51
|
Malmir A, Farivar S, Rezaei R, Tokhanbigli S, Hatami B, Mazhari S, Baghaei K. The effect of mesenchymal stem cells and imatinib on macrophage polarization in rat model of liver fibrosis. Cell Biol Int 2022; 47:135-143. [PMID: 36183364 DOI: 10.1002/cbin.11916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/12/2022]
Abstract
Liver fibrosis is a disorder in which inflammatory reactions play an important role, and central to the progression and pathogenesis of this disease are the immune-specific cells known as macrophages. Macrophage types are distinguished from each other by the expression of a series of surface markers. STAT6 and Arg1 play an important role in the polarization of macrophages, so these two factors are downstream of interleukin 4 (IL-4) and IL-13 cytokines and cause to differentiate M2. Therefore, this study aimed to compare the independent effects of imatinib and mesenchymal cell treatment on the polarization of macrophages in rat models of liver fibrosis. The liver fibrosis was induced by the injection of CCL4 for 6 weeks in Sprague-Dawley rats. Then, rats were divided into four different groups, and the effects of imatinib and mesenchymal cells on the expression of Arg1, Ly6c, and STAT6 were evaluated. Histopathology experiments considered the amelioration effect of treatments. Our results showed that Arg1 expression was significantly increased in the groups treated with mesenchymal cells and imatinib compared to the control group. On the other hand, expression of STAT6 was significantly increased in the imatinib-treated mice compared to mesenchymal and control groups. Moreover, the expression of LY6C significantly decreased in imatinib and mesenchymal treated groups compared to the control group. Therefore, our data showed that mesenchymal stem cells and imatinib significantly modulate the fibrotic process in rat models of fibrosis, probably by polarizing macrophages towards an anti-inflammatory profile and increasing the frequency of these cells in liver tissue.
Collapse
Affiliation(s)
- Ali Malmir
- Department of Molecular and Cell Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Shirin Farivar
- Department of Molecular and Cell Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ramazan Rezaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Tokhanbigli
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sogol Mazhari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
52
|
Flores Molina M, Abdelnabi MN, Mazouz S, Villafranca-Baughman D, Trinh VQH, Muhammad S, Bédard N, Osorio Laverde D, Hassan GS, Di Polo A, Shoukry NH. Distinct spatial distribution and roles of Kupffer cells and monocyte-derived macrophages in mouse acute liver injury. Front Immunol 2022; 13:994480. [PMID: 36248843 PMCID: PMC9562324 DOI: 10.3389/fimmu.2022.994480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Macrophages are key regulators of inflammation and repair, but their heterogeneity and multiple roles in the liver are not fully understood. We aimed herein to map the intrahepatic macrophage populations and their function(s) during acute liver injury. We used flow cytometry, gene expression analysis, multiplex-immunofluorescence, 3D-reconstruction, and spatial image analysis to characterize the intrahepatic immune landscape in mice post-CCl4-induced acute liver injury during three distinct phases: necroinflammation, and early and late repair. We observed hepatocellular necrosis and a reduction in liver resident lymphocytes during necroinflammation accompanied by the infiltration of circulating myeloid cells and upregulation of inflammatory cytokines. These parameters returned to baseline levels during the repair phase while pro-repair chemokines were upregulated. We identified resident CLEC4F+ Kupffer cells (KCs) and infiltrating IBA1+CLEC4F- monocyte-derived macrophages (MoMFs) as the main hepatic macrophage populations during this response to injury. While occupying most of the necrotic area, KCs and MoMFs exhibited distinctive kinetics, distribution and morphology at the site of injury. The necroinflammation phase was characterized by low levels of KCs and a remarkable invasion of MoMFs suggesting their potential role in phagoctosing necrotic hepatocytes, while opposite kinetics/distribution were observed during repair. During the early repair phase, yolksac - derived KCs were restored, whereas MoMFs diminished gradually then dissipated during late repair. MoMFs interacted with hepatic stellate cells during the necroinflammatory and early repair phases, potentially modulating their activation state and influencing their fibrogenic and pro-repair functions that are critical for wound healing. Altogether, our study reveals novel and distinct spatial and temporal distribution of KCs and MoMFs and provides insights into their complementary roles during acute liver injury.
Collapse
Affiliation(s)
- Manuel Flores Molina
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Mohamed N. Abdelnabi
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Sabrina Mazouz
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Deborah Villafranca-Baughman
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de neurosciences, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Vincent Quoc-Huy Trinh
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Shafi Muhammad
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Nathalie Bédard
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - David Osorio Laverde
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Ghada S. Hassan
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Adriana Di Polo
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de neurosciences, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
- *Correspondence: Naglaa H. Shoukry,
| |
Collapse
|
53
|
Yu Y, Yue Z, Xu M, Zhang M, Shen X, Ma Z, Li J, Xie X. Macrophages play a key role in tissue repair and regeneration. PeerJ 2022; 10:e14053. [PMID: 36196399 PMCID: PMC9527023 DOI: 10.7717/peerj.14053] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/24/2022] [Indexed: 01/19/2023] Open
Abstract
Tissue regeneration after body injury has always been a complex problem to resolve for mammals. In adult mammals, the repair process after tissue injury is often accompanied by continuous and extensive fibrosis, which leads to scars. This process has been shown to severely hinder regeneration. Macrophages, as widely distributed innate immune cells, not only play an important role in various pathological processes, but also participate in the repair process before tissue regeneration and coordinate the regeneration process after repair. This review will discuss the various forms and indispensability of macrophages involved in repair and regeneration, and how macrophages play a role in the repair and regeneration of different tissues.
Collapse
Affiliation(s)
- Yajie Yu
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Zhongyu Yue
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Mengli Xu
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Meiling Zhang
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Xue Shen
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Zihan Ma
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Juan Li
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Xin Xie
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
54
|
Lam P, Ashbrook A, Zygmunt DA, Yan C, Du H, Martin PT. Therapeutic efficacy of rscAAVrh74.miniCMV.LIPA gene therapy in a mouse model of lysosomal acid lipase deficiency. Mol Ther Methods Clin Dev 2022; 26:413-426. [PMID: 36092360 PMCID: PMC9403906 DOI: 10.1016/j.omtm.2022.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 08/01/2022] [Indexed: 11/03/2022]
Abstract
Lysosomal acid lipase deficiency (LAL-D) presents as one of two rare autosomal recessive diseases: Wolman disease (WD), a severe disorder presenting in infancy characterized by absent or very low LAL activity, and cholesteryl ester storage disease (CESD), a less severe, later onset disease form. Recent clinical studies have shown efficacy of enzyme replacement therapy for both forms of LAL-D; however, no gene therapy approach has yet been developed for clinical use. Here, we show that rscAAVrh74.miniCMV.LIPA gene therapy can significantly improve disease symptoms in the Lipa−/− mouse model of LAL-D. Treatment dramatically lowered hepatosplenomegaly, liver and spleen triglyceride and cholesterol levels, and serum expression of markers of liver damage. Measures of liver inflammation and fibrosis were also reduced. Treatment of young adult mice was more effective than treatment of neonates, and enzyme activity was elevated in serum, consistent with possible bystander effects. These results demonstrate that adeno associated virus (AAV)-mediated LIPA gene-replacement therapy may be a viable option to treat patients with LAL-D, particularly patients with CESD.
Collapse
|
55
|
Song M, Chen Z, Qiu R, Zhi T, Xie W, Zhou Y, Luo N, Fuqian Chen, Liu F, Shen C, Lin S, Zhang F, Gao Y, Liu C. Inhibition of NLRP3-mediated crosstalk between hepatocytes and liver macrophages by geniposidic acid alleviates cholestatic liver inflammatory injury. Redox Biol 2022; 55:102404. [PMID: 35868156 PMCID: PMC9304672 DOI: 10.1016/j.redox.2022.102404] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/01/2022] [Accepted: 07/10/2022] [Indexed: 11/28/2022] Open
Abstract
The excessive accumulation of bile acids (BA) in hepatocytes can trigger inflammatory response and recruit macrophages, thereby accelerating cholestatic liver injury. The crosstalk between hepatocytes and macrophages has been recently implicated in the pathogenesis of cholestasis; however, the underlying mechanisms remain unclear. Here, we demonstrated that BA initiate NLRP3 inflammasome activation in hepatocytes to release proinflammatory cytokines and promote the communication between hepatocytes and macrophages, thus enhancing liver inflammation in an NLRP3-dependent manner. NLRP3-inhibition by geniposidic acid (GPA), a novel NLRP3-specific covalent inhibitor that directly interacts with NLRP3, in hepatocytes and macrophages abated BA-induced inflammation. Moreover, NLRP3-deletion or its inhibition mitigated ANIT-induced cholestatic inflammation, whereas disrupting the crosstalk between hepatic macrophages and hepatocytes attenuated the hepatoprotective effect of GPA against ANIT-induced cholestatic inflammation. Therefore, blocking this crosstalk by suppressing NLRP3 inflammasome activation may represent a novel therapeutic strategy for cholestasis.
Collapse
Key Words
- alanine aminotransferase, alt
- α-naphthalene isothiocyanate, anit
- apoptosis-associated speck-like protein, asc
- aspartate transaminase, ast
- β-mercaptoethanol, β-me
- bile acids, ba
- bile duct ligation, bdl
- biotinylated gpa, bio-gpa
- bone-marrow-derived macrophage, bmdm
- geniposidic acid, gpa
- kupffer cells, kcs
- nod-like receptor protein 3, nlrp3
- primary mouse hepatocytes, pmhs
- primary sclerosing cholangitis, psc
- taurocholic acid, tca
- total bile acid, tba
- total bilirubin, tbil
Collapse
Affiliation(s)
- Meng Song
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zijun Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Ruian Qiu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Tingwei Zhi
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Wenmin Xie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yingya Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Nachuan Luo
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China
| | - Fuqian Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Fang Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chuangpeng Shen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Sheng Lin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Fengxue Zhang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Yong Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA.
| | - Changhui Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
56
|
Elchaninov A, Vishnyakova P, Menyailo E, Sukhikh G, Fatkhudinov T. An Eye on Kupffer Cells: Development, Phenotype and the Macrophage Niche. Int J Mol Sci 2022; 23:9868. [PMID: 36077265 PMCID: PMC9456487 DOI: 10.3390/ijms23179868] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/14/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Macrophages are key participants in the maintenance of tissue homeostasis under normal and pathological conditions, and implement a rich diversity of functions. The largest population of resident tissue macrophages is found in the liver. Hepatic macrophages, termed Kupffer cells, are involved in the regulation of multiple liver functionalities. Specific differentiation profiles and functional activities of tissue macrophages have been attributed to the shaping role of the so-called tissue niche microenvironments. The fundamental macrophage niche concept was lately shaken by a flood of new data, leading to a revision and substantial update of the concept, which constitutes the main focus of this review. The macrophage community discusses contemporary evidence on the developmental origins of resident macrophages, notably Kupffer cells and the issues of heterogeneity of the hepatic macrophage populations, as well as the roles of proliferation, cell death and migration processes in the maintenance of macrophage populations of the liver. Special consideration is given to interactions of Kupffer cells with other local cell lineages, including Ito cells, sinusoidal endothelium and hepatocytes, which participate in the maintenance of their phenotypical and functional identity.
