51
|
Advances in the Study of the Mechanism by Which Selenium and Selenoproteins Boost Immunity to Prevent Food Allergies. Nutrients 2022; 14:nu14153133. [PMID: 35956310 PMCID: PMC9370097 DOI: 10.3390/nu14153133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 12/19/2022] Open
Abstract
Selenium (Se) is an essential micronutrient that functions in the body mainly in the form of selenoproteins. The selenoprotein contains 25 members in humans that exhibit a number of functions. Selenoproteins have immunomodulatory functions and can enhance the ability of immune system to regulate in a variety of ways, which can have a preventive effect on immune-related diseases. Food allergy is a specific immune response that has been increasing in number in recent years, significantly reducing the quality of life and posing a major threat to human health. In this review, we summarize the current understanding of the role of Se and selenoproteins in regulating the immune system and how dysregulation of these processes may lead to food allergies. Thus, we can explain the mechanism by which Se and selenoproteins boost immunity to prevent food allergies.
Collapse
|
52
|
Augustine T, Kumar M, Al Khodor S, van Panhuys N. Microbial Dysbiosis Tunes the Immune Response Towards Allergic Disease Outcomes. Clin Rev Allergy Immunol 2022:10.1007/s12016-022-08939-9. [PMID: 35648372 DOI: 10.1007/s12016-022-08939-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
Abstract
The hygiene hypothesis has been popularized as an explanation for the rapid increase in allergic disease observed over the past 50 years. Subsequent epidemiological studies have described the protective effects that in utero and early life exposures to an environment high in microbial diversity have in conferring protective benefits against the development of allergic diseases. The rapid advancement in next generation sequencing technology has allowed for analysis of the diverse nature of microbial communities present in the barrier organs and a determination of their role in the induction of allergic disease. Here, we discuss the recent literature describing how colonization of barrier organs during early life by the microbiota influences the development of the adaptive immune system. In parallel, mechanistic studies have delivered insight into the pathogenesis of disease, by demonstrating the comparative effects of protective T regulatory (Treg) cells, with inflammatory T helper 2 (Th2) cells in the development of immune tolerance or induction of an allergic response. More recently, a significant advancement in our understanding into how interactions between the adaptive immune system and microbially derived factors play a central role in the development of allergic disease has emerged. Providing a deeper understanding of the symbiotic relationship between our microbiome and immune system, which explains key observations made by the hygiene hypothesis. By studying how perturbations that drive dysbiosis of the microbiome can cause allergic disease, we stand to benefit by delineating the protective versus pathogenic aspects of human interactions with our microbial companions, allowing us to better harness the use of microbial agents in the design of novel prophylactic and therapeutic strategies.
Collapse
Affiliation(s)
- Tracy Augustine
- Laboratory of Immunoregulation, Sidra Medicine, PO BOX 26999, Doha, Qatar
| | - Manoj Kumar
- Microbiome and Host-Microbes Interactions Laboratory, Sidra Medicine, Doha, Qatar
| | - Souhaila Al Khodor
- Microbiome and Host-Microbes Interactions Laboratory, Sidra Medicine, Doha, Qatar
| | | |
Collapse
|
53
|
Preparation and identification of monoclonal antibodies against porcine CD103. Appl Microbiol Biotechnol 2022; 106:4005-4015. [PMID: 35599260 DOI: 10.1007/s00253-022-11950-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 11/27/2022]
Abstract
Dendritic cells (DCs) play an important role in activating, regulating, and maintaining the immune response. CD103+ DCs, one of the DC subpopulations, mainly function in the mucosal immune response. They are responsible for capturing and carrying antigens to the relevant lymph nodes to activate the downstream immune responses. However, there is limited available information regarding the function of CD103+ DCs in the porcine mucosal immune response. In this study, two monoclonal antibodies (mAbs) against porcine CD103 were prepared, and their applications were evaluated by enzyme-linked immunosorbent assay (ELISA), indirect immunofluorescence assay (IFA), and flow cytometry. The produced mAbs (7F3 and 9H3) were both IgG1 subtype with κ chains in the light chain. The 7F3 recognizes a linear epitope (PDLRPRAQVYFSDLE) while 9H3 recognizes another linear epitope (QILDEGQVLLGAVGA). The prepared mAbs could be used in vivo to detect the cells expressing CD103 molecules, giving wide applications of both mAbs. In conclusion, this study successfully prepared 2 mAbs against CD103 protein, and they showed applicability in vivo experiments, which will provide the basis for the study of porcine mucosal immunity. KEY POINTS: • Preparation of monoclonal antibodies against porcine CD103 molecule • Analysis of the distribution of CD103 protein on different cells is possible • Exploration of the CD103+ DCs function in porcine mucosal immunity is possible.
Collapse
|
54
|
Hu M, Alashkar Alhamwe B, Santner-Nanan B, Miethe S, Harb H, Renz H, Potaczek DP, Nanan RK. Short-Chain Fatty Acids Augment Differentiation and Function of Human Induced Regulatory T Cells. Int J Mol Sci 2022; 23:ijms23105740. [PMID: 35628549 PMCID: PMC9143307 DOI: 10.3390/ijms23105740] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/08/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Regulatory T cells (Tregs) control immune system activity and inhibit inflammation. While, in mice, short-chain fatty acids (SCFAs) are known to be essential regulators of naturally occurring and in vitro induced Tregs (iTregs), data on their contribution to the development of human iTregs are sparse, with no reports of the successful SCFAs-augmented in vitro generation of fully functional human iTregs. Likewise, markers undoubtedly defining human iTregs are missing. Here, we aimed to generate fully functional human iTregs in vitro using protocols involving SCFAs and to characterize the underlying mechanism. Our target was to identify the potential phenotypic markers best characterizing human iTregs. Naïve non-Treg CD4+ cells were isolated from the peripheral blood of 13 healthy adults and cord blood of 12 healthy term newborns. Cells were subjected to differentiation toward iTregs using a transforming growth factor β (TGF-β)-based protocol, with or without SCFAs (acetate, butyrate, or propionate). Thereafter, they were subjected to flow cytometric phenotyping or a suppression assay. During differentiation, cells were collected for chromatin-immunoprecipitation (ChIP)-based analysis of histone acetylation. The enrichment of the TGF-β-based protocol with butyrate or propionate potentiated the in vitro differentiation of human naïve CD4+ non-Tregs towards iTregs and augmented the suppressive capacity of the latter. These seemed to be at least partly underlain by the effects of SCFAs on the histone acetylation levels in differentiating cells. GITR, ICOS, CD39, PD-1, and PD-L1 were proven to be potential markers of human iTregs. Our results might boost the further development of Treg-based therapies against autoimmune, allergic and other chronic inflammatory disorders.
Collapse
Affiliation(s)
- Mingjing Hu
- Charles Perkins Centre Nepean, Sydney Medical School Nepean, The University of Sydney, Sydney, NSW 2747, Australia; (M.H.); (B.S.-N.)
- International Inflammation (in-VIVO) Network, Worldwide Universities Network (WUN), West New York, NJ 10001, USA; (B.A.A.); (H.H.); (H.R.); (D.P.P.)
- Discipline of Obstetrics, Gynaecology and Neonatology, Sydney Medical School Nepean, The University of Sydney, Sydney, NSW 2747, Australia
- Nepean Hospital, Derby Street, Kingswood, NSW 2747, Australia
| | - Bilal Alashkar Alhamwe
- International Inflammation (in-VIVO) Network, Worldwide Universities Network (WUN), West New York, NJ 10001, USA; (B.A.A.); (H.H.); (H.R.); (D.P.P.)
- Institute for Tumor Immunology, Clinic for Hematology, Immunology, and Oncology, Philipps University Marburg, 35043 Marburg, Germany
- Institute of Laboratory Medicine, Philipps University of Marburg-Medical Faculty, Member of the German Center for Lung Research (DZL), and the Universities of Giessen and Marburg Lung Center (UGMLC), 35043 Marburg, Germany;
- College of Pharmacy, International University for Science and Technology (IUST), Daraa 15, Syria
| | - Brigitte Santner-Nanan
- Charles Perkins Centre Nepean, Sydney Medical School Nepean, The University of Sydney, Sydney, NSW 2747, Australia; (M.H.); (B.S.-N.)
- International Inflammation (in-VIVO) Network, Worldwide Universities Network (WUN), West New York, NJ 10001, USA; (B.A.A.); (H.H.); (H.R.); (D.P.P.)
| | - Sarah Miethe
- Institute of Laboratory Medicine, Philipps University of Marburg-Medical Faculty, Member of the German Center for Lung Research (DZL), and the Universities of Giessen and Marburg Lung Center (UGMLC), 35043 Marburg, Germany;
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Philipps University of Marburg-Medical Faculty, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), 35043 Marburg, Germany
| | - Hani Harb
- International Inflammation (in-VIVO) Network, Worldwide Universities Network (WUN), West New York, NJ 10001, USA; (B.A.A.); (H.H.); (H.R.); (D.P.P.)
- Institute of Laboratory Medicine, Philipps University of Marburg-Medical Faculty, Member of the German Center for Lung Research (DZL), and the Universities of Giessen and Marburg Lung Center (UGMLC), 35043 Marburg, Germany;
- Institute of Medical Microbiology and Virology, Medical Faculty, Technische Universität Dresden, 01307 Dresden, Germany
| | - Harald Renz
- International Inflammation (in-VIVO) Network, Worldwide Universities Network (WUN), West New York, NJ 10001, USA; (B.A.A.); (H.H.); (H.R.); (D.P.P.)
- Institute of Laboratory Medicine, Philipps University of Marburg-Medical Faculty, Member of the German Center for Lung Research (DZL), and the Universities of Giessen and Marburg Lung Center (UGMLC), 35043 Marburg, Germany;
| | - Daniel P. Potaczek
- International Inflammation (in-VIVO) Network, Worldwide Universities Network (WUN), West New York, NJ 10001, USA; (B.A.A.); (H.H.); (H.R.); (D.P.P.)
- Institute of Laboratory Medicine, Philipps University of Marburg-Medical Faculty, Member of the German Center for Lung Research (DZL), and the Universities of Giessen and Marburg Lung Center (UGMLC), 35043 Marburg, Germany;
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Philipps University of Marburg-Medical Faculty, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), 35043 Marburg, Germany
| | - Ralph K. Nanan
- Charles Perkins Centre Nepean, Sydney Medical School Nepean, The University of Sydney, Sydney, NSW 2747, Australia; (M.H.); (B.S.-N.)
- International Inflammation (in-VIVO) Network, Worldwide Universities Network (WUN), West New York, NJ 10001, USA; (B.A.A.); (H.H.); (H.R.); (D.P.P.)
- Correspondence: ; Tel.: +61-2-4734-2612; Fax: +61-2-4734-1144
| |
Collapse
|
55
|
Feng H, Xiong X, Chen Z, Luo N, Wu Y. MALAT1 Induces Food Allergy by Promoting Release of IL-6 from Dendritic Cells and Suppressing the Immunomodulatory Function of Tregs. J Asthma Allergy 2022; 15:529-544. [PMID: 35515816 PMCID: PMC9064454 DOI: 10.2147/jaa.s341742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
Background Dendritic cells (DCs) comprise a valuable target for immune-modulation in food allergy (FA). Long noncoding RNA (lncRNA), metastasis associated lung adenocarcinoma transcript 1 (MALAT1) has immunomodulatory capacities and may influence the outcome of DC antigen presentation. However, the precise molecular mechanisms underlying the implication of MALAT1 in FA remain unclear. Methods BALB/c mice were sensitized to ovalbumin in accordance with a model of FA protocol and injected with adenovirus. After modeling, immunohistochemistry was performed to analyze the jejunal tissues of FA mice and hematoxylin-eosin staining and toluidine blue staining were performed to detect inflammation and mast cell numbers. Ovalbumin-sensitized mice were monitored for symptoms of diarrhea and rectal temperature. Immature DCs were stimulated by oxidized low density lipoprotein to trigger their maturation. Results MALAT1 was found highly expressed in mice with FA, and its silencing relieved allergic reactions with reduction in intestinal inflammatory cells and mast cells in FA mice. MALAT1 aggravated symptoms by downregulating zinc finger protein 36 (ZFP36). MALAT1 also downregulated ZFP36 expression to promote interleukin-6 (IL-6) secretion by DCs and maturation of DCs, with increased serum-specific immunoglobulin E (IgE) and IgG1 levels. Conclusion Together, these data suggested that therapeutically blocking MALAT1 in FA could reduce the severity of FA by decreasing secretion of IL-6 by DCs and suppressing the immunomodulation of Tregs.
