jigisha Parikh
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, 395007, Gujarat, India
| | - Shama Bansod
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, 395007, Gujarat, India
| | - Ganesh Parsai
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, 395007, Gujarat, India
| | - Mohammad Luqman
- Chemical Engineering Department, College of Engineering, Taibah University, Yanbu Al-Bahr-83, Al-Bandar District 41911, Kingdom of Saudi Arabia
| | - Krushna Prasad Shadangi
- Department of Chemical Engineering, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, 768018, India
| | - Deepti Diwan
- Washington University, School of Medicine, Saint Louis, MO, USA
| | - Deborah Lanterbecq
- Laboratoire de Biotechnologie et Biologie Appliquée, CARAH ASBL, Rue Paul Pastur, 11, Ath, 7800, Belgium
| | - Minaxi Sharma
- Laboratoire de Biotechnologie et Biologie Appliquée, CARAH ASBL, Rue Paul Pastur, 11, Ath, 7800, Belgium.
| |
Collapse
|
85
|
Qian X, Xu Y, Xu Y. Bacterial cellulose based TiO 2-CdS nanocomposite gel with enhanced photocatalytic activity for adsorptive degradation of cationic dye. Int J Biol Macromol 2024; 259:127873. [PMID: 37926309 DOI: 10.1016/j.ijbiomac.2023.127873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/07/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Dye released by industrial is one of the main known pollutants in wastewater, which is harmfully affected to the human health. Adsorptive method by absorbents and photocatalytic degradation technique are advanced technologies to remove dyes from wastewater. However, the single technique mentioned above has imperfections limiting its application. Herein, in order to integrate the two techniques and take both advantages, bacterial cellulose (BC) based titanium dioxide (TiO2)‑cadmium sulfide (CdS) nanocomposite gel was prepared by microwave-assisted solvothermal synthesis. The BC@TiO2-CdS nanocomposite gel was characterized by SEM, EDS, XRD, XPS, Raman spectral and TG, its photocatalytic mechanism was proved by PL. The results showed the TiO2-CdS nanophotocatalyst exhibited binary hierarchical structure and followed the Z-scheme type photocatalytic system. The Z-scheme heterojunction is advantageous for photo-generated charge separation and migration. The photocatalytic performance of BC@TiO2-CdS nanocomposite gel was evaluated by MB degradation under visible light irradiation. Due to synergistic effect of BC matrix and TiO2-CdS, the as-prepared BC@TiO2-CdS nanocomposite gel possesses enhanced photocatalytic activity with 94.47 % removal of methylene blue (MB) after 180 min visible light irradiation. Therefore, this work provides a facile route to fabricate bio-mass based efficient nanophotocatalytic material for pretreating the water pollution.
Collapse
Affiliation(s)
- Xin Qian
- Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, China; Shaanxi Provincal Key Laboratory of Papermaking Technology and Specialty Paper Development, China.
| | - Yongjian Xu
- Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China; Shaanxi Provincal Key Laboratory of Papermaking Technology and Specialty Paper Development, China; Key Laboratory of Paper Based Functional Materials, China National Light Industry, China.
| | - Yang Xu
- Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, China
| |
Collapse
|
86
|
Garcia KR, Beck RCR, Brandalise RN, dos Santos V, Koester LS. Nanocellulose, the Green Biopolymer Trending in Pharmaceuticals: A Patent Review. Pharmaceutics 2024; 16:145. [PMID: 38276515 PMCID: PMC10819157 DOI: 10.3390/pharmaceutics16010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The use of nanocellulose in pharmaceutics is a trend that has emerged in recent years. Its inherently good mechanical properties, compared to different materials, such as its high tensile strength, high elastic modulus and high porosity, as well as its renewability and biodegradability are driving nanocellulose's industrial use and innovations. In this sense, this study aims to conduct a search of patents from 2011 to 2023, involving applications of nanocellulose in pharmaceuticals. A patent search was carried out, employing three different patent databases: Patentscope from World Intellectual Property Organization (WIPO); Espacenet; and LENS.ORG. Patents were separated into two main groups, (i) nanocellulose (NC) comprising all its variations and (ii) bacterial nanocellulose (BNC), and classified into five major areas, according to their application. A total of 215 documents was retrieved, of which 179 were referred to the NC group and 36 to the BNC group. The NC group depicted 49.7%, 15.6%, 16.2%, 8.9% and 9.5% of patents as belonging to design and manufacturing, cell culture systems, drug delivery, wound healing and tissue engineering clusters, respectively. The BNC group classified 44.5% of patents as design and manufacturing and 30.6% as drug delivery, as well as 5.6% and 19.4% of patents as wound healing and tissue engineering, respectively. In conclusion, this work compiled and classified patents addressing exclusively the use of nanocellulose in pharmaceuticals, providing information on its current status and trending advancements, considering environmental responsibility and sustainability in materials and products development for a greener upcoming future.
