51
|
Coenzyme Q 10 supplementation reduces oxidative stress and decreases antioxidant enzyme activity in children with autism spectrum disorders. Psychiatry Res 2018; 265:62-69. [PMID: 29684771 DOI: 10.1016/j.psychres.2018.03.061] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 03/02/2018] [Accepted: 03/22/2018] [Indexed: 12/22/2022]
Abstract
Antioxidants and oxidative stress can participate in pathobiochemical mechanisms of autism spectrum disorders (ASDs). The aim was to identify the effects of early CoQ10 supplementation on oxidative stress in children with ASDs. Ninety children with ASDs were included in this study, based on DSM-IV criteria and using Childhood Autism Rating Scale (CARS) scores. Concentrations of CoQ10, MDA, total antioxidant status (TAS) assay, and antioxidant enzymes (superoxide dismutase or SOD and glutathione peroxidase or GPx) activity were determined in serum before and after 100 days of supportive therapy with CoQ10 at daily doses of 30 and 60 mg. Data on children's behavior were collected from parents and babysitters. CoQ10 supportive therapy was determined after three months with daily dose 2 ͯ 30 mg improved oxidative stress in the children with ASDs. A relation was seen between serum MDA (r2 = 0.668) and TAS (r2 = 0.007), and antioxidant enzymes (SOD [r2 = 0.01] and GPx [r2 = 0.001]) activity and CARS score. Based on the results, high doses of CoQ10 can improve gastrointestinal problems (P = 0.004) and sleep disorders (P = 0.005) in children with ASDs with an increase in the CoQ10 of the serum. We concluded that the serum concentration of CoQ10 and oxidative stress could be used as relevant biomarkers in helping the improvement of ASDs.
Collapse
|
52
|
Yates DT, Petersen JL, Schmidt TB, Cadaret CN, Barnes TL, Posont RJ, Beede KA. ASAS-SSR Triennnial Reproduction Symposium: Looking Back and Moving Forward-How Reproductive Physiology has Evolved: Fetal origins of impaired muscle growth and metabolic dysfunction: Lessons from the heat-stressed pregnant ewe. J Anim Sci 2018; 96:2987-3002. [PMID: 29701769 PMCID: PMC6095381 DOI: 10.1093/jas/sky164] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/24/2018] [Indexed: 12/11/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is the second leading cause of perinatal mortality and predisposes offspring to metabolic disorders at all stages of life. Muscle-centric fetal adaptations reduce growth and yield metabolic parsimony, beneficial for IUGR fetal survival but detrimental to metabolic health after birth. Epidemiological studies have reported that IUGR-born children experience greater prevalence of insulin resistance and obesity, which progresses to diabetes, hypertension, and other metabolic disorders in adulthood that reduce quality of life. Similar adaptive programming in livestock results in decreased birth weights, reduced and inefficient growth, decreased carcass merit, and substantially greater mortality rates prior to maturation. High rates of glucose consumption and metabolic plasticity make skeletal muscle a primary target for nutrient-sparing adaptations in the IUGR fetus, but at the cost of its contribution to proper glucose homeostasis after birth. Identifying the mechanisms underlying IUGR pathophysiology is a fundamental step in developing treatments and interventions to improve outcomes in IUGR-born humans and livestock. In this review, we outline the current knowledge regarding the adaptive restriction of muscle growth and alteration of glucose metabolism that develops in response to progressively exacerbating intrauterine conditions. In addition, we discuss the evidence implicating developmental changes in β adrenergic and inflammatory systems as key mechanisms for dysregulation of these processes. Lastly, we highlight the utility and importance of sheep models in developing this knowledge.
