51
|
Longre S, Rana D, Rangra S, Jindal AB, Salave S, Vitore J, Benival D. Quality-by-Design Based Development of Doxycycline Hyclate-Loaded Polymeric Microspheres for Prolonged Drug Release. AAPS PharmSciTech 2024; 25:49. [PMID: 38424393 DOI: 10.1208/s12249-024-02760-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
This study explores a novel approach to address the challenges of delivering highly water-soluble drug molecules by employing hydrophobic ion-pairing (HIP) complexes within poly (lactic-co-glycolic acid) (PLGA) microspheres. The HIP complex, formed between doxycycline hyclate (DH) and docusate sodium (DS), renders the drug hydrophobic. The development of the microspheres was done using the QbD approach, namely, Box-Behnken Design (BBD). A comprehensive characterization of the HIP complex confirmed the successful conversion of DH. DH and the HIP complex were effectively loaded into PLGA microspheres using the oil-in-water (O/W) emulsion solvent evaporation method. Results demonstrated significant improvements in percentage entrapment efficiency (% EE) and drug loading (% DL) for DH within the HIP complex-loaded PLGA microspheres compared to DH-loaded microspheres alone. Additionally, the initial burst release of DH reduced to 3% within the initial 15 min, followed by sustained drug release over 8 days. The modified HIP complex strategy offers a promising platform for improving the delivery of highly water-soluble small molecules. It provides high % EE, % DL, minimal initial burst release, and sustained release, thus having the potential to enhance patient compliance and drug delivery efficiency.
Collapse
Affiliation(s)
- Suraj Longre
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, India
| | - Dhwani Rana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, India
| | - Shagun Rangra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, India
| | - Anil B Jindal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS PILANI), Pilani Campus, Rajasthan, 333031, India
| | - Sagar Salave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, India
| | - Jyotsna Vitore
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, India
| | - Derajram Benival
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, India.
| |
Collapse
|
52
|
Beniwal P, Toor AP. Functionalisation of lignin with urethane linkages and their strengthening effect on PLA composites. Int J Biol Macromol 2024; 258:129005. [PMID: 38159697 DOI: 10.1016/j.ijbiomac.2023.129005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Lignin was functionalised by crosslinking with hexamethylene diisocyanate (HDI) through the heterogenous reaction in the solvent dimethyl sulfoxide for preferential improvement in the mechanical properties of composites. The successful synthesis of lignin modified with HDI was confirmed by the instrumental analyses, e.g., FTIR, XPS, and FESEM. The incorporation of optimum crosslinked lignin in polylactic acid (PLA) matrix was systematically evaluated on the basis of their thermal stability, mechanical property, glass transition temperature (Tg), water contact angle, water absorption, and water permeability. The results displayed that incorporation of fillers had prominent effects on tensile tear strength, which could improve tensile strength up to 231 % and elongation at break up to 53 % due to the good interface compatibility between PLA and modified lignin. Further, with the inclusion of fillers, PLA composites exhibited higher crystallinity in comparison to neat PLA.
Collapse
Affiliation(s)
- Preeti Beniwal
- Dr SSB University Institute of Chemical Engineering and Technology, Panjab University, India
| | - Amrit Pal Toor
- Dr SSB University Institute of Chemical Engineering and Technology, Panjab University, India; Energy Research Centre, India.
| |
Collapse
|
53
|
Bakhrushina EO, Sakharova PS, Konogorova PD, Pyzhov VS, Kosenkova SI, Bardakov AI, Zubareva IM, Krasnyuk II, Krasnyuk II. Burst Release from In Situ Forming PLGA-Based Implants: 12 Effectors and Ways of Correction. Pharmaceutics 2024; 16:115. [PMID: 38258125 PMCID: PMC10819773 DOI: 10.3390/pharmaceutics16010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
In modern pharmaceutical technology, modified-release dosage forms, such as in situ formed implants, are gaining rapidly in popularity. These dosage forms are created based on a configurable matrix consisting of phase-sensitive polymers capable of biodegradation, a hydrophilic solvent, and the active substance suspended or dissolved in it. The most used phase-sensitive implants are based on a biocompatible and biodegradable polymer, poly(DL-lactide-co-glycolide) (PLGA). OBJECTIVE This systematic review examines the reasons for the phenomenon of active ingredient "burst" release, which is a major drawback of PLGA-based in situ formed implants, and the likely ways to correct this phenomenon to improve the quality of in situ formed implants with a poly(DL-lactide-co-glycolide) matrix. DATA SOURCES Actual and relevant publications in PubMed and Google Scholar databases were studied. STUDY SELECTION The concept of the review was based on the theory developed during literature analysis of 12 effectors on burst release from in situ forming implants based on PLGA. Only those studies that sufficiently fully disclosed one or another component of the theory were included. RESULTS The analysis resulted in development of a systematic approach called the "12 Factor System", which considers various constant and variable, endogenous and exogenous factors that can influence the nature of 'burst release' of active ingredients from PLGA polymer-based in situ formed implants. These factors include matrix porosity, polymer swelling, LA:GA ratio, PLGA end groups, polymer molecular weight, active ingredient structure, polymer concentration, polymer loading with active ingredients, polymer combination, use of co-solvents, addition of excipients, and change of dissolution conditions. This review also considered different types of kinetics of active ingredient release from in situ formed implants and the possibility of using the "burst release" phenomenon to modify the active ingredient release profile at the site of application of this dosage form.
Collapse
Affiliation(s)
| | | | | | - Victor S. Pyzhov
- Department of Pharmaceutical Technology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (P.S.S.); (P.D.K.); (S.I.K.); (A.I.B.); (I.M.Z.); (I.I.K.); (I.I.K.J.)
| | | | | | | | | | | |
Collapse
|
54
|
Rezvantalab S, Mihandoost S, Rezaiee M. Machine learning assisted exploration of the influential parameters on the PLGA nanoparticles. Sci Rep 2024; 14:1114. [PMID: 38212322 PMCID: PMC10784499 DOI: 10.1038/s41598-023-50876-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/27/2023] [Indexed: 01/13/2024] Open
Abstract
Poly (lactic-co-glycolic acid) (PLGA)-based nanoparticles (NPs) are widely investigated as drug delivery systems. However, despite the numerous reviews and research papers discussing various physicochemical and technical properties that affect NP size and drug loading characteristics, predicting the influential features remains difficult. In the present study, we employed four different machine learning (ML) techniques to create ML models using effective parameters related to NP size, encapsulation efficiency (E.E.%), and drug loading (D.L.%). These parameters were extracted from the different literature. Least Absolute Shrinkage and Selection Operator was used to investigate the input parameters and identify the most influential features (descriptors). Initially, ML models were trained and validated using tenfold validation methods, and subsequently, next their performances were evaluated and compared in terms of absolute error, mean absolute, error and R-square. After comparing the performance of different ML models, we decided to use support vector regression for predicting the size and E.E.% and random forest for predicting the D.L.% of PLGA-based NPs. Furthermore, we investigated the interactions between these target variables using ML methods and found that size and E.E.% are interrelated, while D.L.% shows no significant relationship with the other targets. Among these variables, E.E.% was identified as the most influential parameter affecting the NPs' size. Additionally, we found that certain physicochemical properties of PLGA, including molecular weight (Mw) and the lactide-to-glycolide (LA/GA) ratio, are the most determining features for E.E.% and D.L.% of the final NPs, respectively.
Collapse
Affiliation(s)
- Sima Rezvantalab
- Chemical Engineering Department, Urmia University of Technology, Urmia, 57166‑419, Iran.
| | - Sara Mihandoost
- Electrical Engineering Department, Urmia University of Technology, Urmia, 57166‑419, Iran.
| | - Masoumeh Rezaiee
- Chemical Engineering Department, Urmia University of Technology, Urmia, 57166‑419, Iran
| |
Collapse
|
55
|
Barfar A, Alizadeh H, Masoomzadeh S, Javadzadeh Y. Oral Insulin Delivery: A Review on Recent Advancements and Novel Strategies. Curr Drug Deliv 2024; 21:887-900. [PMID: 37202888 DOI: 10.2174/1567201820666230518161330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Due to the lifestyle of people in the community in recent years, the prevalence of diabetes mellitus has increased, so New drugs and related treatments are also being developed. INTRODUCTION One of the essential treatments for diabetes today is injectable insulin forms, which have their problems and limitations, such as invasive and less admission of patients and high cost of production. According to the mentioned issues, Theoretically, Oral insulin forms can solve many problems of injectable forms. METHODS Many efforts have been made to design and introduce Oral delivery systems of insulin, such as lipid-based, synthetic polymer-based, and polysaccharide-based nano/microparticle formulations. The present study reviewed these novel formulations and strategies in the past five years and checked their properties and results. RESULTS According to peer-reviewed research, insulin-transporting particles may preserve insulin in the acidic and enzymatic medium and decrease peptide degradation; in fact, they could deliver appropriate insulin levels to the intestinal environment and then to blood. Some of the studied systems increase the permeability of insulin to the absorption membrane in cellular models. In most investigations, in vivo results revealed a lower ability of formulations to reduce BGL than subcutaneous form, despite promising results in in vitro and stability testing. CONCLUSION Although taking insulin orally currently seems unfeasible, future systems may be able to overcome mentioned obstacles, making oral insulin delivery feasible and producing acceptable bioavailability and treatment effects in comparison to injection forms.
Collapse
Affiliation(s)
- Ashkan Barfar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Helia Alizadeh
- Pharm.D Student, Pharmacy Faculty, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Salar Masoomzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Javadzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
56
|
Ghosh S, Ghosh S, Sharma H, Bhaskar R, Han SS, Sinha JK. Harnessing the power of biological macromolecules in hydrogels for controlled drug release in the central nervous system: A review. Int J Biol Macromol 2024; 254:127708. [PMID: 37923043 DOI: 10.1016/j.ijbiomac.2023.127708] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Hydrogels have immense potential in revolutionizing central nervous system (CNS) drug delivery, improving outcomes for neurological disorders. They serve as promising tools for controlled drug delivery to the CNS. Available hydrogel types include natural macromolecules (e.g., chitosan, hyaluronic acid, alginate), as well as hybrid hydrogels combining natural and synthetic polymers. Each type offers distinct advantages in terms of biocompatibility, mechanical properties, and drug release kinetics. Design and engineering considerations encompass hydrogel composition, crosslinking density, porosity, and strategies for targeted drug delivery. The review emphasizes factors affecting drug release profiles, such as hydrogel properties and formulation parameters. CNS drug delivery applications of hydrogels span a wide range of therapeutics, including small molecules, proteins and peptides, and nucleic acids. However, challenges like limited biodegradability, clearance, and effective CNS delivery persist. Incorporating 3D bioprinting technology with hydrogel-based CNS drug delivery holds the promise of highly personalized and precisely controlled therapeutic interventions for neurological disorders. The review explores emerging technologies like 3D bioprinting and nanotechnology as opportunities for enhanced precision and effectiveness in hydrogel-based CNS drug delivery. Continued research, collaboration, and technological advancements are vital for translating hydrogel-based therapies into clinical practice, benefiting patients with CNS disorders. This comprehensive review article delves into hydrogels for CNS drug delivery, addressing their types, design principles, applications, challenges, and opportunities for clinical translation.
Collapse
Affiliation(s)
- Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301, India; ICMR - National Institute of Nutrition, Tarnaka, Hyderabad, Telangana 500007, India
| | - Soumya Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301, India
| | - Hitaishi Sharma
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301, India
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeonsang 38541, Republic of Korea.