Collapse
Affiliation(s)
- Keth Ribeiro Garcia
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, Brazil; (K.R.G.); (R.C.R.B.)
| | - Ruy Carlos Ruver Beck
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, Brazil; (K.R.G.); (R.C.R.B.)
| | - Rosmary Nichele Brandalise
- Programa de Pós-Graduação em Engenharia de Processos e Tecnologias, Universidade de Caxias do Sul (UCS), Caxias do Sul 95070-560, Brazil; (R.N.B.); (V.d.S.)
| | - Venina dos Santos
- Programa de Pós-Graduação em Engenharia de Processos e Tecnologias, Universidade de Caxias do Sul (UCS), Caxias do Sul 95070-560, Brazil; (R.N.B.); (V.d.S.)
| | - Letícia Scherer Koester
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, Brazil; (K.R.G.); (R.C.R.B.)
| |
Collapse
|
87
|
Kim M, Doh H. Upcycling Food By-products: Characteristics and Applications of Nanocellulose. Chem Asian J 2024:e202301068. [PMID: 38246883 DOI: 10.1002/asia.202301068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
Rising global food prices and the increasing prevalence of food insecurity highlight the imprudence of food waste and the inefficiencies of the current food system. Upcycling food by-products holds significant potential for mitigating food loss and waste within the food supply chain. Food by-products can be utilized to extract nanocellulose, a material that has obtained substantial attention recently due to its renewability, biocompatibility, bioavailability, and a multitude of remarkable properties. Cellulose nanomaterials have been the subject of extensive research and have shown promise across a wide array of applications, including the food industry. Notably, nanocellulose possesses unique attributes such as a surface area, aspect ratio, rheological behavior, water absorption capabilities, crystallinity, surface modification, as well as low possibilities of cytotoxicity and genotoxicity. These qualities make nanocellulose suitable for diverse applications spanning the realms of food production, biomedicine, packaging, and beyond. This review aims to provide an overview of the outcomes and potential applications of cellulose nanomaterials derived from food by-products. Nanocellulose can be produced through both top-down and bottom-up approaches, yielding various types of nanocellulose. Each of these variants possesses distinctive characteristics that have the potential to significantly enhance multiple sectors within the commercial market.
Collapse
Affiliation(s)
- Mikyung Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seodaemun-gu, Seoul 03760, Republic of Korea
- Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, Republic of Korea, 03710
| | - Hansol Doh
- Department of Food Science and Biotechnology, Ewha Womans University, Seodaemun-gu, Seoul 03760, Republic of Korea
- Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, Republic of Korea, 03710
| |
Collapse
|
88
|
Vishnoi Y, Trivedi AK, Gupta M, Singh H, Rangappa SM, Siengchin S. Extraction of nano-crystalline cellulose for development of aerogel: Structural, morphological and antibacterial analysis. Heliyon 2024; 10:e23846. [PMID: 38205309 PMCID: PMC10777015 DOI: 10.1016/j.heliyon.2023.e23846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
In the present decades, nanocellulose has been very popular in the field of nanotechnology and is receiving much attention from researchers because of its advantageous physicochemical properties, high aspect ratio, and high specific strength and modulus. The available non-eco-friendly conventional methods for the extraction of nano-crystalline cellulose (NCC) use highly concentrated chemicals and are time-consuming as well. The present adopted cost-effective method for the extraction of nano-crystalline cellulose involves minimum usage of chemicals and is environmentally friendly and relatively fast compared to other conventional methods. The nano-crystalline cellulose from sisal (NCC-S) fibers were extracted by steam explosion-assisted mild concentrated chemical treatments followed by mechanical grinding. The Dynamic light scattering (DLS) and Transmission electron microscopy (TEM) characterization confirmed the size of extracted NCC-S. A high aspect ratio was observed as 19.23, which signifies it could be a promising reinforcing material in developing nanocomposites for advanced applications. An increase in crystallinity and the removal of amorphous materials for NCC-S were confirmed by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) analysis, respectively. Antibacterial study shows that NCC-S did not show any antibacterial properties against E. coli and S. aureus. The calculated yield of extracted nanocellulose was about 50 %. The aerogel with a porosity of 95.1 % and a density of 0.075 g/cm3 was prepared by vacuum freeze-drying method using extracted nanocellulose and chitosan. The cross-linking network structure and thermal stability of the aerogel were also confirmed by FTIR and TGA analysis respectively.
