51
|
Wei Y, Song D, Wang R, Li T, Wang H, Li X. Dietary fungi in cancer immunotherapy: From the perspective of gut microbiota. Front Oncol 2023; 13:1038710. [PMID: 36969071 PMCID: PMC10032459 DOI: 10.3389/fonc.2023.1038710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Immunotherapies are recently emerged as a new strategy in treating various kinds of cancers which are insensitive to standard therapies, while the clinical application of immunotherapy is largely compromised by the low efficiency and serious side effects. Gut microbiota has been shown critical for the development of different cancer types, and the potential of gut microbiota manipulation through direct implantation or antibiotic-based depletion in regulating the overall efficacy of cancer immunotherapies has also been evaluated. However, the role of dietary supplementations, especially fungal products, in gut microbiota regulation and the enhancement of cancer immunotherapy remains elusive. In the present review, we comprehensively illustrated the limitations of current cancer immunotherapies, the biological functions as well as underlying mechanisms of gut microbiota manipulation in regulating cancer immunotherapies, and the benefits of dietary fungal supplementation in promoting cancer immunotherapies through gut microbiota modulation.
Collapse
Affiliation(s)
- Yibing Wei
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dingka Song
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ran Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Li
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xiaoguang Li, ; Hui Wang,
| | - Xiaoguang Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xiaoguang Li, ; Hui Wang,
| |
Collapse
|
52
|
Li D, Yao H, Li Y, Li Z, Yang X, Zhu X, Zeng X. Thallium(III) exposure alters diversity and co-occurrence networks of bacterial and fungal communities and intestinal immune response along the digestive tract in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:38512-38524. [PMID: 36580244 DOI: 10.1007/s11356-022-24994-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
The gut microbiota, which includes fungi and bacteria, plays an important role in maintaining gut health. Our previous studies have shown that monovalent thallium [Tl(I)] exposure is associated with disturbances in intestinal flora. However, research on acute Tl(III) poisoning through drinking water and the related changes in the gut microbiota is insufficient. In this study, we showed that Tl(III) exposure (10 ppm for 2 weeks) reduced the alpha diversity of bacteria in the ileum, colon, and feces of mice, as well as the alpha diversity of fecal fungi. In addition, principal coordinate analysis showed that Tl(III) exposure had little effect on the bacterial and fungal beta diversity. LEfSe analyses revealed that Tl(III) exposure altered the abundance of intestinal bacteria in the digestive tract and feces. Moreover, Tl(III) exposure had little effect on fungal abundance in the ileum, cecum, and colon, but had a considerable effect on fungal abundance in feces. After Tl(III) exposure, the fungal composition was more disrupted in feces than in the intestinal tract, suggesting that feces can serve as a representative of the gut mycobiota in Tl(III) exposure studies. Intra-kingdom network analyses showed that Tl(III) exposure affected the complexity of bacterial-bacterial and fungal-fungal co-occurrence networks along the digestive tract. The bacterial-fungal interkingdom co-occurrence networks exhibited increased complexity after Tl(III) exposure, except for those in the colon. Additionally, Tl(III) exposure altered the intestinal immune response. These results reveal the perturbation in gut bacterial and fungal diversity, abundance, and co-occurrence network complexity, as well as the gut immune response, caused by Tl(III) exposure.
Collapse
Affiliation(s)
- Dong Li
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, Sichuan, China
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | - Huan Yao
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | - Yunxiang Li
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, Sichuan, China
| | - Zeqin Li
- College of Environmental and Civil Engineering, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Xixi Yang
- The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Xiaohua Zhu
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, Sichuan, China.
- College of Environmental and Civil Engineering, Chengdu University of Technology, Chengdu, 610059, Sichuan, China.
| | - Xianyin Zeng
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| |
Collapse
|
53
|
Fang Z, Chen M, Qian J, Wang C, Zhang J. The Bridge Between Ischemic Stroke and Gut Microbes: Short-Chain Fatty Acids. Cell Mol Neurobiol 2023; 43:543-559. [PMID: 35347532 PMCID: PMC11415173 DOI: 10.1007/s10571-022-01209-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/17/2022] [Indexed: 11/03/2022]
Abstract
Short-chain fatty acids (SCFAs) are monocarboxylates produced by the gut microbiota (GM) and result from the interaction between diet and GM. An increasing number of studies about the microbiota-gut-brain axis (MGBA) indicated that SCFAs may be a crucial mediator in the MGBA, but their roles have not been fully clarified. In addition, there are few studies directly exploring the role of SCFAs as a potential regulator of microbial targeted interventions in ischemic stroke, especially for clinical studies. This review summarizes the recent studies concerning the relationship between ischemic stroke and GM and outlines the role of SCFAs as a bridge between them. The potential mechanisms by which SCFAs affect ischemic stroke are described. Finally, the beneficial effects of SFCAs-mediated therapeutic measures such as diet, dietary supplements (e.g., probiotics and prebiotics), fecal microbiota transplantation, and drugs on ischemic brain injury are also discussed.
Collapse
Affiliation(s)
- Zongwei Fang
- Department of Pharmacy, Fujian Medical University Union Hospital, #29 Xinquan Road, Fuzhou, China
| | - Mingrong Chen
- Department of Pharmacy, Fujian Medical University Union Hospital, #29 Xinquan Road, Fuzhou, China
| | - Jiafen Qian
- Department of Pharmacy, Fujian Medical University Union Hospital, #29 Xinquan Road, Fuzhou, China
| | - Chunhua Wang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jinhua Zhang
- Department of Pharmacy, Fujian Medical University Union Hospital, #29 Xinquan Road, Fuzhou, China.
| |
Collapse
|
54
|
Morelli M, Kurek D, Ng CP, Queiroz K. Gut-on-a-Chip Models: Current and Future Perspectives for Host-Microbial Interactions Research. Biomedicines 2023; 11:biomedicines11020619. [PMID: 36831155 PMCID: PMC9953162 DOI: 10.3390/biomedicines11020619] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The intestine contains the largest microbial community in the human body, the gut microbiome. Increasing evidence suggests that it plays a crucial role in maintaining overall health. However, while many studies have found a correlation between certain diseases and changes in the microbiome, the impact of different microbial compositions on the gut and the mechanisms by which they contribute to disease are not well understood. Traditional pre-clinical models, such as cell culture or animal models, are limited in their ability to mimic the complexity of human physiology. New mechanistic models, such as organ-on-a-chip, are being developed to address this issue. These models provide a more accurate representation of human physiology and could help bridge the gap between clinical and pre-clinical studies. Gut-on-chip models allow researchers to better understand the underlying mechanisms of disease and the effect of different microbial compositions on the gut. They can help to move the field from correlation to causation and accelerate the development of new treatments for diseases associated with changes in the gut microbiome. This review will discuss current and future perspectives of gut-on-chip models to study host-microbial interactions.
Collapse
|
55
|
Hajihosseini M, Amini P, Saidi-Mehrabad A, Dinu I. Infants' gut microbiome data: A Bayesian Marginal Zero-inflated Negative Binomial regression model for multivariate analyses of count data. Comput Struct Biotechnol J 2023; 21:1621-1629. [PMID: 36860341 PMCID: PMC9969297 DOI: 10.1016/j.csbj.2023.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
The infants' gut microbiome is dynamic in nature. Literature has shown high inter-individual variability of gut microbial composition in the early years of infancy compared to adulthood. Although next-generation sequencing technologies are rapidly evolving, several statistical analysis aspects need to be addressed to capture the variability and dynamic nature of the infants' gut microbiome. In this study, we proposed a Bayesian Marginal Zero-inflated Negative Binomial (BAMZINB) model, addressing complexities associated with zero-inflation and multivariate structure of the infants' gut microbiome data. Here, we simulated 32 scenarios to compare the performance of BAMZINB with glmFit and BhGLM as the two other widely similar methods in the literature in handling zero-inflation, over-dispersion, and multivariate structure of the infants' gut microbiome. Then, we showed the performance of the BAMZINB approach on a real dataset using SKOT cohort (I and II) studies. Our simulation results showed that the BAMZINB model performed as well as those two methods in estimating the average abundance difference and had a better fit for almost all scenarios when the signal and sample size were large. Applying BAMZINB on SKOT cohorts showed remarkable changes in the average absolute abundance of specific bacteria from 9 to 18 months for infants of healthy and obese mothers. In conclusion, we recommend using the BAMZINB approach for infants' gut microbiome data taking zero-inflation and over-dispersion properties into account in multivariate analysis when comparing the average abundance difference.
Collapse
Affiliation(s)
- Morteza Hajihosseini
- Stanford Department of Urology, Center for Academic Medicine, Palo Alto, CA 94304
| | - Payam Amini
- Department of Biostatistics, School of public Health, IRAN University of Medical Sciences, Tehran, Iran
| | | | - Irina Dinu
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada,Correspondence to: School of Public Health, University of Alberta, 3-278 Edmonton Clinic Health Academy, 11405 - 87 Ave NW, Edmonton, Alberta T6G 1C9, Canada.
| |
Collapse
|
56
|
Amin N, Schwarzkopf S, Tröscher-Mußotter J, Camarinha-Silva A, Dänicke S, Huber K, Frahm J, Seifert J. Host metabolome and faecal microbiome shows potential interactions impacted by age and weaning times in calves. Anim Microbiome 2023; 5:12. [PMID: 36788596 PMCID: PMC9926800 DOI: 10.1186/s42523-023-00233-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Calves undergo nutritional, metabolic, and behavioural changes from birth to the entire weaning period. An appropriate selection of weaning age is essential to reduce the negative effects caused by weaning-related dietary transitions. This study monitored the faecal microbiome and plasma metabolome of 59 female Holstein calves during different developmental stages and weaning times (early vs. late) and identified the potential associations of the measured parameters over an experimental period of 140 days. RESULTS A progressive development of the microbiome and metabolome was observed with significant differences according to the weaning groups (weaned at 7 or 17 weeks of age). Faecal samples of young calves were dominated by bifidobacterial and lactobacilli species, while their respective plasma samples showed high concentrations of amino acids (AAs) and biogenic amines (BAs). However, as the calves matured, the abundances of potential fiber-degrading bacteria and the plasma concentrations of sphingomyelins (SMs), few BAs and acylcarnitines (ACs) were increased. Early-weaning at 7 weeks significantly restructured the microbiome towards potential fiber-degrading bacteria and decreased plasma concentrations of most of the AAs and SMs, few BAs and ACs compared to the late-weaning event. Strong associations between faecal microbes, plasma metabolites and calf growth parameters were observed during days 42-98, where the abundances of Bacteroides, Parabacteroides, and Blautia were positively correlated with the plasma concentrations of AAs, BAs and SMs as well as the live weight gain or average daily gain in calves. CONCLUSION The present study reported that weaning at 17 weeks of age was beneficial due to higher growth rate of late-weaned calves during days 42-98 and a quick adaptability of microbiota to weaning-related dietary changes during day 112, suggesting an age-dependent maturation of the gastrointestinal tract. However, the respective plasma samples of late-weaned calves contained several metabolites with differential concentrations to the early-weaned group, suggesting a less abrupt but more-persistent effect of dietary changes on host metabolome compared to the microbiome.
Collapse
Affiliation(s)
- Nida Amin
- grid.9464.f0000 0001 2290 1502HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany ,grid.9464.f0000 0001 2290 1502Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
| | - Sarah Schwarzkopf
- grid.9464.f0000 0001 2290 1502HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany ,grid.9464.f0000 0001 2290 1502Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
| | - Johanna Tröscher-Mußotter
- grid.9464.f0000 0001 2290 1502HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany ,grid.9464.f0000 0001 2290 1502Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
| | - Amélia Camarinha-Silva
- grid.9464.f0000 0001 2290 1502HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany ,grid.9464.f0000 0001 2290 1502Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
| | - Sven Dänicke
- grid.417834.dInstitute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Brunswick, Germany
| | - Korinna Huber
- grid.9464.f0000 0001 2290 1502HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany ,grid.9464.f0000 0001 2290 1502Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
| | - Jana Frahm
- grid.417834.dInstitute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Brunswick, Germany
| | - Jana Seifert
- HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany. .,Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593, Stuttgart, Germany.
| |
Collapse
|
57
|
Tafesh-Edwards G, Eleftherianos I. Functional role of thioester-containing proteins in the Drosophila anti-pathogen immune response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104578. [PMID: 36270515 DOI: 10.1016/j.dci.2022.104578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/17/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Thioester-containing proteins (TEPs) are present in many animal species ranging from deuterostomes to protostomes, which emphasizes their evolutionary conservation and importance in animal physiology. Phylogenetically, insect TEPs share sequence similarity with mammalian α2-macroglobulin. Drosophila melanogaster is specifically considered a superb model for teasing apart innate immune processes. Here we review recent discoveries on the involvement of Drosophila TEPs in the immune response against bacterial pathogens, nematode parasites, and parasitoid wasps. This information generates novel insights into the role of TEPs as regulators of homeostasis in Drosophila and supports the complexity of immune recognition and specificity in insects and more generally in invertebrates. These developments together with recent advances in gene editing and multi-omics will enable the fly immunity community to appreciate the molecular and mechanistic contributions of TEPs to the modulation of the host defense against infectious disease and possibly to translate this information into tangible therapeutic benefits.