Collapse
Affiliation(s)
- Hua Feng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330000, People’s Republic of China
- School of Public Health, Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Xiujuan Xiong
- Department of Pathology, Basic Medical College of Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Zhuo Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Nan Luo
- School of Public Health, Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Yongning Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330000, People’s Republic of China
- China National Center for Food Safety Risk Assessment, Beijing, 100022, People’s Republic of China
- Chinese Academy of Medical Science Research Unit, Beijing, 100730, People’s Republic of China
- Correspondence: Yongning Wu, State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330000, People’s Republic of China, Tel +86-10-52165589, Email
| |
Collapse
|
56
|
Ao YQ, Jiang JH, Gao J, Wang HK, Ding JY. Recent thymic emigrants as the bridge between thymoma and autoimmune diseases. Biochim Biophys Acta Rev Cancer 2022; 1877:188730. [DOI: 10.1016/j.bbcan.2022.188730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/27/2022]
|
57
|
Abstract
INTRODUCTION As the prevalence of food allergies (FA) increases worldwide, our understanding of its pathophysiology and risk factors is markedly expanding. In the past decades, an increasing number of genes have been linked to FA. Identification of such genes may help in predicting the genetic risk for FA development, age of onset, clinical manifestation, causative allergen(s), and possibly the optimal treatment strategies. Furthermore, identification of these genetic factors can help to understand the complex interactions between genes and the environment in predisposition to FA. AREAS COVERED We outline the recent important progress in determining genetic variants and disease-associated genes in IgE-mediated FA. We focused on the monogenic inborn errors of immunity (IEI) where FA is one of the clinical manifestations, emphasizing the genes and gene variants which were linked to FA with some of the most robust evidence. EXPERT OPINION Genetics play a significant role, either directly or along with environmental factors, in the development of FA. Since FA is a multifactorial disease, it is expected that multiple genes and genetic loci contribute to the risk for its development. Identification of the involved genes should contribute to the area of FA regarding pathogenesis, prediction, recognition, prognosis, prevention, and possibly therapeutic interventions.
Collapse
Affiliation(s)
- Yesim Demirdag
- Division of Basic and Clinical Immunology, Department of Medicine University of California, Irvine, CA
| | - Sami Bahna
- Division of Basic and Clinical Immunology, Department of Medicine University of California, Irvine, CA
| |
Collapse
|
58
|
Contribution of Gut Microbiota to Immune Tolerance in Infants. J Immunol Res 2022; 2021:7823316. [PMID: 34993254 PMCID: PMC8727111 DOI: 10.1155/2021/7823316] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
The prevalence of food allergy has increased in recent years, especially among the pediatric population. Differences in the gut microbiota composition between children with FA and healthy children have brought this topic into the spotlight as a possible explanation for the increase in FA. The gut microbiota characteristics are acquired through environmental interactions starting early in life, such as type of delivery during birth and breastfeeding. The microbiota features may be shaped by a plethora of immunomodulatory mechanisms, including a predominant role of Tregs and the transcription factor FOXP3. Additionally, a pivotal role has been given to vitamin A and butyrate, the main anti-inflammatory metabolite. These observations have led to the study and development of therapies oriented to modifying the microbiota and metabolite profiles, such as the use of pre- and probiotics and the determination of their capacity to induce tolerance to allergens that are relevant to FA. To date, evidence supporting these approaches in humans is scarce and inconclusive. Larger cohorts and dose-titration studies are mandatory to evaluate whether the observed changes in gut microbiota composition reflect medical recovery and increased tolerance in pediatric patients with FA. In this article, we discuss the establishment of the microbiota, the immunological mechanisms that regulate the microbiota of children with food allergies, and the evidence in research focused on its regulation as a means to achieve tolerance to food allergens.
Collapse
|
59
|
BARATI M, JABBARI M, FATHOLLAHI M, FATHOLLAHI A, KHAKI V, JAVANMARDI F, JAZAYERI SMHM, SHABANI M, DAVOODI SH, HUSEYN E, HADIAN Z, LORENZO JM, KHANEGHAH AM. Evaluation of different types of milk proteins-derived epitopes using in-silico tools: a primarily study to propose a new definition for bioactive peptides. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.102821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Meisam BARATI
- Shahid Beheshti University of Medical Sciences, Iran
| | | | | | | | - Vahid KHAKI
- Shahid Beheshti University of Medical Sciences, Iran
| | | | | | - Mehdi SHABANI
- Shahid Beheshti University of Medical Sciences, Iran
| | - Sayed Hossein DAVOODI
- Shahid Beheshti University of Medical Sciences, Iran; Shahid Beheshti University of Medical Sciences, Iran
| | - Elcin HUSEYN
- Azerbaijan State Oil and Industry University, Azerbaijan
| | - Zahra HADIAN
- Shahid Beheshti University of Medical Sciences, Iran
| | | | | |
Collapse
|
60
|
Abstract
Food allergy is a hypersensitivity reaction to food products initiated by immunologic mechanisms, which represents one of the major concerns in food safety. New therapies for food allergies including oral and epicutaneous allergen-specific immunotherapy are required, and B cell epitope-based allergy vaccines are a good promise to improve this field. In this chapter, we describe a workflow for the design of food allergy vaccines using proteomic tools. The strategy is defined based on the characterization of B cell epitopes for a particular food allergen. For that, the workflow comprises five consecutive steps: (1) shotgun proteomics analysis of different protein isoforms for a particular food allergen, (2) downloading all protein sequences for the specific allergen included in UniProtKB database, (3) analysis by protein-based bioinformatics of B cell epitopes, (4) synthesizing of the selected B cell peptide epitopes, and (5) performing of immunoassays using sera from healthy and allergic patients. The results from this method provide a rationale repository of B cell epitopes for the design of new specific immunotherapies for a particular food allergen. The strategy was optimized for all the beta-parvalbumins (β-PRVBs), which are considered as the main fish allergens. Using this workflow, a total of 35 peptides were identified as B cell epitopes, among them the top 4 B cell peptide epitopes that may induce protective immune response were selected as potential peptide vaccine candidates for fish allergy.
Collapse
Affiliation(s)
- Mónica Carrera
- Department of Food Technology, Spanish National Research Council (CSIC), Institute of Marine Research (IIM), Pontevedra, Spain
| | - Susana Magadán
- Biomedical Research Center (CINBIO), Universidade de Vigo, Immunology, Pontevedra, Spain.
| |
Collapse
|
61
|
Short-Chain Fatty Acids Promote Immunotherapy by Modulating Immune Regulatory Property in B Cells. J Immunol Res 2021; 2021:2684361. [PMID: 34926702 PMCID: PMC8683205 DOI: 10.1155/2021/2684361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 12/22/2022] Open
Abstract
The dysfunction of regulatory B cells (Breg) may result in immune inflammation such as allergic rhinitis (AR); the underlying mechanism is not fully understood yet. Short-chain fatty acids, such as propionic acid (PA), have immune regulatory functions. This study is aimed at testing a hypothesis that modulates PA production alleviating airway allergy through maintaining Breg functions. B cells were isolated from the blood obtained from AR patients and healthy control (HC) subjects. The stabilization of IL-10 mRNA in B cells was tested with RT-qPCR. An AR mouse model was developed to test the role of PA in stabilizing the IL-10 expression in B cells. We found that the serum PA levels were negatively correlated with the serum Th2 cytokine levels in AR patients. Serum PA levels were positively associated with peripheral CD5+ B cell frequency in AR patients; the CD5+ B cells were also IL-10+. The spontaneous IL-10 mRNA decay was observed in B cells, which was prevented by the presence of PA through activating GPR43. PA counteracted the effects of Tristetraprolin (TTP) on inducing IL-10 mRNA decay in B cells through the AKT/T-bet/granzyme B pathway. Administration of Yupinfeng San, a Chinese traditional medical formula, or indole-3-PA, induced PA production by intestinal bacteria to stabilize the IL-10 expression in B cells, which promoted the allergen specific immunotherapy, and efficiently alleviated experimental AR. In summary, the data show that CD5+ B cells produce IL-10. The serum lower PA levels are associated with the lower frequency of CD5+ B cells in AR patients. Administration with Yupinfeng San or indole-3-PA can improve Breg functions and alleviate experimental AR.
Collapse
|
62
|
Zhang Y, Li L, Genest G, Zhao W, Ke D, Bartolucci S, Pavey N, Al-Aubodah TA, Lejtenyi D, Torabi B, Ben-Shoshan M, Mazer B, Piccirillo CA. Successful Milk Oral Immunotherapy Promotes Generation of Casein-Specific CD137 + FOXP3 + Regulatory T Cells Detectable in Peripheral Blood. Front Immunol 2021; 12:705615. [PMID: 34887847 PMCID: PMC8650635 DOI: 10.3389/fimmu.2021.705615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Background Oral immunotherapy (OIT) is an emerging treatment for cow's milk protein (CMP) allergy in children. The mechanisms driving tolerance following OIT are not well understood. Regulatory T cells (TREG) cells are key inhibitors of allergic responses and promoters of allergen-specific tolerance. In an exploratory study, we sought to detect induction of allergen-specific TREG in a cohort of subjects undergoing OIT. Methods Pediatric patients with a history of allergic reaction to cow's milk and a positive Skin Pick Test (SPT) and/or CMP-specific IgE >0.35 kU, as well as a positive oral challenge to CMP underwent OIT with escalating doses of milk and were followed for up to 6 months. At specific milestones during the dose escalation and maintenance phases, casein-specific CD4+ T cells were expanded from patient blood by culturing unfractionated PBMCs with casein in vitro. The CD4+ T cell phenotypes were quantified by flow cytometry. Results Our culture system induced activated casein-specific FOXP3+Helios+ TREG cells and FOXP3- TEFF cells, discriminated by expression of CD137 (4-1BB) and CD154 (CD40L) respectively. The frequency of casein-specific TREG cells increased significantly with escalating doses of milk during OIT while casein-specific TEFF cell frequencies remained constant. Moreover, expanded casein-specific TREG cells expressed higher levels of FOXP3 compared to polyclonal TREG cells, suggesting a more robust TREG phenotype. The induction of casein-specific TREG cells increased with successful CMP desensitization and correlated with increased frequencies of casein-specific Th1 cells among OIT subjects. The level of casein-specific TREG cells negatively correlated with the time required to reach the maintenance phase of desensitization. Conclusions Overall, effective CMP-OIT successfully promoted the expansion of casein-specific, functionally-stable FOXP3+ TREG cells while mitigating Th2 responses in children receiving OIT. Our exploratory study proposes that an in vitro TREG response to casein may correlate with the time to reach maintenance in CMP-OIT.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Lei Li
- Department of Otolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | - Wei Zhao
- Program in Translational Research in Respiratory Diseases, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Dan Ke
- Program in Translational Research in Respiratory Diseases, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Sabrina Bartolucci
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada.,Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Nils Pavey
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada.,Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Tho-Alfakar Al-Aubodah
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada.,Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Duncan Lejtenyi
- Division of Allergy Immunology and Clinical Dermatology, Montreal Children's Hospital, McGill University, Montréal, QC, Canada
| | - Bahar Torabi
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, QC, Canada.,Division of Allergy Immunology and Clinical Dermatology, Montreal Children's Hospital, McGill University, Montréal, QC, Canada
| | - Moshe Ben-Shoshan
- Division of Allergy Immunology and Clinical Dermatology, Montreal Children's Hospital, McGill University, Montréal, QC, Canada
| | - Bruce Mazer
- Program in Translational Research in Respiratory Diseases, Research Institute of the McGill University Health Centre, Montréal, QC, Canada.,Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada.,Division of Allergy Immunology and Clinical Dermatology, Montreal Children's Hospital, McGill University, Montréal, QC, Canada
| | - Ciriaco A Piccirillo
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada.,Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| |
Collapse
|
63
|
Jansen K, Cevhertas L, Ma S, Satitsuksanoa P, Akdis M, van de Veen W. Regulatory B cells, A to Z. Allergy 2021; 76:2699-2715. [PMID: 33544905 DOI: 10.1111/all.14763] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
B cells play a central role in the immune system through the production of antibodies. During the past two decades, it has become increasingly clear that B cells also have the capacity to regulate immune responses through mechanisms that extend beyond antibody production. Several types of human and murine regulatory B cells have been reported that suppress inflammatory responses in autoimmune disease, allergy, infection, transplantation, and cancer. Key suppressive molecules associated with regulatory B-cell function include the cytokines IL-10, IL-35, and TGF-β as well as cell membrane-bound molecules such as programmed death-ligand 1, CD39, CD73, and aryl hydrocarbon receptor. Regulatory B cells can be induced by a range of different stimuli, including microbial products such as TLR4 or TLR9 ligands, inflammatory cytokines such as IL-6, IL-1β, and IFN-α, as well as CD40 ligation. This review provides an overview of our current knowledge on regulatory B cells. We discuss different types of regulatory B cells, the mechanisms through which they exert their regulatory functions, factors that lead to induction of regulatory B cells and their role in the alteration of inflammatory responses in different diseases.