Collapse
Affiliation(s)
- Dustin T Yates
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Ty B Schmidt
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Caitlin N Cadaret
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Taylor L Barnes
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Robert J Posont
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Kristin A Beede
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| |
Collapse
|
53
|
Abstract
Well-controlled intrauterine development is an essential condition for many aspects of normal adult physiology and health. This process is disrupted by poor maternal nutrition status during pregnancy. Indeed, physiological adaptations occur in the fetus to ensure nutrient supply to the most vital organs at the expense of the others, leading to irreversible consequences in tissue formation and differentiation. Evidence indicates that maternal undernutrition in early life promotes changes in key hormones, such as glucocorticoids, growth hormones, insulin-like growth factors, estrogens and androgens, during fetal development. These alterations can directly or indirectly affect hormone release, hormone receptor expression/distribution, cellular function or tissue organization, and impair tissue growth, differentiation and maturation to exert profound long-term effects on the offspring. Within the male reproductive system, maternal protein malnutrition alters development, structure, and function of the gonads, testes and prostate gland. Consequently, these changes impair the reproductive capacity of the male offspring. Further, permanent alterations in the prostate gland occur at the molecular and cellular level and thereby affect the onset of late life diseases such as prostatitis, hyperplasia and even prostate cancer. This review assembles current thoughts on the concepts and mechanisms behind the developmental origins of health and disease as they relate to protein malnutrition, and highlights the effects of maternal protein malnutrition on rat prostate development and homeostasis. Such insights on developmental trajectories of adult-onset prostate disease may help provide a foundation for future studies in this field.
Collapse
|
54
|
Gutierrez-Mariscal FM, Yubero-Serrano EM, Villalba JM, Lopez-Miranda J. Coenzyme Q10: From bench to clinic in aging diseases, a translational review. Crit Rev Food Sci Nutr 2018; 59:2240-2257. [DOI: 10.1080/10408398.2018.1442316] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Francisco M. Gutierrez-Mariscal
- Lipid and Atherosclerosis Unit, Department of Internal Medicine/IMIBIC/Reina Sofia University Hospital/University of Córdoba, Córdoba, Spain; CIBER Fisiología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Elena M. Yubero-Serrano
- Lipid and Atherosclerosis Unit, Department of Internal Medicine/IMIBIC/Reina Sofia University Hospital/University of Córdoba, Córdoba, Spain; CIBER Fisiología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose M. Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Córdoba, Spain
| | - Jose Lopez-Miranda
- Lipid and Atherosclerosis Unit, Department of Internal Medicine/IMIBIC/Reina Sofia University Hospital/University of Córdoba, Córdoba, Spain; CIBER Fisiología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
55
|
Tarry-Adkins JL, Aiken CE, Ashmore TJ, Ozanne SE. Insulin-signalling dysregulation and inflammation is programmed trans-generationally in a female rat model of poor maternal nutrition. Sci Rep 2018; 8:4014. [PMID: 29507362 PMCID: PMC5838091 DOI: 10.1038/s41598-018-22383-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/20/2018] [Indexed: 12/24/2022] Open
Abstract
Developmental programming phenotypes can be recapitulated in subsequent generations not directly exposed to the initial suboptimal intrauterine environment. A maternal low-protein diet during pregnancy and postnatal catch-up growth (‘recuperated’) alters insulin signaling and inflammation in rat offspring (F1-generation). We aimed to establish if this phenotype is also present in F2-generation females. Insulin-receptor-substrate-1 protein expression was decreased in para-ovarian adipose tissue at 3 months in offspring exposed to a grand-maternal low-protein diet (F2-recuperated), vs. F2-control animals (p < 0.05). There was no effect of grand-maternal diet upon Insulin-receptor-substrate-1 mRNA. Protein-kinase C-zeta protein levels were increased at 3 and 6 months in F2-recuperated animals (p < 0.01 at both ages). Phosphorylated-Aktser473 levels were decreased in F2-recuperated animals (p < 0.001). Interleukin-1β protein levels were increased at 3 (p < 0.01) and (p < 0.001) 6 months in F2-recuperated animals. Vastus-lateralis insulin-receptor-β protein expression (p < 0.001) and pAktser473 (p < 0.01) were increased at 3 months in F2-recuperated animals compared to controls. At 6 months, PAktser473 was lower in F2-recuperated animals (p < 0.001). Aspects of insulin signalling dysregulation and inflammation present in offspring of low-protein fed dams can be transmitted to subsequent generations without further exposure to a suboptimal maternal diet. These findings contribute to our understanding of insulin-resistance in grandchildren of sub-optimally nourished individuals during pregnancy.
