51
|
Ayer A, Fazakerley DJ, James DE, Stocker R. The role of mitochondrial reactive oxygen species in insulin resistance. Free Radic Biol Med 2022; 179:339-362. [PMID: 34775001 DOI: 10.1016/j.freeradbiomed.2021.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/31/2021] [Accepted: 11/06/2021] [Indexed: 12/21/2022]
Abstract
Insulin resistance is one of the earliest pathological features of a suite of diseases including type 2 diabetes collectively referred to as metabolic syndrome. There is a growing body of evidence from both pre-clinical studies and human cohorts indicating that reactive oxygen species, such as the superoxide radical anion and hydrogen peroxide are key players in the development of insulin resistance. Here we review the evidence linking mitochondrial reactive oxygen species generated within mitochondria with insulin resistance in adipose tissue and skeletal muscle, two major insulin sensitive tissues. We outline the relevant mitochondria-derived reactive species, how the mitochondrial redox state is regulated, and methodologies available to measure mitochondrial reactive oxygen species. Importantly, we highlight key experimental issues to be considered when studying the role of mitochondrial reactive oxygen species in insulin resistance. Evaluating the available literature on both mitochondrial reactive oxygen species/redox state and insulin resistance in a variety of biological systems, we conclude that the weight of evidence suggests a likely role for mitochondrial reactive oxygen species in the etiology of insulin resistance in adipose tissue and skeletal muscle. However, major limitations in the methods used to study reactive oxygen species in insulin resistance as well as the lack of data linking mitochondrial reactive oxygen species and cytosolic insulin signaling pathways are significant obstacles in proving the mechanistic link between these two processes. We provide a framework to guide future studies to provide stronger mechanistic information on the link between mitochondrial reactive oxygen species and insulin resistance as understanding the source, localization, nature, and quantity of mitochondrial reactive oxygen species, their targets and downstream signaling pathways may pave the way for important new therapeutic strategies.
Collapse
Affiliation(s)
- Anita Ayer
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Daniel J Fazakerley
- Metabolic Research Laboratory, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - David E James
- Charles Perkins Centre, Sydney Medical School, The University of Sydney, Sydney, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Roland Stocker
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.
| |
Collapse
|
52
|
Ismaeel A, Miserlis D, Papoutsi E, Haynatzki G, Bohannon WT, Smith RS, Eidson JL, Casale GP, Pipinos II, Koutakis P. Endothelial cell-derived pro-fibrotic factors increase TGF-β1 expression by smooth muscle cells in response to cycles of hypoxia-hyperoxia. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166278. [PMID: 34601016 PMCID: PMC8629962 DOI: 10.1016/j.bbadis.2021.166278] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/12/2021] [Accepted: 09/23/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND The vascular pathology of peripheral artery disease (PAD) encompasses abnormal microvascular architecture and fibrosis in response to ischemia-reperfusion (I/R) cycles. We aimed to investigate the mechanisms by which pathological changes in the microvasculature direct fibrosis in the context of I/R. METHODS Primary human aortic endothelial cells (ECs) were cultured under cycles of normoxia-hypoxia (NH) or normoxia-hypoxia-hyperoxia (NHH) to mimic I/R. Primary human aortic smooth muscle cells (SMCs) were cultured and treated with media from the ECs. FINDINGS The mRNA and protein expression of the pro-fibrotic factors platelet derived growth factor (PDGF)-BB and connective tissue growth factor (CTGF) were significantly upregulated in ECs undergoing NH or NHH cycles. Treatment of SMCs with media from ECs undergoing NH or NHH cycles led to significant increases in TGF-β1, TGF-β pathway signaling intermediates, and collagen expression. Addition of neutralizing antibodies against PDGF-BB and CTGF to the media blunted the increases in TGF-β1 and collagen expression. Treatment of SMCs with PAD patient-derived serum also led to increased TGF-β1 levels. INTERPRETATION In an in-vitro model of I/R, which recapitulates the pathophysiology of PAD, increased secretion of PDGF-BB and CTGF by ECs was shown to be predominantly driving TGF-β1-mediated expression by SMCs. These cell culture experiments help elucidate the mechanism and interaction between ECs and SMCs in microvascular fibrosis associated with I/R. Thus, targeting these pro-fibrotic factors may be an effective strategy to combat fibrosis in response to cycles of I/R. FUNDING National Institute on Aging at the National Institutes of Health grant number R01AG064420. RESEARCH IN CONTEXT Evidence before this study: Previous studies in gastrocnemius biopsies from peripheral artery disease (PAD) patients showed that transforming growth factor beta 1 (TGF-β1), the most potent inducer of pathological fibrosis, is increased in the vasculature of PAD patients and correlated with collagen deposition. However, the exact cellular source of TGF-β1 remained unclear. Added value of this study: Exposing cells to cycles of normoxia-hypoxia-hyperoxia (NHH) resulted in pathological changes that are consistent with human PAD. This supports the idea that the use of NHH may be a reliable, novel in vitro model of PAD useful for studying associated pathophysiological mechanisms. Furthermore, pro-fibrotic factors (PDGF-BB and CTGF) released from endothelial cells were shown to induce a fibrotic phenotype in smooth muscle cells. This suggests a potential interaction between these cell types in the microvasculature that drives increased TGF-β1 expression and collagen deposition. Thus, targeting these pro-fibrotic factors may be an effective strategy to combat fibrosis in response to cycles of ischemia-reperfusion.
Collapse
Affiliation(s)
- Ahmed Ismaeel
- Department of Biology, Baylor University, B.207 Baylor Science Building, One Bear Place #97388, Waco, TX 76798-7388, USA
| | - Dimitrios Miserlis
- Department of Surgery, University of Texas Health Science Center San Antonio, 8300 Floyd Curl Dr., San Antonio, TX 78229, USA
| | - Evlampia Papoutsi
- Department of Biology, Baylor University, B.207 Baylor Science Building, One Bear Place #97388, Waco, TX 76798-7388, USA
| | - Gleb Haynatzki
- Department of Biostatistics, University of Nebraska Medical Center, 984375 Nebraska Medical Center, Omaha, NE 68198-4375, USA
| | - William T Bohannon
- Department of Surgery, Baylor Scott & White Medical Center, 2401 S 31st St, Temple, TX 76508, USA
| | - Robert S Smith
- Department of Surgery, Baylor Scott & White Medical Center, 2401 S 31st St, Temple, TX 76508, USA
| | - Jack L Eidson
- Department of Surgery, Baylor Scott & White Medical Center, 2401 S 31st St, Temple, TX 76508, USA
| | - George P Casale
- Department of Surgery, University of Nebraska Medical Center, 982500 Nebraska Medical Center, Omaha, NE 68198-2500, USA
| | - Iraklis I Pipinos
- Department of Surgery, University of Nebraska Medical Center, 982500 Nebraska Medical Center, Omaha, NE 68198-2500, USA
| | - Panagiotis Koutakis
- Department of Biology, Baylor University, B.207 Baylor Science Building, One Bear Place #97388, Waco, TX 76798-7388, USA.
| |
Collapse
|
53
|
Papatheodorou I, Makrecka-Kuka M, Kuka J, Liepinsh E, Dambrova M, Lazou A. Pharmacological activation of PPARβ/δ preserves mitochondrial respiratory function in ischemia/reperfusion via stimulation of fatty acid oxidation-linked respiration and PGC-1α/NRF-1 signaling. Front Endocrinol (Lausanne) 2022; 13:941822. [PMID: 36046786 PMCID: PMC9420994 DOI: 10.3389/fendo.2022.941822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
Myocardial ischemia/reperfusion (I/R) injury leads to significant impairment of cardiac function and remains the leading cause of morbidity and mortality worldwide. Activation of peroxisome proliferator-activated receptor β/δ (PPARβ/δ) confers cardioprotection via pleiotropic effects including antioxidant and anti-inflammatory actions; however, the underlying mechanisms are not yet fully elucidated. The aim of this study was to investigate the effect of PPARβ/δ activation on myocardial mitochondrial respiratory function and link this effect with cardioprotection after ischemia/reperfusion (I/R). For this purpose, rats were treated with the PPARβ/δ agonist GW0742 and/or antagonist GSK0660 in vivo. Mitochondrial respiration and ROS production rates were determined using high-resolution fluororespirometry. Activation of PPARβ/δ did not alter mitochondrial respiratory function in the healthy heart, however, inhibition of PPARβ/δ reduced fatty acid oxidation (FAO) and complex II-linked mitochondrial respiration and shifted the substrate dependence away from succinate-related energy production and towards NADH. Activation of PPARβ/δ reduced mitochondrial stress during in vitro anoxia/reoxygenation. Furthermore, it preserved FAO-dependent mitochondrial respiration and lowered ROS production at oxidative phosphorylation (OXPHOS)-dependent state during ex vivo I/R. PPARβ/δ activation was also followed by increased mRNA expression of components of FAO -linked respiration and of transcription factors governing mitochondrial homeostasis (carnitine palmitoyl transferase 1b and 2-CPT-1b and CPT-2, electron transfer flavoprotein dehydrogenase -ETFDH, peroxisome proliferator-activated receptor gamma co-activator 1 alpha- PGC-1α and nuclear respiratory factor 1-NRF-1). In conclusion, activation of PPARβ/δ stimulated both FAO-linked respiration and PGC-1α/NRF -1 signaling and preserved mitochondrial respiratory function during I/R. These effects are associated with reduced infarct size.
Collapse
Affiliation(s)
- Ioanna Papatheodorou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Marina Makrecka-Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Janis Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| | - Antigone Lazou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- *Correspondence: Antigone Lazou,
| |
Collapse
|
54
|
Vilskersts R, Kigitovica D, Korzh S, Videja M, Vilks K, Cirule H, Skride A, Makrecka-Kuka M, Liepinsh E, Dambrova M. Protective Effects of Meldonium in Experimental Models of Cardiovascular Complications with a Potential Application in COVID-19. Int J Mol Sci 2021; 23:45. [PMID: 35008470 PMCID: PMC8744985 DOI: 10.3390/ijms23010045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022] Open
Abstract
Right ventricular (RV) and left ventricular (LV) dysfunction is common in a significant number of hospitalized coronavirus disease 2019 (COVID-19) patients. This study was conducted to assess whether the improved mitochondrial bioenergetics by cardiometabolic drug meldonium can attenuate the development of ventricular dysfunction in experimental RV and LV dysfunction models, which resemble ventricular dysfunction in COVID-19 patients. Effects of meldonium were assessed in rats with pulmonary hypertension-induced RV failure and in mice with inflammation-induced LV dysfunction. Rats with RV failure showed decreased RV fractional area change (RVFAC) and hypertrophy. Treatment with meldonium attenuated the development of RV hypertrophy and increased RVFAC by 50%. Mice with inflammation-induced LV dysfunction had decreased LV ejection fraction (LVEF) by 30%. Treatment with meldonium prevented the decrease in LVEF. A decrease in the mitochondrial fatty acid oxidation with a concomitant increase in pyruvate metabolism was noted in the cardiac fibers of the rats and mice with RV and LV failure, respectively. Meldonium treatment in both models restored mitochondrial bioenergetics. The results show that meldonium treatment prevents the development of RV and LV systolic dysfunction by enhancing mitochondrial function in experimental models of ventricular dysfunction that resembles cardiovascular complications in COVID-19 patients.
Collapse
Affiliation(s)
- Reinis Vilskersts
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Rigas Stradins University, LV-1007 Riga, Latvia
| | - Dana Kigitovica
- Department of Internal Diseases, Faculty of Medicine, Rigas Stradins University, LV-1007 Riga, Latvia; (D.K.); (A.S.)
- Department of Nephrology, Pauls Stradins Clinical University Hospital, LV-1012 Riga, Latvia
| | - Stanislava Korzh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
| | - Melita Videja
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Rigas Stradins University, LV-1007 Riga, Latvia
| | - Karlis Vilks
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
- Department of Molecular Biology, Faculty of Biology, University of Latvia, LV-1050 Riga, Latvia
| | - Helena Cirule
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
| | - Andris Skride
- Department of Internal Diseases, Faculty of Medicine, Rigas Stradins University, LV-1007 Riga, Latvia; (D.K.); (A.S.)
- Department of Rare Diseases, Pauls Stradins Clinical University Hospital, LV-1012 Riga, Latvia
| | - Marina Makrecka-Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
| | - Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Rigas Stradins University, LV-1007 Riga, Latvia
| |
Collapse
|
55
|
Adzigbli L, Sokolov EP, Ponsuksili S, Sokolova IM. Tissue- and substrate-dependent mitochondrial responses to acute hypoxia-reoxygenation stress in a marine bivalve Crassostrea gigas (Thunberg, 1793). J Exp Biol 2021; 225:273950. [PMID: 34904172 DOI: 10.1242/jeb.243304] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/07/2021] [Indexed: 11/20/2022]
Abstract
Hypoxia is a major stressor for aquatic organisms, yet intertidal organisms like the oyster Crassostrea gigas are adapted to frequent oxygen fluctuations by metabolically adjusting to shifts in oxygen and substrate availability during hypoxia-reoxygenation (H/R). We investigated the effects of acute H/R stress (15 min at ∼0% O2, and 10 min reoxygenation) on isolated mitochondria from the gill and the digestive gland of C. gigas respiring on different substrates (pyruvate, glutamate, succinate, palmitate and their mixtures). Gill mitochondria showed better capacity for amino acid and fatty acid oxidation compared to the mitochondria from the digestive gland. Mitochondrial responses to H/R stress strongly depended on the substrate and the activity state of mitochondria. In mitochondria oxidizing NADH-linked substrates exposure to H/R stress suppressed oxygen consumption and ROS generation in the resting state, whereas in the ADP-stimulated state, ROS production increased despite little change in respiration. As a result, electron leak (measured as H2O2 to O2 ratio) increased after H/R stress in the ADP-stimulated mitochondria with NADH-linked substrates. In contrast, H/R exposure stimulated succinate-driven respiration without an increase in electron leak. Reverse electron transport (RET) did not significantly contribute to succinate-driven ROS production in oyster mitochondria except for a slight increase in the OXPHOS state during post-hypoxic recovery. A decrease in NADH-driven respiration and ROS production, enhanced capacity for succinate oxidation and resistance to RET might assist in post-hypoxic recovery of oysters mitigating oxidative stress and supporting rapid ATP re-synthesis during oxygen fluctuations such as commonly observed in estuaries and intertidal zones.
Collapse
Affiliation(s)
- Linda Adzigbli
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany.,Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Eugene P Sokolov
- Leibniz Institute for Baltic Sea Research, Leibniz Science Campus Phosphorus Research, Warnemünde, Rostock, Germany
| | - Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany.,Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| |
Collapse
|
56
|
Sharma P, Sharma V, Ahluwalia TS, Dogra N, Kumar S, Singh S. Let-7a induces metabolic reprogramming in breast cancer cells via targeting mitochondrial encoded ND4. Cancer Cell Int 2021; 21:629. [PMID: 34838007 PMCID: PMC8627041 DOI: 10.1186/s12935-021-02339-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/12/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND OBJECTIVES MicroRNA (miRNA) that translocate from the nucleus to mitochondria are referred to as mitochondrial microRNA (mitomiR). Albeit mitomiRs have been shown to modulate gene expression, their functional impact within mitochondria is unknown. The main objective of this study is to investigate whether the mitochondrial genome is regulated by miR present inside the mitochondria. METHODS AND RESULTS Here, we report mitomiR let-7a regulates mitochondrial transcription in breast cancer cells and reprogram the metabolism accordingly. These effects were mediated through the interaction of let-7a with mtDNA, as studied by RNA pull-down assays, altering the activity of Complex I in a cell line-specific manner. Our study, for the first time, identifies the role of mitomiR (let-7a) in regulating the mitochondrial genome by transcriptional repression and its contribution to regulating mitochondrial metabolism of breast cancer cells. CONCLUSION These findings uncover a novel mechanism by which mitomiR regulates mitochondrial transcription.
