51
|
Sinder SB, Sharma SV, Shirvaikar IS, Pradhyumnan H, Patel SH, Cabeda Diaz I, Perez GG, Bramlett HM, Raval AP. Impact of menopause-associated frailty on traumatic brain injury. Neurochem Int 2024; 176:105741. [PMID: 38621511 DOI: 10.1016/j.neuint.2024.105741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
Navigating menopause involves traversing a complex terrain of hormonal changes that extend far beyond reproductive consequences. Menopausal transition is characterized by a decrease in estradiol-17β (E2), and the impact of menopause resonates not only in the reproductive system but also through the central nervous system, musculoskeletal, and gastrointestinal domains. As women undergo menopausal transition, they become more susceptible to frailty, amplifying the risk and severity of injuries, including traumatic brain injury (TBI). Menopause triggers a cascade of changes leading to a decline in muscle mass, accompanied by diminished tone and excitability, thereby restricting the availability of irisin, a crucial hormone derived from muscles. Concurrently, bone mass undergoes reduction, culminating in the onset of osteoporosis and altering the dynamics of osteocalcin, a hormone originating from bones. The diminishing levels of E2 during menopause extend their influence on the gut microbiota, resulting in a reduction in the availability of tyrosine, tryptophan, and serotonin metabolites, affecting neurotransmitter synthesis and function. Understanding the interplay between menopause, frailty, E2 decline, and the intricate metabolisms of bone, gut, and muscle is imperative when unraveling the nuances of TBI after menopause. The current review underscores the significance of accounting for menopause-associated frailty in the incidence and consequences of TBI. The review also explores potential mechanisms to enhance gut, bone, and muscle health in menopausal women, aiming to mitigate frailty and improve TBI outcomes.
Collapse
Affiliation(s)
- Sophie B Sinder
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Sabrina V Sharma
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Isha S Shirvaikar
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Hari Pradhyumnan
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Shahil H Patel
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Indy Cabeda Diaz
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Gina G Perez
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; The Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA
| | - Ami P Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA
| |
Collapse
|
52
|
Duan Y, Guo F, Li C, Xiang D, Gong M, Yi H, Chen L, Yan L, Zhang D, Dai L, Liu X, Wang Z. Aqueous extract of fermented Eucommia ulmoides leaves alleviates hyperlipidemia by maintaining gut homeostasis and modulating metabolism in high-fat diet fed rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155291. [PMID: 38518640 DOI: 10.1016/j.phymed.2023.155291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/19/2023] [Accepted: 12/16/2023] [Indexed: 03/24/2024]
Abstract
BACKGROUND As a traditional Chinese medicinal herb, the lipid-lowing biological potential of Eucommia ulmoides leaves (EL) has been demonstrated. After fermentation, the EL have been made into various products with lipid-lowering effects and antioxidant activity. However, the anti-hyperlipidemic mechanism of fermented Eucommia ulmoides leaves (FEL) is unclear now. PURPOSE To evaluate the effects of FEL on hyperlipidemia and investigate the mechanism based on regulating gut homeostasis and host metabolism. METHODS Hyperlipidemia animal model in Wistar rats was established after 8 weeks high-fat diet (HFD) fed. The administered doses of aqueous extract of FEL (FELE) were 128, 256 and 512 mg/kg/d, respectively. Serum biochemical parameters detection, histopathological sections analysis, 16S rDNA sequencing of gut microbiota and untargeted fecal metabolomics analysis, were performed to determine the therapeutic effects and predict related pathways of FELE on hyperlipidemia. The changes of proteins and genes elated to lipid were detected by Immunofluorescence (IF) and quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS 56 Components in FELE were identified by UPLC-MS, with organic acids, flavonoids and phenolic acids accounting for the majority. The intervention of FELE significantly reduced the body weight, lipid accumulation and the levels of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein-cholesterol (LDL-C) in hyperlipidemia rats, while increased the level of High-density lipoprotein-cholesterol (HDL-C). Meanwhile, FELE improved the inflammatory makers and oxidative stress factors, which is tumor necrosis factor-α (TNF-α), monocyte chemotactic protein-1 (MCP-1), interleukin-6 (IL-6), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT). These results demonstrated that FETE can effectively reduce blood lipids and alleviate inflammation and oxidative damage caused by hyperlipidemia. Mechanistically, FELE restore the homeostasis of gut microbiota by reducing the Firmicutes/Bacteroidetes ratio and increasing the abundance of probiotics, especially Lactobacillus, Rombousia, Bacteroides, Roseburia, Clostridia_UCG-014_Unclassified, while modulated metabolism through amino acid, bile acid and lipid-related metabolism pathways. In addition, the Pearson correlation analysis found that the upregulated bilirubin, threonine, dopamine and downregulated lipocholic acid, d-sphingosine were key metabolites after FELE intervention. IF and qRT-PCR analysis showed that FELE upregulated the expression of fatty acid oxidation proteins and genes (PPARα, CPT1A), bile acid synthesis and excretion proteins and genes (LXRα, CYP7A1, FXR), and downregulated the expression of adipogenic gene (SREBP-1c) by regulating gut microbiota to improve metabolism and exert a lipid-lowering effect. CONCLUSION This work filled the lipid-lowering mechanism gap of FEL. FELE can improve HFD-induced hyperlipidemia by regulating the gut microbiota homeostasis and metabolism. Thus, FEL has the potential to develop into the novel raw material of lipid-lowering drugs.
Collapse
Affiliation(s)
- Yu Duan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fengqian Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dinghua Xiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Man Gong
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Hong Yi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liangmian Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lihua Yan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liping Dai
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Xiaoqian Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Zhimin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
53
|
Cheng G, Hardy M, Hillard CJ, Feix JB, Kalyanaraman B. Mitigating gut microbial degradation of levodopa and enhancing brain dopamine: Implications in Parkinson's disease. Commun Biol 2024; 7:668. [PMID: 38816577 PMCID: PMC11139878 DOI: 10.1038/s42003-024-06330-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
Parkinson's disease is managed using levodopa; however, as Parkinson's disease progresses, patients require increased doses of levodopa, which can cause undesirable side effects. Additionally, the oral bioavailability of levodopa decreases in Parkinson's disease patients due to the increased metabolism of levodopa to dopamine by gut bacteria, Enterococcus faecalis, resulting in decreased neuronal uptake and dopamine formation. Parkinson's disease patients have varying levels of these bacteria. Thus, decreasing bacterial metabolism is a promising therapeutic approach to enhance the bioavailability of levodopa in the brain. In this work, we show that Mito-ortho-HNK, formed by modification of a naturally occurring molecule, honokiol, conjugated to a triphenylphosphonium moiety, mitigates the metabolism of levodopa-alone or combined with carbidopa-to dopamine. Mito-ortho-HNK suppresses the growth of E. faecalis, decreases dopamine levels in the gut, and increases dopamine levels in the brain. Mitigating the gut bacterial metabolism of levodopa as shown here could enhance its efficacy.
Collapse
Affiliation(s)
- Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Micael Hardy
- Aix-Marseille Univ, CNRS, ICR, UMR 7273, Marseille, 13013, France
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology and Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Jimmy B Feix
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
54
|
Baslam A, Kabdy H, Chait Y, Azraida H, El Yazouli L, Aboufatima R, Chait A, Baslam M. Gut Microbiome-Mediated Mechanisms in Alleviating Opioid Addiction with Aqueous Extract of Anacyclus pyrethrum. Biomedicines 2024; 12:1152. [PMID: 38927359 PMCID: PMC11200529 DOI: 10.3390/biomedicines12061152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
The escalating rates of morbidity and mortality associated with opioid use disorder (OUD) have spurred a critical need for improved treatment outcomes. This study aimed to investigate the impact of prolonged exposure to Fentanyl, a potent opioid, on behavior, biochemical markers, oxidative stress, and the composition of the gut microbiome. Additionally, we sought to explore the therapeutic potential of Anacyclus pyrethrum in mitigating the adverse effects of Fentanyl withdrawal. The study unveiled that chronic Fentanyl administration induced a withdrawal syndrome characterized by elevated cortisol levels (12.09 mg/mL, compared to 6.3 mg/mL for the control group). This was accompanied by heightened anxiety, indicated by a reduction in time spent and entries made into the open arm in the Elevated Plus Maze Test, as well as depressive-like behaviors, manifested through increased immobility time in the Forced Swim Test. Additionally, Fentanyl exposure correlated with decreased gut microbiome density and diversity, coupled with heightened oxidative stress levels, evidenced by elevated malondialdehyde (MDA) and reduced levels of catalase (CAT) and superoxide dismutase (SOD). However, both post- and co-administration of A. pyrethrum exhibited substantial improvements in these adverse effects, effectively alleviating symptoms associated with OUD withdrawal syndrome and eliciting positive influences on gut microbiota. In conclusion, this research underscores the therapeutic potential of A. pyrethrum in managing Fentanyl withdrawal symptoms. The findings indicate promising effects in alleviating behavioral impairments, reducing stress, restoring gut microbiota, and mitigating oxidative stress, offering valuable insights for addressing the challenges of OUD treatment.
Collapse
Affiliation(s)
- Abdelmounaim Baslam
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco; (A.B.); (H.A.)
| | - Hamid Kabdy
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco; (A.B.); (H.A.)
| | - Yassine Chait
- Agadir Souss Massa University Hospital, Faculty of Medicine and Pharmacy, Ibn Zohr University, Agadir 80000, Morocco
| | - Hajar Azraida
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco; (A.B.); (H.A.)
| | - Loubna El Yazouli
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco; (A.B.); (H.A.)
| | - Rachida Aboufatima
- Laboratory of Biological Engineering, Faculty of Sciences and Technology, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco
| | - Abderrahman Chait
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco; (A.B.); (H.A.)
| | - Marouane Baslam
- Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre AgroBiotech-URL-7 CNRST-05), Cadi Ayyad University, Marrakech 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakech 40000, Morocco
- Laboratory of Biochemistry, Department of Applied Biological Chemistry, Faculty of Agriculture, University of Niigata, Niigata 950-2181, Japan
- GrowSmart, Seoul 07516, Republic of Korea
| |
Collapse
|
55
|
Khan N, Kurnik-Łucka M, Latacz G, Gil K. Systematic-Narrative Hybrid Literature Review: Crosstalk between Gastrointestinal Renin-Angiotensin and Dopaminergic Systems in the Regulation of Intestinal Permeability by Tight Junctions. Int J Mol Sci 2024; 25:5566. [PMID: 38791603 PMCID: PMC11122119 DOI: 10.3390/ijms25105566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/12/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024] Open
Abstract
In the first part of this article, the role of intestinal epithelial tight junctions (TJs), together with gastrointestinal dopaminergic and renin-angiotensin systems, are narratively reviewed to provide sufficient background. In the second part, the current experimental data on the interplay between gastrointestinal (GI) dopaminergic and renin-angiotensin systems in the regulation of intestinal epithelial permeability are reviewed in a systematic manner using the PRISMA methodology. Experimental data confirmed the copresence of DOPA decarboxylase (DDC) and angiotensin converting enzyme 2 (ACE2) in human and rodent enterocytes. The intestinal barrier structure and integrity can be altered by angiotensin (1-7) and dopamine (DA). Both renin-angiotensin and dopaminergic systems influence intestinal Na+/K+-ATPase activity, thus maintaining electrolyte and nutritional homeostasis. The colocalization of B0AT1 and ACE2 indicates the direct role of the renin-angiotensin system in amino acid absorption. Yet, more studies are needed to thoroughly define the structural and functional interaction between TJ-associated proteins and GI renin-angiotensin and dopaminergic systems.
Collapse
Affiliation(s)
- Nadia Khan
- Faculty of Medicine, Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
- Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 31-008 Krakow, Poland
| | - Magdalena Kurnik-Łucka
- Faculty of Medicine, Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
| | - Gniewomir Latacz
- Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 31-008 Krakow, Poland
| | - Krzysztof Gil
- Faculty of Medicine, Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
| |
Collapse
|
56
|
Potter K, Gayle EJ, Deb S. Effect of gut microbiome on serotonin metabolism: a personalized treatment approach. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2589-2602. [PMID: 37922012 DOI: 10.1007/s00210-023-02762-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/29/2023] [Indexed: 11/05/2023]
Abstract
Several factors including diet, exercise, and medications influence the makeup of the resilient but adaptable gut microbiome. Bacteria in the gut have a significant role in the homeostasis of the neurotransmitter serotonin, also known as 5-hydroxytryptamine, involved in mood and behavior. The goal of the current work is to review the effect of the gut microbiome on serotonin metabolism, and how it can potentially contribute to the development of a personalized treatment approach for depression and anxiety. Bacterial strains provide innovative therapeutic targets that can be used for disorders, such as depression, that involve dysregulation of serotonin. Advances in bacterial genomic sequencing have increased the accessibility and affordability of microbiome testing, which unlocks a new targeted pathway to modulate serotonin metabolism by targeting the gut-brain axis. Microbiome testing can facilitate the recommendation of strain-specific probiotic supplements based on patient-specific microbial profiles. Several studies have shown that supplementation with probiotics containing specific species of bacteria, such as Bifidobacterium and Lactobacillus, can improve symptoms of depression. Further research is needed to improve the process and interpretation of microbiome testing and how to successfully incorporate testing results into guiding clinical decision-making. This targeted approach centered around the gut-brain axis can provide a novel way to personalize therapy for mental health disorders.