Collapse
Affiliation(s)
- Kirstin Jansen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Lacin Cevhertas
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Department of Medical Immunology Institute of Health SciencesBursa Uludag University Bursa Turkey
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Siyuan Ma
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Department of Otolaryngology Head and Neck Surgery+ Beijing TongRen HospitalCapital Medical University Beijing China
| | | | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| |
Collapse
|
64
|
Mo L, Luo X, Yang G, Liu J, Yang L, Liu Z, Wang S, Liu D, Liu Z, Yang P. Epithelial cell-derived CD83 restores immune tolerance in the airway mucosa by inducing regulatory T-cell differentiation. Immunology 2021; 163:310-322. [PMID: 33539546 PMCID: PMC8207377 DOI: 10.1111/imm.13317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/11/2022] Open
Abstract
The mechanism of generation of regulatory T cells (Treg) remains incompletely understood. Recent studies show that CD83 has immune regulatory functions. This study aims to investigate the role of epithelial cell-derived CD83 in the restoration of immune tolerance in the airway mucosa by inducing the Treg differentiation. In this study, CD83 and ovalbumin (OVA)-carrying exosomes were generated from airway epithelial cells. An airway allergy mouse model was developed to test the role of CD83/OVA-carrying exosomes in the suppression of airway allergy by inducing Treg generation. We observed that mouse airway epithelial cells expressed CD83 that could be up-regulated by CD40 ligand. The CD83 deficiency in epithelial cells retarded the Treg generation in the airway mucosa. CD83 up-regulated transforming growth factor-β-inducible early gene 1 expression in CD4+ T cells to promote Foxp3 expression. Exposure of primed CD4+ T cells to CD83/OVA-carrying exosomes promoted antigen-specific Treg generation. Administration of CD83/OVA-carrying exosomes inhibited experimental airway allergic response. In summary, airway epithelial cells express CD83 that is required in the Treg differentiation in the airway mucosa. Administration of CD83/OVA-carrying exosomes can inhibit airway allergy that has the translation potential in the treatment of airway allergic disorders.
Collapse
Affiliation(s)
- Li‐Hua Mo
- Research Center of Allergy & ImmunologyShenzhen University School of MedicineShenzhenChina
| | - Xiang‐Qian Luo
- Department of Pediatric OtolaryngologyShenzhen HospitalSouthern Medical UniversityShenzhenChina
| | - Gui Yang
- Department of OtolaryngologyLonggang Central HospitalShenzhenChina
| | - Jiang‐Qi Liu
- Longgang ENT Hospital & Shenzhen ENT InstituteShenzhenChina
| | - Li‐Teng Yang
- Department of Respirology & AllergyThird Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Zhi‐Qiang Liu
- Longgang ENT Hospital & Shenzhen ENT InstituteShenzhenChina
| | - Shuai Wang
- Longgang ENT Hospital & Shenzhen ENT InstituteShenzhenChina
| | - Da‐Bo Liu
- Department of Pediatric OtolaryngologyShenzhen HospitalSouthern Medical UniversityShenzhenChina
| | - Zhi‐Gang Liu
- Research Center of Allergy & ImmunologyShenzhen University School of MedicineShenzhenChina
| | - Ping‐Chang Yang
- Research Center of Allergy & ImmunologyShenzhen University School of MedicineShenzhenChina
- Guangdong Provincial Key Laboratory of Regional Immunity and DiseasesShenzhenChina
| |
Collapse
|
65
|
Zhou C, Chen LL, Lu RQ, Ma WW, Xiao R. Alteration of Intestinal Microbiota Composition in Oral Sensitized C3H/HeJ Mice Is Associated With Changes in Dendritic Cells and T Cells in Mesenteric Lymph Nodes. Front Immunol 2021; 12:631494. [PMID: 34177885 PMCID: PMC8222730 DOI: 10.3389/fimmu.2021.631494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
This research aimed to investigate the allergic reaction of C3H/HeJ mice after sensitization with ovalbumin (OVA) without any adjuvant and to analyze the association between intestinal microbiota and allergy-related immune cells in mesenteric lymph nodes (MLN). The allergic responses of C3H/HeJ mice orally sensitized with OVA were evaluated, and immune cell subsets in spleen and MLN and cytokines were also detected. The intestinal bacterial community structure was analyzed, followed by Spearman correlation analysis between changed gut microbiota species and allergic parameters. Sensitization induced a noticeable allergic response to the gavage of OVA without adjuvant. Increased levels of Th2, IL-4, CD103+CD86+ DC, and MHCII+CD86+ DC and decreased levels of Th1, Treg, IFN-γ, TGF-β1, and CD11C+CD103+ DC were observed in allergic mice. Furthermore, families of Lachnospiraceae, Clostridiaceae_1, Ruminococcaceae, and peprostreptococcaceae, all of which belonging to the order Clostridiales, were positively related to Treg and CD11C+CD103+ DC, while they were negatively related to an allergic reaction, levels of Th2, CD103+CD86+ DC, and MHCII+CD86+ DC in MLN. The family of norank_o_Mollicutes_RF39 belonging to the order Mollicutes_RF39 was similarly correlated with allergic reaction and immune cells in MLN of mice. To sum up, allergic reactions and intestinal flora disturbances could be induced by OVA oral administration alone. The orders of Clostridiales and Mollicutes_RF39 in intestinal flora are positively correlated with levels of Treg and CD11C+CD103+ DC in MLN of mice.
Collapse
Affiliation(s)
- Cui Zhou
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Ling-Ling Chen
- Nutritional Department, Handan First Hospital, Handan, China
| | - Rui-Qi Lu
- School of Basic Medicine, Capital Medical University, Beijing, China
| | - Wei-Wei Ma
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Rong Xiao
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| |
Collapse
|
66
|
Gargano D, Appanna R, Santonicola A, De Bartolomeis F, Stellato C, Cianferoni A, Casolaro V, Iovino P. Food Allergy and Intolerance: A Narrative Review on Nutritional Concerns. Nutrients 2021; 13:1638. [PMID: 34068047 PMCID: PMC8152468 DOI: 10.3390/nu13051638] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
Adverse food reactions include immune-mediated food allergies and non-immune-mediated intolerances. However, this distinction and the involvement of different pathogenetic mechanisms are often confused. Furthermore, there is a discrepancy between the perceived vs. actual prevalence of immune-mediated food allergies and non-immune reactions to food that are extremely common. The risk of an inappropriate approach to their correct identification can lead to inappropriate diets with severe nutritional deficiencies. This narrative review provides an outline of the pathophysiologic and clinical features of immune and non-immune adverse reactions to food-along with general diagnostic and therapeutic strategies. Special emphasis is placed on specific nutritional concerns for each of these conditions from the combined point of view of gastroenterology and immunology, in an attempt to offer a useful tool to practicing physicians in discriminating these diverging disease entities and planning their correct management. We conclude that a correct diagnostic approach and dietary control of both immune- and non-immune-mediated food-induced diseases might minimize the nutritional gaps in these patients, thus helping to improve their quality of life and reduce the economic costs of their management.
Collapse
Affiliation(s)
- Domenico Gargano
- Allergy and Clinical Immunology Unit, San Giuseppe Moscati Hospital, 83100 Avellino, Italy; (D.G.); (F.D.B.)
| | - Ramapraba Appanna
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (R.A.); (A.S.); (C.S.); (V.C.)
| | - Antonella Santonicola
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (R.A.); (A.S.); (C.S.); (V.C.)
| | - Fabio De Bartolomeis
- Allergy and Clinical Immunology Unit, San Giuseppe Moscati Hospital, 83100 Avellino, Italy; (D.G.); (F.D.B.)
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (R.A.); (A.S.); (C.S.); (V.C.)
| | - Antonella Cianferoni
- Division of Allergy and Immunology, The Children’s Hospital of Philadelphia, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (R.A.); (A.S.); (C.S.); (V.C.)
| | - Paola Iovino
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (R.A.); (A.S.); (C.S.); (V.C.)
| |
Collapse
|
67
|
Mayorga C, Palomares F, Cañas JA, Pérez-Sánchez N, Núñez R, Torres MJ, Gómez F. New Insights in Therapy for Food Allergy. Foods 2021; 10:foods10051037. [PMID: 34068667 PMCID: PMC8151532 DOI: 10.3390/foods10051037] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/24/2021] [Accepted: 05/05/2021] [Indexed: 12/23/2022] Open
Abstract
Food allergy is an increasing problem worldwide, with strict avoidance being classically the only available reliable treatment. The main objective of this review is to cover the latest information about the tools available for the diagnosis and treatment of food allergies. In recent years, many efforts have been made to better understand the humoral and cellular mechanisms involved in food allergy and to improve the strategies for diagnosis and treatment. This review illustrates IgE-mediated food hypersensitivity and provides a current description of the diagnostic strategies and advances in different treatments. Specific immunotherapy, including different routes of administration and new therapeutic approaches, such as hypoallergens and nanoparticles, are discussed in detail. Other treatments, such as biologics and microbiota, are also described. Therefore, we conclude that although important efforts have been made in improving therapies for food allergies, including innovative approaches mainly focusing on efficacy and safety, there is an urgent need to develop a set of basic and clinical results to help in the diagnosis and treatment of food allergies.
Collapse
Affiliation(s)
- Cristobalina Mayorga
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga (IBIMA), 29009 Málaga, Spain; (F.P.); (J.A.C.); (R.N.)
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, 29071 Málaga, Spain; (N.P.-S.); (M.J.T.); (F.G.)
- Correspondence: ; Tel.: +34-951-290-224
| | - Francisca Palomares
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga (IBIMA), 29009 Málaga, Spain; (F.P.); (J.A.C.); (R.N.)
| | - José A. Cañas
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga (IBIMA), 29009 Málaga, Spain; (F.P.); (J.A.C.); (R.N.)
| | - Natalia Pérez-Sánchez
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, 29071 Málaga, Spain; (N.P.-S.); (M.J.T.); (F.G.)
| | - Rafael Núñez
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga (IBIMA), 29009 Málaga, Spain; (F.P.); (J.A.C.); (R.N.)
| | - María José Torres
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, 29071 Málaga, Spain; (N.P.-S.); (M.J.T.); (F.G.)
- Medicine Department, Universidad de Málaga-UMA, 29071 Málaga, Spain
| | - Francisca Gómez
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, 29071 Málaga, Spain; (N.P.-S.); (M.J.T.); (F.G.)
| |
Collapse
|
68
|
Gomez-Casado C, Sanchez-Solares J, Izquierdo E, Díaz-Perales A, Barber D, Escribese MM. Oral Mucosa as a Potential Site for Diagnosis and Treatment of Allergic and Autoimmune Diseases. Foods 2021; 10:970. [PMID: 33925074 PMCID: PMC8146604 DOI: 10.3390/foods10050970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Most prevalent food allergies during early childhood are caused by foods with a high allergenic protein content, such as milk, egg, nuts, or fish. In older subjects, some respiratory allergies progressively lead to food-induced allergic reactions, which can be severe, such as urticaria or asthma. Oral mucosa remodeling has been recently proven to be a feature of severe allergic phenotypes and autoimmune diseases. This remodeling process includes epithelial barrier disruption and the release of inflammatory signals. Although little is known about the immune processes taking place in the oral mucosa, there are a few reports describing the oral mucosa-associated immune system. In this review, we will provide an overview of the recent knowledge about the role of the oral mucosa in food-induced allergic reactions, as well as in severe respiratory allergies or food-induced autoimmune diseases, such as celiac disease.