Collapse
Affiliation(s)
- Ghada Tafesh-Edwards
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington DC, 20052, USA.
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington DC, 20052, USA.
| |
Collapse
|
58
|
Yip S, Wang N, Sugimura R. Give Them Vasculature and Immune Cells: How to Fill the Gap of Organoids. Cells Tissues Organs 2023; 212:369-382. [PMID: 36716724 PMCID: PMC10711768 DOI: 10.1159/000529431] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/23/2023] [Indexed: 02/01/2023] Open
Abstract
Valid and relevant models are critical for research to have biological relevance or to proceed in the right path. As well-established two-dimensional cell cultures lack niches and cues and rodent models differ in species, three-dimensional organoids emerged as a powerful platform for research. Cultured in vitro from stem cells, organoids are heterogeneous in cells and closely resemble the in vivo settings. Organoids also recapitulate the unique human features if cultured from a human source and are subjected to genetic modification. However, one type of organoid possesses only a limited selection of cells. In particular, the absence of vasculature and immune cells restricts the organoids from nutrition, cues, or critical interactions, undermining the validity of organoids as physiological or pathological models. To fill the current gap, there is an urgent need to provide organoids with vasculature and immune cells. In this paper, we review the methods to generate physiological and pathological organoid models and summarize ways to vascularize or immunize them. Our discussion continues with some advantages and disadvantages of each method and some emerging solutions to current problems.
Collapse
Affiliation(s)
- Sophronia Yip
- Faculty of Science, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Centre for Translational Stem Cell Biology, Hong Kong, Hong Kong SAR
| | - Nan Wang
- Faculty of Science, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Ryohichi Sugimura
- Centre for Translational Stem Cell Biology, Hong Kong, Hong Kong SAR
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| |
Collapse
|
59
|
Zhang Q, Deng P, Chen S, Xu H, Zhang Y, Chen H, Zhang J, Sun H. Electroacupuncture and human iPSC-derived small extracellular vesicles regulate the gut microbiota in ischemic stroke via the brain-gut axis. Front Immunol 2023; 14:1107559. [PMID: 36742316 PMCID: PMC9895941 DOI: 10.3389/fimmu.2023.1107559] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Electroacupuncture (EA) and induced pluripotent stem cell (iPSC)-derived small extracellular vesicles (iPSC-EVs) have substantial beneficial effects on ischemic stroke. However, the detailed mechanisms remain unclear. Here, we explored the mechanisms underlying the regulation of EA and iPSC-EVs in the microbiome-gut-brain axis (MGBA) after ischemic stroke. Ischemic stroke mice (C57BL/6) were subjected to middle cerebral artery occlusion (MCAO) or Sham surgery. EA and iPSC-EVs treatments significantly improved neurological function and neuronal and intestinal tract injury, downregulated the levels of IL-17 expression and upregulated IL-10 levels in brain and colon tissue after cerebral ischemia-reperfusion. EA and iPSC-EVs treatments also modulated the microbiota composition and diversity as well as the differential distribution of species in the intestines of the mice after cerebral ischemia-reperfusion. Our results demonstrated that EA and iPSC-EVs treatments regulated intestinal immunity through MGBA regulation of intestinal microbes, reducing brain and colon damage following cerebral ischemia and positively impacting the outcomes of ischemic stroke. Our findings provide new insights into the application of EA combined with iPSC-EVs as a treatment for ischemic stroke.
Collapse
Affiliation(s)
- Qiongqiong Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Peiying Deng
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Suhui Chen
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Xu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yamin Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hui Chen
- CAMS Key Laboratory for T-Cell and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China,Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China,Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China
| | - Jianmin Zhang
- CAMS Key Laboratory for T-Cell and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China,Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China,Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China,Guidon Pharmaceutics, Inc., Beijing, China,*Correspondence: Jianmin Zhang, ; Hua Sun,
| | - Hua Sun
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China,*Correspondence: Jianmin Zhang, ; Hua Sun,
| |
Collapse
|
60
|
Senchukova MA. Microbiota of the gastrointestinal tract: Friend or foe? World J Gastroenterol 2023; 29:19-42. [PMID: 36683718 PMCID: PMC9850957 DOI: 10.3748/wjg.v29.i1.19] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/05/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
The gut microbiota is currently considered an external organ of the human body that provides important mechanisms of metabolic regulation and protection. The gut microbiota encodes over 3 million genes, which is approximately 150 times more than the total number of genes present in the human genome. Changes in the qualitative and quantitative composition of the microbiome lead to disruption in the synthesis of key bacterial metabolites, changes in intestinal barrier function, and inflammation and can cause the development of a wide variety of diseases, such as diabetes, obesity, gastrointestinal disorders, cardiovascular issues, neurological disorders and oncological concerns. In this review, I consider issues related to the role of the microbiome in the regulation of intestinal barrier function, its influence on physiological and pathological processes occurring in the body, and potential new therapeutic strategies aimed at restoring the gut microbiome. Herewith, it is important to understand that the gut microbiota and human body should be considered as a single biological system, where change of one element will inevitably affect its other components. Thus, the study of the impact of the intestinal microbiota on health should be considered only taking into account numerous factors, the role of which has not yet been fully elucidated.
Collapse
Affiliation(s)
- Marina A Senchukova
- Department of Oncology, Orenburg State Medical University, Orenburg 460000, Russia
| |
Collapse
|
61
|
Zhao Y, Wang B, Zhao X, Cui D, Hou S, Zhang H. The effect of gut microbiota dysbiosis on patients with preeclampsia. Front Cell Infect Microbiol 2023; 12:1022857. [PMID: 36683689 PMCID: PMC9846273 DOI: 10.3389/fcimb.2022.1022857] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/08/2022] [Indexed: 01/05/2023] Open
Abstract
Purpose To compare the difference of gut microbiota between preeclampsia (PE) and healthy normal pregnant women, providing new therapeutic strategy for preeclampsia. Methods Forty-one PE patients and 45 age- and pre-pregnancy body mass index- matched healthy controls were enrolled from Nov 2021 to May 2022 in this retrospective case-control study. Fecal microbiota was detected by 16S rRNA gene sequencing, followed by bioinformatics analysis including microbial α diversity, microbial β diversity, and linear discriminant analysis effect size (LEfSe) analysis. Serum inflammatory factors were also detected and compared between the two groups. Results There were significant differences in Bacteroidetes (2.68% in PE patients vs 11.04% in healthy controls, P < 0.001), Proteobacteria (4.04% in PE patients vs 1.22% in healthy controls, P = 0.041), and Fusobacteria (1.07% in PE patients vs 0.01% in healthy controls, P = 0.042) between the two groups at the phylum level. Microbial α diversity was lower in PE patients than that in healthy controls. In addition, there was significant difference in microbial β diversity between the two groups. LEfSe analysis showed that there are 24 different taxa between the two groups. The levels of proinflammatory factors including serum tumor necrosis factor-α and Interleukin-6 were statistically significant higher in PE patients than those in healthy controls (both P < 0.001), while there were no significant differences in the levels of serum anti-inflammatory factors including Interleukin-4 and Interleukin-10 between the two groups (P = 0.234 and P = 0.096, respectively). Conclusion PE patients demonstrated gut microbiota disturbances and increasing serum proinflammatory factors, leading to a better understanding of the relationship between the gut microbiota dysbiosis and PE.
Collapse
Affiliation(s)
- Yefang Zhao
- Department of Obstetrics and Gynecology, First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Bingjie Wang
- Department of Obstetrics, Xingtai People's Hospital, Affiliated Hospital of Hebei Medical University, Xingtai, Hebei, China
| | - Xiaoling Zhao
- Department of Obstetrics, Xingtai People's Hospital, Affiliated Hospital of Hebei Medical University, Xingtai, Hebei, China
| | - Dan Cui
- Department of Obstetrics, Xingtai People's Hospital, Affiliated Hospital of Hebei Medical University, Xingtai, Hebei, China
| | - Shaoke Hou
- Department of Obstetrics, Xingtai People's Hospital, Affiliated Hospital of Hebei Medical University, Xingtai, Hebei, China
| | - Hongzhen Zhang
- Department of Obstetrics and Gynecology, First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
62
|
Liao X, Lan Y, Wang W, Zhang J, Shao R, Yin Z, Gudmundsson GH, Bergman P, Mai K, Ai Q, Wan M. Vitamin D influences gut microbiota and acetate production in zebrafish ( Danio rerio) to promote intestinal immunity against invading pathogens. Gut Microbes 2023; 15:2187575. [PMID: 36879441 PMCID: PMC10012952 DOI: 10.1080/19490976.2023.2187575] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Although evidence has shown that vitamin D (VD) influences gut homeostasis, limited knowledge is available how VD regulates intestinal immunity against bacterial infection. In the present study, cyp2r1 mutant zebrafish, lacking the capacity to metabolize VD, and zebrafish fed a diet devoid of VD, were utilized as VD-deficient animal models. Our results confirmed that the expression of antimicrobial peptides (AMPs) and IL-22 was restrained and the susceptibility to bacterial infection was increased in VD-deficient zebrafish. Furthermore, VD induced AMP expression in zebrafish intestine by activating IL-22 signaling, which was dependent on the microbiota. Further analysis uncovered that the abundance of the acetate-producer Cetobacterium in VD-deficient zebrafish was reduced compared to WT fish. Unexpectedly, VD promoted the growth and acetate production of Cetobacterium somerae under culture in vitro. Importantly, acetate treatment rescued the suppressed expression of β-defensins in VD-deficient zebrafish. Finally, neutrophils contributed to VD-induced AMP expression in zebrafish. In conclusion, our study elucidated that VD modulated gut microbiota composition and production of short-chain fatty acids (SCFAs) in zebrafish intestine, leading to enhanced immunity.
Collapse
Affiliation(s)
- Xinmeng Liao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Yawen Lan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Wentao Wang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Jinjin Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Rui Shao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Gudmundur H. Gudmundsson
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Peter Bergman
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- The Immunodeficiency Unit, Infectious Disease Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
- Pilot National Laboratory of Marine Science and Technology, Qingdao, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
- Pilot National Laboratory of Marine Science and Technology, Qingdao, China
| | - Min Wan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
- Pilot National Laboratory of Marine Science and Technology, Qingdao, China
| |
Collapse
|
63
|
MacDonald T, Dunn KA, MacDonald J, Langille MG, Van Limbergen JE, Bielawski JP, Kulkarni K. The gastrointestinal antibiotic resistome in pediatric leukemia and lymphoma patients. Front Cell Infect Microbiol 2023; 13:1102501. [PMID: 36909730 PMCID: PMC9998685 DOI: 10.3389/fcimb.2023.1102501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/10/2023] [Indexed: 02/26/2023] Open
Abstract
Introduction Most children with leukemia and lymphoma experience febrile neutropenia. These are treated with empiric antibiotics that include β-lactams and/or vancomycin. These are often administered for extended periods, and the effect on the resistome is unknown. Methods We examined the impact of repeated courses and duration of antibiotic use on the resistome of 39 pediatric leukemia and lymphoma patients. Shotgun metagenome sequences from 127 stool samples of pediatric oncology patients were examined for abundance of antibiotic resistance genes (ARGs) in each sample. Abundances were grouped by repeated courses (no antibiotics, 1-2 courses, 3+ courses) and duration (no use, short duration, long and/or mixed durationg) of β-lactams, vancomycin and "any antibiotic" use. We assessed changes in both taxonomic composition and prevalence of ARGs among these groups. Results We found that Bacteroidetes taxa and β-lactam resistance genes decreased, while opportunistic Firmicutes and Proteobacteria taxa, along with multidrug resistance genes, increased with repeated courses and/or duration of antibiotics. Efflux pump related genes predominated (92%) among the increased multidrug genes. While we found β-lactam ARGs present in the resistome, the taxa that appear to contain them were kept in check by antibiotic treatment. Multidrug ARGs, mostly efflux pumps or regulators of efflux pump genes, were associated with opportunistic pathogens, and both increased in the resistome with repeated antibiotic use and/or increased duration. Conclusions Given the strong association between opportunistic pathogens and multidrug-related efflux pumps, we suggest that drug efflux capacity might allow the opportunistic pathogens to persist or increase despite repeated courses and/or duration of antibiotics. While drug efflux is the most direct explanation, other mechanisms that enhance the ability of opportunistic pathogens to handle environmental stress, or other aspects of the treatment environment, could also contribute to their ability to flourish within the gut during treatment. Persistence of opportunistic pathogens in an already dysbiotic and weakened gastrointestinal tract could increase the likelihood of life-threatening blood borne infections. Of the 39 patients, 59% experienced at least one gastrointestinal or blood infection and 60% of bacteremia's were bacteria found in stool samples. Antimicrobial stewardship and appropriate use and duration of antibiotics could help reduce morbidity and mortality in this vulnerable population.