Collapse
Affiliation(s)
- Kristal Potter
- College of Pharmacy, Larkin University, 18301 N. Miami Avenue, Miami, FL, 33169, USA
| | - Erysa J Gayle
- College of Biomedical Sciences, Larkin University, 18301 N. Miami Avenue, Miami, FL, 33169, USA
| | - Subrata Deb
- College of Pharmacy, Larkin University, 18301 N. Miami Avenue, Miami, FL, 33169, USA.
| |
Collapse
|
57
|
Recinto SJ, Premachandran S, Mukherjee S, Allot A, MacDonald A, Yaqubi M, Gruenheid S, Trudeau LE, Stratton JA. Characterizing enteric neurons in dopamine transporter (DAT)-Cre reporter mice reveals dopaminergic subtypes with dual-transmitter content. Eur J Neurosci 2024; 59:2465-2482. [PMID: 38487941 DOI: 10.1111/ejn.16307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 05/22/2024]
Abstract
The enteric nervous system (ENS) comprises a complex network of neurons whereby a subset appears to be dopaminergic although the characteristics, roles, and implications in disease are less understood. Most investigations relating to enteric dopamine (DA) neurons rely on immunoreactivity to tyrosine hydroxylase (TH)-the rate-limiting enzyme in the production of DA. However, TH immunoreactivity is likely to provide an incomplete picture. This study herein provides a comprehensive characterization of DA neurons in the gut using a reporter mouse line, expressing a fluorescent protein (tdTomato) under control of the DA transporter (DAT) promoter. Our findings confirm a unique localization of DA neurons in the gut and unveil the discrete subtypes of DA neurons in this organ, which we characterized using both immunofluorescence and single-cell transcriptomics, as well as validated using in situ hybridization. We observed distinct subtypes of DAT-tdTomato neurons expressing co-transmitters and modulators across both plexuses; some of them likely co-releasing acetylcholine, while others were positive for a slew of canonical DAergic markers (TH, VMAT2 and GIRK2). Interestingly, we uncovered a seemingly novel population of DA neurons unique to the ENS which was ChAT/DAT-tdTomato-immunoreactive and expressed Grp, Calcb, and Sst. Given the clear heterogeneity of DAergic gut neurons, further investigation is warranted to define their functional signatures and decipher their implication in disease.
Collapse
Affiliation(s)
- Sherilyn Junelle Recinto
- Department of Neurology and Neurosurgery Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Shobina Premachandran
- Department of Neurology and Neurosurgery Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Sriparna Mukherjee
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Department of Pharmacology and Physiology, Department of Neurosciences, Université de Montreal, Faculty of Medicine, SNC and CIRCA Research Groups, Montreal, Quebec, Canada
| | - Alexis Allot
- Department of Neurology and Neurosurgery Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Adam MacDonald
- Department of Neurology and Neurosurgery Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Moein Yaqubi
- Department of Neurology and Neurosurgery Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Samantha Gruenheid
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Louis-Eric Trudeau
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Department of Pharmacology and Physiology, Department of Neurosciences, Université de Montreal, Faculty of Medicine, SNC and CIRCA Research Groups, Montreal, Quebec, Canada
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| |
Collapse
|
58
|
Falkenstein M, Simon MC, Mantri A, Weber B, Koban L, Plassmann H. Impact of the gut microbiome composition on social decision-making. PNAS NEXUS 2024; 3:pgae166. [PMID: 38745566 PMCID: PMC11093127 DOI: 10.1093/pnasnexus/pgae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/02/2024] [Indexed: 05/16/2024]
Abstract
There is increasing evidence for the role of the gut microbiome in the regulation of socio-affective behavior in animals and clinical conditions. However, whether and how the composition of the gut microbiome may influence social decision-making in health remains unknown. Here, we tested the causal effects of a 7-week synbiotic (vs. placebo) dietary intervention on altruistic social punishment behavior in an ultimatum game. Results showed that the intervention increased participants' willingness to forgo a monetary payoff when treated unfairly. This change in social decision-making was related to changes in fasting-state serum levels of the dopamine-precursor tyrosine proposing a potential mechanistic link along the gut-microbiota-brain-behavior axis. These results improve our understanding of the bidirectional role body-brain interactions play in social decision-making and why humans at times act "irrationally" according to standard economic theory.
Collapse
Affiliation(s)
- Marie Falkenstein
- Control-Interoception-Attention Team, Sorbonne Université, Paris Brain Institute (ICM), Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 47 boulevard de l’Hôpital, 75013 Paris, France
| | - Marie-Christine Simon
- Institute of Nutrition and Food Science (IEL), Nutrition and Microbiota, University of Bonn, Katzenburgweg 7, 53115 Bonn, Germany
| | - Aakash Mantri
- Institute of Nutrition and Food Science (IEL), Nutrition and Microbiota, University of Bonn, Katzenburgweg 7, 53115 Bonn, Germany
- Institute for Genomic Statistics and Bioinformatics, University of Bonn and University Hospital Bonn, Venusberg Campus 1, 53127 Bonn, Germany
| | - Bernd Weber
- Institute of Experimental Epileptology and Cognition Research, University of Bonn and University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Leonie Koban
- Control-Interoception-Attention Team, Sorbonne Université, Paris Brain Institute (ICM), Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 47 boulevard de l’Hôpital, 75013 Paris, France
- Marketing Area INSEAD, Boulevard de Constance, 77300 Fontainebleau, France
- Lyon Neuroscience Research Center, CNRS, INSERM, Claude Bernard University Lyon 1, CH Le Vinatier - Bâtiment 462 - Neurocampus, 95 Bd Pinel, 69500 Bron, France
| | - Hilke Plassmann
- Control-Interoception-Attention Team, Sorbonne Université, Paris Brain Institute (ICM), Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 47 boulevard de l’Hôpital, 75013 Paris, France
- Marketing Area INSEAD, Boulevard de Constance, 77300 Fontainebleau, France
| |
Collapse
|
59
|
Omar WEW, Singh G, McBain AJ, Cruickshank F, Radhakrishnan H. Gut Microbiota Profiles in Myopes and Nonmyopes. Invest Ophthalmol Vis Sci 2024; 65:2. [PMID: 38691091 PMCID: PMC11077909 DOI: 10.1167/iovs.65.5.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/02/2024] [Indexed: 05/03/2024] Open
Abstract
Purpose To identify compositional differences in the gut microbiome of nonmyopes (NM) and myopes using 16S ribosomal RNA sequencing and to investigate whether the microbiome may contribute to the onset or progression of the condition. Methods Faecal samples were collected from 52 adult participants, of whom 23 were NM, 8 were progressive myopes (PM), and 21 were stable myopes (SM). The composition of the gut microbiota in each group was analysed using 16S ribosomal RNA gene sequencing. Results There were no significant differences in alpha and beta diversity between the three groups (NM, PM, and SM). However, the distributions of Bifidobacterium, Bacteroides, Megamonas, Faecalibacterium, Coprococcus, Dorea, Roseburia, and Blautia were significantly higher in the myopes (SM and PM combined) when compared with emmetropes. The myopes exhibited significantly greater abundance of bacteria that are linked to the regulation of dopaminergic signalling, such as Clostridium, Ruminococcus, Bifidobacterium, and Bacteroides. Individuals with stable myopia were found to have a significantly higher proportion of Prevotella copri than those with progressive myopia. Bifidobacterium adolescentis, a gamma-aminobutyric acid (GABA)-producing bacterium, was significantly higher in all myopes than in NM and, in the comparison between SM and PM, it is significantly higher in SM. B. uniformis and B. fragilis, both GABA-producing Bacteroides, were present in relatively high abundance in all myopes and in SM compared with PM, respectively. Conclusions The presence of bacteria related to dopamine effect and GABA-producing bacteria in the gut microbiome of myopes may suggest a role of these microorganisms in the onset and progression of myopia.
Collapse
Affiliation(s)
- Wan E. W. Omar
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Faculty of Health Sciences, Centre for Optometry Studies, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
| | - Gurdeep Singh
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Andrew J. McBain
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Fiona Cruickshank
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Hema Radhakrishnan
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
60
|
Adedara IA, Mohammed KA, Canzian J, Ajayi BO, Farombi EO, Emanuelli T, Rosemberg DB, Aschner M. Utility of zebrafish-based models in understanding molecular mechanisms of neurotoxicity mediated by the gut-brain axis. ADVANCES IN NEUROTOXICOLOGY 2024; 11:177-208. [PMID: 38741945 PMCID: PMC11090488 DOI: 10.1016/bs.ant.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The gut microbes perform several beneficial functions which impact the periphery and central nervous systems of the host. Gut microbiota dysbiosis is acknowledged as a major contributor to the development of several neuropsychiatric and neurological disorders including bipolar disorder, depression, anxiety, Parkinson's disease, Alzheimer's disease, attention deficit hyperactivity disorder, and autism spectrum disorder. Thus, elucidation of how the gut microbiota-brain axis plays a role in health and disease conditions is a potential novel approach to prevent and treat brain disorders. The zebrafish (Danio rerio) is an invaluable vertebrate model that possesses conserved brain and intestinal features with those of humans, thus making zebrafish a valued model to investigate the interplay between the gut microbiota and host health. This chapter describes current findings on the utility of zebrafish in understanding molecular mechanisms of neurotoxicity mediated via the gut microbiota-brain axis. Specifically, it highlights the utility of zebrafish as a model organism for understanding how anthropogenic chemicals, pharmaceuticals and bacteria exposure affect animals and human health via the gut-brain axis.
Collapse
Affiliation(s)
- Isaac A. Adedara
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Khadija A. Mohammed
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Babajide O. Ajayi
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria
| | - Ebenezer O. Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Tatiana Emanuelli
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Denis B. Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
61
|
Hamamah S, Hajnal A, Covasa M. Influence of Bariatric Surgery on Gut Microbiota Composition and Its Implication on Brain and Peripheral Targets. Nutrients 2024; 16:1071. [PMID: 38613104 PMCID: PMC11013759 DOI: 10.3390/nu16071071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Obesity remains a significant global health challenge, with bariatric surgery remaining as one of the most effective treatments for severe obesity and its related comorbidities. This review highlights the multifaceted impact of bariatric surgery beyond mere physical restriction or nutrient malabsorption, underscoring the importance of the gut microbiome and neurohormonal signals in mediating the profound effects on weight loss and behavior modification. The various bariatric surgery procedures, such as Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG), act through distinct mechanisms to alter the gut microbiome, subsequently impacting metabolic health, energy balance, and food reward behaviors. Emerging evidence has shown that bariatric surgery induces profound changes in the composition of the gut microbiome, notably altering the Firmicutes/Bacteroidetes ratio and enhancing populations of beneficial bacteria such as Akkermansia. These microbiota shifts have far-reaching effects beyond gut health, influencing dopamine-mediated reward pathways in the brain and modulating the secretion and action of key gut hormones including ghrelin, leptin, GLP-1, PYY, and CCK. The resultant changes in dopamine signaling and hormone levels contribute to reduced hedonic eating, enhanced satiety, and improved metabolic outcomes. Further, post-bariatric surgical effects on satiation targets are in part mediated by metabolic byproducts of gut microbiota like short-chain fatty acids (SCFAs) and bile acids, which play a pivotal role in modulating metabolism and energy expenditure and reducing obesity-associated inflammation, as well as influencing food reward pathways, potentially contributing to the regulation of body weight and reduction in hedonic eating behaviors. Overall, a better understanding of these mechanisms opens the door to developing non-surgical interventions that replicate the beneficial effects of bariatric surgery on the gut microbiome, dopamine signaling, and gut hormone regulation, offering new avenues for obesity treatment.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 9176, USA;
| | - Andras Hajnal
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA;
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 9176, USA;
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 7200229 Suceava, Romania
| |
Collapse
|
62
|
Ben-Azu B, Moke EG, Chris-Ozoko LE, Jaiyeoba-Ojigho EJ, Adebayo OG, Ajayi AM, Oyovwi MO, Odjugo G, Omozojie VI, Ejomafuwe G, Onike N, Eneni AEO, Ichipi-Ifukor CP, Achuba IF. Diosgenin alleviates alcohol-mediated escalation of social defeat stress and the neurobiological sequalae. Psychopharmacology (Berl) 2024; 241:785-803. [PMID: 38311692 DOI: 10.1007/s00213-023-06509-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 11/15/2023] [Indexed: 02/06/2024]
Abstract
RATIONALE Emerging evidence indicates that persistent alcohol consumption escalates psychosocial trauma achieved by social defeat stress (SDS)-induced neurobiological changes and behavioral outcomes. Treatment with compounds with neuroprotective functions is believed to reverse ethanol (EtOH)-aggravated SDS-induced behavioral impairments. OBJECTIVES We investigated the outcomes of diosgenin treatment, a phytosteroidal sapogenin in mice co-exposed to repeated SDS and EtOH administration. METHODS During a period of 14 days, SDS male mice were repeatedly administered EtOH (20%, 10 mL/kg) orally from days 8-14 (n = 9). Within days 1-14, SDS mice fed with EtOH were simultaneously treated with diosgenin (25 and 50 mg/kg) or fluoxetine (10 mg/kg) by oral gavage. Locomotor, cognitive-, depressive-, and anxiety-like behaviors were assessed. Adrenal weight, serum glucose, and corticosterone levels were assayed. Brain markers of oxido-inflammatory, neurochemical levels, monoamine oxidase-B, and acetylcholinesterase activities were measured in the striatum, prefrontal cortex, and hippocampus. RESULTS The anxiety-like behavior, depression, low stress resilience, social, and spatial/non-spatial memory decline exhibited by SDS mice exposed to repeated EtOH administration were alleviated by diosgenin (25 and 50 mg/kg) and fluoxetine, illustrated by increased dopamine and serotonin concentrations and reduced monoamine oxidase-B and acetylcholinesterase activities in the prefrontal cortex, hippocampus, and striatum. Diosgenin attenuated SDS + EtOH interaction induced corticosterone release and adrenal hypertrophy, accompanied by reduced TNF-α, IL-6, malondialdehyde, and nitrite levels in the striatum, prefrontal cortex, and hippocampus. Diosgenin increased glutathione, superoxide dismutase, and catalase levels in SDS + EtOH-exposed mice. CONCLUSIONS Our data suggest that diosgenin reverses SDS + EtOH interaction-induced behavioral changes via normalization of hypothalamic-pituitary-adrenal axis, neurochemical neurotransmissions, and inhibition of oxidative and inflammatory mediators in mice brains.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Nigeria.