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeonsang 38541, Republic of Korea.
| | | |
Collapse
|
57
|
Gupta P, Sharma A, Mittal V. Polymeric Vehicles for Nucleic Acid Delivery: Enhancing the Therapeutic Efficacy and Cellular Uptake. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2024; 18:276-293. [PMID: 39356099 DOI: 10.2174/0126673878324536240805060143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Therapeutic gene delivery may be facilitated by the use of polymeric carriers. When combined with nucleic acids to form nanoparticles or polyplexes, a variety of polymers may shield the cargo from in vivo breakdown and clearance while also making it easier for it to enter intracellular compartments. AIM AND OBJECTIVES Polymer synthesis design choices result in a wide variety of compounds and vehicle compositions. Depending on the application, these characteristics may be changed to provide enhanced endosomal escape, longer-lasting distribution, or stronger connection with nucleic acid cargo and cells. Here, we outline current methods for delivering genes in preclinical and clinical settings using polymers. METHODOLOGY Significant therapeutic outcomes have previously been attained using genetic material- delivering polymer vehicles in both in-vitro and animal models. When combined with nucleic acids to form nanoparticles or polyplexes, a variety of polymers may shield the cargo from in vivo breakdown and clearance while also making it easier for it to enter intracellular compartments. Many innovative diagnoses for nucleic acids have been investigated and put through clinical assessment in the past 20 years. RESULTS Polymer-based carriers have additional delivery issues due to their changes in method and place of biological action, as well as variances in biophysical characteristics. We cover recent custom polymeric carrier architectures that were tuned for nucleic acid payloads such genomemodifying nucleic acids, siRNA, microRNA, and plasmid DNA. CONCLUSION In conclusion, the development of polymeric carriers for gene delivery holds promise for therapeutic applications. Through careful design and optimization, these carriers can overcome various challenges associated with nucleic acid delivery, offering new avenues for treating a wide range of diseases.
Collapse
Affiliation(s)
- Parul Gupta
- Department of Pharmaceutics, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, 135001, India
| | - Anjali Sharma
- Department of Pharmaceutics, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, 135001, India
| | - Vishnu Mittal
- Department of Pharmaceutics, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, 135001, India
| |
Collapse
|
58
|
Valiallahi A, Vazifeh Z, Gatabi ZR, Davoudi M, Gatabi IR. PLGA Nanoparticles as New Drug Delivery Systems in Leishmaniasis Chemotherapy: A Review of Current Practices. Curr Med Chem 2024; 31:6371-6392. [PMID: 37612875 DOI: 10.2174/0929867331666230823094737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/03/2023] [Accepted: 07/18/2023] [Indexed: 08/25/2023]
Abstract
Although leishmaniasis is one of the most common parasitic diseases, its traditional treatments suffer from some serious problems. To solve such issues, we can take advantage of the effective nanoparticle-based approaches to deliver anti-leishmanial agents into leishmania-infected macrophages either using passive targeting or using macrophagerelated receptors. Despite the high potential of nanotechnology, Liposomal Amphotericin B (AmBisome®) is the only FDA-approved nanoparticle-based anti-leishmanial therapy. In an effort to find more anti-leishmanial nano-drugs, this 2011-2021 review study aimed to investigate the in-vivo and in-vitro effectiveness of poly (lactic-co-glycolic acid) nanoparticles (PLGA-NPs) in the delivery of some traditional anti-leishmanial drugs. Based on the results, PLGA-NPs could improve solubility, controlled release, trapping efficacy, bioavailability, selectivity, and mucosal penetration of the drugs, while they decreased resistance, dose/duration of administration and organotoxicity of the agents. However, none of these nano-formulations have been able to enter clinical trials so far. We summarized the data about the common problems of anti-leishmanial agents and the positive effects of various PLGA nano-formulations on reducing these drawbacks under both in-vitro and in-vivo conditions in three separate tables. Overall, this study proposes two AmB-loaded PLGA with a 99% reduction in parasite load as promising nanoparticles for further studies.
Collapse
Affiliation(s)
- Alaleh Valiallahi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Zahra Vazifeh
- Department of Biotechnology, Shahed University, Tehran, Iran
| | - Zahra Rezanejad Gatabi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Davoudi
- Department of Clinical Laboratory Sciences, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
59
|
Amidfar M, Garcez ML, Askari G, Bagherniya M, Khorvash F, Golpour-Hamedani S, de Oliveira J. Role of BDNF Signaling in the Neuroprotective and Memory-enhancing Effects of Flavonoids in Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:984-995. [PMID: 37702162 DOI: 10.2174/1871527323666230912090856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/27/2023] [Accepted: 07/18/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Foods rich in flavonoids are associated with a reduced risk of various chronic diseases, including Alzheimer's disease (AD). In fact, growing evidence suggests that consuming flavonoid- rich foods can beneficially affect normal cognitive function. Animal models have shown that many flavonoids prevent the development of AD-like pathology and improve cognitive deficits. OBJECTIVE Identifying the molecular causes underlying the memory-enhancing effect of flavonoid-rich foods makes it possible to provide the best diet to prevent cognitive decline associated with aging and Alzheimer's disease. Based on the most recent scientific literature, this review article critically examines the therapeutic role of dietary flavonoids in ameliorating and preventing the progression of AD and enhancement of memory with a focus on the role of the BDNF signaling pathway. METHODS The databases of PubMed, Web of Science, Google Scholar, and Scopus were searched up to March 2023 and limited to English language. Search strategies were using the following keywords in titles and abstracts: (Flavonoid-rich foods OR Flavonoids OR Polyphenols); AND (Brain-Derived Neurotrophic Factor OR BDNF OR CREB OR) AND (Alzheimer's disease OR memory OR cognition OR). RESULTS Flavonoid-rich foods including green tea, berries, curcumin and pomegranate exert their beneficial effects on memory decline associated with aging and Alzheimer's disease mostly through the direct interaction with BDNF signaling pathway. CONCLUSION The neuroprotective effects of flavonoid-rich foods through the CREB-BDNF mechanism have the potential to prevent or limit memory decline due to aging and Alzheimer's disease, so their consumption throughout life may prevent age-related cognitive impairment.
Collapse
Affiliation(s)
- Meysam Amidfar
- Nutrition and Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Michelle Lima Garcez
- Graduate Program of Research and Extension (CEPEG), University Center of Espirito Santo, Espírito Santo, Brazil
| | - Gholamreza Askari
- Nutrition and Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Khorvash
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sahar Golpour-Hamedani
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jade de Oliveira
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
60
|
Li J, Wang F, Liu X, Yang Z, Hua X, Zhu H, Valdivia CR, Xiao L, Gao S, Valdivia HH, Xiao L, Wang J. OpiCa1-PEG-PLGA nanomicelles antagonize acute heart failure induced by the cocktail of epinephrine and caffeine. Mater Today Bio 2023; 23:100859. [PMID: 38033368 PMCID: PMC10682124 DOI: 10.1016/j.mtbio.2023.100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/17/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
Background Reducing Ca2+ content in the sarcoplasmic reticulum (SR) through ryanodine receptors (RyRs) by calcin is a potential intervention strategy for the SR Ca2+ overload triggered by β-adrenergic stress in acute heart diseases. Methods OpiCal-PEG-PLGA nanomicelles were prepared by thin film dispersion, of which the antagonistic effects were observed using an acute heart failure model induced by epinephrine and caffeine in mice. In addition, cardiac targeting, self-stability as well as biotoxicity were determined. Results The synthesized OpiCa1-PEG-PLGA nanomicelles were elliptical with a particle size of 72.26 nm, a PDI value of 0.3, and a molecular weight of 10.39 kDa. The nanomicelles showed a significant antagonistic effect with 100 % survival rate to the death induced by epinephrine and caffeine, which was supported by echocardiography with significantly recovered heart rate, ejection fraction and left ventricular fractional shortening rate. The FITC labeled nanomicelles had a strong membrance penetrating capacity within 2 h and cardiac targeting within 12 h that was further confirmed by immunohistochemistry with a self-prepared OpiCa1 polyclonal antibody. Meanwhile, the nanomicelles can keep better stability and dispersibility in vitro at 4 °C rather than 20 °C or 37 °C, while maintain a low but stable plasma OpiCa1 concentration in vivo within 72 h. Finally, no obvious biotoxicities were observed by CCK-8, flow cytometry, H&E staining and blood biochemical examinations. Conclusion Our study also provide a novel nanodelivery pathway for targeting RyRs and antagonizing the SR Ca2+ disordered heart diseases by actively releasing SR Ca2+ through RyRs with calcin.
Collapse
Affiliation(s)
- Jun Li
- College of Veterinary Medicine, Shanxi Agricultural University, ShanXi, TaiGu, 030801, China
- Department of Occupational and Environmental Health, Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Fei Wang
- Department of Occupational and Environmental Health, Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Xinyan Liu
- Department of Traditional Chinese Medicine Surgery, The First Affiliated Hospital of the Navy Medical University (Changhai Hospital), Shanghai, 200433, China
| | - Zhixiao Yang
- Department of Occupational and Environmental Health, Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
- Teaching and Research Department of Chinese Pharmacy, Yunnan Traditional Chinese Medicine, YunNan, KunMing, 650500, China
| | - Xiaoyu Hua
- Department of Occupational and Environmental Health, Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Hongqiao Zhu
- Department of Traditional Chinese Medicine Surgery, The First Affiliated Hospital of the Navy Medical University (Changhai Hospital), Shanghai, 200433, China
| | - Carmen R. Valdivia
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Li Xiao
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610065, China
| | - Songyu Gao
- Department of Occupational and Environmental Health, Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Héctor H. Valdivia
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Liang Xiao
- Department of Occupational and Environmental Health, Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Jinming Wang
- College of Veterinary Medicine, Shanxi Agricultural University, ShanXi, TaiGu, 030801, China
| |
Collapse
|
61
|
Li Z, Xu P, Shang L, Ma B, Zhang H, Fu L, Ou Y, Mao Y. 3D collagen porous scaffold carrying PLGA-PTX/SDF-1α recruits and promotes neural stem cell differentiation for spinal cord injury repair. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2332-2355. [PMID: 37566099 DOI: 10.1080/09205063.2023.2247715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
Spinal Cord Injury (SCI), one of the major factors of disability, can cause irreversible motor and sensory impairment. There are no effective therapeutic drugs and technologies available in domestic or foreign countries currently. Neural stem cells (NSCs), with the potential for multidirectional differentiation, are a potential treatment for SCI. However, it has been demonstrated that NSCs primarily differentiated into astrocytes rather than neurons due to the inflammatory microenvironment, and the current challenge remains to direct the differentiation of NSCs into neurons in the lesion site. It was reported that the microtubule-stabilizing agent paclitaxel (PTX) was able to promote the differentiation of NSCs into neurons rather than astrocytes after SCI. SDF-1α can recruit NSCs and thus guide the migration of stem cells. In this study, we developed a functional collagen scaffold by loading SDF-1α and nanoparticle-encapsulated PLGA-PTX into a 3D collagen porous scaffold, allowing for slow release of PTX. When the functional scaffolds were implanted into the injury site, it provided a neural regeneration conduit channel for the migration of NSCs and neuronal differentiation. Neural regeneration promoted the recovery of motor function and reduced glial scar formation after SCI. In conclusion, a 3D collagen porous scaffold combined with PLGA-PTX and SDF-1α is a promising therapeutic strategy for SCI repair.
Collapse
Affiliation(s)
- Zhixiang Li
- School of Life Sciences, Bengbu Medical College, Bengbu, China
- Department of Orthopedics and Department of Plastic Surgery, The First Affiliated Hospital, Bengbu Medical College, Bengbu, China
| | - Panpan Xu
- Department of Orthopedics and Department of Plastic Surgery, The First Affiliated Hospital, Bengbu Medical College, Bengbu, China
| | - Lijun Shang
- School of Life Sciences, Bengbu Medical College, Bengbu, China
| | - Bingxu Ma
- Department of Orthopedics and Department of Plastic Surgery, The First Affiliated Hospital, Bengbu Medical College, Bengbu, China
| | - Huihui Zhang
- Department of Oncology, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Liangmin Fu
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Yuanyuan Ou
- School of Life Sciences, Bengbu Medical College, Bengbu, China
| | - Yingji Mao
- School of Life Sciences, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| |
Collapse
|
62
|
Yun D, Liu D, Liu J, Feng Y, Chen H, Chen S, Xie Q. In Vitro/In Vivo Preparation and Evaluation of cRGDyK Peptide-Modified Polydopamine-Bridged Paclitaxel-Loaded Nanoparticles. Pharmaceutics 2023; 15:2644. [PMID: 38004622 PMCID: PMC10674738 DOI: 10.3390/pharmaceutics15112644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/05/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer remains a disease with one of the highest mortality rates worldwide. The poor water solubility and tissue selectivity of commonly used chemotherapeutic agents contribute to their poor efficacy and serious adverse effects. This study proposes an alternative to the traditional physicochemically combined modifications used to develop targeted drug delivery systems, involving a simpler surface modification strategy. cRGDyK peptide (RGD)-modified PLGA nanoparticles (NPs) loaded with paclitaxel were constructed by coating the NP surfaces with polydopamine (PD). The average particle size of the produced NPs was 137.6 ± 2.9 nm, with an encapsulation rate of over 80%. In vitro release tests showed that the NPs had pH-responsive drug release properties. Cellular uptake experiments showed that the uptake of modified NPs by tumor cells was significantly better than that of unmodified NPs. A tumor cytotoxicity assay demonstrated that the modified NPs had a lower IC50 and greater cytotoxicity than those of unmodified NPs and commercially available paclitaxel formulations. An in vitro cytotoxicity study indicated good biosafety. A tumor model in female BALB/c rats was established using murine-derived breast cancer 4T1 cells. RGD-modified NPs had the highest tumor-weight suppression rate, which was higher than that of the commercially available formulation. PTX-PD-RGD-NPs can overcome the limitations of antitumor drugs, reduce drug toxicity, and increase efficacy, showing promising potential in cancer therapy.