Collapse
Affiliation(s)
- Andrey Elchaninov
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
- Histology Department, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Polina Vishnyakova
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Egor Menyailo
- Laboratory of Growth and Development, Avtsyn Research Institute of Human Morphology of FSBI “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
| | - Gennady Sukhikh
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
| | - Timur Fatkhudinov
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
- Laboratory of Growth and Development, Avtsyn Research Institute of Human Morphology of FSBI “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
| |
Collapse
|
57
|
Zhang Q, Wei J, Liu Z, Huang X, Sun M, Lai W, Chen Z, Wu J, Chen Y, Guo X, Huang Q. STING signaling sensing of DRP1-dependent mtDNA release in kupffer cells contributes to lipopolysaccharide-induced liver injury in mice. Redox Biol 2022; 54:102367. [PMID: 35724543 PMCID: PMC9218162 DOI: 10.1016/j.redox.2022.102367] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022] Open
Abstract
Aberrant pro-inflammatory activation of Kupffer cells (KCs) is strongly involved in the pathogenesis of septic liver injury. Recent evidence indicates the crucial roles of excessive stimulator of interferon genes (STING) signaling activation during sepsis. However, the role of STING signaling in septic liver injury remains unclear. In this study, we demonstrated that STING signaling was markedly activated in KCs isolated from wild type mice after lipopolysaccharide (LPS) treatment. STING deficiency effectively protected liver function, attenuated systemic inflammatory response and decreased mortality in LPS-treated mice, which were aggravated by STING agonist (DMXAA). Importantly, STING signaling activation in KCs contributed to LPS-induced liver injury through promoting hepatocyte death. Mechanistically, STING signaling could be activated by release of mitochondrial DNA (mtDNA) through dynamin-related protein 1 (DRP1)-dependent mitochondrial fission in LPS-treated KCs. Additionally, LPS stimulation enhanced DRP1-dependent mitochondrial ROS production, which promoted the leak of mtDNA into the cytosol and subsequent STING signaling activation in KCs. The in vivo experiments showed that pharmacological inhibition of DRP1 with Mdivi-1 partially prevented the activation of STING signaling in KCs isolated from LPS-challenged mice, as well as alleviated liver injury and inhibited systemic inflammatory response. In summary, our study comprehensively confirmed that STING signaling senses the DRP1-dependent release of mtDNA in KCs and its activation might play a key role in LPS-induced liver injury, which offers new sights and therapeutic targets for management of septic liver injury.
Collapse
Affiliation(s)
- Qin Zhang
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiayi Wei
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhuanhua Liu
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoxia Huang
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Maomao Sun
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wujiang Lai
- Department of Gynecology, Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhenfeng Chen
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jie Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yanjia Chen
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaohua Guo
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qiaobing Huang
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China; Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
58
|
Lopes ME, Nakagaki BN, Mattos MS, Campolina-Silva GH, Meira RDO, Paixão P, Oliveira A, Faustino L, Gonçalves R, Menezes GB. Susceptibility to Infections During Acute Liver Injury Depends on Transient Disruption of Liver Macrophage Niche. Front Immunol 2022; 13:892114. [PMID: 35967353 PMCID: PMC9368782 DOI: 10.3389/fimmu.2022.892114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Kupffer cells are the primary liver resident immune cell responsible for the liver firewall function, including clearance of bacterial infection from the circulation, as they are strategically positioned inside the liver sinusoid with intimate contact with the blood. Disruption in the tissue-resident macrophage niche, such as in Kupffer cells, can lead to a window of susceptibility to systemic infections, which represents a significant cause of mortality in patients with acetaminophen (APAP) overdose-induced acute liver injury (ALI). However, how Kupffer cell niche disruption increases susceptibility to systemic infections in ALI is not fully understood. Using a mouse model of ALI induced by APAP overdose, we found that Kupffer cells upregulated the apoptotic cell death program and were markedly reduced in the necrotic areas during the early stages of ALI, opening the niche for the infiltration of neutrophils and monocyte subsets. In addition, during the resolution phase of ALI, the remaining tissue macrophages with a Kupffer cell morphology were observed forming replicating cell clusters closer to necrotic areas devoid of Kupffer cells. Interestingly, mice with APAP-induced liver injury were still susceptible to infections despite the dual cellular input of circulating monocytes and proliferation of remaining Kupffer cells in the damaged liver. Therapy with bone marrow-derived macrophages (BMDM) was shown to be effective in occupying the niche devoid of Kupffer cells following APAP-induced ALI. The rapid BMDM migration to the liver and their positioning within necrotic areas enhanced the healing of the tissue and restored the liver firewall function after BMDM therapy. Therefore, we showed that disruption in the Kupffer cell niche and its impaired function during acute liver injury are key factors for the susceptibility to systemic bacterial infections. In addition, modulation of the liver macrophage niche was shown to be a promising therapeutic strategy for liver injuries that reduce the Kupffer cell number and compromise the organ function.
Collapse
Affiliation(s)
- Mateus Eustáquio Lopes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- *Correspondence: Mateus Eustáquio Lopes, ; Gustavo Batista Menezes,
| | - Brenda Naemi Nakagaki
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Matheus Silvério Mattos
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gabriel Henrique Campolina-Silva
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC, Canada
| | - Raquel de Oliveira Meira
- Macrophage and Monocyte Biology Laboratory, Department of Pathology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Pierre Henrique de Menezes Paixão
- Macrophage and Monocyte Biology Laboratory, Department of Pathology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - André Gustavo Oliveira
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas, Universidade
Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Lucas D. Faustino
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Ricardo Gonçalves
- Macrophage and Monocyte Biology Laboratory, Department of Pathology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gustavo Batista Menezes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- *Correspondence: Mateus Eustáquio Lopes, ; Gustavo Batista Menezes,
| |
Collapse
|
59
|
Fan Y, Dong W, Wang Y, Zhu S, Chai R, Xu Z, Zhang X, Yan Y, Yang L, Bian Y. Glycyrrhetinic acid regulates impaired macrophage autophagic flux in the treatment of non-alcoholic fatty liver disease. Front Immunol 2022; 13:959495. [PMID: 35967372 PMCID: PMC9365971 DOI: 10.3389/fimmu.2022.959495] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Macrophages are involved in hepatocyte steatosis and necroinflammation and play an important role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Impaired autophagy function (decreased autophagy or blocked autophagic flow) leads to cell damage and death and promotes NAFLD progression. The experimental and clinical research of glycyrrhetinic acid (GA) in the treatment of NAFLD has gradually attracted attention with clear pharmacological activities such as immune regulation, antiviral, antitumor, antioxidant, liver protection, and anti-inflammatory. However, the effects of GA on the STAT3-HIF-1α pathway and autophagy in macrophages are still unclear, and its mechanism of action in the treatment of NAFLD remains to be further elucidated. We constructed a NAFLD mouse model through a high-fat and high-sugar diet to investigate the therapeutic effects of GA. The results showed that GA reduced weight, improved the pathological changes and hepatic lipid deposition of liver, and abnormally elevated the levels of serum biochemical (AST, ALT, TG, T-CHO, LDL-C, and HDL-C) and inflammatory indexes (IL-1β, IL-4, IL-6, MCP-1, and TNF-α) in NAFLD mice. Further examination revealed that GA ameliorates excessive hepatic macrophage infiltration and hepatocyte apoptosis. The results of the cell experiments further elaborated that GA modulated the PA-induced macrophage STAT3-HIF-1α pathway and ameliorated impaired autophagic flux (blockade of autophagosome–lysosome fusion) and overactivation of inflammation. Excessive hepatocyte apoptosis caused by the uncontrolled release of inflammatory cytokines was also suppressed by GA.ConclusionThis study demonstrated that GA could regulate the STAT3-HIF-1α pathway of macrophages, ameliorate the impaired autophagy flux, and reduce the excessive production of inflammatory cytokines to improve the excessive apoptosis of liver cells, thus playing a therapeutic role on NAFLD.
Collapse
Affiliation(s)
- Yadong Fan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenjin Dong
- Department of Science and Education, Tianjin Union Medical Center, Tianjin, China
| | - Ying Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shan Zhu
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rundong Chai
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhe Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoyu Zhang
- The Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiqi Yan
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Long Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Long Yang, ; Yuhong bian,
| | - Yuhong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Long Yang, ; Yuhong bian,
| |
Collapse
|
60
|
Guan F, Luo H, Wu J, Li M, Chen L, Huang N, Wei G, Nie J, Chen B, Su Z, Zhang X, Liu Y. Andrographolide sodium bisulfite ameliorates dextran sulfate sodium-induced colitis and liver injury in mice via inhibiting macrophage proinflammatory polarization from the gut-liver axis. Int Immunopharmacol 2022; 110:109007. [PMID: 35779489 DOI: 10.1016/j.intimp.2022.109007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 11/25/2022]
Abstract
Ulcerative colitis (UC), an inflammatory disease, is widely thought to be associated with colonic barrier damage and inflammatory response. With the destruction of the colonic barrier, lipopolysaccharide (LPS) enters the liver through the portal vein and causes liver injury. Liver injury in turn exacerbates UC to form a vicious cycle, so the treatment of liver injury cannot be ignored. Andrographolide (Andro) has a protective effect against colitis and liver injury, but with low bioavailability. Andrographolide sodium bisulfite (ASB), a water-soluble sulfonate of Andro, has better bioavailability, whether it has a better curative effect against UC and liver injury is rarely reported. Hence, we investigated the protective effect and potential mechanism of ASB against dextran sulfate sodium (DSS)-induced UC and liver injury in mice. The results showed that treatment with ASB significantly relieved the clinical symptoms of UC and liver injury by reducing disease activity index, inhibiting gut-derived LPS leakage, and improving colonic and hepatic injury, and its curative effect was better than Andro. Moreover, ASB effectively decreased the YAP-mediated colonic inflammation and TLR4/MyD88/NF-κB-mediated pro-inflammatory factor release in the liver. Both colonic and hepatic inflammation were associated with macrophage proinflammatory polarization, but they were significantly inhibited by ASB. ASB showed good safety in the treatment of UC and liver injury and has no nephrotoxicity as previously described. In conclusion, ASB has an effective protective effect on DSS-induced UC and liver injury, mainly by suppressing macrophage proinflammatory polarization from the gut-liver axis.
Collapse
Affiliation(s)
- Fengkun Guan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Huijuan Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jiazhen Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Mengyao Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Liping Chen
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Ning Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Guilan Wei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Juan Nie
- Medical School, Hubei Minzu University, Enshi 445000, China
| | - Baoyi Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, China
| | - Xie Zhang
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, China.
| |
Collapse
|
61
|
Liu H, Li MJ, Zhang XN, Wang S, Li LX, Guo FF, Zeng T. N,N-dimethylformamide-induced acute liver damage is driven by the activation of NLRP3 inflammasome in liver macrophages of mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113609. [PMID: 35551047 DOI: 10.1016/j.ecoenv.2022.113609] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
N,N-dimethylformamide (DMF) is a non-negligible volatile hazardous material in indoor and outdoor environments. Although the hepatotoxicity of DMF has been well recognized, the underlying mechanisms remain unclear and prophylactic medicine is still lacking. Herein, we established a DMF-induced acute liver injury mouse model and investigated the underlying mechanisms focusing on oxidative stress and the nucleotide-binding domain and leucine-rich repeat receptor (NLR) family pyrin domain (PYD)-containing 3 (NLRP3) inflammasome. DMF was found to induce oxidative stress, evidenced by the elevation of hepatic malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) adducts levels, and the decline of reduced glutathione (GSH) levels. However, neither N-acetyl cysteine (NAC) nor sulforaphane (SF) ameliorated the hepatoxicity induced by DMF in mice. Interestingly, DMF exposure led to focal necrosis of hepatocytes and NLRP3 inflammasome activation before the onset of obvious liver damage. In addition, DMF exposure induced infiltration and proinflammatory/M1 polarization of macrophages in mice livers. Furthermore, the inactivation of hepatic macrophages by GdCl3 significantly suppressed DMF-induced elevation of serum aminotransferase activities, neutrophile infiltration, and activation of NLRP3 inflammasome in mice liver. Collectively, these results suggest that DMF-induced acute hepatotoxicity may be attributed to the activation of NLRP3 inflammasome in liver macrophages, but not oxidative stress.