| | - Emuesiri Goodies Moke
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Nigeria
| | - Lilian E Chris-Ozoko
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Efe J Jaiyeoba-Ojigho
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Olusegun G Adebayo
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Nigeria
- Department of Physiology, Faculty of Basic Medical Sciences, Neurophysiology Unit, PAMO University of Medical Sciences, River State, Port-Harcourt, Nigeria
| | - Abayomi Mayowa Ajayi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Mega O Oyovwi
- Department of Basic Medical Science, Achievers University, Owo, Ondo State, Nigeria
| | - Gideon Odjugo
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Nigeria
| | - Vincent I Omozojie
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Nigeria
| | - Goddey Ejomafuwe
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Nigeria
| | - Nzubechukwu Onike
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Nigeria
| | - Aya-Ebi O Eneni
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Delta State University, Abraka, Delta State, Nigeria
| | | | - Ifeakachuku F Achuba
- Department of Biochemistry, Faculty of Sciences, Delta State University, Abraka, Delta State, Nigeria
| |
Collapse
|
63
|
Gan QX, Peng MY, Wei HB, Chen LL, Chen XY, Li ZH, An GQ, Ma YT. Gastrodia elata polysaccharide alleviates Parkinson's disease via inhibiting apoptotic and inflammatory signaling pathways and modulating the gut microbiota. Food Funct 2024; 15:2920-2938. [PMID: 38385354 DOI: 10.1039/d3fo05169b] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Parkinson's disease (PD) is a common, chronic, and progressive degenerative disease of the central nervous system for which there is no effective treatment. Gastrodia elata is a well-known food and medicine homologous resource with neuroprotective potential. Gastrodia elata polysaccharide (GEP), which is a highly active and safe component in Gastrodia elata, is an important ingredient in the development of functional products. In this study, GEP was administered to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mice over 3 weeks to investigate its neuroprotective effects. The results showed that GEP significantly alleviated the motor dysfunction of PD mice, inhibited the accumulation of α-synuclein, and reduced the loss of dopaminergic neurons in the brain. Moreover, GEP increased the Bcl-2/Bax ratio and decreased the cleaved-caspase-3 level, suggesting that GEP may ameliorate PD by preventing MPTP-induced mitochondrial apoptosis. GEP also significantly inhibited the increase of GFAP and decreased the levels of TNF-α, IL-1β, and IL-6 in the brain of PD mice, which may be the result of the inhibition of neuroinflammation by the inactivation of the TLR4/NF-κB pathway. Furthermore, the neuroprotective effects of GEP involve the gut-brain axis, as it has been shown that GEP regulated the dysbiosis of PD-related gut microbiota such as Akkermansia, Lactobacillus, Bacteroides, Prevotella, and Faecalibacterium, increased the content of microbial metabolites SCFAs in the colon and increased the level of occludin that repairs the intestinal barrier of PD mice. In conclusion, this study is expected to provide a theoretical basis for the development and application of functional products with GEP from the perspective of neuroprotective effects.
Collapse
Affiliation(s)
- Qing-Xia Gan
- College of Pharmacy, Chengdu University of Traditional Chinese, Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China
| | - Mao-Yao Peng
- College of Pharmacy, Chengdu University of Traditional Chinese, Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China
| | - Hao-Bo Wei
- College of Pharmacy, Chengdu University of Traditional Chinese, Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China
| | - Lin-Lin Chen
- College of Pharmacy, Chengdu University of Traditional Chinese, Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China
| | - Xiao-Yan Chen
- College of Pharmacy, Chengdu University of Traditional Chinese, Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China
| | - Zi-Han Li
- College of Pharmacy, Chengdu University of Traditional Chinese, Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China
| | - Guang-Qin An
- College of Pharmacy, Chengdu University of Traditional Chinese, Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China
| | - Yun-Tong Ma
- College of Pharmacy, Chengdu University of Traditional Chinese, Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China
| |
Collapse
|
64
|
Moore ML, Ford JL, Schladweiler MC, Dye JA, Jackson TW, Miller CN. Gut metabolic changes during pregnancy reveal the importance of gastrointestinal region in sample collection. Metabolomics 2024; 20:40. [PMID: 38460019 PMCID: PMC11168590 DOI: 10.1007/s11306-024-02099-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/06/2024] [Indexed: 03/11/2024]
Abstract
INTRODUCTION Studies of gastrointestinal physiology and the gut microbiome often consider the influence of intestinal region on experimental endpoints. However, this same consideration is not often applied to the gut metabolome. Understanding the contribution of gut regionality may be critically important to the rapidly changing metabolic environments, such as during pregnancy. OBJECTIVES We sought to characterize the difference in the gut metabolome in pregnant mice stratified by region-comparing the small intestine, cecum, and feces. Pre-pregnancy feces were collected to understand the influence of pregnancy on the fecal metabolome. METHODS Feces were collected from CD-1 female mice before breeding. On gestation day (GD) 18, gut contents were collected from the small intestine, cecum, and descending colon. Metabolites were analyzed with LC-MS/MS using the Biocrates MetaboINDICATOR™ MxP® Quant 500 kit. RESULTS Of the 104 small molecule metabolites meeting analysis criteria, we found that 84 (81%) were differentially abundant based on gut region. The most significant regional comparison observed was between the cecum and small intestines, with 52 (50%) differentially abundant metabolites. Pregnancy itself altered 41 (39.4%) fecal small molecule metabolites. CONCLUSIONS The regional variation observed in the gut metabolome are likely due to the microbial and physiological differences between the different parts of the intestines. Additionally, pregnancy impacts the fecal metabolome, which may be due to evolving needs of both the dam and fetus.
Collapse
Affiliation(s)
- Makala L Moore
- Oak Ridge Institute for Science and Education, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jermaine L Ford
- Chemical Characterization and Exposure Division, Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Mette C Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Janice A Dye
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Thomas W Jackson
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - Colette N Miller
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| |
Collapse
|
65
|
Feng Y. Exploring clues pointing toward the existence of a brain-gut microbiota-hair follicle axis. Curr Res Transl Med 2024; 72:103408. [PMID: 38246020 DOI: 10.1016/j.retram.2023.103408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/19/2023] [Accepted: 09/09/2023] [Indexed: 01/23/2024]
Abstract
Proposing the concept of a brain-gut-skin axis has led some researchers to recognize the relationship among brain activity, gut microbiota, and the skin. Hair follicles are skin accessory organs, a previously unnoticed target tissue for classical neurohormones, neurotrophins, and neuropeptides. Some studies have shown a relationship between the central nervous system and hair follicles that an imbalance in the gut bacteria can affect hair follicle density. This review summarizes existing evidence from literature and explores clues supporting a connection linking the brain, gut microbiota, and hair follicles. It amalgamates previously proposed partial concepts into a new, unified concept-the "brain-gut microbiota-hair follicle" axis, -which suggests that modulation of the microbiome via probiotics can have positive effects on hair follicles. This review also explores how preclinical research on hair follicles can propel novel and clinically untapped applications.
Collapse
Affiliation(s)
- Yang Feng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|
66
|
Mahbub NU, Islam MM, Hong ST, Chung HJ. Dysbiosis of the gut microbiota and its effect on α-synuclein and prion protein misfolding: consequences for neurodegeneration. Front Cell Infect Microbiol 2024; 14:1348279. [PMID: 38435303 PMCID: PMC10904658 DOI: 10.3389/fcimb.2024.1348279] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024] Open
Abstract
Abnormal behavior of α-synuclein and prion proteins is the hallmark of Parkinson's disease (PD) and prion illnesses, respectively, being complex neurological disorders. A primary cause of protein aggregation, brain injury, and cognitive loss in prion illnesses is the misfolding of normal cellular prion proteins (PrPC) into an infectious form (PrPSc). Aggregation of α-synuclein causes disruptions in cellular processes in Parkinson's disease (PD), leading to loss of dopamine-producing neurons and motor symptoms. Alteration in the composition or activity of gut microbes may weaken the intestinal barrier and make it possible for prions to go from the gut to the brain. The gut-brain axis is linked to neuroinflammation; the metabolites produced by the gut microbiota affect the aggregation of α-synuclein, regulate inflammation and immunological responses, and may influence the course of the disease and neurotoxicity of proteins, even if their primary targets are distinct proteins. This thorough analysis explores the complex interactions that exist between the gut microbiota and neurodegenerative illnesses, particularly Parkinson's disease (PD) and prion disorders. The involvement of the gut microbiota, a complex collection of bacteria, archaea, fungi, viruses etc., in various neurological illnesses is becoming increasingly recognized. The gut microbiome influences neuroinflammation, neurotransmitter synthesis, mitochondrial function, and intestinal barrier integrity through the gut-brain axis, which contributes to the development and progression of disease. The review delves into the molecular mechanisms that underlie these relationships, emphasizing the effects of microbial metabolites such as bacterial lipopolysaccharides (LPS), and short-chain fatty acids (SCFAs) in regulating brain functioning. Additionally, it looks at how environmental influences and dietary decisions affect the gut microbiome and whether they could be risk factors for neurodegenerative illnesses. This study concludes by highlighting the critical role that the gut microbiota plays in the development of Parkinson's disease (PD) and prion disease. It also provides a promising direction for future research and possible treatment approaches. People afflicted by these difficult ailments may find hope in new preventive and therapeutic approaches if the role of the gut microbiota in these diseases is better understood.
Collapse
Affiliation(s)
- Nasir Uddin Mahbub
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Md Minarul Islam
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju, Republic of Korea
| |
Collapse
|
67
|
Loh JS, Mak WQ, Tan LKS, Ng CX, Chan HH, Yeow SH, Foo JB, Ong YS, How CW, Khaw KY. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct Target Ther 2024; 9:37. [PMID: 38360862 PMCID: PMC10869798 DOI: 10.1038/s41392-024-01743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 02/17/2024] Open
Abstract
The human gastrointestinal tract is populated with a diverse microbial community. The vast genetic and metabolic potential of the gut microbiome underpins its ubiquity in nearly every aspect of human biology, including health maintenance, development, aging, and disease. The advent of new sequencing technologies and culture-independent methods has allowed researchers to move beyond correlative studies toward mechanistic explorations to shed light on microbiome-host interactions. Evidence has unveiled the bidirectional communication between the gut microbiome and the central nervous system, referred to as the "microbiota-gut-brain axis". The microbiota-gut-brain axis represents an important regulator of glial functions, making it an actionable target to ameliorate the development and progression of neurodegenerative diseases. In this review, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases. As the gut microbiome provides essential cues to microglia, astrocytes, and oligodendrocytes, we examine the communications between gut microbiota and these glial cells during healthy states and neurodegenerative diseases. Subsequently, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases using a metabolite-centric approach, while also examining the role of gut microbiota-related neurotransmitters and gut hormones. Next, we examine the potential of targeting the intestinal barrier, blood-brain barrier, meninges, and peripheral immune system to counteract glial dysfunction in neurodegeneration. Finally, we conclude by assessing the pre-clinical and clinical evidence of probiotics, prebiotics, and fecal microbiota transplantation in neurodegenerative diseases. A thorough comprehension of the microbiota-gut-brain axis will foster the development of effective therapeutic interventions for the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jian Sheng Loh
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Wen Qi Mak
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Li Kar Stella Tan
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Chu Xin Ng
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Hong Hao Chan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Shiau Hueh Yeow
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Kooi Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
68
|
Mhanna A, Martini N, Hmaydoosh G, Hamwi G, Jarjanazi M, Zaifah G, Kazzazo R, Haji Mohamad A, Alshehabi Z. The correlation between gut microbiota and both neurotransmitters and mental disorders: A narrative review. Medicine (Baltimore) 2024; 103:e37114. [PMID: 38306525 PMCID: PMC10843545 DOI: 10.1097/md.0000000000037114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/09/2024] [Indexed: 02/04/2024] Open
Abstract
The gastrointestinal tract is embedded with microorganisms of numerous genera, referred to as gut microbiota. Gut microbiota has multiple effects on many body organs, including the brain. There is a bidirectional connection between the gut and brain called the gut-brain-axis, and these connections are formed through immunological, neuronal, and neuroendocrine pathways. In addition, gut microbiota modulates the synthesis and functioning of neurotransmitters. Therefore, the disruption of the gut microbiota in the composition or function, which is known as dysbiosis, is associated with the pathogenesis of many mental disorders, such as schizophrenia, depression, and other psychiatric disorders. This review aims to summarize the modulation role of the gut microbiota in 4 prominent neurotransmitters (tryptophan and serotonergic system, dopamine, gamma-aminobutyric acid, and glutamate), as well as its association with 4 psychiatric disorders (schizophrenia, depression, anxiety disorders, and autism spectrum disorder). More future research is required to develop efficient gut-microbiota-based therapies for these illnesses.
