51
|
MicroRNAs miR-584-5p and miR-425-3p Are Up-Regulated in Plasma of Colorectal Cancer (CRC) Patients: Targeting with Inhibitor Peptide Nucleic Acids Is Associated with Induction of Apoptosis in Colon Cancer Cell Lines. Cancers (Basel) 2022; 15:cancers15010128. [PMID: 36612125 PMCID: PMC9817681 DOI: 10.3390/cancers15010128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Liquid biopsy has dramatically changed cancer management in the last decade; however, despite the huge number of miRNA signatures available for diagnostic or prognostic purposes, it is still unclear if dysregulated miRNAs in the bloodstream could be used to develop miRNA-based therapeutic approaches. In one author's previous work, nine miRNAs were found to be dysregulated in early-stage colon cancer (CRC) patients by NGS analysis followed by RT-dd-PCR validation. In the present study, the biological effects of the targeting of the most relevant dysregulated miRNAs with anti-miRNA peptide nucleic acids (PNAs) were verified, and their anticancer activity in terms of apoptosis induction was evaluated. Our data demonstrate that targeting bloodstream up-regulated miRNAs using anti-miRNA PNAs leads to the down-regulation of target miRNAs associated with inhibition of the activation of the pro-apoptotic pathway in CRC cellular models. Moreover, very high percentages of apoptotic cells were found when the anti-miRNA PNAs were associated with other pro-apoptotic agents, such as sulforaphane (SFN). The presented data sustain the idea that the targeting of miRNAs up-regulated in the bloodstream with a known role in tumor pathology might be a tool for the design of protocols for anti-tumor therapy based on miRNA-targeting molecules.
Collapse
|
52
|
Hasannejad-Asl B, Pooresmaeil F, Takamoli S, Dabiri M, Bolhassani A. Cell penetrating peptide: A potent delivery system in vaccine development. Front Pharmacol 2022; 13:1072685. [PMID: 36425579 PMCID: PMC9679422 DOI: 10.3389/fphar.2022.1072685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 07/28/2023] Open
Abstract
One of the main obstacles to most medication administrations (such as the vaccine constructs) is the cellular membrane's inadequate permeability, which reduces their efficiency. Cell-penetrating peptides (CPPs) or protein transduction domains (PTDs) are well-known as potent biological nanocarriers to overcome this natural barrier, and to deliver membrane-impermeable substances into cells. The physicochemical properties of CPPs, the attached cargo, concentration, and cell type substantially influence the internalization mechanism. Although the exact mechanism of cellular uptake and the following processing of CPPs are still uncertain; but however, they can facilitate intracellular transfer through both endocytic and non-endocytic pathways. Improved endosomal escape efficiency, selective cell targeting, and improved uptake, processing, and presentation of antigen by antigen-presenting cells (APCs) have been reported by CPPs. Different in vitro and in vivo investigations using CPP conjugates show their potential as therapeutic agents in various medical areas such as infectious and non-infectious disorders. Effective treatments for a variety of diseases may be provided by vaccines that can cooperatively stimulate T cell-mediated immunity (T helper cell activity or cytotoxic T cell function), and immunologic memory. Delivery of antigen epitopes to APCs, and generation of a potent immune response is essential for an efficacious vaccine that can be facilitated by CPPs. The current review describes the delivery of numerous vaccine components by various CPPs and their immunostimulatory properties.
Collapse
Affiliation(s)
- Behnam Hasannejad-Asl
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti, University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Pooresmaeil
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Shahla Takamoli
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Mehran Dabiri
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
53
|
Fatima M, Abourehab MAS, Aggarwal G, Jain GK, Sahebkar A, Kesharwani P. Advancement of cell-penetrating peptides in combating triple-negative breast cancer. Drug Discov Today 2022; 27:103353. [PMID: 36099963 DOI: 10.1016/j.drudis.2022.103353] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/23/2022] [Accepted: 09/06/2022] [Indexed: 11/03/2022]
Abstract
Extensive research efforts have been made and are still ongoing in the search for an ideal anti-cancer therapy. Almost all chemotherapeutics require a carrier or vehicle, a drug delivery system that can transport the drug specifically to the targeted cancer cells, sparing normal cells. Cell-penetrating peptides (CPPs) provide an effective and efficient pathway for the intra-cellular transportation of various bioactive molecules in several biomedical therapies. They are now well-recognized as facilitators of intracellular cargo delivery and have excellent potential for targeted anti-cancer therapy. In this review, we explain CPPs, recent progress in the development of new CPPs, and their utilization to transport cargoes such as imaging agents, chemotherapeutics, and short-interfering RNAs (siRNA) into tumor cells, contributing to the advancement of novel tumor-specific delivery systems.
Collapse
Affiliation(s)
- Mahak Fatima
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110 062, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia 61519, Egypt
| | - Geeta Aggarwal
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi 110 017, India
| | - Gaurav K Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi 110 017, India
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110 062, India.
| |
Collapse
|
54
|
Gouthu S, Mandelli C, Eubanks BA, Deluc LG. Transgene-free genome editing and RNAi ectopic application in fruit trees: Potential and limitations. FRONTIERS IN PLANT SCIENCE 2022; 13:979742. [PMID: 36325537 PMCID: PMC9621297 DOI: 10.3389/fpls.2022.979742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
For the past fifteen years, significant research advances in sequencing technology have led to a substantial increase in fruit tree genomic resources and databases with a massive number of OMICS datasets (transcriptomic, proteomics, metabolomics), helping to find associations between gene(s) and performance traits. Meanwhile, new technology tools have emerged for gain- and loss-of-function studies, specifically in gene silencing and developing tractable plant models for genetic transformation. Additionally, innovative and adapted transformation protocols have optimized genetic engineering in most fruit trees. The recent explosion of new gene-editing tools allows for broadening opportunities for functional studies in fruit trees. Yet, the fruit tree research community has not fully embraced these new technologies to provide large-scale genome characterizations as in cereals and other staple food crops. Instead, recent research efforts in the fruit trees appear to focus on two primary translational tools: transgene-free gene editing via Ribonucleoprotein (RNP) delivery and the ectopic application of RNA-based products in the field for crop protection. The inherent nature of the propagation system and the long juvenile phase of most fruit trees are significant justifications for the first technology. The second approach might have the public favor regarding sustainability and an eco-friendlier environment for a crop production system that could potentially replace the use of chemicals. Regardless of their potential, both technologies still depend on the foundational knowledge of gene-to-trait relationships generated from basic genetic studies. Therefore, we will discuss the status of gene silencing and DNA-based gene editing techniques for functional studies in fruit trees followed by the potential and limitations of their translational tools (RNP delivery and RNA-based products) in the context of crop production.
Collapse
Affiliation(s)
- Satyanarayana Gouthu
- Department of Horticulture, Oregon State University, Corvallis, OR, United States
| | - Christian Mandelli
- Oregon Wine Research Institute, Oregon State University, Corvallis, OR, United States
| | - Britt A. Eubanks
- Department of Horticulture, Oregon State University, Corvallis, OR, United States
| | - Laurent G. Deluc
- Department of Horticulture, Oregon State University, Corvallis, OR, United States
- Oregon Wine Research Institute, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
55
|
Ahmad A, Khan JM. pH-sensitive endosomolytic peptides in gene and drug delivery: Endosomal escape and current challenges. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
56
|
Hirschi S, Ward TR, Meier WP, Müller DJ, Fotiadis D. Synthetic Biology: Bottom-Up Assembly of Molecular Systems. Chem Rev 2022; 122:16294-16328. [PMID: 36179355 DOI: 10.1021/acs.chemrev.2c00339] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bottom-up assembly of biological and chemical components opens exciting opportunities to engineer artificial vesicular systems for applications with previously unmet requirements. The modular combination of scaffolds and functional building blocks enables the engineering of complex systems with biomimetic or new-to-nature functionalities. Inspired by the compartmentalized organization of cells and organelles, lipid or polymer vesicles are widely used as model membrane systems to investigate the translocation of solutes and the transduction of signals by membrane proteins. The bottom-up assembly and functionalization of such artificial compartments enables full control over their composition and can thus provide specifically optimized environments for synthetic biological processes. This review aims to inspire future endeavors by providing a diverse toolbox of molecular modules, engineering methodologies, and different approaches to assemble artificial vesicular systems. Important technical and practical aspects are addressed and selected applications are presented, highlighting particular achievements and limitations of the bottom-up approach. Complementing the cutting-edge technological achievements, fundamental aspects are also discussed to cater to the inherently diverse background of the target audience, which results from the interdisciplinary nature of synthetic biology. The engineering of proteins as functional modules and the use of lipids and block copolymers as scaffold modules for the assembly of functionalized vesicular systems are explored in detail. Particular emphasis is placed on ensuring the controlled assembly of these components into increasingly complex vesicular systems. Finally, all descriptions are presented in the greater context of engineering valuable synthetic biological systems for applications in biocatalysis, biosensing, bioremediation, or targeted drug delivery.
Collapse
Affiliation(s)
- Stephan Hirschi
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Wolfgang P Meier
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| |
Collapse
|
57
|
Abuei H, Pirouzfar M, Mojiri A, Behzad-Behbahani A, Kalantari T, Bemani P, Farhadi A. Maximizing the recovery of the native p28 bacterial peptide with improved activity and maintained solubility and stability in Escherichia coli BL21 (DE3). J Microbiol Methods 2022; 200:106560. [PMID: 36031157 DOI: 10.1016/j.mimet.2022.106560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/10/2022] [Accepted: 08/20/2022] [Indexed: 02/06/2023]
Abstract
p28 is a natural bacterial product, which recently has attracted much attention as an efficient cell penetrating peptide (CPP) and a promising anticancer agent. Considering the interesting biological qualities of p28, maximizing its expression appears to be a prominent priority. The optimization of such bioprocesses might be facilitated by utilizing statistical approaches such as Design of Experiment (DoE). In this study, we aimed to maximize the expression of "biologically active" p28 in Escherichia coli BL21 (DE3) host by harnessing statistical tools and experimental methods. Using Minitab, Plackett-Burman and Box-Behnken Response Surface Methodology (RSM) designs were generated to optimize the conditions for the expression of p28. Each condition was experimentally investigated by assessing the biological activity of the purified p28 in the MCF-7 breast cancer cell line. Seven independent variables were investigated, and three of them including ethanol concentration, OD600 of the culture at the time of induction, and the post-induction temperature were demonstrated to significantly affect the p28 expression in E. coli. The cytotoxicity, penetration efficiency, and total process time were measured as dependent variables. The optimized expression conditions were validated experimentally, and the final products were investigated in terms of expression yield, solubility, and stability in vitro. Following the optimization, an 8-fold increase of the concentration of p28 expression was observed. In this study, we suggest an optimized combination of effective factors to produce soluble p28 in the E. coli host, a protocol that results in the production of a significantly high amount of the biologically active peptide with retained solubility and stability.