Collapse
Affiliation(s)
- Jane L Tarry-Adkins
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrookes' Treatment Centre, Addenbrookes' Hospital, Hills Road, Cambridge, CB2 OQQ, UK.
| | - Catherine E Aiken
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrookes' Treatment Centre, Addenbrookes' Hospital, Hills Road, Cambridge, CB2 OQQ, UK
| | - Thomas J Ashmore
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrookes' Treatment Centre, Addenbrookes' Hospital, Hills Road, Cambridge, CB2 OQQ, UK
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrookes' Treatment Centre, Addenbrookes' Hospital, Hills Road, Cambridge, CB2 OQQ, UK
| |
Collapse
|
56
|
Abstract
Developmental programming resulting from maternal malnutrition can lead to an increased risk of metabolic disorders such as obesity, insulin resistance, type 2 diabetes and cardiovascular disorders in the offspring in later life. Furthermore, many conditions linked with developmental programming are also known to be associated with the aging process. This review summarizes the available evidence about the molecular mechanisms underlying these effects, with the potential to identify novel areas of therapeutic intervention. This could also lead to the discovery of new treatment options for improved patient outcomes.
Collapse
|
57
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is currently the most common cause of chronic liver disease worldwide and is present in a third of the general population and the majority of individuals with obesity and type 2 diabetes. Importantly, NAFLD can progress to severe nonalcoholic steatohepatitis (NASH), associated with liver failure and hepatocellular carcinoma. Recent research efforts have extensively focused on identifying factors contributing to the additional "hit" required to promote NALFD disease progression. The maternal diet, and in particular a high-fat diet (HFD), may be one such hit "priming" the development of severe fatty liver disease, a notion supported by the increasing incidence of NAFLD among children and adolescents in Westernized countries. In recent years, a plethora of key studies have used murine models of maternal obesity to identify fundamental mechanisms such as lipogenesis, mitochondrial function, inflammation, and fibrosis that may underlie the developmental priming of NAFLD. In this chapter, we will address key considerations for constructing experimental models and both conventional and advanced methods of quantifying NAFLD disease status.
Collapse
Affiliation(s)
- Kimberley D Bruce
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Karen R Jonscher
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
58
|
Duque-Guimarães D, Ozanne S. Early nutrition and ageing: can we intervene? Biogerontology 2017; 18:893-900. [PMID: 28357523 PMCID: PMC5684303 DOI: 10.1007/s10522-017-9691-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/13/2017] [Indexed: 12/22/2022]
Abstract
Ageing, a complex process that results in progressive decline in intrinsic physiological function leading to an increase in mortality rate, has been shown to be affected by early life nutrition. Accumulating data from animal and epidemiological studies indicate that exposure to a suboptimal nutritional environment during fetal life can have long-term effects on adult health. In this paper, we discuss the impact of early life nutrition on the development of age-associated diseases and life span. Special emphasis is given to studies that have investigated the molecular mechanisms underlying these effects. These include permanent structural and cellular changes including epigenetics modifications, oxidative stress, DNA damage and telomere shortening. Potential strategies targeting these mechanisms, in order to prevent or alleviate the detrimental effects of suboptimal early nutrition on lifespan and age-related diseases, are also discussed. Although recent reports have already identified effective therapeutic interventions, such as antioxidant supplementation, further understanding of the extent and nature of how early nutrition influences the ageing process will enable the development of novel and more effective approaches to improve health and extend human lifespan in the future.
Collapse
Affiliation(s)
- Daniella Duque-Guimarães
- MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge Metabolic Research Laboratories, Cambridge, CB2 0QQ, UK
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Susan Ozanne
- MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge Metabolic Research Laboratories, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
59
|
Tarry-Adkins JL, Ozanne SE. Nutrition in early life and age-associated diseases. Ageing Res Rev 2017; 39:96-105. [PMID: 27594376 DOI: 10.1016/j.arr.2016.08.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 03/24/2016] [Accepted: 08/05/2016] [Indexed: 02/06/2023]
Abstract
The prevalence of age-associated disease is increasing at a striking rate globally. It is known that a strong association exists between a suboptimal maternal and/or early-life environment and increased propensity of developing age-associated disease, including cardiovascular disease (CVD), type-2 diabetes (T2D) and obesity. The dissection of underlying molecular mechanisms to explain this phenomenon, which is known as 'developmental programming' is still emerging; however three common mechanisms have emerged in many models of developmental programming. These mechanisms are (a) changes in tissue structure, (b) epigenetic regulation and (c) accelerated cellular ageing. This review will examine the epidemiological evidence and the animal models of suboptimal maternal environments, focusing upon these molecular mechanisms and will discuss the progress being made in the development of safe and effective intervention strategies which ultimately could target those 'programmed' individuals who are known to be at-risk of age-associated disease.