Collapse
Affiliation(s)
- Cristina Gomez-Casado
- Institute of Applied Molecular Medicine, Department of Basic Medical Sciences, Faculty of Medicine, San Pablo CEU University, 28003 Madrid, Spain; (J.S.-S.); (E.I.); (D.B.); (M.M.E.)
| | - Javier Sanchez-Solares
- Institute of Applied Molecular Medicine, Department of Basic Medical Sciences, Faculty of Medicine, San Pablo CEU University, 28003 Madrid, Spain; (J.S.-S.); (E.I.); (D.B.); (M.M.E.)
| | - Elena Izquierdo
- Institute of Applied Molecular Medicine, Department of Basic Medical Sciences, Faculty of Medicine, San Pablo CEU University, 28003 Madrid, Spain; (J.S.-S.); (E.I.); (D.B.); (M.M.E.)
| | - Araceli Díaz-Perales
- Center of Plant Biotechnology and Genomics, Technical University of Madrid, 28040 Madrid, Spain;
| | - Domingo Barber
- Institute of Applied Molecular Medicine, Department of Basic Medical Sciences, Faculty of Medicine, San Pablo CEU University, 28003 Madrid, Spain; (J.S.-S.); (E.I.); (D.B.); (M.M.E.)
| | - María M. Escribese
- Institute of Applied Molecular Medicine, Department of Basic Medical Sciences, Faculty of Medicine, San Pablo CEU University, 28003 Madrid, Spain; (J.S.-S.); (E.I.); (D.B.); (M.M.E.)
| |
Collapse
|
69
|
Barni S, Giovannini M, Mori F. Epidemiology of non-IgE-mediated food allergies: what can we learn from that? Curr Opin Allergy Clin Immunol 2021; 21:188-194. [PMID: 33394702 DOI: 10.1097/aci.0000000000000721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW To underline the main characteristics of the non-Immunoglobulin E (IgE)-mediated food allergies (food protein-induced allergic proctocolitis food protein-induced enteropathy and food protein-induced enterocolitis syndrome ), which are common diseases in primary care and in allergy and gastroenterology specialty practices evaluating children. RECENT FINDINGS Non-IgE-mediated food allergies comprise a spectrum of diseases with peculiar features affecting infants and young children. The most prominent features of these diseases are symptoms that affect mainly the gastrointestinal tract. SUMMARY It is of paramount importance to provide the clinicians with the tools for non-IgE-mediated food allergy recognition in clinical practice to avoid the misdiagnosis with unnecessary laboratory tests and detrimental treatments.
Collapse
Affiliation(s)
- Simona Barni
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | | | | |
Collapse
|
70
|
Storino V, Muñoz-Ortiz J, Villabona-Martinez V, Villamizar-Sanjuán JD, Rojas-Carabali W, de-la-Torre A. An Unusual Case of Multiple Food Allergies Comorbid with Multiple Chemical Sensitivity: A Case Report. J Asthma Allergy 2021; 14:317-323. [PMID: 33833533 PMCID: PMC8020051 DOI: 10.2147/jaa.s293248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/26/2021] [Indexed: 12/23/2022] Open
Abstract
Purpose To report the case of a patient with multiple food allergies comorbid with multiple chemical sensitivity (MCS) who was misdiagnosed on various occasions, resulting in a negative impact on the patient's personal and social life. Case Report We present the case of a 43-year-old Colombian women with multiple food allergies concomitant with MCS. Symptoms started with a mild reaction to insecticides, car exhaust smoke, and perfumes and gradually evolved into a severe reaction to her environment. She also presented recurrent episodes of clinical reactivity to foods and persistent elevated IgE levels, as well as several life-threatening anaphylactic reactions. Alternative and allopathic therapies were applied, but her symptoms persisted. Various diagnoses were made before the definitive diagnosis. Conclusion MCS is an unusual entity of unknown pathophysiology that can, on rare occasions, coexist with food allergies. Early recognition and multidisciplinary treatment are required as these entities have a major impact on the patient's quality of life. We present the first Latin American case regarding the association of the two diseases.
Collapse
Affiliation(s)
| | - Juliana Muñoz-Ortiz
- Escuela Barraquer, Research Group, Escuela Superior de Oftalmología, Instituto Barraquer de América, Bogotá, Colombia
| | - Valeria Villabona-Martinez
- Neuroscience Research Group "NeURos", Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Juan Diego Villamizar-Sanjuán
- Neuroscience Research Group "NeURos", Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - William Rojas-Carabali
- Neuroscience Research Group "NeURos", Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Alejandra de-la-Torre
- Neuroscience Research Group "NeURos", Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
71
|
Sarate PJ, Srutkova D, Geissler N, Schwarzer M, Schabussova I, Inic-Kanada A, Kozakova H, Wiedermann U. Pre- and Neonatal Imprinting on Immunological Homeostasis and Epithelial Barrier Integrity by Escherichia coli Nissle 1917 Prevents Allergic Poly-Sensitization in Mice. Front Immunol 2021; 11:612775. [PMID: 33679699 PMCID: PMC7927790 DOI: 10.3389/fimmu.2020.612775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/31/2020] [Indexed: 12/29/2022] Open
Abstract
A steady rise in the number of poly-sensitized patients has increased the demand for effective prophylactic strategies against multi-sensitivities. Probiotic bacteria have been successfully used in clinics and experimental models to prevent allergic mono-sensitization. In the present study, we have investigated whether probiotic bacteria could prevent poly-sensitization by imprinting on the immune system early in life. We used two recombinant variants of probiotic Escherichia coli Nissle 1917 (EcN): i) EcN expressing birch and grass pollen, poly-allergen chimera construct (EcN-Chim), and ii) an “empty” EcN without allergen expression (EcN-Ctrl). Conventional mice (CV) were treated with either EcN-Chim or EcN-Ctrl in the last week of the gestation and lactation period. Gnotobiotic mice received one oral dose of either EcN-Chim or EcN-Ctrl before mating. The offspring from both models underwent systemic allergic poly-sensitization and intranasal challenge with recombinant birch and grass pollen allergens (rBet v 1, rPhl p 1, and rPhl p 5). In the CV setting, the colonization of offspring via treatment of mothers reduced allergic airway inflammation (AAI) in offspring compared to poly-sensitized controls. Similarly, in a gnotobiotic model, AAI was reduced in EcN-Chim and EcN-Ctrl mono-colonized offspring. However, allergy prevention was more pronounced in the EcN-Ctrl mono-colonized offspring as compared to EcN-Chim. Mono-colonization with EcN-Ctrl was associated with a shift toward mixed Th1/Treg immune responses, increased expression of TLR2 and TLR4 in the lung, and maintained levels of zonulin-1 in lung epithelial cells as compared to GF poly-sensitized and EcN-Chim mono-colonized mice. This study is the first one to establish the model of allergic poly-sensitization in gnotobiotic mice. Using two different settings, gnotobiotic and conventional mice, we demonstrated that an early life intervention with the EcN without expressing an allergen is a powerful strategy to prevent poly-sensitization later in life.
Collapse
Affiliation(s)
- Priya J Sarate
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Dagmar Srutkova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Nora Geissler
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Irma Schabussova
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Aleksandra Inic-Kanada
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Hana Kozakova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
72
|
Knoop KA, McDonald KG, Hsieh CS, Tarr PI, Newberry RD. Regulatory T Cells Developing Peri-Weaning Are Continually Required to Restrain Th2 Systemic Responses Later in Life. Front Immunol 2021; 11:603059. [PMID: 33613522 PMCID: PMC7891039 DOI: 10.3389/fimmu.2020.603059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
Atopic disorders including allergic rhinitis, asthma, food allergy, and dermatitis, are increasingly prevalent in Western societies. These disorders are largely characterized by T helper type 2 (Th2) immune responses to environmental triggers, particularly inhaled and dietary allergens. Exposure to such stimuli during early childhood reduces the frequency of allergies in at-risk children. These allergic responses can be restrained by regulatory T cells (Tregs), particularly Tregs arising in the gut. The unique attributes of how early life exposure to diet and microbes shape the intestinal Treg population is a topic of significant interest. While imprinting during early life promotes the development of a balanced immune system and protects against immunopathology, it remains unclear if Tregs that develop in early life continue to restrain systemic inflammatory responses throughout adulthood. Here, an inducible deletion strategy was used to label Tregs at specified time points with a targeted mechanism to be deleted later. Deletion of the Tregs labeled peri-weaning at day of life 24, but not before weaning at day of life 14, resulted in increased circulating IgE and IL-13, and abrogated induction of tolerance towards new antigens. Thus, Tregs developing peri-weaning, but not before day of life 14 are continually required to restrain allergic responses into adulthood.
Collapse
MESH Headings
- Administration, Oral
- Adoptive Transfer
- Age Factors
- Animals
- Animals, Genetically Modified
- Antigens/administration & dosage
- Antigens/immunology
- Cell Communication
- Colon/immunology
- Colon/metabolism
- Cytokines/blood
- Disease Models, Animal
- Hypersensitivity, Delayed/blood
- Hypersensitivity, Delayed/genetics
- Hypersensitivity, Delayed/immunology
- Immune Tolerance
- Immunoglobulin E/blood
- Mice, Inbred C57BL
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Ovalbumin
- Phenotype
- Signal Transduction
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/transplantation
- Th2 Cells/immunology
- Th2 Cells/metabolism
- Weaning
- Mice
Collapse
Affiliation(s)
- Kathryn A. Knoop
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | - Keely G. McDonald
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Chyi-Song Hsieh
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Phillip I. Tarr
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pediatrics and Molecular Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Rodney D. Newberry
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
73
|
Roth-Walter F, Adcock IM, Benito-Villalvilla C, Bianchini R, Bjermer L, Boyman O, Caramori G, Cari L, Fan Chung K, Diamant Z, Eguiluz-Gracia I, Knol EF, Kolios A, Levi-Schaffer F, Nocentini G, Palomares O, Redegeld F, Van Esch B, Stellato C. Immune modulation via T regulatory cell enhancement: Disease-modifying therapies for autoimmunity and their potential for chronic allergic and inflammatory diseases-An EAACI position paper of the Task Force on Immunopharmacology (TIPCO). Allergy 2021; 76:90-113. [PMID: 32593226 DOI: 10.1111/all.14478] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/09/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
Abstract
Therapeutic advances using targeted biologicals and small-molecule drugs have achieved significant success in the treatment of chronic allergic, autoimmune, and inflammatory diseases particularly for some patients with severe, treatment-resistant forms. This has been aided by improved identification of disease phenotypes. Despite these achievements, not all severe forms of chronic inflammatory and autoimmune diseases are successfully targeted, and current treatment options, besides allergen immunotherapy for selected allergic diseases, fail to change the disease course. T cell-based therapies aim to cure diseases through the selective induction of appropriate immune responses following the delivery of engineered, specific cytotoxic, or regulatory T cells (Tregs). Adoptive cell therapies (ACT) with genetically engineered T cells have revolutionized the oncology field, bringing curative treatment for leukemia and lymphoma, while therapies exploiting the suppressive functions of Tregs have been developed in nononcological settings, such as in transplantation and autoimmune diseases. ACT with Tregs are also being considered in nononcological settings such as cardiovascular disease, obesity, and chronic inflammatory disorders. After describing the general features of T cell-based approaches and current applications in autoimmune diseases, this position paper reviews the experimental models testing or supporting T cell-based approaches, especially Treg-based approaches, in severe IgE-mediated responses and chronic respiratory airway diseases, such as severe asthma and COPD. Along with an assessment of challenges and unmet needs facing the application of ACT in these settings, this article underscores the potential of ACT to offer curative options for patients with severe or treatment-resistant forms of these immune-driven disorders.
Collapse
Affiliation(s)
- Franziska Roth-Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
| | - Ian M Adcock
- Molecular Cell Biology Group, National Heart & Lung Institute, Imperial College London, London, UK
| | - Cristina Benito-Villalvilla
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Rodolfo Bianchini
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
| | - Leif Bjermer
- Department of Respiratory Medicine and Allergology, Lung and Allergy research, Allergy, Asthma and COPD Competence Center, Lund University, Lund, Sweden
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gaetano Caramori
- Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), Respiratory Medicine Unit, University of Messina, Messina, Italy
| | - Luigi Cari
- Department of Medicine, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Kian Fan Chung
- Experimental Studies Medicine at National Heart & Lung Institute, Imperial College London & Royal Brompton & Harefield NHS Trust, London, UK
| | - Zuzana Diamant
- Department of Respiratory Medicine and Allergology, Institute for Clinical Science, Skane University Hospital, Lund, Sweden
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
- Department of Clinical Pharmacy & Pharmacology, University Groningen, University Medical Center Groningen and QPS-NL, Groningen, Netherlands
| | - Ibon Eguiluz-Gracia
- Allergy Unit, Hospital Regional Universitario de Málaga-Instituto de Investigación Biomédica de Málaga (IBIMA)-ARADyAL, Málaga, Spain
| | - Edward F Knol
- Departments of Immunology and Dermatology/Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Antonios Kolios
- Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Francesca Levi-Schaffer
- Pharmacology Unit, Faculty of Medicine, Institute for Drug Research, The Hebrew University of Jerusalem, Israel
| | - Giuseppe Nocentini
- Department of Medicine, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Frank Redegeld
- Faculty of Science, Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Betty Van Esch
- Faculty of Science, Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| |
Collapse
|
74
|
Ma S, Satitsuksanoa P, Jansen K, Cevhertas L, van de Veen W, Akdis M. B regulatory cells in allergy. Immunol Rev 2020; 299:10-30. [PMID: 33345311 DOI: 10.1111/imr.12937] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/25/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022]
Abstract
B cells have classically been recognized for their unique and indispensable role in the production of antibodies. Their potential as immunoregulatory cells with anti-inflammatory functions has received increasing attention during the last two decades. Herein, we highlight pioneering studies in the field of regulatory B cell (Breg) research. We will review the literature on Bregs with a particular focus on their role in the regulation of allergic inflammation.