Collapse
Affiliation(s)
- Dan Yun
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dengyuan Liu
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jinlin Liu
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yanyi Feng
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hongyu Chen
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Simiao Chen
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qingchun Xie
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
63
|
Wang P, Luo Q, Zhang L, Qu X, Che X, Cai S, Liu Y. A disulfiram/copper gluconate co-loaded bi-layered long-term drug delivery system for intraperitoneal treatment of peritoneal carcinomatosis. Colloids Surf B Biointerfaces 2023; 231:113558. [PMID: 37776774 DOI: 10.1016/j.colsurfb.2023.113558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 10/02/2023]
Abstract
To develop a long-term drug delivery system for the treatment of primary and metastatic peritoneal carcinoma (PC) by intraperitoneal (IP) injection, a disulfiram (DSF)/copper gluconate (Cu-Glu)-co-loaded bi-layered poly (lactic acid-coglycolic acid) (PLGA) microspheres (Ms) - thermosensitive hydrogel system (DSF-Ms-Cu-Glu-Gel) was established. Rate and mechanisms of drug release from DSF-Ms-Cu-Glu-Gel were explored. The anti-tumor effects of DSF-Ms-Cu-Glu-Gel by IP injection were evaluated using H22 xenograft tumor model mice. The accumulative release of DSF from Ms on the 10th day was 83.79% without burst release. When Ms were dispersed into B-Gel, burst release at 24 h decreased to 14.63%. The results showed that bis (diethyldithiocarbamate)-copper (Cu(DDC)2) was formed in DSF-Ms-Cu-Glu-Gel and slowly released from B-Gel. In a pharmacodynamic study, the mount of tumor nodes and ascitic fluid decreased in the DSF-Ms-Cu-Glu-Gel group. This was because: (1) DSF-Ms-Cu-Glu-Gel system co-loaded DSF and Cu-Glu, and physically isolated DSF and Cu-Glu before injection to protect DSF; (2) space and water were provided for the formation of Cu(DDC)2; (3) could provide an effective drug concentration in the abdominal cavity for a long time; (4) both DSF and Cu(DDC)2 were effective anti-tumor drugs, and the formation of Cu(DDC)2 occurred in the abdominal cavity, which further enhanced the anti-tumor activity. Thus, the DSF-Ms-Cu-Glu-Gel system can be potentially used for the IP treatment of PC in the future.
Collapse
Affiliation(s)
- Puxiu Wang
- Department of Pharmacy, the First Hospital of China Medical University, Shenyang, Liaoning, PR China; School of Pharmacy, China Medical University, Shenyang, Liaoning, PR China
| | - Qiuhua Luo
- Department of Pharmacy, the First Hospital of China Medical University, Shenyang, Liaoning, PR China; School of Pharmacy, China Medical University, Shenyang, Liaoning, PR China
| | - Ling Zhang
- Department of Biotherapy, Cancer Research Institute, the First Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Xiujuan Qu
- Department of Medical Oncology, the First Hospital of China Medical University, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, China; Liaoning Province Clinical Research Center for Cancer, China
| | - Xiaofang Che
- Department of Medical Oncology, the First Hospital of China Medical University, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, China; Liaoning Province Clinical Research Center for Cancer, China
| | - Shuang Cai
- Department of Pharmacy, the First Hospital of China Medical University, Shenyang, Liaoning, PR China; School of Pharmacy, China Medical University, Shenyang, Liaoning, PR China.
| | - Yunpeng Liu
- Department of Medical Oncology, the First Hospital of China Medical University, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, China; Liaoning Province Clinical Research Center for Cancer, China.
| |
Collapse
|
64
|
van Mechelen RJS, Wolters JEJ, Fredrich S, Bertens CJF, Gijbels MJJ, Schenning APHJ, Pinchuk L, Gorgels TGMF, Beckers HJM. A Degradable Sustained-Release Drug Delivery System for Bleb-Forming Glaucoma Surgery. Macromol Biosci 2023; 23:e2300075. [PMID: 37249127 DOI: 10.1002/mabi.202300075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/12/2023] [Indexed: 05/31/2023]
Abstract
Fibrosis of the filtering bleb is one of the main causes of failure after bleb-forming glaucoma surgery. Intraoperative application of mitomycin C (MMC) is the current gold standard to reduce the fibrotic response. However, MMC is cytotoxic and one-time application is often insufficient. A sustained-release drug delivery system (DDS), loaded with MMC, may be less cytotoxic and equally or more effective. Two degradable (polycaprolactone (PCL) and polylactic-co-glycolic acid (PLGA)) MMC-loaded DDSs are developed. Release kinetics are first assessed in vitro followed by rabbit implants in conjunction with the PRESERFLO MicroShunt. As a control, the MicroShunt is implanted with adjunctive use of a MMC solution. Rabbits are euthanized at postoperative day (POD) 28 and 90. The PLGA and PCL DDSs release (on average) 99% and 75% of MMC, respectively. All groups show functioning blebs until POD 90. Rabbits implanted with a DDS show more inflammation with avascular thin-walled blebs when compared to the control. However, collagen is more loosely arranged. The PLGA DDS shows less inflammation, less foreign body response (FBR), and more complete degradation at POD 90 when compared to the PCL DDS. Further optimization with regard to dosage is required to reduce side effects to the conjunctiva.
Collapse
Affiliation(s)
- Ralph J S van Mechelen
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), Maastricht, 6202 AZ, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Jarno E J Wolters
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), Maastricht, 6202 AZ, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Sebastian Fredrich
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, A.M. Vree G1-146, Amsterdam, 1100 DD, Netherlands
| | - Christian J F Bertens
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), Maastricht, 6202 AZ, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Marion J J Gijbels
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6229 ER, The Netherlands
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, A.M. Vree G1-146, Amsterdam, 1100 DD, Netherlands
| | - Albert P H J Schenning
- Laboratory of Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Technical University of Eindhoven, Eindhoven, 5600 MB, The Netherlands
| | - Leonard Pinchuk
- InnFocus Inc. a Santen company, 12415 S.W. 136 Avenue, Miami, FL, 33186, USA
| | - Theo G M F Gorgels
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), Maastricht, 6202 AZ, The Netherlands
| | - Henny J M Beckers
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), Maastricht, 6202 AZ, The Netherlands
| |
Collapse
|
65
|
Zhang Y, Wang L, Wang Y, Li L, Zhou J, Dou D, Wu Z, Yu L, Fan Y. Degradable Antimicrobial Ureteral Stent Construction with Silver@graphdiyne Nanocomposite. Adv Healthc Mater 2023; 12:e2300885. [PMID: 37256720 DOI: 10.1002/adhm.202300885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/18/2023] [Indexed: 06/02/2023]
Abstract
In the surgical treatment of urinary diseases, ureteral stents are commonly used interventional medical devices. Although polymer ureteral stents with polyurethane as the main constituent are widely used in the clinic, the need for secondary surgery to remove them and their propensity to cause bacterial infections greatly limit their effectiveness. To satisfy clinical requirements, an electrospinning-based strategy to fabricate PLGA ureteral stents with silver@graphdiyne is innovated. Silver (Ag) nanoparticles are uniformly loaded on the surface of graphdiyne (GDY) flakes. It is found that the incorporation of Ag nanoparticles into GDY markedly increases their antibacterial properties. Subsequently, the synthesized and purified Ag@GDY is homogeneously blended with poly(lactic-co-glycolic acid) (PLGA) as an antimicrobial agent, and electrospinning along with high-speed collectors is used to make tubular stents. The antibacterial effect of Ag@GDY and the porous microstructure of the stents can effectively prevent bacterial biofilm formation. Furthermore, the stents gradually decrease in toughness but increase in strength during the degradation process. The cellular and subcutaneous implantation experiments demonstrate the moderate biocompatibility of the stents. In summary, considering these performance characteristics and the technical feasibility of the approach taken, this study opens new possibilities for the design and application of biodegradable ureteral stents.
Collapse
Affiliation(s)
- Yang Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Lizhen Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yan Wang
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Linhao Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Jin Zhou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Dandan Dou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Zebin Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Lu Yu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
66
|
Silvestri T, Grumetto L, Neri I, De Falco M, Graziano SF, Damiano S, Giaquinto D, Maruccio L, de Girolamo P, Villapiano F, Ciarcia R, Mayol L, Biondi M. Investigating the Effect of Surface Hydrophilicity on the Destiny of PLGA-Poloxamer Nanoparticles in an In Vivo Animal Model. Int J Mol Sci 2023; 24:14523. [PMID: 37833971 PMCID: PMC10572154 DOI: 10.3390/ijms241914523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/17/2023] [Accepted: 09/17/2023] [Indexed: 10/15/2023] Open
Abstract
This study aimed to examine the impact of different surface properties of poly(lactic-co-glycolic) acid (PLGA) nanoparticles (P NPs) and PLGA-Poloxamer nanoparticles (PP NPs) on their in vivo biodistribution. For this purpose, NPs were formulated via nanoprecipitation and loaded with diphenylhexatriene (DPH), a fluorescent dye. The obtained NPs underwent comprehensive characterization, encompassing their morphology, technological attributes, DPH release rate, and thermodynamic properties. The produced NPs were then administered to wild-type mice via intraperitoneal injection, and, at scheduled time intervals, the animals were euthanized. Blood samples, as well as the liver, lungs, and kidneys, were extracted for histological examination and biodistribution analysis. The findings of this investigation revealed that the presence of poloxamers led to smaller NP sizes and induced partial crystallinity in the NPs. The biodistribution and histological results from in vivo experiments evidenced that both, P and PP NPs, exhibited comparable concentrations in the bloodstream, while P NPs could not be detected in the other organs examined. Conversely, PP NPs were primarily sequestered by the lungs and, to a lesser extent, by the kidneys. Future research endeavors will focus on investigating the behavior of drug-loaded NPs in pathological animal models.
Collapse
Affiliation(s)
- Teresa Silvestri
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy;
| | - Lucia Grumetto
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.G.); (I.N.); (M.B.)
- National Institute of Biostructures and Biosystems (INBB), Viale delle Medaglie d’Oro 305, 00136 Rome, Italy
| | - Ilaria Neri
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.G.); (I.N.); (M.B.)
- National Institute of Biostructures and Biosystems (INBB), Viale delle Medaglie d’Oro 305, 00136 Rome, Italy
| | - Maria De Falco
- National Institute of Biostructures and Biosystems (INBB), Viale delle Medaglie d’Oro 305, 00136 Rome, Italy
- Department of Biology, University Federico II of Naples, Via Cinthia 26, 80125 Naples, Italy;
| | - Sossio Fabio Graziano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.G.); (I.N.); (M.B.)
| | - Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy (D.G.); (L.M.)
| | - Daniela Giaquinto
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy (D.G.); (L.M.)
| | - Lucianna Maruccio
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy (D.G.); (L.M.)
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy (D.G.); (L.M.)
| | - Fabrizio Villapiano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.G.); (I.N.); (M.B.)
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy (D.G.); (L.M.)
| | - Laura Mayol
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB), Piazzale Tecchio 80, 80125 Naples, Italy
| | - Marco Biondi
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.G.); (I.N.); (M.B.)