Collapse
Affiliation(s)
- Tamara MacDonald
- Department of Pharmacy, IWK Health, Halifax, NS, Canada
- Faculty of Health Professions, Dalhousie University, Halifax, NS, Canada
- *Correspondence: Ketan Kulkarni, ; Katherine A. Dunn, ; Tamara MacDonald,
| | - Katherine A. Dunn
- Department of Pediatrics, Division of Hematology Oncology, Izaak Walton Killam (IWK) Health, Halifax, NS, Canada
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
- *Correspondence: Ketan Kulkarni, ; Katherine A. Dunn, ; Tamara MacDonald,
| | - Jane MacDonald
- Department of Pediatrics, Division of Hematology Oncology, Izaak Walton Killam (IWK) Health, Halifax, NS, Canada
- Department of Science, University of Waterloo, Waterloo, ON, Canada
| | - Morgan G.I. Langille
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Johan E. Van Limbergen
- Department of Pediatric Gastroenterology and Nutrition, Emma Children’s Hospital, Amsterdam University Medical Centers, Amsterdam, Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Joseph P. Bielawski
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
- Department of Mathematics & Statistics, Dalhousie University, Halifax, NS, Canada
| | - Ketan Kulkarni
- Department of Pediatrics, Division of Hematology Oncology, Izaak Walton Killam (IWK) Health, Halifax, NS, Canada
- *Correspondence: Ketan Kulkarni, ; Katherine A. Dunn, ; Tamara MacDonald,
| |
Collapse
|
64
|
Saladrigas-García M, Durán M, D’Angelo M, Coma J, Pérez JF, Martín-Orúe SM. An insight into the commercial piglet's microbial gut colonization: from birth towards weaning. Anim Microbiome 2022; 4:68. [PMID: 36572944 PMCID: PMC9791761 DOI: 10.1186/s42523-022-00221-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The establishment of the gut microbiota can be influenced by several perinatal factors, including, most importantly, the maternal microbiota. Moreover, early-life environmental variation affects gut microbial colonization and the intestinal health of offspring throughout life. The present study aimed to explore the development of piglet gut microbiota from birth to weaning in the commercial practice and also to assess how different farm environments could condition this process. Although it is possible to find in the literature other studies with similar objectives this work probably represents one of the few studies that make a systematic evaluation of such differential factors under a real scenario. To achieve this objective, we performed two trials. In a first Trial, we selected 2 farms in which we performed an intensive sampling (5 samples /animal) to characterize the gut colonization pattern during the first days of life and to identify the time window with the greatest impact. Both farms differed in their health status and the use of antimicrobials in the piglets. In a second Trial, we selected 4 additional farms with variable rearing conditions and a distinctive use of antimicrobials in the sows with a simplified sampling pattern (2 samples/animal). Faecal samples were obtained with swabs and DNA was extracted by using the PSP® Spin Stool DNA Kit and sequencing of the 16S rRNA gene (V3-V4 region) performed by Illumina MiSeq Platform. RESULTS The present study contributes to a better understanding of microbiome development during the transition from birth to weaning in commercial conditions. Alpha diversity was strongly affected by age, with an increased richness of species through time. Beta diversity decreased after weaning, suggesting a convergent evolvement among individuals. We pinpointed the early intestinal colonizers belonging to Bacteroides, Escherichia-Shigella, Clostridium sensu stricto 1, and Fusobacterium genera. During lactation(d7-d21 of life), the higher relative abundances of Bacteroides and Lactobacillus genera were correlated with a milk-oriented microbiome. As the piglets aged and after weaning (d36 of life), increasing abundances of genera such as Prevotella, Butyricimonas, Christensenellaceae R-7 group, Dorea, Phascolarctobacterium, Rikenellaceae RC9 gut group, Subdoligranulum, and Ruminococcaceae UCG-002 were observed. These changes indicate the adaptation of the piglets to a cereal-based diet rich in oligosaccharides and starch. Our results also show that the farm can have a significant impact in such a process, evidencing the influence of different environments and rearing systems on the gut microbiota development of the young piglet. Differences between farms were more noticeable after weaning than during lactation with changes in alpha and beta biodiversity and specific taxa. The analysis of such differences suggests that piglets receiving intramuscular amoxicillin (days 2-5 of life) and being offered an acidifying rehydrating solution (Alpha farm in Trial 1) have a greater alpha diversity and more abundant Lactobacillus population. Moreover, the only farm that did not offer any rehydrating solution (Foxtrot farm in Trial 2) showed a lower alpha diversity (day 2 of life) and increased abundance of Enterobacteriaceae (both at 2 and 21 days). The use of in-feed antibiotics in the sows was also associated with structural changes in the piglets' gut ecosystem although without changes in richness or diversity. Significant shifts could be registered in different microbial groups, particularly lower abundances of Fusobacterium in those piglets from medicated sows. CONCLUSIONS In conclusion, during the first weeks of life, the pig microbiota showed a relevant succession of microbial groups towards a more homogeneous and stable ecosystem better adapted to the solid dry feed. In this relevant early-age process, the rearing conditions, the farm environment, and particularly the antimicrobial use in piglets and mothers determine changes that could have a relevant impact on gut microbiota maturation. More research is needed to elucidate the relative impact of these farm-induced early life-long changes in the growing pig.
Collapse
Affiliation(s)
- Mireia Saladrigas-García
- grid.7080.f0000 0001 2296 0625Servicio de Nutrición Y Bienestar Animal. Departamento de Ciencia Animal Y de los Alimentos, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | - Matilde D’Angelo
- grid.7080.f0000 0001 2296 0625Servicio de Nutrición Y Bienestar Animal. Departamento de Ciencia Animal Y de los Alimentos, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Jaume Coma
- Grupo Vall Companys, 25191 Lleida, Spain
| | - José Francisco Pérez
- grid.7080.f0000 0001 2296 0625Servicio de Nutrición Y Bienestar Animal. Departamento de Ciencia Animal Y de los Alimentos, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Susana María Martín-Orúe
- grid.7080.f0000 0001 2296 0625Servicio de Nutrición Y Bienestar Animal. Departamento de Ciencia Animal Y de los Alimentos, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
65
|
Functions and specificity of bacterial carbohydrate sulfatases targeting host glycans. Essays Biochem 2022; 67:429-442. [PMID: 36562177 PMCID: PMC10154612 DOI: 10.1042/ebc20220120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
Sulfated host glycans (mucin O-glycans and glycosaminoglycans [GAGs]) are critical nutrient sources and colonisation factors for Bacteroidetes of the human gut microbiota (HGM); a complex ecosystem comprising essential microorganisms that coevolved with humans to serve important roles in pathogen protection, immune signalling, and host nutrition. Carbohydrate sulfatases are essential enzymes to access sulfated host glycans and are capable of exquisite regio- and stereo-selective substrate recognition. In these enzymes, the common recognition features of each subfamily are correlated with their genomic and environmental context. The exo-acting carbohydrate sulfatases are attractive drug targets amenable to small-molecule screening and subsequent engineering, and their high specificity will help elucidate the role of glycan sulfation in health and disease. Inhibition of carbohydrate sulfatases provides potential routes to control Bacteroidetes growth and to explore the influence of host glycan metabolism by Bacteroidetes on the HGM ecosystem. The roles of carbohydrate sulfatases from the HGM organism Bacteroides thetaiotaomicron and the soil isolated Pedobacter heparinus (P. heparinus) in sulfated host glycan metabolism are examined and contrasted, and the structural features underpinning glycan recognition and specificity explored.
Collapse
|
66
|
Gorelik O, Rogad A, Holoidovsky L, Meijler MM, Sal-Man N. Indole intercepts the communication between enteropathogenic E. coli and Vibrio cholerae. Gut Microbes 2022; 14:2138677. [PMID: 36519445 PMCID: PMC9635540 DOI: 10.1080/19490976.2022.2138677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reported numbers of diarrheal samples exhibiting co-infections or multiple infections, with two or more infectious agents, are rising, likely due to advances in bacterial diagnostic techniques. Bacterial species detected in these samples include Vibrio cholerae (V. cholerae) and enteropathogenic Escherichia coli (EPEC), which infect the small intestine and are associated with high mortality rates. It has previously been reported that EPEC exhibit enhanced virulence in the presence of V. cholerae owing to their ability to sense and respond to elevated concentrations of cholera autoinducer 1 (CAI-1), which is the primary quorum-sensing (QS) molecule produced by V. cholerae. In this study, we examined this interspecies bacterial communication in the presence of indole, a major microbiome-derived metabolite found at high concentrations in the human gut. Interestingly, we discovered that although indole did not affect bacterial growth or CAI-1 production, it impaired the ability of EPEC to enhance its virulence activity in response to the presence of V. cholerae. Furthermore, the co-culture of EPEC and V. cholerae in the presence of B. thetaiotaomicron, an indole-producing commensal bacteria, ablated the enhancement of EPEC virulence. Together, these results suggest that microbiome compositions or diets that influence indole gut concentrations may differentially impact the virulence of pathogens and their ability to sense and respond to competing bacteria.
Collapse
Affiliation(s)
- Orna Gorelik
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alona Rogad
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Lara Holoidovsky
- Department of Chemistry, the National Institute for Biotechnology in the Negev Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Michael M. Meijler
- Department of Chemistry, the National Institute for Biotechnology in the Negev Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Neta Sal-Man
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel,CONTACT Neta Sal-Man The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
67
|
Yadav A, Pandey R. Viral infectious diseases severity: co-presence of transcriptionally active microbes (TAMs) can play an integral role for disease severity. Front Immunol 2022; 13:1056036. [PMID: 36532032 PMCID: PMC9755851 DOI: 10.3389/fimmu.2022.1056036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
Humans have been challenged by infectious diseases for all of their recorded history, and are continually being affected even today. Next-generation sequencing (NGS) has enabled identification of, i) culture independent microbes, ii) emerging disease-causing pathogens, and iii) understanding of the genome architecture. This, in turn, has highlighted that pathogen/s are not a monolith, and thereby allowing for the differentiation of the wide-ranging disease symptoms, albeit infected by a primary pathogen. The conventional 'one disease - one pathogen' paradigm has been positively revisited by considering limited yet important evidence of the co-presence of multiple transcriptionally active microbes (TAMs), potential pathogens, in various infectious diseases, including the COVID-19 pandemic. The ubiquitous microbiota presence inside humans gives reason to hypothesize that the microbiome, especially TAMs, contributes to disease etiology. Herein, we discuss current evidence and inferences on the co-infecting microbes particularly in the diseases caused by the RNA viruses - Influenza, Dengue, and the SARS-CoV-2. We have highlighted that the specific alterations in the microbial taxonomic abundances (dysbiosis) is functionally connected to the exposure of primary infecting pathogen/s. The microbial presence is intertwined with the differential host immune response modulating differential disease trajectories. The microbiota-host interactions have been shown to modulate the host immune responses to Influenza and SARS-CoV-2 infection, wherein the active commensal microbes are involved in the generation of virus-specific CD4 and CD8 T-cells following the influenza virus infection. Furthermore, COVID-19 dysbiosis causes an increase in inflammatory cytokines such as IL-6, TNF-α, and IL-1β, which might be one of the important predisposing factors for severe infection. Through this article, we aim to provide a comprehensive view of functional microbiomes that can have a significant regulatory impact on predicting disease severity (mild, moderate and severe), as well as clinical outcome (survival and mortality). This can offer fresh perspectives on the novel microbial biomarkers for stratifying patients for severe disease symptoms, disease prevention and augmenting treatment regimens.
Collapse
Affiliation(s)
- Aanchal Yadav
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
68
|
Nguse M, Yang Y, Fu Z, Xu J, Ma L, Bu D. Phyllanthus emblica (Amla) Fruit Powder as a Supplement to Improve Preweaning Dairy Calves' Health: Effect on Antioxidant Capacity, Immune Response, and Gut Bacterial Diversity. BIOLOGY 2022; 11:1753. [PMID: 36552263 PMCID: PMC9774823 DOI: 10.3390/biology11121753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022]
Abstract
Disease is the main reason for the use of antimicrobials in calf rearing, and antibiotics are commonly used to treat calves, including for unknown diseases. This leads to antimicrobial resistance, which is a challenge to the livestock industry and public health. Plant products containing high levels of phytochemicals may improve the immunity and resistance of calves against infections, thereby reducing the use of antimicrobials. This study aimed to investigate the effect of Phyllanthus emblica (Amla) fruit powder (PE) supplementation on antioxidant capacity and immune response of preweaning dairy calves. One hundred, 2-day-old, male Holstein calves were randomly assigned into five treatment groups receiving 0, 5, 10, 20, and 40 g/d PE supplementation. Antioxidant and immune indices and pro- and anti-inflammatory cytokines were analyzed from serum samples, whereas 16S rRNA was analyzed from rumen fluid and fecal samples. PE supplementation, at 5 g/d, protected calves against oxidative stress and improved antioxidant enzymes and immune and anti-inflammatory responses, showing its immunity-enhancing and protective roles against infections. However, the antioxidant capacity and immune response decreased with increasing PE levels, illustrating the adverse effects of PE supplementation at higher doses. The analysis of ruminal and fecal bacterial community abundance detected higher proportions of Firmicutes at an early age, and a higher Bacteroidetes to Firmicutes ratio at weaning, in calves supplemented with 5 g/d PE. This contributed to the development of the immune system in early life, and improved immune and anti-inflammatory responses at a later age. The overall results suggest that PE could be supplemented at 5 g/d for preweaning dairy calves to protect against oxidative stress and infections while maintaining normal gut microbial hemostasis.