Collapse
Affiliation(s)
- Haniyeh Abuei
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Pirouzfar
- Human and Animal Cell Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| | - Anahita Mojiri
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston 77030, TX, USA
| | - Abbas Behzad-Behbahani
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Kalantari
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran; Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Peyman Bemani
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Farhadi
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran; Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
58
|
Anti-Inflammatory microRNAs for Treating Inflammatory Skin Diseases. Biomolecules 2022; 12:biom12081072. [PMID: 36008966 PMCID: PMC9405611 DOI: 10.3390/biom12081072] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 02/07/2023] Open
Abstract
Skin inflammation occurs due to immune dysregulation because of internal disorders, infections, and allergic reactions. The inflammation of the skin is a major sign of chronic autoimmune inflammatory diseases, such as psoriasis, atopic dermatitis (AD), and lupus erythematosus. Although there are many therapies for treating these cutaneous inflammation diseases, their recurrence rates are high due to incomplete resolution. MicroRNA (miRNA) plays a critical role in skin inflammation by regulating the expression of protein-coding genes at the posttranscriptional level during pathogenesis and homeostasis maintenance. Some miRNAs possess anti-inflammatory features, which are beneficial for mitigating the inflammatory response. miRNAs that are reduced in inflammatory skin diseases can be supplied transiently using miRNA mimics and agomir. miRNA-based therapies that can target multiple genes in a given pathway are potential candidates for the treatment of skin inflammation. This review article offers an overview of the function of miRNA in skin inflammation regulation, with a focus on psoriasis, AD, and cutaneous wounds. Some bioactive molecules can target and modulate miRNAs to achieve the objective of inflammation suppression. This review also reports the anti-inflammatory efficacy of these molecules through modulating miRNA expression. The main limitations of miRNA-based therapies are rapid biodegradation and poor skin and cell penetration. Consideration was given to improving these drawbacks using the approaches of cell-penetrating peptides (CPPs), nanocarriers, exosomes, and low-frequency ultrasound. A formulation design for successful miRNA delivery into skin and target cells is also described in this review. The possible use of miRNAs as biomarkers and therapeutic modalities could open a novel opportunity for the diagnosis and treatment of inflammation-associated skin diseases.
Collapse
|
59
|
Reversing Cardiac Hypertrophy at the Source Using a Cardiac Targeting Peptide Linked to miRNA106a: Targeting Genes That Cause Cardiac Hypertrophy. Pharmaceuticals (Basel) 2022; 15:ph15070871. [PMID: 35890169 PMCID: PMC9317130 DOI: 10.3390/ph15070871] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 02/04/2023] Open
Abstract
Causes and treatments for heart failure (HF) have been investigated for over a century culminating in data that have led to numerous pharmacological and surgical therapies. Unfortunately, to date, even with the most current treatments, HF remains a progressive disease with no therapies targeting the cardiomyocytes directly. Technological advances within the past two to three years have brought about new paradigms for treating many diseases that previously had been extremely difficult to resolve. One of these new paradigms has been a shift from pharmacological agents to antisense technology (e.g., microRNAs) to target the molecular underpinnings of pathological processes leading to disease onset. Although this paradigm shift may have been postulated over a decade ago, only within the past few years has it become feasible. Here, we show that miRNA106a targets genes that, when misregulated, have been shown to cause hypertrophy and eventual HF. The addition of miRNA106a suppresses misexpressed HF genes and reverses hypertrophy. Most importantly, using a cardiac targeting peptide reversibly linked to miRNA106a, we show delivery is specific to cardiomyocytes.
Collapse
|
60
|
In silico and experimental validation of a new modified arginine-rich cell penetrating peptide for plasmid DNA delivery. Int J Pharm 2022; 624:122005. [PMID: 35817271 DOI: 10.1016/j.ijpharm.2022.122005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 01/16/2023]
Abstract
Cell-penetrating peptides (CPPs) attracted great attention because of the capability to deliver various types of cargo molecules across into the cells. In this study, we presented a new arginine rich CPP, named MR, for efficient transporting plasmid DNA. We used a combined bioinformatic-based approach to improve the speed and accuracy of CPP evaluation. MR protein properties, structural models, interaction with DNA, as well as cell localization and membrane interaction were evaluated through multiple servers. Importantly, analysis using different algorithms showed the high CPP prediction confidence of MR. Experimental results also revealed the capacity of this gene delivery system in vitro for efficient plasmid DNA transfection. Additionally, in vitro mechanistically studies together with bioinformatic investigation suggested that MR peptide may internalize into the cell through endocytosis pathways. Moreover, in silico safety analysis such as immunogenicity, allergenicity, toxicity, and hemolysis activity as well as MTT assay also confirmed the safety of MR peptide. This study illustrated that MR peptide could be presented as remarkable potential gene delivery system for promising transport of plasmid DNA towards the therapeutic applications.
Collapse
|
61
|
Rouatbi N, McGlynn T, Al-Jamal KT. Pre-clinical non-viral vectors exploited for in vivo CRISPR/Cas9 gene editing: an overview. Biomater Sci 2022; 10:3410-3432. [PMID: 35604372 DOI: 10.1039/d1bm01452h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Clustered regulatory interspaced short palindromic repeats or CRISPR/Cas9 has emerged as a potent and versatile tool for efficient genome editing. This technology has been exploited for several applications including disease modelling, cell therapy, diagnosis, and treatment of many diseases including cancer. The in vivo application of CRISPR/Cas9 is hindered by poor stability, pharmacokinetic profile, and the limited ability of the CRISPR payloads to cross biological barriers. Although viral vectors have been implemented as delivery tools for efficient in vivo gene editing, their application is associated with high immunogenicity and toxicity, limiting their clinical translation. Hence, there is a need to explore new delivery methods that can guarantee safe and efficient delivery of the CRISPR/Cas9 components to target cells. In this review, we first provide a brief history and principles of nuclease-mediated gene editing, we then focus on the different CRISPR/Cas9 formats outlining their potentials and limitations. Finally, we discuss the alternative non-viral delivery strategies currently adopted for in vivo CRISPR/Cas9 gene editing.
Collapse
Affiliation(s)
- Nadia Rouatbi
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| | - Tasneem McGlynn
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
62
|
Remington JM, Ferrell JB, Schneebeli ST, Li J. Concerted Rolling and Penetration of Peptides during Membrane Binding. J Chem Theory Comput 2022; 18:3921-3929. [PMID: 35507824 DOI: 10.1021/acs.jctc.2c00014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptide binding to membranes is common and fundamental in biochemistry and biophysics and critical for applications ranging from drug delivery to the treatment of bacterial infections. However, it is largely unclear, from a theoretical point of view, what peptides of different sequences and structures share in the membrane-binding and insertion process. In this work, we analyze three prototypical membrane-binding peptides (α-helical magainin, PGLa, and β-hairpin tachyplesin) during membrane binding, using molecular details provided by Markov state modeling and microsecond-long molecular dynamics simulations. By leveraging both geometric and data-driven collective variables that capture the essential physics of the amphiphilic and cationic peptide-membrane interactions, we reveal how the slowest kinetic process of membrane binding is the dynamic rolling of the peptide from an attached to a fully bound state. These results not only add fundamental knowledge of the theory of how peptides bind to biological membranes but also open new avenues to study general peptides in more complex environments for further applications.
Collapse
Affiliation(s)
- Jacob M Remington
- Department of Chemistry, The University of Vermont, Burlington, Vermont 05405, United States
| | - Jonathon B Ferrell
- Department of Chemistry, The University of Vermont, Burlington, Vermont 05405, United States
| | - Severin T Schneebeli
- Department of Chemistry, The University of Vermont, Burlington, Vermont 05405, United States
| | - Jianing Li
- Department of Chemistry, The University of Vermont, Burlington, Vermont 05405, United States
| |
Collapse
|
63
|
Peng YY, Hu H, Diaz-Dussan D, Zhao J, Hao X, Narain R. Glycopolymer-Cell-Penetrating Peptide (CPP) Conjugates for Efficient Epidermal Growth Factor Receptor (EGFR) Silencing. ACS Macro Lett 2022; 11:580-587. [PMID: 35575337 DOI: 10.1021/acsmacrolett.2c00046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Overexpression of epidermal growth factor receptor (EGFR) is observed in multiple cancers such as colorectal, lung, and cervical solid tumors. Regulating the EGFR expression is an efficient strategy to manage these malignancies, and it can be achieved by using short interfering RNA (siRNA). Cell-penetrating peptides (CPPs) demonstrated an excellent capability to enhance the cellular uptake of siRNA, but high knockdown efficiencies have not been achieved due to endosomal entrapment. In this work, Schiff's base reaction was used to modify a block {P[LAEMA(2-lactobionamidoethyl methacrylamide)37]-b-P[FPMA(4-formyl phenyl methacrylate)2-st-DMA(N,N-dimethylacrylamide)2], P2} and two statistical [P(LAEMA23-st-FPMA3) (P3) and P(LAEMA25-st-FPMA2-st-DMA2) (P4)] aldehyde-based and galactose-based polymers, prepared via reversible addition-fragmentation chain-transfer (RAFT) polymerization. An arginine-rich peptide (ARP, KRRKRRRRRK) was used as a cell-penetrating peptide (CPP) and conjugated to the polymers via a Schiff base reaction. The resulting glycopolymer-peptide conjugates were utilized to condense the siRNA to prepare polyplexes with multivalent CPPs (MCPPs, a nanoparticle with multiple copies of the CPP) to enhance the endosomal escape. The polyplexes have different surface properties as determined by the architecture of polymers and the insertion of dimethyl amide moieties. The enhancement of cellular internalization of ARP was observed by labeling the polyplexes with fluorescein isothiocyanate (FITC)-siRNA showing a localization of polyplexes in the cytoplasm of a HeLa (cervical cancer) cell line. In the in vitro EFGR silencing study, the statistical glycopolymer-peptide (P3-P) polyplexes had superior EGFR silencing efficiency in comparison with the other polymers that were studied. Furthermore, P3-P polyplexes led to less off-targeting silencing than lipofectamine 3000. These encouraging results confirmed the potency of decorating galactose-based polymers with CPP, like ARP for their application in siRNA delivery and management of cervical carcinomas.