Collapse
Affiliation(s)
- Yash Vishnoi
- Department of Mechanical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, U.P. India
| | - Alok Kumar Trivedi
- Department of Mechanical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, U.P. India
| | - M.K. Gupta
- Department of Mechanical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, U.P. India
| | - Harinder Singh
- Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, U.P. India
| | - Sanjay Mavinkere Rangappa
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand
| | - Suchart Siengchin
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand
| |
Collapse
|
89
|
Malani M, Thodikayil AT, Saha S, Nirmal J. Carboxylated nanofibrillated cellulose empowers moxifloxacin to overcome Staphylococcus aureus biofilm in bacterial keratitis. Carbohydr Polym 2024; 324:121558. [PMID: 37985120 DOI: 10.1016/j.carbpol.2023.121558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/21/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Bacterial keratitis is one of the vision-threatening ocular diseases that is increasing at an alarming rate due to antimicrobial resistance. One of the primary causes of antimicrobial resistance could be biofilm formation, which alters the mechanism and physiology of the microorganisms. Even a potent drug fails to inhibit biofilm due to the extracellular polysaccharide matrix surrounding the bacteria, inhibiting the permeation of drugs. Therefore, we aimed to develop carboxylated nanocellulose fibers loaded with moxifloxacin (Mox-cNFC) as a novel drug delivery system to treat bacterial corneal infection. Nanocellulose fibers were fabricated using a two-step method involving citric acid hydrolysis followed by TEMPO oxidation to introduce carboxylated groups (1.12 mmol/g). The Mox-cNFC particles showed controlled drug release till 40 h through diffusion. In vitro biofilm inhibition studies showed the particle's ability to disrupt the biofilm matrix and enhance the drug penetration to achieve optimal concentrations that inhibit the persister cells (without increasing minimum inhibitory concentration), thereby reducing the bacterial drug-resistant property. In vivo studies revealed the therapeutic potential of Mox-cNFC to treat Staphylococcus aureus-induced bacterial keratitis with once-a-day treatment, unlike neat moxifloxacin. Mox-cNFC could improve patient compliance by reducing the frequency of instillation and a controlled drug release to prevent toxicity.
Collapse
Affiliation(s)
- Manisha Malani
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India
| | | | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Jayabalan Nirmal
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India.
| |
Collapse
|
90
|
Guimarães MG, Macedo JL, Linares JJ, Ghesti GF. Nanoparticulated WO 3/NiWO 4 Using Cellulose as a Template and Its Application as an Auxiliary Co-Catalyst to Pt for Ethanol and Glycerol Electro-Oxidation. Int J Mol Sci 2024; 25:685. [PMID: 38255761 PMCID: PMC10815037 DOI: 10.3390/ijms25020685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
This work reports the use of cellulose as a template to prepare nanosized WO3 or NiWO4 and its application as a co-catalyst in the electro-oxidation of ethanol and glycerol. Microcrystalline cellulose was hydrolyzed with phosphotungstic acid (H3PW12O40) to prepare the nanocrystalline cellulose template. The latter was air-calcinated to remove the template and obtain nanometric WO3. Tungsten oxide was impregnated with Ni(NO3)2, which was subsequently air-calcinated to obtain the nanometric NiWO4. Elemental analysis confirmed the coexistence of nickel and tungsten, whereas thermal analysis evidenced a high thermal stability for these materials. The X-ray diffractograms displayed crystal facets of WO3 and, when Ni(II) was added, NiWO4. The transmission electron micrographs corroborated the formation of nanosized particles with average particle sizes in the range of 30 to 50 nm. Finally, to apply this material, Pt/WO3-C and Pt/WO3-NiWO4-C were prepared and used in ethanol and glycerol electro-oxidation in an alkaline medium, observing a promotional effect of the oxide and tungstate by reducing the onset potential and increasing the current density. These materials show great potential to produce clean electricity or green hydrogen, contributing to energetic transition.
Collapse
Affiliation(s)
- Munique G. Guimarães
- Laboratory of Bioprocesses Brewing Technology and Catalysis in Renewable Energy, Institute of Chemistry, University of Brasilia, Brasilia 70910-900, DF, Brazil; (M.G.G.); (J.L.M.)
| | - Julio L. Macedo
- Laboratory of Bioprocesses Brewing Technology and Catalysis in Renewable Energy, Institute of Chemistry, University of Brasilia, Brasilia 70910-900, DF, Brazil; (M.G.G.); (J.L.M.)
| | - José J. Linares
- Laboratory of Chemical Processes Development, Institute of Chemistry, University of Brasilia, Brasilia 70910-900, DF, Brazil;
| | - Grace F. Ghesti
- Laboratory of Bioprocesses Brewing Technology and Catalysis in Renewable Energy, Institute of Chemistry, University of Brasilia, Brasilia 70910-900, DF, Brazil; (M.G.G.); (J.L.M.)