Collapse
Affiliation(s)
- Siyuan Ma
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.,Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | | | - Kirstin Jansen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Lacin Cevhertas
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.,Department of Medical Immunology, Institute of Health Sciences, Bursa Uludag University, Bursa, Turkey
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
75
|
Gamez-Belmonte R, Erkert L, Wirtz S, Becker C. The Regulation of Intestinal Inflammation and Cancer Development by Type 2 Immune Responses. Int J Mol Sci 2020; 21:ijms21249772. [PMID: 33371444 PMCID: PMC7767427 DOI: 10.3390/ijms21249772] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
The gut is among the most complex organs of the human body. It has to exert several functions including food and water absorption while setting up an efficient barrier to the outside world. Dysfunction of the gut can be life-threatening. Diseases of the gastrointestinal tract such as inflammatory bowel disease, infections, or colorectal cancer, therefore, pose substantial challenges to clinical care. The intestinal epithelium plays an important role in intestinal disease development. It not only establishes an important barrier against the gut lumen but also constantly signals information about the gut lumen and its composition to immune cells in the bowel wall. Such signaling across the epithelial barrier also occurs in the other direction. Intestinal epithelial cells respond to cytokines and other mediators of immune cells in the lamina propria and shape the microbial community within the gut by producing various antimicrobial peptides. Thus, the epithelium can be considered as an interpreter between the microbiota and the mucosal immune system, safeguarding and moderating communication to the benefit of the host. Type 2 immune responses play important roles in immune-epithelial communication. They contribute to gut tissue homeostasis and protect the host against infections with helminths. However, they are also involved in pathogenic pathways in inflammatory bowel disease and colorectal cancer. The current review provides an overview of current concepts regarding type 2 immune responses in intestinal physiology and pathophysiology.
Collapse
|
76
|
Bruton K, Koenig JFE, Phelps A, Jordana M. Perturbations to Homeostasis in Experimental Models Revealed Innate Pathways Driving Food Allergy. Front Immunol 2020; 11:603272. [PMID: 33362786 PMCID: PMC7758527 DOI: 10.3389/fimmu.2020.603272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/10/2020] [Indexed: 12/19/2022] Open
Abstract
While type 2 immunity has been conventionally viewed as beneficial against helminths, venoms, and poisons, and harmful in allergy, contemporary research has uncovered its critical role in the maintenance of homeostasis. The initiation of a type 2 immune response involves an intricate crosstalk between structural and immune cells. Structural cells react to physical and chemical tissue perturbations by secreting alarmins, which signal the innate immune system to restore homeostasis. This pathway acts autonomously in the context of sterile injury and in the presence of foreign antigen initiates an adaptive Th2 response that is beneficial in the context of venoms, toxins, and helminths, but not food allergens. The investigation of the triggers and mechanisms underlying food allergic sensitization in humans is elusive because sensitization is a silent process. Therefore, the central construct driving food allergy modeling is based on introducing perturbations of tissue homeostasis along with an allergen which will result in an immunological and clinical phenotype that is consistent with that observed in humans. The collective evidence from multiple models has revealed the pre-eminent role of innate cells and molecules in the elicitation of allergic sensitization. We posit that, with the expanding use of technologies capable of producing formidable datasets, models of food allergy will continue to have an indispensable role to delineate mechanisms and establish causal relationships.
Collapse
Affiliation(s)
| | | | | | - Manel Jordana
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre (MIRC), McMaster University, Hamilton ON, Canada
| |
Collapse
|
77
|
Suther C, Moore MD, Beigelman A, Zhou Y. The Gut Microbiome and the Big Eight. Nutrients 2020; 12:nu12123728. [PMID: 33287179 PMCID: PMC7761723 DOI: 10.3390/nu12123728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
Food allergies are increasing at an alarming rate, with 6.5% of the general population affected. It has been hypothesized that the increase in allergies stems from the “hygiene hypothesis”. The gut microbiome, a collection of microbiota and their genetic contents from the gastrointestinal tract, has been shown to play a part in the development of food allergies. The Food and Drug Administration requires all regulated food companies to clearly state an inclusion of the major, or “big eight” food allergens on packaging. This review is to provide information on the significant advancements related to the gut microbiome and each of the eight major food allergies individually. Establishment of causal connection between the microbiome and food allergies has uncovered novel mechanisms. New strategies are discussed to prevent future sensitization and reaction through novel treatments involving functional additives and dietary changes that target the microbiome.
Collapse
Affiliation(s)
- Cassandra Suther
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (C.S.); (M.D.M.)
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Matthew D. Moore
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (C.S.); (M.D.M.)
| | - Avraham Beigelman
- Kipper Institute of Allergy and Immunology, Schneider Children’s Medical Center, Tel Aviv University, Tel Aviv 5891000, Israel;
| | - Yanjiao Zhou
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
- Correspondence: ; Tel.: +1-860-679-6379
| |
Collapse
|
78
|
Roberts G, Almqvist C, Boyle R, Crane J, Hogan SP, Marsland B, Saglani S, Woodfolk JA. Developments allergy in 2019 through the eyes of clinical and experimental allergy, part I mechanisms. Clin Exp Allergy 2020; 50:1294-1301. [PMID: 33283368 DOI: 10.1111/cea.13777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the first of two linked articles, we describe the development in the mechanisms underlying allergy as described by Clinical & Experimental Allergy and other journals in 2019. Experimental models of allergic disease, basic mechanisms, clinical mechanisms and allergens are all covered.
Collapse
Affiliation(s)
- Graham Roberts
- Clinical and Experimental Sciences and Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Isle of Wight, UK
| | - C Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - R Boyle
- Department of Paediatrics, Imperial College London, London, UK
| | - J Crane
- Department of Medicine, University of Otago Wellington, Wellington, New Zealand
| | - S P Hogan
- Department of Pathology, Mary H Weiser Food Allergy Center, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - B Marsland
- Department of Immunology and Pathology, Monash University, Melbourne, Vic., Australia
| | - S Saglani
- National Heart & Lung Institute, Imperial College London, London, UK
| | - J A Woodfolk
- Division of Asthma, Allergy and Immunology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
79
|
Satitsuksanoa P, van de Veen W, Akdis M. B cells in food allergy. J Allergy Clin Immunol 2020; 147:49-51. [PMID: 33242492 DOI: 10.1016/j.jaci.2020.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/09/2020] [Accepted: 11/10/2020] [Indexed: 12/26/2022]
Affiliation(s)
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.
| |
Collapse
|
80
|
Bertolini TB, Biswas M, Terhorst C, Daniell H, Herzog RW, Piñeros AR. Role of orally induced regulatory T cells in immunotherapy and tolerance. Cell Immunol 2020; 359:104251. [PMID: 33248367 DOI: 10.1016/j.cellimm.2020.104251] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/30/2020] [Accepted: 11/01/2020] [Indexed: 12/24/2022]
Abstract
Oral antigen administration to induce regulatory T cells (Treg) takes advantage of regulatory mechanisms that the gastrointestinal tract utilizes to promote unresponsiveness against food antigens or commensal microorganisms. Recently, antigen-based oral immunotherapies (OITs) have shown efficacy as treatment for food allergy and autoimmune diseases. Similarly, OITs appear to prevent anti-drug antibody responses in replacement therapy for genetic diseases. Intestinal epithelial cells and microbiota possibly condition dendritic cells (DC) toward a tolerogenic phenotype that induces Treg via expression of several mediators, e.g. IL-10, transforming growth factor-β, retinoic acid. Several factors, such as metabolites derived from microbiota or diet, impact the stability and expansion of these induced Treg, which include, but are not limited to, FoxP3+ Treg, LAP+ Treg, and/or Tr1 cells. Here, we review various orally induced Treg, their plasticity and cooperation between the Treg subsets, as well as underlying mechanisms controlling their induction and role in oral tolerance.
Collapse
Affiliation(s)
- Thais B Bertolini
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Moanaro Biswas
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, USA
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roland W Herzog
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Annie R Piñeros
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
81
|
Mu Q, Edwards MR, Swartwout BK, Cabana Puig X, Mao J, Zhu J, Grieco J, Cecere TE, Prakash M, Reilly CM, Puglisi C, Bachali P, Grammer AC, Lipsky PE, Luo XM. Gut Microbiota and Bacterial DNA Suppress Autoimmunity by Stimulating Regulatory B Cells in a Murine Model of Lupus. Front Immunol 2020; 11:593353. [PMID: 33240280 PMCID: PMC7683516 DOI: 10.3389/fimmu.2020.593353] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/15/2020] [Indexed: 12/21/2022] Open
Abstract
Autoimmune diseases, such as systemic lupus erythematosus, are characterized by excessive inflammation in response to self-antigens. Loss of appropriate immunoregulatory mechanisms contribute to disease exacerbation. We previously showed the suppressive effect of vancomycin treatment during the "active-disease" stage of lupus. In this study, we sought to understand the effect of the same treatment given before disease onset. To develop a model in which to test the regulatory role of the gut microbiota in modifying autoimmunity, we treated lupus-prone mice with vancomycin in the period before disease development (3-8 weeks of age). We found that administration of vancomycin to female MRL/lpr mice early, only during the pre-disease period but not from 3 to 15 weeks of age, led to disease exacerbation. Early vancomycin administration also reduced splenic regulatory B (Breg) cell numbers, as well as reduced circulating IL-10 and IL-35 in 8-week old mice. Further, we found that during the pre-disease period, administration of activated IL-10 producing Breg cells to mice treated with vancomycin suppressed lupus initiation, and that bacterial DNA from the gut microbiota was an inducer of Breg function. Oral gavage of bacterial DNA to mice treated with vancomycin increased Breg cells in the spleen and mesenteric lymph node at 8 weeks of age and reduced autoimmune disease severity at 15 weeks. This work suggests that a form of oral tolerance induced by bacterial DNA-mediated expansion of Breg cells suppress disease onset in the autoimmune-prone MRL/lpr mouse model. Future studies are warranted to further define the mechanism behind bacterial DNA promoting Breg cells.
Collapse
Affiliation(s)
- Qinghui Mu
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Michael R. Edwards
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Brianna K. Swartwout
- Translational Biology, Medicine and Health Graduate Program, Virginia Tech, Roanoke, VA, United States
| | - Xavier Cabana Puig
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Jiangdi Mao
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Jing Zhu
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Joe Grieco
- Translational Biology, Medicine and Health Graduate Program, Virginia Tech, Roanoke, VA, United States
| | - Thomas E. Cecere
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Meeta Prakash
- Carilion School of Medicine, Virginia Tech, Roanoke, VA, United States
| | | | | | | | | | | | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
82
|
Pignataro MF, Herrera MG, Dodero VI. Evaluation of Peptide/Protein Self-Assembly and Aggregation by Spectroscopic Methods. Molecules 2020; 25:E4854. [PMID: 33096797 PMCID: PMC7587993 DOI: 10.3390/molecules25204854] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 01/08/2023] Open
Abstract
The self-assembly of proteins is an essential process for a variety of cellular functions including cell respiration, mobility and division. On the other hand, protein or peptide misfolding and aggregation is related to the development of Parkinson's disease and Alzheimer's disease, among other aggregopathies. As a consequence, significant research efforts are directed towards the understanding of this process. In this review, we are focused on the use of UV-Visible Absorption Spectroscopy, Fluorescence Spectroscopy and Circular Dichroism to evaluate the self-organization of proteins and peptides in solution. These spectroscopic techniques are commonly available in most chemistry and biochemistry research laboratories, and together they are a powerful approach for initial as well as routine evaluation of protein and peptide self-assembly and aggregation under different environmental stimulus. Furthermore, these spectroscopic techniques are even suitable for studying complex systems like those in the food industry or pharmaceutical formulations, providing an overall idea of the folding, self-assembly, and aggregation processes, which is challenging to obtain with high-resolution methods. Here, we compiled and discussed selected examples, together with our results and those that helped us better to understand the process of protein and peptide aggregation. We put particular emphasis on the basic description of the methods as well as on the experimental considerations needed to obtain meaningful information, to help those who are just getting into this exciting area of research. Moreover, this review is particularly useful to those out of the field who would like to improve reproducibility in their cellular and biomedical experiments, especially while working with peptide and protein systems as an external stimulus. Our final aim is to show the power of these low-resolution techniques to improve our understanding of the self-assembly of peptides and proteins and translate this fundamental knowledge in biomedical research or food applications.
