51
|
Anurag Anand A, Amod A, Anwar S, Sahoo AK, Sethi G, Samanta SK. A comprehensive guide on screening and selection of a suitable AMP against biofilm-forming bacteria. Crit Rev Microbiol 2024; 50:859-878. [PMID: 38102871 DOI: 10.1080/1040841x.2023.2293019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Lately, antimicrobial resistance (AMR) is increasing at an exponential rate making it important to search alternatives to antibiotics in order to combat multi-drug resistant (MDR) bacterial infections. Out of the several antibacterial and antibiofilm strategies being tested, antimicrobial peptides (AMPs) have shown to give better hopes in terms of a long-lasting solution to the problem. To select a desired AMP, it is important to make right use of available tools and databases that aid in identification, classification, and analysis of the physiochemical properties of AMPs. To identify the targets of these AMPs, it becomes crucial to understand their mode-of-action. AMPs can also be used in combination with other antibacterial and antibiofilm agents so as to achieve enhanced efficacy against bacteria and their biofilms. Due to concerns regarding toxicity, stability, and bioavailability, strategizing drug formulation at an early-stage becomes crucial. Although there are few concerns regarding development of bacterial resistance to AMPs, the evolution of resistance to AMPs occurs extremely slowly. This comprehensive review gives a deep insight into the selection of the right AMP, deciding the right target and combination strategy along with the type of formulation needed, and the possible resistance that bacteria can develop to these AMPs.
Collapse
Affiliation(s)
- Ananya Anurag Anand
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India
| | - Ayush Amod
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India
| | - Sarfraz Anwar
- Department of Bioinformatics, University of Allahabad, Prayagraj, India
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sintu Kumar Samanta
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India
| |
Collapse
|
52
|
Jian T, Wang M, Hettige J, Li Y, Wang L, Gao R, Yang W, Zheng R, Zhong S, Baer MD, Noy A, De Yoreo JJ, Cai J, Chen CL. Self-Assembling and Pore-Forming Peptoids as Antimicrobial Biomaterials. ACS NANO 2024; 18:23077-23089. [PMID: 39146502 DOI: 10.1021/acsnano.4c05250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Bacterial infections have been a serious threat to mankind throughout history. Natural antimicrobial peptides (AMPs) and their membrane disruption mechanism have generated immense interest in the design and development of synthetic mimetics that could overcome the intrinsic drawbacks of AMPs, such as their susceptibility to proteolytic degradation and low bioavailability. Herein, by exploiting the self-assembly and pore-forming capabilities of sequence-defined peptoids, we discovered a family of low-molecular weight peptoid antibiotics that exhibit excellent broad-spectrum activity and high selectivity toward a panel of clinically significant Gram-positive and Gram-negative bacterial strains, including vancomycin-resistant Enterococcus faecalis (VREF), methicillin-resistant Staphylococcus aureus (MRSA), methicillin-resistant Staphylococcus epidermidis (MRSE), Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Tuning the peptoid side chain chemistry and structure enabled us to tune the efficacy of antimicrobial activity. Mechanistic studies using transmission electron microscopy (TEM), bacterial membrane depolarization and lysis, and time-kill kinetics assays along with molecular dynamics simulations reveal that these peptoids kill both Gram-positive and Gram-negative bacteria through a membrane disruption mechanism. These robust and biocompatible peptoid-based antibiotics can provide a valuable tool for combating emerging drug resistance.
Collapse
Affiliation(s)
- Tengyue Jian
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Minghui Wang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Jeevapani Hettige
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yuhao Li
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Lei Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Ruixuan Gao
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Wenchao Yang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Renyu Zheng
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Shengliang Zhong
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Marcel D Baer
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Aleksandr Noy
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- School of Natural Sciences, University of California, Merced, Merced, California 95343, United States
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
53
|
Bellucci MC, Romani C, Sani M, Volonterio A. Dual Antibiotic Approach: Synthesis and Antibacterial Activity of Antibiotic-Antimicrobial Peptide Conjugates. Antibiotics (Basel) 2024; 13:783. [PMID: 39200083 PMCID: PMC11352213 DOI: 10.3390/antibiotics13080783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024] Open
Abstract
In recent years, bacterial resistance to conventional antibiotics has become a major concern in the medical field. The global misuse of antibiotics in clinics, personal use, and agriculture has accelerated this resistance, making infections increasingly difficult to treat and rendering new antibiotics ineffective more quickly. Finding new antibiotics is challenging due to the complexity of bacterial mechanisms, high costs and low financial incentives for the development of new molecular scaffolds, and stringent regulatory requirements. Additionally, innovation has slowed, with many new antibiotics being modifications of existing drugs rather than entirely new classes. Antimicrobial peptides (AMPs) are a valid alternative to small-molecule antibiotics offering several advantages, including broad-spectrum activity and a lower likelihood of inducing resistance due to their multifaceted mechanisms of action. However, AMPs face challenges such as stability issues in physiological conditions, potential toxicity to human cells, high production costs, and difficulties in large-scale manufacturing. A reliable strategy to overcome the drawbacks associated with the use of small-molecule antibiotics and AMPs is combination therapy, namely the simultaneous co-administration of two or more antibiotics or the synthesis of covalently linked conjugates. This review aims to provide a comprehensive overview of the literature on the development of antibiotic-AMP conjugates, with a particular emphasis on critically analyzing the design and synthetic strategies employed in their creation. In addition to the synthesis, the review will also explore the reported antibacterial activity of these conjugates and, where available, examine any data concerning their cytotoxicity.
Collapse
Affiliation(s)
- Maria Cristina Bellucci
- Department of Food, Environmental, and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20131 Milano, Italy;
| | - Carola Romani
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy;
| | - Monica Sani
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimica “G. Natta” (SCITEC), Via Mario Bianco 9, 20131 Milano, Italy;
| | - Alessandro Volonterio
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy;
| |
Collapse
|
54
|
Manobala T. Peptide-based strategies for overcoming biofilm-associated infections: a comprehensive review. Crit Rev Microbiol 2024:1-18. [PMID: 39140129 DOI: 10.1080/1040841x.2024.2390597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/15/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Biofilms represent resilient microbial communities responsible for inducing chronic infections in human subjects. Given the escalating challenges associated with antibiotic therapy failures in clinical infections linked to biofilm formation, a peptide-based approach emerges as a promising alternative to effectively combat these notoriously resistant biofilms. Contrary to conventional antimicrobial peptides, which predominantly target cellular membranes, antibiofilm peptides necessitate a multifaceted approach, addressing various "biofilm-specific factors." These factors encompass Extracellular Polymeric Substance (EPS) degradation, membrane targeting, cell signaling, and regulatory mechanisms. Recent research endeavors have been directed toward assessing the potential of peptides as potent antibiofilm agents. However, to translate these peptides into viable clinical applications, several critical considerations must be meticulously evaluated during the peptide design process. This review serves to furnish an all-encompassing summary of the pivotal factors and parameters that necessitate contemplation for the successful development of an efficacious antibiofilm peptide.
Collapse
Affiliation(s)
- T Manobala
- School of Arts and Sciences, Sai University, Chennai, India
| |
Collapse
|
55
|
Chen J, Wang W, Hu X, Yue Y, Lu X, Wang C, Wei B, Zhang H, Wang H. Medium-sized peptides from microbial sources with potential for antibacterial drug development. Nat Prod Rep 2024; 41:1235-1263. [PMID: 38651516 DOI: 10.1039/d4np00002a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Covering: 1993 to the end of 2022As the rapid development of antibiotic resistance shrinks the number of clinically available antibiotics, there is an urgent need for novel options to fill the existing antibiotic pipeline. In recent years, antimicrobial peptides have attracted increased interest due to their impressive broad-spectrum antimicrobial activity and low probability of antibiotic resistance. However, macromolecular antimicrobial peptides of plant and animal origin face obstacles in antibiotic development because of their extremely short elimination half-life and poor chemical stability. Herein, we focus on medium-sized antibacterial peptides (MAPs) of microbial origin with molecular weights below 2000 Da. The low molecular weight is not sufficient to form complex protein conformations and is also associated to a better chemical stability and easier modifications. Microbially-produced peptides are often composed of a variety of non-protein amino acids and terminal modifications, which contribute to improving the elimination half-life of compounds. Therefore, MAPs have great potential for drug discovery and are likely to become key players in the development of next-generation antibiotics. In this review, we provide a detailed exploration of the modes of action demonstrated by 45 MAPs and offer a concise summary of the structure-activity relationships observed in these MAPs.
Collapse
Affiliation(s)
- Jianwei Chen
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wei Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xubin Hu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yujie Yue
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xingyue Lu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chenjie Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huawei Zhang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
56
|
Gao N, Ju X, Jiao X, Qi Y, Tian Y, Jiang S, Niu Z, Zhao S, Yang R. Breaking Down the Barriers of Drug Resistance and Corneal Permeability with Chitosan-Poly(ethylene glycol)-LK 13 Peptide Conjugate to Combat Fungal Keratitis. ACS Infect Dis 2024; 10:2950-2960. [PMID: 38990785 DOI: 10.1021/acsinfecdis.4c00288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Fungal keratitis (FK) is a leading cause of preventable blindness and eye loss. The poor antifungal activity, increased drug resistance, limited corneal permeability, and unsatisfactory biosafety of conventional antifungal eye drops are among the majority of the challenges that need to be addressed for currently available antifungal drugs. Herein, this study proposes an effective strategy that employs chitosan-poly(ethylene glycol)-LK13 peptide conjugate (CPL) in the treatment of FK. Nanoassembly CPL can permeate the lipophilic corneal epithelium in the transcellular route, and its hydrophilicity surface is a feature to drive its permeability through hydrophilic stroma. When encountering fungal cell membrane, CPL dissembles and exposes the antimicrobial peptide (LK13) to destroy fungal cell membranes, the minimum inhibitory concentration values of CPL against Fusarium solani (F. solani) are always not to exceed 8 μg peptide/mL before and after drug resistance induction. In a rat model of Fusarium keratitis, CPL demonstrates superior therapeutic efficacy than commercially available natamycin ophthalmic suspension. This study provides more theoretical and experimental supports for the application of CPL in the treatment of FK.
Collapse
Affiliation(s)
- Ning Gao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Xiaoyan Ju
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiting Jiao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Yuanyuan Qi
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Ye Tian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shidong Jiang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhongwei Niu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaozhen Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Ruibo Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| |
Collapse
|
57
|
Yang S, Liu F, Leng Y, Zhang M, Zhang L, Wang X, Wang Y. Development of Xanthoangelol-Derived Compounds with Membrane-Disrupting Effects against Gram-Positive Bacteria. Antibiotics (Basel) 2024; 13:744. [PMID: 39200044 PMCID: PMC11350758 DOI: 10.3390/antibiotics13080744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Infections caused by multidrug-resistant pathogens have emerged as a serious threat to public health. To develop new antibacterial agents to combat such drug-resistant bacteria, a class of novel amphiphilic xanthoangelol-derived compounds were designed and synthesized by mimicking the structure and function of antimicrobial peptides (AMPs). Among them, compound 9h displayed excellent antimicrobial activity against the Gram-positive strains tested (MICs = 0.5-2 μg/mL), comparable to vancomycin, and with low hemolytic toxicity and good membrane selectivity. Additionally, compound 9h demonstrated rapid bactericidal effects, low resistance frequency, low cytotoxicity, and good plasma stability. Mechanistic studies further revealed that compound 9h had good membrane-targeting ability and was able to destroy the integrity of bacterial cell membranes, causing an increase in intracellular ROS and the leakage of DNA and proteins, thus accelerating bacterial death. These results make 9h a promising antimicrobial candidate to combat bacterial infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuekun Wang
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China; (S.Y.); (F.L.); (Y.L.); (M.Z.); (L.Z.)
| | - Yinhu Wang
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China; (S.Y.); (F.L.); (Y.L.); (M.Z.); (L.Z.)
| |
Collapse
|
58
|
Shukri A, Carroll AC, Collins R, Charih F, Wong A, Biggar KK. Systematic in vitro optimization of antimicrobial peptides against Escherichia coli. JAC Antimicrob Resist 2024; 6:dlae096. [PMID: 38966332 PMCID: PMC11220656 DOI: 10.1093/jacamr/dlae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/21/2024] [Indexed: 07/06/2024] Open
Abstract
Objectives Antimicrobial resistance is a growing concern and claims over 1 million lives per year. The discovery of new antimicrobial drugs is expensive and often generates low profitability, with very low success rates. One way to combat this is by the improvement of known antimicrobials, such as antimicrobial peptides (AMPs). The aim of this study was to improve the antimicrobial activities of two known AMPs, UyCT3 and indolicidin, with the use of peptide libraries and growth curves. Methods Peptide permutation libraries were synthesized for two AMPs, indolicidin and UyCT3, which included 520 peptides. These peptides were subsequently tested against MG1655-K12, to which subsequent peptide design was performed, then tested against three clinically Gram-negative relevant drug-resistant isolates. Best-performing candidates were subjected to a haemolysis assay for toxicity validation. Results Single amino acid permutations of UyCT3 and indolicidin were sufficient to inhibit growth of MG1655-K12, and subsequent generations of peptide design were able to inhibit growth of clinical isolates at concentrations as low as 5 µM. Our best-performing AMP, UyCT3I5A, W6Y, K10I, F13I, was not seen to be toxic towards sheep RBCs. Conclusions The efficacy of the AMPs improved with the use of our peptide library technology, whereby an AMP was found that inhibited bacterial growth of clinical Gram-negative isolates 4-fold better than its WT counterpart.