Collapse
Affiliation(s)
- Mebrahtom Nguse
- State Key Laboratory of Animal Nutrition, Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- Department of Animal Sciences (ARWS), College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle P.O. Box 231, Ethiopia
| | - Yi Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Zilin Fu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Jianchu Xu
- World Agroforestry Center, East and Central Asia, Kunming 650201, China
- Joint Laboratory on Integrated Crop-Tree-Livestock Systems of the Chinese Academy of Agricultural Sciences (CAAS), Ethiopian Institute of Agricultural Research (EIAR) and World Agroforestry Center (ICRAF), Beijing 100193, China
| | - Lu Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- Joint Laboratory on Integrated Crop-Tree-Livestock Systems of the Chinese Academy of Agricultural Sciences (CAAS), Ethiopian Institute of Agricultural Research (EIAR) and World Agroforestry Center (ICRAF), Beijing 100193, China
| |
Collapse
|
69
|
Pan H, Jian Y, Wang F, Yu S, Guo J, Kan J, Guo W. NLRP3 and Gut Microbiota Homeostasis: Progress in Research. Cells 2022; 11:3758. [PMID: 36497018 PMCID: PMC9739202 DOI: 10.3390/cells11233758] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022] Open
Abstract
The inflammasome is a platform for inflammatory signaling, and the NLRP3 inflammasome recognizes stimuli in vitro and in vivo, and releases inflammatory cytokines that trigger inflammation and pyroptosis. In the gut, the NLRP3 inflammasome is a key sensor for protecting the body from damage and exogenous pathogens. It plays a fundamental role in maintaining the stability of the gut's immune system. We focus on the role of NLRP3 as a key node in maintaining the homeostasis of gut microbiota which has not been fully highlighted in the past; gut microbiota and innate immunity, as well as the NLRP3 inflammasome, are discussed in this article.
Collapse
Affiliation(s)
- Hongming Pan
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, China
| | - Yuting Jian
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Feijie Wang
- Nutrilite Health Institute, Shanghai 201203, China
| | - Shaokun Yu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiannan Guo
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Juntao Kan
- Nutrilite Health Institute, Shanghai 201203, China
| | - Wei Guo
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
70
|
Srivastava P, Kim KS. Membrane Vesicles Derived from Gut Microbiota and Probiotics: Cutting-Edge Therapeutic Approaches for Multidrug-Resistant Superbugs Linked to Neurological Anomalies. Pharmaceutics 2022; 14:2370. [PMID: 36365188 PMCID: PMC9692612 DOI: 10.3390/pharmaceutics14112370] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Multidrug-resistant (MDR) superbugs can breach the blood-brain barrier (BBB), leading to a continuous barrage of pro-inflammatory modulators and induction of severe infection-related pathologies, including meningitis and brain abscess. Both broad-spectrum or species-specific antibiotics (β-lactamase inhibitors, polymyxins, vancomycin, meropenem, plazomicin, and sarecycline) and biocompatible poly (lactic-co-glycolic acid) (PLGA) nanoparticles have been used to treat these infections. However, new therapeutic platforms with a broad impact that do not exert off-target deleterious effects are needed. Membrane vesicles or extracellular vesicles (EVs) are lipid bilayer-enclosed particles with therapeutic potential owing to their ability to circumvent BBB constraints. Bacteria-derived EVs (bEVs) from gut microbiota are efficient transporters that can penetrate the central nervous system. In fact, bEVs can be remodeled via surface modification and CRISPR/Cas editing and, thus, represent a novel platform for conferring protection against infections breaching the BBB. Here, we discuss the latest scientific research related to gut microbiota- and probiotic-derived bEVs, and their therapeutic modifications, in terms of regulating neurotransmitters and inhibiting quorum sensing, for the treatment of neurodegenerative diseases, such as Parkinson's and Alzheimer's diseases. We also emphasize the benefits of probiotic-derived bEVs to human health and propose a novel direction for the development of innovative heterologous expression systems to combat BBB-crossing pathogens.
Collapse
Affiliation(s)
| | - Kwang-sun Kim
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Korea
| |
Collapse
|
71
|
Sturov NV, Popov SV, Zhukov VA, Lyapunova TV, Rusanova EI, Kobylyanu GN, Kobylyanu GN. Intestinal Microbiota Correction in the Treatment and Prevention of Urinary Tract Infection. Turk J Urol 2022; 48:406-414. [PMID: 36416330 PMCID: PMC9797784 DOI: 10.5152/tud.2022.22119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Intestinal microbiota is a topical subject of modern research. The maintenance of a healthy intestinal micro biota is an important component of homeostasis, and violations of its composition and functions, called dysbiosis, are associated with a number of diseases, including urinary tract infections. Antimicrobial therapy leads to significant changes in the intestinal microbiota and causes the possibility of urinary tract infection recurrence. In this regard, it is important to study methods of microbiota correction in order to restore its structural and functional integrity.
Collapse
Affiliation(s)
- Nikolay V. Sturov
- General Medical Practice Department, RUDN University (Peoples’ Friendship University of Russia), Moscow, Russian Federation
| | - Sergey V. Popov
- General Medical Practice Department, RUDN University (Peoples’ Friendship University of Russia), Moscow, Russian Federation
| | - Vladimir A. Zhukov
- General Medical Practice Department, RUDN University (Peoples’ Friendship University of Russia), Moscow, Russian Federation,Corresponding author:Vladimir A. ZhukovE-mail:
| | - Tatiana V. Lyapunova
- Medical Informatics and Telemedicine Department, RUDN University (Peoples’ Friendship University of Russia), Moscow, Russian Federation
| | - Ekaterina I. Rusanova
- General Medical Practice Department, RUDN University (Peoples’ Friendship University of Russia), Moscow, Russian Federation
| | - Georgy N. Kobylyanu
- General Medical Practice Department, RUDN University (Peoples’ Friendship University of Russia), Moscow, Russian Federation
| | | | | | | | | | | | | |
Collapse
|
72
|
Nausch B, Bittner CB, Höller M, Abramov-Sommariva D, Hiergeist A, Gessner A. Contribution of Symptomatic, Herbal Treatment Options to Antibiotic Stewardship and Microbiotic Health. Antibiotics (Basel) 2022; 11:1331. [PMID: 36289988 PMCID: PMC9598931 DOI: 10.3390/antibiotics11101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/16/2022] [Accepted: 09/24/2022] [Indexed: 12/03/2022] Open
Abstract
Epithelial surfaces in humans are home to symbiotic microbes (i.e., microbiota) that influence the defensive function against pathogens, depending on the health of the microbiota. Healthy microbiota contribute to the well-being of their host, in general (e.g., via the gut-brain axis), and their respective anatomical site, in particular (e.g., oral, urogenital, skin, or respiratory microbiota). Despite efforts towards a more responsible use of antibiotics, they are often prescribed for uncomplicated, self-limiting infections and can have a substantial negative impact on the gut microbiota. Treatment alternatives, such as non-steroidal anti-inflammatory drugs, may also influence the microbiota; thus, they can have lasting adverse effects. Herbal drugs offer a generally safe treatment option for uncomplicated infections of the urinary or respiratory tract. Additionally, their microbiota preserving properties allow for a more appropriate therapy of uncomplicated infections, without contributing to an increase in antibiotic resistance or disturbing the gut microbiota. Here, herbal treatments may be a more appropriate therapy, with a generally favorable safety profile.
Collapse
Affiliation(s)
- Bernhard Nausch
- Bionorica SE, Research and Development, Kerschensteinerstraße 11-15, 92318 Neumarkt in der Oberpfalz, Germany
| | - Claudia B. Bittner
- Bionorica SE, Research and Development, Kerschensteinerstraße 11-15, 92318 Neumarkt in der Oberpfalz, Germany
| | - Martina Höller
- Bionorica SE, Research and Development, Kerschensteinerstraße 11-15, 92318 Neumarkt in der Oberpfalz, Germany
| | - Dimitri Abramov-Sommariva
- Bionorica SE, Research and Development, Kerschensteinerstraße 11-15, 92318 Neumarkt in der Oberpfalz, Germany
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
73
|
Brugaletta G, Teyssier JR, Rochell SJ, Dridi S, Sirri F. A review of heat stress in chickens. Part I: Insights into physiology and gut health. Front Physiol 2022; 13:934381. [PMID: 35991182 PMCID: PMC9386003 DOI: 10.3389/fphys.2022.934381] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Heat stress (HS) compromises the yield and quality of poultry products and endangers the sustainability of the poultry industry. Despite being homeothermic, chickens, especially fast-growing broiler lines, are particularly sensitive to HS due to the phylogenetic absence of sweat glands, along with the artificial selection-caused increase in metabolic rates and limited development of cardiovascular and respiratory systems. Clinical signs and consequences of HS are multifaceted and include alterations in behavior (e.g., lethargy, decreased feed intake, and panting), metabolism (e.g., catabolic state, fat accumulation, and reduced skeletal muscle accretion), general homeostasis (e.g., alkalosis, hormonal imbalance, immunodeficiency, inflammation, and oxidative stress), and gastrointestinal tract function (e.g., digestive and absorptive disorders, enteritis, paracellular barrier failure, and dysbiosis). Poultry scientists and companies have made great efforts to develop effective solutions to counteract the detrimental effects of HS on health and performance of chickens. Feeding and nutrition have been shown to play a key role in combating HS in chicken husbandry. Nutritional strategies that enhance protein and energy utilization as well as dietary interventions intended to restore intestinal eubiosis are of increasing interest because of the marked effects of HS on feed intake, nutrient metabolism, and gut health. Hence, the present review series, divided into Part I and Part II, seeks to synthesize information on the effects of HS on physiology, gut health, and performance of chickens, with emphasis on potential solutions adopted in broiler chicken nutrition to alleviate these effects. Part I provides introductory knowledge on HS physiology to make good use of the nutritional themes covered by Part II.
Collapse
Affiliation(s)
- Giorgio Brugaletta
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Jean-Rémi Teyssier
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Samuel J. Rochell
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Federico Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Bologna, Italy
| |
Collapse
|
74
|
Luis AS, Baslé A, Byrne DP, Wright GSA, London JA, Jin C, Karlsson NG, Hansson GC, Eyers PA, Czjzek M, Barbeyron T, Yates EA, Martens EC, Cartmell A. Sulfated glycan recognition by carbohydrate sulfatases of the human gut microbiota. Nat Chem Biol 2022; 18:841-849. [PMID: 35710619 PMCID: PMC7613211 DOI: 10.1038/s41589-022-01039-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 04/14/2022] [Indexed: 12/31/2022]
Abstract
Sulfated glycans are ubiquitous nutrient sources for microbial communities that have coevolved with eukaryotic hosts. Bacteria metabolize sulfated glycans by deploying carbohydrate sulfatases that remove sulfate esters. Despite the biological importance of sulfatases, the mechanisms underlying their ability to recognize their glycan substrate remain poorly understood. Here, we use structural biology to determine how sulfatases from the human gut microbiota recognize sulfated glycans. We reveal seven new carbohydrate sulfatase structures spanning four S1 sulfatase subfamilies. Structures of S1_16 and S1_46 represent novel structures of these subfamilies. Structures of S1_11 and S1_15 demonstrate how non-conserved regions of the protein drive specificity toward related but distinct glycan targets. Collectively, these data reveal that carbohydrate sulfatases are highly selective for the glycan component of their substrate. These data provide new approaches for probing sulfated glycan metabolism while revealing the roles carbohydrate sulfatases play in host glycan catabolism.