Collapse
Affiliation(s)
- Yi-Yang Peng
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton T6G 1H9, Alberta Canada
| | - Haimei Hu
- The Commonwealth Scientific and Industrial Research Organization, Clayton, Victoria 3168, Australia
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 51006, China
| | - Diana Diaz-Dussan
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton T6G 1H9, Alberta Canada
| | - Jianyang Zhao
- The Commonwealth Scientific and Industrial Research Organization, Clayton, Victoria 3168, Australia
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Xiaojuan Hao
- The Commonwealth Scientific and Industrial Research Organization, Clayton, Victoria 3168, Australia
| | - Ravin Narain
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton T6G 1H9, Alberta Canada
| |
Collapse
|
64
|
Aliouat H, Peng Y, Waseem Z, Wang S, Zhou W. Pure DNA scaffolded drug delivery systems for cancer therapy. Biomaterials 2022; 285:121532. [DOI: 10.1016/j.biomaterials.2022.121532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/04/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023]
|
65
|
de Oliveira ECL, da Costa KS, Taube PS, Lima AH, Junior CDSDS. Biological Membrane-Penetrating Peptides: Computational Prediction and Applications. Front Cell Infect Microbiol 2022; 12:838259. [PMID: 35402305 PMCID: PMC8992797 DOI: 10.3389/fcimb.2022.838259] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Peptides comprise a versatile class of biomolecules that present a unique chemical space with diverse physicochemical and structural properties. Some classes of peptides are able to naturally cross the biological membranes, such as cell membrane and blood-brain barrier (BBB). Cell-penetrating peptides (CPPs) and blood-brain barrier-penetrating peptides (B3PPs) have been explored by the biotechnological and pharmaceutical industries to develop new therapeutic molecules and carrier systems. The computational prediction of peptides’ penetration into biological membranes has been emerged as an interesting strategy due to their high throughput and low-cost screening of large chemical libraries. Structure- and sequence-based information of peptides, as well as atomistic biophysical models, have been explored in computer-assisted discovery strategies to classify and identify new structures with pharmacokinetic properties related to the translocation through biomembranes. Computational strategies to predict the permeability into biomembranes include cheminformatic filters, molecular dynamics simulations, artificial intelligence algorithms, and statistical models, and the choice of the most adequate method depends on the purposes of the computational investigation. Here, we exhibit and discuss some principles and applications of these computational methods widely used to predict the permeability of peptides into biomembranes, exhibiting some of their pharmaceutical and biotechnological applications.
Collapse
Affiliation(s)
- Ewerton Cristhian Lima de Oliveira
- Institute of Technology, Federal University of Pará, Belém, Brazil
- *Correspondence: Kauê Santana da Costa, ; Ewerton Cristhian Lima de Oliveira,
| | - Kauê Santana da Costa
- Laboratory of Computational Simulation, Institute of Biodiversity, Federal University of Western Pará, Santarém, Brazil
- *Correspondence: Kauê Santana da Costa, ; Ewerton Cristhian Lima de Oliveira,
| | - Paulo Sérgio Taube
- Laboratory of Computational Simulation, Institute of Biodiversity, Federal University of Western Pará, Santarém, Brazil
| | - Anderson H. Lima
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Brazil
| | | |
Collapse
|
66
|
Lima C, Maleski ALA, Bernardo JTG, Zelli VC, Komegae EN, Lopes-Ferreira M. TnP Peptide Suppresses Experimental Autoimmune Encephalomyelitis (EAE) in a Preclinical Mouse Model. Front Immunol 2022; 13:857692. [PMID: 35401524 PMCID: PMC8988151 DOI: 10.3389/fimmu.2022.857692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/28/2022] [Indexed: 11/15/2022] Open
Abstract
TnP is a family of patented synthetic peptides which is in a preclinical development stage with valuable potential therapeutic indication for multiple sclerosis (MS), an autoimmune demyelinating disease of the central nervous system (CNS). The use of a preclinical animal model, such as experimental autoimmune encephalomyelitis (EAE) has deepened our knowledge of the immunomodulatory functions of TnP as a drug. We have shown that TnP possesses a disease suppressive function in EAE, ameliorating disease severity by 40% and suppressing the accumulation of T helper (Th)1- and Th17-producing lymphocytes (by 55% and 60%, respectively) in CNS along with activated microglia/macrophages populations (by 33% and 50%, respectively), and also conferred a protective effect anticipating the remyelination process to day 66 compared to day 83 of untreated cuprizone-mice. Here we expanded our knowledge about its effects compared with current first-line disease-modifying therapies (DMT). We demonstrated that prophylactic treatment with TnP generated similar protection to betaseron (30%) or was more effective than glatiramer (44% versus 6%) or fingolimod (50% versus 19%) against the development of clinical symptoms. Although TnP controlled the leukocyte infiltration (87% versus 82%) into demyelinated areas of the spinal cord in the same way as betaseron and fingolimod, it was more effective (72% to 78% decrease) in the long-term control of neuronal degeneration compared to them. Also, when compared to glatiramer, TnP was more efficient in reversing leukocytes infiltration into the spinal cord (55% versus 24%), as well as induced a higher percentage of regulatory cells in spleen (2.9-fold versus 2.3-fold increase over vehicle-treated EAE mice) an in the spinal cord (8-fold versus 6-fold increase over vehicle-treated EAE mice). This specialized TnP profile for inducing immune tolerance and neuronal regeneration has significant therapeutic potential for the treatment of MS and other autoimmune diseases.
Collapse
|
67
|
Hadianamrei R, Zhao X. Current state of the art in peptide-based gene delivery. J Control Release 2022; 343:600-619. [PMID: 35157938 DOI: 10.1016/j.jconrel.2022.02.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/14/2022]
Abstract
Gene therapy involves introduction of exogenous genetic materials into the cells in order to correct a specific pathological condition. However, efficient delivery of the genetic materials to the target cells is hampered by a number of extracellular and intracellular barriers which necessitates the use of gene vectors. Despite the high transfection efficiencies of the viral vectors, their immunogenicity and complex manufacturing procedures has led to the quest for development of non-viral vectors with lower toxicity and easier fabrication from a variety of materials such as polymers and lipids. More recently, peptides have been introduced as new promising biomaterials for gene delivery owing to their desirable physicochemical properties and their biocompatibility. Various naturally derived, synthetic or hybrid peptides with varying sizes and structural features have been used for gene delivery. In this review, a summary of recent advances in the development of peptide-based gene delivery systems for delivery of different types of genetic materials to different types of cells/tissues has been provided. The focus of this review is on gene delivery systems consisting merely of peptides without incorporation of polymers or lipids. The transfection efficiencies of different groups of peptides and their abilities for targeted gene delivery have been viewed in the context of their chemical structures in order to provide an insight into the structural features required for efficient gene delivery by different classes of peptides and to serve as a guide for rational design of new types of peptide vectors for highly efficient and tissue-specific gene delivery.
Collapse
Affiliation(s)
- Roja Hadianamrei
- Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK; School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
68
|
Design of Membrane Active Peptides Considering Multi-Objective Optimization for Biomedical Application. MEMBRANES 2022; 12:membranes12020180. [PMID: 35207101 PMCID: PMC8880019 DOI: 10.3390/membranes12020180] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023]
Abstract
A multitude of membrane active peptides exists that divides into subclasses, such as cell penetrating peptides (CPPs) capable to enter eukaryotic cells or antimicrobial peptides (AMPs) able to interact with prokaryotic cell envelops. Peptide membrane interactions arise from unique sequence motifs of the peptides that account for particular physicochemical properties. Membrane active peptides are mainly cationic, often primary or secondary amphipathic, and they interact with membranes depending on the composition of the bilayer lipids. Sequences of these peptides consist of short 5–30 amino acid sections derived from natural proteins or synthetic sources. Membrane active peptides can be designed using computational methods or can be identified in screenings of combinatorial libraries. This review focuses on strategies that were successfully applied to the design and optimization of membrane active peptides with respect to the fact that diverse features of successful peptide candidates are prerequisites for biomedical application. Not only membrane activity but also degradation stability in biological environments, propensity to induce resistances, and advantageous toxicological properties are crucial parameters that have to be considered in attempts to design useful membrane active peptides. Reliable assay systems to access the different biological characteristics of numerous membrane active peptides are essential tools for multi-objective peptide optimization.
Collapse
|
69
|
Baoum AA. The fluorination effect on the transfection efficacy of cell penetrating peptide complexes. Plasmid 2022; 119-120:102619. [DOI: 10.1016/j.plasmid.2022.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/31/2022] [Indexed: 11/27/2022]
|
70
|
Zoulikha M, Xiao Q, Boafo GF, Sallam MA, Chen Z, He W. Pulmonary delivery of siRNA against acute lung injury/acute respiratory distress syndrome. Acta Pharm Sin B 2022; 12:600-620. [PMID: 34401226 PMCID: PMC8359643 DOI: 10.1016/j.apsb.2021.08.009] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/14/2021] [Accepted: 07/02/2021] [Indexed: 02/08/2023] Open
Abstract
The use of small interfering RNAs (siRNAs) has been under investigation for the treatment of several unmet medical needs, including acute lung injury/acute respiratory distress syndrome (ALI/ARDS) wherein siRNA may be implemented to modify the expression of pro-inflammatory cytokines and chemokines at the mRNA level. The properties such as clear anatomy, accessibility, and relatively low enzyme activity make the lung a good target for local siRNA therapy. However, the translation of siRNA is restricted by the inefficient delivery of siRNA therapeutics to the target cells due to the properties of naked siRNA. Thus, this review will focus on the various delivery systems that can be used and the different barriers that need to be surmounted for the development of stable inhalable siRNA formulations for human use before siRNA therapeutics for ALI/ARDS become available in the clinic.