Collapse
Affiliation(s)
- Ali Shukri
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Amanda C Carroll
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Ryan Collins
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Francois Charih
- Department of Systems and Computer Engineering, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Alex Wong
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Kyle K Biggar
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| |
Collapse
|
59
|
Dokuz S, Tasdurmazli S, Acar T, Duran GN, Ozdemir C, Ozbey U, Ozbil M, Karadayi S, Bayrak OF, Derman S, Chen JYS, Ozbek T. Evaluation of bacteriophage ϕ11 host recognition protein and its host-binding peptides for diagnosing/targeting Staphylococcus aureus infections. Int J Antimicrob Agents 2024; 64:107230. [PMID: 38824973 DOI: 10.1016/j.ijantimicag.2024.107230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Evaluating the potential of using both synthetic and biological products as targeting agents for the diagnosis, imaging, and treatment of infections due to particularly antibiotic-resistant pathogens is important for controlling infections. This study examined the interaction between Gp45, a receptor-binding protein of the ϕ11 lysogenic phage, and its host Staphylococcus aureus (S. aureus), a common cause of nosocomial infections. METHODS Using molecular dynamics and docking simulations, this study identified the peptides that bind to S. aureus wall teichoic acids via Gp45. It compared the binding affinity of Gp45 and the two highest-scoring peptide sequences (P1 and P3) and their scrambled forms using microscopy, spectroscopy, and ELISA. RESULTS It was found that rGp45 (recombinant Gp45) and chemically synthesised P1 had a higher binding affinity for S. aureus compared with all other peptides, except for Escherichia coli. Furthermore, rGp45 had a capture efficiency of > 86%; P1 had a capture efficiency of > 64%. CONCLUSION These findings suggest that receptor-binding proteins such as rGp45, which provide a critical initiation of the phage life cycle for host adsorption, might play an important role in the diagnosis, imaging, and targeting of bacterial infections. Studying such proteins could accordingly enable the development of effective strategies for controlling infections.
Collapse
Affiliation(s)
- Senanur Dokuz
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul, Turkey
| | - Semra Tasdurmazli
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul, Turkey
| | - Tayfun Acar
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Gizem Nur Duran
- Institute of Biotechnology, Gebze Technical University, Kocaeli, Turkey
| | - Cilem Ozdemir
- Department of Medical Biology, Health Sciences Institution, Mugla Sitki Kocman University, Mugla, Turkey
| | - Utku Ozbey
- Department of Medical Genetics, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Mehmet Ozbil
- Institute of Biotechnology, Gebze Technical University, Kocaeli, Turkey
| | - Sukriye Karadayi
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Altınbas University, Istanbul, Turkey
| | - Omer Faruk Bayrak
- Department of Medical Genetics, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Serap Derman
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - John Yu-Shen Chen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tulin Ozbek
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul, Turkey.
| |
Collapse
|
60
|
Wang Q, Hu X, Wei Z, Lu H, Liu H. Reinforcement learning-driven exploration of peptide space: accelerating generation of drug-like peptides. Brief Bioinform 2024; 25:bbae444. [PMID: 39256196 PMCID: PMC11387070 DOI: 10.1093/bib/bbae444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
Using amino acid residues in peptide generation has solved several key problems, including precise control of amino acid sequence order, customized peptides for property modification, and large-scale peptide synthesis. Proteins contain unknown amino acid residues. Extracting them for the synthesis of drug-like peptides can create novel structures with unique properties, driving drug development. Computer-aided design of novel peptide drug molecules can solve the high-cost and low-efficiency problems in the traditional drug discovery process. Previous studies faced limitations in enhancing the bioactivity and drug-likeness of polypeptide drugs due to less emphasis on the connection relationships in amino acid structures. Thus, we proposed a reinforcement learning-driven generation model based on graph attention mechanisms for peptide generation. By harnessing the advantages of graph attention mechanisms, this model effectively captured the connectivity structures between amino acid residues in peptides. Simultaneously, leveraging reinforcement learning's strength in guiding optimal sequence searches provided a novel approach to peptide design and optimization. This model introduces an actor-critic framework with real-time feedback loops to achieve dynamic balance between attributes, which can customize the generation of multiple peptides for specific targets and enhance the affinity between peptides and targets. Experimental results demonstrate that the generated drug-like peptides meet specified absorption, distribution, metabolism, excretion, and toxicity properties and bioactivity with a success rate of over 90$\%$, thereby significantly accelerating the process of drug-like peptide generation.
Collapse
Affiliation(s)
- Qian Wang
- College of Computer Science and Technology, Ocean University of China, 238 Songling Rd, 266100 Shandong, China
| | - Xiaotong Hu
- College of Computer Science and Technology, Ocean University of China, 238 Songling Rd, 266100 Shandong, China
| | - Zhiqiang Wei
- College of Computer Science and Technology, Ocean University of China, 238 Songling Rd, 266100 Shandong, China
| | - Hao Lu
- College of Computer Science and Technology, Ocean University of China, 238 Songling Rd, 266100 Shandong, China
| | - Hao Liu
- College of Computer Science and Technology, Ocean University of China, 238 Songling Rd, 266100 Shandong, China
| |
Collapse
|
61
|
Pontejo SM, Martinez S, Zhao A, Barnes K, de Anda J, Alimohamadi H, Lee EY, Dishman AF, Volkman BF, Wong GC, Garboczi DN, Ballesteros A, Murphy PM. Chemokines Kill Bacteria by Binding Anionic Phospholipids without Triggering Antimicrobial Resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.604863. [PMID: 39091850 PMCID: PMC11291121 DOI: 10.1101/2024.07.25.604863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Classically, chemokines coordinate leukocyte trafficking during immune responses; however, many chemokines have also been reported to possess direct antibacterial activity in vitro. Yet, the bacterial killing mechanism of chemokines and the biochemical properties that define which members of the chemokine superfamily are antimicrobial remain poorly understood. Here we report that the antimicrobial activity of chemokines is defined by their ability to bind phosphatidylglycerol and cardiolipin, two anionic phospholipids commonly found in the bacterial plasma membrane. We show that only chemokines able to bind these two phospholipids kill Escherichia coli and Staphylococcus aureus and that they exert rapid bacteriostatic and bactericidal effects against E. coli with a higher potency than the antimicrobial peptide beta-defensin 3. Furthermore, our data support that bacterial membrane cardiolipin facilitates the antimicrobial action of chemokines. Both biochemical and genetic interference with the chemokine-cardiolipin interaction impaired microbial growth arrest, bacterial killing, and membrane disruption by chemokines. Moreover, unlike conventional antibiotics, E. coli failed to develop resistance when placed under increasing antimicrobial chemokine pressure in vitro. Thus, we have identified cardiolipin and phosphatidylglycerol as novel binding partners for chemokines responsible for chemokine antimicrobial action. Our results provide proof of principle for developing chemokines as novel antibiotics resistant to bacterial antimicrobial resistance mechanisms.
Collapse
Affiliation(s)
- Sergio M. Pontejo
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sophia Martinez
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Allison Zhao
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin Barnes
- Structural Biology Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jaime de Anda
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Haleh Alimohamadi
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Ernest Y. Lee
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Acacia F. Dishman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian F. Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Gerard C.L. Wong
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - David N. Garboczi
- Structural Biology Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Angela Ballesteros
- Section of Sensory Physiology and Biophysics, National Institute of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Philip M. Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
62
|
Rajangam SL, Narasimhan MK. Current treatment strategies for targeting virulence factors and biofilm formation in Acinetobacter baumannii. Future Microbiol 2024; 19:941-961. [PMID: 38683166 PMCID: PMC11290764 DOI: 10.2217/fmb-2023-0263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/20/2024] [Indexed: 05/01/2024] Open
Abstract
A higher prevalence of Acinetobacter baumannii infections and mortality rate has been reported recently in hospital-acquired infections (HAI). The biofilm-forming capability of A. baumannii makes it an extremely dangerous pathogen, especially in device-associated hospital-acquired infections (DA-HAI), thereby it resists the penetration of antibiotics. Further, the transmission of the SARS-CoV-2 virus was exacerbated in DA-HAI during the epidemic. This review specifically examines the complex interconnections between several components and genes that play a role in the biofilm formation and the development of infections. The current review provides insights into innovative treatments and therapeutic approaches to combat A. baumannii biofilm-related infections, thereby ultimately improving patient outcomes and reducing the burden of HAI.
Collapse
Affiliation(s)
- Seetha Lakshmi Rajangam
- Department of Genetic Engineering, School of Bioengineering, College of Engineering & Technology, SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Manoj Kumar Narasimhan
- Department of Genetic Engineering, School of Bioengineering, College of Engineering & Technology, SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| |
Collapse
|
63
|
Islam SMM, Siddik MAB, Sørensen M, Brinchmann MF, Thompson KD, Francis DS, Vatsos IN. Insect meal in aquafeeds: A sustainable path to enhanced mucosal immunity in fish. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109625. [PMID: 38740231 DOI: 10.1016/j.fsi.2024.109625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
The mucosal surfaces of fish, including their intestines, gills, and skin, are constantly exposed to various environmental threats, such as water quality fluctuations, pollutants, and pathogens. However, various cells and microbiota closely associated with these surfaces work in tandem to create a functional protective barrier against these conditions. Recent research has shown that incorporating specific feed ingredients into fish diets can significantly boost their mucosal and general immune response. Among the various ingredients being investigated, insect meal has emerged as one of the most promising options, owing to its high protein content and immunomodulatory properties. By positively influencing the structure and function of mucosal surfaces, insect meal (IM) has the potential to enhance the overall immune status of fish. This review provides a comprehensive overview of the potential benefits of incorporating IM into aquafeed as a feed ingredient for augmenting the mucosal immune response of fish.
Collapse
Affiliation(s)
- S M Majharul Islam
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | - Muhammad A B Siddik
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3216, Australia
| | - Mette Sørensen
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | | | - Kim D Thompson
- Aquaculture Research Group, Moredun Research Institute, Edinburgh, UK
| | - David S Francis
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3216, Australia
| | - Ioannis N Vatsos
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway.
| |
Collapse
|
64
|
Elbediwi M, Rolff J. Metabolic pathways and antimicrobial peptide resistance in bacteria. J Antimicrob Chemother 2024; 79:1473-1483. [PMID: 38742645 DOI: 10.1093/jac/dkae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
Antimicrobial resistance is a pressing concern that poses a significant threat to global public health, necessitating the exploration of alternative strategies to combat drug-resistant microbial infections. Recently, antimicrobial peptides (AMPs) have gained substantial attention as possible replacements for conventional antibiotics. Because of their pharmacodynamics and killing mechanisms, AMPs display a lower risk of bacterial resistance evolution compared with most conventional antibiotics. However, bacteria display different mechanisms to resist AMPs, and the role of metabolic pathways in the resistance mechanism is not fully understood. This review examines the intricate relationship between metabolic genes and AMP resistance, focusing on the impact of metabolic pathways on various aspects of resistance. Metabolic pathways related to guanosine pentaphosphate (pppGpp) and guanosine tetraphosphate (ppGpp) [collectively (p)ppGpp], the tricarboxylic acid (TCA) cycle, haem biosynthesis, purine and pyrimidine biosynthesis, and amino acid and lipid metabolism influence in different ways metabolic adjustments, biofilm formation and energy production that could be involved in AMP resistance. By targeting metabolic pathways and their associated genes, it could be possible to enhance the efficacy of existing antimicrobial therapies and overcome the challenges exhibited by phenotypic (recalcitrance) and genetic resistance toward AMPs. Further research in this area is needed to provide valuable insights into specific mechanisms, uncover novel therapeutic targets, and aid in the fight against antimicrobial resistance.