- Interdisciplinary Research Centre on Biomaterials (CRIB), Piazzale Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
67
|
Marques C, Fernandes MH, Lima SAC. Elucidating Berberine's Therapeutic and Photosensitizer Potential through Nanomedicine Tools. Pharmaceutics 2023; 15:2282. [PMID: 37765251 PMCID: PMC10535601 DOI: 10.3390/pharmaceutics15092282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Berberine, an isoquinoline alkaloid extracted from plants of the Berberidaceae family, has been gaining interest due to anti-inflammatory and antioxidant activities, as well as neuro and cardiovascular protective effects in animal models. Recently, photodynamic therapy demonstrated successful application in many fields of medicine. This innovative, non-invasive treatment modality requires a photosensitizer, light, and oxygen. In particular, the photosensitizer can selectively accumulate in diseased tissues without damaging healthy cells. Berberine's physicochemical properties allow its use as a photosensitising agent for photodynamic therapy, enabling reactive oxygen species production and thus potentiating treatment efficacy. However, berberine exhibits poor aqueous solubility, low oral bioavailability, poor cellular permeability, and poor gastrointestinal absorption that hamper its therapeutic and photodynamic efficacy. Nanotechnology has been used to minimize berberine's limitations with the design of drug delivery systems. Different nanoparticulate delivery systems for berberine have been used, as lipid-, inorganic- and polymeric-based nanoparticles. These berberine nanocarriers improve its therapeutic properties and photodynamic potential. More specifically, they extend its half-life, increase solubility, and allow a high permeation and targeted delivery. This review describes different nano strategies designed for berberine delivery as well as berberine's potential as a photosensitizer for photodynamic therapy. To benefit from berberine's overall potential, nanotechnology has been applied for berberine-mediated photodynamic therapy.
Collapse
Affiliation(s)
- Célia Marques
- IUCS-CESPU, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal;
- LAQV, REQUIMTE, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Maria Helena Fernandes
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, LAQV, REQUIMTE, U. Porto, 4200-393 Porto, Portugal
| | - Sofia A. Costa Lima
- IUCS-CESPU, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal;
- LAQV, REQUIMTE, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
68
|
Chang CS, Ryu JY, Choi JK, Cho YJ, Choi JJ, Hwang JR, Choi JY, Noh JJ, Lee CM, Won JE, Han HD, Lee JW. Anti-cancer effect of fenbendazole-incorporated PLGA nanoparticles in ovarian cancer. J Gynecol Oncol 2023; 34:e58. [PMID: 37170725 PMCID: PMC10482585 DOI: 10.3802/jgo.2023.34.e58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/12/2023] [Accepted: 03/22/2023] [Indexed: 05/13/2023] Open
Abstract
OBJECTIVE Fenbendazole (FZ) has potential anti-cancer effects, but its poor water solubility limits its use for cancer therapy. In this study, we investigated the anti-cancer effect of FZ with different drug delivery methods on epithelial ovarian cancer (EOC) in both in vitro and in vivo models. METHODS EOC cell lines were treated with FZ and cell proliferation was assessed. The effect of FZ on tumor growth in cell line xenograft mouse model of EOC was examined according to the delivery route, including oral and intraperitoneal administration. To improve the systemic delivery of FZ by converting fat-soluble drugs to hydrophilic, we prepared FZ-encapsulated poly(D,L-lactide-co-glycolide) acid (PLGA) nanoparticles (FZ-PLGA-NPs). We investigated the preclinical efficacy of FZ-PLGA-NPs by analyzing cell proliferation, apoptosis, and in vivo models including cell lines and patient-derived xenograft (PDX) of EOC. RESULTS FZ significantly decreased cell proliferation of both chemosensitive and chemoresistant EOC cells. However, in cell line xenograft mouse models, there was no effect of oral FZ treatment on tumor reduction. When administered intraperitoneally, FZ was not absorbed but aggregated in the intraperitoneal space. We synthesized FZ-PLGA-NPs to obtain water solubility and enhance drug absorption. FZ-PLGA-NPs significantly decreased cell proliferation in EOC cell lines. Intravenous injection of FZ-PLGA-NP in xenograft mouse models with HeyA8 and HeyA8-MDR significantly reduced tumor weight compared to the control group. FZ-PLGA-NPs showed anti-cancer effects in PDX model as well. CONCLUSION FZ-incorporated PLGA nanoparticles exerted significant anti-cancer effects in EOC cells and xenograft models including PDX. These results warrant further investigation in clinical trials.
Collapse
Affiliation(s)
- Chi-Son Chang
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji-Yoon Ryu
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - June-Kuk Choi
- Department of Obstetrics and Gynecology, Uijeongbu Eulji Medical Center, Eulji University, Uijeongbu, Korea
| | - Young-Jae Cho
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jung-Joo Choi
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae Ryoung Hwang
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ju-Yeon Choi
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joseph J Noh
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chan Mi Lee
- Department of Immunology, School of Medicine, Konkuk University, Chungju, Korea
| | - Ji Eun Won
- Department of Immunology, School of Medicine, Konkuk University, Chungju, Korea
| | - Hee Dong Han
- Innovative Discovery Center, Prestige Biopharma Korea, Busan, Korea
| | - Jeong-Won Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
69
|
Wang J, Tan M, Wang Y, Liu X, Lin A. Advances in modification and delivery of nucleic acid drugs. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:417-428. [PMID: 37643976 PMCID: PMC10495244 DOI: 10.3724/zdxbyxb-2023-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/14/2023] [Indexed: 08/18/2023]
Abstract
Nucleic acid-based drugs, such as RNA and DNA drugs, exert their effects at the genetic level. Currently, widely utilized nucleic acid-based drugs include nucleic acid aptamers, antisense oligonucleotides, mRNA, miRNA, siRNA and saRNA. However, these drugs frequently encounter challenges during clinical application, such as poor stability, weak targeting specificity, and difficulties in traversing physiological barriers. By employing chemical modifications of nucleic acid structures, it is possible to enhance the stability and targeting specificity of certain nucleic acid drugs within the body, thereby improving delivery efficiency and reducing immunogenicity. Moreover, utilizing nucleic acid drug carriers can facilitate the transportation of drugs to lesion sites, thereby aiding efficient intracellular escape and promoting drug efficacy within the body. Currently, commonly employed delivery carriers include virus vectors, lipid nanoparticles, polymer nanoparticles, inorganic nanoparticles, protein carriers and extracellular vesicles. Nevertheless, individual modifications or delivery carriers alone are insufficient to overcome numerous obstacles. The integration of nucleic acid chemical modifications with drug delivery systems holds promise for achieving enhanced therapeutic effects. However, this approach also presents increased technical complexity and clinical translation costs. Therefore, the development of nucleic acid drug carriers and nucleic acid chemical modifications that are both practical and simple, while maintaining high efficacy, low toxicity, and precise nucleic acid delivery, has become a prominent research focus in the field of nucleic acid drug development. This review comprehensively summarizes the advancements in nucleic acid-based drug modifica-tions and delivery systems. Additionally, strategies to enhance nucleic acid drug delivery efficiency are discussed, with the aim of providing valuable insights for the translational application of nucleic acid drugs.
Collapse
Affiliation(s)
- Junfeng Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
- Zhejiang University Cancer Center, Hangzhou 310058, China.
| | - Manman Tan
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Cancer Center, Hangzhou 310058, China
| | - Ying Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Cancer Center, Hangzhou 310058, China
| | - Xiangrui Liu
- Zhejiang University Cancer Center, Hangzhou 310058, China.
| | - Aifu Lin
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
- Zhejiang University Cancer Center, Hangzhou 310058, China.
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Center for RNA Medicine, International Institutes of Medicine, Zhejiang University, Jinhua 322000, Zhejiang Province, China.
| |
Collapse
|
70
|
Chandrashekar A, Beig A, Wang Y, Schwendeman SP. In vitro performance of composition-equivalent PLGA microspheres encapsulating exenatide acetate by solvent evaporation. Int J Pharm 2023; 643:123213. [PMID: 37423376 DOI: 10.1016/j.ijpharm.2023.123213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
The once-weekly Bydureon® (Bdn) PLGA microsphere formulation encapsulating the GLP-1 receptor agonist, exenatide acetate, is an important complex injectable product prepared by coacervation for the treatment of type 2 diabetic patients. Encapsulation by coacervation is useful to minimize an undesirable initial burst of exenatide, but it suffers from manufacturing difficulties such as process scale-up and batch-to-batch variations. Herein we prepared exenatide acetate-PLGA formulations of similar compositions using the desirable alternative double emulsion-solvent evaporation technique. After screening several process variables, we varied the PLGA concentration, the hardening temperature, and the collected particle size range, and determined the resulting drug and sucrose loading, initial burst release, in vitro retention kinetics, and peptide degradation profiles using Bdn as a positive control. All formulations exhibited a triphasic release profile with a burst, lag, and rapid release phase, although the burst release was greatly decreased to <5% for some. Marked differences were observed in the peptide degradation profiles, particularly the oxidized and acylated fractions, when the polymer concentration was varied. For one optimal formulation, the release and peptide degradation profiles were similar to Bdn microspheres, albeit with an induction time shift of one week, likely due to the slightly higher Mw of PLGA in Bdn. These results highlight the effects of key manufacturing variables on drug release and stability in composition-equivalent microspheres encapsulating exenatide acetate and indicate the potential of manufacturing the microsphere component of Bdn by solvent evaporation.
Collapse
Affiliation(s)
- Aishwarya Chandrashekar
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Avital Beig
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Yan Wang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Steven P Schwendeman
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd., Ann Arbor, MI 48109, USA.
| |
Collapse
|
71
|
Islam MS, Mitra S. Microwave Synthesis of Nanostructured Functionalized Polylactic Acid (nfPLA) for Incorporation Into a Drug Crystals to Enhance Their Dissolution. J Pharm Sci 2023; 112:2260-2266. [PMID: 36958690 DOI: 10.1016/j.xphs.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
Active pharmaceutical ingredients that have low aqueous solubility pose a challenge in the field of drug delivery. In this paper we report for the first time the synthesis of nano-structured, hydrophilized polylactic acid (nfPLA) and its application in the delivery of low solubility drugs. Microwave induced acid oxidation was used to generate nfPLA where the oxygen concentration increased from 27.0 percent to 41.0 percent. Also, the original non dispersible PLA was converted to a relatively dispersible form with an average particle size of 131.4 nm and a zeta potential of -23.3 mV. Small quantities of the nfPLA were incorporated into the crystals (0.5 to 2.0 % by weight) of a highly hydrophobic, low solubility antifungal drug Griseofulvin (GF) to form a composite (GF-nfPLA). An antisolvent approach was used for the synthesis of the drug composite. SEM and Raman imaging showed non-uniform distribution of the nfPLA on the crystal surface. The solubility of GF increased from 8.89 µg/mL to as high as 49.67 µg/mL for the GF-nfPLA. At the same time zeta potential changed from -15.4 mV to -39.0 mV, therefore the latter was a relatively stable colloid. Octanol-water partitioning also showed a similar effect as logP reduced from 2.16 for pure GF to 0.55 for GF-nfPLA. In vitro dissolution testing showed six times higher aqueous solubility of GF-nfPLA compared to pure GF. The time for 50 (T50) and 80 % (T80) dissolution reduced significantly for the nfPLA composites; T50 reduced from 40.0 to 14.0 min and T80 reduced form unachievable to 47.0 min. Overall, the PLA which is an FDA approved, bioabsorbable polymer can be used to enhance the dissolution of hydrophobic pharmaceuticals and this can lead to higher efficacy and lower the required dosage for drugs.