Collapse
Key Words
- AAV, adeno-associated virus
- ALI/ARDS
- ALI/ARDS, acute lung injury/acute respiratory distress syndrome
- AM, alveolar macrophage
- ATI, alveolar cell type I
- ATII, alveolar cell type II
- AV, adenovirus
- Ago-2, argonaute 2
- CFDA, China Food and Drug Administration
- COPD, chronic obstructive pulmonary disease
- CPP, cell-penetrating peptide
- CS, cigarette smoke
- CXCR4, C–X–C motif chemokine receptor type 4
- Cellular uptake
- DAMPs, danger-associated molecular patterns
- DC-Chol, 3β-(N-(N′,N′-dimethylethylenediamine)-carbamoyl) cholesterol
- DDAB, dimethyldioctadecylammonium bromide
- DODAP, 1,2-dioleyl-3-dimethylammonium-propane
- DODMA, 1,2-dioleyloxy-N,N-dimethyl-3-aminopropane
- DOGS, dioctadecyl amido glycin spermine
- DOPC, 1,2-dioleoyl-sn-glycero-3-phosphocholine
- DOPE, 1,2-dioleoyl-l-α-glycero-3-phosphatidylethanolamine
- DOSPA, 2,3-dioleyloxy-N-[2-(sperminecarboxamido)ethyl]-N,N-dimethyl-1-propanaminium
- DOTAP, 1,2-dioleoyl-3-trimethylammonium-propane
- DOTMA, N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium
- DPI, dry powder inhaler
- DPPC, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine
- Drug delivery
- EC, endothelial cell
- EPC, egg phosphatidylcholine
- EXOs, exosomes
- Endosomal escape
- EpiC, epithelial cell
- FDA, US Food and Drug Administration
- HALI, hyperoxic acute lung injury
- HMGB1, high-mobility group box 1
- HMVEC, human primary microvascular endothelial cell
- HNPs, hybrid nanoparticles
- Hem-CLP, hemorrhagic shock followed by cecal ligation and puncture septic challenge
- ICAM-1, intercellular adhesion molecule-1
- IFN, interferons
- Inflammatory diseases
- LPS, lipopolysaccharides
- MEND, multifunctional envelope-type nano device
- MIF, macrophage migration inhibitory factor
- Myd88, myeloid differentiation primary response 88
- N/P ratio, nitrogen /phosphate ratio
- NETs, neutrophil extracellular traps
- NF-κB, nuclear factor kappa B
- NPs, nanoparticles
- Nanoparticles
- PAI-1, plasminogen activator inhibitor-1
- PAMAM, polyamidoamine
- PAMPs, pathogen-associated molecular patterns
- PD-L1, programmed death ligand-1
- PDGFRα, platelet-derived growth factor receptor-α
- PEEP, positive end-expiratory pressure
- PEG, polyethylene glycol
- PEI, polyethyleneimine
- PF, pulmonary fibrosis
- PFC, perfluorocarbon
- PLGA, poly(d,l-lactic-co-glycolic acid)
- PMs, polymeric micelles
- PRR, pattern recognition receptor
- PS, pulmonary surfactant
- Pulmonary administration
- RIP2, receptor-interacting protein 2
- RISC, RNA-induced silencing complex
- RNAi, RNA interference
- ROS, reactive oxygen species
- SLN, solid lipid nanoparticle
- SNALP, stable nucleic acid lipid particle
- TGF-β, transforming growth factor-β
- TLR, Toll-like receptor
- TNF-α, tumor necrosis factor-α
- VALI, ventilator-associated lung injury
- VILI, ventilator-induced lung injury
- dsDNA, double-stranded DNA
- dsRNA, double-stranded RNA
- eggPG, l-α-phosphatidylglycerol
- mRNA, messenger RNA
- miRNA, microRNA
- pDNA, plasmid DNA
- shRNA, short RNA
- siRNA
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Makhloufi Zoulikha
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qingqing Xiao
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - George Frimpong Boafo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Marwa A. Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
71
|
Zhang M, Lin J, Jin J, Yu W, Qi Y, Tao H. Delivery of siRNA Using Functionalized Gold Nanorods Enhances Anti-Osteosarcoma Efficacy. Front Pharmacol 2022; 12:799588. [PMID: 34987409 PMCID: PMC8721171 DOI: 10.3389/fphar.2021.799588] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Gold nanorods (GNRs) are intensively explored for the application in cancer therapy, which has motivated the development of photothermal therapy (PTT) multifunctional nanoplatforms based on GNRs to cure osteosarcoma (OS). However, the major limitations include the toxicity of surface protectants of GNRs, unsatisfactory targeting therapy, and the resistant effects of photothermal-induced autophagy, so the risk of relapse and metastasis of OS increase. In the present study, the GNR multifunctional nanoplatforms were designed and synthesized to deliver transcription factor EB (TFEB)-siRNA-targeting autophagy; then, the resistance of autophagy to PTT and the pH-sensitive cell-penetrating membrane peptide (CPP) was weakened, which could improve the tumor-targeting ability of the GNR nanoplatforms and realize an efficient synergistic effect for tumor treatment. Meanwhile, it is worth noting that the GNR nanoplatform groups have anti-lung metastasis of OS. This study provides a new reference to improve the efficacy of OS clinically.
Collapse
Affiliation(s)
- Man Zhang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Jinti Lin
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Jiakang Jin
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Wei Yu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Yiying Qi
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Huimin Tao
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| |
Collapse
|
72
|
Porta LC, Campeiro JD, Hayashi MAF. A Native CPP from Rattlesnake with Therapeutic and Theranostic Properties. Methods Mol Biol 2022; 2383:91-104. [PMID: 34766284 DOI: 10.1007/978-1-0716-1752-6_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The cell-penetrating peptides (CPPs) are characterized by the ability of internalization into cells in vitro and in vivo, and the ability of these peptides can rely on a high content of positive charges, as it is the case of the native CPP crotamine. Crotamine is a polypeptide of about 42 amino acid residues with high content of basic residues as Arg and Lys. Although most of known CPPs are linear peptides, native crotamine from the venom of a South American rattlesnake has a well-defined 3D structure stabilized by three disulfide bonds which guarantee the exposure of side chains of basic amino acids. This 3D structure also protects this amphipathic polypeptide from the degradation even if administered by oral route, therefore, protecting also the biological activities of crotamine. As several different biological properties of crotamine are dependent of cell penetration, the methods mainly employed for analyzing crotamine properties as anthelminthic and antimalarial activities, antimicrobial and antitumor activities, with a unique selective cytotoxic property against actively proliferating cells, as tumor cells, were chosen based on crotamine ability of internalization mediated by its positive charge. This native cationic polypeptide is also able to efficiently carry, with no need of covalent linkage with the cargo, genetic material into cells in vitro and in vivo, suggesting its use in gene therapy. Moreover, the possibility of decorating gold nanoparticles keeping the ability of transfecting cells was demonstrated. More recently, the ability of crotamine to interfere in animal metabolism, inducing browning of adipose tissue and increasing the energy expenditure, and its application in renal therapy was demonstrated. As crotamine also accumulates specifically in tumor cells in vivo, and the potential utility of crotamine as a theranostic agent was then suggested. Therefore, diverse methodologies employed for the characterization and exploration of the therapeutic applications of this promising native CPP for remediation of several pathogenic conditions are presented here.
Collapse
Affiliation(s)
- Lucas C Porta
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Joana D'Arc Campeiro
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Mirian A F Hayashi
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
| |
Collapse
|
73
|
Cell Penetrating Peptide-Based Self-Assembly for PD-L1 Targeted Tumor Regression. Int J Mol Sci 2021; 22:ijms222413314. [PMID: 34948105 PMCID: PMC8703959 DOI: 10.3390/ijms222413314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 01/06/2023] Open
Abstract
Cell penetrating peptides (CPPs) are peptides that can directly adapt to cell membranes and then permeate into cells. CPPs are usually covalently linked to the surface of nanocarriers to endow their permeability to the whole system. However, hybrids with lipids or polymers make the metabolism much more sophisticated and even more difficult to determine. In this study, we present a continuous sequence of 18 amino acids (FFAARTMIWY(d-P)GAWYKRI). It forms nanospheres around 170 nm, which increase slightly after loading with siRNA and DOX. Notably, it can be internalized by cancer cells mainly through electronic interactions and PD-L1-mediated endocytosis. Compared with poly-l-lysine and polyethyleneimine, it has a much higher efficiency (about four times) of gene transduction while lowering toxicity. In the treatment of cancer, it causes apoptosis (21%) and inhibits the expression of SURVIVIN protein in vitro. In vivo, it shows good biocompatibility as there are no changes in mice’s body weight. When administering peptide-siRNA-DOX, tumor growth is inhibited the most (about three times). These results above prove the sequence to be a good candidate for gene therapy and drug delivery.
Collapse
|
74
|
Chabanovska O, Galow AM, David R, Lemcke H. mRNA - A game changer in regenerative medicine, cell-based therapy and reprogramming strategies. Adv Drug Deliv Rev 2021; 179:114002. [PMID: 34653534 PMCID: PMC9418126 DOI: 10.1016/j.addr.2021.114002] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/25/2022]
Abstract
After thirty years of intensive research shaping and optimizing the technology, the approval of the first mRNA-based formulation by the EMA and FDA in order to stop the COVID-19 pandemic was a breakthrough in mRNA research. The astonishing success of these vaccines have brought the mRNA platform into the spotlight of the scientific community. The remarkable persistence of the groundwork is mainly attributed to the exceptional benefits of mRNA application, including the biological origin, immediate but transitory mechanism of action, non-integrative properties, safe and relatively simple manufacturing as well as the flexibility to produce any desired protein. Based on these advantages, a practical implementation of in vitro transcribed mRNA has been considered in most areas of medicine. In this review, we discuss the key preconditions for the rise of the mRNA in the medical field, including the unique structural and functional features of the mRNA molecule and its vehicles, which are crucial aspects for a production of potent mRNA-based therapeutics. Further, we focus on the utility of mRNA tools particularly in the scope of regenerative medicine, i.e. cell reprogramming approaches or manipulation strategies for targeted tissue restoration. Finally, we highlight the strong clinical potential but also the remaining hurdles to overcome for the mRNA-based regenerative therapy, which is only a few steps away from becoming a reality.
Collapse
Affiliation(s)
- Oleksandra Chabanovska
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Rostock University Medical Center, Rostock, Germany,Faculty of Interdisciplinary Research, Department Life, Light & Matter, University Rostock, Rostock, Germany
| | - Anne-Marie Galow
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Robert David
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Rostock University Medical Center, Rostock, Germany,Faculty of Interdisciplinary Research, Department Life, Light & Matter, University Rostock, Rostock, Germany,Corresponding author at: Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Rostock University Medical Center, Rostock, Germany
| | - Heiko Lemcke
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Rostock University Medical Center, Rostock, Germany,Faculty of Interdisciplinary Research, Department Life, Light & Matter, University Rostock, Rostock, Germany
| |
Collapse
|
75
|
Jung HJ, Lee W, Shin JS, Lee SK, Lee JH. The Effects of NF-kB Inhibition with p65-TMD-Linked PTD on Inflammatory Responses at Peri-implantitis Sites. Inflammation 2021; 44:2291-2301. [PMID: 34169410 PMCID: PMC8616882 DOI: 10.1007/s10753-021-01500-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/20/2021] [Accepted: 06/06/2021] [Indexed: 11/14/2022]
Abstract
The objective of this study was to find out if suppression of NF-kB complex function by p65-TMD-linked PTD could reduce host inflammation and bone resorption at peri-implantitis sites in rats. Twenty-one male 5-week-old SD rats were divided into three groups: untreated control group (A), silk-induced peri-implantitis group (B), and nt (nucleus transducible)-p65-TMD-treated, silk-induced peri-implantitis group (C). Implant sulcus of a rat in group C were divided into two groups, namely group Cp and Cb. Palatal implant sulcus where nt-p65-TMD solution was applied with an insulin syringe were assigned to group Cp. Buccal implant sulcus without topical nt-p65-TMD application were assigned to group Cb. H&E staining, TRAP staining, and immunohistological staining were done. The crestal bone levels of group A were significantly higher than those of group B at p<0.01. The crestal bone levels of group Cp were significantly higher than those of group Cb at p<0.05. H-E staining showed increased apical migration of junctional epithelium and inflammatory cells in group Cb. TRAP staining revealed more multinucleated osteoclasts in group Cb. As for immunohistological staining, group Cb showed many IL-6-positive cells while group Cp had none. In this study, p65-TMD-linked PTD inhibited NF-kB functions and reduced inflammation and bone resorption at peri-implantitis sites in rats.