Collapse
Affiliation(s)
- Mohammed Elbediwi
- Evolutionary Biology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
- Animal Health Research Institute, Agriculture Research Centre, 12618 Cairo, Egypt
| | - Jens Rolff
- Evolutionary Biology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
65
|
Quigua-Orozco RM, Andrade IEP, Oshiro KGN, Rezende SB, Santos ADO, Pereira JAL, da Silva VG, Buccini DF, Porto WF, Macedo MLR, Cardoso MH, Franco OL. In silico optimization of analogs derived pro-adrenomedullin peptide to evaluate antimicrobial potential. Chem Biol Drug Des 2024; 104:e14588. [PMID: 39048531 DOI: 10.1111/cbdd.14588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/04/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024]
Abstract
Diverse computational approaches have been widely used to assist in designing antimicrobial peptides with enhanced activities. This tactic has also been used to address the need for new treatment alternatives to combat resistant bacterial infections. Herein, we have designed eight variants from a natural peptide, pro-adrenomedullin N-terminal 20 peptide (PAMP), using an in silico pattern insertion approach, the Joker algorithm. All the variants show an α-helical conformation, but with differences in the helix percentages according to circular dichroism (CD) results. We found that the C-terminal portion of PAMP may be relevant for its antimicrobial activities, as revealed by the molecular dynamics, CD, and antibacterial results. The analogs showed variable antibacterial potential, but most were not cytotoxic. Nevertheless, PAMP2 exhibited the most potent activities against human and animal-isolated bacteria, showing cytotoxicity only at a substantially higher concentration than its minimal inhibitory concentration (MIC). Our results suggest that the enhanced activity in the profile of PAMP2 may be related to their particular physicochemical properties, along with the adoption of an amphipathic α-helical arrangement with the conserved C-terminus portion. Finally, the peptides designed in this study can constitute scaffolds for the design of improved sequences.
Collapse
Affiliation(s)
- Raquel M Quigua-Orozco
- S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Isadora E P Andrade
- Programa de Pós-Graduação Em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Karen G N Oshiro
- S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | - Samilla B Rezende
- S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Alexandre Duarte O Santos
- S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Julia A L Pereira
- S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Viviane G da Silva
- S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Danieli F Buccini
- S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - William F Porto
- Programa de Pós-Graduação Em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Maria L R Macedo
- Laboratório de Purificação de Proteínas e Suas Funções Biológicas, Universidade Federal de Mato Grosso Do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Marlon H Cardoso
- S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
- Programa de Pós-Graduação Em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Distrito Federal, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
- Laboratório de Purificação de Proteínas e Suas Funções Biológicas, Universidade Federal de Mato Grosso Do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Octávio L Franco
- S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
- Programa de Pós-Graduação Em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Distrito Federal, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| |
Collapse
|
66
|
Zeng P, Wang H, Zhang P, Leung SSY. Unearthing naturally-occurring cyclic antibacterial peptides and their structural optimization strategies. Biotechnol Adv 2024; 73:108371. [PMID: 38704105 DOI: 10.1016/j.biotechadv.2024.108371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/08/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Natural products with antibacterial activity are highly desired globally to combat against multidrug-resistant (MDR) bacteria. Antibacterial peptide (ABP), especially cyclic ABP (CABP), is one of the abundant classes. Most of them were isolated from microbes, demonstrating excellent bactericidal effects. With the improved proteolytic stability, CABPs are normally considered to have better druggability than linear peptides. However, most clinically-used CABP-based antibiotics, such as colistin, also face the challenges of drug resistance soon after they reached the market, urgently requiring the development of next-generation succedaneums. We present here a detail review on the novel naturally-occurring CABPs discovered in the past decade and some of them are under clinical trials, exhibiting anticipated application potential. According to their chemical structures, they were broadly classified into five groups, including (i) lactam/lactone-based CABPs, (ii) cyclic lipopeptides, (iii) glycopeptides, (iv) cyclic sulfur-rich peptides and (v) multiple-modified CABPs. Their chemical structures, antibacterial spectrums and proposed mechanisms are discussed. Moreover, engineered analogs of these novel CABPs are also summarized to preliminarily analyze their structure-activity relationship. This review aims to provide a global perspective on research and development of novel CABPs to highlight the effectiveness of derivatives design in identifying promising antibacterial agents. Further research efforts in this area are believed to play important roles in fighting against the multidrug-resistance crisis.
Collapse
Affiliation(s)
- Ping Zeng
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Honglan Wang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Pengfei Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Sharon Shui Yee Leung
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
67
|
Tajer L, Paillart JC, Dib H, Sabatier JM, Fajloun Z, Abi Khattar Z. Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides in the Modern Era: An Updated Review. Microorganisms 2024; 12:1259. [PMID: 39065030 PMCID: PMC11279074 DOI: 10.3390/microorganisms12071259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a serious global health concern, resulting in a significant number of deaths annually due to infections that are resistant to treatment. Amidst this crisis, antimicrobial peptides (AMPs) have emerged as promising alternatives to conventional antibiotics (ATBs). These cationic peptides, naturally produced by all kingdoms of life, play a crucial role in the innate immune system of multicellular organisms and in bacterial interspecies competition by exhibiting broad-spectrum activity against bacteria, fungi, viruses, and parasites. AMPs target bacterial pathogens through multiple mechanisms, most importantly by disrupting their membranes, leading to cell lysis. However, bacterial resistance to host AMPs has emerged due to a slow co-evolutionary process between microorganisms and their hosts. Alarmingly, the development of resistance to last-resort AMPs in the treatment of MDR infections, such as colistin, is attributed to the misuse of this peptide and the high rate of horizontal genetic transfer of the corresponding resistance genes. AMP-resistant bacteria employ diverse mechanisms, including but not limited to proteolytic degradation, extracellular trapping and inactivation, active efflux, as well as complex modifications in bacterial cell wall and membrane structures. This review comprehensively examines all constitutive and inducible molecular resistance mechanisms to AMPs supported by experimental evidence described to date in bacterial pathogens. We also explore the specificity of these mechanisms toward structurally diverse AMPs to broaden and enhance their potential in developing and applying them as therapeutics for MDR bacteria. Additionally, we provide insights into the significance of AMP resistance within the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Layla Tajer
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
| | - Jean-Christophe Paillart
- CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, 2 Allée Konrad Roentgen, F-67000 Strasbourg, France;
| | - Hanna Dib
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
- Department of Biology, Faculty of Sciences 3, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| | - Ziad Abi Khattar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, P.O. Box 100, Tripoli, Lebanon
| |
Collapse
|
68
|
Khranovska N, Skachkova O, Gorbach O, Semchuk I, Shvets Y, Komarov I. ANTICANCER IMMUNOGENIC POTENTIAL OF ONCOLYTIC PEPTIDES: RECENT ADVANCES AND NEW PROSPECTS. Exp Oncol 2024; 46:3-12. [PMID: 38852058 DOI: 10.15407/exp-oncology.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Oncolytic peptides are derived from natural host defense peptides/antimicrobial peptides produced in a wide variety of life forms. Over the past two decades, they have attracted much attention in both basic research and clinical applications. Oncolytic peptides were expected to act primarily on tumor cells and also trigger the immunogenic cell death. Their ability in the tumor microenvironment remodeling and potentiating the anticancer immunity has long been ignored. Despite the promising results, clinical application of oncolytic peptides is still hindered by their unsatisfactory bioactivity and toxicity to normal cells. To ensure safer therapy, various approaches are being developed. The idea of the Ukrainian research group was to equip peptide molecules with a "molecular photoswitch" - a diarylethene fragment capable of photoisomerization, allowing for the localized photoactivation of peptides within tumors reducing side effects. Such oncolytic peptides that may induce the membrane lysis-mediated cancer cell death and subsequent anticancer immune responses in combination with the low toxicity to normal cells have provided a new paradigm for cancer therapy. This review gives an overview of the broad effects and perspectives of oncolytic peptides in anticancer immunity highlighting the potential issues related to the use of oncolytic peptides in cancer immunotherapy. We summarize the current status of research on peptide-based tumor immunotherapy in combination with other therapies including immune checkpoint inhibitors, chemotherapy, and targeted therapy.
Collapse
Affiliation(s)
- N Khranovska
- Nonprofit organization "National Cancer Institute", Kyiv, Ukraine
| | - O Skachkova
- Nonprofit organization "National Cancer Institute", Kyiv, Ukraine
| | - O Gorbach
- Nonprofit organization "National Cancer Institute", Kyiv, Ukraine
| | - I Semchuk
- Nonprofit organization "National Cancer Institute", Kyiv, Ukraine
| | - Yu Shvets
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - I Komarov
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| |
Collapse
|
69
|
Berida TI, Adekunle YA, Dada-Adegbola H, Kdimy A, Roy S, Sarker SD. Plant antibacterials: The challenges and opportunities. Heliyon 2024; 10:e31145. [PMID: 38803958 PMCID: PMC11128932 DOI: 10.1016/j.heliyon.2024.e31145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Nature possesses an inexhaustible reservoir of agents that could serve as alternatives to combat the growing threat of antimicrobial resistance (AMR). While some of the most effective drugs for treating bacterial infections originate from natural sources, they have predominantly been derived from fungal and bacterial species. However, a substantial body of literature is available on the promising antibacterial properties of plant-derived compounds. In this comprehensive review, we address the major challenges associated with the discovery and development of plant-derived antimicrobial compounds, which have acted as obstacles preventing their clinical use. These challenges encompass limited sourcing, the risk of agent rediscovery, suboptimal drug metabolism, and pharmacokinetics (DMPK) properties, as well as a lack of knowledge regarding molecular targets and mechanisms of action, among other pertinent issues. Our review underscores the significance of these challenges and their implications in the quest for the discovery and development of effective plant-derived antimicrobial agents. Through a critical examination of the current state of research, we give valuable insights that will advance our understanding of these classes of compounds, offering potential solutions to the global crisis of AMR. © 2017 Elsevier Inc. All rights reserved.
Collapse
Affiliation(s)
- Tomayo I. Berida
- Department of BioMolecular Sciences, Division of Pharmacognosy, University of Mississippi, University, MS, 38677, USA
| | - Yemi A. Adekunle
- Department of Pharmaceutical and Medicinal Chemistry, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Nigeria
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, United Kingdom
| | - Hannah Dada-Adegbola
- Department of Medical Microbiology and Parasitology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ayoub Kdimy
- LS3MN2E, CERNE2D, Faculty of Science, Mohammed V University in Rabat, Rabat, 10056, Morocco
| | - Sudeshna Roy
- Department of BioMolecular Sciences, Division of Pharmacognosy, University of Mississippi, University, MS, 38677, USA
| | - Satyajit D. Sarker
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, United Kingdom
| |
Collapse
|
70
|
Kumar M, Kumar D, Kumar D, Garg Y, Chopra S, Bhatia A. Therapeutic Potential of Nanocarrier Mediated Delivery of Peptides for Wound Healing: Current Status, Challenges and Future Prospective. AAPS PharmSciTech 2024; 25:108. [PMID: 38730090 DOI: 10.1208/s12249-024-02827-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
Wound healing presents a complex physiological process that involves a sequence of events orchestrated by various cellular and molecular mechanisms. In recent years, there has been growing interest in leveraging nanomaterials and peptides to enhance wound healing outcomes. Nanocarriers offer unique properties such as high surface area-to-volume ratio, tunable physicochemical characteristics, and the ability to deliver therapeutic agents in a controlled manner. Similarly, peptides, with their diverse biological activities and low immunogenicity, hold great promise as therapeutics in wound healing applications. In this review, authors explore the potential of peptides as bioactive components in wound healing formulations, focusing on their antimicrobial, anti-inflammatory, and pro-regenerative properties. Despite the significant progress made in this field, several challenges remain, including the need for standardized characterization methods, optimization of biocompatibility and safety profiles, and translation from bench to bedside. Furthermore, developing multifunctional nanomaterial-peptide hybrid systems represents promising avenues for future research. Overall, the integration of nanomaterials made up of natural or synthetic polymers with peptide-based formulations holds tremendous therapeutic potential in advancing the field of wound healing and improving clinical outcomes for patients with acute and chronic wounds.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Dikshant Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Devesh Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Yogesh Garg
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Shruti Chopra
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India.
| |
Collapse
|
71
|
Panayi T, Diavoli S, Nicolaidou V, Papaneophytou C, Petrou C, Sarigiannis Y. Short-Chained Linear Scorpion Peptides: A Pool for Novel Antimicrobials. Antibiotics (Basel) 2024; 13:422. [PMID: 38786150 PMCID: PMC11117241 DOI: 10.3390/antibiotics13050422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Scorpion venom peptides are generally classified into two main groups: the disulfide bridged peptides (DBPs), which usually target membrane-associated ion channels, and the non-disulfide bridged peptides (NDBPs), a smaller group with multifunctional properties. In the past decade, these peptides have gained interest because most of them display functions that include antimicrobial, anticancer, haemolytic, and anti-inflammatory activities. Our current study focuses on the short (9-19 amino acids) antimicrobial linear scorpion peptides. Most of these peptides display a net positive charge of 1 or 2, an isoelectric point at pH 9-10, a broad range of hydrophobicity, and a Grand Average of Hydropathy (GRAVY) Value ranging between -0.05 and 1.7. These features allow these peptides to be attracted toward the negatively charged phospholipid head groups of the lipid membranes of target cells, a force driven by electrostatic interactions. This review outlines the antimicrobial potential of short-chained linear scorpion venom peptides. Additionally, short linear scorpion peptides are in general more attractive for large-scale synthesis from a manufacturing point of view. The structural and functional diversity of these peptides represents a good starting point for the development of new peptide-based therapeutics.