Collapse
Affiliation(s)
- María Florencia Pignataro
- Department of Physiology and Molecular and Cellular Biology, Institute of Biosciences, Biotechnology and Translational Biology (iB3), Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires C1428EG, Argentina;
- Institute of Biological Chemistry and Physical Chemistry, Dr. Alejandro Paladini, University of Buenos Aires-CONICET, Buenos Aires C1113AAD, Argentina
| | - María Georgina Herrera
- Department of Physiology and Molecular and Cellular Biology, Institute of Biosciences, Biotechnology and Translational Biology (iB3), Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires C1428EG, Argentina;
- Institute of Biological Chemistry and Physical Chemistry, Dr. Alejandro Paladini, University of Buenos Aires-CONICET, Buenos Aires C1113AAD, Argentina
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| | - Verónica Isabel Dodero
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
83
|
Mao RF, Chen YY, Zhang J, Chang X, Wang YF. Type 1 diabetes mellitus and its oral tolerance therapy. World J Diabetes 2020; 11:400-415. [PMID: 33133388 PMCID: PMC7582116 DOI: 10.4239/wjd.v11.i10.400] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/27/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
As a T cell-mediated autoimmune disease, type 1 diabetes mellitus (T1DM) is marked by insulin defect resulting from the destruction of pancreatic β-cells. The understanding of various aspects of T1DM, such as its epidemiology, pathobiology, pathogenesis, clinical manifestations, and complications, has been greatly promoted by valuable research performed during the past decades. However, these findings have not been translated into an effective treatment. The ideal treatment should safely repair the destroyed immune balance in a long-lasting manner, preventing or stopping the destruction of β-cells. As a type of immune hypo-responsiveness to the orally administrated antigen, oral tolerance may be induced by enhancement of regulatory T cells (Tregs) or by anergy/deletion of T cells, depending on the dosage of orally administrated antigen. Acting as an antigen-specific immunotherapy, oral tolerance therapy for T1DM has been mainly performed using animal models and some clinical trials have been completed or are still ongoing. Based on the review of the proposed mechanism of the development of T1DM and oral tolerance, we give a current overview of oral tolerance therapy for T1DM conducted in both animal models and clinical trials.
Collapse
Affiliation(s)
- Rui-Feng Mao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, School of Life Science, Huaiyin Normal University, Huai'an 223300, Jiangsu Province, China
| | - Ying-Ying Chen
- School of Life Sciences, Huaiyin Normal University, Huai'an 223300, Jiangsu Province, China
| | - Ji Zhang
- School of Life Sciences, Huaiyin Normal University, Huai'an 223300, Jiangsu Province, China
| | - Xin Chang
- Department of Ultrasound Medicine, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing 211200, Jiangsu Province, China
| | - Ye-Fu Wang
- College of Life Sciences, Wuhan University, Wuhan 430072, Hubei Province, China
| |
Collapse
|
84
|
Feng X, Zhao C, Li L, Feng J, He W, Shi T, Li N, Jie Z, Su X. iNKT cells with high PLZF expression are recruited into the lung via CCL21-CCR7 signaling to facilitate the development of asthma tolerance in mice. Eur J Immunol 2020; 51:414-432. [PMID: 32712954 DOI: 10.1002/eji.202048798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/29/2020] [Accepted: 07/23/2020] [Indexed: 01/10/2023]
Abstract
Establishment of immune tolerance is crucial to protect humans against asthma. Promyelocytic leukemia zinc finger (PLZF) is an emerging suppressor of inflammatory responses. CCL21-CCR7 signaling mediates tolerance development. However, whether PLZF and CCL21-CCR7 are required for the development of asthma tolerance is unknown. Here, we found that Zbtb16 (coding PLZF) and Ccl21 were upregulated in OVA-induced asthma tolerance (OT) lungs by RNA-seq. PLZF physically interacted with GATA3 and its expression was higher in GATA3+ Th2 cells and ILC2s in OT lungs. Zbtb16-knockdown in lymphocytes promoted the differentiation of CD3e+ CD4+ T cells, particularly those producing IL-4 and IL-5. Moreover, iNKT cells with high expression of PLZF were recruited into the lungs via draining lymph nodes during tolerance. Blockade of CCL21-CCR7 signaling in OT mice decreased the PLZF+ cell population, abolished CCR7-induced PLZF+ iNKT recruitment to the lungs, enhanced Th2responses and exacerbated lung pathology. In OT mice, respiratory syncytial virus (RSV) infection impeded PLZF+ cell and CCR7+ PLZF+ iNKT cellrecruitment to the lungs and increased airway resistance. Collectively, these results indicate that PLZF could interact with GATA3 and restrain differentiation of IL-4- and IL-5-producing T cells, iNKT cells with high PLZF expression are recruited to the lungs via CCL21-CCR7 signaling to facilitate the development of asthma tolerance.
Collapse
Affiliation(s)
- Xintong Feng
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.,Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Caiqi Zhao
- Unit of Respiratory Infection and Immunity, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Ling Li
- Unit of Respiratory Infection and Immunity, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Jingjing Feng
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.,Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Wei He
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.,Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Tianyun Shi
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.,Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Na Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.,Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Zhijun Jie
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.,Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Xiao Su
- Unit of Respiratory Infection and Immunity, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
85
|
Li D, Cheng J, Zhu Z, Catalfamo M, Goerlitz D, Lawless OJ, Tallon L, Sadzewicz L, Calderone R, Bellanti JA. Treg-inducing capacity of genomic DNA of Bifidobacterium longum subsp. infantis. Allergy Asthma Proc 2020; 41:372-385. [PMID: 32867892 PMCID: PMC8242987 DOI: 10.2500/aap.2020.41.200064] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background: Allergic and autoimmune diseases comprise a group of inflammatory disorders caused by aberrant immune responses in which CD25+ forkhead box P3-positive regulatory T cells (Treg) cells that normally suppress inflammatory events are often poorly functioning. This has stimulated an intensive investigative effort to find ways of increasing Tregs as a method of therapy for these conditions. Commensal microbiota known to have health benefits in humans include the lactic acid-producing, probiotic bacteria B. longum subsp. infantis and Lactobacillus rhamnosus. Mechanistically, several mechanisms have been proposed to explain how probiotics may favorably affect host immunity, including the induction of Tregs. Analysis of emerging data from several laboratories, including our own, suggest that DNA methylation may be an important determinant of immune reactivity responsible for Treg induction. Although methylated CpG moieties in normal mammalian DNA are both noninflammatory and lack immunogenicity, unmethylated CpGs, found largely in microbial DNA, are immunostimulatory and display proinflammatory properties. Objective: We hypothesize that microbiota with more DNA methylation may potentiate Treg induction to a greater degree than microbiota with a lower content of methylation. The purpose of the present study was to test this hypothesis by studying the methylation status of whole genomic DNA (gDNA) and the Treg-inducing capacity of purified gDNA in each of the probiotic bacteria B. longum subsp. infantis and L. rhamnosus, and a pathogenic Escherichia coli strain B. Results: We showed that gDNA from B. longum subsp. infantis is a potent Treg inducer that displays a dose-dependent response pattern at a dose threshold of 20 µg of gDNA. No similar Treg-inducing responses were observed with the gDNA from L. rhamnosus or E. coli. We identified a unique CpG methylated motif in the gDNA sequencing of B. longum subsp. infantis which was not found in L. rhamnosus or E. coli strain B. Conclusion: Although the literature indicates that both B. longum subsp. infantis and L. rhamnosus strains contribute to health, our data suggest that they do so by different mechanisms. Further, because of its small molecular size, low cost, ease of synthesis, and unique Treg-inducing feature, this methylated CpG oligodeoxynucleotide (ODN) from B. longum would offer many attractive features for an ideal novel therapeutic vaccine candidate for the treatment of immunologic diseases, such as the allergic and autoimmune disorders, in which Treg populations are diminished.
Collapse
Affiliation(s)
- Dongmei Li
- From the Department of Microbiology-Immunology, Georgetown University Medical Center, Washington, D.C
| | - Jie Cheng
- From the Department of Microbiology-Immunology, Georgetown University Medical Center, Washington, D.C
| | - Ziang Zhu
- From the Department of Microbiology-Immunology, Georgetown University Medical Center, Washington, D.C
| | - Marta Catalfamo
- From the Department of Microbiology-Immunology, Georgetown University Medical Center, Washington, D.C
| | - David Goerlitz
- Genomics and Epigenomics Shared Resource, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C
| | - Oliver J. Lawless
- Department of Pediatrics, Georgetown University Medical Center, Washington, D.C.; and
| | - Luke Tallon
- Genomic Resource Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Lisa Sadzewicz
- Genomic Resource Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Richard Calderone
- From the Department of Microbiology-Immunology, Georgetown University Medical Center, Washington, D.C
| | - Joseph A. Bellanti
- From the Department of Microbiology-Immunology, Georgetown University Medical Center, Washington, D.C
- Department of Pediatrics, Georgetown University Medical Center, Washington, D.C.; and
| |
Collapse
|
86
|
Mannie MD, DeOca KB, Bastian AG, Moorman CD. Tolerogenic vaccines: Targeting the antigenic and cytokine niches of FOXP3 + regulatory T cells. Cell Immunol 2020; 355:104173. [PMID: 32712270 PMCID: PMC7444458 DOI: 10.1016/j.cellimm.2020.104173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
FOXP3+ regulatory T cells (Tregs) constitute a critical barrier that enforces tolerance to both the self-peptidome and the extended-self peptidome to ensure tissue-specific resistance to autoimmune, allergic, and other inflammatory disorders. Here, we review intuitive models regarding how T cell antigen receptor (TCR) specificity and antigen recognition efficiency shape the Treg and conventional T cell (Tcon) repertoires to adaptively regulate T cell maintenance, tissue-residency, phenotypic stability, and immune function in peripheral tissues. Three zones of TCR recognition efficiency are considered, including Tcon recognition of specific low-efficiency self MHC-ligands, Treg recognition of intermediate-efficiency agonistic self MHC-ligands, and Tcon recognition of cross-reactive high-efficiency agonistic foreign MHC-ligands. These respective zones of TCR recognition efficiency are key to understanding how tissue-resident immune networks integrate the antigenic complexity of local environments to provide adaptive decisions setting the balance of suppressive and immunogenic responses. Importantly, deficiencies in the Treg repertoire appear to be an important cause of chronic inflammatory disease. Deficiencies may include global deficiencies in Treg numbers or function, subtle 'holes in the Treg repertoire' in tissue-resident Treg populations, or simply Treg insufficiencies that are unable to counter an overwhelming molecular mimicry stimulus. Tolerogenic vaccination and Treg-based immunotherapy are two therapeutic modalities meant to restore dominance of Treg networks to reverse chronic inflammatory disease. Studies of these therapeutic modalities in a preclinical setting have provided insight into the Treg niche, including the concept that intermediate-efficiency TCR signaling, high IFN-β concentrations, and low IL-2 concentrations favor Treg responses and active dominant mechanisms of immune tolerance. Overall, the purpose here is to assimilate new and established concepts regarding how cognate TCR specificity of the Treg repertoire and the contingent cytokine networks provide a foundation for understanding Treg suppressive strategy.