Collapse
Affiliation(s)
- Jane L Tarry-Adkins
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 OQQ, UK.
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 OQQ, UK.
| |
Collapse
|
60
|
Kabel AM, Elkhoely AA. Targeting proinflammatory cytokines, oxidative stress, TGF-β1 and STAT-3 by rosuvastatin and ubiquinone to ameliorate trastuzumab cardiotoxicity. Biomed Pharmacother 2017; 93:17-26. [PMID: 28622591 DOI: 10.1016/j.biopha.2017.06.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/22/2017] [Accepted: 06/09/2017] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to assess the possible modulatory effects of rosuvastatin and/or ubiquinone on trastuzumab (TRZ)-induced cardiotoxicity in mice. One hundred and twenty mice were divided into six equal groups as follows: control group; TRZ group; TRZ+carboxymethyl cellulose group; TRZ+rosuvastatin group; TRZ+Ubiquinone group and TRZ+rosuvastatin+Ubiquinone group. Serum creatine kinase (CK-MB), lactate dehydrogenase (LDH), troponin I and N-terminal pro-B-type natriuretic peptide (NT-pro BNP) were measured. Also, tissue malondialdehyde (MDA), catalase (CAT), glutathione peroxidase (GPx), interleukin 6 (IL-6), transforming growth factor beta 1 (TGF-β1) and signal transducers and activators of transcription-3 (STAT-3) were determined. Also, echocardiography was performed. Parts of the heart were subjected to histopathological, immunohistochemical and electron microscopic examination. Administration of rosuvastatin and/or ubiquinone to TRZ-treated mice induced significant increase in tissue GPx, CAT and STAT-3 with significant decrease in serum CK-MB, LDH, troponin I, NT-pro BNP, tissue MDA, TGF-β1 and IL-6 and improved the histopathological, immunohistochemical, echocardiographic and electron microscopic changes compared to the group that received TRZ alone. These changes were significant in rosuvastatin/ubiquinone combination group compared to the use of each of these drugs alone. In conclusion, rosuvastatin/ubiquinone combination may represent a new therapeutic modality to ameliorate TRZ-induced cardiotoxicity.
Collapse
Affiliation(s)
- Ahmed M Kabel
- Pharmacology department, Faculty of Medicine, Tanta University, Tanta, Egypt; Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia.
| | - Abeer A Elkhoely
- Pharmacology and toxicology department, Faculty of Pharmacy, Helwan University, Egypt
| |
Collapse
|
61
|
Kereliuk SM, Brawerman GM, Dolinsky VW. Maternal Macronutrient Consumption and the Developmental Origins of Metabolic Disease in the Offspring. Int J Mol Sci 2017; 18:E1451. [PMID: 28684678 PMCID: PMC5535942 DOI: 10.3390/ijms18071451] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/14/2017] [Accepted: 06/30/2017] [Indexed: 12/18/2022] Open
Abstract
Recent research aimed at understanding the rise in obesity and cardiometabolic disease in children suggests that suboptimal maternal nutrition conditions organ systems and physiological responses in the offspring contributing to disease development. Understanding the mechanisms by which the macronutrient composition of the maternal diet during pregnancy or lactation affects health outcomes in the offspring may lead to new maternal nutrition recommendations, disease prevention strategies and therapies that reduce the increasing incidence of cardiometabolic disease in children. Recent mechanistic animal model research has identified how excess fats and sugars in the maternal diet alter offspring glucose tolerance, insulin signaling and metabolism. Maternal nutrition appears to influence epigenetic alterations in the offspring and the programming of gene expression in key metabolic pathways. This review is focused on experimental studies in animal models that have investigated mechanisms of how maternal consumption of macronutrients affects cardiometabolic disease development in the offspring. Future research using "-omic" technologies is essential to elucidate the mechanisms of how altered maternal macronutrient consumption influences the development of disease in the offspring.