Collapse
Affiliation(s)
- Mohammad Saiful Islam
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Somenath Mitra
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
72
|
Yang Y, Lin M, Sun M, Zhang GQ, Guo J, Li J. Nanotechnology boosts the efficiency of tumor diagnosis and therapy. Front Bioeng Biotechnol 2023; 11:1249875. [PMID: 37576984 PMCID: PMC10419217 DOI: 10.3389/fbioe.2023.1249875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023] Open
Abstract
The incidence and mortality of cancer are gradually increasing. The highly invasive and metastasis of tumor cells increase the difficulty of diagnosis and treatment, so people pay more and more attention to the diagnosis and treatment of cancer. Conventional treatment methods, including surgery, radiotherapy and chemotherapy, are difficult to eliminate tumor cells completely. And the emergence of nanotechnology has boosted the efficiency of tumor diagnosis and therapy. Herein, the research progress of nanotechnology used for tumor diagnosis and treatment is reviewed, and the emerging detection technology and the application of nanodrugs in clinic are summarized and prospected. The first part refers to the application of different nanomaterials for imaging in vivo and detection in vitro, which includes magnetic resonance imaging, fluorescence imaging, photoacoustic imaging and biomarker detection. The distinctive physical and chemical advantages of nanomaterials can improve the detection sensitivity and accuracy to achieve tumor detection in early stage. The second part is about the nanodrug used in clinic for tumor treatment. Nanomaterials have been widely used as drug carriers, including the albumin paclitaxel, liposome drugs, mRNA-LNP, protein nanocages, micelles, membrane nanocomplexes, microspheres et al., which could improve the drug accumulate in tumor tissue through enhanced permeability and retention effect to kill tumor cells with high efficiency. But there are still some challenges to revolutionize traditional tumor diagnosis and anti-drug resistance based on nanotechnology.
Collapse
Affiliation(s)
| | | | | | | | - Jianshuang Guo
- Pharmacology and Toxicology Research Laboratory, College of Pharmaceutical Science, Hebei University, Baoding, Hebei, China
| | - Jianheng Li
- Pharmacology and Toxicology Research Laboratory, College of Pharmaceutical Science, Hebei University, Baoding, Hebei, China
| |
Collapse
|
73
|
Rahmani F, Naderpour S, Nejad BG, Rahimzadegan M, Ebrahimi ZN, Kamali H, Nosrati R. The recent insight in the release of anticancer drug loaded into PLGA microspheres. Med Oncol 2023; 40:229. [PMID: 37410278 DOI: 10.1007/s12032-023-02103-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023]
Abstract
Cancer is a series of diseases leading to a high rate of death worldwide. Microspheres display specific characteristics that make them appropriate for a variety of biomedical purposes such as cancer therapy. Newly, microspheres have the potentials to be used as controlled drug release carriers. Recently, PLGA-based microspheres have attracted exceptional attention relating to effective drug delivery systems (DDS) because of their distinctive properties for a simple preparation, biodegradability, and high capability of drug loading which might be increased drug delivery. In this line, the mechanisms of controlled drug release and parameters that influence the release features of loaded agents from PLGA-based microspheres should be mentioned. The current review is focused on the new development of the release features of anticancer drugs, which are loaded into PLGA-based microspheres. Consequently, future perspective and challenges of anticancer drug release from PLGA-based microspheres are mentioned concisely.
Collapse
Affiliation(s)
- Farzad Rahmani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saghi Naderpour
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Cyprus
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnam Ghorbani Nejad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Milad Rahimzadegan
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zivar Nejad Ebrahimi
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Hossein Kamali
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Rahim Nosrati
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
74
|
Vashishat A, Singh A, Kurmi BD, Gupta GD, Singh D. A short appraisal of polylactic-co-glycolic acid based polymer nanotechnology for colon cancer: recent advances and literature evidences. Ther Deliv 2023; 14:459-472. [PMID: 37559461 DOI: 10.4155/tde-2023-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023] Open
Abstract
The currently available formulations provided non-targeted treatment of colon cancer, the deadliest cancer variant. Due to biopharmaceutical hindrances, the majority of the drugs are unable to reach the target site. Polylactic-co-glycolic acid (PLGA) is one of the versatile polymers in cancer treatment, diagnostics and theranostics. The unique mechanism of surface modifications in PLGA properties in colon cancer has been a keen interest to be used in different nanoparticles for improving biopharmaceutical attributes. The ongoing use of these smart nano-carriers has allowed targeted delivery of several active components on a wide scale. The main goal of this review is to compile information on PLGA-based nanocarriers which possess several desirable properties for drug delivery applications, including biocompatibility, biodegradability and tunable drug-release kinetics.
Collapse
Affiliation(s)
- Abhinav Vashishat
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, Punjab, 142001, India
| | - Amrinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140417, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, Punjab, 142001, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, Punjab, 142001, India
| | - Dilpreet Singh
- University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| |
Collapse
|
75
|
Domingues JM, Miranda CS, Homem NC, Felgueiras HP, Antunes JC. Nanoparticle Synthesis and Their Integration into Polymer-Based Fibers for Biomedical Applications. Biomedicines 2023; 11:1862. [PMID: 37509502 PMCID: PMC10377033 DOI: 10.3390/biomedicines11071862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
The potential of nanoparticles as effective drug delivery systems combined with the versatility of fibers has led to the development of new and improved strategies to help in the diagnosis and treatment of diseases. Nanoparticles have extraordinary characteristics that are helpful in several applications, including wound dressings, microbial balance approaches, tissue regeneration, and cancer treatment. Owing to their large surface area, tailor-ability, and persistent diameter, fibers are also used for wound dressings, tissue engineering, controlled drug delivery, and protective clothing. The combination of nanoparticles with fibers has the power to generate delivery systems that have enhanced performance over the individual architectures. This review aims at illustrating the main possibilities and trends of fibers functionalized with nanoparticles, focusing on inorganic and organic nanoparticles and polymer-based fibers. Emphasis on the recent progress in the fabrication procedures of several types of nanoparticles and in the description of the most used polymers to produce fibers has been undertaken, along with the bioactivity of such alliances in several biomedical applications. To finish, future perspectives of nanoparticles incorporated within polymer-based fibers for clinical use are presented and discussed, thus showcasing relevant paths to follow for enhanced success in the field.
Collapse
Affiliation(s)
- Joana M Domingues
- Centre for Textile Science and Technology (2C2T), Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal
| | - Catarina S Miranda
- Centre for Textile Science and Technology (2C2T), Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal
| | - Natália C Homem
- Simoldes Plastics S.A., Rua Comendador António da Silva Rodrigues 165, 3720-193 Oliveira de Azeméis, Portugal
| | - Helena P Felgueiras
- Centre for Textile Science and Technology (2C2T), Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal
| | - Joana C Antunes
- Centre for Textile Science and Technology (2C2T), Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal
| |
Collapse
|
76
|
Petposri S, Thuaksuban N, Buranadham S, Suwanrat T, Punyodom W, Supphaprasitt W. Physical Characteristics and Biocompatibility of 3D-Printed Polylactic-Co-Glycolic Acid Membranes Used for Guided Bone Regeneration. J Funct Biomater 2023; 14:jfb14050275. [PMID: 37233385 DOI: 10.3390/jfb14050275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Bioresorbable polymeric membranes for guided bone regeneration (GBR) were fabricated using the three-dimensional printing technique. Membranes made of polylactic-co-glycolic acid (PLGA), which consist of lactic acid (LA) and glycolic acid in ratios of 10:90 (group A) and 70:30 (group B), were compared. Their physical characteristics including architecture, surface wettability, mechanical properties, and degradability were compared in vitro, and their biocompatibilities were compared in vitro and in vivo. The results demonstrated that the membranes of group B had mechanical strength and could support the proliferation of fibroblasts and osteoblasts significantly better than those of group A (p < 0.05). The degradation rate in Group B was significantly lower than that in Group A, but they significantly produced less acidic environment (p < 0.05). In vivo, the membranes of group B were compared with the commercially available collagen membranes (group C). The amount of newly formed bone of rat's calvarial defects covered with the membranes of group C was stable after week 2, whereas that of group B increased over time. At week 8, the new bone volumes in group B were greater than those in group C (p > 0.05). In conclusion, the physical and biological properties of the PLGA membrane (LA:GA, 70:30) were suitable for GBR.
Collapse
Affiliation(s)
- Sidabhat Petposri
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hatyai 90112, Songkhla, Thailand
| | - Nuttawut Thuaksuban
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hatyai 90112, Songkhla, Thailand
| | - Supanee Buranadham
- Department of Prosthetic Dentistry, Faculty of Dentistry, Prince of Songkla University, Hatyai 90112, Songkhla, Thailand
| | - Trin Suwanrat
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hatyai 90112, Songkhla, Thailand
| | - Winita Punyodom
- Department of Chemistry, Faculty of Science, Chiang Mai University, Amphur Muang 50200, Chiang Mai, Thailand
| | - Woraporn Supphaprasitt
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hatyai 90112, Songkhla, Thailand
| |
Collapse
|
77
|
de Jesús Martín-Camacho U, Rodríguez-Barajas N, Alberto Sánchez-Burgos J, Pérez-Larios A. Weibull β value for the discernment of drug release mechanism of PLGA particles. Int J Pharm 2023; 640:123017. [PMID: 37149112 DOI: 10.1016/j.ijpharm.2023.123017] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023]
Abstract
Mathematical models are used to characterize and optimize drug release in drug delivery systems (DDS). One of the most widely used DDS is the poly(lactic-co-glycolic acid) (PLGA)-based polymeric matrix owing to its biodegradability, biocompatibility, and easy manipulation of its properties through the manipulation of synthesis processes. Over the years, the Korsmeyer-Peppas model has been the most widely used model for characterizing the release profiles of PLGA DDS. However, owing to the limitations of the Korsmeyer-Peppas model, the Weibull model has emerged as an alternative for the characterization of the release profiles of PLGA polymeric matrices. The purpose of this study was to establish a correlation between the n and β parameters of the Korsmeyer-Peppas and Weibull models and to use the Weibull model to discern the drug release mechanism. A total of 451 datasets describing the overtime drug release of PLGA-based formulations from 173 scientific articles were fitted to both models. The Korsmeyer-Peppas model had a mean Akaike Information Criteria (AIC) value of 54.52 and an n value of 0.42, while the Weibull model had a mean AIC of 51.99 and a β value of 0.55, and by using reduced major axis regression values, a high correlation was found between the n and β values. These results demonstrate the ability of the Weibull model to characterize the release profiles of PLGA-based matrices and the usefulness of the β parameter for determining the drug release mechanism.
Collapse
Affiliation(s)
- Ubaldo de Jesús Martín-Camacho
- Laboratorio de Investigación en Materiales, Agua y Energía, Departamento de Ingeniería, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jal., México, 47600
| | - Noé Rodríguez-Barajas
- Laboratorio de Investigación en Materiales, Agua y Energía, Departamento de Ingeniería, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jal., México, 47600
| | | | - Alejandro Pérez-Larios
- Laboratorio de Investigación en Materiales, Agua y Energía, Departamento de Ingeniería, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jal., México, 47600.
| |
Collapse
|
78
|
Amato M, Santonocito S, Polizzi A, Tartaglia GM, Ronsivalle V, Viglianisi G, Grippaudo C, Isola G. Local Delivery and Controlled Release Drugs Systems: A New Approach for the Clinical Treatment of Periodontitis Therapy. Pharmaceutics 2023; 15:1312. [PMID: 37111796 PMCID: PMC10143241 DOI: 10.3390/pharmaceutics15041312] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Periodontitis is an inflammatory disease of the gums characterized by the degeneration of periodontal ligaments, the formation of periodontal pockets, and the resorption of the alveolar bone, which results in the destruction of the teeth's supporting structure. Periodontitis is caused by the growth of diverse microflora (particularly anaerobes) in the pockets, releasing toxins and enzymes and stimulating the immune system. Various approaches, both local and systemic, have been used to treat periodontitis effectively. Successful treatment depends on reducing bacterial biofilm, bleeding on probing (BOP), and reducing or eliminating pockets. Currently, the use of local drug delivery systems (LDDSs) as an adjunctive therapy to scaling and root planing (SRP) in periodontitis is a promising strategy, resulting in greater efficacy and fewer adverse effects by controlling drug release. Selecting an appropriate bioactive agent and route of administration is the cornerstone of a successful periodontitis treatment plan. In this context, this review focuses on applications of LDDSs with varying properties in treating periodontitis with or without systemic diseases to identify current challenges and future research directions.