Collapse
Affiliation(s)
- Mark D Mannie
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States.
| | - Kayla B DeOca
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Alexander G Bastian
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Cody D Moorman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| |
Collapse
|
87
|
Abstract
PURPOSE OF REVIEW The establishment of long-term clinical tolerance in AIT requires the involvement of basophils, mast cells, allergen-specific regulatory T and B cells, downregulation of effector type 2 responses, and increase in production of specific IgG, particularly immunglobulin G4 (IgG4) antibodies. This review aims to provide an overview of the role of B cells in AIT, their mechanism of action, and their potential for improving AIT. RECENT FINDINGS In-depth research of B cells has paved the way for improved diagnosis and research on allergic diseases. B cells play a central role in allergy and allergen tolerance through the production of immunglobulin E (IgE)-blocking antibodies. However, an increasing body of evidence has emerged supporting a role for B cells in regulating immune responses that extends beyond the production of antibodies. Regulatory B cells play an important role in immunosuppression, mediated by secretion of anti-inflammatory cytokines. SUMMARY Successful AIT establishes the reinstatement of immune tolerance toward allergens, reduces allergic symptoms, and improves clinical treatments in patients. B cells play a central role in this process through antibody-independent immune regulatory processes in addition to the production of IgE-blocking antibodies.
Collapse
|
88
|
Abstract
Food allergens are innocuous proteins that promote tolerogenic adaptive immune responses in healthy individuals yet in other individuals induce an allergic adaptive immune response characterized by the presence of antigen-specific immunoglobulin E and type-2 immune cells. The cellular and molecular processes that determine a tolerogenic versus non-tolerogenic immune response to dietary antigens are not fully elucidated. Recently, there have been advances in the identification of roles for microbial communities and anatomical sites of dietary antigen exposure and presentation that have provided new insights into the key regulatory steps in the tolerogenic versus non-tolerogenic decision-making processes. Herein, we will review and discuss recent findings in cellular and molecular processes underlying food sensitization and tolerance, immunological processes underlying severity of food-induced anaphylaxis, and insights obtained from immunotherapy trials.
Collapse
Affiliation(s)
- Sunil Tomar
- 1. Mary H. Weiser Food Allergy Center, Department of Pathology, University of Michigan 4051-BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Simon P Hogan
- 1. Mary H. Weiser Food Allergy Center, Department of Pathology, University of Michigan 4051-BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| |
Collapse
|
89
|
Novak N, Maleki SJ, Cuadrado C, Crespo JF, Cabanillas B. Interaction of Monocyte-Derived Dendritic Cells with Ara h 2 from Raw and Roasted Peanuts. Foods 2020; 9:foods9070863. [PMID: 32630617 PMCID: PMC7404797 DOI: 10.3390/foods9070863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 12/28/2022] Open
Abstract
Ara h 2 is a relevant peanut allergen linked to severe allergic reactions. The interaction of Ara h 2 with components of the sensitization phase of food allergy (e.g., dendritic cells) has not been investigated, and could be key to understanding the allergenic potential of this allergen. In this study, we aimed to analyze such interactions and the possible mechanism involved. Ara h 2 was purified from two forms of peanut, raw and roasted, and labeled with a fluorescent dye. Human monocyte-derived dendritic cells (MDDCs) were obtained, and experiments of Ara h 2 internalization by MDDCs were carried out. The role of the mannose receptor in the internalization of Ara h 2 from raw and roasted peanuts was also investigated. Results showed that Ara h 2 internalization by MDDCs was both time and dose dependent. Mannose receptors in MDDCs had a greater implication in the internalization of Ara h 2 from roasted peanuts. However, this receptor was also important in the internalization of Ara h 2 from raw peanuts, as opposed to other allergens such as raw Ara h 3.
Collapse
Affiliation(s)
- Natalija Novak
- Department of Dermatology and Allergy, University of Bonn Medical Center, DE–53127 Bonn, Germany;
| | - Soheila J. Maleki
- U.S. Department of Agriculture, Agriculture Research Service, Southern Regional Research Center, New Orleans, LA 70124, USA;
| | - Carmen Cuadrado
- Department of Food Technology, National Institute of Agricultural, Food Research and Technology (INIA), Ctra. La Coruña Km. 7.5, 28040 Madrid, Spain;
| | - Jesus F. Crespo
- Department of Allergy, Research Institute Hospital 12 de Octubre, Avenida de Córdoba s/n, 28041 Madrid, Spain;
| | - Beatriz Cabanillas
- Department of Allergy, Research Institute Hospital 12 de Octubre, Avenida de Córdoba s/n, 28041 Madrid, Spain;
- Correspondence:
| |
Collapse
|
90
|
Akdis CA, Arkwright PD, Brüggen MC, Busse W, Gadina M, Guttman‐Yassky E, Kabashima K, Mitamura Y, Vian L, Wu J, Palomares O. Type 2 immunity in the skin and lungs. Allergy 2020; 75:1582-1605. [PMID: 32319104 DOI: 10.1111/all.14318] [Citation(s) in RCA: 331] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022]
Abstract
There has been extensive progress in understanding the cellular and molecular mechanisms of inflammation and immune regulation in allergic diseases of the skin and lungs during the last few years. Asthma and atopic dermatitis (AD) are typical diseases of type 2 immune responses. interleukin (IL)-25, IL-33, and thymic stromal lymphopoietin are essential cytokines of epithelial cells that are activated by allergens, pollutants, viruses, bacteria, and toxins that derive type 2 responses. Th2 cells and innate lymphoid cells (ILC) produce and secrete type 2 cytokines such as IL-4, IL-5, IL-9, and IL-13. IL-4 and IL-13 activate B cells to class-switch to IgE and also play a role in T-cell and eosinophil migration to allergic inflammatory tissues. IL-13 contributes to maturation, activation, nitric oxide production and differentiation of epithelia, production of mucus as well as smooth muscle contraction, and extracellular matrix generation. IL-4 and IL-13 open tight junction barrier and cause barrier leakiness in the skin and lungs. IL-5 acts on activation, recruitment, and survival of eosinophils. IL-9 contributes to general allergic phenotype by enhancing all of the aspects, such as IgE and eosinophilia. Type 2 ILC contribute to inflammation in AD and asthma by enhancing the activity of Th2 cells, eosinophils, and their cytokines. Currently, five biologics are licensed to suppress type 2 inflammation via IgE, IL-5 and its receptor, and IL-4 receptor alpha. Some patients with severe atopic disease have little evidence of type 2 hyperactivity and do not respond to biologics which target this pathway. Studies in responder and nonresponder patients demonstrate the complexity of these diseases. In addition, primary immune deficiency diseases related to T-cell maturation, regulatory T-cell development, and T-cell signaling, such as Omenn syndrome, severe combined immune deficiencies, immunodysregulation, polyendocrinopathy, enteropathy, X-linked syndrome, and DOCK8, STAT3, and CARD11 deficiencies, help in our understanding of the importance and redundancy of various type 2 immune components. The present review aims to highlight recent advances in type 2 immunity and discuss the cellular sources, targets, and roles of type 2 mechanisms in asthma and AD.
Collapse
Affiliation(s)
- Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education Davos Switzerland
| | - Peter D. Arkwright
- Lydia Becker Institute of Immunology and Inflammation University of Manchester Manchester UK
| | - Marie-Charlotte Brüggen
- Christine Kühne‐Center for Allergy Research and Education Davos Switzerland
- Department of Dermatology University Hospital Zurich Zurich Switzerland
- Faculty of Medicine University Zurich Zurich Switzerland
| | - William Busse
- Department of Medicine School of Medicine and Public Health University of Wisconsin Madison WI USA
| | - Massimo Gadina
- Translational Immunology Section Office of Science and Technology National Institute of Arthritis Musculoskeletal and Skin Disease NIH Bethesda MD USA
| | - Emma Guttman‐Yassky
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases Icahn School of Medicine at Mount Sinai New York NY USA
- Laboratory for Investigative Dermatology The Rockefeller University New York NY USA
| | - Kenji Kabashima
- Department of Dermatology Kyoto University Graduate School of Medicine Kyoto Japan
- Agency for Science, Technology and Research (A*STAR) Singapore Immunology Network (SIgN) and Skin Research Institute of Singapore (SRIS) Singapore Singapore
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Laura Vian
- Translational Immunology Section Office of Science and Technology National Institute of Arthritis Musculoskeletal and Skin Disease NIH Bethesda MD USA
| | - Jianni Wu
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases Icahn School of Medicine at Mount Sinai New York NY USA
- Laboratory for Investigative Dermatology The Rockefeller University New York NY USA
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology School of Chemistry Complutense University of Madrid Madrid Spain
| |
Collapse
|
91
|
Imran S, Neeland MR, Shepherd R, Messina N, Perrett KP, Netea MG, Curtis N, Saffery R, Novakovic B. A Potential Role for Epigenetically Mediated Trained Immunity in Food Allergy. iScience 2020; 23:101171. [PMID: 32480123 PMCID: PMC7262566 DOI: 10.1016/j.isci.2020.101171] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/01/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
The prevalence of IgE-mediated food allergy is increasing at a rapid pace in many countries. The association of high food allergy rates with Westernized lifestyles suggests the role of gene-environment interactions, potentially underpinned by epigenetic variation, in mediating this process. Recent studies have implicated innate immune system dysfunction in the development and persistence of food allergy. These responses are characterized by increased circulating frequency of innate immune cells and heightened inflammatory responses to bacterial stimulation in food allergic patients. These signatures mirror those described in trained immunity, whereby innate immune cells retain a “memory” of earlier microbial encounters, thus influencing subsequent immune responses. Here, we propose that a robust multi-omics approach that integrates immunological, transcriptomic, and epigenomic datasets, combined with well-phenotyped and longitudinal food allergy cohorts, can inform the potential role of trained immunity in food allergy.
Collapse
Affiliation(s)
- Samira Imran
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | - Melanie R Neeland
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | - Rebecca Shepherd
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | - Nicole Messina
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | - Kirsten P Perrett
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia; Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, Australia
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands; Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Nigel Curtis
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | - Boris Novakovic
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia.
| |
Collapse
|
92
|
Chudzik-Kozłowska J, Wasilewska E, Złotkowska D. Evaluation of Immunoreactivity of Pea ( Pisum sativum) Albumins in BALB/c and C57BL/6 Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3891-3902. [PMID: 32178513 DOI: 10.1021/acs.jafc.0c00297] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Green pea (Pisum sativum) is a component of European cuisine; however, an estimated 0.8% of Europeans suffer from allergies to pea proteins. We examined the immunoreactive potential of pea albumins (PA) in BALB/c and C57BL/6 mice. Mice were orally gavaged with PA or glycated pea albumins (G-PA) for 10 consecutive days, in combination with an adjuvant. Both PA and G-PA increased PA-specific serum antibody titers to about 212 for anti-PA IgG, ∼27 for anti-PA IgA, and ∼27.8 for anti-PA IgA in fecal extracts (p < 0.001). On day 42 postexposure, the antibodies titers decreased and were greater in BALB/c compared to C57BL/6 mice (p < 0.05). Distribution of CD4+ and CD8+ T cells in lymphoid tissues presented strain-specific differences. PA was found to induce lymphocyte proliferation; however, G-PA did not. Both PA and G-PA changed CD4+ and CD8+ T cells percentages in some lymphoid tissues; however, this did not impact cytokines production by splenocyte cultures evidenced by the stimulation of Th1, Th2, and Th17 cells. The observed immunomodulatory properties of PA and G-PA and lack of a sign of allergic reaction render them suitable for supplements in personalized diets, but further research is needed to precisely understand this activity.
Collapse
Affiliation(s)
- Justyna Chudzik-Kozłowska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, J. Tuwima 10 str., 10-748 Olsztyn, Poland
| | - Ewa Wasilewska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, J. Tuwima 10 str., 10-748 Olsztyn, Poland
| | - Dagmara Złotkowska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, J. Tuwima 10 str., 10-748 Olsztyn, Poland
| |
Collapse
|
93
|
DeKruyff RH, Zhang W, Nadeau KC, Leung DYM, Wills-Karp M. Summary of the Keystone Symposium "Origins of allergic disease: Microbial, epithelial and immune interactions," March 24-27, Tahoe City, California. J Allergy Clin Immunol 2020; 145:1072-1081.e1. [PMID: 31926182 DOI: 10.1016/j.jaci.2019.11.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/04/2019] [Accepted: 11/13/2019] [Indexed: 01/07/2023]
Abstract
The aims of the Keystone Symposium conference, "Origins of allergic disease: Microbial, epithelial and immune interactions" were to present and discuss potential microbial-epithelial-immune interactions underlying the early-life origins of allergic disorders, as well as immune mechanisms that might suggest novel disease prevention or intervention strategies. Cross-talk and sharing of ideas among participating experts in basic science and clinical aspects of allergic diseases provided substantial insight into the concept of allergic disorders as a systems disease. The overriding message distilled from the discussions was that damage to epithelial surfaces lies at the origin of the various manifestations of allergic disease. The epithelium of the lungs, gut, and skin, which operates as a critical sensor of environmental stimuli, is besieged by an onslaught of contemporary environmental forces including an altered microbiome, air pollution, food allergens in a changed diet, and chemicals in modern detergents. Collectively, this onslaught leads to alterations of lung, skin, or gut epithelial surfaces, driving a type 2 immune response that underlies most, if not all, of the atopic diseases. Possible remedies for treatment and prevention of allergic diseases were discussed, including a precision medicine approach using biologics, oral desensitization, targeted gut microbiome alterations, and behavior alteration.