Collapse
Affiliation(s)
- Ana S Luis
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden.
| | - Arnaud Baslé
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Dominic P Byrne
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Gareth S A Wright
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - James A London
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Chunsheng Jin
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Niclas G Karlsson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
- Faculty of Health Sciences, Department of Life Sciences and Health, Pharmacy, Oslo Metropolitan University, Oslo, Norway
| | - Gunnar C Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Patrick A Eyers
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Mirjam Czjzek
- Sorbonne Université, Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS, Roscoff, France
| | - Tristan Barbeyron
- Sorbonne Université, Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS, Roscoff, France
| | - Edwin A Yates
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Eric C Martens
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Alan Cartmell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
75
|
Dunn KA, MacDonald T, Rodrigues GJ, Forbrigger Z, Bielawski JP, Langille MG, Van Limbergen J, Kulkarni K. Antibiotic and antifungal use in pediatric leukemia and lymphoma patients are associated with increasing opportunistic pathogens and decreasing bacteria responsible for activities that enhance colonic defense. Front Cell Infect Microbiol 2022; 12:924707. [PMID: 35967843 PMCID: PMC9363618 DOI: 10.3389/fcimb.2022.924707] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Due to decreased immunity, both antibiotics and antifungals are regularly used in pediatric hematologic-cancer patients as a means to prevent severe infections and febrile neutropenia. The general effect of antibiotics on the human gut microbiome is profound, yielding decreased diversity and changes in community structure. However, the specific effect on pediatric oncology patients is not well-studied. The effect of antifungal use is even less understood, having been studied only in mouse models. Because the composition of the gut microbiome is associated with regulation of hematopoiesis, immune function and gastrointestinal integrity, changes within the patient gut can have implications for the clinical management of hematologic malignancies. The pediatric population is particularly challenging because the composition of the microbiome is age dependent, with some of the most pronounced changes occurring in the first three years of life. We investigated how antibiotic and antifungal use shapes the taxonomic composition of the stool microbiome in pediatric patients with leukemia and lymphoma, as inferred from both 16S rRNA and metagenome data. Associations with age, antibiotic use and antifungal use were investigated using multiple analysis methods. In addition, multivariable differential abundance was used to identify and assess specific taxa that were associated with multiple variables. Both antibiotics and antifungals were linked to a general decline in diversity in stool samples, which included a decrease in relative abundance in butyrate producers that play a critical role in host gut physiology (e.g., Faecalibacterium, Anaerostipes, Dorea, Blautia),. Furthermore, antifungal use was associated with a significant increase in relative abundance of opportunistic pathogens. Collectively, these findings have important implications for the treatment of leukemia and lymphoma patients. Butyrate is important for gastrointestinal integrity; it inhibits inflammation, reinforces colonic defense, mucosal immunity. and decreases oxidative stress. The routine use of broad-spectrum anti-infectives in pediatric oncology patients could simultaneously contribute to a decline in gastrointestinal integrity and colonic defense while promoting increases in opportunistic pathogens within the patient gut. Because the gut microbiome has been linked to both short-term clinical outcomes, and longer-lasting health effects, systematic characterization of the gut microbiome in pediatric patients during, and beyond, treatment is warranted.
Collapse
Affiliation(s)
- Katherine A. Dunn
- Department of Pediatrics, Division of Hematology and Oncology, Izaak Walton Killam (IWK) Health, Halifax, NS, Canada
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
| | - Tamara MacDonald
- Department of Pharmacy, IWK Health, Halifax, NS, Canada
- Faculty of Health Professions, Dalhousie University, Halifax, NS, Canada
| | | | - Zara Forbrigger
- Department of Pediatrics, Division of Hematology and Oncology, Izaak Walton Killam (IWK) Health, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Joseph P. Bielawski
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
- Department of Mathematics & Statistics, Dalhousie University, Halifax, NS, Canada
| | - Morgan G.I. Langille
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Johan Van Limbergen
- Department of Paediatric Gastroenterology and Nutrition, Emma Children’s Hospital, Amsterdam University Medical Centers, Amsterdam, Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Ketan Kulkarni
- Department of Pediatrics, Division of Hematology and Oncology, Izaak Walton Killam (IWK) Health, Halifax, NS, Canada
- *Correspondence: Ketan Kulkarni,
| |
Collapse
|
76
|
Michaud E, Waeckel L, Gayet R, Goguyer-Deschaumes R, Chanut B, Jospin F, Bathany K, Monnoye M, Genet C, Prier A, Tokarski C, Gérard P, Roblin X, Rochereau N, Paul S. Alteration of microbiota antibody-mediated immune selection contributes to dysbiosis in inflammatory bowel diseases. EMBO Mol Med 2022; 14:e15386. [PMID: 35785473 PMCID: PMC9358401 DOI: 10.15252/emmm.202115386] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 11/09/2022] Open
Abstract
Human secretory immunoglobulins (SIg) A1 and SIgA2 guide mucosal responses toward tolerance or inflammation, notably through reverse-transcytosis, the apical-to-basal transport of IgA2 immune complexes via M cells of gut Peyer's patches. As such, the maintenance of a diverse gut microbiota requires broad affinity IgA and glycan-glycan interaction. Here, we asked whether IgA1 and IgA2-microbiota interactions might be involved in dysbiosis induction during inflammatory bowel diseases. Using stool HPLC-purified IgA, we show that reverse-transcytosis is abrogated in ulcerative colitis (UC) while it is extended to IgA1 in Crohn's disease (CD). 16S RNA sequencing of IgA-bound microbiota in CD and UC showed distinct IgA1- and IgA2-associated microbiota; the IgA1+ fraction of CD microbiota was notably enriched in beneficial commensals. These features were associated with increased IgA anti-glycan reactivity in CD and an opposite loss of reactivity in UC. Our results highlight previously unknown pathogenic properties of IgA in IBD that could support dysbiosis.
Collapse
Affiliation(s)
- Eva Michaud
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, Saint-Etienne, France
| | - Louis Waeckel
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, Saint-Etienne, France
| | - Rémi Gayet
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, Saint-Etienne, France
| | - Roman Goguyer-Deschaumes
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, Saint-Etienne, France
| | - Blandine Chanut
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, Saint-Etienne, France
| | - Fabienne Jospin
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, Saint-Etienne, France
| | - Katell Bathany
- Chimie et Biologie des Membranes et des Nano-objets (UMR 5248), Université de Bordeaux, CNRS, Bordeaux INP, Pessac, France
| | - Magali Monnoye
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Coraline Genet
- Inserm UMR 1098 Right, Université Bourgogne Franche-Comté, Besançon, France
| | - Amelie Prier
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, Saint-Etienne, France
| | - Caroline Tokarski
- Chimie et Biologie des Membranes et des Nano-objets (UMR 5248), Université de Bordeaux, CNRS, Bordeaux INP, Pessac, France
| | - Philippe Gérard
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Xavier Roblin
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, Saint-Etienne, France
| | - Nicolas Rochereau
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, Saint-Etienne, France
| | - Stéphane Paul
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, Saint-Etienne, France
| |
Collapse
|
77
|
Fang H, Fang M, Wang Y, Zhang H, Li J, Chen J, Wu Q, He L, Xu J, Deng J, Liu M, Deng Y, Chen C. Indole-3-Propionic Acid as a Potential Therapeutic Agent for Sepsis-Induced Gut Microbiota Disturbance. Microbiol Spectr 2022; 10:e0012522. [PMID: 35658593 PMCID: PMC9241804 DOI: 10.1128/spectrum.00125-22] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/20/2022] [Indexed: 12/20/2022] Open
Abstract
The effects of using gut microbiota metabolites instead of live microorganisms to modulate sepsis-induced gut dysbiosis remain largely unknown. We assessed the effects of microbiota metabolite indole-3-propionic acid (IPA) on gut microbiota in mice during sepsis. Sepsis models were constructed by cecal ligation and puncture (CLP) methods. Fecal microbiota composition analysis was performed to characterize the gut microbiota composition. Fecal microbiota transplantation was performed to validate the roles of gut microbiota on sepsis progression. IPA-treated mice exhibited lower serum inflammatory mediator levels and a higher survival rate than those of saline-treated mice after modeling of sepsis, which were negated in the presence of antibiotics. Compared with saline-treated mice after modeling, IPA-treated mice showed a markedly different intestinal microbiota composition, with an enrichment of Bifidobacteriaceae family and a depletion of Enterobacteriaceae family. Mice gavaged with postoperative feces from IPA-treated animals displayed better survival than mice gavaged with feces from saline-treated animals. Overall, these data suggest that IPA offers a microbe-modulated survival advantage in septic mice, indicating that some microbiota metabolites could replace live microorganisms as potential options for regulation of sepsis-induced gut dysbiosis. IMPORTANCE The role of gut microbiota in the pathophysiology of sepsis is gaining increasing attention and developing effective and safe sepsis therapies targeting intestinal microorganisms is promising. Given the safety of probiotic supplementation or fecal microbiota transplantation in critically ill patients, identifying an abiotic agent to regulate the intestinal microbiota of septic patients is of clinical significance. This study revealed that IPA, a microbiota-generated tryptophan metabolite, ameliorated sepsis-induced mortality and decreased the serum levels of proinflammatory cytokines by modulating intestinal microbiota. Although IPA did not increase the abundance and diversity of the microbiota of septic mice, it significantly decreased the number of Enterobacteriaceae family. These findings indicate that a specific microbiota metabolite (e.g., IPA) can mediate the intestinal microbiota apart from FMT or probiotics.
Collapse
Affiliation(s)
- Heng Fang
- Department of Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Department of Intensive Care Unit of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Miaoxian Fang
- Department of Intensive Care Unit of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yirong Wang
- Department of Intensive Care Unit of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Huidan Zhang
- Department of Intensive Care Unit of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jiaxin Li
- Department of Intensive Care Unit of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jingchun Chen
- Department of Intensive Care Unit of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Qingrui Wu
- Department of Intensive Care Unit of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Linling He
- Department of Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Department of Intensive Care Unit of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jing Xu
- Department of Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jia Deng
- Department of Intensive Care Unit of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Mengting Liu
- Department of Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yiyu Deng
- Department of Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chunbo Chen
- Department of Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Department of Intensive Care Unit of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Clinical Research Center, Maoming People’s Hospital, Maoming, Guangdong, China
| |
Collapse
|
78
|
Qiao L, Zhang X, Pi S, Chang J, Dou X, Yan S, Song X, Chen Y, Zeng X, Zhu L, Xu C. Dietary supplementation with biogenic selenium nanoparticles alleviate oxidative stress-induced intestinal barrier dysfunction. NPJ Sci Food 2022; 6:30. [PMID: 35739196 PMCID: PMC9226128 DOI: 10.1038/s41538-022-00145-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/23/2022] [Indexed: 12/16/2022] Open
Abstract
Selenium (Se) is an essential micronutrient that promotes body health. Endemic Se deficiency is a major nutritional challenge worldwide. The low toxicity, high bioavailability, and unique properties of biogenic Se nanoparticles (SeNPs) allow them to be used as a therapeutic drug and Se nutritional supplement. This study was conducted to investigate the regulatory effects of dietary SeNPs supplementation on the oxidative stress-induced intestinal barrier dysfunction and its association with mitochondrial function and gut microbiota in mice. The effects of dietary SeNPs on intestinal barrier function and antioxidant capacity and its correlation with gut microbiota were further evaluated by a fecal microbiota transplantation experiment. The results showed that Se deficiency caused a redox imbalance, increased the levels of pro-inflammatory cytokines, altered the composition of the gut microbiota, and impaired mitochondrial structure and function, and intestinal barrier injury. Exogenous supplementation with biogenic SeNPs effectively alleviated diquat-induced intestinal barrier dysfunction by enhancing the antioxidant capacity, inhibiting the overproduction of reactive oxygen species (ROS), preventing the impairment of mitochondrial structure and function, regulating the immune response, maintaining intestinal microbiota homeostasis by regulating nuclear factor (erythroid-derived-2)-like 2 (Nrf2)-mediated NLR family pyrin domain containing 3 (NLRP3) signaling pathway. In addition, Se deficiency resulted in a gut microbiota phenotype that is more susceptible to diquat-induced intestinal barrier dysfunction. Supranutritional SeNPs intake can optimize the gut microbiota to protect against intestinal dysfunctions. This study demonstrates that dietary supplementation of SeNPs can prevent oxidative stress-induced intestinal barrier dysfunction through its regulation of mitochondria and gut microbiota.
Collapse
Affiliation(s)
- Lei Qiao
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xinyi Zhang
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Shanyao Pi
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Jiajing Chang
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xina Dou
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Shuqi Yan
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xiaofan Song
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Yue Chen
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xiaonan Zeng
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Lixu Zhu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Chunlan Xu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| |
Collapse
|
79
|
Zhang C, Fang R, Lu X, Zhang Y, Yang M, Su Y, Jiang Y, Man C. Lactobacillus reuteri J1 prevents obesity by altering the gut microbiota and regulating bile acid metabolism in obese mice. Food Funct 2022; 13:6688-6701. [PMID: 35647914 DOI: 10.1039/d1fo04387k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Obesity is closely related to metabolic syndromes such as hyperlipidemia and diabetes and has become a global public health problem. Probiotics are now used as a treatment for obesity, but the mechanism by which probiotics treat obesity remains unclear. Herein, we investigated the effects of Lactobacillus reuteri J1 ( L. reuteri J1) on obese mice with the strain being administered at 1010, 109 and 108 CFU mL-1 and explored the possible underlying molecular mechanism. The results revealed that L. reuteri J1 prevented weight gain, lowered fat mass and relieved dyslipidemia, and improved glucose homeostasis and insulin sensitivity. Moreover, the effect of obesity reversal exhibited dose-dependence to some extent. More importantly, mice treated with L. reuteri J1 altered the gut microbiota and bile acid (BA) composition. Analysis of the gut microbiome showed that L. reuteri J1 increased the relative abundances of Lactobacillus, Akkermansia and Clostridium, which strongly correlated with ursodeoxycholic acid (UDCA) and lithocholic acid (LCA). UDCA and LCA are thought to inhibit farnesoid X receptor (FXR) and activate transmembrane G protein-coupled receptor 5 (TGR5) expression, respectively. Consistent with the increase in the BA pool, L. reuteri J1 treatment inhibited the ileum FXR/FGF15 signaling pathway but activated the hepatic FXR/SHP signaling pathway, resulting in reduced hepatic triglyceride accumulation. In addition, L. reuteri J1 treatment promoted adipose browning by upregulating the expression of uncoupling protein 1 (UCP1), which was mainly due to the BA receptor TGR5. These results demonstrated that L. reuteri J1 could treat obesity by inhibiting the FXR signaling pathways and remodeling white adipose tissue, linked with UDCA and LCA which are affected by intestinal microbiota.