Collapse
Affiliation(s)
- Praveen Sharma
- Molecular Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Vibhuti Sharma
- Centre for Systems Biology and Bioinformatics, Panjab University, Chandigarh, India
| | | | - Nilambra Dogra
- Centre for Systems Biology and Bioinformatics, Panjab University, Chandigarh, India
| | | | - Sandeep Singh
- Molecular Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India.
| |
Collapse
|
57
|
Ranjbarvaziri S, Kooiker KB, Ellenberger M, Fajardo G, Zhao M, Vander Roest AS, Woldeyes RA, Koyano TT, Fong R, Ma N, Tian L, Traber GM, Chan F, Perrino J, Reddy S, Chiu W, Wu JC, Woo JY, Ruppel KM, Spudich JA, Snyder MP, Contrepois K, Bernstein D. Altered Cardiac Energetics and Mitochondrial Dysfunction in Hypertrophic Cardiomyopathy. Circulation 2021; 144:1714-1731. [PMID: 34672721 PMCID: PMC8608736 DOI: 10.1161/circulationaha.121.053575] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/24/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is a complex disease partly explained by the effects of individual gene variants on sarcomeric protein biomechanics. At the cellular level, HCM mutations most commonly enhance force production, leading to higher energy demands. Despite significant advances in elucidating sarcomeric structure-function relationships, there is still much to be learned about the mechanisms that link altered cardiac energetics to HCM phenotypes. In this work, we test the hypothesis that changes in cardiac energetics represent a common pathophysiologic pathway in HCM. METHODS We performed a comprehensive multiomics profile of the molecular (transcripts, metabolites, and complex lipids), ultrastructural, and functional components of HCM energetics using myocardial samples from 27 HCM patients and 13 normal controls (donor hearts). RESULTS Integrated omics analysis revealed alterations in a wide array of biochemical pathways with major dysregulation in fatty acid metabolism, reduction of acylcarnitines, and accumulation of free fatty acids. HCM hearts showed evidence of global energetic decompensation manifested by a decrease in high energy phosphate metabolites (ATP, ADP, and phosphocreatine) and a reduction in mitochondrial genes involved in creatine kinase and ATP synthesis. Accompanying these metabolic derangements, electron microscopy showed an increased fraction of severely damaged mitochondria with reduced cristae density, coinciding with reduced citrate synthase activity and mitochondrial oxidative respiration. These mitochondrial abnormalities were associated with elevated reactive oxygen species and reduced antioxidant defenses. However, despite significant mitochondrial injury, HCM hearts failed to upregulate mitophagic clearance. CONCLUSIONS Overall, our findings suggest that perturbed metabolic signaling and mitochondrial dysfunction are common pathogenic mechanisms in patients with HCM. These results highlight potential new drug targets for attenuation of the clinical disease through improving metabolic function and reducing mitochondrial injury.
Collapse
Affiliation(s)
- Sara Ranjbarvaziri
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Kristina B. Kooiker
- Department of Medicine, Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Mathew Ellenberger
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Giovanni Fajardo
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Mingming Zhao
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Alison Schroer Vander Roest
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Rahel A. Woldeyes
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Robyn Fong
- Department of Cardiothoracic Surgery, Stanford University, CA, USA
| | - Ning Ma
- Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiology, Stanford University, Stanford, CA, USA
| | - Lei Tian
- Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiology, Stanford University, Stanford, CA, USA
| | - Gavin M. Traber
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Frandics Chan
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - John Perrino
- Cell Sciences Imaging Facility, Stanford University, Stanford, CA, USA
| | - Sushma Reddy
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Wah Chiu
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Division of Cryo-EM and Bioimaging, SLAC National Accelerator Laboratory, Stanford University, Stanford, CA, USA
| | - Joseph C. Wu
- Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiology, Stanford University, Stanford, CA, USA
| | - Joseph Y. Woo
- Department of Cardiothoracic Surgery, Stanford University, CA, USA
| | - Kathleen M. Ruppel
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Kévin Contrepois
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Bernstein
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Research Institute, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
58
|
de Paula GC, Brunetta HS, Engel DF, Gaspar JM, Velloso LA, Engblom D, de Oliveira J, de Bem AF. Hippocampal Function Is Impaired by a Short-Term High-Fat Diet in Mice: Increased Blood-Brain Barrier Permeability and Neuroinflammation as Triggering Events. Front Neurosci 2021; 15:734158. [PMID: 34803583 PMCID: PMC8600238 DOI: 10.3389/fnins.2021.734158] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Worldwide, and especially in Western civilizations, most of the staple diets contain high amounts of fat and refined carbohydrates, leading to an increasing number of obese individuals. In addition to inducing metabolic disorders, energy dense food intake has been suggested to impair brain functions such as cognition and mood control. Here we demonstrate an impaired memory function already 3 days after the start of a high-fat diet (HFD) exposure, and depressive-like behavior, in the tail suspension test, after 5 days. These changes were followed by reduced synaptic density, changes in mitochondrial function and astrocyte activation in the hippocampus. Preceding or coinciding with the behavioral changes, we found an induction of the proinflammatory cytokines TNF-α and IL-6 and an increased permeability of the blood–brain barrier (BBB), in the hippocampus. Finally, in mice treated with a TNF-α inhibitor, the behavioral and BBB alterations caused by HFD-feeding were mitigated suggesting that inflammatory signaling was critical for the changes. In summary, our findings suggest that HFD rapidly triggers hippocampal dysfunction associated with BBB disruption and neuroinflammation, promoting a progressive breakdown of synaptic and metabolic function. In addition to elucidating the link between diet and cognitive function, our results might be relevant for the comprehension of the neurodegenerative process.
Collapse
Affiliation(s)
- Gabriela Cristina de Paula
- Postgraduate Program in Biochemistry, Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, Brazil.,Multicenter Graduate Program in Physiological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Henver S Brunetta
- Multicenter Graduate Program in Physiological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Daiane F Engel
- School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Brazil.,Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Joana M Gaspar
- Postgraduate Program in Biochemistry, Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - David Engblom
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health, Linköping University, Linköping, Sweden
| | - Jade de Oliveira
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Andreza Fabro de Bem
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health, Linköping University, Linköping, Sweden.,Department of Physiological Science, University of Brasília, Brasília, Brazil
| |
Collapse
|
59
|
Nuclear and cytoplasmic huntingtin inclusions exhibit distinct biochemical composition, interactome and ultrastructural properties. Nat Commun 2021; 12:6579. [PMID: 34772920 PMCID: PMC8589980 DOI: 10.1038/s41467-021-26684-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/11/2021] [Indexed: 12/20/2022] Open
Abstract
Despite the strong evidence linking the aggregation of the Huntingtin protein (Htt) to the pathogenesis of Huntington's disease (HD), the mechanisms underlying Htt aggregation and neurodegeneration remain poorly understood. Herein, we investigated the ultrastructural properties and protein composition of Htt cytoplasmic and nuclear inclusions in mammalian cells and primary neurons overexpressing mutant exon1 of the Htt protein. Our findings provide unique insight into the ultrastructural properties of cytoplasmic and nuclear Htt inclusions and their mechanisms of formation. We show that Htt inclusion formation and maturation are complex processes that, although initially driven by polyQ-dependent Htt aggregation, also involve the polyQ and PRD domain-dependent sequestration of lipids and cytoplasmic and cytoskeletal proteins related to HD dysregulated pathways; the recruitment and accumulation of remodeled or dysfunctional membranous organelles, and the impairment of the protein quality control and degradation machinery. We also show that nuclear and cytoplasmic Htt inclusions exhibit distinct biochemical compositions and ultrastructural properties, suggesting different mechanisms of aggregation and toxicity.
Collapse
|
60
|
Marchant ED, Marchant ND, Hyldahl RD, Gifford JR, Smith MW, Hancock CR. Skeletal Muscle Mitochondrial Function after a 100-km Ultramarathon: A Case Study in Monozygotic Twins. Med Sci Sports Exerc 2021; 53:2363-2373. [PMID: 34107508 DOI: 10.1249/mss.0000000000002715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Very little research has investigated the effects of ultraendurance exercise on the bioenergetic status of muscle. The primary objective of this case study was to characterize the changes that occur in skeletal muscle mitochondria in response to a 100-km ultramarathon in monozygotic twins. A second objective was to determine whether mitochondrial function is altered by consuming a periodized low-carbohydrate, high-fat diet during training compared with a high-carbohydrate diet. METHODS One pair of male monozygotic twins ran 100 km on treadmills after 4 wk of training on either a high-carbohydrate or periodized low-carbohydrate, high-fat diet. Muscle biopsies were collected 4 wk before the run, as well as 4 and 52 h postrun. Blood draws were also performed immediately before as well as 4 and 52 h after the run. RESULTS Four hours postrun, respiratory capacity, citrate synthase activity, and mitochondrial complex protein content were decreased. Two days later, both twins showed signs of rapid recovery in several of these measures. Furthermore, blood levels of creatine phosphokinase, C-reactive protein, and aspartate transaminase were elevated 4 h after the run but partially recovered 2 d later. CONCLUSION Although there were some differences between the twins, the primary finding is that there is significant mitochondrial impairment induced by running 100 km, which rapidly recovers within 2 d. These results provide ample rationale for future investigations of the effects of ultraendurance activity on mitochondrial function.
Collapse
Affiliation(s)
- Erik D Marchant
- Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT
| | - Nathan D Marchant
- Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT
| | | | | | - Michael W Smith
- Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT
| | - Chad R Hancock
- Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT
| |
Collapse
|
61
|
Tadinada SM, Weatherford ET, Collins GV, Bhardwaj G, Cochran J, Kutschke W, Zimmerman K, Bosko A, O'Neill BT, Weiss RM, Abel ED. Functional resilience of C57BL/6J mouse heart to dietary fat overload. Am J Physiol Heart Circ Physiol 2021; 321:H850-H864. [PMID: 34477461 PMCID: PMC8616610 DOI: 10.1152/ajpheart.00419.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 01/22/2023]
Abstract
Molecular mechanisms underlying cardiac dysfunction and subsequent heart failure in diabetic cardiomyopathy are incompletely understood. Initially we intended to test the role of G protein-coupled receptor kinase 2 (GRK2), a potential mediator of cardiac dysfunction in diabetic cardiomyopathy, but found that control animals on HFD did not develop cardiomyopathy. Cardiac function was preserved in both wild-type and GRK2 knockout animals fed high-fat diet as indicated by preserved left ventricular ejection fraction (LVEF) although heart mass was increased. The absence of cardiac dysfunction led us to rigorously evaluate the utility of diet-induced obesity to model diabetic cardiomyopathy in mice. Using pure C57BL/6J animals and various diets formulated with different sources of fat-lard (32% saturated fat, 68% unsaturated fat) or hydrogenated coconut oil (95% saturated fat), we consistently observed left ventricular hypertrophy, preserved LVEF, and preserved contractility measured by invasive hemodynamics in animals fed high-fat diet. Gene expression patterns that characterize pathological hypertrophy were not induced, but a modest induction of various collagen isoforms and matrix metalloproteinases was observed in heart with high-fat diet feeding. PPARα-target genes that enhance lipid utilization such as Pdk4, CD36, AcadL, and Cpt1b were induced, but mitochondrial energetics was not impaired. These results suggest that although long-term fat feeding in mice induces cardiac hypertrophy and increases cardiac fatty acid metabolism, it may not be sufficient to activate pathological hypertrophic mechanisms that impair cardiac function or induce cardiac fibrosis. Thus, additional factors that are currently not understood may contribute to the cardiac abnormalities previously reported by many groups.NEW & NOTEWORTHY Dietary fat overload (DFO) is widely used to model diabetic cardiomyopathy but the utility of this model is controversial. We comprehensively characterized cardiac contractile and mitochondrial function in C57BL6/J mice fed with lard-based or saturated fat-enriched diets initiated at two ages. Despite cardiac hypertrophy, contractile and mitochondrial function is preserved, and molecular adaptations likely limit lipotoxicity. The resilience of these hearts to DFO underscores the need to develop robust alternative models of diabetic cardiomyopathy.
Collapse
MESH Headings
- Age Factors
- Animals
- Diabetic Cardiomyopathies/enzymology
- Diabetic Cardiomyopathies/etiology
- Diabetic Cardiomyopathies/pathology
- Diabetic Cardiomyopathies/physiopathology
- Diet, High-Fat
- Disease Models, Animal
- Energy Metabolism
- Female
- Fibrosis
- G-Protein-Coupled Receptor Kinase 2/genetics
- G-Protein-Coupled Receptor Kinase 2/metabolism
- Hypertrophy, Left Ventricular/enzymology
- Hypertrophy, Left Ventricular/etiology
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mitochondria, Heart/enzymology
- Mitochondria, Heart/pathology
- Myocardium/enzymology
- Myocardium/pathology
- Obesity/complications
- Stroke Volume
- Ventricular Dysfunction, Left/enzymology
- Ventricular Dysfunction, Left/etiology
- Ventricular Dysfunction, Left/pathology
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Function, Left
- Ventricular Remodeling
- Mice
Collapse
Affiliation(s)
- Satya Murthy Tadinada
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Eric T Weatherford
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Greg V Collins
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Gourav Bhardwaj
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Jesse Cochran
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - William Kutschke
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Kathy Zimmerman
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Alyssa Bosko
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Brian T O'Neill
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Veterans Affairs Health Care System, Iowa City, Iowa
| | - Robert M Weiss
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Division of Cardiology, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - E Dale Abel
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
62
|
Liang L, Zhang G, Cheng C, Li H, Jin T, Su C, Xiao Y, Bradley J, Peberdy MA, Ornato JP, Mangino MJ, Tang W. High-resolution respirometry for evaluation of mitochondrial function on brain and heart homogenates in a rat model of cardiac arrest and cardiopulmonary resuscitation. Biomed Pharmacother 2021; 142:111935. [PMID: 34467895 DOI: 10.1016/j.biopha.2021.111935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022] Open
Abstract
The physiology and physiopathology process of mitochondrial function following cardiac arrest remains poorly understood. We aimed to assess mitochondrial respiratory function on the heart and brain homogenates from cardiac arrest rats. The expression level of SIRT1/PGC-1α pathway was measured by immunoblotting. 30 rats were assigned to the CA group and the sham group. Rats of CA were subjected to 6 min of untreated ventricular fibrillation (VF) followed by 8 min of cardiopulmonary resuscitation (CPR). Mitochondrial respiratory function was compromised following CA and I/R injury, as indicated by CIL (451.46 ± 71.48 vs. 909.91 ± 5.51 pmol/min*mg for the heart and 464.14 ± 8.22 vs. 570.53 ± 56.33 pmol/min*mg for the brain), CI (564.04 ± 64.34 vs. 2729.52 ± 347.39 pmol/min*mg for the heart and 726.07 ± 85.78 vs. 1762.82 ± 262.04 pmol/min*mg for the brain), RCR (1.88 ± 0.46 vs. 3.57 ± 0.38 for the heart and 2.05 ± 0.19 vs. 3.49 ± 0.19, for the brain) and OXPHOS coupling efficiency (0.45 ± 0.11 vs. 0.72 ± 0.03 for the heart and 0.52 ± 0.05 vs. 0.71 ± 0.01 for the brain). However, routine respiration was lower in the heart and comparable in the brain after CA. CIV did not change in the heart but was enhanced in the brain. Furthermore, both SIRT1 and PGC-1α were downregulated concurrently in the heart and brain. The mitochondrial respiratory function was compromised following CA and I/R injury, and the major affected respiratory state is complex I-linked respiration. Furthermore, the heart and the brain respond differently to the global I/R injury after CA in mitochondrial respiratory function. Inhibition of the SIRT1/PGC-1α pathway may be a major contributor to the impaired mitochondrial respiratory function.