Collapse
Affiliation(s)
- Stephanie M Kereliuk
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| | - Gabriel M Brawerman
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| | - Vernon W Dolinsky
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| |
Collapse
|
62
|
Zheng J, Xiao X, Zhang Q, Wang T, Yu M, Xu J. Maternal Low-Protein Diet Modulates Glucose Metabolism and Hepatic MicroRNAs Expression in the Early Life of Offspring †. Nutrients 2017; 9:nu9030205. [PMID: 28264458 PMCID: PMC5372868 DOI: 10.3390/nu9030205] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 12/21/2022] Open
Abstract
Emerging studies revealed that maternal protein restriction was associated with increased risk of type 2 diabetes mellitus in adulthood. However, the mechanisms of its effects on offspring, especially during early life of offspring, are poorly understood. Here, it is hypothesized that impaired metabolic health in offspring from maternal low-protein diet (LPD) is associated with perturbed miRNAs expression in offspring as early as the weaning age. We examined the metabolic effects on the C57BL/6J mice male offspring at weaning from dams fed with LPD or normal chow diet (NCD) throughout pregnancy and lactation. Maternal LPD feeding impaired metabolic health in offspring. Microarray profiling indicated that mmu-miR-615, mmu-miR-124, mmu-miR-376b, and mmu-let-7e were significantly downregulated, while, mmu-miR-708 and mmu-miR-879 were upregulated in LPD offspring. Bioinformatic analysis showed target genes were mapped to inflammatory-related pathways. Serum tumor necrosis factor-α (TNF-α) levels were higher and interleukin 6 (IL-6) had a tendency to be elevated in the LPD group. Finally, both mRNA and protein levels of IL-6 and TNF-α were significantly increased in the LPD group. Our findings provide novel evidence that maternal LPD can regulate miRNAs expression, which may be associated with chronic inflammation status and metabolic health in offspring as early as the weaning age.
Collapse
Affiliation(s)
- Jia Zheng
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| | - Xinhua Xiao
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| | - Qian Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| | - Tong Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| | - Miao Yu
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| | - Jianping Xu
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
63
|
Fan L, Feng Y, Chen GC, Qin LQ, Fu CL, Chen LH. Effects of coenzyme Q10 supplementation on inflammatory markers: A systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 2017; 119:128-136. [PMID: 28179205 DOI: 10.1016/j.phrs.2017.01.032] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/20/2017] [Accepted: 01/27/2017] [Indexed: 12/17/2022]
Abstract
The aims of this meta-analysis were to evaluate the effects of coenzyme Q10 (CoQ10) supplementation on inflammatory mediators including C-reactive protein (CRP), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) by analyzing published randomized controlled trials (RCTs). A systematic search in PubMed, Cochrane Library and Clinicaltrials.gov was performed to identify eligible RCTs. Data synthesis was performed using a random- or a fixed-effects model depending on the results of heterogeneity tests, and pooled data were displayed as weighed mean difference (WMD) and 95% confidence interval (CI). Seventeen RCTs were selected for the meta-analysis. CoQ10 supplementation significantly reduced the levels of circulating CRP (WMD: -0.35mg/L, 95% CI: -0.64 to -0.05, P=0.022), IL-6 (WMD: -1.61pg/mL, 95% CI: -2.64 to -0.58, P=0.002) and TNF-α (WMD: -0.49pg/mL, 95% CI: -0.93 to -0.06, P=0.027). The results of meta-regression showed that the changes of CRP were independent of baseline CRP, treatment duration, dosage, and patients characteristics. In the meta-regression analyses, a higher baseline IL-6 level was significantly associated with greater effects of CoQ10 on IL-6 levels (P for interaction=0.006). In conclusion, this meta-analysis of RCTs suggests significant lowering effects of CoQ10 on CRP, IL-6 and TNF-α. However, results should be interpreted with caution because of the evidence of heterogeneity and limited number of studies.