Collapse
Affiliation(s)
- Amjad Mhanna
- Faculty of Medicine, Tishreen University, Latakia, Syrian Arab Republic
- Stemosis for Scientific Research, Damascus, Syrian Arab Republic
| | - Nafiza Martini
- Stemosis for Scientific Research, Damascus, Syrian Arab Republic
- Damascus University, Faculty of Medicine, Damascus, Syrian Arab Republic
| | - Ghefar Hmaydoosh
- Faculty of Medicine, Tishreen University, Latakia, Syrian Arab Republic
- Stemosis for Scientific Research, Damascus, Syrian Arab Republic
| | - George Hamwi
- Faculty of Medicine, Tishreen University, Latakia, Syrian Arab Republic
- Stemosis for Scientific Research, Damascus, Syrian Arab Republic
| | - Mulham Jarjanazi
- Pediatric Surgery Resident, Pediatric Surgery Department, Aleppo University Hospital, Aleppo, Syrian Arab Republic
| | - Ghaith Zaifah
- Faculty of Medicine, Tishreen University, Latakia, Syrian Arab Republic
- Stemosis for Scientific Research, Damascus, Syrian Arab Republic
| | - Reem Kazzazo
- Faculty of Medicine, Tishreen University, Latakia, Syrian Arab Republic
- Stemosis for Scientific Research, Damascus, Syrian Arab Republic
| | - Aya Haji Mohamad
- Stemosis for Scientific Research, Damascus, Syrian Arab Republic
- Faculty of Medicine, Aleppo University, Aleppo University Hospital, Aleppo, Syrian Arab Republic
| | - Zuheir Alshehabi
- Department of Pathology, Tishreen University Hospital, Latakia, Syrian Arab Republic
| |
Collapse
|
69
|
Huang Y, Zhang J, You D, Chen S, Lin Z, Li B, Ling M, Tong H, Li F. Mechanisms underlying palmitic acid-induced disruption of locomotor activity and sleep behavior in Drosophila. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109813. [PMID: 38070757 DOI: 10.1016/j.cbpc.2023.109813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/25/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
The globally prevalent of sleep disorders is partly attributed to unhealthy dietary habits. This study investigated the underlying mechanisms of elevated palmitic acid (PA) intake on locomotor activity and sleep behavior in Drosophila. Our results indicate that exposure to PA significantly elevated Drosophila's daytime and nighttime locomotor activity while concurrently reducing overall sleep duration. Utilizing 16S rRNA sequencing, we observed substantial alterations in the composition of the gut microbiota induced by PA, notably, characterized by a significant reduction in Lactobacillus plantarum. Furthermore, PA significantly increased the levels of inflammatory factors Upd3 and Eiger in Drosophila intestines, and downregulated the expression of Gad and Tph, as well as 5-HT1A. Conversely, Gdh and Hdc were significantly upregulated in the PA group. Supplementation with L. plantarum or lactic acid significantly ameliorated PA-induced disruptions in both locomotor activity and sleep behavior. This supplementation also suppressed the expression of intestinal inflammatory factors, thus restoring impaired neurotransmitter-mediated sleep-wake regulation. Moreover, specific knockdown of intestinal epithelial Upd3 or Eiger similarly restored disrupted neurotransmitter expression, ultimately improving PA-induced disturbances in Drosophila locomotor activity and sleep behavior. These findings provide important insights into the intricate interplay between dietary components and essential behaviors, highlighting potential avenues for addressing health challenges associated with modern dietary habits.
Collapse
Affiliation(s)
- Yumei Huang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, PR China
| | - Jiaqi Zhang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, PR China
| | - Dongdong You
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Shangqin Chen
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Zhongdong Lin
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Boyang Li
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, PR China
| | - Menglai Ling
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, PR China
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, PR China.
| | - Feng Li
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, PR China.
| |
Collapse
|
70
|
Hamamah S, Iatcu OC, Covasa M. Nutrition at the Intersection between Gut Microbiota Eubiosis and Effective Management of Type 2 Diabetes. Nutrients 2024; 16:269. [PMID: 38257161 PMCID: PMC10820857 DOI: 10.3390/nu16020269] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Nutrition is one of the most influential environmental factors in both taxonomical shifts in gut microbiota as well as in the development of type 2 diabetes mellitus (T2DM). Emerging evidence has shown that the effects of nutrition on both these parameters is not mutually exclusive and that changes in gut microbiota and related metabolites such as short-chain fatty acids (SCFAs) and branched-chain amino acids (BCAAs) may influence systemic inflammation and signaling pathways that contribute to pathophysiological processes associated with T2DM. With this background, our review highlights the effects of macronutrients, carbohydrates, proteins, and lipids, as well as micronutrients, vitamins, and minerals, on T2DM, specifically through their alterations in gut microbiota and the metabolites they produce. Additionally, we describe the influences of common food groups, which incorporate varying combinations of these macronutrients and micronutrients, on both microbiota and metabolic parameters in the context of diabetes mellitus. Overall, nutrition is one of the first line modifiable therapies in the management of T2DM and a better understanding of the mechanisms by which gut microbiota influence its pathophysiology provides opportunities for optimizing dietary interventions.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Oana C. Iatcu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
71
|
Bellot M, Carrillo MP, Bedrossiantz J, Zheng J, Mandal R, Wishart DS, Gómez-Canela C, Vila-Costa M, Prats E, Piña B, Raldúa D. From dysbiosis to neuropathologies: Toxic effects of glyphosate in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115888. [PMID: 38150752 DOI: 10.1016/j.ecoenv.2023.115888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
Glyphosate, a globally prevalent herbicide known for its selective inhibition of the shikimate pathway in plants, is now implicated in physiological effects on humans and animals, probably due to its impacts in their gut microbiomes which possess the shikimate pathway. In this study, we investigate the effects of environmentally relevant concentrations of glyphosate on the gut microbiota, neurotransmitter levels, and anxiety in zebrafish. Our findings demonstrate that glyphosate exposure leads to dysbiosis in the zebrafish gut, alterations in central and peripheral serotonin levels, increased dopamine levels in the brain, and notable changes in anxiety and social behavior. While the dysbiosis can be attributed to glyphosate's antimicrobial properties, the observed effects on neurotransmitter levels leading to the reported induction of oxidative stress in the brain indicate a novel and significant mode of action for glyphosate, namely the impairment of the microbiome-gut-axis. While further investigations are necessary to determine the relevance of this mechanism in humans, our findings shed light on the potential explanation for the contradictory reports on the safety of glyphosate for consumers.
Collapse
Affiliation(s)
- Marina Bellot
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, 08017 Barcelona, Spain
| | - Maria Paula Carrillo
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Juliette Bedrossiantz
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Jiamin Zheng
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Rupasri Mandal
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Cristian Gómez-Canela
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, 08017 Barcelona, Spain
| | - Maria Vila-Costa
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Eva Prats
- Research and Development Center (CID-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain
| | - Benjamí Piña
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain.
| | - Demetrio Raldúa
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| |
Collapse
|
72
|
Gupta S, Dinesh S, Sharma S. Bridging the Mind and Gut: Uncovering the Intricacies of Neurotransmitters, Neuropeptides, and their Influence on Neuropsychiatric Disorders. Cent Nerv Syst Agents Med Chem 2024; 24:2-21. [PMID: 38265387 DOI: 10.2174/0118715249271548231115071021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/31/2023] [Accepted: 10/04/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND The gut-brain axis (GBA) is a bidirectional signaling channel that facilitates communication between the gastrointestinal tract and the brain. Recent research on the gut-brain axis demonstrates that this connection enables the brain to influence gut function, which in turn influences the brain and its cognitive functioning. It is well established that malfunctioning of this axis adversely affects both systems' ability to operate effectively. OBJECTIVE Dysfunctions in the GBA have been associated with disorders of gut motility and permeability, intestinal inflammation, indigestion, constipation, diarrhea, IBS, and IBD, as well as neuropsychiatric and neurodegenerative disorders like depression, anxiety, schizophrenia, autism, Alzheimer's, and Parkinson's disease. Multiple research initiatives have shown that the gut microbiota, in particular, plays a crucial role in the GBA by participating in the regulation of a number of key neurochemicals that are known to have significant effects on the mental and physical well-being of an individual. METHODS Several studies have investigated the relationship between neuropsychiatric disorders and imbalances or disturbances in the metabolism of neurochemicals, often leading to concomitant gastrointestinal issues and modifications in gut flora composition. The interaction between neurological diseases and gut microbiota has been a focal point within this research. The novel therapeutic interventions in neuropsychiatric conditions involving interventions such as probiotics, prebiotics, and dietary modifications are outlined in this review. RESULTS The findings of multiple studies carried out on mice show that modulating and monitoring gut microbiota can help treat symptoms of such diseases, which raises the possibility of the use of probiotics, prebiotics, and even dietary changes as part of a new treatment strategy for neuropsychiatric disorders and their symptoms. CONCLUSION The bidirectional communication between the gut and the brain through the gut-brain axis has revealed profound implications for both gastrointestinal and neurological health. Malfunctions in this axis have been connected to a range of disorders affecting gut function as well as cognitive and neuropsychiatric well-being. The emerging understanding of the role of gut microbiota in regulating key neurochemicals opens up possibilities for novel treatment approaches for conditions like depression, anxiety, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Saumya Gupta
- Department of Bioinformatics, BioNome, Bengaluru, India
| | - Susha Dinesh
- Department of Bioinformatics, BioNome, Bengaluru, India
| | - Sameer Sharma
- Department of Bioinformatics, BioNome, Bengaluru, India
| |
Collapse
|
73
|
Giatti S, Diviccaro S, Cioffi L, Cosimo Melcangi R. Post-Finasteride Syndrome And Post-Ssri Sexual Dysfunction: Two Clinical Conditions Apparently Distant, But Very Close. Front Neuroendocrinol 2024; 72:101114. [PMID: 37993021 DOI: 10.1016/j.yfrne.2023.101114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/31/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
Post-finasteride syndrome and post-SSRI sexual dysfunction, are two poorly explored clinical conditions in which men treated for androgenetic alopecia with finasteride or for depression with SSRI antidepressants show persistent side effects despite drug suspension (e.g., sexual dysfunction, psychological complaints, sleep disorders). Because of some similarities in the symptoms, common pathological mechanisms are proposed here. Indeed, as discussed, clinical studies and preclinical data obtained so far suggest an important role for brain modulators (i.e., neuroactive steroids), neurotransmitters (i.e., serotonin, and cathecolamines), and gut microbiota in the context of the gut-brain axis. In particular, the observed interconnections of these signals in these two clinical conditions may suggest similar etiopathogenetic mechanisms, such as the involvement of the enzyme converting norepinephrine into epinephrine (i.e., phenylethanolamine N-methyltransferase). However, despite the current efforts, more work is still needed to advance the understanding of these clinical conditions in terms of diagnostic markers and therapeutic strategies.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Lucia Cioffi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
74
|
Vincent B, Shukla M. The Common Denominators of Parkinson's Disease Pathogenesis and Methamphetamine Abuse. Curr Neuropharmacol 2024; 22:2113-2156. [PMID: 37691228 PMCID: PMC11337683 DOI: 10.2174/1570159x21666230907151226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 09/12/2023] Open
Abstract
The pervasiveness and mortality associated with methamphetamine abuse have doubled during the past decade, suggesting a possible worldwide substance use crisis. Epitomizing the pathophysiology and toxicology of methamphetamine abuse proclaims severe signs and symptoms of neurotoxic and neurobehavioral manifestations in both humans and animals. Most importantly, chronic use of this drug enhances the probability of developing neurodegenerative diseases manifolds. Parkinson's disease is one such neurological disorder, which significantly and evidently not only shares a number of toxic pathogenic mechanisms induced by methamphetamine exposure but is also interlinked both structurally and genetically. Methamphetamine-induced neurodegeneration involves altered dopamine homeostasis that promotes the aggregation of α-synuclein protofibrils in the dopaminergic neurons and drives these neurons to make them more vulnerable to degeneration, as recognized in Parkinson's disease. Moreover, the pathologic mechanisms such as mitochondrial dysfunction, oxidative stress, neuroinflammation and decreased neurogenesis detected in methamphetamine abusers dramatically resemble to what is observed in Parkinson's disease cases. Therefore, the present review comprehensively cumulates a holistic illustration of various genetic and molecular mechanisms putting across the notion of how methamphetamine administration and intoxication might lead to Parkinson's disease-like pathology and Parkinsonism.
Collapse
Affiliation(s)
- Bruno Vincent
- Institute of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS, Sophia-Antipolis, 06560, Valbonne, France
| | - Mayuri Shukla
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 10210, Bangkok, Thailand
| |
Collapse
|
75
|
Zhuang Z, Zhou P, Wang J, Lu X, Chen Y. The Characteristics, Mechanisms and Therapeutics: Exploring the Role of Gut Microbiota in Obesity. Diabetes Metab Syndr Obes 2023; 16:3691-3705. [PMID: 38028999 PMCID: PMC10674108 DOI: 10.2147/dmso.s432344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
Presently, obesity has emerged as a significant global public health concern due to its escalating prevalence and incidence rates. The gut microbiota, being a crucial environmental factor, has emerged as a key player in the etiology of obesity. Nevertheless, the intricate and specific interactions between obesity and gut microbiota, along with the underlying mechanisms, remain incompletely understood. This review comprehensively summarizes the gut microbiota characteristics in obesity, the mechanisms by which it induces obesity, and explores targeted therapies centered on gut microbiota restoration.