Collapse
Affiliation(s)
- Lian Liang
- Department of Emergency, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-Sen University, Guangzhou, China
| | - Guozhen Zhang
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA; Department of Intensive Care Medicine, Tianjin Cancer Hospital Airport Free Trade Zone Hospital, Tianjin, China
| | - Cheng Cheng
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA; Department of Intensive Care Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Hui Li
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA; Department of Intensive Care Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Tao Jin
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Chenglei Su
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Yan Xiao
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Jennifer Bradley
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Mary A Peberdy
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA; Department of Internal Medicine and Emergency Medicine, Virginia Commonwealth University Health System, Richmond, VA, USA
| | - Joseph P Ornato
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA; Department of Emergency Medicine, Virginia Commonwealth University Health System, Richmond, VA, USA
| | - Martin J Mangino
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA; Department of Surgery, Virginia Commonwealth University Health System, Richmond, VA, USA
| | - Wanchun Tang
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA; Department of Emergency Medicine, Virginia Commonwealth University Health System, Richmond, VA, USA.
| |
Collapse
|
63
|
Schmidt CA, Fisher-Wellman KH, Neufer PD. From OCR and ECAR to energy: Perspectives on the design and interpretation of bioenergetics studies. J Biol Chem 2021; 297:101140. [PMID: 34461088 PMCID: PMC8479256 DOI: 10.1016/j.jbc.2021.101140] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Biological energy transduction underlies all physiological phenomena in cells. The metabolic systems that support energy transduction have been of great interest due to their association with numerous pathologies including diabetes, cancer, rare genetic diseases, and aberrant cell death. Commercially available bioenergetics technologies (e.g., extracellular flux analysis, high-resolution respirometry, fluorescent dye kits, etc.) have made practical assessment of metabolic parameters widely accessible. This has facilitated an explosion in the number of studies exploring, in particular, the biological implications of oxygen consumption rate (OCR) and substrate level phosphorylation via glycolysis (i.e., via extracellular acidification rate (ECAR)). Though these technologies have demonstrated substantial utility and broad applicability to cell biology research, they are also susceptible to historical assumptions, experimental limitations, and other caveats that have led to premature and/or erroneous interpretations. This review enumerates various important considerations for designing and interpreting cellular and mitochondrial bioenergetics experiments, some common challenges and pitfalls in data interpretation, and some potential "next steps" to be taken that can address these highlighted challenges.
Collapse
Affiliation(s)
- Cameron A Schmidt
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA; Departments of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Kelsey H Fisher-Wellman
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA; Departments of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA.
| | - P Darrell Neufer
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA; Departments of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA; Departments of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA.
| |
Collapse
|
64
|
Lopez-Pascual A, Trayhurn P, Martínez JA, González-Muniesa P. Oxygen in Metabolic Dysfunction and Its Therapeutic Relevance. Antioxid Redox Signal 2021; 35:642-687. [PMID: 34036800 DOI: 10.1089/ars.2019.7901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: In recent years, a number of studies have shown altered oxygen partial pressure at a tissue level in metabolic disorders, and some researchers have considered oxygen to be a (macro) nutrient. Oxygen availability may be compromised in obesity and several other metabolism-related pathological conditions, including sleep apnea-hypopnea syndrome, the metabolic syndrome (which is a set of conditions), type 2 diabetes, cardiovascular disease, and cancer. Recent Advances: Strategies designed to reduce adiposity and its accompanying disorders have been mainly centered on nutritional interventions and physical activity programs. However, novel therapies are needed since these approaches have not been sufficient to counteract the worldwide increasing rates of metabolic disorders. In this regard, intermittent hypoxia training and hyperoxia could be potential treatments through oxygen-related adaptations. Moreover, living at a high altitude may have a protective effect against the development of abnormal metabolic conditions. In addition, oxygen delivery systems may be of therapeutic value for supplying the tissue-specific oxygen requirements. Critical Issues: Precise in vivo methods to measure oxygenation are vital to disentangle some of the controversies related to this research area. Further, it is evident that there is a growing need for novel in vitro models to study the potential pathways involved in metabolic dysfunction to find appropriate therapeutic targets. Future Directions: Based on the existing evidence, it is suggested that oxygen availability has a key role in obesity and its related comorbidities. Oxygen should be considered in relation to potential therapeutic strategies in the treatment and prevention of metabolic disorders. Antioxid. Redox Signal. 35, 642-687.
Collapse
Affiliation(s)
- Amaya Lopez-Pascual
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,Neuroendocrine Cell Biology, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Paul Trayhurn
- Obesity Biology Unit, University of Liverpool, Liverpool, United Kingdom.,Clore Laboratory, The University of Buckingham, Buckingham, United Kingdom
| | - J Alfredo Martínez
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain.,Precision Nutrition and Cardiometabolic Health, IMDEA Food, Madrid Institute for Advanced Studies, Madrid, Spain
| | - Pedro González-Muniesa
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain
| |
Collapse
|
65
|
Ahmadpour ST, Desquiret-Dumas V, Yikilmaz U, Dartier J, Domingo I, Wetterwald C, Orre C, Gueguen N, Brisson L, Mahéo K, Dumas JF. Doxorubicin-Induced Autophagolysosome Formation Is Partly Prevented by Mitochondrial ROS Elimination in DOX-Resistant Breast Cancer Cells. Int J Mol Sci 2021; 22:ijms22179283. [PMID: 34502189 PMCID: PMC8431121 DOI: 10.3390/ijms22179283] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 01/19/2023] Open
Abstract
Since its discovery, mitophagy has been viewed as a protective mechanism used by cancer cells to prevent the induction of mitochondrial apoptosis. Most cancer treatments directly or indirectly cause mitochondrial dysfunction in order to trigger signals for cell death. Elimination of these dysfunctional mitochondria by mitophagy could thus prevent the initiation of the apoptotic cascade. In breast cancer patients, resistance to doxorubicin (DOX), one of the most widely used cancer drugs, is an important cause of poor clinical outcomes. However, the role played by mitophagy in the context of DOX resistance in breast cancer cells is not well understood. We therefore tried to determine whether an increase in mitophagic flux was associated with the resistance of breast cancer cells to DOX. Our first objective was to explore whether DOX-resistant breast cancer cells were characterized by conditions that favor mitophagy induction. We next tried to determine whether mitophagic flux was increased in DOX-resistant cells in response to DOX treatment. For this purpose, the parental (MCF-7) and DOX-resistant (MCF-7dox) breast cancer cell lines were used. Our results show that mitochondrial reactive oxygen species (ROS) production and hypoxia-inducible factor-1 alpha (HIF-1 alpha) expression are higher in MCF-7dox in a basal condition compared to MCF-7, suggesting DOX-resistant breast cancer cells are prone to stimuli to induce a mitophagy-related event. Our results also showed that, in response to DOX, autophagolysosome formation is induced in DOX-resistant breast cancer cells. This mitophagic step following DOX treatment seems to be partly due to mitochondrial ROS production as autophagolysosome formation is moderately decreased by the mitochondrial antioxidant mitoTEMPO.
Collapse
Affiliation(s)
- Seyedeh Tayebeh Ahmadpour
- Inserm UMR1069 Nutrition, Croissance et Cancer, Université de Tours, 37032 Tours, France; (U.Y.); (J.D.); (I.D.); (L.B.); (K.M.)
- Correspondence: (S.T.A.); (J.-F.D.); Tel.: +33-247-366-059 (J.-F.D.); Fax: +33-247-366-226 (J.-F.D.)
| | - Valérie Desquiret-Dumas
- MitoLab Team, Institut MitoVasc, CNRS UMR6015, INSERM U1083, Angers University, 49933 Angers, France; (V.D.-D.); (C.O.); (N.G.)
- Department of Biochemistry and Molecular Biology, University Hospital Angers, 49933 Angers, France;
| | - Ulku Yikilmaz
- Inserm UMR1069 Nutrition, Croissance et Cancer, Université de Tours, 37032 Tours, France; (U.Y.); (J.D.); (I.D.); (L.B.); (K.M.)
| | - Julie Dartier
- Inserm UMR1069 Nutrition, Croissance et Cancer, Université de Tours, 37032 Tours, France; (U.Y.); (J.D.); (I.D.); (L.B.); (K.M.)
| | - Isabelle Domingo
- Inserm UMR1069 Nutrition, Croissance et Cancer, Université de Tours, 37032 Tours, France; (U.Y.); (J.D.); (I.D.); (L.B.); (K.M.)
| | - Celine Wetterwald
- Department of Biochemistry and Molecular Biology, University Hospital Angers, 49933 Angers, France;
| | - Charlotte Orre
- MitoLab Team, Institut MitoVasc, CNRS UMR6015, INSERM U1083, Angers University, 49933 Angers, France; (V.D.-D.); (C.O.); (N.G.)
| | - Naïg Gueguen
- MitoLab Team, Institut MitoVasc, CNRS UMR6015, INSERM U1083, Angers University, 49933 Angers, France; (V.D.-D.); (C.O.); (N.G.)
- Department of Biochemistry and Molecular Biology, University Hospital Angers, 49933 Angers, France;
| | - Lucie Brisson
- Inserm UMR1069 Nutrition, Croissance et Cancer, Université de Tours, 37032 Tours, France; (U.Y.); (J.D.); (I.D.); (L.B.); (K.M.)
| | - Karine Mahéo
- Inserm UMR1069 Nutrition, Croissance et Cancer, Université de Tours, 37032 Tours, France; (U.Y.); (J.D.); (I.D.); (L.B.); (K.M.)
| | - Jean-François Dumas
- Inserm UMR1069 Nutrition, Croissance et Cancer, Université de Tours, 37032 Tours, France; (U.Y.); (J.D.); (I.D.); (L.B.); (K.M.)
- Correspondence: (S.T.A.); (J.-F.D.); Tel.: +33-247-366-059 (J.-F.D.); Fax: +33-247-366-226 (J.-F.D.)
| |
Collapse
|
66
|
Liu N, Kataoka M, Wang Y, Pu L, Dong X, Fu X, Zhang F, Gao F, Liang T, Pei J, Xiao C, Qiu Q, Hong T, Chen Q, Zhao J, Zhu L, He J, Hu X, Nie Y, Zhu W, Yu H, Cowan DB, Hu X, Wang J, Wang DZ, Chen J. LncRNA LncHrt preserves cardiac metabolic homeostasis and heart function by modulating the LKB1-AMPK signaling pathway. Basic Res Cardiol 2021; 116:48. [PMID: 34379189 PMCID: PMC8357683 DOI: 10.1007/s00395-021-00887-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/19/2021] [Indexed: 12/26/2022]
Abstract
Metabolic modulation is a promising therapeutic approach to prevent adverse remodeling of the ischemic heart. Because little is known about the involvement of long non-coding RNAs (lncRNAs) in regulating cardiac metabolism, we used unbiased transcriptome profiling in a mouse model of myocardial infarction (MI). We identified a novel cardiomyocyte-enriched lncRNA, called LncHrt, which regulates metabolism and the pathophysiological processes that lead to heart failure. AAV-based LncHrt overexpression protects the heart from MI as demonstrated by improved contractile function, preserved metabolic homeostasis, and attenuated maladaptive remodeling responses. RNA-pull down followed by mass spectrometry and RNA immunoprecipitation (RIP) identified SIRT2 as a LncHrt-interacting protein involved in cardiac metabolic regulation. Mechanistically, we established that LncHrt interacts with SIRT2 to preserve SIRT2 deacetylase activity by interfering with the CDK5 and SIRT2 interaction. This increases downstream LKB1-AMPK kinase signaling, which ameliorates functional and metabolic deficits. Importantly, we found the expression of the human homolog of mouse LncHrt was decreased in patients with dilated cardiomyopathy. Together, these studies identify LncHrt as a cardiac metabolic regulator that plays an essential role in preserving heart function by regulating downstream metabolic signaling pathways. Consequently, LncHrt is a potentially novel RNA-based therapeutic target for ischemic heart disease.
Collapse
Affiliation(s)
- Ning Liu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Masaharu Kataoka
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
- Second Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yingchao Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, China
| | - Linbin Pu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Xiaoxuan Dong
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Xuyang Fu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Feng Zhang
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Feng Gao
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Tian Liang
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Jianqiu Pei
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Changchen Xiao
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qiongzi Qiu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Tingting Hong
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qiming Chen
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jing Zhao
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Lianlian Zhu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Junhua He
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Xiaoyun Hu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Wei Zhu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Hong Yu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Douglas B Cowan
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Xinyang Hu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jian'an Wang
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA.
| | - Jinghai Chen
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
| |
Collapse
|
67
|
The Role of Mitochondrial Function in Peripheral Arterial Disease: Insights from Translational Studies. Int J Mol Sci 2021; 22:ijms22168478. [PMID: 34445191 PMCID: PMC8395190 DOI: 10.3390/ijms22168478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/03/2022] Open
Abstract
Recent evidence demonstrates an involvement of impaired mitochondrial function in peripheral arterial disease (PAD) development. Specific impairments have been assessed by different methodological in-vivo (near-infrared spectroscopy, 31P magnetic resonance spectroscopy), as well as in-vitro approaches (Western blotting of mitochondrial proteins and enzymes, assays of mitochondrial function and content). While effects differ with regard to disease severity, chronic malperfusion impacts subcellular energy homeostasis, and repeating cycles of ischemia and reperfusion contribute to PAD disease progression by increasing mitochondrial reactive oxygen species production and impairing mitochondrial function. With the leading clinical symptom of decreased walking capacity due to intermittent claudication, PAD patients suffer from a subsequent reduction of quality of life. Different treatment modalities, such as physical activity and revascularization procedures, can aid mitochondrial recovery. While the relevance of these modalities for mitochondrial functional recovery is still a matter of debate, recent research indicates the importance of revascularization procedures, with increased physical activity levels being a subordinate contributor, at least during mild stages of PAD. With an additional focus on the role of revascularization procedures on mitochondria and the identification of suitable mitochondrial markers in PAD, this review aims to critically evaluate the relevance of mitochondrial function in PAD development and progression.