Collapse
Affiliation(s)
- Tolis Panayi
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus; (T.P.); (V.N.); (C.P.)
- Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus; (S.D.); (C.P.)
| | - Spiridoula Diavoli
- Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus; (S.D.); (C.P.)
| | - Vicky Nicolaidou
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus; (T.P.); (V.N.); (C.P.)
| | - Christos Papaneophytou
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus; (T.P.); (V.N.); (C.P.)
| | - Christos Petrou
- Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus; (S.D.); (C.P.)
| | - Yiannis Sarigiannis
- Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus; (S.D.); (C.P.)
| |
Collapse
|
72
|
Wan F, Wong F, Collins JJ, de la Fuente-Nunez C. Machine learning for antimicrobial peptide identification and design. NATURE REVIEWS BIOENGINEERING 2024; 2:392-407. [PMID: 39850516 PMCID: PMC11756916 DOI: 10.1038/s44222-024-00152-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Artificial intelligence (AI) and machine learning (ML) models are being deployed in many domains of society and have recently reached the field of drug discovery. Given the increasing prevalence of antimicrobial resistance, as well as the challenges intrinsic to antibiotic development, there is an urgent need to accelerate the design of new antimicrobial therapies. Antimicrobial peptides (AMPs) are therapeutic agents for treating bacterial infections, but their translation into the clinic has been slow owing to toxicity, poor stability, limited cellular penetration and high cost, among other issues. Recent advances in AI and ML have led to breakthroughs in our abilities to predict biomolecular properties and structures and to generate new molecules. The ML-based modelling of peptides may overcome some of the disadvantages associated with traditional drug discovery and aid the rapid development and translation of AMPs. Here, we provide an introduction to this emerging field and survey ML approaches that can be used to address issues currently hindering AMP development. We also outline important limitations that can be addressed for the broader adoption of AMPs in clinical practice, as well as new opportunities in data-driven peptide design.
Collapse
Affiliation(s)
- Fangping Wan
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
- These authors contributed equally: Fangping Wan, Felix Wong
| | - Felix Wong
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- These authors contributed equally: Fangping Wan, Felix Wong
| | - James J. Collins
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- These authors jointly supervised this work: James J. Collins, Cesar de la Fuente-Nunez
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
- These authors jointly supervised this work: James J. Collins, Cesar de la Fuente-Nunez
| |
Collapse
|
73
|
MacNair CR, Rutherford ST, Tan MW. Alternative therapeutic strategies to treat antibiotic-resistant pathogens. Nat Rev Microbiol 2024; 22:262-275. [PMID: 38082064 DOI: 10.1038/s41579-023-00993-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 04/19/2024]
Abstract
Resistance threatens to render antibiotics - which are essential for modern medicine - ineffective, thus posing a threat to human health. The discovery of novel classes of antibiotics able to overcome resistance has been stalled for decades, with the developmental pipeline relying almost entirely on variations of existing chemical scaffolds. Unfortunately, this approach has been unable to keep pace with resistance evolution, necessitating new therapeutic strategies. In this Review, we highlight recent efforts to discover non-traditional antimicrobials, specifically describing the advantages and limitations of antimicrobial peptides and macrocycles, antibodies, bacteriophages and antisense oligonucleotides. These approaches have the potential to stem the tide of resistance by expanding the physicochemical property space and target spectrum occupied by currently approved antibiotics.
Collapse
Affiliation(s)
- Craig R MacNair
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA
| | - Steven T Rutherford
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA.
| |
Collapse
|
74
|
Feng J, Sun M, Liu C, Zhang W, Xu C, Wang J, Wang G, Wan S. SAMP: Identifying Antimicrobial Peptides by an Ensemble Learning Model Based on Proportionalized Split Amino Acid Composition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.590553. [PMID: 38712184 PMCID: PMC11071531 DOI: 10.1101/2024.04.25.590553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
It is projected that 10 million deaths could be attributed to drug-resistant bacteria infections in 2050. To address this concern, identifying new-generation antibiotics is an effective way. Antimicrobial peptides (AMPs), a class of innate immune effectors, have received significant attention for their capacity to eliminate drug-resistant pathogens, including viruses, bacteria, and fungi. Recent years have witnessed widespread applications of computational methods especially machine learning (ML) and deep learning (DL) for discovering AMPs. However, existing methods only use features including compositional, physiochemical, and structural properties of peptides, which cannot fully capture sequence information from AMPs. Here, we present SAMP, an ensemble random projection (RP) based computational model that leverages a new type of features called Proportionalized Split Amino Acid Composition (PSAAC) in addition to conventional sequence-based features for AMP prediction. With this new feature set, SAMP captures the residue patterns like sorting signals at around both the N-terminus and the C-terminus, while also retaining the sequence order information from the middle peptide fragments. Benchmarking tests on different balanced and imbalanced datasets demonstrate that SAMP consistently outperforms existing state-of-the-art methods, such as iAMPpred and AMPScanner V2, in terms of accuracy, MCC, G-measure and F1-score. In addition, by leveraging an ensemble RP architecture, SAMP is scalable to processing large-scale AMP identification with further performance improvement, compared to those models without RP. To facilitate the use of SAMP, we have developed a Python package freely available at https://github.com/wan-mlab/SAMP.
Collapse
Affiliation(s)
- Junxi Feng
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, United States, 02115
| | - Mengtao Sun
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States, 68198
| | - Cong Liu
- Department of Mathematics, Data Science, University of Waterloo, Waterloo, ON, Canada, N2L3G1
| | - Weiwei Zhang
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, United States, 68198
| | - Changmou Xu
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, United States, 61801
| | - Jieqiong Wang
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States, 68198
| | - Guangshun Wang
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, United States, 68198
| | - Shibiao Wan
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States, 68198
| |
Collapse
|
75
|
Long Q, Zhou W, Zhou H, Tang Y, Chen W, Liu Q, Bian X. Polyamine-containing natural products: structure, bioactivity, and biosynthesis. Nat Prod Rep 2024; 41:525-564. [PMID: 37873660 DOI: 10.1039/d2np00087c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Covering: 2005 to August, 2023Polyamine-containing natural products (NPs) have been isolated from a wide range of terrestrial and marine organisms and most of them exhibit remarkable and diverse activities, including antimicrobial, antiprotozoal, antiangiogenic, antitumor, antiviral, iron-chelating, anti-depressive, anti-inflammatory, insecticidal, antiobesity, and antioxidant properties. Their extraordinary activities and potential applications in human health and agriculture attract increasing numbers of studies on polyamine-containing NPs. In this review, we summarized the source, structure, classification, bioactivities and biosynthesis of polyamine-containing NPs, focusing on the biosynthetic mechanism of polyamine itself and representative polyamine alkaloids, polyamine-containing siderophores with catechol/hydroxamate/hydroxycarboxylate groups, nonribosomal peptide-(polyketide)-polyamine (NRP-(PK)-PA), and NRP-PK-long chain poly-fatty amine (lcPFAN) hybrid molecules.
Collapse
Affiliation(s)
- Qingshan Long
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, 410009, China.
| | - Wen Zhou
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural, Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Haibo Zhou
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Ying Tang
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, 410009, China.
| | - Wu Chen
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.
| | - Qingshu Liu
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, 410009, China.
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
76
|
Reda AT, Park JY, Park YT. Zinc Oxide-Based Nanomaterials for Microbiostatic Activities: A Review. J Funct Biomater 2024; 15:103. [PMID: 38667560 PMCID: PMC11050959 DOI: 10.3390/jfb15040103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The world is fighting infectious diseases. Therefore, effective antimicrobials are required to prevent the spread of microbes and protect human health. Zinc oxide (ZnO) nano-materials are known for their antimicrobial activities. Because of their distinctive physical and chemical characteristics, they can be used in medical and environmental applications. ZnO-based composites are among the leading sources of antimicrobial research. They are effective at killing (microbicidal) and inhibiting the growth (microbiostatic) of numerous microorganisms, such as bacteria, viruses, and fungi. Although most studies have focused on the microbicidal features, there is a lack of reviews on their microbiostatic effects. This review provides a detailed overview of available reports on the microbiostatic activities of ZnO-based nano-materials against different microorganisms. Additionally, the factors that affect the efficacy of these materials, their time course, and a comparison of the available antimicrobials are highlighted in this review. The basic properties of ZnO, challenges of working with microorganisms, and working mechanisms of microbiostatic activities are also examined. This review underscores the importance of further research to better understand ZnO-based nano-materials for controlling microbial growth.
Collapse
Affiliation(s)
| | | | - Yong Tae Park
- Department of Mechanical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi 17058, Republic of Korea; (A.T.R.)
| |
Collapse
|
77
|
Ward SA, Habibi AA, Ashkenazi I, Arshi A, Meftah M, Schwarzkopf R. Innovations in the Isolation and Treatment of Biofilms in Periprosthetic Joint Infection: A Comprehensive Review of Current and Emerging Therapies in Bone and Joint Infection Management. Orthop Clin North Am 2024; 55:171-180. [PMID: 38403364 DOI: 10.1016/j.ocl.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Periprosthetic joint infections (PJIs) are a devastating complication of joint arthroplasty surgeries that are often complicated by biofilm formation. The development of biofilms makes PJI treatment challenging as they create a barrier against antibiotics and host immune responses. This review article provides an overview of the current understanding of biofilm formation, factors that contribute to their production, and the most common organisms involved in this process. This article focuses on the identification of biofilms, as well as current methodologies and emerging therapies in the management of biofilms in PJI.
Collapse
Affiliation(s)
- Spencer A Ward
- NYU Langone Orthopedic Hospital, NYU Langone Health, 301 East 17th Street, Room 1402, New York, NY 10003, USA
| | - Akram A Habibi
- NYU Langone Orthopedic Hospital, NYU Langone Health, 301 East 17th Street, Room 1402, New York, NY 10003, USA
| | - Itay Ashkenazi
- NYU Langone Orthopedic Hospital, NYU Langone Health, 301 East 17th Street, Room 1402, New York, NY 10003, USA
| | - Armin Arshi
- NYU Langone Orthopedic Hospital, NYU Langone Health, 301 East 17th Street, Room 1402, New York, NY 10003, USA
| | - Morteza Meftah
- NYU Langone Orthopedic Hospital, NYU Langone Health, 301 East 17th Street, Room 1402, New York, NY 10003, USA
| | - Ran Schwarzkopf
- NYU Langone Orthopedic Hospital, NYU Langone Health, 301 East 17th Street, Room 1402, New York, NY 10003, USA.
| |
Collapse
|
78
|
Li R, Gao H, Zhang R, Zhang B, Wang X, Zhang X, Li R. Biocompatible formulation of a hydrophobic antimicrobial peptide L30 through nanotechnology principles and its potential role in mouse pneumonia model infected with Staphylococcus aureus. Colloids Surf B Biointerfaces 2024; 236:113823. [PMID: 38442502 DOI: 10.1016/j.colsurfb.2024.113823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
Hydrophobic antimicrobial peptide L30, a potential antibiotic candidate, has poor water solubility and hemolytic activity. Herein, a biocompatible nano-formulation composed of liposomes and dendritic mesoporous silica encapsulation (LDMSNs@L30) was constructed for L30 to solve the limits for its clinical development. The characterization, antimicrobial activity and therapeutic effect of LDMSNs@L30 on Staphylococcus aureus 9 (cfr+) infected mice models were investigated. LDMSNs@L30 displayed a smooth, spherical, and monodisperse nanoparticle with a hydrodynamic diameter of 177.40 nm, an encapsulation rate of 56.13%, a loading efficiency of 32.26%, a release rate of 66.5%, and effective slow-release of L30. Compared with free L30, the formulation could significantly increase the solubility of L30 in PBS with the maximum concentration from 8 μg/mL to 2.25 mg/mL and decrease the hemolytic activity of hydrophobic peptide L30 with the HC5 from 65.36 μg/mL to more than 500 μg/mL. The nano delivery system LDMSNs@L30 also exhibited higher therapeutic effects on mice models infected with S. aureus 9 (cfr+) than those of free L30 after 7 days of treatment by reducing the lung inflammation and the inflammatory cytokines levels in plasma, showing better health score and pulmonary pathological improvement. Our research suggests that nano-formulation can be expected to be a promising strategy for peptide drugs in therapeutic applications.