Collapse
Affiliation(s)
- Zequn Zhuang
- Department of General Surgery, the Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi, People’s Republic of China
| | - Peng Zhou
- Department of General Surgery, the Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi, People’s Republic of China
| | - Jing Wang
- Jiangnan University Medical Center, Wuxi, People’s Republic of China
| | - Xiaojing Lu
- Department of General Surgery, the Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi, People’s Republic of China
| | - Yigang Chen
- Department of General Surgery, the Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi, People’s Republic of China
- Jiangnan University Medical Center, Wuxi, People’s Republic of China
- Wuxi Clinical College, Nantong University, Wuxi, People’s Republic of China
| |
Collapse
|
76
|
Ispas S, Tuta LA, Botnarciuc M, Ispas V, Staicovici S, Ali S, Nelson-Twakor A, Cojocaru C, Herlo A, Petcu A. Metabolic Disorders, the Microbiome as an Endocrine Organ, and Their Relations with Obesity: A Literature Review. J Pers Med 2023; 13:1602. [PMID: 38003917 PMCID: PMC10672252 DOI: 10.3390/jpm13111602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
The etiology of metabolic disorders, such as obesity, has been predominantly associated with the gut microbiota, which is acknowledged as an endocrine organ that plays a crucial role in modulating energy homeostasis and host immune responses. The presence of dysbiosis has the potential to impact the functioning of the intestinal barrier and the gut-associated lymphoid tissues by allowing the transit of bacterial structural components, such as lipopolysaccharides. This, in turn, may trigger inflammatory pathways and potentially lead to the onset of insulin resistance. Moreover, intestinal dysbiosis has the potential to modify the production of gastrointestinal peptides that are linked to the feeling of fullness, hence potentially leading to an increase in food consumption. In this literature review, we discuss current developments, such as the impact of the microbiota on lipid metabolism as well as the processes by which its changes led to the development of metabolic disorders. Several methods have been developed that could be used to modify the gut microbiota and undo metabolic abnormalities. METHODS After researching different databases, we examined the PubMed collection of articles and conducted a literature review. RESULTS After applying our exclusion and inclusion criteria, the initial search yielded 1345 articles. We further used various filters to narrow down our titles analysis and, to be specific to our study, selected the final ten studies, the results of which are included in the Results section. CONCLUSIONS Through gut barrier integrity, insulin resistance, and other influencing factors, the gut microbiota impacts the host's metabolism and obesity. Although the area of the gut microbiota and its relationship to obesity is still in its initial stages of research, it offers great promise for developing new therapeutic targets that may help prevent and cure obesity by restoring the gut microbiota to a healthy condition.
Collapse
Affiliation(s)
- Sorina Ispas
- Department of Anatomy, Faculty of General Medicine, “Ovidius” University, 900470 Constanta, Romania; (S.I.); (V.I.)
| | - Liliana Ana Tuta
- Department of Clinical Medicine, Faculty of General Medicine, “Ovidius” University, 900470 Constanta, Romania
- Head of Nephrology Section, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Mihaela Botnarciuc
- Department of Microbiology, Faculty of General Medicine, “Ovidius” University, 900470 Constanta, Romania;
- Head of Blood Transfusions Section, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Viorel Ispas
- Department of Anatomy, Faculty of General Medicine, “Ovidius” University, 900470 Constanta, Romania; (S.I.); (V.I.)
- Vascular Surgery Department, Cai Ferate Hospital, 35–37 I. C. Bratianu Boulevard, 900270 Constanta, Romania
| | - Sorana Staicovici
- Family Medicine, “Regina Maria” Polyclinic, 900189 Constanta, Romania;
- Department of Histology, Faculty of General Medicine, “Ovidius” University, 900470 Constanta, Romania
| | - Sevigean Ali
- Preclinics Department II, Faculty of General Medicine, “Ovidius” University, 900470 Constanta, Romania;
- County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | | | | | - Alexandra Herlo
- Department XIII, Discipline of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Adina Petcu
- Department of Mathematics, Biostatistics and Medical Informatics, Faculty of Pharmacy, “Ovidius” University, 900470 Constanta, Romania;
| |
Collapse
|
77
|
Krishnamurthy HK, Pereira M, Bosco J, George J, Jayaraman V, Krishna K, Wang T, Bei K, Rajasekaran JJ. Gut commensals and their metabolites in health and disease. Front Microbiol 2023; 14:1244293. [PMID: 38029089 PMCID: PMC10666787 DOI: 10.3389/fmicb.2023.1244293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose of review This review comprehensively discusses the role of the gut microbiome and its metabolites in health and disease and sheds light on the importance of a holistic approach in assessing the gut. Recent findings The gut microbiome consisting of the bacteriome, mycobiome, archaeome, and virome has a profound effect on human health. Gut dysbiosis which is characterized by perturbations in the microbial population not only results in gastrointestinal (GI) symptoms or conditions but can also give rise to extra-GI manifestations. Gut microorganisms also produce metabolites (short-chain fatty acids, trimethylamine, hydrogen sulfide, methane, and so on) that are important for several interkingdom microbial interactions and functions. They also participate in various host metabolic processes. An alteration in the microbial species can affect their respective metabolite concentrations which can have serious health implications. Effective assessment of the gut microbiome and its metabolites is crucial as it can provide insights into one's overall health. Summary Emerging evidence highlights the role of the gut microbiome and its metabolites in health and disease. As it is implicated in GI as well as extra-GI symptoms, the gut microbiome plays a crucial role in the overall well-being of the host. Effective assessment of the gut microbiome may provide insights into one's health status leading to more holistic care.
Collapse
Affiliation(s)
| | | | - Jophi Bosco
- Vibrant America LLC., San Carlos, CA, United States
| | | | | | | | - Tianhao Wang
- Vibrant Sciences LLC., San Carlos, CA, United States
| | - Kang Bei
- Vibrant Sciences LLC., San Carlos, CA, United States
| | | |
Collapse
|
78
|
Biţă CE, Scorei IR, Vreju AF, Muşetescu AE, Mogoşanu GD, Biţă A, Dinescu VC, Dinescu ŞC, Criveanu C, Bărbulescu AL, Florescu A, Ciurea PL. Microbiota-Accessible Boron-Containing Compounds in Complex Regional Pain Syndrome. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1965. [PMID: 38004014 PMCID: PMC10673453 DOI: 10.3390/medicina59111965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023]
Abstract
The microbiota-gut-brain axis has garnered increasing attention in recent years for its role in various health conditions, including neuroinflammatory disorders like complex regional pain syndrome (CRPS). CRPS is a debilitating condition characterized by chronic neuropathic pain, and its etiology and pathophysiology remain elusive. Emerging research suggests that alterations in the gut microbiota composition and function could play a significant role in CRPS development and progression. Our paper explores the implications of microbiota in CRPS and the potential therapeutic role of boron (B). Studies have demonstrated that individuals with CRPS often exhibit dysbiosis, with imbalances in beneficial and pathogenic gut bacteria. Dysbiosis can lead to increased gut permeability and systemic inflammation, contributing to the chronic pain experienced in CRPS. B, an essential trace element, has shown promise in modulating the gut microbiome positively and exerting anti-inflammatory effects. Recent preclinical and clinical studies suggest that B supplementation may alleviate neuropathic pain and improve CRPS symptoms by restoring microbiota balance and reducing inflammation. Our review highlights the complex interplay between microbiota, inflammation, and neuropathic pain in CRPS and underscores the potential of B as a novel therapeutic approach to target the microbiota-gut-brain axis, offering hope for improved management of this challenging condition.
Collapse
Affiliation(s)
- Cristina Elena Biţă
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (C.E.B.); (A.F.V.); (A.E.M.); (Ş.C.D.); (C.C.); (A.L.B.); (A.F.); (P.L.C.)
| | - Ion Romulus Scorei
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., 31B Dunării Street, 207465 Podari, Romania
| | - Ananu Florentin Vreju
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (C.E.B.); (A.F.V.); (A.E.M.); (Ş.C.D.); (C.C.); (A.L.B.); (A.F.); (P.L.C.)
| | - Anca Emanuela Muşetescu
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (C.E.B.); (A.F.V.); (A.E.M.); (Ş.C.D.); (C.C.); (A.L.B.); (A.F.); (P.L.C.)
| | - George Dan Mogoşanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (G.D.M.); (A.B.)
| | - Andrei Biţă
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (G.D.M.); (A.B.)
| | - Venera Cristina Dinescu
- Department of Health Promotion and Occupational Medicine, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania;
| | - Ştefan Cristian Dinescu
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (C.E.B.); (A.F.V.); (A.E.M.); (Ş.C.D.); (C.C.); (A.L.B.); (A.F.); (P.L.C.)
| | - Cristina Criveanu
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (C.E.B.); (A.F.V.); (A.E.M.); (Ş.C.D.); (C.C.); (A.L.B.); (A.F.); (P.L.C.)
| | - Andreea Lili Bărbulescu
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (C.E.B.); (A.F.V.); (A.E.M.); (Ş.C.D.); (C.C.); (A.L.B.); (A.F.); (P.L.C.)
| | - Alesandra Florescu
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (C.E.B.); (A.F.V.); (A.E.M.); (Ş.C.D.); (C.C.); (A.L.B.); (A.F.); (P.L.C.)
| | - Paulina Lucia Ciurea
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (C.E.B.); (A.F.V.); (A.E.M.); (Ş.C.D.); (C.C.); (A.L.B.); (A.F.); (P.L.C.)
| |
Collapse
|
79
|
Mitra S, Dash R, Nishan AA, Habiba SU, Moon IS. Brain modulation by the gut microbiota: From disease to therapy. J Adv Res 2023; 53:153-173. [PMID: 36496175 PMCID: PMC10658262 DOI: 10.1016/j.jare.2022.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The gut microbiota (GM) and brain are strongly associated, which significantly affects neuronal development and disorders. GM-derived metabolites modulate neuronal function and influence many cascades in age-related neurodegenerative disorders (NDDs). Because of the dual role of GM in neuroprotection and neurodegeneration, understanding the balance between beneficial and harmful bacteria is crucial for applying this approach to clinical therapies. AIM OF THE REVIEW This review briefly discusses the role of the gut-brain relationship in promoting brain and cognitive function. Although a healthy gut environment is helpful for brain function, gut dysbiosis can disrupt the brain's environment and create a vicious cycle of degenerative cascades. The ways in which the GM population can affect brain function and the development of neurodegeneration are also discussed. In the treatment and management of NDDs, the beneficial effects of methods targeting GM populations and their derivatives, including probiotics, prebiotics, and fecal microbial transplantation (FMT) are also highlighted. KEY SCIENTIFIC CONCEPT OF THE REVIEW In this review, we aimed to provide a deeper understanding of the mechanisms of the gut microbe-brain relationship and their twin roles in neurodegeneration progression and therapeutic applications. Here, we attempted to highlight the different pathways connecting the brain and gut, together with the role of GM in neuroprotection and neuronal development. Furthermore, potential roles of GM metabolites in the pathogenesis of brain disorders and in strategies for its treatment are also investigated. By analyzing existing in vitro, in vivo and clinical studies, this review attempts to identify new and promising therapeutic strategies for central nervous system (CNS) disorders. As the connection between the gut microbe-brain relationship and responses to NDD treatments is less studied, this review will provide new insights into the global mechanisms of GM modulation in disease progression, and identify potential future perspectives for developing new therapies to treat NDDs.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Amena Al Nishan
- Department of Medicine, Chittagong Medical College, Chittagong 4203, Bangladesh
| | - Sarmin Ummey Habiba
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea.
| |
Collapse
|
80
|
Nie S, Ge Y. The link between the gut microbiome, inflammation, and Parkinson's disease. Appl Microbiol Biotechnol 2023; 107:6737-6749. [PMID: 37736791 DOI: 10.1007/s00253-023-12789-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
As our society ages, the growing number of people with Parkinson's disease (PD) puts tremendous pressure on our society. Currently, there is no effective treatment for PD, so there is an urgent need to find new treatment options. In recent years, increasing studies have shown a strong link between gut microbes and PD. In this review, recent advances in research on gut microbes in PD patients were summarized. Increased potential pro-inflammatory microbes and decreased potential anti-inflammatory microbes are prominent features of gut microbiota in PD patients. These changes may lead to an increase in pro-inflammatory substances (such as lipopolysaccharide and H2S) and a decrease in anti-inflammatory substances (such as short-chain fatty acids) to promote inflammation in the gut. This gut microbiota-mediated inflammation will lead to pathological α-synuclein accumulation in the gut, and the inflammation and α-synuclein can spread to the brain via the microbiota-gut-brain axis, thereby promoting neuroinflammation, apoptosis of dopaminergic neurons, and ultimately the development of PD. This review also showed that therapies based on gut microbiota may have a bright future for PD. However, more research and new approaches are still needed to clarify the causal relationship between gut microbes and PD and to determine whether therapies based on gut microbiota are effective in PD patients. KEY POINTS: • There is a strong association between gut microbes and PD. • Inflammation mediated by gut microbes may promote the development of PD. • Therapies based on the gut microbiome provide a promising strategy for PD prevention.
Collapse
Affiliation(s)
- Shiqing Nie
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
81
|
Tang H, Chen X, Huang S, Yin G, Wang X, Shen G. Targeting the gut-microbiota-brain axis in irritable bowel disease to improve cognitive function - recent knowledge and emerging therapeutic opportunities. Rev Neurosci 2023; 34:763-773. [PMID: 36757367 DOI: 10.1515/revneuro-2022-0155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/21/2023] [Indexed: 02/10/2023]
Abstract
The brain-gut axis forms a bidirectional communication system between the gastrointestinal (GI) tract and cognitive brain areas. Disturbances to this system in disease states such as inflammatory bowel disease have consequences for neuronal activity and subsequent cognitive function. The gut-microbiota-brain axis refers to the communication between gut-resident bacteria and the brain. This circuits exists to detect gut microorganisms and relay information to specific areas of the central nervous system (CNS) that in turn, regulate gut physiology. Changes in both the stability and diversity of the gut microbiota have been implicated in several neuronal disorders, including depression, autism spectrum disorder Parkinson's disease, Alzheimer's disease and multiple sclerosis. Correcting this imbalance with medicinal herbs, the metabolic products of dysregulated bacteria and probiotics have shown hope for the treatment of these neuronal disorders. In this review, we focus on recent advances in our understanding of the intricate connections between the gut-microbiota and the brain. We discuss the contribution of gut microbiota to neuronal disorders and the tangible links between diseases of the GI tract with cognitive function and behaviour. In this regard, we focus on irritable bowel syndrome (IBS) given its strong links to brain function and anxiety disorders. This adds to the growing body of evidence supporting targeted therapeutic strategies to modulate the gut microbiota for the treatment of brain/mental-health-related disease.