Collapse
|
68
|
Inhibition of Fatty Acid Metabolism Increases EPA and DHA Levels and Protects against Myocardial Ischaemia-Reperfusion Injury in Zucker Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7493190. [PMID: 34367467 PMCID: PMC8342141 DOI: 10.1155/2021/7493190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/16/2021] [Indexed: 11/30/2022]
Abstract
Long-chain ω-3 polyunsaturated fatty acids (PUFAs) are known to induce cardiometabolic benefits, but the metabolic pathways of their biosynthesis ensuring sufficient bioavailability require further investigation. Here, we show that a pharmacological decrease in overall fatty acid utilization promotes an increase in the levels of PUFAs and attenuates cardiometabolic disturbances in a Zucker rat metabolic syndrome model. Metabolome analysis showed that inhibition of fatty acid utilization by methyl-GBB increased the concentration of PUFAs but not the total fatty acid levels in plasma. Insulin sensitivity was improved, and the plasma insulin concentration was decreased. Overall, pharmacological modulation of fatty acid handling preserved cardiac glucose and pyruvate oxidation, protected mitochondrial functionality by decreasing long-chain acylcarnitine levels, and decreased myocardial infarct size twofold. Our work shows that partial pharmacological inhibition of fatty acid oxidation is a novel approach to selectively increase the levels of PUFAs and modulate lipid handling to prevent cardiometabolic disturbances.
Collapse
|
69
|
Nedel WL, Kopczynski A, Rodolphi MS, Strogulski NR, De Bastiani M, Montes THM, Abruzzi J, Galina A, Horvath TL, Portela LV. Mortality of septic shock patients is associated with impaired mitochondrial oxidative coupling efficiency in lymphocytes: a prospective cohort study. Intensive Care Med Exp 2021; 9:39. [PMID: 34304333 PMCID: PMC8310546 DOI: 10.1186/s40635-021-00404-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/10/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Septic shock is a life-threatening condition that challenges immune cells to reprogram their mitochondrial metabolism towards to increase ATP synthesis for building an appropriate immunity. This could print metabolic signatures in mitochondria whose association with disease progression and clinical outcomes remain elusive. METHOD This is a single-center prospective cohort study performed in the ICU of one tertiary referral hospital in Brazil. Between November 2017 and July 2018, 90 consecutive patients, aged 18 years or older, admitted to the ICU with septic shock were enrolled. Seventy-five patients had Simplified Acute Physiology Score (SAPS 3) assessed at admission, and Sequential Organ Failure Assessment (SOFA) assessed on the first (D1) and third (D3) days after admission. Mitochondrial respiration linked to complexes I, II, V, and biochemical coupling efficiency (BCE) were assessed at D1 and D3 and Δ (D3-D1) in isolated lymphocytes. Clinical and mitochondrial endpoints were used to dichotomize the survival and death outcomes. Our primary outcome was 6-month mortality, and secondary outcomes were ICU and hospital ward mortality. RESULTS The mean SAPS 3 and SOFA scores at septic shock diagnosis were 75.8 (± 12.9) and 8 (± 3) points, respectively. The cumulative ICU, hospital ward, and 6-month mortality were 32 (45%), 43 (57%), and 50 (66%), respectively. At the ICU, non-surviving patients presented elevated arterial lactate (2.8 mmol/L, IQR, 2-4), C-reactive protein (220 mg/L, IQR, 119-284), and capillary refill time (5.5 s, IQR, 3-8). Respiratory rates linked to CII at D1 and D3, and ΔCII were decreased in non-surviving patients. Also, the BCE at D1 and D3 and the ΔBCE discriminated patients who would evolve to death in the ICU, hospital ward, and 6 months after admission. After adjusting for possible confounders, the ΔBCE value but not SOFA scores was independently associated with 6-month mortality (RR 0.38, CI 95% 0.18-0.78; P = 0.009). At a cut-off of - 0.002, ΔBCE displayed 100% sensitivity and 73% specificity for predicting 6-month mortality CONCLUSIONS: The ΔBCE signature in lymphocytes provided an earlier recognition of septic shock patients in the ICU at risk of long-term deterioration of health status.
Collapse
Affiliation(s)
- Wagner Luis Nedel
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, anexo, Porto Alegre, RS, Brazil
- Intensive Care Unit, Hospital Nossa Senhora da Conceição, Grupo Hospitalar Conceição, Porto Alegre, RS, Brazil
| | - Afonso Kopczynski
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, anexo, Porto Alegre, RS, Brazil
| | - Marcelo Salimen Rodolphi
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, anexo, Porto Alegre, RS, Brazil
| | - Nathan Ryzewski Strogulski
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, anexo, Porto Alegre, RS, Brazil
| | - Marco De Bastiani
- Zimmer Lab, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tiago Hermes Maeso Montes
- Intensive Care Unit, Hospital Nossa Senhora da Conceição, Grupo Hospitalar Conceição, Porto Alegre, RS, Brazil
| | - Jose Abruzzi
- Intensive Care Unit, Hospital Nossa Senhora da Conceição, Grupo Hospitalar Conceição, Porto Alegre, RS, Brazil
| | - Antonio Galina
- Laboratory of Bioenergetics and Mitochondrial Physiology, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Tamas L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Luis Valmor Portela
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, anexo, Porto Alegre, RS, Brazil.
| |
Collapse
|
70
|
Gerber L, Clow KA, Driedzic WR, Gamperl AK. The Relationship between Myoglobin, Aerobic Capacity, Nitric Oxide Synthase Activity and Mitochondrial Function in Fish Hearts. Antioxidants (Basel) 2021; 10:antiox10071072. [PMID: 34356305 PMCID: PMC8301165 DOI: 10.3390/antiox10071072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 11/24/2022] Open
Abstract
The dynamic interactions between nitric oxide (NO) and myoglobin (Mb) in the cardiovascular system have received considerable attention. The loss of Mb, the principal O2 carrier and a NO scavenger/producer, in the heart of some red-blooded fishes provides a unique opportunity for assessing this globin’s role in NO homeostasis and mitochondrial function. We measured Mb content, activities of enzymes of NO and aerobic metabolism [NO Synthase (NOS) and citrate synthase, respectively] and mitochondrial parameters [Complex-I and -I+II respiration, coupling efficiency, reactive oxygen species production/release rates and mitochondrial sensitivity to inhibition by NO (i.e., NO IC50)] in the heart of three species of red-blooded fish. The expression of Mb correlated positively with NOS activity and NO IC50, with low NOS activity and a reduced NO IC50 in the Mb-lacking lumpfish (Cyclopterus lumpus) as compared to the Mb-expressing Atlantic salmon (Salmo salar) and short-horned sculpin (Myoxocephalus scorpius). Collectively, our data show that NO levels are fine-tuned so that NO homeostasis and mitochondrial function are preserved; indicate that compensatory mechanisms are in place to tightly regulate [NO] and mitochondrial function in a species without Mb; and strongly suggest that the NO IC50 for oxidative phosphorylation is closely related to a fish’s hypoxia tolerance.
Collapse
|
71
|
Kunz HE, Hart CR, Gries KJ, Parvizi M, Laurenti M, Dalla Man C, Moore N, Zhang X, Ryan Z, Polley EC, Jensen MD, Vella A, Lanza IR. Adipose tissue macrophage populations and inflammation are associated with systemic inflammation and insulin resistance in obesity. Am J Physiol Endocrinol Metab 2021; 321:E105-E121. [PMID: 33998291 PMCID: PMC8321823 DOI: 10.1152/ajpendo.00070.2021] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Obesity is accompanied by numerous systemic and tissue-specific derangements, including systemic inflammation, insulin resistance, and mitochondrial abnormalities in skeletal muscle. Despite growing recognition that adipose tissue dysfunction plays a role in obesity-related disorders, the relationship between adipose tissue inflammation and other pathological features of obesity is not well-understood. We assessed macrophage populations and measured the expression of inflammatory cytokines in abdominal adipose tissue biopsies in 39 nondiabetic adults across a range of body mass indexes (BMI 20.5-45.8 kg/m2). Skeletal muscle biopsies were used to evaluate mitochondrial respiratory capacity, ATP production capacity, coupling, and reactive oxygen species production. Insulin sensitivity (SI) and β cell responsivity were determined from test meal postprandial glucose, insulin, c-peptide, and triglyceride kinetics. We examined the relationships between adipose tissue inflammatory markers, systemic inflammatory markers, SI, and skeletal muscle mitochondrial physiology. BMI was associated with increased adipose tissue and systemic inflammation, reduced SI, and reduced skeletal muscle mitochondrial oxidative capacity. Adipose-resident macrophage numbers were positively associated with circulating inflammatory markers, including tumor necrosis factor-α (TNFα) and C-reactive protein (CRP). Local adipose tissue inflammation and circulating concentrations of TNFα and CRP were negatively associated with SI, and circulating concentrations of TNFα and CRP were also negatively associated with skeletal muscle oxidative capacity. These results demonstrate that obese humans exhibit increased adipose tissue inflammation concurrently with increased systemic inflammation, reduced insulin sensitivity, and reduced muscle oxidative capacity and suggest that adipose tissue and systemic inflammation may drive obesity-associated metabolic derangements.NEW AND NOTEWORTHY Adipose inflammation is proposed to be at the nexus of the systemic inflammation and metabolic derangements associated with obesity. The present study provides evidence to support adipose inflammation as a central feature of the pathophysiology of obesity. Adipose inflammation is associated with systemic and peripheral metabolic derangements, including increased systemic inflammation, reduced insulin sensitivity, and reduced skeletal muscle mitochondrial respiration.
Collapse
Affiliation(s)
- Hawley E Kunz
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Corey R Hart
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Kevin J Gries
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Mojtaba Parvizi
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Marcello Laurenti
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Chiara Dalla Man
- Biomedical Engineering and Physiology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota
| | - Natalie Moore
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Xiaoyan Zhang
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Zachary Ryan
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Eric C Polley
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Michael D Jensen
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Adrian Vella
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Ian R Lanza
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
72
|
Very long chain fatty acid metabolism is required in acute myeloid leukemia. Blood 2021; 137:3518-3532. [PMID: 33720355 DOI: 10.1182/blood.2020008551] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/21/2021] [Indexed: 12/28/2022] Open
Abstract
Acute myeloid leukemia (AML) cells have an atypical metabolic phenotype characterized by increased mitochondrial mass, as well as a greater reliance on oxidative phosphorylation and fatty acid oxidation (FAO) for survival. To exploit this altered metabolism, we assessed publicly available databases to identify FAO enzyme overexpression. Very long chain acyl-CoA dehydrogenase (VLCAD; ACADVL) was found to be overexpressed and critical to leukemia cell mitochondrial metabolism. Genetic attenuation or pharmacological inhibition of VLCAD hindered mitochondrial respiration and FAO contribution to the tricarboxylic acid cycle, resulting in decreased viability, proliferation, clonogenic growth, and AML cell engraftment. Suppression of FAO at VLCAD triggered an increase in pyruvate dehydrogenase activity that was insufficient to increase glycolysis but resulted in adenosine triphosphate depletion and AML cell death, with no effect on normal hematopoietic cells. Together, these results demonstrate the importance of VLCAD in AML cell biology and highlight a novel metabolic vulnerability for this devastating disease.
Collapse
|
73
|
Hertig D, Maddah S, Memedovski R, Kurth S, Moreno A, Pennestri M, Felser A, Nuoffer JM, Vermathen P. Live monitoring of cellular metabolism and mitochondrial respiration in 3D cell culture system using NMR spectroscopy. Analyst 2021; 146:4326-4339. [PMID: 34106111 PMCID: PMC8239994 DOI: 10.1039/d1an00041a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Because of the interplay between mitochondrial respiration and cellular metabolism, the simultaneous monitoring of both cellular processes provides important insights for the understanding of biological processes. NMR flow systems provide a unique window into the metabolome of cultured cells. Simplified bioreactor construction based on commercially available flow systems increase the practicability and reproducibility of bioreactor studies using standard NMR spectrometers. We therefore aim at establishing a reproducible NMR bioreactor system for metabolic 1H-NMR investigations of small molecules and concurrent oxygenation determination by 19F-NMR, with in depth description and validation by accompanying measures. Methods: We demonstrate a detailed and standardized workflow for the preparation and transfer of collagen based 3D cell culture of high cell density for perfused investigation in a 5 mm NMR tube. Self-constructed gas mixing station enables 5% CO2 atmosphere for physiological pH in carbon based medium and is perfused by HPLC pump. Results & Discussion: Implemented perfused bioreactor allows detection of perfusion rate dependent metabolite content. We show interleaved dynamic profiling of 26 metabolites and mitochondrial respiration. During constant perfusion, sequential injection of rotenone/oligomycin and 2-deoxy-glucose indicated immediate activation and deactivation of glycolytic rate and full inhibition of oxygen consumption. We show sensitivity to detect substrate degradation rates of major mitochondrial fuel pathways and were able to simultaneously measure cellular oxygen consumption. We show sensitivity to detect substrate degradation rates of major mitochondrial fuel pathways and feasibility to simultaneously measure cellular oxygen consumption combining a commercially available flow tube system with a standard 5 mm NMR probe.![]()
Collapse
Affiliation(s)
- Damian Hertig
- Department of Biomedical Research and Radiology, University of Bern, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Coricovac D, Dehelean CA, Pinzaru I, Mioc A, Aburel OM, Macasoi I, Draghici GA, Petean C, Soica C, Boruga M, Vlaicu B, Muntean MD. Assessment of Betulinic Acid Cytotoxicity and Mitochondrial Metabolism Impairment in a Human Melanoma Cell Line. Int J Mol Sci 2021; 22:ijms22094870. [PMID: 34064489 PMCID: PMC8125295 DOI: 10.3390/ijms22094870] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 11/30/2022] Open
Abstract
Melanoma represents one of the most aggressive and drug resistant skin cancers with poor prognosis in its advanced stages. Despite the increasing number of targeted therapies, novel approaches are needed to counteract both therapeutic resistance and the side effects of classic therapy. Betulinic acid (BA) is a bioactive phytocompound that has been reported to induce apoptosis in several types of cancers including melanomas; however, its effects on mitochondrial bioenergetics are less investigated. The present study performed in A375 human melanoma cells was aimed to characterize the effects of BA on mitochondrial bioenergetics and cellular behavior. BA demonstrated a dose-dependent inhibitory effect in both mitochondrial respiration and glycolysis in A375 melanoma cells and at sub-toxic concentrations (10 μM) induced mitochondrial dysfunction by eliciting a decrease in the mitochondrial membrane potential and changes in mitochondria morphology and localization. In addition, BA triggered a dose-dependent cytotoxic effect characterized by apoptotic features: morphological alterations (nuclear fragmentation, apoptotic bodies) and the upregulation of pro-apoptotic markers mRNA expression (Bax, Bad and Bak). BA represents a viable therapeutic option via a complex modulatory effect on mitochondrial metabolism that might be useful in advanced melanoma or as reliable strategy to counteract resistance to standard therapy.
Collapse
Affiliation(s)
- Dorina Coricovac
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (D.C.); (C.A.D.); (I.M.); (G.A.D.); (C.P.); (C.S.)
- Research Center for Pharmaco-toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Cristina Adriana Dehelean
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (D.C.); (C.A.D.); (I.M.); (G.A.D.); (C.P.); (C.S.)
- Research Center for Pharmaco-toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Iulia Pinzaru
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (D.C.); (C.A.D.); (I.M.); (G.A.D.); (C.P.); (C.S.)
- Research Center for Pharmaco-toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
- Correspondence: (I.P.); (A.M.); Tel.: +40-256-494-604
| | - Alexandra Mioc
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (D.C.); (C.A.D.); (I.M.); (G.A.D.); (C.P.); (C.S.)
- Research Center for Pharmaco-toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
- Correspondence: (I.P.); (A.M.); Tel.: +40-256-494-604
| | - Oana-Maria Aburel
- Faculty of Medicine “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (O.-M.A.); (M.B.); (B.V.); (M.D.M.)