Collapse
Affiliation(s)
- Ruihua Li
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, Zhengzhou, Henan 450001, PR China; College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Huiping Gao
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, Zhengzhou, Henan 450001, PR China; College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Ruiling Zhang
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, Zhengzhou, Henan 450001, PR China; School of Economics and Trade, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Beibei Zhang
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, Zhengzhou, Henan 450001, PR China; College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Xueqin Wang
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, Zhengzhou, Henan 450001, PR China; College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Xinhui Zhang
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, Zhengzhou, Henan 450001, PR China; College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Ruifang Li
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, Zhengzhou, Henan 450001, PR China; College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
79
|
Kordi M, Talkhounche PG, Vahedi H, Farrokhi N, Tabarzad M. Heterologous Production of Antimicrobial Peptides: Notes to Consider. Protein J 2024; 43:129-158. [PMID: 38180586 DOI: 10.1007/s10930-023-10174-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
Heavy and irresponsible use of antibiotics in the last century has put selection pressure on the microbes to evolve even faster and develop more resilient strains. In the confrontation with such sometimes called "superbugs", the search for new sources of biochemical antibiotics seems to have reached the limit. In the last two decades, bioactive antimicrobial peptides (AMPs), which are polypeptide chains with less than 100 amino acids, have attracted the attention of many in the control of microbial pathogens, more than the other types of antibiotics. AMPs are groups of components involved in the immune response of many living organisms, and have come to light as new frontiers in fighting with microbes. AMPs are generally produced in minute amounts within organisms; therefore, to address the market, they have to be either produced on a large scale through recombinant DNA technology or to be synthesized via chemical methods. Here, heterologous expression of AMPs within bacterial, fungal, yeast, plants, and insect cells, and points that need to be considered towards their industrialization will be reviewed.
Collapse
Affiliation(s)
- Masoumeh Kordi
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Parnian Ghaedi Talkhounche
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Helia Vahedi
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Naser Farrokhi
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
80
|
Pastuszak K, Jurak M, Kowalczyk B, Tarasiuk J, Wiącek AE, Palusińska-Szysz M. Susceptibility of Legionella gormanii Membrane-Derived Phospholipids to the Peptide Action of Antimicrobial LL-37-Langmuir Monolayer Studies. Molecules 2024; 29:1522. [PMID: 38611802 PMCID: PMC11013288 DOI: 10.3390/molecules29071522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
LL-37 is the only member of the cathelicidin-type host defense peptide family in humans. It exhibits broad-spectrum bactericidal activity, which represents a distinctive advantage for future therapeutic targets. The presence of choline in the growth medium for bacteria changes the composition and physicochemical properties of their membranes, which affects LL-37's activity as an antimicrobial agent. In this study, the effect of the LL-37 peptide on the phospholipid monolayers at the liquid-air interface imitating the membranes of Legionella gormanii bacteria was determined. The Langmuir monolayer technique was employed to prepare model membranes composed of individual classes of phospholipids-phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), cardiolipin (CL)-isolated from L. gormanii bacteria supplemented or non-supplemented with exogenous choline. Compression isotherms were obtained for the monolayers with or without the addition of the peptide to the subphase. Then, penetration tests were carried out for the phospholipid monolayers compressed to a surface pressure of 30 mN/m, followed by the insertion of the peptide into the subphase. Changes in the mean molecular area were observed over time. Our findings demonstrate the diversified effect of LL-37 on the phospholipid monolayers, depending on the bacteria growth conditions. The substantial changes in membrane properties due to its interactions with LL-37 enable us to propose a feasible mechanism of peptide action at a molecular level. This can be associated with the stable incorporation of the peptide inside the monolayer or with the disruption of the membrane leading to the removal (desorption) of molecules into the subphase. Understanding the role of antimicrobial peptides is crucial for the design and development of new strategies and routes for combating resistance to conventional antibiotics.
Collapse
Affiliation(s)
- Katarzyna Pastuszak
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland; (K.P.); (A.E.W.)
| | - Małgorzata Jurak
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland; (K.P.); (A.E.W.)
| | - Bożena Kowalczyk
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (B.K.); (J.T.); (M.P.-S.)
| | - Jacek Tarasiuk
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (B.K.); (J.T.); (M.P.-S.)
| | - Agnieszka Ewa Wiącek
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland; (K.P.); (A.E.W.)
| | - Marta Palusińska-Szysz
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (B.K.); (J.T.); (M.P.-S.)
| |
Collapse
|
81
|
Chen P, Ye T, Li C, Praveen P, Hu Z, Li W, Shang C. Embracing the era of antimicrobial peptides with marine organisms. Nat Prod Rep 2024; 41:331-346. [PMID: 37743806 DOI: 10.1039/d3np00031a] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Covering: 2018 to Jun of 2023The efficiency of traditional antibiotics has been undermined by the proliferation of antibiotic-resistant pathogenic microorganisms, necessitating the pursuit of innovative therapeutic agents. Antimicrobial peptides (AMPs), which are part of host defence peptides found ubiquitously in nature, exhibiting a wide range of activity towards bacteria, fungi, and viruses, offer a highly promising candidate solution. The efficacy of AMPs can frequently be augmented via alterations to their amino acid sequences or structural adjustments. Given the vast reservoir of marine life forms and their distinctive ecosystems, marine AMPs stand as a burgeoning focal point in the quest for alternative peptide templates extracted from natural sources. Advances in identification and characterization techniques have accelerated the discoveries of marine AMPs, thereby stimulating AMP customization, optimization, and synthesis research endeavours. This review presents an overview of recent discoveries related to the intriguing qualities of marine AMPs. Emphasis will be placed upon post-translational modifications (PTMs) of marine AMPs and how they may impact functionality and potency. Additionally, this review considers ways in which marine PTM might support larger-scale, heterologous AMP manufacturing initiatives, providing insights into translational applications of these important biomolecules.
Collapse
Affiliation(s)
- Pengyu Chen
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ting Ye
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Chunyuan Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Praveen Praveen
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science La Trobe University, Victoria, 3086, Australia.
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Wenyi Li
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science La Trobe University, Victoria, 3086, Australia.
| | - Chenjing Shang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
82
|
Gao S, Jin W, Quan Y, Li Y, Shen Y, Yuan S, Yi L, Wang Y, Wang Y. Bacterial capsules: Occurrence, mechanism, and function. NPJ Biofilms Microbiomes 2024; 10:21. [PMID: 38480745 PMCID: PMC10937973 DOI: 10.1038/s41522-024-00497-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
In environments characterized by extended multi-stress conditions, pathogens develop a variety of immune escape mechanisms to enhance their ability to infect the host. The capsules, polymers that bacteria secrete near their cell wall, participates in numerous bacterial life processes and plays a crucial role in resisting host immune attacks and adapting to their niche. Here, we discuss the relationship between capsules and bacterial virulence, summarizing the molecular mechanisms of capsular regulation and pathogenesis to provide new insights into the research on the pathogenesis of pathogenic bacteria.
Collapse
Affiliation(s)
- Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yingying Quan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yue Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Li Yi
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
- College of Life Science, Luoyang Normal University, Luoyang, 471934, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| |
Collapse
|
83
|
Azhari Rad R, Naghdi Y, Majidi Jamalabadi M, Masoumi S, Rezakhani L, Alizadeh M. Tissue Engineering Scaffolds Loaded With a Variety of Plant Extracts: Novel Model in Breast Cancer Therapy. Breast Cancer (Auckl) 2024; 18:11782234241236358. [PMID: 38476474 PMCID: PMC10929036 DOI: 10.1177/11782234241236358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Despite recent improvements in detecting and managing breast cancer (BC), it continues to be a major worldwide health concern that annually affects millions of people. Exploring the anti-BC potentials of natural compounds has received a lot of scientific attention due to their multi-target mode of action and good safety profiles because of these unmet needs. Drugs made from herbs are secure and have a lot fewer negative effects than those made from synthetic materials. Early stage patients benefit from breast-conserving surgery, but the risk of local recurrence remains, necessitating implanted scaffolds. These scaffolds provide residual cancer cell killing and tailored drug delivery. This review looks at plant extract-infused tissue engineering scaffolds, which provide a novel approach to treating BC. By offering patient individualized, safer treatments, these scaffolds could completely change how BC is treated.
Collapse
Affiliation(s)
- Reyhaneh Azhari Rad
- Student Research Committee, School of Paramedicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Yasaman Naghdi
- Student Research Committee, School of Paramedicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mobina Majidi Jamalabadi
- Student Research Committee, School of Nursing and Midwifery, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Sima Masoumi
- Graduate of Faculty of Veterinary Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
84
|
Vieira APGC, de Souza AN, Lima WG, Brito JCM, Simião DC, Gonçalves LVR, Cordeiro LPB, de Oliveira Scoaris D, Fernandes SOA, Resende JM, Bechinger B, Verly RM, de Lima ME. The Synthetic Peptide LyeTx I mn∆K, Derived from Lycosa erythrognatha Spider Toxin, Is Active against Methicillin-Resistant Staphylococcus aureus (MRSA) In Vitro and In Vivo. Antibiotics (Basel) 2024; 13:248. [PMID: 38534683 PMCID: PMC10967519 DOI: 10.3390/antibiotics13030248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
The urgent global health challenge posed by methicillin-resistant Staphylococcus aureus (MRSA) infections demands effective solutions. Antimicrobial peptides (AMPs) represent promising tools of research of new antibacterial agents and LyeTx I mn∆K, a short synthetic peptide based on the Lycosa erythrognatha spider venom, is a good representative. This study focused on analyzing the antimicrobial activities of LyeTx I mn∆K, including minimum inhibitory and bactericidal concentrations, synergy and resensitization assays, lysis activity, the effect on biofilm, and the bacterial death curve in MRSA. Additionally, its characterization was conducted through isothermal titration calorimetry, dynamic light scattering, calcein release, and finally, efficacy in a mice wound model. The peptide demonstrates remarkable efficacy against planktonic cells (MIC 8-16 µM) and biofilms (>30% of inhibition) of MRSA, and outperforms vancomycin in terms of rapid bactericidal action and anti-biofilm effects. The mechanism involves significant membrane damage. Interactions with bacterial model membranes, including those with lysylphosphatidylglycerol (LysylPOPG) modifications, highlight the versatility and selectivity of this compound. Also, the peptide has the ability to sensitize resistant bacteria to conventional antibiotics, showing potential for combinatory therapy. Furthermore, using an in vivo model, this study showed that a formulated gel containing the peptide proved superior to vancomycin in treating MRSA-induced wounds in mice. Together, the results highlight LyeTx I mnΔK as a promising prototype for the development of effective therapeutic strategies against superficial MRSA infections.