Collapse
Affiliation(s)
- Heyong Tang
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1, Qianjiang Road, 230012 Hefei, Anhui, China
| | - Xiaoqi Chen
- School of Acupuncture and Massage, Anhui University of Chinese Medicine, 230012 Hefei, Anhui, China
| | - Shun Huang
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1, Qianjiang Road, 230012 Hefei, Anhui, China
| | - Gang Yin
- Xin'an School, Anhui University of Chinese Medicine, 230012 Hefei, Anhui, China
| | - Xiyang Wang
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1, Qianjiang Road, 230012 Hefei, Anhui, China
| | - Guoming Shen
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1, Qianjiang Road, 230012 Hefei, Anhui, China
| |
Collapse
|
82
|
Chamtouri M, Gaddour N, Merghni A, Mastouri M, Arboleya S, de Los Reyes-Gavilán CG. Age and severity-dependent gut microbiota alterations in Tunisian children with autism spectrum disorder. Sci Rep 2023; 13:18218. [PMID: 37880312 PMCID: PMC10600251 DOI: 10.1038/s41598-023-45534-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023] Open
Abstract
Alterations in gut microbiota and short chain fatty acids (SCFA) have been reported in autism spectrum disorder (ASD). We analysed the gut microbiota and fecal SCFA in Tunisian autistic children from 4 to 10 years, and results were compared to those obtained from a group of siblings (SIB) and children from the general population (GP). ASD patients presented different gut microbiota profiles compared to SIB and GP, with differences in the levels of Bifidobacterium and Collinsella occurring in younger children (4-7 years) and that tend to be attenuated at older ages (8-10 years). The lower abundance of Bifidobacterium is the key feature of the microbiota composition associated with severe autism. ASD patients presented significantly higher levels of propionic and valeric acids than GP at 4-7 years, but these differences disappeared at 8-10 years. To the best of our knowledge, this is the first study on the gut microbiota profile of Tunisian autistic children using a metataxonomic approach. This exploratory study reveals more pronounced gut microbiota alterations at early than at advanced ages in ASD. Although we did not account for multiple testing, our findings suggest that early interventions might mitigate gut disorders and cognitive and neurodevelopment impairment associated to ASD.
Collapse
Affiliation(s)
- Mariem Chamtouri
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300, Villaviciosa, Spain
- Laboratory of Transmissible Diseases and Biologically Active Substances LR99ES27, Faculty of Pharmacy, University of Monastir, 5000, Monastir, Tunisia
| | - Naoufel Gaddour
- Unit of Child Psychiatry, Monastir University Hospital, 5000, Monastir, Tunisia
| | - Abderrahmen Merghni
- Laboratory of Antimicrobial Resistance LR99ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, 1068, Tunis, Tunisia
| | - Maha Mastouri
- Laboratory of Transmissible Diseases and Biologically Active Substances LR99ES27, Faculty of Pharmacy, University of Monastir, 5000, Monastir, Tunisia
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300, Villaviciosa, Spain.
- Diet, Microbiota, and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain.
| | - Clara G de Los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300, Villaviciosa, Spain.
- Diet, Microbiota, and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain.
| |
Collapse
|
83
|
Gorini F, Tonacci A. Tumor Microbial Communities and Thyroid Cancer Development-The Protective Role of Antioxidant Nutrients: Application Strategies and Future Directions. Antioxidants (Basel) 2023; 12:1898. [PMID: 37891977 PMCID: PMC10604861 DOI: 10.3390/antiox12101898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Thyroid cancer (TC), the most frequent malignancy of the endocrine system, has recorded an increasing incidence in the last decades. The etiology of TC remains at least partly unknown and, among modifiable risk factors, the gut microbiota and dietary nutrients (vitamins, essential microelements, polyphenols, probiotics) have been recognized to not only influence thyroid function, but exert critical effects on TC development and progression. Recent discoveries on the existence of tumor microbiota also in the TC microenvironment provide further evidence for the essential role of tumor microorganisms in TC etiology and severity, as well as acting as prognostic markers and as a potential target of adjuvant care in the treatment of TC patients. Therefore, in this review, we summarize current knowledge on the relationship of the tumor microbiome with the clinical tumor characteristics and TC progression, also illustrating the molecular mechanisms underlying this association, and how antioxidant nutrients may be used as a novel strategy to both control gut health and reduce the risk for TC. Furthermore, we discuss how new technologies might be exploited for the development of new foods with high nutritional values, antioxidant capability, and even attractiveness to the individual in terms of sensory and emotional features.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | | |
Collapse
|
84
|
Heravi FS, Naseri K, Hu H. Gut Microbiota Composition in Patients with Neurodegenerative Disorders (Parkinson's and Alzheimer's) and Healthy Controls: A Systematic Review. Nutrients 2023; 15:4365. [PMID: 37892440 PMCID: PMC10609969 DOI: 10.3390/nu15204365] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
This systematic review aims to provide a comprehensive understanding of the current literature regarding gut microbiota composition in patients with Parkinson's disease (PD) and Alzheimer's disease (AD) compared to healthy controls. To identify the relevant studies, a thorough search of PubMed, Medline, and Embase was conducted following the PRISMA guidelines. Out of 5627 articles, 73 studies were assessed for full-text eligibility, which led to the inclusion of 42 studies (26 PD and 16 AD studies). The risk of bias assessment showed a medium risk in 32 studies (20 PD studies and 12 AD studies), a low risk in 9 studies (5 PD studies and 4 AD studies), and 1 PD study with a high risk. Among the PD studies, 22 out of 26 studies reported a different gut microbiota composition between the PD cases and the healthy controls, and 15 out of 16 AD studies reported differences in gut microbiota composition between the AD cases and the healthy controls. The PD and AD studies consistently identified the phyla Bacteroidetes, Firmicutes, and Proteobacteria as prevalent in the gut microbiota in both the healthy groups and the case groups. Microbial dysbiosis was specifically characterized in the PD studies by a high abundance of Akkermansia, Verrucomicrobiaceae, Lachnospiraceae, and Ruminococcaceae in the cases and a high abundance of Blautia, Coprococcus, Prevotellaceae, and Roseburia in the controls. Similarly, Bacteroides and Acidobacteriota were abundant in the AD cases, and Acidaminococcaceae, Firmicutes, Lachnospiraceae, and Ruminiclostridium were abundant in the AD controls. The microbial signature assessment showed the association of several microbial taxa, including Akkermansia, Lachnospiraceae, Verrucomicrobiaceae, Bifidobacterium, Ruminococcacea, and Verrucomicrobia with PD and Ruminococcaceae, Bacteroides, and Actinobacteria with AD. The microbial diversity evaluations in the PD and AD studies indicated comparable alpha diversity in some groups and distinct gut microbiota composition in others, with consistent beta diversity differences between the cases and the controls across multiple studies. The bacterial signatures identified in this study that are associated with PD and AD may offer promising prospects for efficient management and treatment approaches.
Collapse
Affiliation(s)
| | - Kaveh Naseri
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3983, Australia;
| | - Honghua Hu
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
- Innovation Center of Translational Pharmacy, Jinhua Institute of Zhejiang University, Jinhua 321016, China
| |
Collapse
|
85
|
Rashnaei N, Akhavan Sepahi A, Siadat SD, Shahsavand-Ananloo E, Bahramali G. Characterization of gut microbiota profile in Iranian patients with bipolar disorder compared to healthy controls. Front Cell Infect Microbiol 2023; 13:1233687. [PMID: 37808915 PMCID: PMC10552146 DOI: 10.3389/fcimb.2023.1233687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction The human gut microbiota plays a crucial role in mental health through the gut-brain axis, impacting central nervous system functions, behavior, mood, and anxiety. Consequently, it is implicated in the development of neuropsychiatric disorders. This study aimed to assess and compare the gut microbiota profiles and populations of individuals with bipolar disorder and healthy individuals in Iran. Methods Fecal samples were collected from 60 participants, including 30 bipolar patients (BPs) and 30 healthy controls (HCs), following rigorous entry criteria. Real-time quantitative PCR was utilized to evaluate the abundance of 10 bacterial genera/species and five bacterial phyla. Results Notably, Actinobacteria and Lactobacillus exhibited the greatest fold change in BPs compared to HCs at the phylum and genus level, respectively, among the bacteria with significant population differences. Ruminococcus emerged as the most abundant genus in both groups, while Proteobacteria and Bacteroidetes showed the highest abundance in BPs and HCs, respectively, at the phylum level. Importantly, our investigation revealed a lower Firmicutes/Bacteroidetes ratio, potentially serving as a health indicator, in HCs compared to BPs. Conclusion This study marks the first examination of an Iranian population and provides compelling evidence of significant differences in gut microbiota composition between BPs and HCs, suggesting a potential link between brain functions and the gut microbial profile and population.
Collapse
Affiliation(s)
- Nassir Rashnaei
- Department of Microbiology, Faculty of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Abbas Akhavan Sepahi
- Department of Microbiology, Faculty of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Esmaeil Shahsavand-Ananloo
- Department of Psychosomatic, Imam Khomeini Hospital Complex, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Golnaz Bahramali
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
86
|
Ren Y, Wu J, Wang Y, Zhang L, Ren J, Zhang Z, Chen B, Zhang K, Zhu B, Liu W, Li S, Li X. Lifestyle patterns influence the composition of the gut microbiome in a healthy Chinese population. Sci Rep 2023; 13:14425. [PMID: 37660184 PMCID: PMC10475076 DOI: 10.1038/s41598-023-41532-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023] Open
Abstract
High-throughput sequencing allows for the comprehensive analysis of the human intestinal microbiota. However, extensive association analyses between the microbiome and lifestyle differences in the Chinese population are limited. Here, we carried out an independent cohort study-the Chinese Healthy Gut Project (n = 483)-where correlations between the gut microbiota and dietary and lifestyle variables in a healthy Chinese population are defined. We collected both questionnaire data, including basic information and lifestyle and dietary variables, and fecal stools from the enrolled volunteers. We then performed 16S rRNA sequencing on the microbial DNA isolated from the stools to assess the composition of the intestinal microbiota. We found that Prevotella and Bacteroides were the most abundant genera in the healthy Chinese gut microbiome. Additionally, 9 out of 29 clinical and questionnaire-based phenotype covariates were found to be associated with the variation in the composition of the gut microbiota. Among these lifestyle phenotypes, sleep procrastination, negative mood, and drinking habits had the largest effect size. Additionally, an appreciable effect of urbanization was observed, resulting in decreased intra-individual diversity, increased inter-individual diversity, and an increased abundance of the Bacteroides enterotype. The results of this study provide a foundation for assessing the healthy Chinese gut microbiota community structure at baseline in a healthy Chinese population. Furthermore, this study also provides insights into understanding how distinctive living habits influence the relationships between the Chinese gut microbiome and systemic health state.
Collapse
Affiliation(s)
- Yi Ren
- Coyote Bioscience (Beijing) Co., Ltd., Beijing, China
| | - Jiawei Wu
- Coyote Bioscience (Beijing) Co., Ltd., Beijing, China
| | - Yilin Wang
- Coyote Bioscience (Beijing) Co., Ltd., Beijing, China
| | - Lanying Zhang
- Coyote Diagnostics Lab (Beijing) Co., Ltd., Beijing, China
| | - Jing Ren
- Coyote Bioscience (Beijing) Co., Ltd., Beijing, China
| | - Zhiming Zhang
- Coyote Bioscience (Beijing) Co., Ltd., Beijing, China
| | - Binghan Chen
- Coyote Bioscience (Beijing) Co., Ltd., Beijing, China
| | - Kejian Zhang
- Coyote Bioscience (Beijing) Co., Ltd., Beijing, China
| | - Baoli Zhu
- Coyote Bioscience (Beijing) Co., Ltd., Beijing, China
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | - Sabrina Li
- Coyote Bioscience (Beijing) Co., Ltd., Beijing, China.
- Coyote Diagnostics Lab (Beijing) Co., Ltd., Beijing, China.
| | - Xu Li
- Coyote Bioscience (Beijing) Co., Ltd., Beijing, China.
| |
Collapse
|
87
|
Ma L, Jiang X, Huang Q, Chen W, Zhang H, Pei H, Cao Y, Wang H, Li H. Traditional Chinese medicine for the treatment of Alzheimer's disease: A focus on the microbiota-gut-brain axis. Biomed Pharmacother 2023; 165:115244. [PMID: 37516021 DOI: 10.1016/j.biopha.2023.115244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023] Open
Abstract
Alzheimer's disease (AD), the most frequent cause of dementia, is a neurodegenerative disorder characterised by a progressive decline in cognitive function that is associated with the formation of amyloid beta plaques and neurofibrillary tangles. Gut microbiota comprises of a complex community of microorganisms residing in the gastrointestinal ecosystem. These microorganisms can participate in gut-brain axis activities, thereby affecting cognitive function and associated behaviours. Increasing evidence has indicated that gut dysbiosis can jeopardise host immune responses and promote inflammation, which may be an initiating factor for the onset and evolution of AD. Traditional Chinese medicine (TCM) is a promising resource which encompasses immense chemical diversity and multiple-target characteristics for the treatment of AD. Many TCMs regulate the gut microbiota during treatment of diseases, indicating that gut microbiota may be an important target for TCM efficacy. In this review, we summarised the role of the microbiota-gut-brain axis in the development of AD and the effects of TCM in treating AD by regulating the gut microbiota. We anticipate that this review will provide novel perspectives and strategies for future AD research and treatments.