| |
Collapse
|
91
|
Guivier M, Chevigny C, Domenek S, Casalinho J, Perré P, Almeida G. Water vapor transport properties of bio-based multilayer materials determined by original and complementary methods. Sci Rep 2024; 14:50. [PMID: 38168534 PMCID: PMC10761724 DOI: 10.1038/s41598-023-50298-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
To enhance PLA gas barrier properties, multilayer designs with highly polar barrier layers, such as nanocelluloses, have shown promising results. However, the properties of these polar layers change with humidity. As a result, we investigated water transport phenomena in PLA films coated with nanometric layers of chitosan and nanocelluloses, utilizing a combination of techniques including dynamic vapor sorption (DVS) and long-term water vapor adsorption-diffusion experiments (back-face measurements) to understand the influence of each layer on the behavior of multilayer films. Surprisingly, nanometric coatings impacted PLA water vapor transport. Chitosan/nanocelluloses layers, representing less than 1 wt.% of the multilayer film, increased the water vapor uptake of the film by 14.6%. The nanometric chitosan coating appeared to have localized effects on PLA structure. Moreover, nanocelluloses coatings displayed varying impacts on sample properties depending on their interactions (hydrogen, ionic bonds) with chitosan. The negatively charged CNF TEMPO coating formed a dense network that demonstrated higher resistance to water sorption and diffusion compared to CNF and CNC coatings. This work also highlights the limitations of conventional water vapor permeability measurements, especially when dealing with materials containing ultrathin nanocelluloses layers. It shows the necessity of considering the synergistic effects between layers to accurately evaluate the transport properties.
Collapse
Affiliation(s)
- Manon Guivier
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120, 22 Place de l'Agronomie, Palaiseau, France
| | - Chloé Chevigny
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120, 22 Place de l'Agronomie, Palaiseau, France
| | - Sandra Domenek
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120, 22 Place de l'Agronomie, Palaiseau, France
| | - Joel Casalinho
- CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Université Paris-Saclay, 91190, Gif-Sur-Yvette, France
| | - Patrick Perré
- CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Université Paris-Saclay, 91190, Gif-Sur-Yvette, France
- CentraleSupélec, LGPM, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 Rue des Rouges Terres, 51110, Pomacle, France
| | - Giana Almeida
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120, 22 Place de l'Agronomie, Palaiseau, France.
| |
Collapse
|
92
|
Sun W. Fungal mycelia: From innovative materials to promising products: Insights and challenges. Biointerphases 2024; 19:018502. [PMID: 38415769 DOI: 10.1116/6.0003441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/29/2024] Open
Abstract
In transitioning toward a sustainable economy, mycelial materials are recognized for their adaptability, biocompatibility, and eco-friendliness. This paper updates the exploration of mycelial materials, defining their scope and emphasizing the need for precise terminology. It discusses the importance of mycelial type and characteristics, reviews existing and future research directions, and highlights the need for improved understanding, clarity, and standardization in this emerging field, aiming to foster and guide future research and development in sustainable material science.
Collapse
Affiliation(s)
- Wenjing Sun
- Institute of Materials (IMX), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
93
|
Hazra RS, Kale N, Boyle C, Molina KB, D'Souza A, Aland G, Jiang L, Chaturvedi P, Ghosh S, Mallik S, Khandare J, Quadir M. Magnetically-activated, nanostructured cellulose for efficient capture of circulating tumor cells from the blood sample of head and neck cancer patients. Carbohydr Polym 2024; 323:121418. [PMID: 37940250 DOI: 10.1016/j.carbpol.2023.121418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 11/10/2023]
Abstract
In this report, the relative efficiency of cellulose nanocrystals (CNCs) and nanofibers (CNFs) to capture circulating tumor cells (CTCs) from the blood sample of head and neck cancer (HNC) patients was evaluated. Detection and enumeration of CTCs are critical for monitoring cancer progression. Both types of nanostructured cellulose were chemically modified with Epithelial Cell Adhesion Molecule (EpCAM) antibody and iron oxide nanoparticles. The EpCAM antibody facilitated the engagement of CTCs, promoting entrapment within the cellulose cage structure. Iron oxide nanoparticles, on the other hand, rendered the cages activatable via the use of a magnet for the capture and separation of entrapped CTCs. The efficiency of the network structures is shown in head and neck cancer (HNC) patients' blood samples. It was observed that the degree of chemical functionalization of hydroxyl groups located within the CNCs or CNFs with anti-EpCAM determined the efficiency of the system's interaction with CTCs. Further, our result indicated that inflexible scaffolds of nanocrystals interacted more efficiently with CTCs than that of the fibrous CNF scaffolds. Network structures derived from CNCs demonstrated comparable CTC capturing efficiency to commercial standard, OncoDiscover®. The output of the work will provide the chemical design principles of cellulosic materials intended for constructing affordable platforms for monitoring cancer progression in 'real time'.