Collapse
Affiliation(s)
- Hyun Jung Jung
- Department of Prosthodontics, College of Dentistry, Yonsei University, 50-1 Yonsei-ro, Seodaemoon-gu, Seoul, 120-752, South Korea
- The Catholic University of Korea, Uijeongbu St. Mary's Hospital, Uijeongbu, South Korea
| | - Won Lee
- The Catholic University of Korea, Uijeongbu St. Mary's Hospital, Uijeongbu, South Korea
| | - Jin-Su Shin
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Sang-Kyou Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jae Hoon Lee
- Department of Prosthodontics, College of Dentistry, Yonsei University, 50-1 Yonsei-ro, Seodaemoon-gu, Seoul, 120-752, South Korea.
| |
Collapse
|
76
|
Cirillo S, Tomeh MA, Wilkinson RN, Hill C, Brown S, Zhao X. Designed Antitumor Peptide for Targeted siRNA Delivery into Cancer Spheroids. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49713-49728. [PMID: 34657415 DOI: 10.1021/acsami.1c14761] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antimicrobial/anticancer peptides (AMPs/ACPs) have shown promising results as new therapeutic agents in cancer thearpy. Among them, the designed amphiphilic α-helical peptide G(IIKK)3I-NH2 (G3) displayed great affinity and specificity in targeting cancer cells. Here, we report new insights on how G3 penetrates cancer cells. G3 showed high specificity to HCT-116 colon cancer cells compared to the HDFs (human neonatal primary dermal fibroblasts) control. With high concentrations of peptide, a clear cancer cell membrane disruption was observed through SEM. Gene knockdown of the endocytic pathways demonstrated that an energy-dependent endocytic pathway is required for the uptake of the peptide. In addition, G3 can protect and selectively deliver siRNAs into cancer cells and successfully modulated their gene expression. Gene delivery was also tested in 3D cancer spheroids and showed deep penetration delivery into the cancer spheroids. Finally, the in vivo toxicity of G3 was evaluated on zebrafish embryos, showing an increasing toxicity effect with concentration. However, the toxicity of the peptide was attenuated when complexed with siRNA. In addition, negligible toxicity was observed at the concentration range for efficient gene delivery. The current results demonstrate that G3 is promising as an excellent agent for cancer therapy.
Collapse
Affiliation(s)
- Silvia Cirillo
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Mhd Anas Tomeh
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Robert N Wilkinson
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, United Kingdom
| | - Chris Hill
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Stephen Brown
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| |
Collapse
|
77
|
Photoactivatable nanoCRISPR/Cas9 System Based on crRNA Reversibly Immobilized on Carbon Nanoparticles. Int J Mol Sci 2021; 22:ijms222010919. [PMID: 34681578 PMCID: PMC8539621 DOI: 10.3390/ijms222010919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 11/23/2022] Open
Abstract
Here, we proposed a new approach to engineering a photoactivatable CRISPR/Cas9 gene-editing system. The novel nanoCRISPR/Cas9 system is based on the use of auxiliary photocleavable oligodeoxyribonucleotides (PC-DNAs) complementary to crRNA. PC-DNAs contained up to three UV-sensitive linkers made of 1-(2-nitrophenyl)-1,2-ethanediol inside the oligonucleotide chain. Immobilizing PC-DNAs on the surface of carbon nanoparticles through 3′-terminal pyrene residue provided sufficient blocking of crRNA (and corresponding Cas9 activity) before UV irradiation and allows for crRNA release after UV irradiation at 365 nm, which restores Cas9 activity. We optimized the length of blocking photocleavable oligonucleotide, number of linkers, time of irradiation, and the type of carbon nanoparticles. Based on the results, we consider the nanoCRISPR/Cas9 system involving carbon-encapsulated iron nanoparticles the most promising. It provides the greatest difference of functional activity before/after irradiation and can be used in prospective for magnetic field-controlled delivery of CRISPR system into the target cells or tissues and spatiotemporal gene editing induced by UV irradiation.
Collapse
|
78
|
Ravula V, Lo YL, Wang LF, Patri SV. Gemini Lipopeptide Bearing an Ultrashort Peptide for Enhanced Transfection Efficiency and Cancer-Cell-Specific Cytotoxicity. ACS OMEGA 2021; 6:22955-22968. [PMID: 34514266 PMCID: PMC8427783 DOI: 10.1021/acsomega.1c03620] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/13/2021] [Indexed: 05/08/2023]
Abstract
Cationic gemini lipopeptides are a relatively new class of amphiphilic compounds to be used for gene delivery. Through the possibility of incorporating short peptides with cell-penetrating functionalities, these lipopeptides may be advantageous over traditional cationic lipids. Herein, we report the design, synthesis, and application of a novel cationic gemini lipopeptide for gene delivery. An ultrashort peptide, containing four amino acids, arginine-cysteine-cysteine-arginine, serves as a cationic head group, and two α-tocopherol moieties act as hydrophobic anchoring groups. The new lipopeptide (ATTA) is incorporated into the conventional liposomes, containing 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 1,2-dioleoyl-sn-glycerol-3-phosphoethanolamine (DOPE), at different molar ratios. The formulated liposomes are characterized and screened for better transfection efficiency. Transfection activity in multiple human cell lines from cancerous and noncancerous origins indicates that the inclusion of an optimal ratio of ATTA in the liposomes substantially enhances the transfection efficiency, superior to that of a traditional liposome, DOTAP-DOPE. Cytotoxicity of ATTA-containing formulations against multiple cell lines indicates potentially distinct activity between cancer and noncancer cell lines. Furthermore, lipoplexes of the ATTA-containing formulations with anticancer therapeutic gene, plasmid encoding tumor necrosis factor-related apoptosis-inducing ligand (pTRAIL), induce obviously more cytotoxicity than conventional formulations. The results indicate that arginine-rich cationic lipopeptide appears to be a promising ingredient in gene delivery vector formulations to enhance transfection efficiency and cell-selective cytotoxicity.
Collapse
Affiliation(s)
- Venkatesh Ravula
- Department
of Chemistry, National Institute of Technology, Warangal 506004, India
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, Kaohsiung 80708, Taiwan
| | - Yu-Lun Lo
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, Kaohsiung 80708, Taiwan
| | - Li-Fang Wang
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, Kaohsiung 80708, Taiwan
- Department
of Medical Research, Kaohsiung Medical University
Hospital, Kaohsiung 80708, Taiwan
| | - Srilakshmi V. Patri
- Department
of Chemistry, National Institute of Technology, Warangal 506004, India
| |
Collapse
|
79
|
Shoari A, Tooyserkani R, Tahmasebi M, Löwik DWPM. Delivery of Various Cargos into Cancer Cells and Tissues via Cell-Penetrating Peptides: A Review of the Last Decade. Pharmaceutics 2021; 13:1391. [PMID: 34575464 PMCID: PMC8470549 DOI: 10.3390/pharmaceutics13091391] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 01/03/2023] Open
Abstract
Cell-penetrating peptides (CPPs), also known as protein transduction domains, are a class of diverse amino acid sequences with the ability to cross cellular membranes. CPPs can deliver several bioactive cargos, including proteins, peptides, nucleic acids and chemotherapeutics, into cells. Ever since their discovery, synthetic and natural CPPs have been utilized in therapeutics delivery, gene editing and cell imaging in fundamental research and clinical experiments. Over the years, CPPs have gained significant attention due to their low cytotoxicity and high transduction efficacy. In the last decade, multiple investigations demonstrated the potential of CPPs as carriers for the delivery of therapeutics to treat various types of cancer. Besides their remarkable efficacy owing to fast and efficient delivery, a crucial benefit of CPP-based cancer treatments is delivering anticancer agents selectively, rather than mediating toxicities toward normal tissues. To obtain a higher therapeutic index and to improve cell and tissue selectivity, CPP-cargo constructions can also be complexed with other agents such as nanocarriers and liposomes to obtain encouraging outcomes. This review summarizes various types of CPPs conjugated to anticancer cargos. Furthermore, we present a brief history of CPP utilization as delivery systems for anticancer agents in the last decade and evaluate several reports on the applications of CPPs in basic research and preclinical studies.
Collapse
Affiliation(s)
- Alireza Shoari
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-111, Iran; (A.S.); (R.T.); (M.T.)
- Bio-Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Raheleh Tooyserkani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-111, Iran; (A.S.); (R.T.); (M.T.)
- Bio-Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Mehdi Tahmasebi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-111, Iran; (A.S.); (R.T.); (M.T.)
| | - Dennis W. P. M. Löwik
- Bio-Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
80
|
|
81
|
Sattari S, Adeli M, Beyranvand S, Nemati M. Functionalized Graphene Platforms for Anticancer Drug Delivery. Int J Nanomedicine 2021; 16:5955-5980. [PMID: 34511900 PMCID: PMC8416335 DOI: 10.2147/ijn.s249712] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/17/2021] [Indexed: 12/24/2022] Open
Abstract
Two-dimensional nanomaterials are emerging as promising candidates for a wide range of biomedical applications including tissue engineering, biosensing, pathogen incapacitation, wound healing, and gene and drug delivery. Graphene, due to its high surface area, photothermal property, high loading capacity, and efficient cellular uptake, is at the forefront of these materials and plays a key role in this multidisciplinary research field. Poor water dispersibility and low functionality of graphene, however, hamper its hybridization into new nanostructures for future nanomedicine. Functionalization of graphene, either by covalent or non-covalent methods, is the most useful strategy to improve its dispersion in water and functionality as well as processability into new materials and devices. In this review, recent advances in functionalization of graphene derivatives by different (macro)molecules for future biomedical applications are reported and explained. In particular, hydrophilic functionalization of graphene and graphene oxide (GO) to improve their water dispersibility and physicochemical properties is discussed. We have focused on the anticancer drug delivery of polyfunctional graphene sheets.
Collapse
Affiliation(s)
- Shabnam Sattari
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Mohsen Adeli
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Siamak Beyranvand
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Mohammad Nemati
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| |
Collapse
|
82
|
Liu Y, Wan HH, Tian DM, Xu XJ, Bi CL, Zhan XY, Huang BH, Xu YS, Yan LP. Development and Characterization of High Efficacy Cell-Penetrating Peptide via Modulation of the Histidine and Arginine Ratio for Gene Therapy. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4674. [PMID: 34443195 PMCID: PMC8399742 DOI: 10.3390/ma14164674] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/19/2021] [Accepted: 08/13/2021] [Indexed: 12/27/2022]
Abstract
Cell-penetrating peptides (CPPs), as non-viral gene delivery vectors, are considered with lower immunogenic response, and safer and higher gene capacity than viral systems. In our previous study, a CPP peptide called RALA (arginine rich) presented desirable transfection efficacy and owns a potential clinic use. It is believed that histidine could enhance the endosome escaping ability of CPPs, yet RALA peptide contains only one histidine in each chain. In order to develop novel superior CPPs, by using RALA as a model, we designed a series of peptides named HALA (increased histidine ratio). Both plasmid DNA (pDNA) and siRNA transfection results on three cell lines revealed that the transfection efficacy is better when histidine replacements were on the C-terminal instead of on the N-terminal, and two histidine replacements are superior to three. By investigating the mechanism of endocytosis of the pDNA nanocomplexes, we discovered that there were multiple pathways that led to the process and caveolae played the main role. During the screening, we discovered a novel peptide-HALA2 of high cellular transfection efficacy, which may act as an exciting gene delivery vector for gene therapy. Our findings also bring new insights on the development of novel robust CPPs.