Collapse
Affiliation(s)
- Rosemarie H DeKruyff
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif.
| | - Wenming Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Kari C Nadeau
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Donald Y M Leung
- Division of Pediatric Allergy and Clinical Immunology, Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Marsha Wills-Karp
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Md
| |
Collapse
|
94
|
Cukrowska B, Bierła JB, Zakrzewska M, Klukowski M, Maciorkowska E. The Relationship between the Infant Gut Microbiota and Allergy. The Role of Bifidobacterium breve and Prebiotic Oligosaccharides in the Activation of Anti-Allergic Mechanisms in Early Life. Nutrients 2020; 12:nu12040946. [PMID: 32235348 PMCID: PMC7230322 DOI: 10.3390/nu12040946] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 12/15/2022] Open
Abstract
The increase in allergy prevalence observed in recent decades may be a consequence of early intestinal dysbiosis. The intestinal microbiota is formed in the first 1000 days of life, when it is particularly sensitive to various factors, such as the composition of the mother’s microbiota, type of delivery, infant’s diet, number of siblings, contact with animals, and antibiotic therapy. Breastfeeding and vaginal birth favorably affect the formation of an infant’s intestinal microbiota and protect against allergy development. The intestinal microbiota of these infants is characterized by an early dominance of Bifidobacterium, which may have a significant impact on the development of immune tolerance. Bifidobacterium breve is a species commonly isolated from the intestines of healthy breastfed infants and from human milk. This review outlines the most important environmental factors affecting microbiota formation and the importance of Bifidobacterium species (with a particular emphasis on Bifidobacterium breve) in microbiota modulation towards anti-allergic processes. In addition, we present the concept, which assumes that infant formulas containing specific probiotic Bifidobacterium breve strains and prebiotic oligosaccharides may be useful in allergy management in non-breastfed infants.
Collapse
Affiliation(s)
- Bożena Cukrowska
- Department of Pathology, The Children Memorial Health Institute, Aleja Dzieci Polskich 20, 04-730 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-815-19-69
| | - Joanna B. Bierła
- Department of Pathology, The Children Memorial Health Institute, Aleja Dzieci Polskich 20, 04-730 Warsaw, Poland;
| | - Magdalena Zakrzewska
- Department of Developmental Age Medicine and Paediatric Nursing, Faculty of Health Sciences, Medical University of Bialystok, Szpitalna St. 37, 15-295 Białystok, Poland; (M.Z.); (E.M.)
| | - Mark Klukowski
- Department of Pediatrics and Pulmonary Diseases, Faculty of Health Sciences, Medical University of Bialystok, Jerzego Waszyngtona St. 17, 15-274 Białystok, Poland;
| | - Elżbieta Maciorkowska
- Department of Developmental Age Medicine and Paediatric Nursing, Faculty of Health Sciences, Medical University of Bialystok, Szpitalna St. 37, 15-295 Białystok, Poland; (M.Z.); (E.M.)
- Department of Pediatrics and Pulmonary Diseases, Faculty of Health Sciences, Medical University of Bialystok, Jerzego Waszyngtona St. 17, 15-274 Białystok, Poland;
| |
Collapse
|
95
|
Haflidadottir S, Matthews IL, Almaas R. Cytokine profile in children with food allergy following liver transplantation. Pediatr Transplant 2020; 24:e13657. [PMID: 32067305 DOI: 10.1111/petr.13657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 12/02/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND LTX in children is associated with increased risk of food allergy, and the mechanisms underlying this are unknown. We wanted to study whether plasma cytokine profile differed in liver transplanted children, with and without food allergy, and whether it differed from untransplanted children with CLD. METHODS Plasma cytokines, total and specific IgE in nine patients with food allergy were compared with 13 patients without food allergy following LTX, and also with seven untransplanted patients with CLD. RESULTS No difference was found in the cytokine profile between liver transplanted patients with and without food allergy. Transplanted patients with food allergy having received a prescription of epinephrine had a significantly higher total IgE (2033 [234-2831] vs 10 [5-41] IU/L, P = .002) and MIP-1b (52 [37-96] vs 36 [32-39], P = .035) compared with transplanted patients without food allergy. Two patients with severe food allergy responded favorably to conversion from tacrolimus-based immunosuppression to MMF and corticosteroids with reduction in clinical symptoms, total IgE, specific IgE, IL-1ra, IL-4, RANTES, PDGF, MIP-1a, and TNFα. The transplantation group had higher levels of IL-1b, IL-5, IL-7, IL-13, GCSF, IFNγ, and MIP-1a compared with the CLD group. CONCLUSIONS No overall difference was found in plasma cytokine profile between patients with and without food allergy. Patients with severe food allergy had significant elevation of MIP-1b. Discontinuation of tacrolimus reduced total and specific IgE and changed plasma cytokine profile. The plasma cytokine profile in liver transplanted children was different compared with children with CLD.
Collapse
Affiliation(s)
- Svanhildur Haflidadottir
- Division of Paediatric and Adolescent Medicine, Department of Pediatric Research, Rikshospitalet, Oslo University Hospital, Oslo, Norway.,Division of Paediatric and Adolescent Medicine, Rikshospitalet, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Iren Lindbak Matthews
- Division of Paediatric and Adolescent Medicine, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Runar Almaas
- Division of Paediatric and Adolescent Medicine, Department of Pediatric Research, Rikshospitalet, Oslo University Hospital, Oslo, Norway.,Division of Paediatric and Adolescent Medicine, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
96
|
Sulfated oligosaccharide of Gracilaria lemaneiformis protect against food allergic response in mice by up-regulating immunosuppression. Carbohydr Polym 2020; 230:115567. [DOI: 10.1016/j.carbpol.2019.115567] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/27/2019] [Accepted: 11/01/2019] [Indexed: 12/22/2022]
|
97
|
Gorczynski RM, Maqbool T, Hoffmann G. Mechanism(s) of prolonged attenuation of allergic responses after modulation of idiotypic regulatory network. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2019; 15:79. [PMID: 31827543 PMCID: PMC6892213 DOI: 10.1186/s13223-019-0393-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND We showed previously that allergic reactivity to ovalbumin (OVA) could be regulated in mice following perturbation of immune networks using combinations of an immune Ig along with anti-idiotypic Ig. We have explored features of this regulation including: its persistence after cessation of administration of combined Igs; the ability of heterologous Igs to produce immunoregulation; a role for Treg induction in regulation; and the ability to attenuate responses in mice pre-sensitized to an allergic stimulus. METHODS BALB/c mice were sensitized to OVA. Mice also received 5 weekly injections of immune Ig or anti-idiotype Ig (at separate sites) from either homologous (mouse) or heterologous (human) sources. In the latter case pooled IVIG (given IM, hence hereafter IMIG) was used as a source of anti-idiotype Ig, and human anti-Tet as immune Ig. Injections of the Ig were given from the time of OVA sensitization (to attenuate development of immunity), or after pre-sensitization of mice (to attenuate existing allergic responses). All mice were assayed for development of OVA-specific serum IgE and IgG, as well as the production of OVA-induced IL-2, IL-4, IL-13, IL-31 and IL-33 in splenocytes cultured for 72 h. In studies examining possible mechanism(s) responsible for inhibition of immunity mice received, in addition to the Ig treatments described, infusion of depleting anti-CD4, and/or anti-CD8 antibodies, or a mAb to TNFSFR25, known to expand Tregs implicated in regulation of Allo immunity. RESULTS Combinations of both heterologous and homologous immune Igs and anti-idiotype Igs attenuated OVA allergic responses in both naïve and pre-sensitized mice. This attenuation persisted in mice greater than 14 weeks after cessation of treatment with the Igs used. Finally, depletion of either CD4 or CD8 cells ameliorated the suppressive effect seen, while the combination of anti-CD4 and anti-CD8 essentially abolished suppression. Suppression was further enhanced by anti-TNFSFR25 mAb. CONCLUSIONS We conclude that the combine Ig treatment protocols used produced a long-lasting suppression of allergic immunity, even in pre-sensitized animals. The effects seem to depend upon induction and expansion of Tregs and represents a novel approach to treatment of allergic disease in humans and other animals.
Collapse
Affiliation(s)
- R. M. Gorczynski
- Universityof Toronto, Toronto, ON Canada
- Network Immunology, Vancouver, BC Canada
- Toronto, Canada
| | | | | |
Collapse
|
98
|
Yang H, Yang J, Cheng H, Cao H, Tang S, Wang Q, Zhao J, Li B, Ding Y, Ma C. Probiotics ingestion prevents HDAC11-induced DEC205+ dendritic cell dysfunction in night shift nurses. Sci Rep 2019; 9:18002. [PMID: 31784669 PMCID: PMC6884592 DOI: 10.1038/s41598-019-54558-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/08/2019] [Indexed: 12/20/2022] Open
Abstract
It is known that the day-night shift-rotation has a negative impact on the immune system. The underlying mechanism remains to be further investigated. Probiotics have regulatory effects on immune functions. This study aims to investigate the role of probiotic ingestion in preventing the DEC205+ dendritic cell (decDC) dysfunction in day-night shift-engaging nurses. In this study, blood samples were collected from day-night shift-rotating nurses who took or did not take yogurt (containing C. Butyricum) during the night shift (NS). decDC functions were evaluated with pertinent immunological approaches. We observed that the immune tolerogenic functions and interleukin (IL)-10 expression were impaired in decDCs of nurses after NS. HDAC11 was detected in decDCs that was markedly up regulated after NS. The HDAC11 levels were negatively correlated with the immune tolerogenic functions in decDCs. Ingestion of probiotic-containing yogurt during NS efficiently suppressed Bmal1 and HDAC11 levels as well as up regulated the immune regulatory functions in decDCs. In conclusion, NS has a negative impact on decDC immune tolerogenic functions, which can be prevented by ingesting probiotics-containing yogurt during NS.
Collapse
Affiliation(s)
- Hui Yang
- Department of Nursing, First Hospital of Shanxi Medical University, Taiyuan, China.
| | - Jing Yang
- Department of Nursing, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hui Cheng
- Department of Nursing, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Huili Cao
- Department of Nursing, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Shan Tang
- Department of Nursing, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Qiaohong Wang
- Department of Nursing, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Juan Zhao
- Department of Nursing, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Baohua Li
- Department of Nursing, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yongxia Ding
- Department of Nursing, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Chang Ma
- Department of Respirology, Second Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
99
|
Boonpiyathad T, Satitsuksanoa P, Akdis M, Akdis CA. Il-10 producing T and B cells in allergy. Semin Immunol 2019; 44:101326. [PMID: 31711770 DOI: 10.1016/j.smim.2019.101326] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023]
Abstract
The molecular and cellular mechanisms of allergen tolerance in humans have been intensively studied in the past few decades. The demonstration of epitope-specific T cell tolerance, particularly mediated by the immune suppressor functions of IL-10 led to a major conceptual change in this area more than 20 years ago. Currently, the known essential components of allergen tolerance include the induction of allergen-specific regulatory of T and B cells, the immune suppressive function of secreted factors, such as IL-10, IL-35, IL-1 receptor antagonist and TGF-β, immune suppressive functions of surface molecules such as CTLA-4 and PD-1, the production IgG4 isotype allergen-specific blocking antibodies, and decreased allergic inflammatory responses by mast cells, basophils, and eosinophils in inflamed tissues. In this review, we explain the importance of the role of IL-10 in allergen tolerance.
Collapse
Affiliation(s)
- Tadech Boonpiyathad
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Allergy and Clinical Immunology, Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
| | - Pattraporn Satitsuksanoa
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.
| |
Collapse
|
100
|
Aksoy E. TLRs toll for Tregs. J Leukoc Biol 2019; 106:1193-1195. [PMID: 31529712 DOI: 10.1002/jlb.2ce0619-184r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022] Open
Abstract
Discussion on TLR3 triggering in CD4 T cells induces IFN beta and IL10-producing iTregs that suppress food allergy.
Collapse
Affiliation(s)
- Ezra Aksoy
- Mucosal Immunology and Signaling Group, Centre for Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|