Collapse
Affiliation(s)
- Li Fan
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Renai Road, Dushu Lake Higher Education Town, Suzhou 215123, China.
| | - Yu Feng
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Renai Road, Dushu Lake Higher Education Town, Suzhou 215123, China; The Second Affiliated Hospital of Soochow University,1055 Sanxiang Road, Suzhou 215004, China.
| | - Guo-Chong Chen
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Renai Road, Dushu Lake Higher Education Town, Suzhou 215123, China.
| | - Li-Qiang Qin
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Renai Road, Dushu Lake Higher Education Town, Suzhou 215123, China.
| | - Chun-Ling Fu
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Renai Road, Dushu Lake Higher Education Town, Suzhou 215123, China.
| | - Li-Hua Chen
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Renai Road, Dushu Lake Higher Education Town, Suzhou 215123, China.
| |
Collapse
|
64
|
Costa-Silva JH, Simões-Alves AC, Fernandes MP. Developmental Origins of Cardiometabolic Diseases: Role of the Maternal Diet. Front Physiol 2016; 7:504. [PMID: 27899895 PMCID: PMC5110566 DOI: 10.3389/fphys.2016.00504] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 10/14/2016] [Indexed: 01/21/2023] Open
Abstract
Developmental origins of cardiometabolic diseases have been related to maternal nutritional conditions. In this context, the rising incidence of arterial hypertension, diabetes type II, and dyslipidemia has been attributed to genetic programming. Besides, environmental conditions during perinatal development such as maternal undernutrition or overnutrition can program changes in the integration among physiological systems leading to cardiometabolic diseases. This phenomenon can be understood in the context of the phenotypic plasticity and refers to the adjustment of a phenotype in response to environmental input without genetic change, following a novel, or unusual input during development. Experimental studies indicate that fetal exposure to an adverse maternal environment may alter the morphology and physiology that contribute to the development of cardiometabolic diseases. It has been shown that both maternal protein restriction and overnutrition alter the central and peripheral control of arterial pressure and metabolism. This review will address the new concepts on the maternal diet induced-cardiometabolic diseases that include the potential role of the perinatal malnutrition.
Collapse
Affiliation(s)
- João H Costa-Silva
- Departamento de Educação Física e Ciências do Esporte, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco Pernambuco, Brazil
| | - Aiany C Simões-Alves
- Departamento de Educação Física e Ciências do Esporte, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco Pernambuco, Brazil
| | - Mariana P Fernandes
- Departamento de Educação Física e Ciências do Esporte, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco Pernambuco, Brazil
| |
Collapse
|
65
|
Abuelezz SA, Hendawy N, Magdy Y. Targeting Oxidative Stress, Cytokines and Serotonin Interactions Via Indoleamine 2, 3 Dioxygenase by Coenzyme Q10: Role in Suppressing Depressive Like Behavior in Rats. J Neuroimmune Pharmacol 2016; 12:277-291. [DOI: 10.1007/s11481-016-9712-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 10/03/2016] [Indexed: 10/20/2022]
|
66
|
Czaja AJ. Nature and Implications of Oxidative and Nitrosative Stresses in Autoimmune Hepatitis. Dig Dis Sci 2016; 61:2784-2803. [PMID: 27411555 DOI: 10.1007/s10620-016-4247-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/04/2016] [Indexed: 02/07/2023]
Abstract
Oxidative and nitrosative stresses can damage cellular membranes, disrupt mitochondrial function, alter gene expression, promote the apoptosis and necrosis of hepatocytes, and increase fibrosis in diverse acute and chronic liver diseases, including autoimmune hepatitis. The objectives of this review are to describe the mechanisms of oxidative and nitrosative stresses in inflammatory liver disease, indicate the pathogenic implications of these stresses in autoimmune hepatitis, and suggest investigational opportunities to develop interventions that counter them. The principal antioxidant defenses, including glutathione production, the activities of antioxidant enzymes, and the release of the nuclear factor erythroid 2-related factor 2, may be inadequate or suppressed by transforming growth factor beta. The generation of reactive oxygen species can intensify nitrosative stress, and this stress may not be adequately modulated by the thioredoxin-thioredoxin reductase system and induce post-translational modifications of proteins that further disrupt hepatocyte function. The unfolded protein response and autophagy may be unable to restore redox stability, meet metabolic demands, and maintain hepatocyte survival. Emerging interventions with highly selective site- and organelle-specific actions may improve outcomes, and they include inhibitors of nicotinamide adenine dinucleotide phosphate oxidase, nitric oxide synthase, and transforming growth factor beta. Pharmacological manipulation of nuclear transcription factors may favor expression of antioxidant genes, and stimulation of chaperone proteins within the endoplasmic reticulum and modulation of autophagy may prevent hepatic fibrosis and enhance cell survival. These interventions constitute investigational opportunities to improve the management of autoimmune hepatitis.