- Center for Translational Research and Systems Medicine, Faculty of Medicine,” Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Sq. no. 2, RO-300041 Timișoara, Romania
| | - Ioana Macasoi
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (D.C.); (C.A.D.); (I.M.); (G.A.D.); (C.P.); (C.S.)
- Research Center for Pharmaco-toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - George Andrei Draghici
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (D.C.); (C.A.D.); (I.M.); (G.A.D.); (C.P.); (C.S.)
- Research Center for Pharmaco-toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Crina Petean
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (D.C.); (C.A.D.); (I.M.); (G.A.D.); (C.P.); (C.S.)
| | - Codruta Soica
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (D.C.); (C.A.D.); (I.M.); (G.A.D.); (C.P.); (C.S.)
- Research Center for Pharmaco-toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Madalina Boruga
- Faculty of Medicine “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (O.-M.A.); (M.B.); (B.V.); (M.D.M.)
| | - Brigitha Vlaicu
- Faculty of Medicine “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (O.-M.A.); (M.B.); (B.V.); (M.D.M.)
| | - Mirela Danina Muntean
- Faculty of Medicine “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (O.-M.A.); (M.B.); (B.V.); (M.D.M.)
- Center for Translational Research and Systems Medicine, Faculty of Medicine,” Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Sq. no. 2, RO-300041 Timișoara, Romania
| |
Collapse
|
75
|
Soria-Gomez E, Pagano Zottola AC, Mariani Y, Desprez T, Barresi M, Bonilla-del Río I, Muguruza C, Le Bon-Jego M, Julio-Kalajzić F, Flynn R, Terral G, Fernández-Moncada I, Robin LM, Oliveira da Cruz JF, Corinti S, Amer YO, Goncalves J, Varilh M, Cannich A, Redon B, Zhao Z, Lesté-Lasserre T, Vincent P, Tolentino-Cortes T, Busquets-García A, Puente N, Bains JS, Hebert-Chatelain E, Barreda-Gómez G, Chaouloff F, Lohman AW, Callado LF, Grandes P, Baufreton J, Marsicano G, Bellocchio L. Subcellular specificity of cannabinoid effects in striatonigral circuits. Neuron 2021; 109:1513-1526.e11. [DOI: 10.1016/j.neuron.2021.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/09/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022]
|
76
|
de Moura Alvorcem L, Britto R, Cecatto C, Cristina Roginski A, Rohden F, Nathali Scholl J, Guma FCR, Figueiró F, Umpierrez Amaral A, Zanatta G, Seminotti B, Wajner M, Leipnitz G. Ethylmalonic acid impairs bioenergetics by disturbing succinate and glutamate oxidation and induces mitochondrial permeability transition pore opening in rat cerebellum. J Neurochem 2021; 158:262-281. [PMID: 33837559 DOI: 10.1111/jnc.15363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 03/04/2021] [Accepted: 04/06/2021] [Indexed: 12/01/2022]
Abstract
Tissue accumulation and high urinary excretion of ethylmalonic acid (EMA) are found in ethylmalonic encephalopathy (EE), an inherited disorder associated with cerebral and cerebellar atrophy whose pathogenesis is poorly established. The in vitro and in vivo effects of EMA on bioenergetics and redox homeostasis were investigated in rat cerebellum. For the in vitro studies, cerebellum preparations were exposed to EMA, whereas intracerebellar injection of EMA was used for the in vivo evaluation. EMA reduced state 3 and uncoupled respiration in vitro in succinate-, glutamate-, and malate-supported mitochondria, whereas decreased state 4 respiration was observed using glutamate and malate. Furthermore, mitochondria permeabilization and succinate supplementation diminished the decrease in state 3 with succinate. EMA also inhibited the activity of KGDH, an enzyme necessary for glutamate oxidation, in a mixed manner and augmented mitochondrial efflux of α-ketoglutarate. ATP levels were markedly reduced by EMA, reflecting a severe bioenergetic disruption. Docking simulations also indicated interactions between EMA and KGDH and a competition with glutamate and succinate for their mitochondrial transporters. In vitro findings also showed that EMA decreased mitochondrial membrane potential and Ca2+ retention capacity, and induced swelling in the presence of Ca2+ , which were prevented by cyclosporine A and ADP and ruthenium red, indicating mitochondrial permeability transition (MPT). Moreover, EMA, at high concentrations, mildly increased ROS levels and altered antioxidant defenses in vitro and in vivo. Our data indicate that EMA-induced impairment of glutamate and succinate oxidation and MPT may contribute to the pathogenesis of the cerebellum abnormalities in EE.
Collapse
Affiliation(s)
- Leonardo de Moura Alvorcem
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Renata Britto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cristiane Cecatto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Cristina Roginski
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Francieli Rohden
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Juliete Nathali Scholl
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fátima C R Guma
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fabrício Figueiró
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alexandre Umpierrez Amaral
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Ciências Biológicas, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, RS, Brazil
| | - Geancarlo Zanatta
- Departamento de Física, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Bianca Seminotti
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
77
|
Moro L, Rech G, Linazzi AM, Dos Santos TG, de Oliveira DL. An optimized method for adult zebrafish brain-tissue dissociation that allows access mitochondrial function under healthy and epileptic conditions. Brain Res 2021; 1765:147498. [PMID: 33894225 DOI: 10.1016/j.brainres.2021.147498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/27/2021] [Accepted: 04/19/2021] [Indexed: 11/26/2022]
Abstract
Mitochondria play key roles in brain metabolism. Not surprisingly, mitochondria dysfunction is a ubiquitous cause of neurodegenerative diseases. In turn, acquired forms of epilepsy etiology is specifically intriguing since mitochondria function and dysfunction remain not completely enlightened. Investigation in the field includes models of epileptic disorder using mainly rodents followed by mitochondrial function evaluation, which in general evidenced controversial data. So, we considered the efforts and limitations in this research field and we took into account that sample preparation and quality are critical for bioenergetics investigation. For these reasons the aim of the present study was to develop a thorough protocol for adult zebrafish brain-tissue dissociation to evaluate oxygen consumption flux and reach the bioenergetics profile in health and models of epileptic disorder in both, in vitro using pentylenetetrazole (PTZ) and N-methyl-D-Aspartic acid (NMDA), and in vivo after kainic acid (KA)-induced status epilepticus. In conclusion, we verify that fire-polished glass Pasteur pipette is eligible to brain-tissue dissociation and to study mitochondrial function and dysfunction in adult zebrafish. The results give evidence for large effect size in increase of coupling efficiency respiration (p/O2) correlated to treatment with PTZ and spare respiratory capacity (SRC) in KA-induced model indicating oxidative phosphorylation (OXPHOS) variable alterations. Further investigation is needed in order to clarify the bioenergetics role as well as other mitochondrial functions in epilepsy.
Collapse
Affiliation(s)
- Luana Moro
- Laboratory of Cellular Neurochemistry - Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Porto Alegre, RS, Brazil.
| | - Giovana Rech
- Laboratory of Cellular Neurochemistry - Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Porto Alegre, RS, Brazil.
| | - Amanda Martins Linazzi
- Laboratory of Cellular Neurochemistry - Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Porto Alegre, RS, Brazil
| | - Thainá Garbino Dos Santos
- Laboratory of Cellular Neurochemistry - Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Porto Alegre, RS, Brazil
| | - Diogo Lösch de Oliveira
- Laboratory of Cellular Neurochemistry - Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Porto Alegre, RS, Brazil
| |
Collapse
|
78
|
Liang L, Zhang G, Li H, Cheng C, Jin T, Su C, Xiao Y, Bradley J, Peberdy MA, Ornato JP, Mangino MJ, Tang W. Combined Therapy With Polyethylene Glycol-20k and MCC950 Preserves Post-Resuscitated Myocardial Function in a Rat Model of Cardiac Arrest and Cardiopulmonary Resuscitation. J Am Heart Assoc 2021; 10:e019177. [PMID: 33884887 PMCID: PMC8200739 DOI: 10.1161/jaha.120.019177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background To investigate the therapeutic potential of combined therapy with polyethylene glycol-20k (PEG-20k) and MCC950 on post-resuscitation myocardial function in a rat model of cardiac arrest. Methods and Results Thirty rats were randomized into 5 groups: Sham, Control, PEG-20k, MCC950, PEG-20k+ MCC950. Except for sham, animals were subjected to 6 minutes of ventricular fibrillation followed by 8 minutes cardiopulmonary resuscitation. Two milliliters PEG-20k was administered by intravenous injection coincident with the start of cardiopulmonary resuscitation; MCC950 (10 mg/kg), a highly selective NLRP3 inflammasome inhibitor, was delivered immediately after restoration of spontaneous circulation. Myocardial function, sublingual microcirculation, mitochondrial function, plasma cardiac troponin I, and interleukin-1β, expression of proteins in SIRT1 (sirtuin 1)/PGC-1α (peroxisome proliferator-activated receptor gamma coactivator 1-alpha) and NLRP3 (the NOD-like receptor family protein 3) inflammasome pathways were evaluated. Following cardiopulmonary resuscitation, myocardial function was compromised with a significantly decreased cardiac output, ejection fraction, and increased myocardial performance index, cardiac troponin I. Sublingual microcirculation was disturbed with impaired perfused vessel density and microvascular flow index. Cardiac arrest reduced mitochondrial routine respiration, Complex I-linked respiration, respiratory control rates and oxidative phosphorylation coupling efficiency. PEG-20k or MCC950 alone restored mitochondrial respiratory function, restituted sublingual microcirculation, and preserved myocardial function, whereas a combination of PEG-20k and MCC950 further improved these aspects. PEG-20k restored the expression of SIRT1 and PGC-1α, and blunted activation of NLRP3 inflammasomes. MCC950 suppressed expression of cleaved-caspase-1/pro-caspase-1, ASC (apoptosis-associated speck-like protein), GSDMD [gasdermin d], and interleukin-1β. Conclusions Combined therapy with PEG-20k and MCC950 is superior to either therapy alone for preserving post-resuscitated myocardial function, restituting sublingual microcirculation at restoration of spontaneous circulation at 6 hours. The responsible mechanisms involve upregulated expression of SIRT1/PGC1-α in tandem with inhibition of NLRP3 inflammasomes.
Collapse
Affiliation(s)
- Lian Liang
- Department of Emergency Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou China.,Weil Institute of Emergency and Critical Care Research Virginia Commonwealth University Richmond VA.,Institute of Cardiopulmonary Cerebral Resuscitation Sun Yat-sen University Guangzhou China
| | - Guozhen Zhang
- Weil Institute of Emergency and Critical Care Research Virginia Commonwealth University Richmond VA
| | - Hui Li
- Weil Institute of Emergency and Critical Care Research Virginia Commonwealth University Richmond VA
| | - Cheng Cheng
- Weil Institute of Emergency and Critical Care Research Virginia Commonwealth University Richmond VA
| | - Tao Jin
- Weil Institute of Emergency and Critical Care Research Virginia Commonwealth University Richmond VA
| | - Chenglei Su
- Weil Institute of Emergency and Critical Care Research Virginia Commonwealth University Richmond VA
| | - Yan Xiao
- Weil Institute of Emergency and Critical Care Research Virginia Commonwealth University Richmond VA
| | - Jennifer Bradley
- Weil Institute of Emergency and Critical Care Research Virginia Commonwealth University Richmond VA
| | - Mary A Peberdy
- Weil Institute of Emergency and Critical Care Research Virginia Commonwealth University Richmond VA.,Departments of Internal Medicine and Emergency Medicine Virginia Commonwealth University Health System Richmond VA
| | - Joseph P Ornato
- Weil Institute of Emergency and Critical Care Research Virginia Commonwealth University Richmond VA.,Department of Emergency Medicine Virginia Commonwealth University Health System Richmond VA
| | - Martin J Mangino
- Weil Institute of Emergency and Critical Care Research Virginia Commonwealth University Richmond VA.,Department of Surgery Virginia Commonwealth University Health System Richmond VA
| | - Wanchun Tang
- Weil Institute of Emergency and Critical Care Research Virginia Commonwealth University Richmond VA
| |
Collapse
|
79
|
Peruzzotti-Jametti L, Bernstock JD, Willis CM, Manferrari G, Rogall R, Fernandez-Vizarra E, Williamson JC, Braga A, van den Bosch A, Leonardi T, Krzak G, Kittel Á, Benincá C, Vicario N, Tan S, Bastos C, Bicci I, Iraci N, Smith JA, Peacock B, Muller KH, Lehner PJ, Buzas EI, Faria N, Zeviani M, Frezza C, Brisson A, Matheson NJ, Viscomi C, Pluchino S. Neural stem cells traffic functional mitochondria via extracellular vesicles. PLoS Biol 2021; 19:e3001166. [PMID: 33826607 PMCID: PMC8055036 DOI: 10.1371/journal.pbio.3001166] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/19/2021] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
Neural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous cells was originally proposed as the primary healing mechanism of NSC grafts, it is now clear that transplanted NSCs operate via multiple mechanisms, including the horizontal exchange of therapeutic cargoes to host cells via extracellular vesicles (EVs). EVs are membrane particles trafficking nucleic acids, proteins, metabolites and metabolic enzymes, lipids, and entire organelles. However, the function and the contribution of these cargoes to the broad therapeutic effects of NSCs are yet to be fully understood. Mitochondrial dysfunction is an established feature of several inflammatory and degenerative CNS disorders, most of which are potentially treatable with exogenous stem cell therapeutics. Herein, we investigated the hypothesis that NSCs release and traffic functional mitochondria via EVs to restore mitochondrial function in target cells. Untargeted proteomics revealed a significant enrichment of mitochondrial proteins spontaneously released by NSCs in EVs. Morphological and functional analyses confirmed the presence of ultrastructurally intact mitochondria within EVs with conserved membrane potential and respiration. We found that the transfer of these mitochondria from EVs to mtDNA-deficient L929 Rho0 cells rescued mitochondrial function and increased Rho0 cell survival. Furthermore, the incorporation of mitochondria from EVs into inflammatory mononuclear phagocytes restored normal mitochondrial dynamics and cellular metabolism and reduced the expression of pro-inflammatory markers in target cells. When transplanted in an animal model of multiple sclerosis, exogenous NSCs actively transferred mitochondria to mononuclear phagocytes and induced a significant amelioration of clinical deficits. Our data provide the first evidence that NSCs deliver functional mitochondria to target cells via EVs, paving the way for the development of novel (a)cellular approaches aimed at restoring mitochondrial dysfunction not only in multiple sclerosis, but also in degenerative neurological diseases.