Collapse
Affiliation(s)
- Mariacristina Amato
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Gianluca Martino Tartaglia
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy
| | - Vincenzo Ronsivalle
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Gaia Viglianisi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Cristina Grippaudo
- Department of Head and Neck, Division of Oral Surgery and Implantology, Catholic University of the Sacred Heart, Fondazione Policlinico Gemelli IRCCS, 00168 Rome, Italy
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| |
Collapse
|
79
|
Behzadifar S, Barras A, Plaisance V, Pawlowski V, Szunerits S, Abderrahmani A, Boukherroub R. Polymer-Based Nanostructures for Pancreatic Beta-Cell Imaging and Non-Invasive Treatment of Diabetes. Pharmaceutics 2023; 15:pharmaceutics15041215. [PMID: 37111699 PMCID: PMC10143373 DOI: 10.3390/pharmaceutics15041215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Diabetes poses major economic, social, and public health challenges in all countries worldwide. Besides cardiovascular disease and microangiopathy, diabetes is a leading cause of foot ulcers and lower limb amputations. With the continued rise of diabetes prevalence, it is expected that the future burden of diabetes complications, early mortality, and disabilities will increase. The diabetes epidemic is partly caused by the current lack of clinical imaging diagnostic tools, the timely monitoring of insulin secretion and insulin-expressing cell mass (beta (β)-cells), and the lack of patients' adherence to treatment, because some drugs are not tolerated or invasively administrated. In addition to this, there is a lack of efficient topical treatment capable of stopping the progression of disabilities, in particular for treating foot ulcers. In this context, polymer-based nanostructures garnered significant interest due to their tunable physicochemical characteristics, rich diversity, and biocompatibility. This review article emphasizes the last advances and discusses the prospects in the use of polymeric materials as nanocarriers for β-cell imaging and non-invasive drug delivery of insulin and antidiabetic drugs in the management of blood glucose and foot ulcers.
Collapse
Affiliation(s)
- Shakila Behzadifar
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Alexandre Barras
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Valérie Plaisance
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Valérie Pawlowski
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Amar Abderrahmani
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| |
Collapse
|
80
|
Lu Y, Cheng D, Niu B, Wang X, Wu X, Wang A. Properties of Poly (Lactic-co-Glycolic Acid) and Progress of Poly (Lactic-co-Glycolic Acid)-Based Biodegradable Materials in Biomedical Research. Pharmaceuticals (Basel) 2023; 16:ph16030454. [PMID: 36986553 PMCID: PMC10058621 DOI: 10.3390/ph16030454] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
In recent years, biodegradable polymers have gained the attention of many researchers for their promising applications, especially in drug delivery, due to their good biocompatibility and designable degradation time. Poly (lactic-co-glycolic acid) (PLGA) is a biodegradable functional polymer made from the polymerization of lactic acid (LA) and glycolic acid (GA) and is widely used in pharmaceuticals and medical engineering materials because of its biocompatibility, non-toxicity, and good plasticity. The aim of this review is to illustrate the progress of research on PLGA in biomedical applications, as well as its shortcomings, to provide some assistance for its future research development.
Collapse
Affiliation(s)
- Yue Lu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Dongfang Cheng
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Baohua Niu
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Xiuzhi Wang
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Xiaxia Wu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Aiping Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
- Correspondence:
| |
Collapse
|
81
|
Hassan M, Khaleel A, Karam SM, Al-Marzouqi AH, ur Rehman I, Mohsin S. Bacterial Inhibition and Osteogenic Potentials of Sr/Zn Co-Doped Nano-Hydroxyapatite-PLGA Composite Scaffold for Bone Tissue Engineering Applications. Polymers (Basel) 2023; 15:1370. [PMID: 36987151 PMCID: PMC10057618 DOI: 10.3390/polym15061370] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 03/12/2023] Open
Abstract
Bacterial infection associated with bone grafts is one of the major challenges that can lead to implant failure. Treatment of these infections is a costly endeavor; therefore, an ideal bone scaffold should merge both biocompatibility and antibacterial activity. Antibiotic-impregnated scaffolds may prevent bacterial colonization but exacerbate the global antibiotic resistance problem. Recent approaches combined scaffolds with metal ions that have antimicrobial properties. In our study, a unique strontium/zinc (Sr/Zn) co-doped nanohydroxyapatite (nHAp) and Poly (lactic-co-glycolic acid) -(PLGA) composite scaffold was fabricated using a chemical precipitation method with different ratios of Sr/Zn ions (1%, 2.5%, and 4%). The scaffolds' antibacterial activity against Staphylococcus aureus were evaluated by counting bacterial colony-forming unit (CFU) numbers after direct contact with the scaffolds. The results showed a dose-dependent reduction in CFU numbers as the Zn concentration increased, with 4% Zn showing the best antibacterial properties of all the Zn-containing scaffolds. PLGA incorporation in Sr/Zn-nHAp did not affect the Zn antibacterial activity and the 4% Sr/Zn-nHAp-PLGA scaffold showed a 99.7% bacterial growth inhibition. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cell viability assay showed that Sr/Zn co-doping supported osteoblast cell proliferation with no apparent cytotoxicity and the highest doping percentage in the 4% Sr/Zn-nHAp-PLGA was found to be ideal for cell growth. In conclusion, these findings demonstrate the potential for a 4% Sr/Zn-nHAp-PLGA scaffold with enhanced antibacterial activity and cytocompatibility as a suitable candidate for bone regeneration.
Collapse
Affiliation(s)
- Mozan Hassan
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Abbas Khaleel
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sherif Mohamed Karam
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ali Hassan Al-Marzouqi
- Department of Chemical and Petroleum Engineering, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ihtesham ur Rehman
- School of Medicine, University of Central Lancashire, Preston PR1 2HE, UK
| | - Sahar Mohsin
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
82
|
Vasileiadou AC, Karageorgos FF, Kiparissides C. Model-based Optimization of Drug Release Rate from a Size Distributed Population of Biodegradable Polymer Carriers. Eur J Pharm Biopharm 2023; 186:112-131. [PMID: 36870398 DOI: 10.1016/j.ejpb.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
In the present study, a comprehensive polymer degradation-drug diffusion model is developed to describe the polymer degradation kinetics and quantify the release rate of an active pharmaceutical ingredient (API) from a size-distributed population of drug-loaded poly(lactic-co-glycolic) acid (PLGA) carriers in terms of material and morphological properties of the drug carriers. To take into account the spatial-temporal variation of the drug and water diffusion coefficients, three new correlations are developed in terms of spatial-temporal variation of the molecular weight of the degrading polymer chains. The first one relates the diffusion coefficients with the time-spatial variation of the molecular weight of PLGA and initial drug loading and, the second one with the initial particle size, and the third one with evolution of the particle porosity due to polymer degradation. The derived model, comprising a system of partial differential and algebraic equations, is numerically solved using the method of lines and validated against published experimental data on the drug release rate from a size distributed population of piroxicam-PLGA microspheres. Finally, a multi-parametric optimization problem is formulated to calculate the optimal particle size and drug loading distributions of drug-loaded PLGA carriers to realize a desired zero-order drug release rate of a therapeutic drug over a specified administration period of several weeks. It is envisaged that the proposed model-based optimization approach will aid the optimal design of new controlled drug delivery systems and, consequently, the therapeutic outcome of an administered drug.
Collapse
Affiliation(s)
- Athina C Vasileiadou
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Filippos F Karageorgos
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Costas Kiparissides
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Chemical Process & Energy Resources Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece.
| |
Collapse
|
83
|
Horvath D, Basler M. PLGA Particles in Immunotherapy. Pharmaceutics 2023; 15:pharmaceutics15020615. [PMID: 36839937 PMCID: PMC9965784 DOI: 10.3390/pharmaceutics15020615] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) particles are a widely used and extensively studied drug delivery system. The favorable properties of PLGA such as good bioavailability, controlled release, and an excellent safety profile due to the biodegradable polymer backbone qualified PLGA particles for approval by the authorities for the application as a drug delivery platform in humas. In recent years, immunotherapy has been established as a potent treatment option for a variety of diseases. However, immunomodulating drugs rely on targeted delivery to specific immune cell subsets and are often rapidly eliminated from the system. Loading of PLGA particles with drugs for immunotherapy can protect the therapeutic compounds from premature degradation, direct the drug delivery to specific tissues or cells, and ensure sustained and controlled drug release. These properties present PLGA particles as an ideal platform for immunotherapy. Here, we review recent advances of particulate PLGA delivery systems in the application for immunotherapy in the fields of allergy, autoimmunity, infectious diseases, and cancer.
Collapse
Affiliation(s)
- Dennis Horvath
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, D-78457 Konstanz, Germany
| | - Michael Basler
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland
- Correspondence:
| |
Collapse
|
84
|
Amin MK, Boateng J. Surface functionalization of PLGA nanoparticles for potential oral vaccine delivery targeting intestinal immune cells. Colloids Surf B Biointerfaces 2023; 222:113121. [PMID: 36599187 DOI: 10.1016/j.colsurfb.2022.113121] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
This study aimed to develop surface modified PLGA nanocarriers protecting a protein-based antigen in the stomach to enable potential release of the antigen at target intestinal sites. PLGA nanoparticles (NPs) were prepared by double emulsion and solvent evaporation techniques while surface functionalization was performed using polyethylene glycol (PEG), sodium alginate (ALG) and Eudragit L100 (EUD) with ovalbumin (OVA) as a model protein antigen. Nanoparticles were characterized by dynamic light scattering (DLS), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), and stability in simulated gastric fluid (SGF)/simulated intestinal fluid (SIF). Structural integrity of released OVA was analyzed by circular dichroism (CD) and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), while cytotoxicity against Jurkat cells was determined using MTT assay. Surface functionalized PLGA NPs protected the protein in SGF and SIF better than the non-functionalized NPs. Average size of OVA encapsulated NPs was between 235 and 326 nm and were spherical. FTIR band change was observed after surface modification and the surface modified NPs showed sustained OVA release compared with the uncoated NPs. The secondary structure of OVA released after 96 h remained intact and MTT assay showed >80 % cell viability after 72 h while unmodified and surface modified NPs achieved 17 % and 48 % mucin binding respectively. In conclusion, surface modified PLGA NPs have been shown to be safe for potential oral protein-based vaccine delivery.
Collapse
Affiliation(s)
- Muhammad Khairul Amin
- School of Science, Faculty of Engineering and Science, University of Greenwich, Medway, Kent ME4 4TB, United Kingdom
| | - Joshua Boateng
- School of Science, Faculty of Engineering and Science, University of Greenwich, Medway, Kent ME4 4TB, United Kingdom.
| |
Collapse
|
85
|
Cheng X, Wang L, Liu L, Shi S, Xu Y, Xu Z, Wei B, Li C. A sequentially responsive cascade nanoplatform for increasing chemo-chemodynamic therapy. Colloids Surf B Biointerfaces 2023; 222:113099. [PMID: 36584448 DOI: 10.1016/j.colsurfb.2022.113099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/27/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Poly(lactide-co-glycolide) (PLGA) is promising carrier material for drugs delivery in cancer therapy. However, the slow degradation and lack of targeting have greatly limited the clinical effectiveness of PLGA-based nanomedicines. Herein, we fabricated a hybrid nanosystem (3 P @ He/Pt-NPs) comprising of acid-sensitive polymer (mPOE-PLGA), active-targeting polymer (PBA-PLGA) and therapeutic agents (hemin+cisplatin) to combat these problems. In neutral environment, PEGylation can effectively improve the blood stability and circulation time of hybrid nanosystem. After reaching tumor regions, this nanosystem efficiently increased cellular uptake by dePEGylation and PBA-mediated active-targeting. Furthermore, encapsulated hemin could catalyze the oxygen bubbles generation, which remarkably increasing the drugs release rate. Subsequently, hybrid particles produced a higher cell-killing effect to lung cancer cells (A549) by the combination therapy (chemotherapy and chemodynamic therapy (CDT)). Importantly, cisplatin further amplified CDT effect by inducing H2O2 regeneration owing to the cascade enzymatic reactions, while hemin decreased intracellular glutathione (GSH) level, resulting in a low detoxification effect to cisplatin. Thus, hybrid particles could efficiently inhibit drug-resistant tumor growth and the inhibition rate reached 83.2%. Overall, this hybrid polymer nanosystem improve the drawbacks of PLGA-based nanocarriers, and can realize a cascading enhanced tumor treatment.