Collapse
Affiliation(s)
- Raj Shankar Hazra
- Department of Mechanical Engineering, North Dakota State University, Fargo, ND 58108, USA; Department of Coatings and Polymeric Materials, North Dakota State University, Fargo 58108, ND, USA
| | - Narendra Kale
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo 58108, ND, USA; Department of Pharmaceutical Sciences, North Dakota State University, Fargo 58108, ND, USA
| | - Camden Boyle
- Department of Engineering and Technology, Southeast Missouri State University, One University Plaza, MS6825, Cape Girardeau, MO 63701, USA
| | - Kayla B Molina
- Department of Biomedical Engineering, The University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Alain D'Souza
- Actorius Innovations and Research, Pune, India; Actorius Innovations and Research, Simi Valley, CA 93063, USA
| | - Gourishankar Aland
- Actorius Innovations and Research, Pune, India; Actorius Innovations and Research, Simi Valley, CA 93063, USA
| | - Long Jiang
- Department of Mechanical Engineering, North Dakota State University, Fargo, ND 58108, USA
| | - Pankaj Chaturvedi
- Department of Head and Neck Surgical Oncology, Tata Memorial Hospital, Mumbai, India
| | - Santaneel Ghosh
- Department of Engineering and Technology, Southeast Missouri State University, One University Plaza, MS6825, Cape Girardeau, MO 63701, USA
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo 58108, ND, USA
| | - Jayant Khandare
- Actorius Innovations and Research, Pune, India; School of Pharmacy, Dr. Vishwananth Karad MIT World Peace University, Pune 411038, India; School of Consciousness, Dr. Vishwananth Karad MIT World Peace University, Pune 411038, India; Actorius Innovations and Research, Simi Valley, CA 93063, USA.
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo 58108, ND, USA.
| |
Collapse
|
94
|
Leow Y, Boo YJ, Lin M, Tan YC, Goh RZR, Zhu Q, Loh XJ, Xue K, Kai D. Coconut husk-derived nanocellulose as reinforcing additives in thermal-responsive hydrogels. Carbohydr Polym 2024; 323:121453. [PMID: 37940313 DOI: 10.1016/j.carbpol.2023.121453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 11/10/2023]
Abstract
Nanocellulose has been widely used as a reinforcing agent for hydrogel systems, but its functions on thermal responsive hydrogels are rarely investigated. In this study, we extracted cellulose nanofibers (CNFs) from coconut biomass (coir fibers and piths, respectively) and aimed to study their effects on the material properties on a new class of thermogel (poly(PCL/PEG/PPG urethane). The CNFs extracted from fiber (FF) and piths (FP) showed different morphology and fiber lengths. FF are uniformed individual fibrous networks with a fiber length of 664 ± 416 nm, while FP display a hybrid structure consisting of individual fiber and large bundles with a relative shorter fiber length of 443 ± 184 nm. Integrating both CNFs into thermogels remained the thermal-responsive characteristics with an enhanced rheological property. The results showed that gels with FF resulted in a higher storage modulus and lower Tan δ value compared to those with FP, indicating that the CNFs with a longer length could form a more intertwined network interacting with the thermogel matrix. Furthermore, we demonstrated the improved capabilities of the nanocomposite thermogels for sustained drug delivery in vitro. This study not only value-adds lignocellulose valorization but also elevates the versatility of thermogels.
Collapse
Affiliation(s)
- Yihao Leow
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore; School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Yi Jian Boo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore
| | - Ming Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore
| | - Ying Chuan Tan
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore
| | - Rubayn Zhi Rong Goh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore
| | - Qiang Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore.
| | - Kun Xue
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore.