Collapse
Affiliation(s)
- Hong Liu
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ming-Jun Li
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Tangshan Vocational&Technical College, Tangshan, Hebei 063000, China
| | - Xiu-Ning Zhang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shuo Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong Province 252059, China
| | - Long-Xia Li
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Fang-Fang Guo
- Department of Pharmacy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
62
|
Chang H, Ni Y, Shen C, Li C, He K, Zhu X, Chen L, Chen L, Qiu J, Ji Y, Hou M, Ji M, Xu Z. Peritoneal GATA6 + macrophage drives hepatic immunopathogenesis and maintains the T reg cell niche in the liver. Immunol Suppl 2022; 167:77-93. [PMID: 35689656 DOI: 10.1111/imm.13519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/25/2022] [Indexed: 11/28/2022]
Abstract
The source of macrophages that contribute to human liver disease remains poorly understood. The purpose of this study is to investigate the functional mechanism of peritoneal macrophages in the development of hepatic immunopathology. By performing the natural infection with the blood fluke Schistosoma japonicum (S. japonicum) and the chemically carbon tetrachloride (CCl4 )-induced liver injured mouse model, we identified the peritoneal cavity as an essential source of hepatic macrophages. Here, we show that a large number of F4/80+ macrophages was accumulated in the peritoneal cavity during liver injury. An unknown source population of macrophages, which highly expressed GATA6 that is specific to peritoneal macrophages, was found to exist in the injured livers. Peritoneal macrophage deletion by injection with clodronate-containing liposomes led to an attenuated hepatic pathology and the inflammatory microenvironment, while adoptive transfer of macrophages into the abdominal cavity, by contrast, results in restoring liver pathology. Importantly, there are set genes of monocyte chemoattractant protein (MCP)-1, -2, and -3 that are highly related to recruit GATA6+ macrophages during S. japonicum infection, while administration of bindarit, a selective inhibitor of MCPs synthesis, dramatically decreased the hepatic expression of GATA6+ macrophages and thus attenuated hepatic pathology. Furthermore, in vivo study showed that peritoneal macrophages promote hepatic immunopathology is dependent on the accumulation of regulatory T cells (Tregs) in the liver. Altogether, these data provide the first clear evidence that GATA6+ peritoneal macrophages play critical roles in both the formation of hepatic immunopathology and the accumulation of Tregs cells.
Collapse
Affiliation(s)
- Hao Chang
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yangyue Ni
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunxiang Shen
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chen Li
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kaiyue He
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinyi Zhu
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lin Chen
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lu Chen
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingfan Qiu
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yong Ji
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Min Hou
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Minjun Ji
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China.,NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhipeng Xu
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China.,NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
63
|
Alanyl-Glutamine Protects against Lipopolysaccharide-Induced Liver Injury in Mice via Alleviating Oxidative Stress, Inhibiting Inflammation, and Regulating Autophagy. Antioxidants (Basel) 2022; 11:antiox11061070. [PMID: 35739966 PMCID: PMC9220087 DOI: 10.3390/antiox11061070] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 12/23/2022] Open
Abstract
Acute liver injury is a worldwide problem with a high rate of morbidity and mortality, and effective pharmacological therapies are still urgently needed. Alanyl-glutamine (Ala-Gln), a dipeptide formed from L-alanine and L-glutamine, is known as a protective compound that is involved in various tissue injuries, but there are limited reports regarding the effects of Ala-Gln in acute liver injury. This present study aimed to investigate the protective effects of Ala-Gln in lipopolysaccharide (LPS)-induced acute liver injury in mice, with a focus on inflammatory responses and oxidative stress. The acute liver injury induced using LPS (50 μg/kg) and D-galactosamine (D-Gal) (400 mg/kg) stimulation in mice was significantly attenuated after Ala-Gln treatment (500 and 1500 mg/kg), as evidenced by reduced plasma alanine transaminase (ALT) (p < 0.01, p < 0.001), aspartate transaminase (AST) (p < 0.05, p < 0.001), and lactate dehydrogenase (LDH) (p < 0.01, p < 0.001) levels, and accompanied by improved histopathological changes. In addition, LPS/D-Gal-induced hepatic apoptosis was also alleviated by Ala-Gln administration, as shown by a greatly decreased ratio of TUNEL-positive hepatocytes, from approximately 10% to 2%, and markedly reduced protein levels of cleaved caspase-3 (p < 0.05, p < 0.001) in liver. Moreover, we found that LPS/D-Gal-triggered oxidative stress was suppressed after Ala-Gln treatment, the effect of which might be dependent on the elevation of SOD and GPX activities, and on GSH levels in liver. Interestingly, we observed that Ala-Gln clearly inhibited LPS/D-Gal exposure-induced macrophage accumulation and the production of proinflammatory factors in the liver. Furthermore, Ala-Gln greatly regulated autophagy in the liver in LPS/D-Gal-treated mice. Using RAW264.7 cells, we confirmed the anti-inflammatory role of Ala-Gln-targeting macrophages.
Collapse
|
64
|
Kennedy L, Francis H, Alpini G. Macrophage-Specific SCAP Promotes Liver and Adipose Tissue Damage in a Lean NAFLD Model: Lean, Mean, Proinflammatory Machine. Cell Mol Gastroenterol Hepatol 2022; 14:236-238. [PMID: 35500675 PMCID: PMC9254626 DOI: 10.1016/j.jcmgh.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 12/10/2022]
Affiliation(s)
| | | | - Gianfranco Alpini
- Correspondence Address correspondence to: Gianfranco Alpini, PhD, FAASLD, AGAF, Indiana Center for Liver Research, Indiana University School of Medicine, 702 Rotary Circle, Room 013C, Indianapolis, Indiana 46202.
| |
Collapse
|
65
|
Mysore V, Tahir S, Furuhashi K, Arora J, Rosetti F, Cullere X, Yazbeck P, Sekulic M, Lemieux ME, Raychaudhuri S, Horwitz BH, Mayadas TN. Monocytes transition to macrophages within the inflamed vasculature via monocyte CCR2 and endothelial TNFR2. J Exp Med 2022; 219:e20210562. [PMID: 35404389 PMCID: PMC9006314 DOI: 10.1084/jem.20210562] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 11/16/2021] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
Monocytes undergo phenotypic and functional changes in response to inflammatory cues, but the molecular signals that drive different monocyte states remain largely undefined. We show that monocytes acquire macrophage markers upon glomerulonephritis and may be derived from CCR2+CX3CR1+ double-positive monocytes, which are preferentially recruited, dwell within glomerular capillaries, and acquire proinflammatory characteristics in the nephritic kidney. Mechanistically, the transition to immature macrophages begins within the vasculature and relies on CCR2 in circulating cells and TNFR2 in parenchymal cells, findings that are recapitulated in vitro with monocytes cocultured with TNF-TNFR2-activated endothelial cells generating CCR2 ligands. Single-cell RNA sequencing of cocultures defines a CCR2-dependent monocyte differentiation path associated with the acquisition of immune effector functions and generation of CCR2 ligands. Immature macrophages are detected in the urine of lupus nephritis patients, and their frequency correlates with clinical disease. In conclusion, CCR2-dependent functional specialization of monocytes into macrophages begins within the TNF-TNFR2-activated vasculature and may establish a CCR2-based autocrine, feed-forward loop that amplifies renal inflammation.
Collapse
Affiliation(s)
- Vijayashree Mysore
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Suhail Tahir
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Kazuhiro Furuhashi
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Jatin Arora
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Florencia Rosetti
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Xavier Cullere
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Pascal Yazbeck
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Miroslav Sekulic
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | | | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Centre for Genetics and Genomics Versus Arthritis, The University of Manchester, Manchester, UK
| | - Bruce H. Horwitz
- Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Tanya N. Mayadas
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
66
|
Hasan Khudhair D, Al-Gareeb AI, Al-kuraishy HM, El-Kadem AH, Elekhnawy E, Negm WA, Saber S, Cavalu S, Tirla A, Alotaibi SS, Batiha GES. Combination of Vitamin C and Curcumin Safeguards Against Methotrexate-Induced Acute Liver Injury in Mice by Synergistic Antioxidant Effects. Front Med (Lausanne) 2022; 9:866343. [PMID: 35492324 PMCID: PMC9047671 DOI: 10.3389/fmed.2022.866343] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/07/2022] [Indexed: 12/21/2022] Open
Abstract
Methotrexate (MTX), an antineoplastic and immunosuppressive drug, widely used in the treatment of different types of cancers and the management of chronic inflammatory diseases. However, its use is associated with hepatotoxicity. Vitamin C (VC) and curcumin (CUR) exhibit anti-inflammatory and antioxidant effects. Thus, we aimed to investigate the potential hepatoprotective effects of VC and CUR pretreatment alone and in combination against MTX-induced hepatotoxicity. Albino mice were randomly divided into 7 groups: the control group, which received only normal saline; MTX group; VC group, pretreated with VC (100 or 200 mg/kg/day orally) for 10 days; CUR group, pretreated with CUR (10 or 20 mg/kg/day orally); and combination group, which received VC (100 mg/kg) and CUR (10 mg/kg). MTX was administered (20 mg/kg, intraperitoneally) to all the groups on the tenth day to induce hepatotoxicity. Forty eight hours after MTX administration, the mice were anesthetized. Blood samples were collected, the liver was removed for biochemical analysis, and a part of the tissue was preserved in formalin for histopathological analysis. The results indicated that pretreatment with a combination of VC and CUR induced a more significant decrease in the serum levels of alanine transaminase, aspartate transaminase, alkaline phosphatase, and lactic dehydrogenase and a significant increase in the tissue level of superoxide dismutase and glutathione; furthermore, it induced a significant decrease in malondialdehyde levels and improvement in histopathological changes in the liver tissues, confirming the potential hepatoprotective effects of the combination therapy on MTX-induced liver injury. To conclude, MTX-induced hepatotoxicity is mediated by induction of oxidative stress as evident by increased lipid peroxidation and reduction of antioxidant enzyme activity. Pretreatment with VC, CUR or their combination reduces the MTX-induced hepatotoxicity by antioxidant and anti-inflammatory effects. However, the combined effect of VC and CUR provided a synergistic hepatoprotective effect that surpasses pretreatment with CUR alone but seems to be similar to that of VC 200 mg/kg/day. Therefore, VC and CUR combination or a large dose of VC could be effective against MTX-induced hepatotoxicity. In this regard, further studies are warranted to confirm the combined hepatoprotective effect of VC and CUR against MTX-induced hepatotoxicity.
Collapse
Affiliation(s)
- Dhekra Hasan Khudhair
- Department of Clinical Pharmacology and Medicine, College of Medicine, University of Al-Mustansiriyah, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, University of Al-Mustansiriyah, Baghdad, Iraq
| | - Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, University of Al-Mustansiriyah, Baghdad, Iraq
| | - Aya H. El-Kadem
- Department of Pharmacology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Adrian Tirla
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
67
|
Chung KW, Cho YE, Kim SJ, Hwang S. Immune-related pathogenesis and therapeutic strategies of nonalcoholic steatohepatitis. Arch Pharm Res 2022; 45:229-244. [PMID: 35391713 DOI: 10.1007/s12272-022-01379-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/25/2022] [Indexed: 11/02/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome and has become prevalent in the adult population worldwide, given the ongoing obesity pandemic. NAFLD comprises several hepatic disorders, ranging from fatty liver to nonalcoholic steatohepatitis (NASH), cirrhosis, and carcinoma. Excessive fat accumulation in the liver can induce the development of fatty liver, whereas the progression of fatty liver to NASH involves various complex factors. The crucial difference between fatty liver and NASH is the presence of inflammation and fibrosis, the emergence of which is closely associated with the action of immune cells and immunological factors, such as chemokines and cytokines. Thus, expanding our understanding of immunological mechanisms contributing to NASH pathogenesis will lead to the identification of therapeutic targets and the development of viable therapeutics against NASH.