Collapse
Affiliation(s)
- Xu Cheng
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Lu Wang
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Liwen Liu
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Shuiqing Shi
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Yingran Xu
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Zhengrong Xu
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Bing Wei
- Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang 236037, PR China.
| | - Conghu Li
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China.
| |
Collapse
|
86
|
Zhu K, Yao Y, Wang K, Shao F, Zhu Z, Song Y, Zhou Z, Jiang D, Lan X, Qin C. Berberin sustained-release nanoparticles were enriched in infarcted rat myocardium and resolved inflammation. J Nanobiotechnology 2023; 21:33. [PMID: 36709291 PMCID: PMC9883926 DOI: 10.1186/s12951-023-01790-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/20/2023] [Indexed: 01/29/2023] Open
Abstract
Inflammatory regulation induced by macrophage polarization is essential for cardiac repair after myocardial infarction (MI). Berberin (BBR) is an isoquinoline tetrasystemic alkaloid extracted from plants. This study analyzes the most likely mechanism of BBR in MI treatment determined via network pharmacology, showing that BBR acts mainly through inflammatory responses. Because platelets (PLTs) can be enriched in the infarcted myocardium, PLT membrane-coated polylactic-co-glycolic acid (PLGA) nanoparticles (BBR@PLGA@PLT NPs) are used, which show enrichment in the infarcted myocardium to deliver BBR sustainably. Compared with PLGA nanoparticles, BBR@PLGA@PLT NPs are more enriched in the infarcted myocardium and exhibit less uptake in the liver. On day three after MI, BBR@PLGA@PLT NPs administration significantly increases the number of repaired macrophages and decreases the number of inflammatory macrophages and apoptotic cells in infarcted rat myocardium. On the 28th day after MI, the BBR@PLGA@PLT group exhibits a protective effect on cardiac function, reduced cardiac collagen deposition, improved scar tissue stiffness, and an excellent angiogenesis effect. In addition, BBR@PLGA@PLT group has no significant impact on major organs either histologically or enzymologically. In summary, the therapeutic effect of BBR@PLGA@PLT NPs on MI is presented in detail from the perspective of the resolution of inflammation, and a new solution for MI treatment is proposed.
Collapse
Affiliation(s)
- Ke Zhu
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 Hubei China ,Department of Nuclear Medicine, The First People’s Hospital of Zigong, Zigong, Sichuan China
| | - Yu Yao
- grid.33199.310000 0004 0368 7223Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Kun Wang
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.24516.340000000123704535Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fuqiang Shao
- Department of Nuclear Medicine, The First People’s Hospital of Zigong, Zigong, Sichuan China
| | - Ziyang Zhu
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 Hubei China
| | - Yangmeihui Song
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 Hubei China
| | - Zhangyongxue Zhou
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 Hubei China
| | - Dawei Jiang
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 Hubei China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022 Hubei China
| | - Xiaoli Lan
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 Hubei China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022 Hubei China
| | - Chunxia Qin
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 Hubei China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022 Hubei China
| |
Collapse
|
87
|
Strzelecka K, Piotrowska U, Sobczak M, Oledzka E. The Advancement of Biodegradable Polyesters as Delivery Systems for Camptothecin and Its Analogues-A Status Report. Int J Mol Sci 2023; 24:ijms24021053. [PMID: 36674567 PMCID: PMC9866533 DOI: 10.3390/ijms24021053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Camptothecin (CPT) has demonstrated antitumor activity in lung, ovarian, breast, pancreas, and stomach cancers. However, this drug, like many other potent anticancer agents, is extremely water-insoluble. Furthermore, pharmacology studies have revealed that prolonged schedules must be administered continuously. For these reasons, several of its water-soluble analogues, prodrugs, and macromolecular conjugates have been synthesized, and various formulation approaches have been investigated. Biodegradable polyesters have gained popularity in cancer treatment in recent years. A number of biodegradable polymeric drug delivery systems (DDSs), designed for localized and systemic administration of therapeutic agents, as well as tumor-targeting macromolecules, have entered clinical trials, demonstrating the importance of biodegradable polyesters in cancer therapy. Biodegradable polyester-based DDSs have the potential to deliver the payload to the target while also increasing drug availability at intended site. The systemic toxicity and serious side-effects associated with conventional cancer therapies can be significantly reduced with targeted polymeric systems. This review elaborates on the use of biodegradable polyesters in the delivery of CPT and its analogues. The design of various DDSs based on biodegradable polyesters has been described, with the drug either adsorbed on the polymer's surface or encapsulated within its macrostructure, as well as those in which a hydrolyzed chemical bond is formed between the active substance and the polymer chain. The data related to the type of DDSs, the kind of linkage, and the details of in vitro and in vivo studies are included.
Collapse
Affiliation(s)
- Katarzyna Strzelecka
- Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Urszula Piotrowska
- Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Marcin Sobczak
- Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
- Military Institute of Hygiene and Epidemiology, 4 Kozielska Str., 01-163 Warsaw, Poland
| | - Ewa Oledzka
- Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-572-07-55
| |
Collapse
|
88
|
Allami P, Heidari A, Rezaei N. The role of cell membrane-coated nanoparticles as a novel treatment approach in glioblastoma. Front Mol Biosci 2023; 9:1083645. [PMID: 36660431 PMCID: PMC9846545 DOI: 10.3389/fmolb.2022.1083645] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
Glioblastoma multiform (GBM) is the most prevalent and deadliest primary brain malignancy in adults, whose median survival rate does not exceed 15 months after diagnosis. The conventional treatment of GBM, including maximal safe surgery followed by chemotherapy and radiotherapy, usually cannot lead to notable improvements in the disease prognosis and the tumor always recurs. Many GBM characteristics make its treatment challenging. The most important ones are the impermeability of the blood-brain barrier (BBB), preventing chemotherapeutic drugs from reaching in adequate amounts to the tumor site, intratumoral heterogeneity, and roles of glioblastoma stem cells (GSCs). To overcome these barriers, the recently-developed drug-carrying approach using nanoparticles (NPs) may play a significant role. NPs are tiny particles, usually less than 100 nm showing various diagnostic and therapeutic medical applications. In this regard, cell membrane (CM)-coated NPs demonstrated several promising effects in GBM in pre-clinical studies. They benefit from fewer adverse effects due to their specific targeting of tumor cells, biocompatibility because of their CM surfaces, prolonged half-life, easy penetrating of the BBB, and escaping from the immune reaction, making them an attractive option for GBM treatment. To date, CM-coated NPs have been applied to enhance the effectiveness of major therapeutic approaches in GBM treatment, including chemotherapy, immunotherapy, gene therapy, and photo-based therapies. Despite the promising results in pre-clinical studies regarding the effectiveness of CM-coated NPs in GBM, significant barriers like high expenses, complex preparation processes, and unknown long-term effects still hinder its mass production for the clinic. In this regard, the current study aims to provide an overview of different characteristics of CM-coated NPs and comprehensively investigate their application as a novel treatment approach in GBM.
Collapse
Affiliation(s)
- Pantea Allami
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Heidari
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
89
|
Lin Z, Chen H, Xu J, Wang J, Wang H, Huang S, Xu S. A Review of the Release Profiles and Efficacies of Chemotherapy Drug-Loaded Electrospun Membranes. Polymers (Basel) 2023; 15:polym15020251. [PMID: 36679132 PMCID: PMC9865042 DOI: 10.3390/polym15020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Electrospun fibrous membranes loaded with chemotherapy drugs have been broadly studied, many of which have had promising data demonstrating therapeutic effects on cancer cell inhibition, tumor size reduction, the life extension of tumor-bearing animals, and more. Nevertheless, their drug release profiles are difficult to predict since their degradation pattern varies with crystalline polymers. In addition, there is room for improving their release performances, optimizing the release patterns, and achieving better therapeutic outcomes. In this review, the key factors affecting electrospun membrane drug release profiles have been systematically reviewed. Case studies of the release profiles of typical chemotherapy drugs are carried out to determine the preferred polymer choices and techniques to achieve the expected prolonged or enhanced release profiles. The therapeutic effects of these electrospun, chemo-drug-loaded membranes are also discussed. This review aims to assist in the design of future drug-loaded electrospun materials to achieve preferred release profiles with enhanced therapeutic efficacies.
Collapse
Affiliation(s)
- Zhenyu Lin
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hao Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jiawei Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jie Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Huijing Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Shifen Huang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Shanshan Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Correspondence: ; Tel.: +86-755-26531165
| |
Collapse
|
90
|
Dristant U, Mukherjee K, Saha S, Maity D. An Overview of Polymeric Nanoparticles-Based Drug Delivery System in Cancer Treatment. Technol Cancer Res Treat 2023; 22:15330338231152083. [PMID: 36718541 PMCID: PMC9893377 DOI: 10.1177/15330338231152083] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 02/01/2023] Open
Abstract
Cancer is recognized as one of the world's deadliest diseases, with more than 10 million new cases each year. Over the past 2 decades, several studies have been performed on cancer to pursue solutions for effective treatment. One of the vital benefits of utilizing nanoparticles (NPs) in cancer treatment is their high adaptability for modification and amalgamation of different physicochemical properties to boost their anti-cancer activity. Various nanomaterials have been designed as nanocarriers attributing nontoxic and biocompatible drug delivery systems with improved bioactivity. The present review article briefly explained various types of nanocarriers, such as organic-inorganic-hybrid NPs, and their targeting mechanisms. Here a special focus is given to the synthesis, benefits, and applications of polymeric NPs (PNPs) involved in various anti-cancer therapeutics. It has also been discussed about the drug delivery approach by the functionalized/encapsulated PNPs (without/with targeting ability) that are being applied in the therapy and diagnostic (theranostics). Overall, this review can give a glimpse into every aspect of PNPs, from their synthesis to drug delivery application for cancer cells.
Collapse
Affiliation(s)
- Utkarsh Dristant
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Koel Mukherjee
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Sumit Saha
- Materials Chemistry Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, Odisha, India
| | - Dipak Maity
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| |
Collapse
|
91
|
Khudaida SH, Hsieh WY, Huang YZ, Wu WY, Lee MJ, Su CS. Solubility of probenecid in supercritical carbon dioxide and composite particles prepared using supercritical antisolvent process. J Supercrit Fluids 2023. [DOI: 10.1016/j.supflu.2023.105851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
92
|
Qiang S, Gu L, Kuang Y, Zhao M, You Y, Han Q. Changes in the content of Puerarin-PLGA nanoparticles in mice under the influence of alcohol and analysis of their antialcoholism. J Appl Biomater Funct Mater 2023; 21:22808000221148100. [PMID: 36708246 DOI: 10.1177/22808000221148100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
To observe the metabolic changes and antialcoholic effect of Puerarin-PLGA nanoparticles (PUE-NP) in mice. PUE-NP was prepared and characterized by particle size distribution and morphology. The mouse models with acute alcoholism were established to observe their behavioral changes after alcohol poisoning. The expressions of biologically active enzymes such as CRE, BUN, AST, ALT in serum and SOD and TLR4 in liver of mice in each group were detected, and the pathological changes in liver and kidney tissues were observed by HE staining. The PUE-NP metabolism in mice was determined by in vitro release assay and HPLC. PUE-NP nanoparticles had good morphology and structure, and the mouse models with alcohol poisoning were established successfully. Compared with alcohol group, puerarin and PUE-NP increased the disappearance latency time of righting reflex, and the recovery time of righting reflex was significantly shortened. Water maze results showed that Puerarin and PUE-NP had inhibitory effect on impaired memory. HPLC results showed that PUE-NP reached its peak in mice after 1 h, and the content percentage was twice that of puerarin preparation alone, and the distribution time of puerarin concentration in vivo was prolonged, indicating that PLGA nanoparticles had a loading and slow-release effect on puerarin and increased the bioavailability of puerarin in mice. In addition, compared with the alcohol group, Puerarin and PUE-NP improved serum ALT, AST, CRE, and BUN levels in mice, enhanced SOD activity in liver, and inhibited TLR4 expression. The effect was better in the PUE-NP group than in the Puerarin group. PUE-NP delayed the release and metabolism of Puerarin and had better effect in the treatment of the alcoholic liver and kidney injury.