Collapse
Affiliation(s)
- Albert J Czaja
- Professor Emeritus of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|
67
|
Tarry-Adkins JL, Fernandez-Twinn DS, Chen JH, Hargreaves IP, Neergheen V, Aiken CE, Ozanne SE. Poor maternal nutrition and accelerated postnatal growth induces an accelerated aging phenotype and oxidative stress in skeletal muscle of male rats. Dis Model Mech 2016; 9:1221-1229. [PMID: 27585884 PMCID: PMC5087829 DOI: 10.1242/dmm.026591] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/18/2016] [Indexed: 01/09/2023] Open
Abstract
‘Developmental programming’, which occurs as a consequence of suboptimal in utero and early environments, can be associated with metabolic dysfunction in later life, including an increased incidence of cardiovascular disease and type 2 diabetes, and predisposition of older men to sarcopenia. However, the molecular mechanisms underpinning these associations are poorly understood. Many conditions associated with developmental programming are also known to be associated with the aging process. We therefore utilized our well-established rat model of low birth weight and accelerated postnatal catch-up growth (termed ‘recuperated’) in this study to establish the effects of suboptimal maternal nutrition on age-associated factors in skeletal muscle. We demonstrated accelerated telomere shortening (a robust marker of cellular aging) as evidenced by a reduced frequency of long telomeres (48.5-8.6 kb) and an increased frequency of short telomeres (4.2-1.3 kb) in vastus lateralis muscle from aged recuperated offspring compared to controls. This was associated with increased protein expression of the DNA-damage-repair marker 8-oxoguanine-glycosylase (OGG1) in recuperated offspring. Recuperated animals also demonstrated an oxidative stress phenotype, with decreased citrate synthase activity, increased electron-transport-complex activities of complex I, complex II-III and complex IV (all markers of functional mitochondria), and increased xanthine oxidase (XO), p67phox and nuclear-factor kappa-light-chain-enhancer of activated B-cells (NF-κB). Recuperated offspring also demonstrated increased antioxidant defense capacity, with increased protein expression of manganese superoxide dismutase (MnSOD), copper-zinc superoxide dismutase (CuZnSOD), catalase and heme oxygenase-1 (HO1), all of which are known targets of NF-κB and can be upregulated as a consequence of oxidative stress. Recuperated offspring also had a pro-inflammatory phenotype, as evidenced by increased tumor necrosis factor-α (TNFα) and interleukin-1β (IL1β) protein levels. Taken together, we demonstrate, for the first time to our knowledge, an accelerated aging phenotype in skeletal muscle in the context of developmental programming. These findings may pave the way for suitable interventions in at-risk populations. Summary: Muscle of ‘developmentally programmed’ rat offspring demonstrated accelerated aging and oxidative stress, which could explain why some individuals are at greater risk of developing age-associated muscular dysfunction than others.
Collapse
Affiliation(s)
- Jane L Tarry-Adkins
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Hills Road, Cambridge CB2 OQQ, UK
| | - Denise S Fernandez-Twinn
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Hills Road, Cambridge CB2 OQQ, UK
| | - Jian Hua Chen
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Hills Road, Cambridge CB2 OQQ, UK
| | - Iain P Hargreaves
- Neurometabolic Unit, National Hospital, University College London, London WC1N 3BG, UK
| | - Viruna Neergheen
- Neurometabolic Unit, National Hospital, University College London, London WC1N 3BG, UK
| | - Catherine E Aiken
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Hills Road, Cambridge CB2 OQQ, UK
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Hills Road, Cambridge CB2 OQQ, UK
| |
Collapse
|