Collapse
Affiliation(s)
- Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, United Kingdom
| | - Joshua D. Bernstock
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, United Kingdom
- National Institutes of Health (NINDS/NIH), Bethesda, Maryland, United States of America
| | - Cory M. Willis
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, United Kingdom
| | - Giulia Manferrari
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, United Kingdom
| | - Rebecca Rogall
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, United Kingdom
| | | | - James C. Williamson
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge, United Kingdom
| | - Alice Braga
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, United Kingdom
| | - Aletta van den Bosch
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, United Kingdom
| | - Tommaso Leonardi
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, United Kingdom
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Grzegorz Krzak
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, United Kingdom
| | - Ágnes Kittel
- Institute of Experimental Medicine, Eötvös Lorand Research Network, Budapest, Hungary
| | - Cristiane Benincá
- MRC Mitochondrial Biology Unit, University of Cambridge, United Kingdom
| | - Nunzio Vicario
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, United Kingdom
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Italy
| | | | - Carlos Bastos
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Iacopo Bicci
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, United Kingdom
| | - Nunzio Iraci
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, United Kingdom
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Italy
| | - Jayden A. Smith
- Cambridge Innovation Technologies Consulting (CITC) Limited, United Kingdom
| | - Ben Peacock
- NanoFCM Co., Ltd, Nottingham, United Kingdom
| | | | - Paul J. Lehner
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge, United Kingdom
| | - Edit Iren Buzas
- Semmelweis University, Budapest, Hungary
- HCEMM Kft HU, Budapest, Hungary
- ELKH-SE, Budapest, Hungary
| | - Nuno Faria
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Massimo Zeviani
- MRC Mitochondrial Biology Unit, University of Cambridge, United Kingdom
| | - Christian Frezza
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge United Kingdom
| | | | - Nicholas J. Matheson
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, United Kingdom
| | - Carlo Viscomi
- MRC Mitochondrial Biology Unit, University of Cambridge, United Kingdom
| | - Stefano Pluchino
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, United Kingdom
- Cambridge Innovation Technologies Consulting (CITC) Limited, United Kingdom
| |
Collapse
|
80
|
Pereyra AS, Harris KL, Soepriatna AH, Waterbury QA, Bharathi SS, Zhang Y, Fisher-Wellman KH, Goergen CJ, Goetzman ES, Ellis JM. Octanoate is differentially metabolized in liver and muscle and fails to rescue cardiomyopathy in CPT2 deficiency. J Lipid Res 2021; 62:100069. [PMID: 33757734 PMCID: PMC8082564 DOI: 10.1016/j.jlr.2021.100069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 12/30/2022] Open
Abstract
Long-chain fatty acid oxidation is frequently impaired in primary and systemic metabolic diseases affecting the heart; thus, therapeutically increasing reliance on normally minor energetic substrates, such as ketones and medium-chain fatty acids, could benefit cardiac health. However, the molecular fundamentals of this therapy are not fully known. Here, we explored the ability of octanoate, an eight-carbon medium-chain fatty acid known as an unregulated mitochondrial energetic substrate, to ameliorate cardiac hypertrophy in long-chain fatty acid oxidation-deficient hearts because of carnitine palmitoyltransferase 2 deletion (Cpt2M-/-). CPT2 converts acylcarnitines to acyl-CoAs in the mitochondrial matrix for oxidative bioenergetic metabolism. In Cpt2M-/- mice, high octanoate-ketogenic diet failed to alleviate myocardial hypertrophy, dysfunction, and acylcarnitine accumulation suggesting that this alternative substrate is not sufficiently compensatory for energy provision. Aligning this outcome, we identified a major metabolic distinction between muscles and liver, wherein heart and skeletal muscle mitochondria were unable to oxidize free octanoate, but liver was able to oxidize free octanoate. Liver mitochondria, but not heart or muscle, highly expressed medium-chain acyl-CoA synthetases, potentially enabling octanoate activation for oxidation and circumventing acylcarnitine shuttling. Conversely, octanoylcarnitine was oxidized by liver, skeletal muscle, and heart, with rates in heart 4-fold greater than liver and, in muscles, was not dependent upon CPT2. Together, these data suggest that dietary octanoate cannot rescue CPT2-deficient cardiac disease. These data also suggest the existence of tissue-specific mechanisms for octanoate oxidative metabolism, with liver being independent of free carnitine availability, whereas cardiac and skeletal muscles depend on carnitine but not on CPT2.
Collapse
Affiliation(s)
- Andrea S Pereyra
- Brody School of Medicine at East Carolina University, Department of Physiology, and East Carolina Diabetes and Obesity Institute, Greenville, NC, USA
| | - Kate L Harris
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Arvin H Soepriatna
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Quin A Waterbury
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Sivakama S Bharathi
- Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yuxun Zhang
- Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kelsey H Fisher-Wellman
- Brody School of Medicine at East Carolina University, Department of Physiology, and East Carolina Diabetes and Obesity Institute, Greenville, NC, USA
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Eric S Goetzman
- Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jessica M Ellis
- Brody School of Medicine at East Carolina University, Department of Physiology, and East Carolina Diabetes and Obesity Institute, Greenville, NC, USA.
| |
Collapse
|
81
|
Photooxidation-induced fluorescence amplification system for an ultra-sensitive enzyme-linked immunosorbent assay (ELISA). Sci Rep 2021; 11:5831. [PMID: 33712666 PMCID: PMC7954804 DOI: 10.1038/s41598-021-85107-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
This report suggests a method of enhancing the sensitivity of chemifluorescence-based ELISA, using photooxidation-induced fluorescence amplification (PIFA). The PIFA utilized autocatalytic photooxidation of the chemifluorescent substrate, 10-acetyl 3,7-dihydroxyphenoxazine (ADHP, Amplex Red) to amplify the fluorescent product resorufin, initially oxidized by horse radish peroxidase (HRP). As the amplification rate is proportional to the initial level of resorufin, the level of antigen labeled by HRP is quantified by analyzing the profile of fluorescence intensity. The normalized profile was interpolated into an autocatalysis model, and the rate of increase at half-maximum time was quantified by the use of an amplification index (AI). The lower limit of detection, for resorufin or HRP, was less than one-tenth that of the plate reader. It requires only slight modification of the fluorescence reader and is fully compatible with conventional or commercial ELISA. When it is applied to a commercial ELISA kit for the detection of amyloid beta, it is verified that the PIFA assay enhanced the detection sensitivity by more than a factor of 10 and was compatible with a conventional 96-well ELISA assay kit. We anticipate this PIFA assay to be used in research for the detection of low levels of proteins and for the early diagnosis of various diseases with rare protein biomarkers, at ultra-low (pg/mL) concentrations.
Collapse
|
82
|
Sharma P, Singh S. Combinatorial Effect of DCA and Let-7a on Triple-Negative MDA-MB-231 Cells: A Metabolic Approach of Treatment. Integr Cancer Ther 2021; 19:1534735420911437. [PMID: 32248711 PMCID: PMC7136934 DOI: 10.1177/1534735420911437] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dichloroacetate (DCA) is a metabolic modulator that inhibits pyruvate dehydrogenase activity and promotes the influx of pyruvate into the tricarboxylic acid cycle for complete oxidation of glucose. DCA stimulates oxidative phosphorylation (OXPHOS) more than glycolysis by altering the morphology of the mitochondria and supports mitochondrial apoptosis. As a consequence, DCA induces apoptosis in cancer cells and inhibits the proliferation of cancer cells. Recently, the role of miRNAs has been reported in regulating gene expression at the transcriptional level and also in reprogramming energy metabolism. In this article, we indicate that DCA treatment leads to the upregulation of let-7a expression, but DCA-induced cancer cell death is independent of let-7a. We observed that the combined effect of DCA and let-7a induces apoptosis, reduces reactive oxygen species generation and autophagy, and stimulates mitochondrial biogenesis. This was later accompanied by stimulation of OXPHOS in combined treatment and was thus involved in metabolic reprogramming of MDA-MB-231 cells.
Collapse
Affiliation(s)
| | - Sandeep Singh
- Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
83
|
Baghdadi M, Hinterding HM, Partridge L, Deelen J. From mutation to mechanism: deciphering the molecular function of genetic variants linked to human ageing. Brief Funct Genomics 2021; 21:13-23. [PMID: 33690799 PMCID: PMC8789301 DOI: 10.1093/bfgp/elab005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 01/20/2023] Open
Abstract
Many of the leading causes of death in humans, such as cardiovascular disease, type 2 diabetes and Alzheimer’s disease are influenced by biological mechanisms that become dysregulated with increasing age. Hence, by targeting these ageing-related mechanisms, we may be able to improve health in old age. Ageing is partly heritable and genetic studies have been moderately successful in identifying genetic variants associated with ageing-related phenotypes (lifespan, healthspan and longevity). To decipher the mechanisms by which the identified variants influence ageing, studies that focus on their functional validation are vital. In this perspective, we describe the steps that could be taken in the process of functional validation: (1) in silico characterisation using bioinformatic tools; (2) in vitro characterisation using cell lines or organoids; and (3) in vivo characterisation studies using model organisms. For the in vivo characterisation, it is important to focus on translational phenotypes that are indicative of both healthspan and lifespan, such as the frailty index, to inform subsequent intervention studies. The depth of functional validation of a genetic variant depends on its location in the genome and conservation in model organisms. Moreover, some variants may prove to be hard to characterise due to context-dependent effects related to the experimental environment or genetic background. Future efforts to functionally characterise the (newly) identified genetic variants should shed light on the mechanisms underlying ageing and will help in the design of targeted interventions to improve health in old age.
Collapse
|
84
|
Dambrova M, Zuurbier CJ, Borutaite V, Liepinsh E, Makrecka-Kuka M. Energy substrate metabolism and mitochondrial oxidative stress in cardiac ischemia/reperfusion injury. Free Radic Biol Med 2021; 165:24-37. [PMID: 33484825 DOI: 10.1016/j.freeradbiomed.2021.01.036] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
The heart is the most metabolically flexible organ with respect to the use of substrates available in different states of energy metabolism. Cardiac mitochondria sense substrate availability and ensure the efficiency of oxidative phosphorylation and heart function. Mitochondria also play a critical role in cardiac ischemia/reperfusion injury, during which they are directly involved in ROS-producing pathophysiological mechanisms. This review explores the mechanisms of ROS production within the energy metabolism pathways and focuses on the impact of different substrates. We describe the main metabolites accumulating during ischemia in the glucose, fatty acid, and Krebs cycle pathways. Hyperglycemia, often present in the acute stress condition of ischemia/reperfusion, increases cytosolic ROS concentrations through the activation of NADPH oxidase 2 and increases mitochondrial ROS through the metabolic overloading and decreased binding of hexokinase II to mitochondria. Fatty acid-linked ROS production is related to the increased fatty acid flux and corresponding accumulation of long-chain acylcarnitines. Succinate that accumulates during anoxia/ischemia is suggested to be the main source of ROS, and the role of itaconate as an inhibitor of succinate dehydrogenase is emerging. We discuss the strategies to modulate and counteract the accumulation of substrates that yield ROS and the therapeutic implications of this concept.
Collapse
Affiliation(s)
- Maija Dambrova
- Latvian Institute of Organic Synthesis, Riga, Latvia; Riga Stradins University, Riga, Latvia.
| | - Coert J Zuurbier
- Amsterdam UMC, University of Amsterdam, Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, AZ 1105, Amsterdam, the Netherlands
| | - Vilmante Borutaite
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | | |
Collapse
|
85
|
Guimarães NC, Alves DS, Vilela WR, de-Souza-Ferreira E, Gomes BRB, Ott D, Murgott J, E N de Souza P, de Sousa MV, Galina A, Roth J, Fabro de Bem A, Veiga-Souza FH. Mitochondrial pyruvate carrier as a key regulator of fever and neuroinflammation. Brain Behav Immun 2021; 92:90-101. [PMID: 33242651 DOI: 10.1016/j.bbi.2020.11.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/26/2020] [Accepted: 11/22/2020] [Indexed: 02/07/2023] Open
Abstract
The mitochondrial pyruvate carrier (MPC) is an inner-membrane transporter that facilitates pyruvate uptake from the cytoplasm into mitochondria. We previously reported that MPC1 protein levels increase in the hypothalamus of animals during fever induced by lipopolysaccharide (LPS), but how this increase contributes to the LPS responses remains to be studied. Therefore, we investigated the effect of UK 5099, a classical MPC inhibitor, in a rat model of fever, on hypothalamic mitochondrial function and neuroinflammation in LPS-stimulated preoptic area (POA) primary microcultures. Intracerebroventricular administration of UK 5099 reduced the LPS-induced fever. High-resolution respirometry revealed an increase in oxygen consumption and oxygen flux related to ATP synthesis in the hypothalamic homogenate from LPS-treated animals linked to mitochondrial complex I plus II. Preincubation with UK 5099 prevented the LPS-induced increase in oxygen consumption, ATP synthesis and spare capacity only in complex I-linked respiration and reduced mitochondrial H2O2 production. In addition, treatment of rat POA microcultures with UK 5099 reduced the secretion of the proinflammatory and pyrogenic cytokines TNFα and IL-6 as well as the immunoreactivity of inflammatory transcription factors NF-κB and NF-IL6 four hours after LPS stimulation. These results suggest that the regulation of mitochondrial pyruvate metabolism through MPC inhibition may be effective in reducing neuroinflammation and fever.
Collapse
Affiliation(s)
- Natália C Guimarães
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Débora S Alves
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Wembley R Vilela
- Department of Physiological Sciences, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Eduardo de-Souza-Ferreira
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Center for Health Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bruna R B Gomes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Daniela Ott
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, Justus-Liebig-University of Giessen, Giessen, Hesse, Germany
| | - Jolanta Murgott
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, Justus-Liebig-University of Giessen, Giessen, Hesse, Germany
| | - Paulo E N de Souza
- Laboratory of Electron Paramagnetic Resonance, Institute of Physics, University of Brasília, Brasília, DF, Brazil
| | - Marcelo V de Sousa
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Antonio Galina
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Center for Health Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Joachim Roth
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, Justus-Liebig-University of Giessen, Giessen, Hesse, Germany
| | - Andreza Fabro de Bem
- Department of Physiological Sciences, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Fabiane H Veiga-Souza
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil; School of Ceilândia, University of Brasília, Brasília, DF, Brazil.
| |
Collapse
|
86
|
Gerber L, Clow KA, Gamperl AK. Acclimation to warm temperatures has important implications for mitochondrial function in Atlantic salmon ( Salmo salar). J Exp Biol 2021; 224:jeb236257. [PMID: 33288533 DOI: 10.1242/jeb.236257] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022]
Abstract
In fish, the capacity of thermal acclimation to preserve cardiac mitochondrial function under future warming scenarios is important to understand given the central roles that cardiac energy metabolism and performance play in this taxa's thermal tolerance. We acclimated Atlantic salmon to 12 and 20°C (for >2 months), and investigated the effects of acute and chronic warming on cardiac mitochondrial respiration and reactive oxygen species (ROS) production (release rate) using high-resolution fluorespirometry. Further, we compared the sensitivity of mitochondrial respiration to nitric oxide (i.e. the NO IC50), and assessed the mitochondrial response to anoxia-reoxygenation (AR). Acute exposure to 20°C increased maximal mitochondrial respiration by ∼55%; however, the mitochondria's complex I respiratory control ratio was 17% lower and ROS production was increased by ≥60%. Acclimation to 20°C: (1) preserved mitochondrial coupling and aerobic capacity; (2) decreased the mitochondria's ROS production by ∼30%; (3) increased the mitochondria's NO IC50 by ∼23%; and (4) improved mitochondrial membrane integrity at 20°C. AR did not affect mitochondrial function at 12°C, but acute exposure to 20°C and AR depressed maximal mitochondrial respiration (by ∼9%) and coupling (by ∼16%) without impacting ROS production. Finally, warm acclimation did not improve the capacity of mitochondria to recover from AR, indicating that there was no 'cross-tolerance' between these challenges. Our findings provide compelling evidence that thermal plasticity of cardiac mitochondrial function contributes to the Atlantic salmon's capability to survive at ≥20°C for prolonged periods, but call into question whether this plasticity may allow them to withstand high temperatures when combined with other stressors.