Collapse
Affiliation(s)
- Ki Wung Chung
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Ye Eun Cho
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Seung-Jin Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea.,Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Seonghwan Hwang
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
68
|
Chung T, Park YN. Up-to-Date Pathologic Classification and Molecular Characteristics of Intrahepatic Cholangiocarcinoma. Front Med (Lausanne) 2022; 9:857140. [PMID: 35433771 PMCID: PMC9008308 DOI: 10.3389/fmed.2022.857140] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/07/2022] [Indexed: 12/26/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is an aggressive primary liver malignancy with an increasing incidence worldwide. Recently, histopathologic classification of small duct type and large duct type iCCA has been introduced. Both these types of tumors exhibit differences in clinicopathological features, mutational profiles, and prognosis. Small duct type iCCA is composed of non-mucin-producing cuboidal cells, whereas large duct type iCCA is composed of mucin-producing columnar cells, reflecting different cells of origin. Large duct type iCCA shows more invasive growth and poorer prognosis than small duct type iCCA. The background liver of small duct type iCCA often shows chronic liver disease related to hepatitis B or C viral infection, or alcoholic or non-alcoholic fatty liver disease/steatohepatitis, in contrast to large duct type iCCA that is often related to hepatolithiasis and liver fluke infection. Cholangiolocarcinoma is a variant of small duct type iCCA composed of naïve-looking cuboidal cells forming cords or ductule-like structures, and shows better prognosis than the conventional small duct type. Fibrous tumor stroma, one of the characteristic features of iCCA, contains activated fibroblasts intermixed with innate and adaptive immune cells. The types of stroma (mature versus immature) are related to tumor behavior and prognosis. Low tumor-infiltrating lymphocyte density, KRAS alteration, and chromosomal instability are related to immune-suppressive tumor microenvironments with resistance to programmed death 1/ programmed death ligand 1 blockade. Data from recent large-scale exome analyses have revealed the heterogeneity in the molecular profiles of iCCA, showing that small duct type iCCA exhibit frequent BAP1, IDH1/2 hotspot mutations and FGFR2 fusion, in contrast to frequent mutations in KRAS, TP53, and SMAD4 observed in large duct type iCCA. Multi-omics analyses have proposed several molecular classifications of iCCA, including inflammation class and proliferation class. The inflammation class is enriched in inflammatory signaling pathways and expression of cytokines, while the proliferation class has activated oncogenic growth signaling pathways. Diverse pathologic features of iCCA and its associated multi-omics characteristics are currently under active investigation, thereby providing insights into precision therapeutics for patients with iCCA. This review provides the latest knowledge on the histopathologic classification of iCCA and its associated molecular features, ranging from tumor microenvironment to genomic and transcriptomic research.
Collapse
Affiliation(s)
- Taek Chung
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Nyun Park
- Department of Pathology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Young Nyun Park,
| |
Collapse
|
69
|
Rousta AM, Mirahmadi SMS, Shahmohammadi A, Mehrabi Z, Fallah S, Baluchnejadmojarad T, Roghani M. Therapeutic Potential of Isorhamnetin following Acetaminophen-Induced Hepatotoxicity through Targeting NLRP3/NF-κB/Nrf2. Drug Res (Stuttg) 2022; 72:245-254. [PMID: 35359022 DOI: 10.1055/a-1792-2678] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acetaminophen (APAP)-induced acute liver injury (ALI) is the principal cause of acute liver failure (ALF) in some countries including the United States and with few available treatments. Isorhamnetin is a bioflavonoid that is found in medicinal plants like Hippophae rhamnoides L. and Ginkgo biloba L. with promising potential to regulate inflammatory responses. In this study, we evaluated the possible effect of isorhamnetin in prevention of APAP-induced ALI and analyzed further the involvement of oxidative stress and inflammation-associated factors. Male C57BL/6 mice were given isorhamnetin (25 or 100 mg/kg b.w., p.o.) three times at 48, 24, and 1 h before APAP administration (300 mg/kg b.w., i.p.). Functional indicators of liver injury were measured as well as analysis of oxidative stress- and inflammation-associated indices and liver histopathology was also conducted. Isorhamnetin at the higher dose of 100 mg/kg significantly lowered serum levels of ALT, ALP, and AST in addition to reduction of ROS, TBARS, IL-6, TNFα, NF-kB, NLRP3, caspase 1, and MPO and significantly prevented reduction of GSH, SOD activity, sirtuin 1, and Nrf2. Additionally, isorhamnetin alleviated pathological changes of the liver tissue and suitably reversed NF-kB and Nrf2 immunoreactivity. These findings show protective effect of isorhamnetin against acetaminophen-induced liver injury through reducing oxidative stress, inflammation, and pyroptosis which is attributed to its regulation of NF-kB, Nrf2, NLRP3, and sirtuin 1.
Collapse
Affiliation(s)
| | | | | | - Zhila Mehrabi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soudabeh Fallah
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
70
|
Sinapic acid ameliorates paracetamol-induced acute liver injury through targeting oxidative stress and inflammation. Mol Biol Rep 2022; 49:4179-4191. [DOI: 10.1007/s11033-022-07251-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 02/09/2022] [Indexed: 11/24/2022]
|
71
|
Xu R, Ni B, Wang L, Shan J, Pan L, He Y, Lv G, Lin H, Chen W, Zhang Q. CCR2-overexpressing mesenchymal stem cells targeting damaged liver enhance recovery of acute liver failure. Stem Cell Res Ther 2022; 13:55. [PMID: 35123561 PMCID: PMC8817567 DOI: 10.1186/s13287-022-02729-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
Background Mesenchymal stem cell (MSC) transplantation is emerging as a promising cell therapeutic strategy in acute liver failure (ALF) clinical research. The potency of MSCs to migrate and engraft into targeted lesions could largely determine their clinical efficacy, in which chemokine/receptor axes play a crucial role. Unfortunately, the downregulation of chemokine receptors expression after in vitro expansion results in a poor homing capacity of MSCs. Methods By evaluating the chemokine expression profile in the liver of ALF patients and ALF mice, we found that CCL2 expression was highly upregulated in damaged livers, while the corresponding receptor, CCR2, was lacking in cultured MSCs. Thus, we genetically modified MSCs to overexpress CCR2 and investigated the targeted homing capacity and treatment efficacy of MSCCCR2 compared to those of the MSCvector control. Results In vivo and ex vivo near-infrared fluorescence imaging showed that MSCCCR2 rapidly migrated and localized to injured livers in remarkably greater numbers following systemic infusion, and these cells were retained in liver lesions for a longer time than MSCvector. Furthermore, MSCCCR2 exhibited significantly enhanced efficacy in the treatment of ALF in mice, which was indicated by a dramatically improved survival rate, the alleviation of liver injury with reduced inflammatory infiltration and hepatic apoptosis, and the promotion of liver regeneration. Conclusions Altogether, these results indicate that CCR2 overexpression enhances the targeted migration of MSCs to damaged livers, improves their treatment effect, and may provide a novel strategy for improving the efficacy of cell therapy for ALF. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02729-y.
Collapse
|
72
|
Sojoodi M, Erstad DJ, Barrett SC, Salloum S, Zhu S, Qian T, Colon S, Gale EM, Jordan VC, Wang Y, Li S, Ataeinia B, Jalilifiroozinezhad S, Lanuti M, Zukerberg L, Caravan P, Hoshida Y, Chung RT, Bhave G, Lauer GM, Fuchs BC, Tanabe KK. Peroxidasin Deficiency Re-programs Macrophages Toward Pro-fibrolysis Function and Promotes Collagen Resolution in Liver. Cell Mol Gastroenterol Hepatol 2022; 13:1483-1509. [PMID: 35093588 PMCID: PMC9043497 DOI: 10.1016/j.jcmgh.2022.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 12/10/2022]
Abstract
BACKGROUND & AIMS During liver fibrosis, tissue repair mechanisms replace necrotic tissue with highly stabilized extracellular matrix proteins. Extracellular matrix stabilization influences the speed of tissue recovery. Here, we studied the expression and function of peroxidasin (PXDN), a peroxidase that uses hydrogen peroxide to cross-link collagen IV during liver fibrosis progression and regression. METHODS Mouse models of liver fibrosis and cirrhosis patients were analyzed for the expression of PXDN in liver and serum. Pxdn-/- and Pxdn+/+ mice were either treated with carbon tetrachloride for 6 weeks to generate toxin-induced fibrosis or fed with a choline-deficient L-amino acid-defined high-fat diet for 16 weeks to create nonalcoholic fatty liver disease fibrosis. Liver histology, quantitative real-time polymerase chain reaction, collagen content, flowcytometry and immunostaining of immune cells, RNA-sequencing, and liver function tests were analyzed. In vivo imaging of liver reactive oxygen species (ROS) was performed using a redox-active iron complex, Fe-PyC3A. RESULTS In human and mouse cirrhotic tissue, PXDN is expressed by stellate cells and is secreted into fibrotic areas. In patients with nonalcoholic fatty liver disease, serum levels of PXDN increased significantly. In both mouse models of liver fibrosis, PXDN deficiency resulted in elevated monocyte and pro-fibrolysis macrophage recruitment into fibrotic bands and caused decreased accumulation of cross-linked collagens. In Pxdn-/- mice, collagen fibers were loosely organized, an atypical phenotype that is reversible upon macrophage depletion. Elevated ROS in Pxdn-/- livers was observed, which can result in activation of hypoxic signaling cascades and may affect signaling pathways involved in macrophage polarization such as TNF-a via NF-kB. Fibrosis resolution in Pxdn-/- mice was associated with significant decrease in collagen content and improved liver function. CONCLUSION PXDN deficiency is associated with increased ROS levels and a hypoxic liver microenvironment that can regulate recruitment and programming of pro-resolution macrophages. Our data implicate the importance of the liver microenvironment in macrophage programming during liver fibrosis and suggest a novel pathway that is involved in the resolution of scar tissue.
Collapse
Affiliation(s)
- Mozhdeh Sojoodi
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Derek J. Erstad
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Stephen C. Barrett
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shadi Salloum
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Shijia Zhu
- Liver Tumor Translational Research Program, Simmons 22 Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Tongqi Qian
- Liver Tumor Translational Research Program, Simmons 22 Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Selene Colon
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eric M. Gale
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i3), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Veronica Clavijo Jordan
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i3), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yongtao Wang
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shen Li
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bahar Ataeinia
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i3), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Michael Lanuti
- Division of Thoracic Surgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Lawrence Zukerberg
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i3), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yujin Hoshida
- Liver Tumor Translational Research Program, Simmons 22 Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Raymond T. Chung
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Gautam Bhave
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Georg M. Lauer
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Bryan C. Fuchs
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kenneth K. Tanabe
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts,Correspondence Address correspondence to: Kenneth K. Tanabe, Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114. tel: (617) 724-3868.
| |
Collapse
|
73
|
Koda S, Zhu XQ, Zheng KY, Yan C. Molecular Mechanisms of Clonorchis sinensis-Host Interactions and Implications for Vaccine Development. Front Cell Dev Biol 2022; 9:781768. [PMID: 35118069 PMCID: PMC8804234 DOI: 10.3389/fcell.2021.781768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Infections caused by Clonorchis sinensis remain a significant public health challenge for both humans and animals, causing pyogenic cholangitis, cholelithiasis, cholecystitis, biliary fibrosis, and even cholangiocarcinoma. However, the strategies used by the parasite and the immunological mechanisms used by the host have not yet been fully understood. With the advances in technologies and the accumulated knowledge of host-parasite interactions, many vaccine candidates against liver flukes have been investigated using different strategies. In this review, we explore and analyze in-depth the immunological mechanisms involved in the pathogenicity of C. sinensis. We highlight the different mechanisms by which the parasite interacts with its host to induce immune responses. All together, these data will allow us to have a better understanding of molecular mechansism of host-parasite interactions, which may shed lights on the development of an effective vaccine against C. sinensis.