Collapse
Affiliation(s)
- Yu Liu
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (Y.L.); (H.-H.W.)
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (D.-M.T.); (X.-Y.Z.); (B.-H.H.)
| | - Huan-Huan Wan
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (Y.L.); (H.-H.W.)
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (D.-M.T.); (X.-Y.Z.); (B.-H.H.)
| | - Duo-Mei Tian
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (D.-M.T.); (X.-Y.Z.); (B.-H.H.)
- Department of Emergency and Intensive Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Xiao-Jun Xu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China;
| | - Chang-Long Bi
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China;
| | - Xiao-Yong Zhan
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (D.-M.T.); (X.-Y.Z.); (B.-H.H.)
| | - Bi-Hui Huang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (D.-M.T.); (X.-Y.Z.); (B.-H.H.)
| | - Yun-Sheng Xu
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (Y.L.); (H.-H.W.)
| | - Le-Ping Yan
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (D.-M.T.); (X.-Y.Z.); (B.-H.H.)
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
83
|
de Mello LR, Porosk L, Lourenço TC, Garcia BBM, Costa CAR, Han SW, de Souza JS, Langel Ü, da Silva ER. Amyloid-like Self-Assembly of a Hydrophobic Cell-Penetrating Peptide and Its Use as a Carrier for Nucleic Acids. ACS APPLIED BIO MATERIALS 2021; 4:6404-6416. [PMID: 35006917 DOI: 10.1021/acsabm.1c00601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cell-penetrating peptides (CPPs) are a topical subject potentially exploitable for creating nanotherapeutics for the delivery of bioactive loads. These compounds are often classified into three major categories according to their physicochemical characteristics: cationic, amphiphilic, and hydrophobic. Among them, the group of hydrophobic CPPs has received increasing attention in recent years due to toxicity concerns posed by highly cationic CPPs. The hexapeptide PFVYLI (P, proline; F, phenylalanine; V, valine; Y, tyrosine; L, leucine; and I, isoleucine), a fragment derived from the C-terminal portion of α1-antitrypsin, is a prototypal example of hydrophobic CPP. This sequence shows reduced cytotoxicity and a capacity of nuclear localization, and its small size readily hints at its suitability as a building block to construct nanostructured materials. In this study, we examine the self-assembling properties of PFVYLI and investigate its ability to form noncovalent complexes with nucleic acids. By using a combination of biophysical tools including synchrotron small-angle X-ray scattering and atomic force microscopy-based infrared spectroscopy, we discovered that this CPP self-assembles into discrete nanofibrils with remarkable amyloidogenic features. Over the course of days, these fibrils coalesce into rodlike crystals that easily reach the micrometer range. Despite lacking cationic residues in the composition, PFVYLI forms noncovalent complexes with nucleic acids that retain β-sheet pairing found in amyloid aggregates. In vitro vectorization experiments performed with double-stranded DNA fragments indicate that complexes promote the internalization of nucleic acids, revealing that tropism toward cell membranes is preserved upon complexation. On the other hand, transfection assays with splice-correction oligonucleotides (SCOs) for luciferase expression show limited bioactivity across a narrow concentration window, suggesting that the propensity to form amyloidogenic aggregates may trigger endosomal entrapment. We anticipate that the findings presented here open perspectives for using this archetypical hydrophobic CPP in the fabrication of nanostructured scaffolds, which potentially integrate properties of amyloids and translocation capabilities of CPPs.
Collapse
Affiliation(s)
- Lucas R de Mello
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Ly Porosk
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Thiago C Lourenço
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Bianca B M Garcia
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Carlos A R Costa
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-861, Brazil
| | - Sang W Han
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Juliana S de Souza
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09210580, Brazil
| | - Ülo Langel
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm SE-10691, Sweden
| | - Emerson R da Silva
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| |
Collapse
|
84
|
Yu AM, Tu MJ. Deliver the promise: RNAs as a new class of molecular entities for therapy and vaccination. Pharmacol Ther 2021; 230:107967. [PMID: 34403681 PMCID: PMC9477512 DOI: 10.1016/j.pharmthera.2021.107967] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022]
Abstract
The concepts of developing RNAs as new molecular entities for therapies have arisen again and again since the discoveries of antisense RNAs, direct RNA-protein interactions, functional noncoding RNAs, and RNA-directed gene editing. The feasibility was demonstrated with the development and utilization of synthetic RNA agents to selectively control target gene expression, modulate protein functions or alter the genome to manage diseases. Rather, RNAs are labile to degradation and cannot cross cell membrane barriers, making it hard to develop RNA medications. With the development of viable RNA technologies, such as chemistry and pharmaceutics, eight antisense oligonucleotides (ASOs) (fomivirsen, mipomersen, eteplirsen, nusinersen, inotersen, golodirsen, viltolarsen and casimersen), one aptamer (pegaptanib), and three small interfering RNAs (siRNAs) (patisiran, givosiran and lumasiran) have been approved by the United States Food and Drug Administration (FDA) for therapies, and two mRNA vaccines (BNT162b2 and mRNA-1273) under Emergency Use Authorization for the prevention of COVID-19. Therefore, RNAs have become a great addition to small molecules, proteins/antibodies, and cell-based modalities to improve the public health. In this article, we first summarize the general characteristics of therapeutic RNA agents, including chemistry, common delivery strategies, mechanisms of actions, and safety. By overviewing individual RNA medications and vaccines approved by the FDA and some agents under development, we illustrate the unique compositions and pharmacological actions of RNA products. A new era of RNA research and development will likely lead to commercialization of more RNA agents for medical use, expanding the range of therapeutic targets and increasing the diversity of molecular modalities.
Collapse
Affiliation(s)
- Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA.
| | - Mei-Juan Tu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| |
Collapse
|
85
|
Arshad R, Tabish TA, Naseem AA, Hassan MRU, Hussain I, Hussain SS, Shahnaz G. Development of poly-L-lysine multi-functionalized muco-penetrating self- emulsifying drug delivery system (SEDDS) for improved solubilization and targeted delivery of ciprofloxacin against intracellular Salmonella typhi. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115972] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
86
|
Herlan CN, Meschkov A, Schepers U, Bräse S. Cyclic Peptoid-Peptide Hybrids as Versatile Molecular Transporters. Front Chem 2021; 9:696957. [PMID: 34249865 PMCID: PMC8267177 DOI: 10.3389/fchem.2021.696957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
Addressing intracellular targets is a challenging task that requires potent molecular transporters capable to deliver various cargos. Herein, we report the synthesis of hydrophobic macrocycles composed of both amino acids and peptoid monomers. The cyclic tetramers and hexamers were assembled in a modular approach using solid as well as solution phase techniques. To monitor their intracellular localization, the macrocycles were attached to the fluorophore Rhodamine B. Most molecular transporters were efficiently internalized by HeLa cells and revealed a specific accumulation in mitochondria without the need for cationic charges. The data will serve as a starting point for the design of further cyclic peptoid-peptide hybrids presenting a new class of highly efficient, versatile molecular transporters.
Collapse
Affiliation(s)
- Claudine Nicole Herlan
- Institute of Biological and Chemical Systems- Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Anna Meschkov
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Karlsruhe Institute of Technology (KIT), EPICUR European University, Karlsruhe, Germany
| | - Ute Schepers
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Stefan Bräse
- Institute of Biological and Chemical Systems- Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
87
|
Stiltner J, McCandless K, Zahid M. Cell-Penetrating Peptides: Applications in Tumor Diagnosis and Therapeutics. Pharmaceutics 2021; 13:pharmaceutics13060890. [PMID: 34204007 PMCID: PMC8232808 DOI: 10.3390/pharmaceutics13060890] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 01/27/2023] Open
Abstract
Since their identification over twenty-five years ago, the plethora of cell-penetrating peptides (CPP) and their applications has skyrocketed. These 5 to 30 amino acid in length peptides have the unique property of breaching the cell membrane barrier while carrying cargoes larger than themselves into cells in an intact, functional form. CPPs can be conjugated to fluorophores, activatable probes, radioisotopes or contrast agents for imaging tissues, such as tumors. There is no singular mechanism for translocation of CPPs into a cell, and therefore, many CPPs are taken up by a multitude of cell types, creating the challenge of tumor-specific translocation and hindering clinical effectiveness. Varying strategies have been developed to combat this issue and enhance their diagnostic potential by derivatizing CPPs for better targeting by constructing specific cell-activated forms. These methods are currently being used to image integrin-expressing tumors, breast cancer cells, human histiocytic lymphoma and protease-secreting fibrosarcoma cells, to name a few. Additionally, identifying safe, effective therapeutics for malignant tumors has long been an active area of research. CPPs can circumvent many of the complications found in treating cancer with conventional therapeutics by targeted delivery of drugs into tumors, thereby decreasing off-target side effects, a feat not achievable by currently employed conventional chemotherapeutics. Myriad types of chemotherapeutics such as tyrosine kinase inhibitors, antitumor antibodies and nanoparticles can be functionally attached to these peptides, leading to the possibility of delivering established and novel cancer therapeutics directly to tumor tissue. While much research is needed to overcome potential issues with these peptides, they offer a significant advancement over current mechanisms to treat cancer. In this review, we present a brief overview of the research, leading to identification of CPPs with a comprehensive state-of-the-art review on the role of these novel peptides in both cancer diagnostics as well as therapeutics.
Collapse
Affiliation(s)
| | | | - Maliha Zahid
- Correspondence: ; Tel.: +1-412-692-8893; Fax: 412-692-6184
| |
Collapse
|
88
|
Arshad R, Tabish TA, Kiani MH, Ibrahim IM, Shahnaz G, Rahdar A, Kang M, Pandey S. A Hyaluronic Acid Functionalized Self-Nano-Emulsifying Drug Delivery System (SNEDDS) for Enhancement in Ciprofloxacin Targeted Delivery against Intracellular Infection. NANOMATERIALS 2021; 11:nano11051086. [PMID: 33922241 PMCID: PMC8146397 DOI: 10.3390/nano11051086] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022]
Abstract
Ciprofloxacin (CIP), a potent anti-bacterial agent of the fluroquinolone family, shows poor solubility and permeability, thus leading to the development of intracellular pathogens induced multi-drug resistance and biofilms formation. To synergistically improve the biopharmaceutical parameters of CIP, a hyaluronic acid (FDA approved biocompatible polymer) functionalized self-nano emulsifying drug delivery system (HA-CIP-SNEDDS) was designed in the present study. SNEDDS formulations were tested via solubility, droplet size, zeta potential, a polydispersity index, thermodynamic stability, surface morphology, solid-state characterization, drug loading/release, cellular uptake, and biocompatibility. The final (HA-CIP-SNEDDS) formulation exhibited a mean droplet size of 50 nm with the 0.3 poly dispersity index and negative zeta potential (-11.4 mV). HA-based SNEDDS containing CIP showed an improved ability to permeate goat intestinal mucus. After 4 h, CIP-SNEDDS showed a 2-fold and HA-CIP-SNEDDS showed a 4-fold permeation enhancement as compared to the free CIP. Moreover, 80% drug release of HA-CIP-SNEDDS was demonstrated to be superior and sustained for 72 h in comparison to free CIP. However, anti-biofilm activity of HA-CIP-SNEDDS against Salmonella typhi was higher than CIP-SNEDDS and free CIP. HA-CIP-SNEDDS exhibited increased biocompatibility and improved oral pharmacokinetics as compared to free CIP. Taken together, HA-CIP-SNEDDS formulation seems to be a promising agent against Salmonella typhi with a strong targeting potential.