Collapse
Affiliation(s)
- Chenxi Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Ruxue Fang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Xingru Lu
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Yu Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Mo Yang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Yue Su
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, 150030, China. .,Nantong Chunze Nutrition Food Co., Ltd, Nantong, 226100, China
| |
Collapse
|
80
|
Bian J, Liebert A, Bicknell B, Chen XM, Huang C, Pollock CA. Faecal Microbiota Transplantation and Chronic Kidney Disease. Nutrients 2022; 14:nu14122528. [PMID: 35745257 PMCID: PMC9228952 DOI: 10.3390/nu14122528] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 02/05/2023] Open
Abstract
Faecal microbiota transplantation (FMT) has attracted increasing attention as an intervention in many clinical conditions, including autoimmune, enteroendocrine, gastroenterological, and neurological diseases. For years, FMT has been an effective second-line treatment for Clostridium difficile infection (CDI) with beneficial outcomes. FMT is also promising in improving bowel diseases, such as ulcerative colitis (UC). Pre-clinical and clinical studies suggest that this microbiota-based intervention may influence the development and progression of chronic kidney disease (CKD) via modifying a dysregulated gut–kidney axis. Despite the high morbidity and mortality due to CKD, there are limited options for treatment until end-stage kidney disease occurs, which results in death, dialysis, or kidney transplantation. This imposes a significant financial and health burden on the individual, their families and careers, and the health system. Recent studies have suggested that strategies to reverse gut dysbiosis using FMT are a promising therapy in CKD. This review summarises the preclinical and clinical evidence and postulates the potential therapeutic effect of FMT in the management of CKD.
Collapse
Affiliation(s)
- Ji Bian
- Kolling Institute, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (J.B.); (X.-M.C.)
| | - Ann Liebert
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia;
| | - Brian Bicknell
- College of Health and Medicine, Australian National University, Deacon, ACT 2600, Australia;
| | - Xin-Ming Chen
- Kolling Institute, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (J.B.); (X.-M.C.)
| | - Chunling Huang
- Kolling Institute, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (J.B.); (X.-M.C.)
- Correspondence: (C.H.); (C.A.P.); Tel.: +61-2-9926-4784 (C.H.); +61-2-9926-4652 (C.A.P.)
| | - Carol A. Pollock
- Kolling Institute, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (J.B.); (X.-M.C.)
- Correspondence: (C.H.); (C.A.P.); Tel.: +61-2-9926-4784 (C.H.); +61-2-9926-4652 (C.A.P.)
| |
Collapse
|
81
|
Kirthika P, Park S, Jawalagatti V, Lee JH. Evaluation of host and bacterial gene modulation during Lawsonia intracellularis infection in immunocompetent C57BL/6 mouse model. J Vet Sci 2022; 23:e41. [PMID: 35332712 PMCID: PMC9149498 DOI: 10.4142/jvs.21274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/02/2022] [Accepted: 01/27/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Proliferative enteritis caused by Lawsonia intracellularis undermines the economic stability of the swine industry worldwide. The development of cost-effective animal models to study the pathophysiology of the disease will help develop strategies to counter this bacterium. OBJECTIVES This study focused on establishing a model of gastrointestinal (GI) infection of L. intracellularis in C57BL/6 mice to evaluate the disease progression and lesions of proliferative enteropathy (PE) in murine GI tissue. METHODS We assessed the murine mucosal and cell-mediated immune responses generated in response to inoculation with L. intracellularis. RESULTS The mice developed characteristic lesions of the disease and shed L. intracellularis in the feces following oral inoculation with 5 × l07 bacteria. An increase in L. intracellularis 16s rRNA and groEL copies in the intestine of infected mice indicated intestinal dissemination of the bacteria. The C57BL/6 mice appeared capable of modulating humoral and cell-mediated immune responses to L. intracellularis infection. Notably, the expression of genes for the vitamin B12 receptor and for secreted and membrane-bound mucins were downregulated in L. intracellularis -infected mice. Furthermore, L. intracellularis colonization of the mouse intestine was confirmed by the immunohistochemistry and western blot analyses. CONCLUSIONS This is the first study demonstrating the contributions of bacterial chaperonin and host nutrient genes to PE using an immunocompetent mouse model. This mouse infection model may serve as a platform from which to study L. intracellularis infection and develop potential vaccination and therapeutic strategies to treat PE.
Collapse
Affiliation(s)
| | - Sungwoo Park
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea
| | | | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea.
| |
Collapse
|
82
|
Jin L, Dong H, Sun D, Wang L, Qu L, Lin S, Yang Q, Zhang X. Biological Functions and Applications of Antimicrobial Peptides. Curr Protein Pept Sci 2022; 23:226-247. [DOI: 10.2174/1389203723666220519155942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Despite antimicrobial resistance, which is attributed to the misuse of broad-spectrum antibiotics,
antibiotics can indiscriminately kill pathogenic and beneficial microorganisms. These events
disrupt the delicate microbial balance in both humans and animals, leading to secondary infections
and other negative effects. Antimicrobial peptides (AMPs) are functional natural biopolymers in
plants and animals. Due to their excellent antimicrobial activities and absence of microbial resistance,
AMPs have attracted enormous research attention. We reviewed the antibacterial, antifungal, antiviral,
antiparasitic, as well as antitumor properties of AMPs and research progress on AMPs. In addition,
we highlighted various recommendations and potential research areas for their progress and
challenges in practical applications.
Collapse
Affiliation(s)
- Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University,
Wenzhou 325035, China
| | - Hao Dong
- College of Life Science and Technology, Jilin Agricultural University, Changchun 130118,
China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University,
Wenzhou 325035, China
| | - Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University,
Wenzhou 325035, China
| | - Linkai Qu
- College of Life Science and Technology, Jilin Agricultural University, Changchun 130118,
China
| | - Sue Lin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University,
Wenzhou 325035, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Xingxing Zhang
- Department of Endocrinology
and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
83
|
Yang Z, Wei F, Zhang B, Luo Y, Xing X, Wang M, Chen R, Sun G, Sun X. Cellular Immune Signal Exchange From Ischemic Stroke to Intestinal Lesions Through Brain-Gut Axis. Front Immunol 2022; 13:688619. [PMID: 35432368 PMCID: PMC9010780 DOI: 10.3389/fimmu.2022.688619] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 03/16/2022] [Indexed: 12/24/2022] Open
Abstract
As a vital pivot for the human circulatory system, the brain-gut axis is now being considered as an important channel for many of the small immune molecules’ transductions, including interleukins, interferons, neurotransmitters, peptides, and the chemokines penetrating the mesentery and blood brain barrier (BBB) during the development of an ischemic stroke (IS). Hypoxia-ischemia contributes to pituitary and neurofunctional disorders by interfering with the molecular signal release and communication then providing feedback to the gut. Suffering from such a disease on a long-term basis may cause the peripheral system’s homeostasis to become imbalanced, and it can also lead to multiple intestinal complications such as gut microbiota dysbiosis (GMD), inflammatory bowel disease (IBD), necrotizing enterocolitis (NEC), and even the tumorigenesis of colorectal carcinoma (CRC). Correspondingly, these complications will deteriorate the cerebral infarctions and, in patients suffering with IS, it can even ruin the brain’s immune system. This review summarized recent studies on abnormal immunological signal exchange mediated polarization subtype changes, in both macrophages and microglial cells as well as T-lymphocytes. How gut complications modulate the immune signal transduction from the brain are also elucidated and analyzed. The conclusions drawn in this review could provide guidance and novel strategies to benefit remedies for both IS and relative gut lesions from immune-prophylaxis and immunotherapy aspects.
Collapse
Affiliation(s)
- Zizhao Yang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Fei Wei
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yun Luo
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyan Xing
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rongchang Chen
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Guibo Sun, ; Xiaobo Sun,
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Guibo Sun, ; Xiaobo Sun,
| |
Collapse
|
84
|
Mancabelli L, Milani C, Fontana F, Lugli GA, Tarracchini C, Turroni F, van Sinderen D, Ventura M. Mapping bacterial diversity and metabolic functionality of the human respiratory tract microbiome. J Oral Microbiol 2022; 14:2051336. [PMID: 35309410 PMCID: PMC8933033 DOI: 10.1080/20002297.2022.2051336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023] Open
Abstract
Background The Human Respiratory Tract (HRT) is colonized by various microbial taxa, known as HRT microbiota, in a manner that is indicative of mutualistic interaction between such microorganisms and their host. Aim To investigate the microbial composition of the HRT and its possible correlation with the different compartments of the respiratory tract. Methods In the current study, we performed an in-depth meta-analysis of 849 HRT samples from public shotgun metagenomic datasets obtained through several distinct collection methods. Results The statistical robustness provided by this meta-analysis allowed the identification of 13 possible HRT-specific Community State Types (CSTs), which appear to be specific to each anatomical region of the respiratory tract. Furthermore, functional characterization of the metagenomic datasets revealed specific microbial metabolic features correlating with the different compartments of the respiratory tract. Conclusion The meta-analysis here performed suggested that the variable presence of certain bacterial species seems to be linked to a location-related abundance gradient in the HRT and seems to be characterized by a specific microbial metabolic capability.
Collapse
Affiliation(s)
- Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma, Italy
| |
Collapse
|
85
|
Geng J, Ni Q, Sun W, Li L, Feng X. The links between gut microbiota and obesity and obesity related diseases. Biomed Pharmacother 2022; 147:112678. [DOI: 10.1016/j.biopha.2022.112678] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 02/09/2023] Open
|
86
|
Han L, Azad MAK, Huang P, Wang W, Zhang W, Blachier F, Kong X. Maternal Supplementation With Different Probiotic Mixture From Late Pregnancy to Day 21 Postpartum: Consequences for Litter Size, Plasma and Colostrum Parameters, and Fecal Microbiota and Metabolites in Sows. Front Vet Sci 2022; 9:726276. [PMID: 35211537 PMCID: PMC8860973 DOI: 10.3389/fvets.2022.726276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
The present study determined the effects of different probiotic mixture supplementation to sows from late pregnancy to day 21 postpartum on reproductive performance, colostrum composition, plasma biochemical parameters, and fecal microbiota and metabolites. A total of 80 pregnant sows were randomly assigned to one of four groups (20 sows per group). The sows in the control group (CON group) were fed a basal diet, and those in the BS-A+B, BS-A+BL, and BS-B+BL groups were fed basal diets supplemented with 250 g/t of different probiotic mixture containing either 125 g/t of Bacillus subtilis A (BS-A), Bacillus subtilis B (BS-B), and/or Bacillus licheniformis (BL), respectively. The trial period was from day 85 of pregnancy to day 21 postpartum. The results showed that different dietary probiotic mixture supplementation increased (P < 0.05) the average weaning weight and average daily gain of piglets, while dietary BS-A+BL supplementation increased the number of weaned piglets (P < 0.05), litter weight (P = 0.06), litter weight gain (P = 0.06), and litter daily gain (P = 0.06) at weaning compared with the CON group. Different dietary probiotic mixture supplementation improved (P < 0.05) the colostrum quality by increasing the fat and dry matter concentrations, as well as the protein and urea nitrogen concentrations in the BS-A+BL group. Dietary probiotic mixture BS-B+BL increased the plasma total protein on days 1 and 21 postpartum while decreased the plasma albumin on day 1 postpartum (P < 0.05). In addition, the plasma high-density lipoprotein-cholesterol was increased in the BS-A+B and BS-B+BL groups on day 21 postpartum, while plasma ammonia was decreased in the BS-A+B and BS-A+BL groups on day 1 and in the three probiotic mixtures groups on day 21 postpartum (P < 0.05). Dietary supplementation with different probiotic mixture also modified the fecal microbiota composition and metabolic activity in sows during pregnancy and postpartum stages. Collectively, these findings suggest that maternal supplementation with Bacillus subtilis in combination with Bacillus licheniformis are promising strategies for improving the reproductive performance and the overall health indicators in sows, as well as the growth of their offspring.
Collapse
Affiliation(s)
- Li Han
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Md. Abul Kalam Azad
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Pan Huang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Wei Wang
- The Institute of Cell Transplantion and Gene Therapy, Centra-South University, the Engineering Center for Xenotransplantation, Changsha, China
| | | | - Francois Blachier
- UMR PNCA, INRAE, AgroParisTech, Université Paris-Saclay, Paris, France
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- *Correspondence: Xiangfeng Kong
| |
Collapse
|
87
|
Song JG, Yu MS, Lee B, Lee J, Hwang SH, Na D, Kim HW. Analysis methods for the gut microbiome in neuropsychiatric and neurodegenerative disorders. Comput Struct Biotechnol J 2022; 20:1097-1110. [PMID: 35317228 PMCID: PMC8902474 DOI: 10.1016/j.csbj.2022.02.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022] Open
Abstract
For a long time, the central nervous system was believed to be the only regulator of cognitive functions. However, accumulating evidence suggests that the composition of the microbiome is strongly associated with brain functions and diseases. Indeed, the gut microbiome is involved in neuropsychiatric diseases (e.g., depression, autism spectrum disorder, and anxiety) and neurodegenerative diseases (e.g., Parkinson’s disease and Alzheimer’s disease). In this review, we provide an overview of the link between the gut microbiome and neuropsychiatric or neurodegenerative disorders. We also introduce analytical methods used to assess the connection between the gut microbiome and the brain. The limitations of the methods used at present are also discussed. The accurate translation of the microbiome information to brain disorder could promote better understanding of neuronal diseases and aid in finding alternative and novel therapies.