Collapse
Affiliation(s)
- Ana Paula Gonçalves Coelho Vieira
- Faculdade de Saúde Santa Casa de Belo Horizonte, Programa de Pós-Graduação Stricto Sensu em Medicina e Biomedicina, Belo Horizonte 30150-240, Brazil; (A.P.G.C.V.); (W.G.L.); (L.V.R.G.)
| | - Amanda Neves de Souza
- Departamento de Química, FACET, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)—Campus JK, Diamantina 39100-000, Brazil;
- Institut de Chimie, Centre National de la Recherche Scientifique, UMR7177, Université de Strasbourg, 67070 Strasbourg, France;
| | - William Gustavo Lima
- Faculdade de Saúde Santa Casa de Belo Horizonte, Programa de Pós-Graduação Stricto Sensu em Medicina e Biomedicina, Belo Horizonte 30150-240, Brazil; (A.P.G.C.V.); (W.G.L.); (L.V.R.G.)
| | | | - Daniela Carolina Simião
- Laboratório de Radioisótopos, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia—Campus Pampulha, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (D.C.S.); (S.O.A.F.)
| | - Lucas Vinícius Ribeiro Gonçalves
- Faculdade de Saúde Santa Casa de Belo Horizonte, Programa de Pós-Graduação Stricto Sensu em Medicina e Biomedicina, Belo Horizonte 30150-240, Brazil; (A.P.G.C.V.); (W.G.L.); (L.V.R.G.)
| | - Lídia Pereira Barbosa Cordeiro
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.P.B.C.); (J.M.R.)
| | | | - Simone Odília Antunes Fernandes
- Laboratório de Radioisótopos, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia—Campus Pampulha, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (D.C.S.); (S.O.A.F.)
| | - Jarbas Magalhães Resende
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.P.B.C.); (J.M.R.)
| | - Burkhard Bechinger
- Institut de Chimie, Centre National de la Recherche Scientifique, UMR7177, Université de Strasbourg, 67070 Strasbourg, France;
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - Rodrigo Moreira Verly
- Departamento de Química, FACET, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)—Campus JK, Diamantina 39100-000, Brazil;
| | - Maria Elena de Lima
- Faculdade de Saúde Santa Casa de Belo Horizonte, Programa de Pós-Graduação Stricto Sensu em Medicina e Biomedicina, Belo Horizonte 30150-240, Brazil; (A.P.G.C.V.); (W.G.L.); (L.V.R.G.)
| |
Collapse
|
85
|
Oliveira GDS, McManus C, Dos Santos VM. Control of Escherichia coli in Poultry Using the In Ovo Injection Technique. Antibiotics (Basel) 2024; 13:205. [PMID: 38534640 DOI: 10.3390/antibiotics13030205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
Pathogens, such as Escherichia coli (E. coli), have been identified as significant causes of poultry mortality. Poultry can serve as potential sources of E. coli transmission, even when asymptomatic, posing a substantial threat to food safety and human health. The in ovo administration of antimicrobials is crucial for preventing and/or effectively combating acute and chronic infections caused by poultry pathogens. To achieve this goal, it is critical that antimicrobials are properly injected into embryonic fluids, such as the amnion, to reach target tissues and trigger robust antimicrobial responses. Several protocols based on antimicrobials were evaluated to meet these requirements. This review analyzed the impacts of antimicrobial substances injected in ovo on the control of E. coli in poultry. The reduction in infection rates, resulting from the implementation of in ovo antimicrobials, combined with efforts aimed at hygienic-sanitary action plans in poultry sheds, reinforces confidence that E. coli can be contained before causing large scale damage. For example, antimicrobial peptides and probiotics have shown potential to provide protection to poultry against infections caused by E. coli. Issues related to the toxicity and bacterial resistance of many synthetic chemical compounds represent challenges that need to be overcome before the commercial application of in ovo injection protocols focused on microbiological control.
Collapse
Affiliation(s)
| | - Concepta McManus
- Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília 70910-900, Brazil
| | | |
Collapse
|
86
|
Satchanska G, Davidova S, Gergova A. Diversity and Mechanisms of Action of Plant, Animal, and Human Antimicrobial Peptides. Antibiotics (Basel) 2024; 13:202. [PMID: 38534637 DOI: 10.3390/antibiotics13030202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/05/2024] [Accepted: 01/17/2024] [Indexed: 03/28/2024] Open
Abstract
Antimicrobial peptides (AMPs) are usually made up of fewer than 100 amino acid residues. They are found in many living organisms and are an important factor in those organisms' innate immune systems. AMPs can be extracted from various living sources, including bacteria, plants, animals, and even humans. They are usually cationic peptides with an amphiphilic structure, which allows them to easily bind and interact with the cellular membranes of viruses, bacteria, fungi, and other pathogens. They can act against both Gram-negative and Gram-positive pathogens and have various modes of action against them. Some attack the pathogens' membranes, while others target their intracellular organelles, as well as their nucleic acids, proteins, and metabolic pathways. A crucial area of AMP use is related to their ability to help with emerging antibiotic resistance: some AMPs are active against resistant strains and are susceptible to peptide engineering. This review considers AMPs from three key sources-plants, animals, and humans-as well as their modes of action and some AMP sequences.
Collapse
Affiliation(s)
- Galina Satchanska
- BioLaboratory-MF-NBU, Department of Natural Sciences, New Bulgarian University, 1618 Sofia, Bulgaria
| | - Slavena Davidova
- BioLaboratory-MF-NBU, Department of Natural Sciences, New Bulgarian University, 1618 Sofia, Bulgaria
| | - Alexandra Gergova
- BioLaboratory-MF-NBU, Department of Natural Sciences, New Bulgarian University, 1618 Sofia, Bulgaria
| |
Collapse
|
87
|
Tang S, Peel E, Belov K, Hogg CJ, Farquharson KA. Multi-omics resources for the Australian southern stuttering frog (Mixophyes australis) reveal assorted antimicrobial peptides. Sci Rep 2024; 14:3991. [PMID: 38368484 PMCID: PMC10874372 DOI: 10.1038/s41598-024-54522-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/13/2024] [Indexed: 02/19/2024] Open
Abstract
The number of genome-level resources for non-model species continues to rapidly expand. However, frog species remain underrepresented, with up to 90% of frog genera having no genomic or transcriptomic data. Here, we assemble the first genomic and transcriptomic resources for the recently described southern stuttering frog (Mixophyes australis). The southern stuttering frog is ground-dwelling, inhabiting naturally vegetated riverbanks in south-eastern Australia. Using PacBio HiFi long-read sequencing and Hi-C scaffolding, we generated a high-quality genome assembly, with a scaffold N50 of 369.3 Mb and 95.1% of the genome contained in twelve scaffolds. Using this assembly, we identified the mitochondrial genome, and assembled six tissue-specific transcriptomes. We also bioinformatically characterised novel sequences of two families of antimicrobial peptides (AMPs) in the southern stuttering frog, the cathelicidins and β-defensins. While traditional peptidomic approaches to peptide discovery have typically identified one or two AMPs in a frog species from skin secretions, our bioinformatic approach discovered 12 cathelicidins and two β-defensins that were expressed in a range of tissues. We investigated the novelty of the peptides and found diverse predicted activities. Our bioinformatic approach highlights the benefits of multi-omics resources in peptide discovery and contributes valuable genomic resources in an under-represented taxon.
Collapse
Affiliation(s)
- Simon Tang
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Emma Peel
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Katherine A Farquharson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
88
|
Safwan SM, Kumar N, Mehta D, Singh M, Saini V, Pandey N, Khatol S, Batheja S, Singh J, Walia P, Bajaj A. Xanthone Derivatives Enhance the Therapeutic Potential of Neomycin against Polymicrobial Gram-Negative Bacterial Infections. ACS Infect Dis 2024; 10:527-540. [PMID: 38294409 DOI: 10.1021/acsinfecdis.3c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Gram-negative bacterial infections are difficult to manage as many antibiotics are ineffective owing to the presence of impermeable bacterial membranes. Polymicrobial infections pose a serious threat due to the inadequate efficacy of available antibiotics, thereby necessitating the administration of antibiotics at higher doses. Antibiotic adjuvants have emerged as a boon as they can augment the therapeutic potential of available antibiotics. However, the toxicity profile of antibiotic adjuvants is a major hurdle in clinical translation. Here, we report the design, synthesis, and biological activities of xanthone-derived molecules as potential antibiotic adjuvants. Our SAR studies witnessed that the p-dimethylamino pyridine-derivative of xanthone (X8) enhances the efficacy of neomycin (NEO) against Escherichia coli and Pseudomonas aeruginosa and causes a synergistic antimicrobial effect without any toxicity against mammalian cells. Biochemical studies suggest that the combination of X8 and NEO, apart from inhibiting protein synthesis, enhances the membrane permeability by binding to lipopolysaccharide. Notably, the combination of X8 and NEO can disrupt the monomicrobial and polymicrobial biofilms and show promising therapeutic potential against a murine wound infection model. Collectively, our results unveil the combination of X8 and NEO as a suitable adjuvant therapy for the inhibition of the Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Sayed Mohamad Safwan
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Neeraj Kumar
- Lord Shiva College of Pharmacy, Near Civil Hospital, Sirsa 125055, Haryana, India
| | - Devashish Mehta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Mohit Singh
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Varsha Saini
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Nishant Pandey
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Steffi Khatol
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Shalini Batheja
- Lord Shiva College of Pharmacy, Near Civil Hospital, Sirsa 125055, Haryana, India
| | - Jitender Singh
- Lord Shiva College of Pharmacy, Near Civil Hospital, Sirsa 125055, Haryana, India
| | - Preeti Walia
- Lord Shiva College of Pharmacy, Near Civil Hospital, Sirsa 125055, Haryana, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| |
Collapse
|
89
|
Sarkar T, Ghosh S, Sundaravadivelu PK, Pandit G, Debnath S, Thummer RP, Satpati P, Chatterjee S. Mechanism of Protease Resistance of D-Amino Acid Residue Containing Cationic Antimicrobial Heptapeptides. ACS Infect Dis 2024; 10:562-581. [PMID: 38294842 DOI: 10.1021/acsinfecdis.3c00491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Antimicrobial peptides (AMPs) have been an alternate promising class of therapeutics in combating global antibiotic resistance threat. However, the short half-life of AMPs, owing to protease degradability, is one of the major bottlenecks in its commercial success. In this study, we have developed all-D-amino acid containing small cationic peptides P4C and P5C, which are completely protease-resistant, noncytotoxic, nonhemolytic, and potent against the ESKAPE pathogens in comparison to their L analogues. MD simulations suggested marginal improvement in the peptide-binding affinity to the membrane-mimetic SDS micelle (∼ 1 kcal/mol) in response to L → D conversion, corroborating the marginal improvement in the antimicrobial activity. However, L → D chirality conversion severely compromised the peptide:protease (trypsin) binding affinity (≥10 kcal/mol). The relative distance between the scissile peptide carbonyl and the catalytic triad of the protease (H57, D102, and S195) was found to be significantly altered in the D-peptide:protease complex (inactive conformation) relative to the active L-peptide:protease complex. Thus, the poor binding affinity between D-peptides and the protease, resulting in the inactive complex formation, explained their experimentally observed proteolytic stability. This mechanistic insight might be extended to the proteolytic stability of the D-peptides in general and stimulate the rational design of protease-resistant AMPs.
Collapse
Affiliation(s)
- Tanumoy Sarkar
- Department of Chemistry, Indian Institute of Technology, Guwahati, Guwahati, Assam 781039, India
| | - Suvankar Ghosh
- Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Guwahati, Assam 781039, India
| | | | - Gopal Pandit
- Department of Chemistry, Indian Institute of Technology, Guwahati, Guwahati, Assam 781039, India
| | - Swapna Debnath
- Department of Chemistry, Indian Institute of Technology, Guwahati, Guwahati, Assam 781039, India
| | - Rajkumar P Thummer
- Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Guwahati, Assam 781039, India
| | - Priyadarshi Satpati
- Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Guwahati, Assam 781039, India
| | - Sunanda Chatterjee
- Department of Chemistry, Indian Institute of Technology, Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
90
|
Hagemann CL, Macedo AJ, Tasca T. Therapeutic potential of antimicrobial peptides against pathogenic protozoa. Parasitol Res 2024; 123:122. [PMID: 38311672 DOI: 10.1007/s00436-024-08133-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/18/2024] [Indexed: 02/06/2024]
Abstract
Protozoal infections cause significant morbidity and mortality in humans and animals. The use of several antiprotozoal drugs is associated with serious adverse effects and resistance development, and drugs that are more effective are urgently needed. Microorganisms, mammalian cells and fluids, insects, and reptiles are sources of antimicrobial peptides (AMPs) that act against pathogenic microorganisms; these AMPs have been widely studied as a promising alternative therapeutic option to conventional antibiotics, aiming to treat infections caused by multidrug-resistant pathogens. One advantage of AMP molecules is their adaptability, as they can be easily fine-tuned for broad-spectrum or targeted activity by changing the amino acid residues in their sequence. Consequently, these variations in structural and physicochemical properties can alter the antimicrobial activities of AMPs and decrease resistance development. This article presents an overview of peptide activities against amebiasis, giardiasis, trichomoniasis, Chagas disease, leishmaniasis, malaria, and toxoplasmosis. AMPs and their analogs demonstrate great potential as therapeutics, with potent and selective activity, when compared with commercially available drugs, and hold the potential to act as new scaffolds for the development of novel anti-protozoal drugs.