Collapse
Affiliation(s)
- Stephane Koda
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, China
| | - Xing-Quan Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Kui-Yang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Kui-Yang Zheng, ; Chao Yan,
| | - Chao Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Kui-Yang Zheng, ; Chao Yan,
| |
Collapse
|
74
|
Papachristoforou E, Ramachandran P. Macrophages as key regulators of liver health and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 368:143-212. [PMID: 35636927 DOI: 10.1016/bs.ircmb.2022.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Macrophages are a heterogeneous population of innate immune cells and key cellular components of the liver. Hepatic macrophages consist of embryologically-derived resident Kupffer cells (KC), recruited monocyte-derived macrophages (MDM) and capsular macrophages. Both the diversity and plasticity of hepatic macrophage subsets explain their different functions in the maintenance of hepatic homeostasis and in injury processes in acute and chronic liver diseases. In this review, we assess the evidence for macrophage involvement in regulating both liver health and injury responses in liver diseases including acute liver injury (ALI), chronic liver disease (CLD) (including liver fibrosis) and hepatocellular carcinoma (HCC). In healthy livers, KC display critical functions such as phagocytosis, danger signal recognition, cytokine release, antigen processing and the ability to orchestrate immune responses and maintain immunological tolerance. However, in most liver diseases there is a striking hepatic MDM expansion, which orchestrate both disease progression and regression. Single-cell approaches have transformed our understanding of liver macrophage heterogeneity, dynamics, and functions in both human samples and preclinical models. We will further discuss the new insights provided by these approaches and how they are enabling high-fidelity work to specifically identify pathogenic macrophage subpopulations. Given the important role of macrophages in regulating injury responses in a broad range of settings, there is now a huge interest in developing new therapeutic strategies aimed at targeting macrophages. Therefore, we also review the current approaches being used to modulate macrophage function in liver diseases and discuss the therapeutic potential of targeting macrophage subpopulations as a novel treatment strategy for patients with liver disorders.
Collapse
Affiliation(s)
- Eleni Papachristoforou
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Prakash Ramachandran
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, United Kingdom.
| |
Collapse
|
75
|
Wan Y, Li X, Slevin E, Harrison K, Li T, Zhang Y, Klaunig JE, Wu C, Shetty AK, Dong XC, Meng F. Endothelial dysfunction in pathological processes of chronic liver disease during aging. FASEB J 2021; 36:e22125. [PMID: 34958687 PMCID: PMC8782255 DOI: 10.1096/fj.202101426r] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/03/2021] [Accepted: 12/13/2021] [Indexed: 12/19/2022]
Abstract
Aging is associated with gradual changes in liver structure and physiological/pathological functions in hepatic cells including hepatocytes, cholangiocytes, Kupffer cells, hepatic stellate cells (HSCs), and liver sinusoidal endothelial cells (LSECs). LSECs are specialized hepatic endothelial cells that regulate liver homeostasis. These cells actively impact the hepatic microenvironment as they have fenestrations and a thin morphology to allow substance exchange between circulating blood and the liver tissue. As aging occurs, LSECs have a reduction in both the number and size of fenestrations, which is referred to as pseudocapillarization. This along with the aging of the liver leads to increased oxidative stress, decreased availability of nitric oxide, decreased hepatic blood flow, and increased inflammatory cytokines in LSECs. Vascular aging can also lead to hepatic hypoxia, HSC activation, and liver fibrosis. In this review, we described the basic structure of LSECs, and the effect of LSECs on hepatic inflammation and fibrosis during aging process. We briefly summarized the changes of hepatic microcirculation during liver inflammation, the effect of aging on the clearance function of LSECs, the interactions between LSECs and immunity, hepatocytes or other hepatic nonparenchymal cells, and the therapeutic intervention of liver diseases by targeting LSECs and vascular system. Since LSECs play an important role in the development of liver fibrosis and the changes of LSEC phenotype occur in the early stage of liver fibrosis, the study of LSECs in the fibrotic liver is valuable for the detection of early liver fibrosis and the early intervention of fibrotic response.
Collapse
Affiliation(s)
- Ying Wan
- Department of Pathophysiology, School of Basic Medical Science, Southwest Medical University, Luzhou, China, China
| | - Xuedong Li
- Department of Pathophysiology, School of Basic Medical Science, Southwest Medical University, Luzhou, China, China
| | - Elise Slevin
- Indiana Center for Liver Research, Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kelly Harrison
- Department of Transplant Surgery, Baylor Scott & White Memorial Hospital, Temple, Texas, USA
| | - Tian Li
- Department of Pathophysiology, School of Basic Medical Science, Southwest Medical University, Luzhou, China, China
| | - Yudian Zhang
- Department of Pathophysiology, School of Basic Medical Science, Southwest Medical University, Luzhou, China, China
| | - James E Klaunig
- Laboratory of Investigative Toxicology and Pathology, Department of Environmental and Occupational Health, Indiana School of Public Health, Indiana University, Bloomington, Indiana, USA
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas, USA
| | - Ashok K Shetty
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M College of Medicine, College Station, Texas, USA
| | - X Charlie Dong
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Fanyin Meng
- Indiana Center for Liver Research, Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
76
|
Wang J, Hu W, Shen Z, Liu T, Dai W, Shen B, Li X, Wu J, Lu L, Li S, Cai X. Dissecting the single-cell transcriptomeunderlying chronic liver injury. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1364-1373. [PMID: 34900395 PMCID: PMC8626669 DOI: 10.1016/j.omtn.2021.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/17/2021] [Accepted: 11/03/2021] [Indexed: 12/17/2022]
Abstract
Chronic liver disease (CLD) is currently a major health problem worldwide, which is accompanied by chronic liver injury and lack of clinically effective treatment; however, systematic characterization of chronic liver injury procedures at single-cell resolution is lacking. In the present study, we established chronic liver injury mouse models and conducted single-cell RNA sequencing (scRNA-seq), including choline-deficient, ethionine-supplemented (CDE) and 3,5-diethoxycarbonyl 1,4-dihydrocollidinen (DDC) mouse models. We captured in total 16,389 high-quality cells and identified 12 main cell types in scRNA-seq data. Macrophages and endothelial cells are the largest cell populations in our dataset. Transcriptional trajectory analysis revealed different expression patterns of cells between CDE and DDC models and identified potential liver injury markers, such as Ets1, Gda, Itgam, and Sparc. Differential analysis identified 25 and 152 differentially expressed genes in CDE and DDC macrophages, respectively. In addition, 413 genes were detected to exclusively express in specific pseudotime states of macrophages. These genes were found to participate in immune-related biological processes. Further cell-cell communication analysis found extensive receding of cell-cell interactions between different cell types in the liver injury process, especially in the DDC model. Our study characterized the single-cell transcriptional landscape in the process of chronic liver injury, promoting the understanding of the underlying molecular mechanisms and providing candidate clinical strategy for effective intervention of chronic liver diseases.
Collapse
Affiliation(s)
- Junjun Wang
- Department of Gastroenterology, Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, Chin
| | - Wei Hu
- Department of Gastroenterology, Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Zhenyang Shen
- Department of Gastroenterology, Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, Chin
| | - Teng Liu
- Department of Gastroenterology, Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Weiming Dai
- Department of Gastroenterology, Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, Chin
| | - Bo Shen
- Department of Gastroenterology, Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, Chin
| | - Xiaoman Li
- Department of Gastroenterology, Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, Chin
| | - Jingni Wu
- Department of Gastroenterology, Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Lungen Lu
- Department of Gastroenterology, Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, Chin
| | - Shengli Li
- Department of Gastroenterology, Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Xiaobo Cai
- Department of Gastroenterology, Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, Chin
| |
Collapse
|
77
|
The Hepatic Sinusoid in Chronic Liver Disease: The Optimal Milieu for Cancer. Cancers (Basel) 2021; 13:cancers13225719. [PMID: 34830874 PMCID: PMC8616349 DOI: 10.3390/cancers13225719] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary During the development of chronic liver disease, the hepatic sinusoid undergoes major changes that further compromise the hepatic function, inducing persistent inflammation and the formation of scar tissue, together with alterations in liver hemodynamics. This diseased background may induce the formation and development of hepatocellular carcinoma (HCC), which is the most common form of primary liver cancer and a major cause of mortality. In this review, we describe the ways in which the dysregulation of hepatic sinusoidal cells—including liver sinusoidal cells, Kupffer cells, and hepatic stellate cells—may have an important role in the development of HCC. Our review summarizes all of the known sinusoidal processes in both health and disease, and possible treatments focusing on the dysregulation of the sinusoid; finally, we discuss how some of these alterations occurring during chronic injury are shared with the pathology of HCC and may contribute to its development. Abstract The liver sinusoids are a unique type of microvascular beds. The specialized phenotype of sinusoidal cells is essential for their communication, and for the function of all hepatic cell types, including hepatocytes. Liver sinusoidal endothelial cells (LSECs) conform the inner layer of the sinusoids, which is permeable due to the fenestrae across the cytoplasm; hepatic stellate cells (HSCs) surround LSECs, regulate the vascular tone, and synthetize the extracellular matrix, and Kupffer cells (KCs) are the liver-resident macrophages. Upon injury, the harmonic equilibrium in sinusoidal communication is disrupted, leading to phenotypic alterations that may affect the function of the whole liver if the damage persists. Understanding how the specialized sinusoidal cells work in coordination with each other in healthy livers and chronic liver disease is of the utmost importance for the discovery of new therapeutic targets and the design of novel pharmacological strategies. In this manuscript, we summarize the current knowledge on the role of sinusoidal cells and their communication both in health and chronic liver diseases, and their potential pharmacologic modulation. Finally, we discuss how alterations occurring during chronic injury may contribute to the development of hepatocellular carcinoma, which is usually developed in the background of chronic liver disease.
Collapse
|
78
|
Koda S, Zhang B, Zhou QY, Xu N, Li J, Liu JX, Liu M, Lv ZY, Wang JL, Shi Y, Gao S, Yu Q, Li XY, Xu YH, Chen JX, Tekengne BOT, Adzika GK, Tang RX, Sun H, Zheng KY, Yan C. β2-Adrenergic Receptor Enhances the Alternatively Activated Macrophages and Promotes Biliary Injuries Caused by Helminth Infection. Front Immunol 2021; 12:754208. [PMID: 34733286 PMCID: PMC8558246 DOI: 10.3389/fimmu.2021.754208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022] Open
Abstract
The autonomic nervous system has been studied for its involvement in the control of macrophages; however, the mechanisms underlying the interaction between the adrenergic receptors and alternatively activated macrophages (M2) remain obscure. Using FVB wild-type and beta 2 adrenergic receptors knockout, we found that β2-AR deficiency alleviates hepatobiliary damage in mice infected with C. sinensis. Moreover, β2-AR-deficient mice decrease the activation and infiltration of M2 macrophages and decrease the production of type 2 cytokines, which are associated with a significant decrease in liver fibrosis in infected mice. Our in vitro results on bone marrow-derived macrophages revealed that macrophages from Adrb2-/- mice significantly decrease M2 markers and the phosphorylation of ERK/mTORC1 induced by IL-4 compared to that observed in M2 macrophages from Adrb2+/+ . This study provides a better understanding of the mechanisms by which the β2-AR enhances type 2 immune response through the ERK/mTORC1 signaling pathway in macrophages and their role in liver fibrosis.