| | - Dan Kai
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
| |
Collapse
|
95
|
Arman S, Hadavi M, Rezvani-Noghani A, Bakhtparvar A, Fotouhi M, Farhang A, Mokaberi P, Taheri R, Chamani J. Cellulose nanocrystals from celery stalk as quercetin scaffolds: A novel perspective of human holo-transferrin adsorption and digestion behaviours. LUMINESCENCE 2024; 39:e4634. [PMID: 38286605 DOI: 10.1002/bio.4634] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/28/2023] [Accepted: 11/04/2023] [Indexed: 01/31/2024]
Abstract
In this study, cellulose nanocrystals (CNCs) were synthesized from celery stalks to be used as the platform for quercetin delivery. Additionally, CNCs and CNCs-quercetin were characterized using the results of scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and zeta potential, while their interactions with human holo-transferrin (HTF) were also investigated. We examined their interaction under physiological conditions through the exertion of fluorescence, resonance light scattering, synchronized fluorescence spectroscopy, circular dichroism, three-dimensional fluorescence spectroscopy, and fluorescence resonance energy transfer techniques. The data from SEM and TEM exhibited the spherical shape of CNCs and CNCs-quercetin and also, a decrease was detected in the size of quercetin-loaded CNCs from 676 to 473 nm that indicated the intensified water solubility of quercetin. The success of cellulose acid hydrolysis was confirmed based on the XRD results. Apparently, the crystalline index of CNCs-quercetin was reduced by the interaction of CNCs with quercetin, which also resulted in the appearance of functional groups, as shown by FTIR. The interaction of CNCs-quercetin with HTF was also demonstrated by the induced quenching in the intensity of HTF fluorescence emission and Stern-Volmer data represent the occurrence of static quenching. Overall, the effectiveness of CNCs as quercetin vehicles suggests its potential suitability for dietary supplements and pharmaceutical products.
Collapse
Affiliation(s)
- Samaneh Arman
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Marzieh Hadavi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Anashid Bakhtparvar
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Melika Fotouhi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ali Farhang
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Parisa Mokaberi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Reza Taheri
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Jamshidkhan Chamani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
96
|
Geleto S, Ariti AM, Gutema BT, Abda EM, Abiye AA, Abay SM, Mekonnen ML, Workie YA. Nanocellulose/Fe 3O 4/Ag Nanozyme with Robust Peroxidase Activity for Enhanced Antibacterial and Wound Healing Applications. ACS OMEGA 2023; 8:48764-48774. [PMID: 38162792 PMCID: PMC10753546 DOI: 10.1021/acsomega.3c05748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
Peroxidase memetic nanozymes with their free radical-mediated catalytic actions proved as efficacious antibacterial agents for combating bacterial resistance. Herein, nanocellulose (NC) extracted from Eragrostis teff straw was used to prepare NC/Fe3O4/Ag peroxidase nanozyme as an antibacterial and wound healing agent. Characterization of the nanozyme with XRD, FTIR, SEM-EDX, and XPS confirmed the presence of silver NPs and the magnetite phase of iron oxide dispersed on nanocellulose. The peroxidase activity of the prepared nanozyme was examined using TMB and H2O2 as substrates which turned blue in acidic pH (λmax = 652 nm). With a lower Km (0.387 mM), the nanozyme showed a comparable affinity for TMB with that reported for the HRP enzyme. Furthermore, the nanozyme remained efficient over a broader temperature range while maintaining 61.53% of its activity after the fourth cycle. In vitro, antibacterial tests against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacterial strains showed that NC/Fe3O4/Ag exhibits concentration-dependent and enhanced antibacterial effect for Escherichia coli compared to NC and NC-Fe3O4 and negative control. Furthermore, the wound-healing performance of the NC-Fe3O4-Ag nanozyme was investigated in vivo using an animal model (mice). The nanozyme showed 30% higher wound healing performance compared to the control base ointment and is comparable with the commercial nitrofurazone ointment. The results show the potential of the prepared nanozyme for wound-healing purposes.