Collapse
Affiliation(s)
- Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan; (R.A.); (M.H.K.)
| | - Tanveer A. Tabish
- UCL Cancer Institute, University College London, London WC1E6DD, UK;
| | - Maria Hassan Kiani
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan; (R.A.); (M.H.K.)
| | - Ibrahim M. Ibrahim
- Department of Pharmacology, College of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Gul Shahnaz
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan; (R.A.); (M.H.K.)
- Correspondence: (G.S.); (A.R.); (M.K.); or (S.P.)
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran
- Correspondence: (G.S.); (A.R.); (M.K.); or (S.P.)
| | - Misook Kang
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Korea
- Correspondence: (G.S.); (A.R.); (M.K.); or (S.P.)
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Korea
- Correspondence: (G.S.); (A.R.); (M.K.); or (S.P.)
| |
Collapse
|
89
|
Streck S, Bohr SSR, Birch D, Rades T, Hatzakis NS, McDowell A, Mørck Nielsen H. Interactions of Cell-Penetrating Peptide-Modified Nanoparticles with Cells Evaluated Using Single Particle Tracking. ACS APPLIED BIO MATERIALS 2021; 4:3155-3165. [DOI: 10.1021/acsabm.0c01563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sarah Streck
- School of Pharmacy, University of Otago, Dunedin 9016, New Zealand
| | - Søren S.-R. Bohr
- Department of Chemistry & Nano-science Center, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Ditlev Birch
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Thomas Rades
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Nikos S. Hatzakis
- Department of Chemistry & Nano-science Center, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Arlene McDowell
- School of Pharmacy, University of Otago, Dunedin 9016, New Zealand
| | - Hanne Mørck Nielsen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
90
|
Faneca H. Non-Viral Gene Delivery Systems. Pharmaceutics 2021; 13:pharmaceutics13040446. [PMID: 33810390 PMCID: PMC8067164 DOI: 10.3390/pharmaceutics13040446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/18/2022] Open
Affiliation(s)
- Henrique Faneca
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| |
Collapse
|
91
|
Torres-Vanegas JD, Cruz JC, Reyes LH. Delivery Systems for Nucleic Acids and Proteins: Barriers, Cell Capture Pathways and Nanocarriers. Pharmaceutics 2021; 13:428. [PMID: 33809969 PMCID: PMC8004853 DOI: 10.3390/pharmaceutics13030428] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/27/2022] Open
Abstract
Gene therapy has been used as a potential approach to address the diagnosis and treatment of genetic diseases and inherited disorders. In this line, non-viral systems have been exploited as promising alternatives for delivering therapeutic transgenes and proteins. In this review, we explored how biological barriers are effectively overcome by non-viral systems, usually nanoparticles, to reach an efficient delivery of cargoes. Furthermore, this review contributes to the understanding of several mechanisms of cellular internalization taken by nanoparticles. Because a critical factor for nanoparticles to do this relies on the ability to escape endosomes, researchers have dedicated much effort to address this issue using different nanocarriers. Here, we present an overview of the diversity of nanovehicles explored to reach an efficient and effective delivery of both nucleic acids and proteins. Finally, we introduced recent advances in the development of successful strategies to deliver cargoes.
Collapse
Affiliation(s)
- Julian D. Torres-Vanegas
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Luis H. Reyes
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| |
Collapse
|
92
|
Hall R, Alasmari A, Mozaffari S, Mahdipoor P, Parang K, Montazeri Aliabadi H. Peptide/Lipid-Associated Nucleic Acids (PLANAs) as a Multicomponent siRNA Delivery System. Mol Pharm 2021; 18:986-1002. [PMID: 33496597 DOI: 10.1021/acs.molpharmaceut.0c00969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
RNAi is a biological process that utilizes small interfering RNA (siRNA) to prevent the translation of mRNA to protein. This mechanism could be beneficial in preventing the overexpression of proteins in cancer. However, the cellular delivery of siRNA has proven to be challenging due to its inherent negative charge and relative instability. Here, we designed a multicomponent delivery system composed of a specifically designed peptide (linear or cyclic fatty acyl peptide conjugates and hybrid cyclic/linear peptides) and several lipids (DOTAP, DOPE, cholesterol, and phosphatidylcholine) to form a nanoparticle, which we have termed as peptide lipid-associated nucleic acids (PLANAs). Five formulations were prepared (a formulation with no peptide, which was named lipid-associated nucleic acid or LANA, and PLANA formulations A-D) using a mini extruder to form uniform nanoparticles around 100 nm in size with a slightly positive charge (less than +10 mv). Formulations were evaluated for peptide incorporation, siRNA encapsulation efficiency, release profile, toxicity, cellular uptake, and protein silencing. Our experiments showed effective encapsulation of siRNA (>95%), a controlled release profile, and negligible toxicity in formulations that did not contain a positively charged lipid. The results also revealed that PLANAs C and D exhibited optimum cellular uptake (with 80-90% siRNA-positive cells for most of the formulations). PLANA D formulation was selected to silence two model proteins (Src and RPS6KA5) in the triple-negative human breast cancer cell line MDA-MB-231, with promising silencing efficiency, which diminished the expression of RPS6KA5 and Src to approximately 29 and 38% compared to naïve cells, respectively. Many approaches have been investigated for safe and efficient delivery of nucleic acids in the last 20 years; however, many have failed due to the multifaceted challenges to overcome. Our results show a promising potential for a multicomponent design that incorporates different components for a variety of delivery tasks, which warrants further investigation of PLANAs in vivo.
Collapse
Affiliation(s)
- Ryley Hall
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Abdulaziz Alasmari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Saghar Mozaffari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Parvin Mahdipoor
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Hamidreza Montazeri Aliabadi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| |
Collapse
|
93
|
Egorova KS, Posvyatenko AV, Larin SS, Ananikov V. Ionic liquids: prospects for nucleic acid handling and delivery. Nucleic Acids Res 2021; 49:1201-1234. [PMID: 33476366 PMCID: PMC7897475 DOI: 10.1093/nar/gkaa1280] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
Operations with nucleic acids are among the main means of studying the mechanisms of gene function and developing novel methods of molecular medicine and gene therapy. These endeavours usually imply the necessity of nucleic acid storage and delivery into eukaryotic cells. In spite of diversity of the existing dedicated techniques, all of them have their limitations. Thus, a recent notion of using ionic liquids in manipulations of nucleic acids has been attracting significant attention lately. Due to their unique physicochemical properties, in particular, their micro-structuring impact and tunability, ionic liquids are currently applied as solvents and stabilizing media in chemical synthesis, electrochemistry, biotechnology, and other areas. Here, we review the current knowledge on interactions between nucleic acids and ionic liquids and discuss potential advantages of applying the latter in delivery of the former into eukaryotic cells.
Collapse
Affiliation(s)
- Ksenia S Egorova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Alexandra V Posvyatenko
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
- Molecular Immunology Laboratory, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela St 1, Moscow 117997, Russia
| | - Sergey S Larin
- Molecular Immunology Laboratory, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela St 1, Moscow 117997, Russia
| | - Valentine P Ananikov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| |
Collapse
|
94
|
Apostolopoulos V, Bojarska J, Chai TT, Elnagdy S, Kaczmarek K, Matsoukas J, New R, Parang K, Lopez OP, Parhiz H, Perera CO, Pickholz M, Remko M, Saviano M, Skwarczynski M, Tang Y, Wolf WM, Yoshiya T, Zabrocki J, Zielenkiewicz P, AlKhazindar M, Barriga V, Kelaidonis K, Sarasia EM, Toth I. A Global Review on Short Peptides: Frontiers and Perspectives. Molecules 2021; 26:430. [PMID: 33467522 PMCID: PMC7830668 DOI: 10.3390/molecules26020430] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/23/2020] [Accepted: 01/09/2021] [Indexed: 12/13/2022] Open
Abstract
Peptides are fragments of proteins that carry out biological functions. They act as signaling entities via all domains of life and interfere with protein-protein interactions, which are indispensable in bio-processes. Short peptides include fundamental molecular information for a prelude to the symphony of life. They have aroused considerable interest due to their unique features and great promise in innovative bio-therapies. This work focusing on the current state-of-the-art short peptide-based therapeutical developments is the first global review written by researchers from all continents, as a celebration of 100 years of peptide therapeutics since the commencement of insulin therapy in the 1920s. Peptide "drugs" initially played only the role of hormone analogs to balance disorders. Nowadays, they achieve numerous biomedical tasks, can cross membranes, or reach intracellular targets. The role of peptides in bio-processes can hardly be mimicked by other chemical substances. The article is divided into independent sections, which are related to either the progress in short peptide-based theranostics or the problems posing challenge to bio-medicine. In particular, the SWOT analysis of short peptides, their relevance in therapies of diverse diseases, improvements in (bio)synthesis platforms, advanced nano-supramolecular technologies, aptamers, altered peptide ligands and in silico methodologies to overcome peptide limitations, modern smart bio-functional materials, vaccines, and drug/gene-targeted delivery systems are discussed.
Collapse
Affiliation(s)
- Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.A.); (J.M.); (V.B.)
| | - Joanna Bojarska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - Tsun-Thai Chai
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia;
| | - Sherif Elnagdy
- Botany and Microbiology Department, Faculty of Science, Cairo University, Gamaa St., Giza 12613, Egypt; (S.E.); (M.A.)
| | - Krzysztof Kaczmarek
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland; (K.K.); (J.Z.)
| | - John Matsoukas
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.A.); (J.M.); (V.B.)