Collapse
Affiliation(s)
- Jae Gwang Song
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Myeong-Sang Yu
- Department of Biomedical Engineering, Department of Biomedical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Bomi Lee
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Jingyu Lee
- Department of Biomedical Engineering, Department of Biomedical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Su-Hee Hwang
- Department of Biomedical Engineering, Department of Biomedical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Dokyun Na
- Department of Biomedical Engineering, Department of Biomedical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
- Corresponding authors.
| | - Hyung Wook Kim
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
- Corresponding authors.
| |
Collapse
|
88
|
Lei L, Zhao N, Zhang L, Chen J, Liu X, Piao S. Gut microbiota is a potential goalkeeper of dyslipidemia. Front Endocrinol (Lausanne) 2022; 13:950826. [PMID: 36176475 PMCID: PMC9513062 DOI: 10.3389/fendo.2022.950826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022] Open
Abstract
Dyslipidemia, as a common metabolic disease, could cause atherosclerosis, coronary heart disease, stroke and other cardio-cerebrovascular diseases. It is mainly caused by the interaction of genetic and environmental factors and its incidence has increased for several years. A large number of studies have shown that gut microbiota disorder is related to the development of dyslipidemia closely. Especially its metabolites such as short-chain fatty acids, bile acids and trimethylamine N-oxide affect dyslipidemia by regulating cholesterol balance. In this paper, we systematically reviewed the literature and used knowledge graphs to analyze the research trends and characteristics of dyslipidemia mediated by gut microbiota, revealing that the interaction between diet and gut microbiota leads to dyslipidemia as one of the main factors. In addition, starting from the destruction of the dynamic balance between gut microbiota and host caused by dyslipidemia, we systematically summarize the molecular mechanism of gut microbiota regulating dyslipidemia and provide a theoretical basis for the treatment of dyslipidemia by targeting the gut microbiota.
Collapse
Affiliation(s)
- Lirong Lei
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China
| | - Ning Zhao
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China
| | - Lei Zhang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China
| | - Jiamei Chen
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China
| | - Xiaomin Liu
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China
| | - Shenghua Piao
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China
- *Correspondence: Shenghua Piao,
| |
Collapse
|
89
|
Alam MJ, Puppala V, Uppulapu SK, Das B, Banerjee SK. Human microbiome and cardiovascular diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 192:231-279. [PMID: 36280321 DOI: 10.1016/bs.pmbts.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
90
|
Bosi A, Banfi D, Bistoletti M, Moretto P, Moro E, Crema F, Maggi F, Karousou E, Viola M, Passi A, Vigetti D, Giaroni C, Baj A. Hyaluronan: A Neuroimmune Modulator in the Microbiota-Gut Axis. Cells 2021; 11:cells11010126. [PMID: 35011688 PMCID: PMC8750446 DOI: 10.3390/cells11010126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/22/2022] Open
Abstract
The commensal microbiota plays a fundamental role in maintaining host gut homeostasis by controlling several metabolic, neuronal and immune functions. Conversely, changes in the gut microenvironment may alter the saprophytic microbial community and function, hampering the positive relationship with the host. In this bidirectional interplay between the gut microbiota and the host, hyaluronan (HA), an unbranched glycosaminoglycan component of the extracellular matrix, has a multifaceted role. HA is fundamental for bacterial metabolism and influences bacterial adhesiveness to the mucosal layer and diffusion across the epithelial barrier. In the host, HA may be produced and distributed in different cellular components within the gut microenvironment, playing a role in the modulation of immune and neuronal responses. This review covers the more recent studies highlighting the relevance of HA as a putative modulator of the communication between luminal bacteria and the host gut neuro-immune axis both in health and disease conditions, such as inflammatory bowel disease and ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Annalisa Bosi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Davide Banfi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Michela Bistoletti
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Paola Moretto
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Elisabetta Moro
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (E.M.); (F.C.)
| | - Francesca Crema
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (E.M.); (F.C.)
| | - Fabrizio Maggi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Evgenia Karousou
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Manuela Viola
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
- Centre of Neuroscience, University of Insubria, 21100 Varese, Italy
- Correspondence: ; Tel.: +39-0332-217412; Fax: +39-0332-217111
| | - Andreina Baj
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| |
Collapse
|
91
|
Gupta S, Rouse BT, Sarangi PP. Did Climate Change Influence the Emergence, Transmission, and Expression of the COVID-19 Pandemic? Front Med (Lausanne) 2021; 8:769208. [PMID: 34957147 PMCID: PMC8694059 DOI: 10.3389/fmed.2021.769208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022] Open
Abstract
The human race has survived many epidemics and pandemics that have emerged and reemerged throughout history. The novel coronavirus Severe Acute Respiratory Syndrome SARS-CoV-2/COVID-19 is the latest pandemic and this has caused major health and socioeconomic problems in almost all communities of the world. The origin of the virus is still in dispute but most likely, the virus emerged from the bats and also may involve an intermediate host before affecting humans. Several other factors also may have affected the emergence and outcome of the infection but in this review, we make a case for a possible role of climate change. The rise in industrialization-related human activities has created a marked imbalance in the homeostasis of environmental factors such as temperature and other weather and these might even have imposed conditions for the emergence of future coronavirus cycles. An attempt is made in this review to explore the effect of ongoing climate changes and discuss if these changes had a role in facilitating the emergence, transmission, and even the expression of the COVID-19 pandemic. We surmise that pandemics will be more frequent in the future and more severely impactful unless climate changes are mitigated.
Collapse
Affiliation(s)
- Saloni Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Barry T. Rouse
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Pranita P. Sarangi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
92
|
Lee Y, Kamada N, Moon JJ. Oral nanomedicine for modulating immunity, intestinal barrier functions, and gut microbiome. Adv Drug Deliv Rev 2021; 179:114021. [PMID: 34710529 PMCID: PMC8665886 DOI: 10.1016/j.addr.2021.114021] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022]
Abstract
The gastrointestinal tract (GIT) affects not only local diseases in the GIT but also various systemic diseases. Factors that can affect the health and disease of both GIT and the human body include 1) the mucosal immune system composed of the gut-associated lymphoid tissues and the lamina propria, 2) the intestinal barrier composed of mucus and intestinal epithelium, and 3) the gut microbiota. Selective delivery of drugs, including antigens, immune-modulators, intestinal barrier enhancers, and gut-microbiome manipulators, has shown promising results for oral vaccines, immune tolerance, treatment of inflammatory bowel diseases, and other systemic diseases, including cancer. However, physicochemical and biological barriers of the GIT present significant challenges for successful translation. With the advances of novel nanomaterials, oral nanomedicine has emerged as an attractive option to not only overcome these barriers but also to selectively deliver drugs to the target sites in GIT. In this review, we discuss the GIT factors and physicochemical and biological barriers in the GIT. Furthermore, we present the recent progress of oral nanomedicine for oral vaccines, immune tolerance, and anti-inflammation therapies. We also discuss recent advances in oral nanomedicine designed to fortify the intestinal barrier functions and modulate the gut microbiota and microbial metabolites. Finally, we opine about the future directions of oral nano-immunotherapy.
Collapse
Affiliation(s)
- Yonghyun Lee
- Department of Pharmacy, College of Pharmacy, Ewha Womans University, Seoul 03760, South Korea; Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea.
| | - Nobuhiko Kamada
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109 USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109 USA.
| |
Collapse
|
93
|
Cuesta CM, Pascual M, Pérez-Moraga R, Rodríguez-Navarro I, García-García F, Ureña-Peralta JR, Guerri C. TLR4 Deficiency Affects the Microbiome and Reduces Intestinal Dysfunctions and Inflammation in Chronic Alcohol-Fed Mice. Int J Mol Sci 2021; 22:ijms222312830. [PMID: 34884634 PMCID: PMC8657603 DOI: 10.3390/ijms222312830] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/21/2022] Open
Abstract
Chronic alcohol abuse causes an inflammatory response in the intestinal tract with damage to the integrity of the mucosa and epithelium, as well as dysbiosis in the gut microbiome. However, the role of gut bacteria in ethanol effects and how these microorganisms interact with the immune system are not well understood. The aim of the present study was to evaluate if TLR4 alters the ethanol-induced intestinal inflammatory response, and whether the response of this receptor affects the gut microbiota profile. We analyzed the 16S rRNA sequence of the fecal samples from wild-type (WT) and TLR4-knockout (TLR4-KO) mice with and without ethanol intake for 3 months. The results demonstrated that chronic ethanol consumption reduces microbiota diversity and causes dysbiosis in WT mice. Likewise, ethanol upregulates several inflammatory genes (IL-1β, iNOS, TNF-α) and miRNAs (miR-155-5p, miR-146a-5p) and alters structural and permeability genes (INTL1, CDH1, CFTR) in the colon of WT mice. Our results further demonstrated that TLR4-KO mice exhibit a different microbiota that can protect against the ethanol-induced activation of the immune system and colon integrity dysfunctions. In short, our results reveal that TLR4 is a key factor for determining the gut microbiota, which can participate in dysbiosis and the inflammatory response induced by alcohol consumption.
Collapse
Affiliation(s)
- Carlos M. Cuesta
- Department of Molecular and Cellular Pathology of Alcohol, Prince Felipe Research Center, 46012 Valencia, Spain; (C.M.C.); (M.P.); (I.R.-N.)
| | - María Pascual
- Department of Molecular and Cellular Pathology of Alcohol, Prince Felipe Research Center, 46012 Valencia, Spain; (C.M.C.); (M.P.); (I.R.-N.)
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, 15 Avda. Blasco Ibanez, 46010 Valencia, Spain
| | - Raúl Pérez-Moraga
- Bioinformatics and Biostatistics Unit, Prince Felipe Research Center, 46012 Valencia, Spain; (R.P.-M.); (F.G.-G.)
| | - Irene Rodríguez-Navarro
- Department of Molecular and Cellular Pathology of Alcohol, Prince Felipe Research Center, 46012 Valencia, Spain; (C.M.C.); (M.P.); (I.R.-N.)
| | - Francisco García-García
- Bioinformatics and Biostatistics Unit, Prince Felipe Research Center, 46012 Valencia, Spain; (R.P.-M.); (F.G.-G.)
| | - Juan R. Ureña-Peralta
- Department of Molecular and Cellular Pathology of Alcohol, Prince Felipe Research Center, 46012 Valencia, Spain; (C.M.C.); (M.P.); (I.R.-N.)
- Correspondence: (J.R.U.-P.); (C.G.)
| | - Consuelo Guerri
- Department of Molecular and Cellular Pathology of Alcohol, Prince Felipe Research Center, 46012 Valencia, Spain; (C.M.C.); (M.P.); (I.R.-N.)
- Correspondence: (J.R.U.-P.); (C.G.)
| |
Collapse
|
94
|
Shah T, Shah Z, Baloch Z, Cui X. The role of microbiota in respiratory health and diseases, particularly in tuberculosis. Biomed Pharmacother 2021; 143:112108. [PMID: 34560539 DOI: 10.1016/j.biopha.2021.112108] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/11/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022] Open
Abstract
Trillions of beneficial and hostile microorganisms live in the human respiratory and gastrointestinal tracts, which act as gatekeepers in maintaining human health, i.e., protecting the body from pathogens by colonizing mucosal surfaces with microbiota-derived antimicrobial metabolites such as short-chain fatty acids or host-derived cytokines and chemokines. It is widely accepted that the microbiome interacts with each other and with the host in a mutually beneficial relationship. Microbiota in the respiratory tract may also play a crucial role in immune homeostasis, maturation, and maintenance of respiratory physiology. Anti-TB antibiotics may cause dysbiosis in the lung and intestinal microbiota, affecting colonization resistance and making the host more susceptible to Mycobacterium tuberculosis (M. tuberculosis) infection. This review discusses recent advances in our understanding of the lung microbiota composition, the lungs and intestinal microbiota related to respiratory health and diseases, microbiome sequencing and analysis, the bloodstream, and the lymphatic system that underpin the gut-lung axis in M. tuberculosis-infected humans and animals. We also discuss the gut-lung axis interactions with the immune system, the role of the microbiome in TB pathogenesis, and the impact of anti-TB antibiotic therapy on the microbiota in animals, humans, and drug-resistant TB individuals.