Collapse
Affiliation(s)
- Seada
Abdo Geleto
- Industrial
Chemistry Department, Addis Ababa Science
and Technology University, Addis Ababa 1647, Ethiopia
| | - Abera Merga Ariti
- Industrial
Chemistry Department, Addis Ababa Science
and Technology University, Addis Ababa 1647, Ethiopia
| | - Beamlak Teshome Gutema
- Biotechnology
Department, Addis Ababa Science and Technology
University, Addis Ababa 1647, Ethiopia
| | - Ebrahim M. Abda
- Biotechnology
Department, Addis Ababa Science and Technology
University, Addis Ababa 1647, Ethiopia
- Bioprocess
and Biotechnology Center of Excellence, Addis Ababa Science and Technology University, Addis Ababa 1647, Ethiopia
| | - Alfoalem Araba Abiye
- Department
of Pharmacology and Clinical Pharmacy, School of Pharmacy, College
of Health Sciences, Addis Ababa University, Addis Ababa 1647, Ethiopia
| | - Solomon M. Abay
- Department
of Pharmacology and Clinical Pharmacy, School of Pharmacy, College
of Health Sciences, Addis Ababa University, Addis Ababa 1647, Ethiopia
| | - Menbere Leul Mekonnen
- Industrial
Chemistry Department, Addis Ababa Science
and Technology University, Addis Ababa 1647, Ethiopia
- Nanotechnology
Center of Excellence, Addis Ababa Science
and Technology University, Addis
Ababa 1647, Ethiopia
| | - Yitayal Admassu Workie
- Industrial
Chemistry Department, Addis Ababa Science
and Technology University, Addis Ababa 1647, Ethiopia
- Nanotechnology
Center of Excellence, Addis Ababa Science
and Technology University, Addis
Ababa 1647, Ethiopia
| |
Collapse
|
97
|
Jali S, Mohan TP, Mwangi FM, Kanny K. A Review on Barrier Properties of Cellulose/Clay Nanocomposite Polymers for Packaging Applications. Polymers (Basel) 2023; 16:51. [PMID: 38201717 PMCID: PMC10780723 DOI: 10.3390/polym16010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Packaging materials are used to protect consumer goods, such as food, drinks, cosmetics, healthcare items, and more, from harmful gases and physical and chemical damage during storage, distribution, and handling. Synthetic plastics are commonly used because they exhibit sufficient characteristics for packaging requirements, but their end lives result in environmental pollution, the depletion of landfill space, rising sea pollution, and more. These exist because of their poor biodegradability, limited recyclability, etc. There has been an increasing demand for replacing these polymers with bio-based biodegradable materials for a sustainable environment. Cellulosic nanomaterials have been proposed as a potential substitute in the preparation of packaging films. Nevertheless, their application is limited due to their poor properties, such as their barrier, thermal, and mechanical properties, to name a few. The barrier properties of materials play a pivotal role in extending and determining the shelf lives of packaged foods. Nanofillers have been used to enhance the barrier properties. This article reviews the literature on the barrier properties of cellulose/clay nanocomposite polymers. Cellulose extraction stages such as pretreatment, bleaching, and nanoparticle isolation are outlined, followed by cellulose modification methods. Finally, a brief discussion on nanofillers is provided, followed by an extensive literature review on the barrier properties of cellulose/clay nanocomposite polymers. Although similar reviews have been presented, the use of modification processes applied to cellulose, clay, and final nanocomposites to enhance the barrier properties has not been reviewed. Therefore, this article focuses on this scope.
Collapse
Affiliation(s)
- Sandile Jali
- Composite Research Group (CRG), Durban University of Technology, Durban 4000, South Africa; (S.J.); (F.M.M.); (K.K.)
| | - Turup Pandurangan Mohan
- Composite Research Group (CRG), Durban University of Technology, Durban 4000, South Africa; (S.J.); (F.M.M.); (K.K.)
| | - Festus Maina Mwangi
- Composite Research Group (CRG), Durban University of Technology, Durban 4000, South Africa; (S.J.); (F.M.M.); (K.K.)
- Department of Mechanical Engineering, Durban University of Technology, Durban 4000, South Africa
| | - Krishnan Kanny
- Composite Research Group (CRG), Durban University of Technology, Durban 4000, South Africa; (S.J.); (F.M.M.); (K.K.)
| |
Collapse
|
98
|
Morlet-Decarnin L, Divoux T, Manneville S. Critical-Like Gelation Dynamics in Cellulose Nanocrystal Suspensions. ACS Macro Lett 2023; 12:1733-1738. [PMID: 38064662 DOI: 10.1021/acsmacrolett.3c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
We use time-resolved mechanical spectroscopy to offer a detailed picture of the gelation dynamics of cellulose nanocrystal (CNC) suspensions following shear cessation in the presence of salt. CNCs are charged, rodlike colloids that self-assemble into various phases, including physical gels serving as soft precursors for biosourced composites. Here, a series of linear viscoelastic spectra acquired across the sol-gel transition of CNC suspensions are rescaled onto two master curves that correspond to a viscoelastic liquid state prior to gelation and to a soft solid state after gelation. These two states are separated by a critical gel point, where all rescaling parameters diverge in an asymmetric fashion yet with exponents that obey hyperscaling relations consistent with previous works on isotropic colloids and polymer gels. Upon varying the salt content, we further show that these critical-like dynamics result in both time-connectivity and time-concentration superposition principles.