Collapse
MESH Headings
- Animals
- Autonomic Nervous System/physiopathology
- Bile Ducts/parasitology
- Bile Ducts/pathology
- Cells, Cultured
- Clonorchiasis/complications
- Clonorchiasis/immunology
- Clonorchiasis/physiopathology
- Cytokines/blood
- Humans
- Liver Cirrhosis/etiology
- Liver Cirrhosis/immunology
- Liver Cirrhosis/parasitology
- Liver Cirrhosis/pathology
- Liver Cirrhosis, Biliary/etiology
- Liver Cirrhosis, Biliary/immunology
- Liver Cirrhosis, Biliary/parasitology
- Liver Cirrhosis, Biliary/pathology
- MAP Kinase Signaling System
- Macrophage Activation
- Macrophages/classification
- Macrophages/immunology
- Male
- Mechanistic Target of Rapamycin Complex 1/physiology
- Mice, Knockout
- Neuroimmunomodulation/physiology
- Receptors, Adrenergic, beta-2/deficiency
- Receptors, Adrenergic, beta-2/physiology
- Specific Pathogen-Free Organisms
- Mice
Collapse
Affiliation(s)
- Stephane Koda
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Beibei Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China
| | - Qian-Yang Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
- Department of Dermatology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Na Xu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Jing Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Ji-Xin Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Man Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Zi-Yan Lv
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Jian-Ling Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Yanbiao Shi
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Sijia Gao
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Qian Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Xiang-Yang Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China
| | - Yin-Hai Xu
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jia-Xu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, World Health Organization (WHO) Collaborating Center of Malaria, Schistosomiasis, and Filariasis, Shanghai, China
| | | | | | - Ren-Xian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China
| | - Hong Sun
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Kui-Yang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China
| | - Chao Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
79
|
Kong M, Dong W, Zhu Y, Fan Z, Miao X, Guo Y, Li C, Duan Y, Lu Y, Li Z, Xu Y. Redox-sensitive activation of CCL7 by BRG1 in hepatocytes during liver injury. Redox Biol 2021; 46:102079. [PMID: 34454163 PMCID: PMC8406035 DOI: 10.1016/j.redox.2021.102079] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/04/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
Liver injuries induced by various stimuli share in common an acute inflammatory response, in which circulating macrophages home to the liver parenchyma to participate in the regulation of repair, regeneration, and fibrosis. In the present study we investigated the role of hepatocyte-derived C-C motif ligand 7 (CCL7) in macrophage migration during liver injury focusing on its transcriptional regulation. We report that CCL7 expression was up-regulated in the liver by lipopolysaccharide (LPS) injection (acute liver injury) or methionine-and-choline-deficient (MCD) diet feeding (chronic liver injury) paralleling increased macrophage infiltration. CCL7 expression was also inducible in hepatocytes, but not in hepatic stellate cells or in Kupffer cells, by LPS treatment or exposure to palmitate in vitro. Hepatocyte-specific deletion of Brahma-related gene 1 (BRG1), a chromatin remodeling protein, resulted in a concomitant loss of CCL7 induction and macrophage infiltration in the murine livers. Of interest, BRG1-induced CCL7 transcription and macrophage migration was completely blocked by the antioxidant N-acetylcystine. Further analyses revealed that BRG1 interacted with activator protein 1 (AP-1) to regulate CCL7 transcription in hepatocytes in a redox-sensitive manner mediated in part by casein kinase 2 (CK2)-catalyzed phosphorylation of BRG1. Importantly, a positive correlation between BRG1/CCL7 expression and macrophage infiltration was identified in human liver biopsy specimens. In conclusion, our data unveil a novel role for BRG1 as a redox-sensitive activator of CCL7 transcription.
Collapse
Affiliation(s)
- Ming Kong
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Wenhui Dong
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yuwen Zhu
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Zhiwen Fan
- Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Xiulian Miao
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, China
| | - Yan Guo
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, China
| | - Chengping Li
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, China
| | - Yunfei Duan
- Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, China
| | - Yunjie Lu
- Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, China.
| | - Zilong Li
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China.
| | - Yong Xu
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; College of Life Sciences and Institute of Biomedical Research, Liaocheng University, China.
| |
Collapse
|
80
|
Abaricia JO, Farzad N, Heath TJ, Simmons J, Morandini L, Olivares-Navarrete R. Control of innate immune response by biomaterial surface topography, energy, and stiffness. Acta Biomater 2021; 133:58-73. [PMID: 33882355 DOI: 10.1016/j.actbio.2021.04.021] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/27/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022]
Abstract
As the focus of implantable biomaterials has shifted from bioinert implants to bioactive designs, recent research has highlighted the complex interactions between cell physiologic systems and material properties, particularly physical cues. From the cells known to interact with implanted biomaterials, the response of the immune system has been a critical target of study recently. Here, we review studies characterizing the response of innate immune cells to various material cues, particularly of those at the surface of implanted materials.The innate immune system consists of cell types with various roles in inflammation. Neutrophils and macrophages serve both phagocytic and signaling roles, especially early in the inflammatory phase of biomaterial implantation. These cell types ultimately dictate the outcome of implants as chronic inflammation, fibrosis, or integration. Other cell types like dendritic cells, mast cells, natural killer cells, and innate lymphoid cells may also serve an immunomodulatory role in the biomaterial context. This review highlights recent advances in our understanding of the role of innate immunity in the response to implantable biomaterials as well as key mechanobiological findings in innate immune cells underpinning these advances. STATEMENT OF SIGNIFICANCE: This review highlights recent advances in the understanding of the role of innate immunity in the response to implantable biomaterials, especially in neutrophils and macrophages, as well as key mechanobiological findings in innate immune cells underpinning these advances. Here we discuss how physicochemical properties of biomaterials control innate immune cell behavior.
Collapse
|
81
|
Junior, Lai YS, Nguyen HT, Salmanida FP, Chang KT. MERTK +/hi M2c Macrophages Induced by Baicalin Alleviate Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2021; 22:10604. [PMID: 34638941 PMCID: PMC8508959 DOI: 10.3390/ijms221910604] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/19/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide. An accumulation of fat, followed by inflammation, is the major cause of NAFLD progression. During inflammation, macrophages are the most abundant immune cells recruited to the site of injury. Macrophages are classified into "proinflammatory" M1 macrophages, and "anti-inflammatory" M2 macrophages. In NAFLD, M1 macrophages are the most prominent macrophages that lead to an excessive inflammatory response. Previously, we found that baicalin could polarize macrophages into anti-inflammatory M2c subtype macrophages with an increased level of MERTK expression. Several studies have also shown a strong correlation between MERTK expression and cholesterol efflux, efferocytosis, as well as phagocytosis capability. Therefore, in this study, we aim to elucidate the potential and efficacy of mononuclear-cell (MNC)-derived MERTK+/hi M2c macrophages induced by baicalin as a cell-based therapy for NAFLD treatment. In our results, we have demonstrated that a MERTK+/hi M2c macrophage injection to NAFLD mice contributes to an increased level of serum HDL secretion in the liver, a decline in the circulating CD4+CD25- and CD8+CD25- T cells and lowers the total NAFLD pathological score by lessening the inflammation, necrosis, and fibrosis. In the liver, profibrotic COL1A1 and FN, proinflammation TNFα, as well as the regulator of lipid metabolism PPARɣ expression, were also downregulated after injection. In parallel, the transcriptomic profiles of the injected MERTK+/hi M2c macrophages showed that the various genes directly or indirectly involved in NAFLD progression (e.g., SERPINE1, FADS2) were also suppressed. Downregulation of cytokines and inflammation-associated genes, such as CCR5, may promote a pro-resolving milieu in the NAFLD liver. Altogether, cell-based therapy using MERTK+/hi M2c macrophages is promising, as it ameliorates NAFLD in mice.
Collapse
Affiliation(s)
- Junior
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (J.); (H.T.N.); (F.P.S.)
| | - Yin-Siew Lai
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
| | - Huyen Thi Nguyen
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (J.); (H.T.N.); (F.P.S.)
| | - Farrah P. Salmanida
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (J.); (H.T.N.); (F.P.S.)
| | - Ko-Tung Chang
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (J.); (H.T.N.); (F.P.S.)
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
- Flow Cytometry Center, Precision Instruments Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
82
|
Collettini F, Brangsch J, Reimann C, Chapiro J, Savic LJ, Buchholz R, Keller S, Hamm B, Goldberg SN, Makowski MR. Hepatic Radiofrequency Ablation: Monitoring of Ablation-Induced Macrophage Recruitment in the Periablational Rim Using SPION-Enhanced Macrophage-Specific Magnetic Resonance Imaging. Invest Radiol 2021; 56:591-598. [PMID: 33787536 DOI: 10.1097/rli.0000000000000777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Macrophages accumulating in the periablational rim play a pivotal role in initiating and sustaining the perifocal inflammatory reaction, which has been shown to be at least 1 of the mechanisms responsible for the systemic pro-oncogenic effects of focal hepatic radiofrequency ablation (RFA). Herein, we tested the hypothesis to use superparamagnetic iron oxide nanoparticle (SPION)-enhanced magnetic resonance imaging (MRI) for noninvasive quantification of iron-loaded macrophages in the periablational rim of VX2 tumor-bearing rabbits. MATERIALS AND METHODS Twelve VX2 tumor-bearing rabbits underwent MRI immediately after and up to 3 weeks after focal hepatic RFA. For noninvasive quantification of macrophage accumulation in the periablational rim, animals were scanned before and 24 hours after SPION injection. T2*-weighted images were analyzed and correlated with histopathological and immunohistochemical findings. Furthermore, correlations with quantitative measurements (ICP-MS [inductively coupled plasma-mass spectrometry] and LA-ICP-MS [laser ablation-ICP-MS]) were performed. RESULTS SPION-enhanced T2*-weighted MRI scans displayed a progressive increase in the areas of signal intensity (SI) loss within the periablational rim peaking 3 weeks after RFA. Accordingly, quantitative analysis of SI changes demonstrated a significant decline in the relative SI ratio reflecting a growing accumulation of iron-loaded macrophages in the rim. Histological analyses confirmed a progressive accumulation of iron-loaded macrophages in the periablational rim. The ICP-MS and LA-ICP-MS confirmed a progressive increase of iron concentration in the periablational rim. CONCLUSIONS SPION-enhanced MRI enables noninvasive monitoring and quantification of ablation-induced macrophage recruitment in the periablational rim. Given the close interplay between ablation-induced perifocal inflammation and potential unwanted tumorigenic effects of RFA, SPION-enhanced MRI may serve as a valuable tool to guide and modulate adjuvant therapies after hepatic RFA.