- NewDrug, Patras Science Park, 26500 Patras, Greece;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Roger New
- Vaxcine (UK) Ltd., c/o London Bioscience Innovation Centre, London NW1 0NH, UK;
- Faculty of Science & Technology, Middlesex University, The Burroughs, London NW4 4BT, UK;
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA;
| | - Octavio Paredes Lopez
- Centro de Investigación y de Estudios Avanzados del IPN, Departamento de Biotecnología y Bioquímica, Irapuato 36824, Guanajuato, Mexico;
| | - Hamideh Parhiz
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA;
| | - Conrad O. Perera
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
| | - Monica Pickholz
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina;
- Instituto de Física de Buenos Aires (IFIBA, UBA-CONICET), Argentina, Buenos Aires 1428, Argentina
| | - Milan Remko
- Remedika, Luzna 9, 85104 Bratislava, Slovakia;
| | - Michele Saviano
- Institute of Crystallography (CNR), Via Amendola 122/o, 70126 Bari, Italy;
| | - Mariusz Skwarczynski
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (M.S.); (I.T.)
| | - Yefeng Tang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (MOE), School of Pharma Ceutical Sciences, Tsinghua University, Beijing 100084, China;
| | - Wojciech M. Wolf
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | | | - Janusz Zabrocki
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland; (K.K.); (J.Z.)
| | - Piotr Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland;
- Department of Systems Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Maha AlKhazindar
- Botany and Microbiology Department, Faculty of Science, Cairo University, Gamaa St., Giza 12613, Egypt; (S.E.); (M.A.)
| | - Vanessa Barriga
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.A.); (J.M.); (V.B.)
| | | | | | - Istvan Toth
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (M.S.); (I.T.)
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
95
|
Cell Penetrating Peptides Used in Delivery of Therapeutic Oligonucleotides Targeting Hepatitis B Virus. Pharmaceuticals (Basel) 2020; 13:ph13120483. [PMID: 33371278 PMCID: PMC7766285 DOI: 10.3390/ph13120483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Peptide Nucleic Acid (PNAs) and small noncoding RNAs including small interfering RNAs (siRNAs) represent a new class of oligonucleotides considered as an alternative therapeutic strategy in the chronic hepatitis B treatment. Indeed, chronic hepatitis B virus (HBV) infection remains a major public health problem worldwide, despite the availability of an effective prophylactic vaccine. Current therapeutic approaches approved for chronic HBV treatment are pegylated-interferon alpha (IFN)-α and nucleos(t)ide analogues (NAs). Both therapies do not completely eradicate viral infection and promote severe side effects. In this context, the development of new effective treatments is imperative. This review focuses on antiviral activity of both PNAs and siRNAs targeting hepatitis B virus. Thus, we briefly present our results on the ability of PNAs to decrease hepadnaviral replication in duck hepatitis B virus (DHBV) model. Interestingly, other oligonucleotides as siRNAs could significantly inhibit HBV antigen expression in transient replicative cell culture. Because the application of these oligonucleotides as new antiviral drugs has been hampered by their poor intracellular bioavailability, we also discuss the benefits of their coupling to different molecules such as the cell penetrating peptides (CPPs), which were used as vehicles to deliver therapeutic agents into the cells.
Collapse
|
96
|
Co-delivery of EGFR and BRD4 siRNA by cell-penetrating peptides-modified redox-responsive complex in triple negative breast cancer cells. Life Sci 2020; 266:118886. [PMID: 33310044 DOI: 10.1016/j.lfs.2020.118886] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/01/2020] [Accepted: 12/05/2020] [Indexed: 01/07/2023]
Abstract
AIMS Triple negative breast cancer (TNBC) has drawn more and more attention due to its high mitotic indices, high metastatic rate and poor prognosis. Gene therapy, especially RNA interference (RNAi), has become a promising targeted therapy. However, improvement of transfection efficiency and discovery of target genes are major problems for the delivery of small interfering RNAs (siRNA). MATERIALS AND METHODS In the present study, we developed GALA- and CREKA-modified PEG-SS-PEI to deliver siRNAs targeting on EGFR and BRD4 for TNBC therapy. The PEG-SS-PEI/siRNA complexes were prepared by electrostatic interaction and characterized by dynamic light scattering (DLS) and transmission electron microscope (TEM). The release characteristic, stability, cellular uptake and intracellular localization of the complexes were also studied. The effect of the complexes on cell viability was measured in MDA-MB-231 and HUVEC cells. The in vitro anti-tumor activities of the complexes were analyzed by Transwell invasion assay and wound healing assay. The gene silencing effect was evaluated by quantitative real time-polymerase chain reaction (qRT-PCR) and western blot. KEY FINDINGS The results revealed that the GALA- and CREKA-modified PEG-SS-PEI/siRNA complexes showed excellent transfection efficiency with redox-sensitive release profile and good biological compatibility. The complexes protected siRNA from the degradation of RNA enzymes. The complexes significantly inhibited the proliferation, invasion and migration of MDA-MB-231 cells via the synergistic inhibition of EGFR/PI3K/Akt and BRD4/c-Myc pathways. SIGNIFICANCE Taken together, co-delivery of siEGFR and siBRD4 by GALA-PEG-SS-PEI and CREKA-PEG-SS-PEI may provide a more effective strategy for the treatment of TNBC.
Collapse
|
97
|
Wang W, Arias DS, Deserno M, Ren X, Taylor RE. Emerging applications at the interface of DNA nanotechnology and cellular membranes: Perspectives from biology, engineering, and physics. APL Bioeng 2020; 4:041507. [PMID: 33344875 PMCID: PMC7725538 DOI: 10.1063/5.0027022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022] Open
Abstract
DNA nanotechnology has proven exceptionally apt at probing and manipulating biological environments as it can create nanostructures of almost arbitrary shape that permit countless types of modifications, all while being inherently biocompatible. Emergent areas of particular interest are applications involving cellular membranes, but to fully explore the range of possibilities requires interdisciplinary knowledge of DNA nanotechnology, cell and membrane biology, and biophysics. In this review, we aim for a concise introduction to the intersection of these three fields. After briefly revisiting DNA nanotechnology, as well as the biological and mechanical properties of lipid bilayers and cellular membranes, we summarize strategies to mediate interactions between membranes and DNA nanostructures, with a focus on programmed delivery onto, into, and through lipid membranes. We also highlight emerging applications, including membrane sculpting, multicell self-assembly, spatial arrangement and organization of ligands and proteins, biomechanical sensing, synthetic DNA nanopores, biological imaging, and biomelecular sensing. Many critical but exciting challenges lie ahead, and we outline what strikes us as promising directions when translating DNA nanostructures for future in vitro and in vivo membrane applications.
Collapse
Affiliation(s)
- Weitao Wang
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - D. Sebastian Arias
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Markus Deserno
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
98
|
Hu G, Miao Y, Luo X, Chu W, Fu Y. Identification of a novel cell-penetrating peptide derived from the capsid protein of chicken anemia virus and its application in gene delivery. Appl Microbiol Biotechnol 2020; 104:10503-10513. [PMID: 33141296 DOI: 10.1007/s00253-020-10988-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022]
Abstract
Cell membranes are a great obstacle for entrance of gene therapeutic agents. Cell-penetrating peptides (CPPs) have been proven as a promising gene delivery tool. However, the early TAT peptide derived from the HIV transcription activator protein has been proven that the sequence contains Furin protease cleaved motifs which limited the TAT application in delivery of exogenous active molecules. In the present study, through the bioinformatics and experimental approach, we have identified a novel CPP derived from the N terminus of VP1 protein of chicken anemia virus (CAV), designated as CVP1-N2, which is rich in arginine residues and contains α-helical structure. Then, the ability of CVP1-N2 cell penetrating was detected using confocal imaging and flow cytometry. FITC-labeled CVP1-N2 peptide could rapidly internalize into different types of live cells with dose dependence and without cytotoxic effects by MTT assay. Surprisingly, CVP1-N2 with a pattern of nuclear sub-location has shown the higher uptake efficiency than TAT. At 10, 1, and 0.1 μM, the mean relative internalization of CVP1-N2 was respectively 1.08-, 12-, and 75-fold higher than that of CVP1, as well as 1.6-, 56-, and 75-fold higher than that of TAT. Moreover, using endocytic inhibitors along with low-temperature stress validated that the CVP1-N2 internalization route is direct translocation pathway. Finally, the capacity of CVP1-N2 for delivery of gene into cells was determined, where it was able to carry red fluorescent protein (RFP) and apoptin genes into cells respectively and induce the apoptosis. All these data indicate that CVP1-N2 could be used as a novel gene delivery vehicle for gene therapy in the future. KEY POINTS: • 1CVP1-N2 was identified as a novel more efficient cell-penetrating peptide. • 2. CVP1-N2 localized to the nucleus through the direct transduction pathway. • 3. CVP1-N2 was able to deliver the apoptin gene into HCT116 cells and induce apoptosis.
Collapse
Affiliation(s)
- Gaowei Hu
- Institute of Biomass Resources, Taizhou University, Taizhou, Zhejiang, 318000, China.,College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yingjie Miao
- Institute of Biomass Resources, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Xi Luo
- Institute of Biomass Resources, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Wenhui Chu
- Institute of Biomass Resources, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Yongqian Fu
- Institute of Biomass Resources, Taizhou University, Taizhou, Zhejiang, 318000, China.
| |
Collapse
|
99
|
Mashel TV, Tarakanchikova YV, Muslimov AR, Zyuzin MV, Timin AS, Lepik KV, Fehse B. Overcoming the delivery problem for therapeutic genome editing: Current status and perspective of non-viral methods. Biomaterials 2020; 258:120282. [PMID: 32798742 DOI: 10.1016/j.biomaterials.2020.120282] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/22/2020] [Accepted: 08/01/2020] [Indexed: 12/11/2022]
|
100
|
Cui Y, Sun J, Hao W, Chen M, Wang Y, Xu F, Gao C. Dual-Target Peptide-Modified Erythrocyte Membrane-Enveloped PLGA Nanoparticles for the Treatment of Glioma. Front Oncol 2020; 10:563938. [PMID: 33194638 PMCID: PMC7609867 DOI: 10.3389/fonc.2020.563938] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022] Open
Abstract
Penetration of the blood–brain barrier (BBB) and the blood–brain tumor barrier (BBTB) remains a significant challenge for the delivery of drugs in the treatment of glioma. Therefore, the development of targeted preparations with the ability to penetrate the BBB and BBTB, and target gliomas, is an important approach if we are to improve the efficacy of glioma treatment. In the current study, an active targeting preparation based on PLGA nanoparticles coated with erythrocyte membranes (RBCNPs) and dual-modified with DWSW and NGR peptide ligands (DWSW/NGR-RBCNPs). Euphorbia factor L1 (EFL1) extracted from euphorbiae semen was used as the model drug. The final nanoparticles were characterized by in vivo and in vitro tests. In vitro results showed that EFL1-loaded DWSW/NGR-RBCNPs were taken up by cells and had the ability to penetrate the BBB and BBTB and produce cytotoxic effects. Furthermore, in vivo studies in mice showed that when injected intravenously, these specialized NPs could enter the brain, target tumor tissue, and significantly extend life span. The results showed that dual-targeting EFL1-loaded DWSW/NGR-RBCNPs have significant potential as a nanotherapeutic tool for the treatment of brain glioma.
Collapse
Affiliation(s)
- Yuexin Cui
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jiejie Sun
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wenyan Hao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Mengyu Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yingzi Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Fenghua Xu
- Department of Pharmacy, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Chunsheng Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|