Collapse
Affiliation(s)
- Corina Lobato Hagemann
- Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul, Avenida Ipiranga, 2752, Porto Alegre, RS, CEP 90610-000, Brazil
| | - Alexandre José Macedo
- Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul, Avenida Ipiranga, 2752, Porto Alegre, RS, CEP 90610-000, Brazil
| | - Tiana Tasca
- Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul, Avenida Ipiranga, 2752, Porto Alegre, RS, CEP 90610-000, Brazil.
| |
Collapse
|
91
|
Han J, Wu P, Yang J, Weng Y, Lin Y, Chen Z, Yu F, Lü X, Ni L. Development of a novel hybrid antimicrobial peptide for enhancing antimicrobial spectrum and potency against food-borne pathogens. J Appl Microbiol 2024; 135:lxae023. [PMID: 38337177 DOI: 10.1093/jambio/lxae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/30/2023] [Accepted: 02/08/2024] [Indexed: 02/12/2024]
Abstract
AIMS To address the increasingly serious challenge of the transmission of foodbrone pathogens in the food chain. METHODS AND RESULTS In this study, we employed rational design strategies, including truncation, amino acid substitution, and heterozygosity, to generate seven engineered peptides with α-helical structure, cationic property, and amphipathic characteristics based on the original Abhisin template. Among them, as the hybird antimicrobial peptide (AMP), AM exhibits exceptional stability, minimal toxicity, as well as broad-spectrum and potent antimicrobial activity against foodborne pathogens. Besides, it was observed that the electrostatic incorporation demonstrates by AM results in its primary targeting and disruption of the cell wall and membrane of Escherichia coli O157: H7 (EHEC) and methicillin-resistant Staphylococcus aureus (MRSA), resulting in membrane perforation and enhanced permeability. Additionally, AM effectively counteracts the deleterious effects of lipopolysaccharide, eradicating biofilms and ultimately inducing the demise of both food spoilage and pathogenic microorganisms. CONCLUSIONS The findings highlight the significant potential of AM as a highly promising candidate for a novel food preservative and its great importance in the design and optimization of AMP-related agents.
Collapse
Affiliation(s)
- Jinzhi Han
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian 362200, China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
- Fujian Research Center of Food Biotechnology and Innovation Engineering, Fuzhou, Fujian 350108, China
| | - Peifen Wu
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
- Fujian Research Center of Food Biotechnology and Innovation Engineering, Fuzhou, Fujian 350108, China
| | - Jie Yang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
- Fujian Research Center of Food Biotechnology and Innovation Engineering, Fuzhou, Fujian 350108, China
| | - Yanlin Weng
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
- Fujian Research Center of Food Biotechnology and Innovation Engineering, Fuzhou, Fujian 350108, China
| | - Yayi Lin
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
- Fujian Research Center of Food Biotechnology and Innovation Engineering, Fuzhou, Fujian 350108, China
| | - Zhiying Chen
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
- Fujian Research Center of Food Biotechnology and Innovation Engineering, Fuzhou, Fujian 350108, China
| | - Fengfan Yu
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
- Fujian Research Center of Food Biotechnology and Innovation Engineering, Fuzhou, Fujian 350108, China
| | - Xucong Lü
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian 362200, China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
- Fujian Research Center of Food Biotechnology and Innovation Engineering, Fuzhou, Fujian 350108, China
| | - Li Ni
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian 362200, China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
- Fujian Research Center of Food Biotechnology and Innovation Engineering, Fuzhou, Fujian 350108, China
| |
Collapse
|
92
|
Jokar J, Abdulabbas HT, Javanmardi K, Mobasher MA, Jafari S, Ghasemian A, Rahimian N, Zarenezhad A, ُSoltani Hekmat A. Enhancement of bactericidal effects of bacteriophage and gentamicin combination regimen against Staphylococcus aureus and Pseudomonas aeruginosa strains in a mice diabetic wound model. Virus Genes 2024; 60:80-96. [PMID: 38079060 DOI: 10.1007/s11262-023-02037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/17/2023] [Indexed: 02/15/2024]
Abstract
Diabetic patients are more susceptible to developing wound infections resulting in poor and delayed wound healing. Bacteriophages, the viruses that target-specific bacteria, can be used as an alternative to antibiotics to eliminate drug-resistant bacterial infections. Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) are among the most frequently identified pathogens in diabetic foot ulcers (DFUs). The aim of this study was assessment of bacteriophage and gentamicin combination effects on bacterial isolates from DFU infections. Specific bacteriophages were collected from sewage and animal feces samples and the phages were enriched using S. aureus and P. aeruginosa cultures. The lytic potential of phage isolates was assessed by the clarity of plaques. We isolated and characterized four lytic phages: Stp2, Psp1, Stp1, and Psp2. The phage cocktail was optimized and investigated in vitro. We also assessed the effects of topical bacteriophage cocktail gel on animal models of DFU. Results revealed that the phage cocktail significantly reduced the mortality rate in diabetic infected mice. We determined that treatment with bacteriophage cocktail effectively decreased bacterial colony counts and improved wound healing in S. aureus and P. aeruginosa infections, especially when administrated concomitantly with gentamicin. The application of complementary therapy using a phage cocktail and gentamicin, could offer an attractive approach for the treatment of wound diabetic bacterial infections.
Collapse
Affiliation(s)
- Javad Jokar
- Department of Tissue Engineering, Faculty of Medicine, Fasa University of Medical Science, Fasa, Iran
| | - Hussein T Abdulabbas
- Department of Medical Microbiology, Medical College, Al Muthanna University, Samawah, Al Muthann, Iraq
| | - Kazem Javanmardi
- Department of Physiology, Fasa University of Medical Sciences, Fasa, Iran
| | - Mohammad Ali Mobasher
- Department of Biotechnology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Shima Jafari
- Department of Biotechnology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Niloofar Rahimian
- Department of Biotechnology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | | |
Collapse
|
93
|
Collins J, McConnell A, Schmitz ZD, Hackel BJ. Sequence-function mapping of proline-rich antimicrobial peptides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.28.577586. [PMID: 38352424 PMCID: PMC10862732 DOI: 10.1101/2024.01.28.577586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Antimicrobial peptides (AMPs) are essential elements of natural cellular combat and candidates as antibiotic therapy. Elevated function may be needed for robust physiological performance. Yet, both pure protein design and combinatorial library discovery are hindered by the complexity of antimicrobial activity. We applied a recently developed high-throughput technique, sequence-activity mapping of AMPs via depletion (SAMP-Dep), to proline-rich AMPs. Robust self-inhibition was achieved for metalnikowin 1 (Met) and apidaecin 1b (Api). SAMP-Dep exhibited high reproducibility with correlation coefficients 0.90 and 0.92, for Met and Api, respectively, between replicates and 0.99 and 0.96 for synonymous genetic variants. Sequence-activity maps were obtained via characterization of 26,000 and 34,000 mutants of Met and Api, respectively. Both AMPs exhibit similar mutational profiles including beneficial mutations at one terminus, the C-terminus for Met and N-terminus for Api, which is consistent with their opposite binding orientations in the ribosome. While Met and Api reside with the family of proline-rich AMPs, different proline sites exhibit substantially different mutational tolerance. Within the PRP motif, proline mutation eliminates activity, whereas non-PRP prolines readily tolerate mutation. Homologous mutations are more tolerated, particularly at alternating sites on one 'face' of the peptide. Important and consistent epistasis was observed following the PRP domain within the segment that extends into the ribosomal exit tunnel for both peptides. Variants identified from the SAMP-Dep platform were produced and exposed toward Gram-negative species exogenously, showing either increased potency or specificity for strains tested. In addition to mapping sequence-activity space for fundamental insight and therapeutic engineering, the results advance the robustness of the SAMP-Dep platform for activity characterization.
Collapse
Affiliation(s)
| | | | - Zachary D Schmitz
- Chemical Engineering and Materials Science University of Minnesota, Minneapolis, MN 55455
| | - Benjamin J Hackel
- Biomedical Engineering, Minneapolis, MN 55455
- Chemical Engineering and Materials Science University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
94
|
Liu C, Han J, Li Z, Liu Y, Wu R, Cao S, Wu D. Imidazolium-Based Main-Chain Copolymers With Alternating Sequences for Broad-Spectrum Bactericidal Activity and Eradication of Bacterial Biofilms. Macromol Biosci 2024:e2300489. [PMID: 38261742 DOI: 10.1002/mabi.202300489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/14/2023] [Indexed: 01/25/2024]
Abstract
In response to the escalating challenge of bacterial drug resistance, the imperative to counteract planktonic cell proliferation and eliminate entrenched biofilms underscores the necessity for cationic polymeric antibacterials. However, limited efficacy and cytotoxicity challenge their practical use. Here, novel imidazolium-based main-chain copolymers with imidazolium (PIm+ ) as the cationic component are introduced. By adjusting precursor molecules, hydrophobicity and cationic density of each unit are fine-tuned, resulting in broad-spectrum bactericidal activity against clinically relevant pathogens. PIm+ 1 stands out for its potent antibacterial performance, with a minimum inhibitory concentration of 32 µg mL-1 against Methicillin-resistant Staphylococcus aureus (MRSA), and substantial biofilm reduction in Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) biofilms. The bactericidal mechanism involves disrupting the outer and cytoplasmic membranes, depolarizing the cytoplasmic membrane, and triggering intracellular reactive oxygen species (ROS) generation. Collectively, this study postulates the potential of imidazolium-based main-chain copolymers, systematically tailored in their sequences, to serve as a promising candidate in combatting drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Changjiang Liu
- Sun Yat-Sen University of Shenzhen Campus, School of Biomedical Engineering, Shenzhen, 518107, China
| | - Jialei Han
- Sun Yat-Sen University of Shenzhen Campus, School of Biomedical Engineering, Shenzhen, 518107, China
| | - Zeyuan Li
- Sun Yat-Sen University of Shenzhen Campus, School of Biomedical Engineering, Shenzhen, 518107, China
| | - Yadong Liu
- Sun Yat-Sen University of Shenzhen Campus, School of Biomedical Engineering, Shenzhen, 518107, China
| | - Ruodai Wu
- Shenzhen University General Hospital, Shenzhen, 518000, China
| | - Shuaishuai Cao
- Shenzhen University General Hospital, Shenzhen, 518000, China
| | - Dalin Wu
- Sun Yat-Sen University of Shenzhen Campus, School of Biomedical Engineering, Shenzhen, 518107, China
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Shenzhen, 518107, China
| |
Collapse
|
95
|
Feijoo-Coronel ML, Mendes B, Ramírez D, Peña-Varas C, de los Monteros-Silva NQE, Proaño-Bolaños C, de Oliveira LC, Lívio DF, da Silva JA, da Silva JMSF, Pereira MGAG, Rodrigues MQRB, Teixeira MM, Granjeiro PA, Patel K, Vaiyapuri S, Almeida JR. Antibacterial and Antiviral Properties of Chenopodin-Derived Synthetic Peptides. Antibiotics (Basel) 2024; 13:78. [PMID: 38247637 PMCID: PMC10812719 DOI: 10.3390/antibiotics13010078] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Antimicrobial peptides have been developed based on plant-derived molecular scaffolds for the treatment of infectious diseases. Chenopodin is an abundant seed storage protein in quinoa, an Andean plant with high nutritional and therapeutic properties. Here, we used computer- and physicochemical-based strategies and designed four peptides derived from the primary structure of Chenopodin. Two peptides reproduce natural fragments of 14 amino acids from Chenopodin, named Chen1 and Chen2, and two engineered peptides of the same length were designed based on the Chen1 sequence. The two amino acids of Chen1 containing amide side chains were replaced by arginine (ChenR) or tryptophan (ChenW) to generate engineered cationic and hydrophobic peptides. The evaluation of these 14-mer peptides on Staphylococcus aureus and Escherichia coli showed that Chen1 does not have antibacterial activity up to 512 µM against these strains, while other peptides exhibited antibacterial effects at lower concentrations. The chemical substitutions of glutamine and asparagine by amino acids with cationic or aromatic side chains significantly favoured their antibacterial effects. These peptides did not show significant hemolytic activity. The fluorescence microscopy analysis highlighted the membranolytic nature of Chenopodin-derived peptides. Using molecular dynamic simulations, we found that a pore is formed when multiple peptides are assembled in the membrane. Whereas, some of them form secondary structures when interacting with the membrane, allowing water translocations during the simulations. Finally, Chen2 and ChenR significantly reduced SARS-CoV-2 infection. These findings demonstrate that Chenopodin is a highly useful template for the design, engineering, and manufacturing of non-toxic, antibacterial, and antiviral peptides.