Collapse
Affiliation(s)
| | | | | | - Julius Chapiro
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT
| | - Lynn Jeanette Savic
- From the Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
| | - Rebecca Buchholz
- Institute of Inorganic and Analytical Chemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Sarah Keller
- From the Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
| | - Bernd Hamm
- From the Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
| | - S Nahum Goldberg
- Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | | |
Collapse
|
83
|
Ait Ahmed Y, Fu Y, Rodrigues RM, He Y, Guan Y, Guillot A, Ren R, Feng D, Hidalgo J, Ju C, Lafdil F, Gao B. Kupffer cell restoration after partial hepatectomy is mainly driven by local cell proliferation in IL-6-dependent autocrine and paracrine manners. Cell Mol Immunol 2021; 18:2165-2176. [PMID: 34282300 PMCID: PMC8429713 DOI: 10.1038/s41423-021-00731-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Kupffer cells (KCs), which are liver-resident macrophages, originate from the fetal yolk sac and represent one of the largest macrophage populations in the body. However, the current data on the origin of the cells that restore macrophages during liver injury and regeneration remain controversial. Here, we address the question of whether liver macrophage restoration results from circulating monocyte infiltration or local KC proliferation in regenerating livers after partial hepatectomy (PHx) and uncover the underlying mechanisms. By using several strains of genetically modified mice and performing immunohistochemical analyses, we demonstrated that local KC proliferation mainly contributed to the restoration of liver macrophages after PHx. Peak KC proliferation was impaired in Il6-knockout (KO) mice and restored after the administration of IL-6 protein, whereas KC proliferation was not affected in Il4-KO or Csf2-KO mice. The source of IL-6 was identified using hepatocyte- and myeloid-specific Il6-KO mice and the results revealed that both hepatocytes and myeloid cells contribute to IL-6 production after PHx. Moreover, peak KC proliferation was also impaired in myeloid-specific Il6 receptor-KO mice after PHx, suggesting that IL-6 signaling directly promotes KC proliferation. Studies using several inhibitors to block the IL-6 signaling pathway revealed that sirtuin 1 (SIRT1) contributed to IL-6-mediated KC proliferation in vitro. Genetic deletion of the Sirt1 gene in myeloid cells, including KCs, impaired KC proliferation after PHx. In conclusion, our data suggest that KC repopulation after PHx is mainly driven by local KC proliferation, which is dependent on IL-6 and SIRT1 activation in KCs.
Collapse
Affiliation(s)
- Yeni Ait Ahmed
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
- Université Paris-Est-Créteil, Créteil, France
| | - Yaojie Fu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Robim M Rodrigues
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Yukun Guan
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Adrien Guillot
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Ruixue Ren
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Juan Hidalgo
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cynthia Ju
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fouad Lafdil
- Université Paris-Est-Créteil, Créteil, France.
- INSERM U955, Institut Mondor de Recherche Biomédicale, Créteil, France.
- Institut Universitaire de France (IUF), Paris, France.
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
84
|
Vacani-Martins N, Meuser-Batista M, dos Santos CDLP, Hasslocher-Moreno AM, Henriques-Pons A. The Liver and the Hepatic Immune Response in Trypanosoma cruzi Infection, a Historical and Updated View. Pathogens 2021; 10:pathogens10091074. [PMID: 34578107 PMCID: PMC8465576 DOI: 10.3390/pathogens10091074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Chagas disease was described more than a century ago and, despite great efforts to understand the underlying mechanisms that lead to cardiac and digestive manifestations in chronic patients, much remains to be clarified. The disease is found beyond Latin America, including Japan, the USA, France, Spain, and Australia, and is caused by the protozoan Trypanosoma cruzi. Dr. Carlos Chagas described Chagas disease in 1909 in Brazil, and hepatomegaly was among the clinical signs observed. Currently, hepatomegaly is cited in most papers published which either study acutely infected patients or experimental models, and we know that the parasite can infect multiple cell types in the liver, especially Kupffer cells and dendritic cells. Moreover, liver damage is more pronounced in cases of oral infection, which is mainly found in the Amazon region. However, the importance of liver involvement, including the hepatic immune response, in disease progression does not receive much attention. In this review, we present the very first paper published approaching the liver's participation in the infection, as well as subsequent papers published in the last century, up to and including our recently published results. We propose that, after infection, activated peripheral T lymphocytes reach the liver and induce a shift to a pro-inflammatory ambient environment. Thus, there is an immunological integration and cooperation between peripheral and hepatic immunity, contributing to disease control.
Collapse
Affiliation(s)
- Natalia Vacani-Martins
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-361, Brazil; (N.V.-M.); (C.d.L.P.d.S.)
| | - Marcelo Meuser-Batista
- Depto de Anatomia Patológica e Citopatologia, Instituto Fernandes Figueira, Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil;
| | - Carina de Lima Pereira dos Santos
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-361, Brazil; (N.V.-M.); (C.d.L.P.d.S.)
| | | | - Andrea Henriques-Pons
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-361, Brazil; (N.V.-M.); (C.d.L.P.d.S.)
- Correspondence:
| |
Collapse
|
85
|
Wang Q, Zhu X, Li Z, Feng M, Liu X. ATF6 promotes liver fibrogenesis by regulating macrophage-derived interleukin-1α expression. Cell Immunol 2021; 367:104401. [PMID: 34229282 DOI: 10.1016/j.cellimm.2021.104401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 10/21/2022]
Abstract
Macrophages contribute to liver fibrogenesis by the production of a large variety of cytokines. ATF6 is associated with the activation of macrophages. The present study aimed to investigate the role of ATF6 in the expression of macrophage-derived cytokines and liver fibrogenesis after acute liver injury. Following thioacetamide (TAA)-induced acute liver injury, the characteristics of the occurrence of liver fibrosis and the secretion of cytokines by macrophages were first described. Then, the role of various cytokines secreted by macrophages in activating hepatic stellate cells (HSCs) was tested in vitro. Finally, endoplasmic reticulum stress (ER-stress) signals in macrophages were detected following liver injury. siRNA was used to interfere with the expression of ATF6 in macrophages to verify the influence of ATF6 on cytokine expression and liver fibrogenesis after liver injury. A single intraperitoneal injection of TAA induced acute liver injury. The depletion of macrophages attenuated acute liver injury, while it inhibited liver fibrogenesis. During acute liver injury, macrophages secrete a variety of cytokines. Most of these cytokines promoted the activation of HSCs, but the effect of IL-1α was most significant. In the early stage of acute liver injury, ER-stress signals in macrophages were activated. Interference of ATF6 expression suppressed the secretion of cytokines by macrophages and attenuated liver fibrogenesis. Overall, in the early stage of acute liver injury, ATF6 signals promoted the expression of macrophage-derived cytokines to participate in liver fibrogenesis, and IL-1α exhibited the most significant role in promoting the activation of HSCs and liver fibrogenesis.
Collapse
Affiliation(s)
- Quanrongzi Wang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinya Zhu
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Zijian Li
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Min Feng
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China.
| | - Xisheng Liu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
86
|
Poulsen KL, Fan X, Kibler CD, Huang E, Wu X, McMullen MR, Leng L, Bucala R, Ventura-Cots M, Argemi J, Bataller R, Nagy LE. Role of MIF in coordinated expression of hepatic chemokines in patients with alcohol-associated hepatitis. JCI Insight 2021; 6:141420. [PMID: 33945507 PMCID: PMC8262327 DOI: 10.1172/jci.insight.141420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 04/28/2021] [Indexed: 12/20/2022] Open
Abstract
The chemokine system of ligands and receptors is implicated in the progression of alcohol-associated hepatitis (AH). Finding upstream regulators could lead to novel therapies. This study involved coordinated expression of chemokines in livers of healthy controls (HC) and patients with AH in 2 distinct cohorts of patients with various chronic liver diseases. Studies in cultured hepatocytes and in tissue-specific KO were used for mechanistic insight into a potential upstream regulator of chemokine expression in AH. Selected C-X-C chemokine members of the IL-8 chemokine family and C-C chemokine CCL20 were highly associated with AH compared with HC but not in patients with liver diseases of other etiologies (nonalcoholic fatty liver disease [NAFLD] and hepatitis C virus [HCV]). Our previous studies implicate macrophage migration inhibitory factor (MIF) as a pleiotropic cytokine/chemokine with the potential to coordinately regulate chemokine expression in AH. LPS-stimulated expression of multiple chemokines in cultured hepatocytes was dependent on MIF. Gao-binge ethanol feeding to mice induced a similar coordinated chemokine expression in livers of WT mice; this was prevented in hepatocyte-specific Mif-KO (MifΔHep) mice. This study demonstrates that patients with AH exhibit a specific, coordinately expressed chemokine signature and that hepatocyte-derived MIF might drive this inflammatory response.
Collapse
Affiliation(s)
- Kyle L Poulsen
- Center for Liver Disease Research, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Xiude Fan
- Center for Liver Disease Research, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Christopher D Kibler
- Center for Liver Disease Research, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Emily Huang
- Center for Liver Disease Research, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Xiaoqin Wu
- Center for Liver Disease Research, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Megan R McMullen
- Center for Liver Disease Research, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Lin Leng
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Meritxell Ventura-Cots
- Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Pittsburgh Liver Research Center, Pittsburgh, Pennsylvania, USA
| | - Josepmaria Argemi
- Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Pittsburgh Liver Research Center, Pittsburgh, Pennsylvania, USA
| | - Ramon Bataller
- Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Pittsburgh Liver Research Center, Pittsburgh, Pennsylvania, USA
| | - Laura E Nagy
- Center for Liver Disease Research, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA.,Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
87
|
Zimmermann A, Hänsel R, Gemünden K, Kegel-Hübner V, Babel J, Bläker H, Matz-Soja M, Seehofer D, Damm G. In Vivo and In Vitro Characterization of Primary Human Liver Macrophages and Their Inflammatory State. Biomedicines 2021; 9:biomedicines9040406. [PMID: 33918803 PMCID: PMC8070551 DOI: 10.3390/biomedicines9040406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 11/16/2022] Open
Abstract
Liver macrophages (LMs) play a central role in acute and chronic liver pathologies. Investigation of these processes in humans as well as the development of diagnostic tools and new therapeutic strategies require in vitro models that closely resemble the in vivo situation. In our study, we sought to gain further insight into the role of LMs in different liver pathologies and into their characteristics after isolation from liver tissue. For this purpose, LMs were characterized in human liver tissue sections using immunohistochemistry and bioinformatic image analysis. Isolated cells were characterized in suspension using FACS analyses and in culture using immunofluorescence staining and laser scanning microscopy as well as functional assays. The majority of our investigated liver tissues were characterized by anti-inflammatory LMs which showed a homogeneous distribution and increased cell numbers in correlation with chronic liver injuries. In contrast, pro-inflammatory LMs appeared as temporary and locally restricted reactions. Detailed characterization of isolated macrophages revealed a complex disease dependent pattern of LMs consisting of pro- and anti-inflammatory macrophages of different origins, regulatory macrophages and monocytes. Our study showed that in most cases the macrophage pattern can be transferred in adherent cultures. The observed exceptions were restricted to LMs with pro-inflammatory characteristics.
Collapse
Affiliation(s)
- Andrea Zimmermann
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, 04103 Leipzig, Germany; (A.Z.); (R.H.); (K.G.); (V.K.-H.); (J.B.); (D.S.)
- Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany
| | - René Hänsel
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, 04103 Leipzig, Germany; (A.Z.); (R.H.); (K.G.); (V.K.-H.); (J.B.); (D.S.)
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), Leipzig University, 04107 Leipzig, Germany
| | - Kilian Gemünden
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, 04103 Leipzig, Germany; (A.Z.); (R.H.); (K.G.); (V.K.-H.); (J.B.); (D.S.)
- Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany
| | - Victoria Kegel-Hübner
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, 04103 Leipzig, Germany; (A.Z.); (R.H.); (K.G.); (V.K.-H.); (J.B.); (D.S.)
| | - Jonas Babel
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, 04103 Leipzig, Germany; (A.Z.); (R.H.); (K.G.); (V.K.-H.); (J.B.); (D.S.)
| | - Hendrik Bläker
- Institute for Pathology, University Hospital, Leipzig University, 04103 Leipzig, Germany;
| | - Madlen Matz-Soja
- Rudolf-Schönheimer-Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany;
- Department for Hepatology, University Hospital, Leipzig University, 04103 Leipzig, Germany
| | - Daniel Seehofer
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, 04103 Leipzig, Germany; (A.Z.); (R.H.); (K.G.); (V.K.-H.); (J.B.); (D.S.)
- Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, 04103 Leipzig, Germany; (A.Z.); (R.H.); (K.G.); (V.K.-H.); (J.B.); (D.S.)
- Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany
- Correspondence: ; Tel.: +49-341-9739656
| |
Collapse
|
88
|
Dai Q, Jiang W, Liu H, Qing X, Wang G, Huang F, Yang Z, Wang C, Gu E, Zhao H, Zhang J, Liu X. Kupffer cell-targeting strategy for the protection of hepatic ischemia/reperfusion injury. NANOTECHNOLOGY 2021; 32:265101. [PMID: 33472187 DOI: 10.1088/1361-6528/abde02] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
The aim of this study is to evaluate the effect of rare earth upconversion nanoparticles (UCNs) on hepatic ischemia reperfusion injury (IRI) and explore its possible mechanism. Hepatic IRI seriously affects the prognosis of patients undergoing liver surgery. Liver-resident Kupffer cells have been reported to promote IRI. Nanomedicines are known to be effective in the treatment of liver diseases, however, Kupffer cell-targeting nanomedicines for the treatment of IRI are yet to be developed. As potential bioimaging nanomaterials, UCNs have been found to specifically deplete Kupffer cells, but the underlying mechanism is unknown. In this study, we found that UCNs specifically depleted Kupffer cells by pyroptosis, while the co-administration of the caspase-1 inhibitor VX-765 rescued the UCN-induced Kupffer cell pyroptosis in mice. Furthermore, the pre-depletion of Kupffer cells by the UCNs significantly suppressed the release of inflammatory cytokines and effectively improved hepatic IRI. The rescue of the pyroptosis of the Kupffer cells by VX-765 abrogated the protective effect of UCNs on the liver. These results suggest that UCNs are highly promising for the development of Kupffer cell-targeting nanomedicines for intraoperative liver protection.
Collapse
Affiliation(s)
- Qingqing Dai
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, People's Republic of China
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, People's Republic of China
| | - Wei Jiang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, People's Republic of China
| | - Hu Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, People's Republic of China
| | - Xin Qing
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, People's Republic of China
| | - Guobin Wang
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, People's Republic of China
| | - Fan Huang
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, People's Republic of China
| | - Zhilai Yang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, People's Republic of China
| | - Chunhui Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, People's Republic of China
| | - Erwei Gu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, People's Republic of China
| | - Hongchuan Zhao
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, People's Republic of China
| | - Jiqian Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, People's Republic of China
| | - Xuesheng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, People's Republic of China
| |
Collapse
|
89
|
Verboven E, Moya IM, Sansores-Garcia L, Xie J, Hillen H, Kowalczyk W, Vella G, Verhulst S, Castaldo SA, Algueró-Nadal A, Romanelli L, Mercader-Celma C, Souza NA, Soheily S, Van Huffel L, Van Brussel T, Lambrechts D, Roskams T, Lemaigre FP, Bergers G, van Grunsven LA, Halder G. Regeneration Defects in Yap and Taz Mutant Mouse Livers Are Caused by Bile Duct Disruption and Cholestasis. Gastroenterology 2021; 160:847-862. [PMID: 33127392 DOI: 10.1053/j.gastro.2020.10.035] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS The Hippo pathway and its downstream effectors YAP and TAZ (YAP/TAZ) are heralded as important regulators of organ growth and regeneration. However, different studies provided contradictory conclusions about their role during regeneration of different organs, ranging from promoting proliferation to inhibiting it. Here we resolve the function of YAP/TAZ during regeneration of the liver, where Hippo's role in growth control has been studied most intensely. METHODS We evaluated liver regeneration after carbon tetrachloride toxic liver injury in mice with conditional deletion of Yap/Taz in hepatocytes and/or biliary epithelial cells, and measured the behavior of different cell types during regeneration by histology, RNA sequencing, and flow cytometry. RESULTS We found that YAP/TAZ were activated in hepatocytes in response to carbon tetrachloride toxic injury. However, their targeted deletion in adult hepatocytes did not noticeably impair liver regeneration. In contrast, Yap/Taz deletion in adult bile ducts caused severe defects and delay in liver regeneration. Mechanistically, we showed that Yap/Taz mutant bile ducts degenerated, causing cholestasis, which stalled the recruitment of phagocytic macrophages and the removal of cellular corpses from injury sites. Elevated bile acids activated pregnane X receptor, which was sufficient to recapitulate the phenotype observed in mutant mice. CONCLUSIONS Our data show that YAP/TAZ are practically dispensable in hepatocytes for liver development and regeneration. Rather, YAP/TAZ play an indirect role in liver regeneration by preserving bile duct integrity and securing immune cell recruitment and function.
Collapse
Affiliation(s)
- Elisabeth Verboven
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven, Center for Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Iván M Moya
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven, Center for Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium; Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Americas, Quito, Ecuador
| | - Leticia Sansores-Garcia
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven, Center for Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jun Xie
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven, Center for Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Hanne Hillen
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven, Center for Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Weronika Kowalczyk
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven, Center for Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Gerlanda Vella
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven, Center for Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Stefaan Verhulst
- Liver Cell Biology Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussel, Belgium
| | - Stéphanie A Castaldo
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven, Center for Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Ana Algueró-Nadal
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven, Center for Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Lucia Romanelli
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven, Center for Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Cristina Mercader-Celma
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven, Center for Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Natália A Souza
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven, Center for Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Soheil Soheily
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven, Center for Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Leen Van Huffel
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven, Center for Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Thomas Van Brussel
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven, Center for Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Diether Lambrechts
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven, Center for Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Tania Roskams
- Department of Imaging and Pathology, Translational Cell and Tissue Research, Katholieke Universiteit Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Frédéric P Lemaigre
- Liver and Pancreas Development Unit, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Gabrielle Bergers
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven, Center for Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Leo A van Grunsven
- Liver Cell Biology Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussel, Belgium
| | - Georg Halder
- Vlaams Instituut voor Biotechnologie-Katholieke Universiteit Leuven, Center for Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium.
| |
Collapse
|
90
|
Wu X, Hollingshead N, Roberto J, Knupp A, Kenerson H, Chen A, Strickland I, Horton H, Yeung R, Soysa R, Crispe IN. Human Liver Macrophage Subsets Defined by CD32. Front Immunol 2020; 11:2108. [PMID: 33101269 PMCID: PMC7546764 DOI: 10.3389/fimmu.2020.02108] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/04/2020] [Indexed: 02/02/2023] Open
Abstract
Human liver myeloid cells are imperfectly defined, but it is broadly agreed that cells of stellate appearance in situ, expressing the markers CD11b and CD68, are the liver's resident macrophages, classically termed Kupffer cells. Recent investigations using single cell RNA sequencing and unsupervised clustering algorithms suggest there are two populations of cells with the characteristics of tissue macrophages in human liver. We therefore analyzed dissociated human liver tissue using the markers CD11b and CD68 to define macrophage-like cells and found within this population two subsets that differ in their expression of multiple surface markers. These subsets were FACS-sorted based on CD32 expression, and gene expression analysis identified them with human liver myeloid cell subsets that were previously defined by two independent single cell RNA sequencing studies. Using qRT-PCR we found that the two subsets differed in the expression of genes associated with T cell activation and immunosuppression, suggesting distinct roles in T cell tolerance. In addition, one subset expressed two markers, CD1C and CD11c, more often seen on classical dendritic cells. Criteria used to distinguish macrophages from dendritic cells in other tissues may need to be revised in the human liver.
Collapse
Affiliation(s)
- Xia Wu
- Departments of Pathology, University of Washington Medical Center, Seattle, WA, United States
| | - Nicole Hollingshead
- Departments of Pathology, University of Washington Medical Center, Seattle, WA, United States
| | - Jessica Roberto
- Departments of Pathology, University of Washington Medical Center, Seattle, WA, United States
| | - Allison Knupp
- Departments of Pathology, University of Washington Medical Center, Seattle, WA, United States
| | - Heidi Kenerson
- Departments of Surgery, University of Washington Medical Center, Seattle, WA, United States
| | - Antony Chen
- Janssen Research and Development, Beerse, Belgium
| | | | - Helen Horton
- Janssen Research and Development, Beerse, Belgium
| | - Raymond Yeung
- Departments of Surgery, University of Washington Medical Center, Seattle, WA, United States
| | - Radika Soysa
- Departments of Pathology, University of Washington Medical Center, Seattle, WA, United States
| | - Ian N. Crispe
- Departments of Pathology, University of Washington Medical Center, Seattle, WA, United States,*Correspondence: Ian N. Crispe
| |
Collapse
|
91
|
Dai S, Liu F, Qin Z, Zhang J, Chen J, Ding WX, Feng D, Ji Y, Qin X. Kupffer cells promote T-cell hepatitis by producing CXCL10 and limiting liver sinusoidal endothelial cell permeability. Am J Cancer Res 2020; 10:7163-7177. [PMID: 32641985 PMCID: PMC7330839 DOI: 10.7150/thno.44960] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: Kupffer cells (KCs) play a crucial role in liver immune homeostasis through interacting with other immune cells and liver sinusoidal endothelial cells (LSECs). However, how KCs exactly interact with these cells for maintaining the homeostasis still require the further investigation. CXCL10 is a chemokine that has been implicated in chemoattraction of monocytes, T cells, NK cells, and dendritic cells, and promotion of T cell adhesion to endothelial cells. Although CXCL10 is also known to participate in the pathogenesis of hepatic inflammation, the degree to which it is functionally involved in the crosstalk between immune cells and regulation of immune response is still unclear. Methods: To dynamically investigate the function of KCs, we used our recently developed rapid cell ablation model, intermedilysin (ILY)/human CD59 (hCD59)-mediated cell ablation tool, to selectively ablate KC pool under normal condition or concanavalin A (Con A)- induced hepatitis. At certain time points after KCs ablation, we performed flow cytometry to monitor the amount of hepatic infiltrating immune cells. mRNA array was used to detect the change of hepatic cytokines and chemokines levels. Cytokines and chemokines in the serum were further measured by LEGENDplexTM mouse proinflammatory chemokine panel and inflammation panel. Evans blue staining and transmission electron microscopy were used to investigate the interaction between KCs and LSECs in steady condition. CXCL10 neutralizing antibody and CXCL10 deficient mouse were used to study the role of CXCL10 in immune cell migration and pathogenesis of Con A-induced hepatitis. Results: At steady state, elimination of KCs results in a reduction of hepatic infiltrating monocytes, T, B, and NK cells and a list of cytokines and chemokines at transcriptional level. In the meantime, the depletion of KCs resulted in increased sinusoidal vascular permeability. In the pathological condition, the KCs elimination rescues Con A-induced acute hepatitis through suppressing proinflammatory immune responses by down-regulation of hepatitis-associated cytokines/chemokines in serum such as CXCL10, and recruitment of infiltrating immune cells (monocytes, T, B, and NK cells). We further documented that deficiency or blockade of CXCL10 attenuated the development of Con A-induced hepatitis associated with reduction of the infiltrating monocytes, especially inflammatory Ly6Chi monocytes. Conclusions: This study supports the notion that KCs actively interact with immune cells and LSECs for maintaining immune response and liver homeostasis. Our data indicate that the interplay between KCs and infiltrated monocytes via CXCL10 contribute to Con A-induced hepatitis.
Collapse
|