Collapse
Affiliation(s)
- Lucie Gerber
- Department of Ocean Sciences, Memorial University, St. John's, NL A1C 5S7, Canada
| | - Kathy A Clow
- Department of Ocean Sciences, Memorial University, St. John's, NL A1C 5S7, Canada
| | - Anthony K Gamperl
- Department of Ocean Sciences, Memorial University, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
87
|
Odorcyk FK, Ribeiro RT, Roginski AC, Duran-Carabali LE, Couto-Pereira NS, Dalmaz C, Wajner M, Netto CA. Differential Age-Dependent Mitochondrial Dysfunction, Oxidative Stress, and Apoptosis Induced by Neonatal Hypoxia-Ischemia in the Immature Rat Brain. Mol Neurobiol 2021; 58:2297-2308. [PMID: 33417220 DOI: 10.1007/s12035-020-02261-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/10/2020] [Indexed: 01/08/2023]
Abstract
Neonatal hypoxia-ischemia (HI) is among the main causes of mortality and morbidity in newborns. Experimental studies show that the immature rat brain is less susceptible to HI injury, suggesting that changes that occur during the first days of life drastically alter its susceptibility. Among the main developmental changes observed is the mitochondrial function, namely, the tricarboxylic acid (TCA) cycle and respiratory complex (RC) activities. Therefore, in the present study, we investigated the influence of neonatal HI on mitochondrial functions, redox homeostasis, and cell damage at different postnatal ages in the hippocampus of neonate rats. For this purpose, animals were divided into four groups: sham postnatal day 3 (ShP3), HIP3, ShP11, and HIP11. We initially observed increased apoptosis in the HIP11 group only, indicating a higher susceptibility of these animals to brain injury. Mitochondrial damage, as determined by flow cytometry showing mitochondrial swelling and loss of mitochondrial membrane potential, was also demonstrated only in the HIP11 group. This was consistent with the decreased mitochondrial oxygen consumption, reduced TCA cycle enzymes, and RC activities and induction of oxidative stress in this group of animals. Considering that HIP3 and the sham animals showed no alteration of mitochondrial functions, redox homeostasis, and showed no apoptosis, our data suggest an age-dependent vulnerability of the hippocampus to hypoxia-ischemia. The present results highlight age-dependent metabolic differences in the brain of neonate rats submitted to HI indicating that different treatments might be needed for HI newborns with different gestational ages.
Collapse
Affiliation(s)
- Felipe Kawa Odorcyk
- Graduate Program in Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - R T Ribeiro
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - A C Roginski
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - L E Duran-Carabali
- Graduate Program in Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - N S Couto-Pereira
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - C Dalmaz
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - M Wajner
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - C A Netto
- Graduate Program in Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
88
|
Hellgren KT, Premanandhan H, Quinn CJ, Trafford AW, Galli GLJ. Sex-dependent effects of developmental hypoxia on cardiac mitochondria from adult murine offspring. Free Radic Biol Med 2021; 162:490-499. [PMID: 33186741 DOI: 10.1016/j.freeradbiomed.2020.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022]
Abstract
Insufficient oxygen supply (hypoxia) during fetal and embryonic development can lead to latent phenotypical changes in the adult cardiovascular system, including altered cardiac function and increased susceptibility to ischemia reperfusion injury. While the cellular mechanisms underlying this phenomenon are largely unknown, several studies have pointed towards metabolic disturbances in the heart of offspring from hypoxic pregnancies. To this end, we investigated mitochondrial function in the offspring of a mouse model of prenatal hypoxia. Pregnant C57 mice were subjected to either normoxia (21%) or hypoxia (14%) during gestational days 6-18. Offspring were reared in normoxia for up to 8 months and mitochondrial biology was assessed with electron microscopy (ultrastructure), spectrophotometry (enzymatic activity of electron transport chain complexes), microrespirometry (oxidative phosphorylation and H202 production) and Western Blot (protein expression). Our data showed that male adult offspring from hypoxic pregnancies possessed mitochondria with increased H202 production and lower respiratory capacity that was associated with reduced protein expression of complex I, II and IV. In contrast, females from hypoxic pregnancies had a higher respiratory capacity and lower H202 production that was associated with increased enzymatic activity of complex IV. From these results, we speculate that early exposure to hypoxia has long term, sex-dependent effects on cardiac metabolic function, which may have implications for cardiovascular health and disease in adulthood.
Collapse
Affiliation(s)
- Kim T Hellgren
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester M13 9NT, UK
| | - Hajani Premanandhan
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester M13 9NT, UK
| | - Callum J Quinn
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester M13 9NT, UK
| | - Andrew W Trafford
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester M13 9NT, UK
| | - Gina L J Galli
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester M13 9NT, UK.
| |
Collapse
|
89
|
Gerber L, Clow KA, Mark FC, Gamperl AK. Improved mitochondrial function in salmon (Salmo salar) following high temperature acclimation suggests that there are cracks in the proverbial 'ceiling'. Sci Rep 2020; 10:21636. [PMID: 33303856 PMCID: PMC7729908 DOI: 10.1038/s41598-020-78519-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/22/2020] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial function can provide key insights into how fish will respond to climate change, due to its important role in heart performance, energy metabolism and oxidative stress. However, whether warm acclimation can maintain or improve the energetic status of the fish heart when exposed to short-term heat stress is not well understood. We acclimated Atlantic salmon, a highly aerobic eurythermal species, to 12 and 20 °C, then measured cardiac mitochondrial functionality and integrity at 20 °C and at 24, 26 and 28 °C (this species' critical thermal maximum ± 2 °C). Acclimation to 20 °C vs. 12 °C enhanced many aspects of mitochondrial respiratory capacity and efficiency up to 24 °C, and preserved outer mitochondrial membrane integrity up to 26 °C. Further, reactive oxygen species (ROS) production was dramatically decreased at all temperatures. These data suggest that salmon acclimated to 'normal' maximum summer temperatures are capable of surviving all but the most extreme ocean heat waves, and that there is no 'tradeoff' in heart mitochondrial function when Atlantic salmon are acclimated to high temperatures (i.e., increased oxidative phosphorylation does not result in heightened ROS production). This study suggests that fish species may show quite different acclimatory responses when exposed to prolonged high temperatures, and thus, susceptibility to climate warming.
Collapse
Affiliation(s)
- Lucie Gerber
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada.
| | - Kathy A Clow
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada
| | - Felix C Mark
- Section Integrative Ecophysiology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Anthony K Gamperl
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada
| |
Collapse
|
90
|
Makrecka-Kuka M, Dimitrijevs P, Domracheva I, Jaudzems K, Dambrova M, Arsenyan P. Fused isoselenazolium salts suppress breast cancer cell growth by dramatic increase in pyruvate-dependent mitochondrial ROS production. Sci Rep 2020; 10:21595. [PMID: 33299068 PMCID: PMC7725824 DOI: 10.1038/s41598-020-78620-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
The development of targeted drugs for the treatment of cancer remains an unmet medical need. This study was designed to investigate the mechanism underlying breast cancer cell growth suppression caused by fused isoselenazolium salts. The ability to suppress the proliferation of malignant and normal cells in vitro as well as the effect on NAD homeostasis (NAD+, NADH, and NMN levels), NAMPT inhibition and mitochondrial functionality were studied. The interactions of positively charged isoselenazolium salts with the negatively charged mitochondrial membrane model were assessed. Depending on the molecular structure, fused isoselenazolium salts display nanomolar to high micromolar cytotoxicities against MCF-7 and 4T1 breast tumor cell lines. The studied compounds altered NMN, NAD+, and NADH levels and the NAD+/NADH ratio. Mitochondrial functionality experiments showed that fused isoselenazolium salts inhibit pyruvate-dependent respiration but do not directly affect complex I of the electron transfer system. Moreover, the tested compounds induce an immediate dramatic increase in the production of reactive oxygen species. In addition, the isoselenazolothiazolium derivative selectively binds to cardiolipin in a liposomal model. Isoselenazolium salts may be a promising platform for the development of potent drug candidates for anticancer therapy that impact mitochondrial pyruvate-dependent metabolism in breast cancer cells.
Collapse
Affiliation(s)
| | - Pavels Dimitrijevs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, 1006, Latvia.,Riga Stradins University, Dzirciema 16, Riga, 1007, Latvia
| | - Ilona Domracheva
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, 1006, Latvia
| | - Kristaps Jaudzems
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, 1006, Latvia
| | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, 1006, Latvia.,Riga Stradins University, Dzirciema 16, Riga, 1007, Latvia
| | - Pavel Arsenyan
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, 1006, Latvia.
| |
Collapse
|
91
|
Seeliger B, Alesina PF, Walz MK, Pop R, Charles AL, Geny B, Messaddeq N, Kontogeorgos G, Mascagni P, Seyller E, Marescaux J, Agnus V, Diana M. Intraoperative imaging for remnant viability assessment in bilateral posterior retroperitoneoscopic partial adrenalectomy in an experimental model. Br J Surg 2020; 107:1780-1790. [PMID: 32869868 DOI: 10.1002/bjs.11839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/16/2020] [Accepted: 05/31/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND A surgical approach preserving functional adrenal tissue allows biochemical cure while avoiding the need for lifelong steroid replacement. The aim of this experimental study was to evaluate the impact of intraoperative imaging during bilateral partial adrenalectomy on remnant perfusion and function. METHODS Five pigs underwent bilateral posterior retroperitoneoscopic central adrenal gland division (9 divided glands, 1 undivided). Intraoperative perfusion assessment included computer-assisted quantitative fluorescence imaging, contrast-enhanced CT, confocal laser endomicroscopy (CLE) and local lactate sampling. Specimen analysis after completion adrenalectomy (10 adrenal glands) comprised mitochondrial activity and electron microscopy. RESULTS Fluorescence signal intensity evolution over time was significantly lower in the cranial segment of each adrenal gland (mean(s.d.) 0·052(0·057) versus 0·133(0·057) change in intensity per s for cranial versus caudal parts respectively; P = 0·020). Concordantly, intraoperative CT in the portal phase demonstrated significantly lower contrast uptake in cranial segments (P = 0·031). In CLE, fluorescein contrast was observed in all caudal segments, but in only four of nine cranial segments (P = 0·035). Imaging findings favouring caudal perfusion were congruent, with significantly lower local capillary lactate levels caudally (mean(s.d.) 5·66(5·79) versus 11·58(6·53) mmol/l for caudal versus cranial parts respectively; P = 0·008). Electron microscopy showed more necrotic cells cranially (P = 0·031). There was no disparity in mitochondrial activity (respiratory rates, reactive oxygen species and hydrogen peroxide production) between the different segments. CONCLUSION In a model of bilateral partial adrenalectomy, three intraoperative imaging modalities consistently discriminated between regular and reduced adrenal remnant perfusion. By avoiding circumferential dissection, mitochondrial function was preserved in each segment of the adrenal glands. Surgical relevance Preservation of adrenal tissue to maintain postoperative function is essential in bilateral and hereditary adrenal pathologies. There is interindividual variation in residual adrenocortical stress capacity, and the minimal functional remnant size is unknown. New intraoperative imaging technologies allow improved remnant size and perfusion assessment. Fluorescence imaging and contrast-enhanced intraoperative CT showed congruent results in evaluation of perfusion. Intraoperative imaging can help to visualize the remnant vascular supply in partial adrenalectomy. Intraoperative assessment of perfusion may foster maximal functional tissue preservation in bilateral adrenal pathologies and procedures.
Collapse
Affiliation(s)
- B Seeliger
- IHU-Strasbourg, Institute of Image-Guided Surgery, Strasbourg, France
- Institute of Physiology, EA3072 'Mitochondria, Oxidative Stress and Muscle Protection', Translational Medicine Federation, Faculty of Medicine, University of Strasbourg, Strasbourg, France
- Institute for Research against Digestive Cancer (IRCAD), Strasbourg, France
- Department of Surgery and Centre of Minimally Invasive Surgery, Evangelische Kliniken Essen-Mitte, Academic Teaching Hospital of the University of Duisburg-Essen, Essen, Germany
| | - P F Alesina
- Department of Surgery and Centre of Minimally Invasive Surgery, Evangelische Kliniken Essen-Mitte, Academic Teaching Hospital of the University of Duisburg-Essen, Essen, Germany
| | - M K Walz
- Department of Surgery and Centre of Minimally Invasive Surgery, Evangelische Kliniken Essen-Mitte, Academic Teaching Hospital of the University of Duisburg-Essen, Essen, Germany
| | - R Pop
- IHU-Strasbourg, Institute of Image-Guided Surgery, Strasbourg, France
- Department of Interventional Radiology, Strasbourg University Hospitals, Strasbourg, France
| | - A-L Charles
- Institute of Physiology, EA3072 'Mitochondria, Oxidative Stress and Muscle Protection', Translational Medicine Federation, Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - B Geny
- Institute of Physiology, EA3072 'Mitochondria, Oxidative Stress and Muscle Protection', Translational Medicine Federation, Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - N Messaddeq
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/University of Strasbourg, Strasbourg, France
| | - G Kontogeorgos
- First Propaedeutic Department of Internal Medicine, Laikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Department of Pathology, 'G. Gennimatas' Athens General Hospital, Athens, Greece
| | - P Mascagni
- IHU-Strasbourg, Institute of Image-Guided Surgery, Strasbourg, France
| | - E Seyller
- IHU-Strasbourg, Institute of Image-Guided Surgery, Strasbourg, France
| | - J Marescaux
- IHU-Strasbourg, Institute of Image-Guided Surgery, Strasbourg, France
- Institute for Research against Digestive Cancer (IRCAD), Strasbourg, France
| | - V Agnus
- IHU-Strasbourg, Institute of Image-Guided Surgery, Strasbourg, France
| | - M Diana
- IHU-Strasbourg, Institute of Image-Guided Surgery, Strasbourg, France
- Institute of Physiology, EA3072 'Mitochondria, Oxidative Stress and Muscle Protection', Translational Medicine Federation, Faculty of Medicine, University of Strasbourg, Strasbourg, France
- Institute for Research against Digestive Cancer (IRCAD), Strasbourg, France
| |
Collapse
|
92
|
Mitochondrial-Protective Effects of R-Phenibut after Experimental Traumatic Brain Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9364598. [PMID: 33274011 PMCID: PMC7700030 DOI: 10.1155/2020/9364598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/24/2020] [Accepted: 11/03/2020] [Indexed: 12/22/2022]
Abstract
Altered neuronal Ca2+ homeostasis and mitochondrial dysfunction play a central role in the pathogenesis of traumatic brain injury (TBI). R-Phenibut ((3R)-phenyl-4-aminobutyric acid) is an antagonist of the α2δ subunit of voltage-dependent calcium channels (VDCC) and an agonist of gamma-aminobutyric acid B (GABA-B) receptors. The aim of this study was to evaluate the potential therapeutic effects of R-phenibut following the lateral fluid percussion injury (latFPI) model of TBI in mice and the impact of R- and S-phenibut on mitochondrial functionality in vitro. By determining the bioavailability of R-phenibut in the mouse brain tissue and plasma, we found that R-phenibut (50 mg/kg) reached the brain tissue 15 min after intraperitoneal (i.p.) and peroral (p.o.) injections. The maximal concentration of R-phenibut in the brain tissues was 0.6 μg/g and 0.2 μg/g tissue after i.p. and p.o. administration, respectively. Male Swiss-Webster mice received i.p. injections of R-phenibut at doses of 10 or 50 mg/kg 2 h after TBI and then once daily for 7 days. R-Phenibut treatment at the dose of 50 mg/kg significantly ameliorated functional deficits after TBI on postinjury days 1, 4, and 7. Seven days after TBI, the number of Nissl-stained dark neurons (N-DNs) and interleukin-1beta (IL-1β) expression in the cerebral neocortex in the area of cortical impact were reduced. Moreover, the addition of R- and S-phenibut at a concentration of 0.5 μg/ml inhibited calcium-induced mitochondrial swelling in the brain homogenate and prevented anoxia-reoxygenation-induced increases in mitochondrial H2O2 production and the H2O2/O ratio. Taken together, these results suggest that R-phenibut could serve as a neuroprotective agent and promising drug candidate for treating TBI.