Collapse
Affiliation(s)
- Taif Shah
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, PR China; Yunnan Key Laboratory of Sustainable Utilization of Panax Notoginseng, Kunming 650500, PR China
| | - Zahir Shah
- College of Veterinary Sciences, The University of Agriculture Peshawar, Peshawar 25120, Pakistan
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, PR China.
| | - XiuMing Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, PR China; Yunnan Key Laboratory of Sustainable Utilization of Panax Notoginseng, Kunming 650500, PR China.
| |
Collapse
|
95
|
Baradaran Ghavami S, Pourhamzeh M, Farmani M, Keshavarz H, Shahrokh S, Shpichka A, Asadzadeh Aghdaei H, Hakemi-Vala M, Hossein-khannazer N, Timashev P, Vosough M. Cross-talk between immune system and microbiota in COVID-19. Expert Rev Gastroenterol Hepatol 2021; 15:1281-1294. [PMID: 34654347 PMCID: PMC8567289 DOI: 10.1080/17474124.2021.1991311] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/06/2021] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Human gut microbiota plays a crucial role in providing protective responses against pathogens, particularly by regulating immune system homeostasis. There is a reciprocal interaction between the gut and lung microbiota, called the gut-lung axis (GLA). Any alteration in the gut microbiota or their metabolites can cause immune dysregulation, which can impair the antiviral activity of the immune system against respiratory viruses such as severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. AREAS COVERED This narrative review mainly outlines emerging data on the mechanisms underlying the interactions between the immune system and intestinal microbial dysbiosis, which is caused by an imbalance in the levels of essential metabolites. The authors will also discuss the role of probiotics in restoring the balance of the gut microbiota and modulation of cytokine storm. EXPERT OPINION Microbiota-derived signals regulate the immune system and protect different tissues during severe viral respiratory infections. The GLA's equilibration could help manage the mortality and morbidity rates associated with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Shaghayegh Baradaran Ghavami
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Thran, Iran
| | - Mahsa Pourhamzeh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Farmani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Thran, Iran
| | - Hediye Keshavarz
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Thran, Iran
| | - Shabnam Shahrokh
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Thran, Iran
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Thran, Iran
| | - Mojdeh Hakemi-Vala
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nikoo Hossein-khannazer
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Thran, Iran
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
96
|
Ghosh S, Pramanik S. Structural diversity, functional aspects and future therapeutic applications of human gut microbiome. Arch Microbiol 2021; 203:5281-5308. [PMID: 34405262 PMCID: PMC8370661 DOI: 10.1007/s00203-021-02516-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/29/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023]
Abstract
The research on human gut microbiome, regarded as the black box of the human body, is still at the stage of infancy as the functional properties of the complex gut microbiome have not yet been understood. Ongoing metagenomic studies have deciphered that the predominant microbial communities belong to eubacterial phyla Firmicutes, Bacteroidetes, Proteobacteria, Fusobacteria, Cyanobacteria, Verrucomicrobia and archaebacterial phylum Euryarchaeota. The indigenous commensal microbial flora prevents opportunistic pathogenic infection and play undeniable roles in digestion, metabolite and signaling molecule production and controlling host's cellular health, immunity and neuropsychiatric behavior. Besides maintaining intestinal health via short-chain fatty acid (SCFA) production, gut microbes also aid in neuro-immuno-endocrine modulatory molecule production, immune cell differentiation and glucose and lipid metabolism. Interdependence of diet and intestinal microbial diversity suggests the effectiveness of pre- and pro-biotics in maintenance of gut and systemic health. Several companies worldwide have started potentially exploiting the microbial contribution to human health and have translated their use in disease management and therapeutic applications. The present review discusses the vast diversity of microorganisms playing intricate roles in human metabolism. The contribution of the intestinal microbiota to regulate systemic activities including gut-brain-immunity crosstalk has been focused. To the best of our knowledge, this review is the first of its kind to collate and discuss the companies worldwide translating the multi-therapeutic potential of human intestinal microbiota, based on the multi-omics studies, i.e. metagenomics and metabolomics, as ready solutions for several metabolic and systemic disorders.
Collapse
Affiliation(s)
- Soma Ghosh
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute, i-8 Sector-C, East Kolkata Township, Kolkata, 700107, India.
| | - Sreemanta Pramanik
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute, i-8 Sector-C, East Kolkata Township, Kolkata, 700107, India
| |
Collapse
|
97
|
Shealy NG, Yoo W, Byndloss MX. Colonization resistance: metabolic warfare as a strategy against pathogenic Enterobacteriaceae. Curr Opin Microbiol 2021; 64:82-90. [PMID: 34688039 DOI: 10.1016/j.mib.2021.09.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 12/19/2022]
Abstract
The intestine is home to a large and complex bacterial ecosystem (microbiota), which performs multiple beneficial functions for the host, including immune education, nutrition, and protection against invasion by enteric pathogens (colonization resistance). The host and microbiome symbiotic interactions occur in part through metabolic crosstalk. Thus, microbiota members have evolved highly diverse metabolic pathways to inhibit pathogen colonization via activation of protective immune responses and nutrient acquisition and utilization. Conversely, pathogenic Enterobacteriaceae actively induce an inflammation-dependent disruption of the gut microbial ecosystem (dysbiosis) to gain a competitive metabolic advantage against the resident microbiota. This review discusses the recent findings on the crucial role of microbiota metabolites in colonization resistance regulation. Additionally, we summarize metabolic mechanisms used by pathogenic Enterobacteriaceae to outcompete commensal microbes and cause disease.
Collapse
Affiliation(s)
- Nicolas G Shealy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Woongjae Yoo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mariana X Byndloss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
98
|
Appunni S, Rubens M, Ramamoorthy V, Tonse R, Saxena A, McGranaghan P, Kaiser A, Kotecha R. Emerging Evidence on the Effects of Dietary Factors on the Gut Microbiome in Colorectal Cancer. Front Nutr 2021; 8:718389. [PMID: 34708063 PMCID: PMC8542705 DOI: 10.3389/fnut.2021.718389] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/13/2021] [Indexed: 12/22/2022] Open
Abstract
Dietary factors have important role in modulating the gut microbiome, which in-turn regulates the molecular events in colonic mucosa. The composition and resulting metabolism of the gut microbiome are decisive factors in colorectal cancer (CRC) tumorigenesis. Altered gut microbiome is associated with impaired immune response, and the release of carcinogenic or genotoxic substances which are the major microbiome-induced mechanisms implicated in CRC pathogenesis. Diets low in dietary fibers and phytomolecules as well as high in red meat are important dietary changes which predispose to CRC. Dietary fibers which reach the colon in an undigested form are further metabolized by the gut microbiome into enterocyte friendly metabolites such as short chain fatty acid (SCFA) which provide anti-inflammatory and anti-proliferative effects. Healthy microbiome supported by dietary fibers and phytomolecules could decrease cell proliferation by regulating the epigenetic events which activate proto-oncogenes and oncogenic pathways. Emerging evidence show that predominance of microbes such as Fusobacterium nucleatum can predispose the colonic mucosa to malignant transformation. Dietary and lifestyle modifications have been demonstrated to restrict the growth of potentially harmful opportunistic organisms. Synbiotics can protect the intestinal mucosa by improving immune response and decreasing the production of toxic metabolites, oxidative stress and cell proliferation. In this narrative review, we aim to update the emerging evidence on how diet could modulate the gut microbial composition and revive colonic epithelium. This review highlights the importance of healthy plant-based diet and related supplements in CRC prevention by improving the gut microbiome.
Collapse
Affiliation(s)
- Sandeep Appunni
- Government Medical College, Kozhikode, India
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Muni Rubens
- Office of Clinical Research, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
| | | | - Raees Tonse
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
| | - Anshul Saxena
- Baptist Health South Florida, Miami, FL, United States
- Department of Radiation Oncology, Florida International University, Miami, FL, United States
| | - Peter McGranaghan
- Office of Clinical Research, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
| | - Adeel Kaiser
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
- Department of Radiation Oncology, Florida International University, Miami, FL, United States
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
- Department of Radiation Oncology, Florida International University, Miami, FL, United States
| |
Collapse
|
99
|
Meng Y, Huo H, Zhang Y, Bai S, Wang R, Zhang K, Ding X, Wang J, Zeng Q, Peng H, Xuan Y. Effects of Dietary Glucose Oxidase Supplementation on the Performance, Apparent Ileal Amino Acids Digestibility, and Ileal Microbiota of Broiler Chickens. Animals (Basel) 2021; 11:ani11102909. [PMID: 34679930 PMCID: PMC8532941 DOI: 10.3390/ani11102909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Glucose oxidase was used as a potential additive to improve intestinal health in livestock and poultry industry. This study aimed to investigate the effects of glucose oxidase supplementation on performance, ileal microbiota, ileal short-chain fatty acids profile, and apparent ileal digestibility in grower broilers. Our findings will provide a valuable insight into the possibility of glucose oxidase as an alternative of antibiotic growth promoters in broiler diets. Abstract This study aimed to investigate the effects of glucose oxidase (GOD) supplementation on growth performance, apparent ileal digestibility (AID) of nutrients, intestinal morphology, and short-chain fatty acids (SCFAs) and microbiota in the ileum of broilers. Six hundred 1-day-old male broilers were randomly allotted to four groups of 10 replicates each with 15 birds per replicate cage. The four treatments included the basal diet without antibiotics (Control) and the basal diet supplemented with 250, 500, or 1000 U GOD/kg diet (E250, E500 or E1000). The samples of different intestinal segments, ileal mucosa, and ileal digesta were collected on d 42. Dietary GOD supplementation did not affect daily bodyweight gain (DBWG) and the ratio of feed consumption and bodyweight gain (FCR) during d 1-21 (p > 0.05); however, the E250 treatment increased DBWG (p = 0.03) during d 22–42 as compared to control. Dietary GOD supplementation increased the AIDs of arginine, isoleucine, lysine, methionine, threonine, cysteine, serine, and tyrosine (p < 0.05), while no significant difference was observed among the GOD added groups. The E250 treatment increased the villus height of the jejunum and ileum. The concentrations of secreted immunoglobulin A (sIgA) in ileal mucosa and the contents of acetic acid and butyric acid in ileal digesta were higher in the E250 group than in the control (p < 0.05), whereas no significant differences among E500, E1000, and control groups. The E250 treatment increased the richness of ileal microbiota, but E500 and E100 treatment did not significantly affect it. Dietary E250 treatment increased the relative abundance of Firmicutes phylum and Lactobacillus genus, while it decreased the relative abundance of genus Escherichina-Shigella (p < 0.05). Phylum Fusobacteria only colonized in the ileal digesta of E500 treated broilers and E500 and E1000 did not affect the relative abundance of Firmicutes phylum and Lactobacillus and Escherichina-Shigella genera as compared to control. These results suggested that dietary supplementation of 250 U GOD/kg diet improves the growth performance of broilers during d 22–42, which might be associated with the alteration of the intestinal morphology, SCFAs composition, and ileal microbiota composition.
Collapse
Affiliation(s)
- Yong Meng
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
- Mianyang Habio Bioengineering Co., Ltd., Mianyang 610000, China;
| | - Haonan Huo
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
| | - Yang Zhang
- Mianyang Habio Bioengineering Co., Ltd., Mianyang 610000, China;
| | - Shiping Bai
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
- Correspondence: ; Tel.: +86-28-86290922
| | - Ruisheng Wang
- Chongqing Academy of Animal Science, Chongqiang 402460, China;
| | - Keying Zhang
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
| | - Xuemei Ding
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
| | - Jianping Wang
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
| | - Qiufeng Zeng
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
| | - Huanwei Peng
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
| | - Yue Xuan
- Feed Engineering Research Centre of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (H.H.); (K.Z.); (X.D.); (J.W.); (Q.Z.); (H.P.); (Y.X.)
| |
Collapse
|
100
|
Coculture Strategy for Developing Lactobacillus paracasei PS23 Fermented Milk with Anti-Colitis Effect. Foods 2021; 10:foods10102337. [PMID: 34681392 PMCID: PMC8535234 DOI: 10.3390/foods10102337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/27/2022] Open
Abstract
Few studies have documented the effects of fermented milk on intestinal colitis, which are mediated by regulating various microbial and inflammatory processes. Here, we investigated the effects of fermented milk with Lactobacillus paracasei PS23 on intestinal epithelial cells in vitro and dextran sulfate sodium (DSS)-induced colitis in vivo. As L. paracasei PS23 grew poorly in milk, a coculture strategy with yogurt culture was provided to produce fermented milk (FM). The results indicated that the coculture exhibited a symbiotic effect, contributing to the better microbial and physicochemical property of the fermented milk products. We further evaluated the anti-colitis effect of fermented milk with L. paracasei PS23 in vitro. Both PS23-fermented milk (PS23 FM) and its heat-killed counterpart (HK PS23 FM) could protect or reverse the increased epithelial permeability by strengthening the epithelial barrier function in vitro by increasing transepithelial electrical resistance (TEER). In vivo analysis of the regulation of intestinal physiology demonstrated that low-dose L. paracasei PS23-fermented ameliorated DSS-induced colitis, with a significant attenuation of the bleeding score and reduction of fecal calprotectin levels. This anti-colitis effect may be exerted by deactivating the inflammatory cascade and strengthening the tight junction through the modification of specific cecal bacteria and upregulation of short-chain fatty acids. Our findings can clarify the role of L. paracasei PS23 in FM products when cocultured with yogurt culture and can elucidate the mechanisms of the anti-colitis effect of L. paracasei PS23 FM, which may be considered for therapeutic intervention.
Collapse
|