Collapse
Affiliation(s)
- Marcia L. Feijoo-Coronel
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena 150101, Ecuador
| | - Bruno Mendes
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena 150101, Ecuador
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
| | - Carlos Peña-Varas
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
| | | | - Carolina Proaño-Bolaños
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena 150101, Ecuador
| | - Leonardo Camilo de Oliveira
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Diego Fernandes Lívio
- Campus Centro Oeste, Federal University of São João Del-Rei, Rua Sebastião Gonçalves Filho, n 400, Chanadour, Divinópolis 35501-296, Brazil
| | - José Antônio da Silva
- Campus Centro Oeste, Federal University of São João Del-Rei, Rua Sebastião Gonçalves Filho, n 400, Chanadour, Divinópolis 35501-296, Brazil
| | - José Maurício S. F. da Silva
- Departamento de Bioquímica, Centro de Ciências Biomédicas, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 700, Sala E209, Alfenas 37130-001, Brazil
| | - Marília Gabriella A. G. Pereira
- Departamento de Bioquímica, Centro de Ciências Biomédicas, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 700, Sala E209, Alfenas 37130-001, Brazil
| | - Marina Q. R. B. Rodrigues
- Departamento de Bioquímica, Centro de Ciências Biomédicas, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 700, Sala E209, Alfenas 37130-001, Brazil
- Departamento de Engenharia de Biossistemas, Campus Dom Bosco, Federal University of São João Del-Rei, Praça Dom Helvécio, 74, Fábricas, São João del-Rei 36301-160, Brazil
| | - Mauro M. Teixeira
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Paulo Afonso Granjeiro
- Campus Centro Oeste, Federal University of São João Del-Rei, Rua Sebastião Gonçalves Filho, n 400, Chanadour, Divinópolis 35501-296, Brazil
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK
| | | | - José R. Almeida
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena 150101, Ecuador
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK
| |
Collapse
|
96
|
Beyer L, Schäfer AB, Undabarrena A, Mattsby-Baltzer I, Tietze D, Svensson E, Stubelius A, Wenzel M, Cámara B, Tietze AA. Mimicking Nonribosomal Peptides from the Marine Actinomycete Streptomyces sp. H-KF8 Leads to Antimicrobial Peptides. ACS Infect Dis 2024; 10:79-92. [PMID: 38113038 PMCID: PMC10788856 DOI: 10.1021/acsinfecdis.3c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
Microorganisms within the marine environment have been shown to be very effective sources of naturally produced antimicrobial peptides (AMPs). Several nonribosomal peptides were identified based on genome mining predictions of Streptomyces sp. H-KF8, a marine Actinomycetota isolated from a remote Northern Chilean Patagonian fjord. Based on these predictions, a series of eight peptides, including cyclic peptides, were designed and chemically synthesized. Six of these peptides showed antimicrobial activity. Mode of action studies suggest that two of these peptides potentially act on the cell membrane via a novel mechanism allowing the passage of small ions, resulting in the dissipation of the membrane potential. This study shows that though structurally similar peptides, determined by NMR spectroscopy, the incorporation of small sequence mutations results in a dramatic influence on their bioactivity including mode of action. The qualified hit sequence can serve as a basis for more potent AMPs in future studies.
Collapse
Affiliation(s)
- Luisa
I. Beyer
- Department
of Chemistry and Molecular Biology, Wallenberg Centre for Molecular
and Translational Medicine, University of
Gothenburg, Medicinaregatan
7B, Gothenburg 413 90, Sweden
- Center
for Antibiotic Resistance Research in Gothenburg, University of Gothenburg, Box 100, Göteborg 405 30, Sweden
| | - Ann-Britt Schäfer
- Department
of Life Sciences, Chalmers University of
Technology, Kemigården 4, Göteborg 412 96, Sweden
- Center
for Antibiotic Resistance Research in Gothenburg, University of Gothenburg, Box 100, Göteborg 405 30, Sweden
| | - Agustina Undabarrena
- Departamento
de Química & Centro de Biotecnología Daniel Alkalay
Lowitt, Laboratorio de Microbiología Molecular y Biotecnología
Ambiental, Universidad Técnica Federico
Santa María, Valparaíso 2340000, Chile
| | - Inger Mattsby-Baltzer
- Department
of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska
Academy at University of Gothenburg, University
of Gothenburg, Box 440, Göteborg 405 30, Sweden
| | - Daniel Tietze
- Department
of Chemistry and Molecular Biology, Wallenberg Centre for Molecular
and Translational Medicine, University of
Gothenburg, Medicinaregatan
7B, Gothenburg 413 90, Sweden
- Center
for Antibiotic Resistance Research in Gothenburg, University of Gothenburg, Box 100, Göteborg 405 30, Sweden
| | - Elin Svensson
- Department
of Life Sciences, Chalmers University of
Technology, Kemigården 4, Göteborg 412 96, Sweden
| | - Alexandra Stubelius
- Department
of Life Sciences, Chalmers University of
Technology, Kemigården 4, Göteborg 412 96, Sweden
| | - Michaela Wenzel
- Department
of Life Sciences, Chalmers University of
Technology, Kemigården 4, Göteborg 412 96, Sweden
- Center
for Antibiotic Resistance Research in Gothenburg, University of Gothenburg, Box 100, Göteborg 405 30, Sweden
| | - Beatriz Cámara
- Departamento
de Química & Centro de Biotecnología Daniel Alkalay
Lowitt, Laboratorio de Microbiología Molecular y Biotecnología
Ambiental, Universidad Técnica Federico
Santa María, Valparaíso 2340000, Chile
| | - Alesia A. Tietze
- Department
of Chemistry and Molecular Biology, Wallenberg Centre for Molecular
and Translational Medicine, University of
Gothenburg, Medicinaregatan
7B, Gothenburg 413 90, Sweden
- Center
for Antibiotic Resistance Research in Gothenburg, University of Gothenburg, Box 100, Göteborg 405 30, Sweden
| |
Collapse
|
97
|
Ghazvini K, Kamali H, Farsiani H, Yousefi M, Keikha M. Sustain-release lipid-liquid crystal formulations of pexiganan against Helicobacter pylori infection: in vitro evaluation in C57BL/6 mice. BMC Pharmacol Toxicol 2024; 25:9. [PMID: 38212864 PMCID: PMC10785446 DOI: 10.1186/s40360-024-00731-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024] Open
Abstract
INTRODUCTION The Gram-negative bacterium Helicobacter pylori, H. pylori, is associated with significant digestive disorders. However, the effectiveness of bacterial eradication is declining due to drug resistance. A potent anti-H. pylori activity is shown by the natural antimicrobial peptide pexiganan. OBJECTIVE The current study aimed to evaluate the effectiveness of pexiganan and its lipid-liquid crystals (LLCs) in inducing Helicobacter pylori in mice. METHODS In this experimental study, H. pylori infection was first induced in C57BL/6 mice. Secondly, the antibacterial efficacy of pexiganan and its LLCs formulations was investigated to eliminate H. pylori infection. RESULTS The H. pylori infection could not be completely eradicated by pexiganan peptide alone. However, incorporating pexiganan within the LLC formulation resulted in an increased elimination of H. pylori. Under the H&E strain, the pexiganan-LLCs formulation revealed minimal mucosal alterations and a lower amount of inflammatory cell infiltration in the stomach compared to the placebo. CONCLUSION Clarithromycin was more effective than pexiganan at all tested concentrations. Furthermore, the pexiganan-loaded LLCs exhibited superior efficacy in curing H. pylori infection in a mouse model compared to pexiganan alone. This formulation can enhance H. pylori clearance while mitigating the adverse effects, typically associated with conventional drugs, leading to a viable alternative to current treatment options.
Collapse
Affiliation(s)
- Kiarash Ghazvini
- Department of Microbiology and Virology, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hossein Kamali
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Farsiani
- Department of Microbiology and Virology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Yousefi
- Department of Microbiology and Virology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Keikha
- Department of Microbiology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran.
| |
Collapse
|
98
|
Huang R, Hu Q, Ko CN, Tang FK, Xuan S, Wong HM, Jin L, Li X, Leung KCF. Nano-based theranostic approaches for infection control: current status and perspectives. MATERIALS CHEMISTRY FRONTIERS 2024; 8:9-40. [DOI: 10.1039/d3qm01048a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Nano-based theranostic platforms constructed from various nanomaterials possess unique advantages in tackling bacterial and fungal infections while detecting pathogenic cells, making them a potential modality for addressing global healthcare burdens.
Collapse
Affiliation(s)
- Regina Huang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Qin Hu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Chung-Nga Ko
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, P. R. China
| | - Fung Kit Tang
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, P. R. China
| | - Shouhu Xuan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - Hai Ming Wong
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Lijian Jin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Xuan Li
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Ken Cham-Fai Leung
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, P. R. China
| |
Collapse
|
99
|
Otvos L, Wade JD. Big peptide drugs in a small molecule world. Front Chem 2023; 11:1302169. [PMID: 38144886 PMCID: PMC10740154 DOI: 10.3389/fchem.2023.1302169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
A quarter of a century ago, designer peptide drugs finally broke through the glass ceiling. Despite the resistance by big pharma, biotechnology companies managed to develop injectable peptide-based drugs, first against orphan or other small volume diseases, and later for conditions affecting large patient populations such as type 2 diabetes. Even their lack of gastrointestinal absorption could be utilized to enable successful oral dosing against chronic constipation. The preference of peptide therapeutics over small molecule competitors against identical medical conditions can be achieved by careful target selection, intrachain and terminal amino acid modifications, appropriate conjugation to stability enhancers and chemical space expansion, innovative delivery and administration techniques and patient-focused marketing strategies. Unfortunately, however, pharmacoeconomical considerations, including the strength of big pharma to develop competing small molecule drugs, have somewhat limited the success of otherwise smart peptide-based therapeutics. Yet, with increasing improvement in peptide drug modification and formulation, these are continuing to gain significant, and growing, acceptance as desirable alternatives to small molecule compounds.
Collapse
Affiliation(s)
- Laszlo Otvos
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
- OLPE Pharmaceutical Consultants, Audubon, PA, United States
| | - John D. Wade
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- School of Chemistry, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
100
|
Gallardo-Becerra L, Cervantes-Echeverría M, Cornejo-Granados F, Vazquez-Morado LE, Ochoa-Leyva A. Perspectives in Searching Antimicrobial Peptides (AMPs) Produced by the Microbiota. MICROBIAL ECOLOGY 2023; 87:8. [PMID: 38036921 PMCID: PMC10689560 DOI: 10.1007/s00248-023-02313-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Changes in the structure and function of the microbiota are associated with various human diseases. These microbial changes can be mediated by antimicrobial peptides (AMPs), small peptides produced by the host and their microbiota, which play a crucial role in host-bacteria co-evolution. Thus, by studying AMPs produced by the microbiota (microbial AMPs), we can better understand the interactions between host and bacteria in microbiome homeostasis. Additionally, microbial AMPs are a new source of compounds against pathogenic and multi-resistant bacteria. Further, the growing accessibility to metagenomic and metatranscriptomic datasets presents an opportunity to discover new microbial AMPs. This review examines the structural properties of microbiota-derived AMPs, their molecular action mechanisms, genomic organization, and strategies for their identification in any microbiome data as well as experimental testing. Overall, we provided a comprehensive overview of this important topic from the microbial perspective.
Collapse
Affiliation(s)
- Luigui Gallardo-Becerra
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico (UNAM), Avenida Universidad 2001, C.P. 62210, Cuernavaca, Morelos, Mexico
| | - Melany Cervantes-Echeverría
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico (UNAM), Avenida Universidad 2001, C.P. 62210, Cuernavaca, Morelos, Mexico
| | - Fernanda Cornejo-Granados
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico (UNAM), Avenida Universidad 2001, C.P. 62210, Cuernavaca, Morelos, Mexico
| | - Luis E Vazquez-Morado
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico (UNAM), Avenida Universidad 2001, C.P. 62210, Cuernavaca, Morelos, Mexico
| | - Adrian Ochoa-Leyva
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico (UNAM), Avenida Universidad 2001, C.P. 62210, Cuernavaca, Morelos, Mexico.
| |
Collapse
|