Collapse
Affiliation(s)
| | - Thibaut Divoux
- ENSL, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Sébastien Manneville
- ENSL, CNRS, Laboratoire de Physique, F-69342 Lyon, France
- Institut Universitaire de France (IUF), https://www.iufrance.fr/
| |
Collapse
|
99
|
Pirozzi A, Rincón E, Espinosa E, Donsì F, Serrano L. Nanostructured Cellulose-Based Aerogels: Influence of Chemical/Mechanical Cascade Processes on Quality Index for Benchmarking Dye Pollutant Adsorbents in Wastewater Treatment. Gels 2023; 9:958. [PMID: 38131944 PMCID: PMC10742814 DOI: 10.3390/gels9120958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
(1) Background: Nanostructured cellulose has emerged as an efficient bio-adsorbent aerogel material, offering biocompatibility and renewable sourcing advantages. This study focuses on isolating (ligno)cellulose nanofibers ((L)CNFs) from barley straw and producing aerogels to develop sustainable and highly efficient decontamination systems. (2) Methods: (Ligno)cellulose pulp has been isolated from barley straw through a pulping process, and was subsequently deconstructed into nanofibers employing various pre-treatment methods (TEMPO-mediated oxidation process or PFI beater mechanical treatment) followed by the high-pressure homogenization (HPH) process. (3) Results: The aerogels made by (L)CNFs, with a higher crystallinity degree, larger aspect ratio, lower shrinkage rate, and higher Young's modulus than cellulose aerogels, successfully adsorb and remove organic dye pollutants from wastewater. (L)CNF-based aerogels, with a quality index (determined using four characterization parameters) above 70%, exhibited outstanding contaminant removal capacity over 80%. The high specific surface area of nanocellulose isolated using the TEMPO oxidation process significantly enhanced the affinity and interactions between hydroxyl and carboxyl groups of nanofibers and cationic groups of contaminants. The efficacy in adsorbing cationic dyes in wastewater onto the aerogels was verified by the Langmuir adsorption isotherm model. (4) Conclusions: This study offers insights into designing and applying advanced (L)CNF-based aerogels as efficient wastewater decontamination and environmental remediation platforms.
Collapse
Affiliation(s)
- Annachiara Pirozzi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| | - Esther Rincón
- BioPrEn Group (RNM 940), Chemical Engineering Department, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Faculty of Science, Universidad de Córdoba, 14014 Córdoba, Spain; (E.R.); (E.E.)
| | - Eduardo Espinosa
- BioPrEn Group (RNM 940), Chemical Engineering Department, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Faculty of Science, Universidad de Córdoba, 14014 Córdoba, Spain; (E.R.); (E.E.)
| | - Francesco Donsì
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| | - Luis Serrano
- BioPrEn Group (RNM 940), Chemical Engineering Department, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Faculty of Science, Universidad de Córdoba, 14014 Córdoba, Spain; (E.R.); (E.E.)
| |
Collapse
|
100
|
Yang D, Fan B, Sun G, He YC, Ma C. Ultraviolet blocking ability, antioxidant and antibacterial properties of newly prepared polyvinyl alcohol-nanocellulose‑silver nanoparticles-ChunJian peel extract composite film. Int J Biol Macromol 2023; 252:126427. [PMID: 37598821 DOI: 10.1016/j.ijbiomac.2023.126427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
In this work, nanocellulose (CNC) from waste water chestnut (WCT) shell was firstly used for preparing nanocomposite films, by using ChunJian peel extract (CJPE) as a green reducing agent to synthesize silver nanoparticles (AgNPs), and then loading them into polyvinyl alcohol-nanocellulose (PVA-CNC) matrix, a multifunctional nanocomposite material that could be used in food packaging was developed. The prepared films were tested for mechanical strength, barrier properties, thermal properties, antibacterial, antioxidant and biocompatibility through various characterizations. The PVA-CNC-AgNPs-CJPE film had good thermostability, mechanical strength, barrier properties, and biocompatibility. Compared with pure PVA film and PVA-CNC film, PVA-CNC-AgNPs-CJPE could shield over 95 % of the UVB (320-275 nm) spectrum and UVC (275-200 nm) spectrum and most of the UVA (400-320 nm). By disk diffusion analysis, the inhibition zones of PVA-CNC-AgNPs-CJPE film against E. coli, P. aeruginosa, S. aureus and E. faecalis were 22.3 mm, 25.0 mm, 22.0 mm and 19.3 mm, respectively. The milk antibacterial simulation test confirmed that PVA-CNC-AgNPs-CJPE film could effectively limit bacterial reproduction and prolong the shelf life of milk. PVA-CNC-AgNPs-CJPE film had excellent UV barrier properties, good antioxidant properties and high-efficiency antibacterial activity, which is expected to be widely used in sustainable nanocomposite food packaging.
Collapse
Affiliation(s)
- Dan Yang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Bo Fan
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Guangting Sun
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Yu-Cai He
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Lifes, Hubei University, Wuhan 430062, China.
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Lifes, Hubei University, Wuhan 430062, China.
| |
Collapse
|