Collapse
|
93
|
Boardman NT, Migally B, Pileggi C, Parmar GS, Xuan JY, Menzies K, Harper ME. Glutaredoxin-2 and Sirtuin-3 deficiencies impair cardiac mitochondrial energetics but their effects are not additive. Biochim Biophys Acta Mol Basis Dis 2020; 1867:165982. [PMID: 33002579 DOI: 10.1016/j.bbadis.2020.165982] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/06/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023]
Abstract
Altered redox biology and oxidative stress have been implicated in the progression of heart failure. Glutaredoxin-2 (GRX2) is a glutathione-dependent oxidoreductase and catalyzes the reversible deglutathionylation of mitochondrial proteins. Sirtuin-3 (SIRT3) is a class III histone deacetylase and regulates lysine acetylation in mitochondria. Both GRX2 and SIRT3 are considered as key in the protection against oxidative damage in the myocardium. Knockout of either contributes to adverse heart pathologies including hypertrophy, hypertension, and cardiac dysfunction. Here, we created and characterized a GRX2 and SIRT3 double-knockout mouse model, hypothesizing that their deletions would have an additive effect on oxidative stress, and exacerbate mitochondrial function and myocardial structural remodeling. Wildtype, single-gene knockout (Sirt3-/-, Grx2-/-), and double-knockout mice (Grx2-/-/Sirt3-/-) were compared in heart weight, histology, mitochondrial respiration and H2O2 production. Overall, the hearts from Grx2-/-/Sirt3-/- mice displayed increased fibrosis and hypertrophy versus wildtype. In the Grx2-/- and the Sirt3-/- we observed changes in mitochondrial oxidative capacity, however this was associated with elevated H2O2 emission only in the Sirt3-/-. Similar changes were observed but not worsened in hearts from Grx2-/-/Sirt3-/- mice, suggesting that these changes were not additive. In human myocardium, using genetic and histopathological data from the human Genotype-Tissue Expression consortium, we confirmed that SIRT3 expression correlates inversely with heart pathology. Altogether, GRX2 and SIRT3 are important in the control of cardiac mitochondrial redox and oxidative processes, but their combined absence does not exacerbate effects, consistent with the overall conclusion that they function together in the complex redox and antioxidant systems in the heart.
Collapse
Affiliation(s)
- Neoma T Boardman
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Department of Medical Biology, Faculty of Health Sciences, UiT-Arctic University of Norway, Tromsø, Norway
| | - Baher Migally
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Chantal Pileggi
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Gaganvir S Parmar
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jian Ying Xuan
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Keir Menzies
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
94
|
Mitochondrial Function in the Kidney and Heart, but Not the Brain, is Mainly Altered in an Experimental Model of Endotoxaemia. Shock 2020; 52:e153-e162. [PMID: 30640252 DOI: 10.1097/shk.0000000000001315] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Significant impairments in mitochondrial function are associated with the development of multi-organ failure in sepsis/endotoxaemia, but the data on the dynamics of simultaneous mitochondrial impairment in multiple organs are limited. The aim of this study was to evaluate the changes in heart, brain and kidney mitochondrial function in an experimental model of lipopolysaccharide (LPS)-induced endotoxaemia.Samples were collected 4 and 24 h after single injection of LPS (10 mg/kg) in mice. Marked increases in inflammation-related gene expression were observed in all studied tissues 4 h after LPS administration. At 24 h post LPS administration, this expression of inflammation-related genes remained upregulated only in kidneys. Significantly increased concentrations of kidney function markers confirmed that kidneys were severely damaged. Echocardiographic measurements showed that the ejection fraction and fractional shortening were significantly reduced 4 h after LPS administration, whereas 24 h after LPS administration, the cardiac function was restored to baseline. A two-fold decrease in mitochondrial oxidative phosphorylation (OXPHOS) capacity in the kidney was observed 4 and 24 h after LPS administration. Significant decrease in mitochondrial fatty acid oxidation was observed in heart 4 h after LPS administration. Furthermore, 24 h after LPS administration, the respiration rates in cardiac fibers at OXPHOS and electron transport (ET) states were significantly increased, which resulted in increased ET coupling efficiency in the LPS-treated group, whereas four-fold increases in the H2O2 production rate and H2O2/O ratio were observed. The brain mitochondria demonstrated a slightly impaired mitochondrial functionality just 24 h after the induction of endotoxaemia.In conclusion, among studied tissues kidney mitochondria are the most sensitive to endotoxaemia and do not recover from LPS-induced damage, whereas in brain, mitochondrial function was not significantly altered. In heart, endotoxaemia induces a decrease in the mitochondrial fatty acid oxidation capacity, but during the phase of suppressed inflammatory response, the ET efficiency is improved despite the marked increase in reactive oxygen species production.
Collapse
|
95
|
Guanosine Neuroprotection of Presynaptic Mitochondrial Calcium Homeostasis in a Mouse Study with Amyloid-β Oligomers. Mol Neurobiol 2020; 57:4790-4809. [DOI: 10.1007/s12035-020-02064-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/07/2020] [Indexed: 01/12/2023]
|
96
|
Atorvastatin Improves Mitochondrial Function and Prevents Oxidative Stress in Hippocampus Following Amyloid-β 1-40 Intracerebroventricular Administration in Mice. Mol Neurobiol 2020; 57:4187-4201. [PMID: 32683653 DOI: 10.1007/s12035-020-02026-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
Abstract
Amyloid-β (Aβ) peptides play a significant role in the pathogenesis of Alzheimer's disease (AD). Neurotoxic effects promoted by Aβ peptides involve glutamate transmission impairment, decrease of neurotrophic factors, mitochondrial dysfunction, oxidative stress, synaptotoxicity, and neuronal degeneration. Here, we assessed the early events evoked by Aβ1-40 on the hippocampus. Additionally, we sought to unravel the molecular mechanisms of atorvastatin preventive effect on Aβ-induced hippocampal damage. Mice were treated orally (p.o.) with atorvastatin 10 mg/kg/day during 7 consecutive days before the intracerebroventricular (i.c.v.) infusion of Aβ1-40 (400 pmol/site). Twenty-four hours after Aβ1-40 infusion, a reduced content of mature BDNF/proBDNF ratio was observed in Aβ-treated mice. However, there is no alteration in synaptophysin, PSD-95, and doublecortin immunocontent in the hippocampus. Aβ1-40 promoted an increase in reactive oxygen species (ROS) and nitric oxide (NO) generation in hippocampal slices, and atorvastatin prevented this oxidative burst. Mitochondrial OXPHOS was measured by high-resolution respirometry. At this time point, Aβ1-40 did not alter the O2 consumption rates (OCR) related to phosphorylating state associated with complexes I and II, and the maximal OCR. However, atorvastatin increased OCR of phosphorylating state associated with complex I and complexes I and II, maximal OCR of complexes I and II, and OCR associated with mitochondrial spare capacity. Atorvastatin treatment improved mitochondrial function in the rodent hippocampus, even after Aβ infusion, pointing to a promising effect of improving brain mitochondria bioenergetics. Therefore, atorvastatin could act as an adjuvant in battling the symptoms of AD to preventing or delaying the disease progression.
Collapse
|
97
|
Aparicio-Trejo OE, Avila-Rojas SH, Tapia E, Rojas-Morales P, León-Contreras JC, Martínez-Klimova E, Hernández-Pando R, Sánchez-Lozada LG, Pedraza-Chaverri J. Chronic impairment of mitochondrial bioenergetics and β-oxidation promotes experimental AKI-to-CKD transition induced by folic acid. Free Radic Biol Med 2020; 154:18-32. [PMID: 32360615 DOI: 10.1016/j.freeradbiomed.2020.04.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/27/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022]
Abstract
Recent studies suggest that mitochondrial bioenergetics and oxidative stress alterations may be common mechanisms involved in the progression of renal damage. However, the evolution of the mitochondrial alterations over time and the possible effects that their prevention could have in the progression of renal damage are not clear. Folic acid (FA)-induced kidney damage is a widely used experimental model to induce acute kidney injury (AKI), which can evolve to chronic kidney disease (CKD). Therefore, it has been extensively applied to study the mechanisms involved in AKI-to-CKD transition. We previously demonstrated that one day after FA administration, N-acetyl-cysteine (NAC) pre-administration prevented the development of AKI induced by FA. Such therapeutic effect was related to mitochondrial preservation. In the present study, we characterized the temporal course of mitochondrial bioenergetics and redox state alterations along the progression of renal damage induced by FA. Mitochondrial function was studied at different time points and showed a sustained impairment in oxidative phosphorylation capacity and a decrease in β-oxidation, decoupling, mitochondrial membrane potential depolarization and a pro-oxidative state, attributed to the reduction in activity of complexes I and III and mitochondrial cristae effacement, thus favoring the transition from AKI to CKD. Furthermore, the mitochondrial protection by NAC administration before AKI prevented not only the long-term deterioration of mitochondrial function at the chronic stage, but also CKD development. Taken together, our results support the idea that the prevention of mitochondrial dysfunction during an AKI event can be a useful strategy to prevent the transition to CKD.
Collapse
Affiliation(s)
- Omar Emiliano Aparicio-Trejo
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, 04510, Mexico
| | - Sabino Hazael Avila-Rojas
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, 04510, Mexico
| | - Edilia Tapia
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology "Ignacio Chávez", Mexico City, 14080, Mexico
| | - Pedro Rojas-Morales
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, 04510, Mexico
| | - Juan Carlos León-Contreras
- Experimental Pathology Section, National Institute of Medical Sciences and Nutrition ''Salvador Zubirán'', 14000, Mexico, Mexico City, Mexico
| | - Elena Martínez-Klimova
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, 04510, Mexico
| | - Rogelio Hernández-Pando
- Experimental Pathology Section, National Institute of Medical Sciences and Nutrition ''Salvador Zubirán'', 14000, Mexico, Mexico City, Mexico
| | - Laura Gabriela Sánchez-Lozada
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology "Ignacio Chávez", Mexico City, 14080, Mexico
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, 04510, Mexico.
| |
Collapse
|
98
|
Tsao YC, Chang YJ, Wang CH, Chen L. Discovery of Isoplumbagin as a Novel NQO1 Substrate and Anti-Cancer Quinone. Int J Mol Sci 2020; 21:E4378. [PMID: 32575541 PMCID: PMC7352187 DOI: 10.3390/ijms21124378] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/27/2022] Open
Abstract
Isoplumbagin (5-hydroxy-3-methyl-1,4-naphthoquinone), a naturally occurring quinone from Lawsonia inermis and Plumbago europaea, has been reported to have anti-inflammatory and antimicrobial activity. Inflammation has long been implicated in cancer progression. In this study, we examined the anticancer effect of chemically synthesized isoplumbagin. Our results revealed that isoplumbagin treatment suppressed cell viability and invasion of highly invasive oral squamous cell carcinoma (OSCC) OC3-IV2 cells, glioblastoma U87 cells, non-small cell lung carcinoma H1299 cells, prostate cancer PC3 cells, and cervical cancer HeLa cells by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Boyden chamber assays. In vivo studies demonstrate the inhibitory effect of 2 mg/kg isoplumbagin on the growth of orthotopic xenograft tumors derived from OSCC cells. Mechanistically, isoplumbagin exerts its cytotoxic effect through acting as a substrate of reduced nicotinamide adenine dinucleotide phosphate [NAD(P)H] dehydrogenase quinone 1 (NQO1) to generate hydroquinone, which reverses mitochondrial fission phenotype, reduces mitochondrial complex IV activity, and thus compromises mitochondrial function. Collectively, this work reveals an anticancer activity of isoplumbagin mainly through modulating mitochondrial dynamics and function.
Collapse
Affiliation(s)
- Yen-Chi Tsao
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan; (Y.-C.T.); (C.-H.W.)
| | - Yu-Jung Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan; (Y.-C.T.); (C.-H.W.)
| | - Chun-Hsien Wang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan; (Y.-C.T.); (C.-H.W.)
| | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan; (Y.-C.T.); (C.-H.W.)
- Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
99
|
Bundgaard A, James AM, Harbour ME, Murphy MP, Fago A. Stable mitochondrial CICIII 2 supercomplex interactions in reptiles versus homeothermic vertebrates. J Exp Biol 2020; 223:jeb223776. [PMID: 32393546 PMCID: PMC7328143 DOI: 10.1242/jeb.223776] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/05/2020] [Indexed: 12/20/2022]
Abstract
The association of complex I (CI), complex III (CIII) and complex IV (CIV) of the mitochondrial electron transport chain into stable high molecular weight supercomplexes (SCs) has been observed in several prokaryotes and eukaryotes, but among vertebrates it has only been examined in mammals. The biological role of these SCs is unclear but suggestions so far include enhanced electron transfer between complexes, decreased production of the reactive oxygen species (ROS) O2- and H2O2, or enhanced structural stability. Here, we provide the first overview on the stability, composition and activity of mitochondrial SCs in representative species of several vertebrate classes to determine patterns of SC variation across endotherms and ectotherms. We found that the stability of the CICIII2 SC and the inclusion of CIV within the SC varied considerably. Specifically, when solubilized by the detergent DDM, mitochondrial CICIII2 SCs were unstable in endotherms (birds and mammals) and highly stable in reptiles. Using mass-spectrometric complexomics, we confirmed that the CICIII2 is the major SC in the turtle, and that 90% of CI is found in this highly stable SC. Interestingly, the presence of stable SCs did not prevent mitochondrial H2O2 production and was not associated with elevated respiration rates of mitochondria isolated from the examined species. Together, these data show that SC stability varies among vertebrates and is greatest in poikilothermic reptiles and weakest in endotherms. This pattern suggests an adaptive role of SCs to varying body temperature, but not necessarily a direct effect on electron transfer or in the prevention of ROS production.
Collapse
Affiliation(s)
| | - Andrew M James
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Michael E Harbour
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Angela Fago
- Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
100
|
Parri M, Ippolito L, Cirri P, Ramazzotti M, Chiarugi P. Metabolic cell communication within tumour microenvironment: models, methods and perspectives. Curr Opin Biotechnol 2020; 63:210-219. [PMID: 32416546 DOI: 10.1016/j.copbio.2020.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/19/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023]
Abstract
Environmental cues are essential in defining tumour malignancy, by promoting tumour initiation, progression and metastatic spreading. Stromal cells may metabolically cooperate or compete with cancer cells, playing a mandatory role in defining cancer metabolic plasticity, potentially dictating the final tumour outcome. Assessing shared nutrients between different tumoural or stromal compartments is essential to understand the impact of environmental nutrients on the metabolic plasticity of tumours. Here, we review analytical and computational approaches for studying the tumour metabolic microenvironment, the destiny of nutrients shared among tumour and stromal populations, as well as the molecular modules of these metabolic relationships.
Collapse
Affiliation(s)
- M Parri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - L Ippolito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - P Cirri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - M Ramazzotti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - P Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.
| |
Collapse
|