Collapse
Affiliation(s)
- Siyu Qiang
- School of Public Health, Chengdu Medical College, Chengdu, PR China
| | - Lixiang Gu
- School of Public Health, Chengdu Medical College, Chengdu, PR China
| | - Yu Kuang
- School of Public Health, Chengdu Medical College, Chengdu, PR China
| | - Minyao Zhao
- School of Public Health, Chengdu Medical College, Chengdu, PR China
| | - Yu You
- School of Public Health, Chengdu Medical College, Chengdu, PR China
| | - Qin Han
- School of Public Health, Chengdu Medical College, Chengdu, PR China
| |
Collapse
|
93
|
Brindhadevi K, Garalleh HAL, Alalawi A, Al-Sarayreh E, Pugazhendhi A. Carbon nanomaterials: Types, synthesis strategies and their application as drug delivery system for Cancer therapy. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
94
|
Chen D, Liu X, Lu X, Tian J. Nanoparticle drug delivery systems for synergistic delivery of tumor therapy. Front Pharmacol 2023; 14:1111991. [PMID: 36874010 PMCID: PMC9978018 DOI: 10.3389/fphar.2023.1111991] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
Nanoparticle drug delivery systems have proved anti-tumor effects; however, they are not widely used in tumor therapy due to insufficient ability to target specific sites, multidrug resistance to anti-tumor drugs, and the high toxicity of the drugs. With the development of RNAi technology, nucleic acids have been delivered to target sites to replace or correct defective genes or knock down specific genes. Also, synergistic therapeutic effects can be achieved for combined drug delivery, which is more effective for overcoming multidrug resistance of cancer cells. These combination therapies achieve better therapeutic effects than delivering nucleic acids or chemotherapeutic drugs alone, so the scope of combined drug delivery has also been expanded to three aspects: drug-drug, drug-gene, and gene-gene. This review summarizes the recent advances of nanocarriers to co-delivery agents, including i) the characterization and preparation of nanocarriers, such as lipid-based nanocarriers, polymer nanocarriers, and inorganic delivery carriers; ii) the advantages and disadvantages of synergistic delivery approaches; iii) the effectual delivery cases that are applied in the synergistic delivery systems; and iv) future perspectives in the design of nanoparticle drug delivery systems to co-deliver therapeutic agents.
Collapse
Affiliation(s)
- Daoyuan Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Xuecun Liu
- Shandong Boan Biotechnology Co., Ltd., Yantai, China
| | - Xiaoyan Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
95
|
Kumar L, Kukreti G, Rana R, Chaurasia H, Sharma A, Sharma N, Komal. Poly(lactic-co-glycolic) Acid (PLGA) Nanoparticles and Transdermal Drug Delivery: An Overview. Curr Pharm Des 2023; 29:2940-2953. [PMID: 38173050 DOI: 10.2174/0113816128275385231027054743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/22/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Biodegradable polymeric nanoparticles have garnered pharmaceutical industry attention throughout the past decade. PLGA [Poly(lactic-co-glycolic acid)] is an excellent biodegradable polymer explored for the preparation of nanoparticles that are administered through various routes like intravenous and transdermal. PLGA's versatility makes it a good choice for the preparation of nanoparticles. OBJECTIVE The main objective of this review paper was to summarize methods of preparation and characterization of PLGA nanoparticles along with their role in the transdermal delivery of various therapeutic agents. METHODS A literature survey for the present review paper was done using various search engines like Pubmed, Google Scholar, and Science Direct. RESULTS In comparison to traditional transdermal administration systems, PLGA nanoparticles have demonstrated several benefits in preclinical investigations, including fewer side effects, low dosage frequency, high skin permeability, and simplicity of application. CONCLUSION PLGA nanoparticles can be considered efficient nanocarriers for the transdermal delivery of drugs. Nevertheless, the clinical investigation of PLGA nanoparticles for the transdermal administration of therapeutic agents remains a formidable obstacle.
Collapse
Affiliation(s)
- Lalit Kumar
- Department of Pharmaceutics, GNA School of Pharmacy, GNA University, Phagwara, Punjab 144401, India
| | - Gauree Kukreti
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala Dehradun, Uttarakhand 248161, India
| | - Ritesh Rana
- Department of Pharmaceutical Sciences (Pharmaceutics), Himachal Institute of Pharmaceutical Education and Research (HIPER), Bela-Nadaun, District-Hamirpur, H.P. 177033, India
| | - Himanshu Chaurasia
- Department of Pharmacy, Quantum School of Health Science, Quantum University, Vill. Mandawar (N.H.73) Roorkee-Dehradun Highway, Roorkee, Uttrakhand 247662, India
| | - Anchal Sharma
- Department of Pharmaceutics, Shiva Institute of Pharmacy, Chandpur, District-Bilaspur, H.P. 174004, India
| | - Neelam Sharma
- Department of Pharmaceutical Sciences (Pharmacology), Himachal Institute of Pharmaceutical Education and Research (HIPER), Bela-Nadaun, District-Hamirpur, H.P. 177033, India
| | - Komal
- Department of Pharmacology, Chandigarh College of Pharmacy, Landran, Sahibzada Ajit Singh Nagar, Punjab 140307, India
| |
Collapse
|
96
|
Nimbalkar Y, Gharat SA, Tanna V, Nikam VS, Nabar S, Sawarkar SP. Modification and Functionalization of Polymers for Targeting to Bone Cancer and Bone Regeneration. Crit Rev Biomed Eng 2023; 51:21-58. [PMID: 37560878 DOI: 10.1615/critrevbiomedeng.2023043780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Bone is one of the most complex, inaccessible body structures, responsible for calcium storage and haematopoiesis. The second highest cause of death across the world is cancer. Amongst all the types of cancers, bone cancer treatment modalities are limited due to the structural complexity and inaccessibility of bones. The worldwide incidence of bone diseases and bone defects due to cancer, infection, trauma, age-related bone degeneration is increasing. Currently different conventional therapies are available for bone cancer such as chemotherapy, surgery and radiotherapy, but they have several disadvantages associated with them. Nanomedicine is being extensively researched as viable therapeutics to mitigate drug resistance in cancer therapy and promote bone regeneration. Several natural polymers such as chitosan, dextran, alginate, hyaluronic acid, and synthetic polymers like polyglycolic acid, poly(lactic-co-glycolic acid), polycaprolactone are investigated for their application in nanomedicine for bone cancer treatment and bone regeneration. Nanocarriers have shown promising results in preclinical experimental studies. However, they still face a major drawback of inadequate targetability. The paper summarizes the status of research and the progress made so far in modifications and functionalization of natural polymers for improving their site specificity and targeting for effective treatment of bone cancer and enhancing bone regeneration.
Collapse
Affiliation(s)
- Yogesh Nimbalkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Vile Parle West, Mumbai 400056 India
| | - Sankalp A Gharat
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Vile Parle West, Mumbai 400056 India
| | - Vidhi Tanna
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Vile Parle West, Mumbai 400056 India
| | - Vandana S Nikam
- Department of Pharmacology, STES's Smt. Kashibai Navale College of Pharmacy, Kondhwa, S.P. Pune University, Pune 411048, India
| | - Swapna Nabar
- Radiation Medicine Centre, Tata Memorial Hospital, Parel, Mumbai, India
| | - Sujata P Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Vile Parle West, Mumbai 400056 India
| |
Collapse
|
97
|
Gu Z, Chen H, Zhao H, Yang W, Song Y, Li X, Wang Y, Du D, Liao H, Pan W, Li X, Gao Y, Han H, Tong Z. New insight into brain disease therapy: nanomedicines-crossing blood-brain barrier and extracellular space for drug delivery. Expert Opin Drug Deliv 2022; 19:1618-1635. [PMID: 36285632 DOI: 10.1080/17425247.2022.2139369] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Brain diseases including brain tumor, Alzheimer's disease, Parkinson's disease, etc. are difficult to treat. The blood-brain barrier (BBB) is a major obstacle for drug delivery into the brain. Although nano-package and receptor-mediated delivery of nanomedicine markedly increases BBB penetration, it yet did not extensively improve clinical cure rate. Recently, brain extracellular space (ECS) and interstitial fluid (ISF) drainage in ECS have been found to determine whether a drug dissolved in ISF can reach its target cells. Notably, an increase in tortuosity of ECS associated with slower ISF drainage induced by the accumulated harmful substances, such as: amyloid-beta (Aβ), α-synuclein, and metabolic wastes, causes drug delivery failure. AREAS COVERED The methods of nano-package and receptor-mediated drug delivery and the penetration efficacy of nanomedicines across BBB and ECS are assessed. EXPERT OPINION Invasive delivering drug via ECS and noninvasive near-infrared photo-sensitive nanomedicines may provide a promising benefit to patients with brain disease.
Collapse
Affiliation(s)
- Ziqi Gu
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Haishu Chen
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Han Zhao
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Wanting Yang
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Yilan Song
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Xiang Li
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Yang Wang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.,Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Dan Du
- Department of Radiology, Peking University Third Hospital, Beijing, China.,Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing, China
| | - Haikang Liao
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Wenhao Pan
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Xi Li
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yajuan Gao
- Department of Radiology, Peking University Third Hospital, Beijing, China.,NMPA key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing, China
| | - Hongbin Han
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.,Department of Radiology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing, China.,Peking University Shenzhen Graduate School, Shenzhen, China
| | - Zhiqian Tong
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China.,The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
98
|
Ruan L, Su M, Qin X, Ruan Q, Lang W, Wu M, Chen Y, Lv Q. Progress in the application of sustained-release drug microspheres in tissue engineering. Mater Today Bio 2022; 16:100394. [PMID: 36042853 PMCID: PMC9420381 DOI: 10.1016/j.mtbio.2022.100394] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 01/22/2023] Open
Abstract
Sustained-release drug-loaded microspheres provide a long-acting sustained release, with targeted and other effects. There are many types of sustained-release drug microspheres and various preparation methods, and they are easy to operate. For these reasons, they have attracted widespread interest and are widely used in tissue engineering and other fields. In this paper, we provide a systematic review of the application of sustained-release drug microspheres in tissue engineering. First, we introduce this new type of drug delivery system (sustained-release drug carriers), describe the types of sustained-release drug microspheres, and summarize the characteristics of different microspheres. Second, we summarize the preparation methods of sustained-release drug microspheres and summarize the materials required for preparing microspheres. Third, various applications of sustained-release drug microspheres in tissue engineering are summarized. Finally, we summarize the shortcomings and discuss future prospects in the development of sustained-release drug microspheres. The purpose of this paper was to provide a further systematic understanding of the application of sustained-release drug microspheres in tissue engineering for the personnel engaged in related fields and to provide inspiration and new ideas for studies in related fields.
Collapse
Affiliation(s)
- Lian Ruan
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Mengrong Su
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Xinyun Qin
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Qingting Ruan
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Wen Lang
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Minhui Wu
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Yujie Chen
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, 537000, China
| |
Collapse
|
99
|
Coaxial TP/APR electrospun nanofibers for programmed controlling inflammation and promoting bone regeneration in periodontitis-related alveolar bone defect models. Mater Today Bio 2022; 16:100438. [PMID: 36193342 PMCID: PMC9526238 DOI: 10.1016/j.mtbio.2022.100438] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
Periodontitis is a pathological dental condition that damages the periodontal tissue and leads to tooth loss. Bone regeneration in periodontitis-related alveolar bone defects remains a challenge for periodontists and tissue engineers because of the complex periodontal microenvironment. The inflammatory microenvironment is associated with poor osteogenesis; therefore, the reduction of inflammation is essential for bone regeneration in periodontitis-related alveolar bone defects. Here, we developed a programmed core-shell nanofibers that allows the sequential and controlled release of tea polyphenols (TP) and AdipoRon (APR) to control inflammation and promote bone regeneration to repair periodontitis-related alveolar bone defects. Core-shell nanofibers with a sequentially controlled release function were synthesized using electrospinning. We investigated the therapeutic effects of the nanofibers in vitro and in a mouse periodontitis model. The results of the release profiles demonstrated that TP was released rapidly in the early stages and APR was continuously released thereafter. In vitro experiments showed that the programmed core-shell nanofibers reduced the levels of proinflammatory cytokines and increased osteogenic differentiation in an inflammatory microenvironment. In vivo experiments, the programmed core-shell nanofibers ameliorated periodontal tissue inflammation and improved alveolar bone regeneration. Our results indicated that the programmed core-shell nanofibers with a sequential-release function provides an ideal strategy for repairing periodontitis-related alveolar bone defects, and its application in the treatment of diseases with spatiotemporal specificity is promising.
Collapse
|
100
|
Lee S, Patel M, Patel R. Electrospun nanofiber nerve guidance conduits for peripheral nerve regeneration: A review. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|