Collapse
Affiliation(s)
- Lina Ma
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Xuefan Jiang
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Qiaoyi Huang
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Wenxuan Chen
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Huiqin Zhang
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Hui Pei
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Yu Cao
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Huichan Wang
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Hao Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, PR China.
| |
Collapse
|
88
|
Kononova S, Kashparov M, Xue W, Bobkova N, Leonov S, Zagorodny N. Gut Microbiome Dysbiosis as a Potential Risk Factor for Idiopathic Toe-Walking in Children: A Review. Int J Mol Sci 2023; 24:13204. [PMID: 37686011 PMCID: PMC10488280 DOI: 10.3390/ijms241713204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Idiopathic toe walking (ITW) occurs in about 5% of children. Orthopedic treatment of ITW is complicated by the lack of a known etiology. Only half of the conservative and surgical methods of treatment give a stable positive result of normalizing gait. Available data indicate that the disease is heterogeneous and multifactorial. Recently, some children with ITW have been found to have genetic variants of mutations that can lead to the development of toe walking. At the same time, some children show sensorimotor impairment, but these studies are very limited. Sensorimotor dysfunction could potentially arise from an imbalanced production of neurotransmitters that play a crucial role in motor control. Using the data obtained in the studies of several pathologies manifested by the association of sensory-motor dysfunction and intestinal dysbiosis, we attempt to substantiate the notion that malfunction of neurotransmitter production is caused by the imbalance of gut microbiota metabolites as a result of dysbiosis. This review delves into the exciting possibility of a connection between variations in the microbiome and ITW. The purpose of this review is to establish a strong theoretical foundation and highlight the benefits of further exploring the possible connection between alterations in the microbiome and TW for further studies of ITW etiology.
Collapse
Affiliation(s)
- Svetlana Kononova
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Mikhail Kashparov
- Department of Traumatology and Orthopedics, Peoples’ Friendship University of Russia, 117198 Moscow, Russia; (M.K.); (N.Z.)
- Scientific and Practical Center for Child Psychoneurology, 119602 Moscow, Russia
| | - Wenyu Xue
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (W.X.); (S.L.)
| | - Natalia Bobkova
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Sergey Leonov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (W.X.); (S.L.)
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Nikolaj Zagorodny
- Department of Traumatology and Orthopedics, Peoples’ Friendship University of Russia, 117198 Moscow, Russia; (M.K.); (N.Z.)
- N.N. Priorov Central Research Institute of Traumatology and Orthopedics, 127299 Moscow, Russia
| |
Collapse
|
89
|
Wei W, Zhou Y, Zuo H, Li M, Pan Z, Liu B, Wang L, Tan Y, Yang R, Shang W, Bi Y, Wang W. Characterization of the follicular fluid microbiota based on culturomics and sequencing analysis. J Med Microbiol 2023; 72. [PMID: 37578331 DOI: 10.1099/jmm.0.001741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Introduction. The human oocyte microenvironment is follicular fluid, which is important for follicle growth, ovulation and maturation of the oocyte. The micro-organisms present in follicular fluid could be a predictor of in vitro fertilization outcomes.Hypothesis/Gap Statement. Women with follicular fluid colonized with micro-organisms can be asymptomatic, but the presence of some genera in the follicular fluid correlates with in vitro fertilization.Aim. To confirm the existence of micro-organisms in follicular fluid, and to profile the micro-organisms present in follicular fluid sampled from women undergoing in vitro fertilization with different outcomes.Methodology. Women undergoing in vitro fertilization (n=163) were divided into different subgroups according to their in vitro fertilization outcomes. Their follicular fluid samples were collected, and among them, 157 samples were analysed by 16S rDNA sequencing, and 19 samples were analysed using culturomics.Results. The culturomics results suggested that the 19 follicular fluid samples were not sterile. The isolation rates for Streptococcus, Finegoldia and Peptoniphilus were >50 % in the 19 samples. Linear discriminant analysis effect size analysis showed differential bacteria abundance according to the pregnancy rate, the rate of normal fertilization, the rate of high-quality embryos and the rate of available oocytes. The sequencing results showed that micro-organisms could be detected in all 157 samples. Pseudomonas, Lactobacillus, Comamonas, Streptococcus and Acinetobacter were detected in all of the samples, but with a wide range of relative abundance. Pseudomonas, Lactobacillus, Ralstonia and Vibrio constituted a notable fraction of the microbiota.Conclusions. Follicular fluid is not sterile. Micro-organisms in follicular fluid could be a predictor of in vitro fertilization outcomes.
Collapse
Affiliation(s)
- Wenting Wei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
- Department of Clinical Laboratory, Air Force Medical Center, Beijing, PR China
| | - Yazhou Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Haiyang Zuo
- Department of Obstetrics and Gynecology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, PR China
| | - Min Li
- Department of Obstetrics and Gynecology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, PR China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, PR China
| | - Zhiyuan Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Bin Liu
- Department of Obstetrics and Gynecology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, PR China
| | - Lu Wang
- Department of Obstetrics and Gynecology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, PR China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Wei Shang
- Department of Obstetrics and Gynecology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, PR China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, PR China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Weizhou Wang
- Department of Obstetrics and Gynecology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, PR China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, PR China
| |
Collapse
|
90
|
Martoni CJ, Srivastava S, Damholt A, Leyer GJ. Efficacy and dose response of Lactiplantibacillus plantarum in diarrhea-predominant irritable bowel syndrome. World J Gastroenterol 2023; 29:4451-4465. [PMID: 37576702 PMCID: PMC10415969 DOI: 10.3748/wjg.v29.i28.4451] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Probiotics have shown promise in alleviating symptoms of diarrhea-predominant irritable bowel syndrome (IBS-D); however, the certainty of evidence is low. Well-powered randomized controlled dose-ranging trials are warranted on promising single-strain candidates. AIM To investigate the clinical efficacy of Lactiplantibacillus plantarum (L. plantarum) Lpla33 (DSM34428) in adults with IBS-D. METHODS This is a randomized, double-blind, placebo-controlled, multi-center, and dose-ranging study. Three hundred and seven adults, 18-70 years of age, with IBS-D, according to Rome IV criteria, were allocated (1:1:1) to receive placebo or L. plantarum Lpla33 at 1 × 109 (1B) or 1 × 1010 (10B) colony-forming units/d over an 8-wk intervention period. The primary outcome was the change in IBS severity scoring system (IBS-SSS) total score after 8 wk, while secondary and exploratory outcomes included abdominal pain severity, IBS related quality of life, stool and microbial profile, and perceived stress. RESULTS IBS-SSS was significantly reduced, after 8 wk, in participants receiving L. plantarum 1B (-128.45 ± 83.30; P < 0.001) and L. plantarum 10B (-156.77 ± 99.06; P < 0.001), compared to placebo (-58.82 ± 74.75). Further, a dose-ranging effect was observed, with a greater absolute reduction in the L. plantarum 10B group (P < 0.05). A reduction in sub-scores related to abdominal pain, abdominal distension, bowel habits, and quality of life was observed in both L. plantarum groups compared to placebo (P < 0.001). Further, 62.5% and 88.4% of participants administered L. plantarum 1B and 10B, respectively, were classified as stool consistency responders based on a reduction in diarrheal stool form, as compared to 26.3% in the placebo group (P < 0.001). In contrast, no significant shifts were observed in microbial diversity. CONCLUSION L. plantarum Lpla33 (DSM34428) is well tolerated and improves IBS symptom severity with a dose-ranging effect and a corresponding normalization of bowel habits in adults with IBS-D.
Collapse
Affiliation(s)
| | | | - Anders Damholt
- Clinical Development, Human Health, Chr. Hansen A/S, Hoersholm 2970, Denmark
| | - Gregory J Leyer
- Scientific Affairs,Human Health, Chr. Hansen A/S, Hoersholm 2970, Denmark
| |
Collapse
|
91
|
Jayanti S, Dalla Verde C, Tiribelli C, Gazzin S. Inflammation, Dopaminergic Brain and Bilirubin. Int J Mol Sci 2023; 24:11478. [PMID: 37511235 PMCID: PMC10380707 DOI: 10.3390/ijms241411478] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Dopamine is a well-known neurotransmitter due to its involvement in Parkinson's disease (PD). Dopamine is not only involved in PD but also controls multiple mental and physical activities, such as the pleasure of food, friends and loved ones, music, art, mood, cognition, motivation, fear, affective disorders, addiction, attention deficit disorder, depression, and schizophrenia. Dopaminergic neurons (DOPAn) are susceptible to stressors, and inflammation is a recognized risk for neuronal malfunctioning and cell death in major neurodegenerative diseases. Less is known for non-neurodegenerative conditions. Among the endogenous defenses, bilirubin, a heme metabolite, has been shown to possess important anti-inflammatory activity and, most importantly, to prevent DOPAn demise in an ex vivo model of PD by acting on the tumor necrosis factor-alpha (TNFα). This review summarizes the evidence linking DOPAn, inflammation (when possible, specifically TNFα), and bilirubin as an anti-inflammatory in order to understand what is known, the gaps that need filling, and the hypotheses of anti-inflammatory strategies to preserve dopamine homeostasis with bilirubin included.
Collapse
Affiliation(s)
- Sri Jayanti
- Italian Liver Foundation, Liver Brain Unit “Rita Moretti”, Area Science Park, Bldg. Q, SS 14, Km 163,5, 34149 Trieste, Italy; (S.J.); (C.D.V.); (S.G.)
- Eijkman Research Centre for Molecular Biology, Research Organization for Health, National Research and Innovation Agency, Cibinong 16915, Indonesia
| | - Camilla Dalla Verde
- Italian Liver Foundation, Liver Brain Unit “Rita Moretti”, Area Science Park, Bldg. Q, SS 14, Km 163,5, 34149 Trieste, Italy; (S.J.); (C.D.V.); (S.G.)
| | - Claudio Tiribelli
- Italian Liver Foundation, Liver Brain Unit “Rita Moretti”, Area Science Park, Bldg. Q, SS 14, Km 163,5, 34149 Trieste, Italy; (S.J.); (C.D.V.); (S.G.)
| | - Silvia Gazzin
- Italian Liver Foundation, Liver Brain Unit “Rita Moretti”, Area Science Park, Bldg. Q, SS 14, Km 163,5, 34149 Trieste, Italy; (S.J.); (C.D.V.); (S.G.)
| |
Collapse
|
92
|
Clemente-Suárez VJ, Beltrán-Velasco AI, Redondo-Flórez L, Martín-Rodríguez A, Tornero-Aguilera JF. Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review. Nutrients 2023; 15:2749. [PMID: 37375654 PMCID: PMC10302286 DOI: 10.3390/nu15122749] [Citation(s) in RCA: 200] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The Western diet is a modern dietary pattern characterized by high intakes of pre-packaged foods, refined grains, red meat, processed meat, high-sugar drinks, candy, sweets, fried foods, conventionally raised animal products, high-fat dairy products, and high-fructose products. The present review aims to describe the effect of the Western pattern diet on the metabolism, inflammation, and antioxidant status; the impact on gut microbiota and mitochondrial fitness; the effect of on cardiovascular health, mental health, and cancer; and the sanitary cost of the Western diet. To achieve this goal, a consensus critical review was conducted using primary sources, such as scientific articles, and secondary sources, including bibliographic indexes, databases, and web pages. Scopus, Embase, Science Direct, Sports Discuss, ResearchGate, and the Web of Science were used to complete the assignment. MeSH-compliant keywords such "Western diet", "inflammation", "metabolic health", "metabolic fitness", "heart disease", "cancer", "oxidative stress", "mental health", and "metabolism" were used. The following exclusion criteria were applied: (i) studies with inappropriate or irrelevant topics, not germane to the review's primary focus; (ii) Ph.D. dissertations, proceedings of conferences, and unpublished studies. This information will allow for a better comprehension of this nutritional behavior and its effect on an individual's metabolism and health, as well as the impact on national sanitary systems. Finally, practical applications derived from this information are made.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
| | | | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, 28670 Villaviciosa de Odón, Spain;
| | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
| | | |
Collapse
|
93
|
Zhao Q, Hao Y, Yang X, Mao J, Tian F, Gao Y, Tian X, Yan X, Qiu Y. Mitigation of maternal fecal microbiota transplantation on neurobehavioral deficits of offspring rats prenatally exposed to arsenic: Role of microbiota-gut-brain axis. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131816. [PMID: 37307732 DOI: 10.1016/j.jhazmat.2023.131816] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/26/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
It is established that gut microbiota dysbiosis is implicated in arsenic (As)-induced neurotoxic process, however, the underlying mode of action remains largely unclear. Here, through remodeling gut microbiota on As-intoxicated pregnancy rats using fecal microbiota transplantation (FMT) from Control rats, neuronal loss and neurobehavioral deficits in offspring prenatally exposed to As were significantly alleviated after maternal FMT treatment. In prenatal As-challenged offspring after maternal FMT treatment, remarkably, suppressed expression of inflammatory cytokines in tissues (colon, serum, and striatum) were observed along with reversed mRNA and protein expression of tight junction related molecules in intestinal barrier and blood-brain barrier (BBB); Further, expression of serum lipopolysaccharide (LPS), toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (Myd88) and nuclear transcription factor-κB (NF-κB) in colonic and striatal tissues were repressed with activation of astrocytes and microglia inhibited. In particular, tightly correlated and enriched microbiomes were identified such as higher-expressed g_Prevotella, g_UCG_005, and lower-expressed p_Desulfobacterota, g_Eubacterium_xylanophilum_group. Collectively, our results first demonstrated that reconstruction of normal gut microbiota by maternal FMT treatment alleviated prenatal As-induced overall inflammatory state and impairments of intestinal barrier and BBB integrity by impeding LPS-mediated TLR4/Myd88/NF-κB signaling pathway through microbiota-gut-brain axis, which provides a novel therapeutic avenue for developmental arsenic neurotoxicity.
Collapse
Affiliation(s)
- Qian Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yan Hao
- Center for Disease Control and Prevention of Daxing District, Beijing, China
| | - Xiaoqian Yang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jie Mao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Fengjie Tian
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yi Gao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaolin Tian
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
94
|
Jiang Z, Wang X, Zhang H, Yin J, Zhao P, Yin Q, Wang Z. Ketogenic diet protects MPTP-induced mouse model of Parkinson's disease via altering gut microbiota and metabolites. MedComm (Beijing) 2023; 4:e268. [PMID: 37200942 PMCID: PMC10186339 DOI: 10.1002/mco2.268] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 05/20/2023] Open
Abstract
The ketogenic diet (KD) is a low-carbohydrate, high-fat regime that is protective against neurodegenerative diseases. However, the impact of KD on Parkinson's disease (PD) and its mechanisms remains unclear. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD was fed with KD for 8 weeks. Motor function and dopaminergic neurons were evaluated. Inflammation in the brain, plasma, and colon tissue were also measured. Fecal samples were assessed by 16S rDNA gene sequencing and untargeted metabolomics. We found that KD protected motor dysfunction, dopaminergic neuron loss, and inflammation in an MPTP mouse model of PD. 16S rDNA sequencing revealed that MPTP administration significantly increased Citrobacter, Desulfovibrio, and Ruminococcus, and decreased Dubosiella, whereas KD treatment reversed the dysbiosis. Meanwhile, KD regulated the MPTP-induced histamine, N-acetylputrescine, d-aspartic acid, and other metabolites. Fecal microbiota transplantation using feces from the KD-treated mice attenuated the motor function impairment and dopaminergic neuron loss in antibiotic-pretreated PD mice. Our current study demonstrates that KD played a neuroprotective role in the MPTP mouse model of PD through the diet-gut microbiota-brain axis, which may involve inflammation in the brain and colon. However, future research is warranted to explore the explicit anti-inflammatory mechanisms of the gut-brain axis in PD models fed with KD.
Collapse
Affiliation(s)
- Ziying Jiang
- Department of Geriatric NeurologyThe Second Medical Center & National Clinical Research Center for Geriatric DiseaseChinese PLA General HospitalBeijingChina
| | - Xinyu Wang
- Department of Geriatric NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Haoqiang Zhang
- Department of EndocrinologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
| | - Jian Yin
- Department of Bio‐Medical DiagnosticsSuzhou Institute of Biomedical Engineering and TechnologyChinese Academy of SciencesSuzhouJiangsuChina
- Department of Bio‐Medical DiagnosticsJinan Guo Ke Medical Technology Development Co. Ltd.JinanShandongChina
| | - Peiqing Zhao
- Department of Translational Medical CenterZibo Central Hospital Affiliated to Binzhou Medical UniversityZiboShandongChina
| | - Qingqing Yin
- Department of Geriatric NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Zhenfu Wang
- Department of Geriatric NeurologyThe Second Medical Center & National Clinical Research Center for Geriatric DiseaseChinese PLA General HospitalBeijingChina
| |
Collapse
|
95
|
Scott E, Brewer MS, Peralta AL, Issa FA. The Effects of Social Experience on Host Gut Microbiome in Male Zebrafish ( Danio rerio). THE BIOLOGICAL BULLETIN 2023; 244:177-189. [PMID: 38457676 DOI: 10.1086/729377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
AbstractAlthough the gut and the brain vastly differ in physiological function, they have been interlinked in a variety of different neurological and behavioral disorders. The bacteria that comprise the gut microbiome communicate and influence the function of various physiological processes within the body, including nervous system function. However, the effects of social experience in the context of dominance and social stress on gut microbiome remain poorly understood. Here, we examined whether social experience impacts the host zebrafish (Danio rerio) gut microbiome. We studied how social dominance during the first 2 weeks of social interactions changed the composition of zebrafish gut microbiome by comparing gut bacterial composition, diversity, and relative abundance between socially dominant, submissive, social isolates and control group-housed communal fish. Using amplicon sequencing of the 16S rRNA gene, we report that social dominance significantly affects host gut bacterial community composition but not bacterial diversity. At the genus level, Aeromonas and unclassified Enterobacteriaceae relative abundance decreased in dominant individuals while commensal bacteria (e.g., Exiguobacterium and Cetobacterium) increased in relative abundance. Conversely, the relative abundance of Psychrobacter and Acinetobacter was increased in subordinates, isolates, and communal fish compared to dominant fish. The shift in commensal and pathogenic bacteria highlights the impact of social experience and the accompanying stress on gut microbiome, with potentially similar effects in other social organisms.
Collapse
|
96
|
Goodkin K, Evering TH, Anderson AM, Ragin A, Monaco CL, Gavegnano C, Avery RJ, Rourke SB, Cysique LA, Brew BJ. The comorbidity of depression and neurocognitive disorder in persons with HIV infection: call for investigation and treatment. Front Cell Neurosci 2023; 17:1130938. [PMID: 37206666 PMCID: PMC10190964 DOI: 10.3389/fncel.2023.1130938] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/07/2023] [Indexed: 05/21/2023] Open
Abstract
Depression and neurocognitive disorder continue to be the major neuropsychiatric disorders affecting persons with HIV (PWH). The prevalence of major depressive disorder is two to fourfold higher among PWH than the general population (∼6.7%). Prevalence estimates of neurocognitive disorder among PWH range from 25 to over 47% - depending upon the definition used (which is currently evolving), the size of the test battery employed, and the demographic and HIV disease characteristics of the participants included, such as age range and sex distribution. Both major depressive disorder and neurocognitive disorder also result in substantial morbidity and premature mortality. However, though anticipated to be relatively common, the comorbidity of these two disorders in PWH has not been formally studied. This is partly due to the clinical overlap of the neurocognitive symptoms of these two disorders. Both also share neurobehavioral aspects - particularly apathy - as well as an increased risk for non-adherence to antiretroviral therapy. Shared pathophysiological mechanisms potentially explain these intersecting phenotypes, including neuroinflammatory, vascular, and microbiomic, as well as neuroendocrine/neurotransmitter dynamic mechanisms. Treatment of either disorder affects the other with respect to symptom reduction as well as medication toxicity. We present a unified model for the comorbidity based upon deficits in dopaminergic transmission that occur in both major depressive disorder and HIV-associated neurocognitive disorder. Specific treatments for the comorbidity that decrease neuroinflammation and/or restore associated deficits in dopaminergic transmission may be indicated and merit study.
Collapse
Affiliation(s)
- Karl Goodkin
- Department of Psychiatry, School of Medicine, The University of Texas Rio Grande Valley, Harlingen, TX, United States
- Institute of Neuroscience, School of Medicine, The University of Texas Rio Grande Valley, Harlingen, TX, United States
| | - Teresa H. Evering
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Albert M. Anderson
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Ann Ragin
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Cynthia L. Monaco
- Division of Infectious Diseases, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
- Del Monte Institute of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Christina Gavegnano
- Department of Pathology, Emory School of Medicine, Emory University, Atlanta, GA, United States
- Department of Pharmacology, Emory School of Medicine, Emory University, Atlanta, GA, United States
- Department of Chemical Biology, Emory School of Medicine, Emory University, Atlanta, GA, United States
- Center for the Study of Human Health, Emory College of Arts and Sciences, Emory University, Atlanta, GA, United States
- Atlanta Veteran’s Affairs Medical Center, Atlanta, GA, United States
- Center for Bioethics, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Ryan J. Avery
- Division of Nuclear Medicine, Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Sean B. Rourke
- MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Lucette A. Cysique
- School of Psychology, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
| | - Bruce J. Brew
- Department of Neurology, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Neurology, Faculty of Medicine, University of Notre Dame, Sydney, NSW, Australia
| |
Collapse
|
97
|
de Wouters d'Oplinter A, Verce M, Huwart SJP, Lessard-Lord J, Depommier C, Van Hul M, Desjardins Y, Cani PD, Everard A. Obese-associated gut microbes and derived phenolic metabolite as mediators of excessive motivation for food reward. MICROBIOME 2023; 11:94. [PMID: 37106463 PMCID: PMC10142783 DOI: 10.1186/s40168-023-01526-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/20/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Excessive hedonic consumption is one of the main drivers for weight gain. Identifying contributors of this dysregulation would help to tackle obesity. The gut microbiome is altered during obesity and regulates host metabolism including food intake. RESULTS By using fecal material transplantation (FMT) from lean or obese mice into recipient mice, we demonstrated that gut microbes play a role in the regulation of food reward (i.e., wanting and learning processes associated with hedonic food intake) and could be responsible for excessive motivation to obtain sucrose pellets and alterations in dopaminergic and opioid markers in reward-related brain areas. Through untargeted metabolomic approach, we identified the 3-(3'-hydroxyphenyl)propanoic acid (33HPP) as highly positively correlated with the motivation. By administrating 33HPP in mice, we revealed its effects on food reward. CONCLUSIONS Our data suggest that targeting the gut microbiota and its metabolites would be an interesting therapeutic strategy for compulsive eating, preventing inappropriate hedonic food intake. Video Abstract.
Collapse
Affiliation(s)
- Alice de Wouters d'Oplinter
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Marko Verce
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Sabrina J P Huwart
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Jacob Lessard-Lord
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Clara Depommier
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300, Wavre, Belgium.
| |
Collapse
|
98
|
Homer B, Judd J, Mohammadi Dehcheshmeh M, Ebrahimie E, Trott DJ. Gut Microbiota and Behavioural Issues in Production, Performance, and Companion Animals: A Systematic Review. Animals (Basel) 2023; 13:ani13091458. [PMID: 37174495 PMCID: PMC10177538 DOI: 10.3390/ani13091458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
The literature has identified poor nutrition as the leading factor in the manifestation of many behavioural issues in animals, including aggression, hyperalertness, and stereotypies. Literature focused on all species of interest consistently reported that although there were no significant differences in the richness of specific bacterial taxa in the microbiota of individual subjects with abnormal behaviour (termed alpha diversity), there was variability in species diversity between these subjects compared to controls (termed beta diversity). As seen in humans with mental disorders, animals exhibiting abnormal behaviour often have an enrichment of pro-inflammatory and lactic acid-producing bacteria and a reduction in butyrate-producing bacteria. It is evident from the literature that an association exists between gut microbiota diversity (and by extension, the concurrent production of microbial metabolites) and abnormal behavioural phenotypes across various species, including pigs, dogs, and horses. Similar microbiota population changes are also evident in human mental health patients. However, there are insufficient data to identify this association as a cause or effect. This review provides testable hypotheses for future research to establish causal relationships between gut microbiota and behavioural issues in animals, offering promising potential for the development of novel therapeutic and/or preventative interventions aimed at restoring a healthy gut-brain-immune axis to mitigate behavioural issues and, in turn, improve health, performance, and production in animals.
Collapse
Affiliation(s)
- Bonnie Homer
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA 5371, Australia
| | - Jackson Judd
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA 5371, Australia
| | | | - Esmaeil Ebrahimie
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA 5371, Australia
- Genomics Research Platform, School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne, VIC 3086, Australia
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Darren J Trott
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA 5371, Australia
| |
Collapse
|
99
|
Sharvin BL, Aburto MR, Cryan JF. Decoding the neurocircuitry of gut feelings: Region-specific microbiome-mediated brain alterations. Neurobiol Dis 2023; 179:106033. [PMID: 36758820 DOI: 10.1016/j.nbd.2023.106033] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Research in the last decade has unveiled a crucial role for the trillions of microorganisms that reside in the gut in influencing host neurodevelopment across the lifespan via the microbiota-gut-brain axis. Studies have linked alterations in the composition, complexity, and diversity of the gut microbiota to changes in behaviour including abnormal social interactions, cognitive deficits, and anxiety- and depressive-like phenotypes. Moreover, the microbiota has been linked with neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Interestingly, there appears to be specific brain regions governing the neurocircuitry driving higher cognitive function that are susceptible to influence from manipulations to the host microbiome. This review will aim to elucidate the region-specific effects mediated by the gut microbiota, with a focus on translational animal models and some existing human neuroimaging data. Compelling preclinical evidence suggests disruption to normal microbiota-gut-brain signalling can have detrimental effects on the prefrontal cortex, amygdala, hippocampus, hypothalamus, and striatum. Furthermore, human neuroimaging studies have unveiled a role for the microbiota in mediating functional connectivity and structure of specific brain regions that can be traced back to neurocognition and behavioural output. Understanding these microbiota-mediated changes will aid in identifying unique therapeutic targets for treating neurological disorders associated with these regions.
Collapse
Affiliation(s)
- Brendan L Sharvin
- APC Microbiome, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Maria Rodriguez Aburto
- APC Microbiome, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
100
|
Bastings JJAJ, Venema K, Blaak EE, Adam TC. Influence of the gut microbiota on satiety signaling. Trends Endocrinol Metab 2023; 34:243-255. [PMID: 36870872 DOI: 10.1016/j.tem.2023.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 03/06/2023]
Abstract
Recent studies show a link between the gut microbiota and the regulation of satiety and energy intake, processes that contribute to the development and pathophysiology of metabolic diseases. However, this link is predominantly established in animal and in vitro studies, whereas human intervention studies are scarce. In this review we focus on recent evidence linking satiety and the gut microbiome, with specific emphasis on gut microbial short-chain fatty acids (SCFAs). Based on a systematic search we provide an overview of human studies linking the intake of prebiotics with gut microbial alterations and satiety signaling. Our outcomes highlight the importance of in-depth examination of the gut microbiota in relation to satiety and provide insights into recent and future studies in this field.
Collapse
Affiliation(s)
- Jacco J A J Bastings
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Koen Venema
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands; Centre for Healthy Eating and Food Innovation, Maastricht University, Campus Venlo, Venlo, The Netherlands
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands.
| | - Tanja C Adam
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|